



# Alcatel-Lucent 7705

SERVICE AGGREGATION ROUTER OS | RELEASE 1.1 SERVICES GUIDE

Alcatel-Lucent assumes no responsibility for the accuracy of the information presented, which is subject to change without notice.

Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners.

Copyright 2008 Alcatel-Lucent. All rights reserved.

#### **Disclaimers**

Alcatel-Lucent products are intended for commercial uses. Without the appropriate network design engineering, they must not be sold, licensed or otherwise distributed for use in any hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life-support machines, or weapons systems, in which the failure of products could lead directly to death, personal injury, or severe physical or environmental damage. The customer hereby agrees that the use, sale, license or other distribution of the products for any such application without the prior written consent of Alcatel-Lucent, shall be at the customer's sole risk. The customer hereby agrees to defend and hold Alcatel-Lucent harmless from any claims for loss, cost, damage, expense or liability that may arise out of or in connection with the use, sale, license or other distribution of the products in such applications.

This document may contain information regarding the use and installation of non-Alcatel-Lucent products. Please note that this information is provided as a courtesy to assist you. While Alcatel-Lucent tries to ensure that this information accurately reflects information provided by the supplier, please refer to the materials provided with any non-Alcatel-Lucent product and contact the supplier for confirmation. Alcatel-Lucent assumes no responsibility or liability for incorrect or incomplete information provided about non-Alcatel-Lucent products.

However, this does not constitute a representation or warranty. The warranties provided for Alcatel-Lucent products, if any, are set forth in contractual documentation entered into by Alcatel-Lucent and its customers.

This document was originally written in English. If there is any conflict or inconsistency between the English version and any other version of a document, the English version shall prevail.

# **Table of Contents**

| Preface                                                | 19 |
|--------------------------------------------------------|----|
| Getting Started                                        | 21 |
| Alcatel-Lucent 7705 SAR Services Configuration Process |    |
| Notes on 7705 SAR-F and 7705 SAR-8                     |    |
|                                                        |    |
| Services Overview                                      | 25 |
| Introduction to Services on the 7705 SAR               | 26 |
| Service Types                                          | 27 |
| Service Policies                                       |    |
| Alcatel-Lucent Service Model                           | 29 |
| Service Entities                                       | 30 |
| Customers                                              | 31 |
| Service Types                                          |    |
| Service Access Points (SAPs)                           |    |
| SAP Encapsulation Types and Identifiers                |    |
| SAP Configuration Considerations                       |    |
| Service Destination Points (SDPs)                      |    |
| SDP Binding                                            |    |
| Spoke SDPs                                             |    |
| SDP Encapsulation Types                                |    |
| SDP Ping                                               |    |
| SDP Keepalives                                         |    |
| Mobile Solutions                                       |    |
| HSDPA Offload                                          |    |
| Failure Detection.                                     |    |
| Service Creation Overview                              |    |
| Subscriber Services Components                         |    |
| Port and SAP CLI Identifiers                           |    |
| Reference Sources                                      |    |
| Configuring Global Service Entities with CLI           |    |
| Service Model Entities.                                |    |
| Service CLI Command Structure                          |    |
| List of Commands                                       |    |
| Basic Configuration                                    |    |
| Common Configuration Tasks.                            |    |
| Configuring Customer Accounts                          |    |
| Configuring SDPs                                       |    |
| SDP Configuration Considerations                       |    |
| Configuring an SDP                                     |    |
| Service Management Tasks                               |    |
| Modifying Customer Accounts                            |    |
| Deleting Customers                                     |    |
| Modifying SDPs                                         |    |
| Deleting SDPs                                          |    |
| Deleting LSP Associations                              | 65 |

## **Table of Contents**

| Global Service Command Reference              |     |
|-----------------------------------------------|-----|
| Global Service Configuration Commands         | 70  |
| Show Commands                                 | 84  |
|                                               |     |
| VLL Services                                  | 93  |
| ATM VLL (Apipe) Services                      |     |
| ATM VLL for End-to-End ATM Service            | 94  |
| ATM SAP-to-SAP Service                        | 95  |
| ATM Traffic Management Support                | 96  |
| Network Ingress Classification                |     |
| ATM Access Egress Queuing and Shaping         | 96  |
| Control Word                                  |     |
| Circuit Emulation VLL (Cpipe) Services        | 97  |
| Cpipe Service Overview                        |     |
| TDM SAP-to-SAP Service                        |     |
| Cpipe Service Modes                           |     |
| TDM PW Encapsulation                          |     |
| Circuit Emulation Parameters and Options      |     |
| Error Situations                              |     |
| Ethernet VLL (Epipe) Services                 |     |
| Epipe Service Overview                        |     |
| Ethernet Access Egress Queuing and Scheduling | 116 |
| Control Word                                  |     |
| MTU                                           | 116 |
| Raw and Tagged Modes                          | 117 |
| VLL Service Considerations                    |     |
| Service Support                               | 121 |
| SDPs                                          |     |
| SDP Statistics for VLL Services               | 122 |
| SAP Encapsulations and Pseudowire Types       | 122 |
| ATM PWE3 N-to-1 Cell Mode Encapsulation       | 123 |
| QoS Policies                                  | 125 |
| MTU Settings                                  | 126 |
| Targeted LDP and MTU                          | 129 |
| Pseudowire Control Word                       | 130 |
| Configuring a VLL Service with CLI            | 131 |
| List of Commands                              | 132 |
| Common Configuration Tasks                    | 140 |
| Configuring VLL Components                    | 141 |
| Creating an Apipe Service                     | 141 |
| Configuring Apipe SAP Parameters              | 143 |
| Configuring Apipe SDP Bindings                | 145 |
| Creating a Cpipe Service                      | 146 |
| Configuring Cpipe SAP parameters              | 146 |
| Configuring Cpipe SDP bindings                |     |
| Creating an Epipe Service                     |     |
| Configuring Epipe SAP Parameters              | 150 |
| Configuring Epipe SDP Bindings                |     |
| Configuring Ingress and Egress SAP Parameters |     |

| Using the Control Word                                       | 155 |
|--------------------------------------------------------------|-----|
| Service Management Tasks                                     | 157 |
| Modifying Service Parameters                                 | 157 |
| Disabling a Service                                          | 159 |
| Re-enabling a Service                                        | 161 |
| Deleting a Service                                           | 161 |
| VLL Services Command Reference                               | 163 |
| VLL Service Configuration Commands                           | 168 |
| Show Commands                                                | 193 |
| Clear Commands                                               | 234 |
|                                                              |     |
| Internet Enhanced Service                                    |     |
| IES for In-band Management                                   |     |
| Setting Up Connections Between the 5620 SAM and the 7705 SAR |     |
| Encapsulation                                                |     |
| Layer 2 and Layer 3 Traffic Management                       |     |
| Troubleshooting and Fault Detection Services                 |     |
| Configuring an IES Management Service with CLI               |     |
| List of Commands                                             |     |
| Common Configuration Tasks                                   |     |
| Configuring IES Components                                   |     |
| Creating an IES Service                                      |     |
| Configuring Interface Parameters                             |     |
| Configuring IES SAP Parameters                               |     |
| Service Management Tasks                                     |     |
| Modifying IES Service Parameters                             |     |
| Disabling an IES Service                                     |     |
| Re-enabling an IES Service                                   | 252 |
| Deleting an IES Service                                      |     |
| IES Management Command Reference                             | 253 |
| IES Management Configuration Commands                        |     |
| Show Commands                                                | 268 |
|                                                              | 077 |
| OAM and SAA                                                  |     |
| OAM Overview                                                 |     |
| LSP Diagnostics                                              |     |
| LSP Ping                                                     |     |
| LSP Traceroute                                               |     |
| SDP Diagnostics                                              |     |
| SDP Ping                                                     |     |
| SDP MTU Path Discovery                                       |     |
| Service Diagnostics                                          |     |
| Service Ping                                                 |     |
| VLL Diagnostics                                              |     |
| VCCV Ping                                                    |     |
| EFM OAM                                                      |     |
| Unidirectional OAM Operation                                 |     |
| Remote Loopback                                              |     |
| 802.3ah OAMPDU Tunneling for Epipe Services                  | 284 |

## **Table of Contents**

| OAM Propagation to Attachment Circuits | 284 |
|----------------------------------------|-----|
| ATM Ports                              |     |
| T1/E1 TDM Ports                        |     |
| Ethernet Ports                         |     |
| LDP Status Signaling                   |     |
| LDP Status via Label Withdrawal        | 285 |
| LDP Status via TLV                     |     |
| Service Assurance Agent Overview       | 287 |
| SAA Application                        | 287 |
| Traceroute Implementation              | 287 |
| OAM and SAA List of Commands           | 288 |
| Configuring SAA Test Parameters        |     |
| OAM and SAA Command Reference          |     |
| OAM and SAA Commands                   |     |
| Show Commands                          |     |
| Clear Commands                         |     |
| Debug Commands                         |     |
| Fools                                  |     |
| Tools Command Reference                |     |
| Tools Configuration Commands           |     |
| Tools Performance Commands             |     |
| Standards and Protocol Support         | 357 |

## **List of Tables**

| <b>Getting S</b> | Started                                                  | 21  |
|------------------|----------------------------------------------------------|-----|
| Table 1:         | 7705 SAR Configuration Process                           | 21  |
| Table 2:         | 7705 SAR-8 and 7705 SAR-F Comparison                     | 22  |
| Services         | Overview                                                 | 25  |
| Table 3:         | Pseudowire Service Types                                 | 27  |
| Table 4:         | Service Types and SAP Encapsulations                     | 34  |
| Table 5:         | GRE Header Descriptions                                  | 40  |
| Table 6:         | GRE Pseudowire Payload Packet Descriptions               | 41  |
| Table 7:         | CLI Commands to Configure Service Parameters             | 55  |
| Table 8:         | SDP Echo Reply Response Conditions                       | 80  |
| Table 9:         | Show Customer Command Output Fields                      | 84  |
| Table 10:        | Show Service SDP Output Fields                           | 86  |
| Table 11:        | Show Service sdp-using Output Fields                     | 89  |
| Table 12:        | Show Service service-using Output Fields                 | 91  |
| VLL Serv         | vices                                                    | 93  |
| Table 13:        | Unstructured Payload Defaults                            | 104 |
| Table 14:        | Default and Minimum Payload Size for CESoPSN without CAS | 106 |
| Table 15:        | Payload Size for E1 CESoPSN with CAS                     | 108 |
| Table 16:        | Control Word Bit Descriptions                            | 112 |
| Table 17:        | Ingress SAP Tagging Rules                                | 118 |
| Table 18:        | Egress SAP Tagging Rules                                 | 119 |
| Table 19:        | Ethernet VLL Encapsulation Translation                   | 120 |
| Table 20:        | MTU Points and Descriptions                              | 127 |
| Table 21:        | MTU Values – Service Creation (Worst Case)               | 128 |
| Table 22:        | Matching MTU or Payload Values for Signaled VLL Services | 129 |
| Table 23:        | CLI Commands to Configure VLL Service Parameters         | 133 |
| Table 24:        | Maximum Transmission Unit Values                         | 174 |
| Table 25:        | SAP ID Configurations                                    | 176 |
| Table 26:        | Port and Encapsulation Values                            | 177 |
| Table 27:        | Show Service-ID All Command Output Fields                | 193 |
| Table 28:        | Show Service-ID Base Output Fields                       | 213 |
| Table 29:        | Show Service Egress Label Output Fields                  | 215 |
| Table 30:        | Show Service Ingress Label Output Fields                 | 217 |
| Table 31:        | Service-ID Labels Output Fields                          | 218 |
| Table 32:        | SAP Fields                                               | 219 |
| Table 22.        | Chave Camina CAD Output Fields                           | 227 |

#### List of Tables

| Table 34:  | SDP Output Fields                                           | 229 |
|------------|-------------------------------------------------------------|-----|
| Internet E | Enhanced Service                                            | 237 |
| Table 35:  | CLI Commands to Configure IES Management Service Parameters | 244 |
| Table 36:  | SAP ID Configurations                                       | 263 |
| Table 37:  | Show Service ID All Command Output Fields                   | 268 |
| OAM and    | I SAA                                                       | 277 |
| Table 38:  | Supported VCCV CC and CV Types                              | 282 |
| Table 39:  | OAM Command Summary                                         | 288 |
| Table 40:  | SVC Ping Report Fields                                      | 307 |
| Table 41:  | Local SDP Message Results                                   | 313 |
| Table 42:  | Remote SDP Message Results                                  | 314 |
| Table 43:  | SDP Ping Response Messages                                  | 326 |
| Table 44:  | Single Response Connectivity                                | 329 |
| Table 45:  | SAA Field Descriptions                                      | 337 |

# **List of Figures**

| Services ( | Overview                                                                                      | 25  |
|------------|-----------------------------------------------------------------------------------------------|-----|
| Figure 1:  | Service Entities and the Service Model                                                        | 30  |
| Figure 2:  | Service Access Point (SAP)                                                                    | 32  |
| Figure 3:  | Multiple SAPs on a Single Port/Channel                                                        | 33  |
| Figure 4:  | SDP Tunnel Pointing from ALU-A to ALU-B                                                       | 37  |
| Figure 5:  | GRE Header                                                                                    | 39  |
| Figure 6:  | GRE Pseudowire Payload Packet over Ethernet                                                   | 41  |
| Figure 7:  | HSDPA Offload Example                                                                         | 45  |
| Figure 8:  | Service Creation and Implementation Flow Chart                                                | 48  |
| Figure 9:  | Subscriber Service Components                                                                 | 49  |
| Figure 10: | Core and Customer Command Overview                                                            | 53  |
| Figure 11: | Global Service CLI Command Overview                                                           | 54  |
| VLL Servi  | ices                                                                                          | 93  |
| Figure 12: | ATM VLL for End-to-End ATM Service                                                            | 95  |
| Figure 13: | E1 Framing for CAS Support in a Multiframe                                                    | 100 |
| Figure 14: | SAToP MPLS Encapsulation                                                                      |     |
| Figure 15: | CESoPSN MPLS Encapsulation                                                                    | 101 |
| Figure 16: | CESoPSN Packet Payload Format for Trunk-Specific n x 64 kb/s (with and without CAS transport) | 100 |
| Figure 17: | Control Word Bit Structure                                                                    |     |
| Figure 18: | Ethernet VLL Frame with MPLS Encapsulation                                                    |     |
| Figure 19: | Epipe Service                                                                                 |     |
| Figure 20: | Ethernet Frame Representations                                                                |     |
| Figure 21: | N-to-1 Cell Mode Encapsulation                                                                |     |
| Figure 21: | MTU Points on the 7705 SAR                                                                    |     |
| Figure 23: | SDPs — Unidirectional Tunnels                                                                 |     |
| OAM and    | SAA                                                                                           | 277 |
|            | VCCV Ping Application                                                                         |     |

List of Figures

# **List of Acronyms**

| Acronym  | Expansion                                       |
|----------|-------------------------------------------------|
|          |                                                 |
| 2G       | second generation wireless telephone technology |
| 3G       | third generation mobile telephone technology    |
| 5620 SAM | 5620 Service Aware Manager                      |
| 7705 SAR | 7705 Service Aggregation Router                 |
| ABR      | available bit rate                              |
| AC       | alternating current                             |
|          | attachment circuit                              |
| ACL      | access control list                             |
| ACR      | adaptive clock recovery                         |
| AIS      | alarm indication signal                         |
| ANSI     | American National Standards Institute           |
| Apipe    | ATM VLL                                         |
| ARP      | address resolution protocol                     |
| AS       | autonomous system                               |
| ASAP     | any service, any port                           |
| ATM      | asynchronous transfer mode                      |
| ATM PVC  | ATM permanent virtual circuit                   |
| B-bit    | beginning bit (first packet of a fragment)      |
| Batt A   | battery A                                       |
| Bellcore | Bell Communications Research                    |
| BFD      | bidirectional forwarding detection              |
| BITS     | building integrated timing supply               |
| BOF      | boot options file                               |

| Acronym | Expansion                                               |
|---------|---------------------------------------------------------|
| ,       |                                                         |
| BRAS    | Broadband Remote Access Server                          |
| BSC     | Base Station Controller                                 |
| BSTA    | Broadband Service Termination Architecture              |
| BTS     | base transceiver station                                |
| CAS     | channel associated signaling                            |
| CBN     | common bonding networks                                 |
| CBS     | committed buffer space                                  |
| CC      | control channel                                         |
| CE      | customer edge                                           |
|         | circuit emulation                                       |
| CEM     | circuit emulation                                       |
| CES     | circuit emulation services                              |
| CESoPSN | circuit emulation services over packet switched network |
| CIDR    | classless inter-domain routing                          |
| CIR     | committed information rate                              |
| CLI     | command line interface                                  |
| CLP     | cell loss priority                                      |
| CoS     | class of service                                        |
| CPE     | customer premises equipment                             |
| Cpipe   | circuit emulation (or TDM) VLL                          |
| CPU     | central processing unit                                 |
| CRC     | cyclic redundancy check                                 |
| CRON    | a time-based scheduling service (from chronos = time)   |
| CSM     | Control and Switching Module                            |
| CSPF    | constrained shortest path first                         |
|         |                                                         |

| Acronym | Expansion                                         |
|---------|---------------------------------------------------|
| CN      | ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠          |
| CV      | connection verification customer VLAN (tag)       |
| CW      | control word                                      |
| DC      | direct current                                    |
| DC-C    | DC return - common                                |
| DC-I    | DC return - isolated                              |
| DCO     | digitally controlled oscillator                   |
| DDoS    | distributed DoS                                   |
| DHCP    | dynamic host configuration protocol               |
| DNS     | domain name server                                |
| DoS     | denial of service                                 |
| dot1q   | IEEE 802.1q encapsulation for Ethernet interfaces |
| DPLL    | digital phase locked loop                         |
| DSCP    | differentiated services code point                |
| DSL     | digital subscriber line                           |
| DSLAM   | digital subscriber line access multiplexer        |
| DTE     | data termination equipment                        |
| DU      | downstream unsolicited                            |
| e911    | enhanced 911 service                              |
| E-bit   | ending bit (last packet of a fragment)            |
| ECMP    | equal cost multi-path                             |
| EFM     | Ethernet in the first mile                        |
| ELER    | egress label edge router                          |
| Epipe   | Ethernet VLL                                      |
| ESD     | electrostatic discharge                           |
| ETE     | end-to-end                                        |

| EVDO evolution - data optimized  EXP bits experimental bits  FC forwarding class  FCS frame check sequence |
|------------------------------------------------------------------------------------------------------------|
| EXP bits experimental bits  FC forwarding class  FCS frame check sequence                                  |
| FC forwarding class FCS frame check sequence                                                               |
| FCS frame check sequence                                                                                   |
| ·                                                                                                          |
|                                                                                                            |
| FDB forwarding database                                                                                    |
| FDL facilities data link                                                                                   |
| FEC forwarding equivalence class                                                                           |
| FIB forwarding information base                                                                            |
| FTN FEC-to-NHLFE                                                                                           |
| FTP file transfer protocol                                                                                 |
| GigE Gigabit Ethernet                                                                                      |
| GRE generic routing encapsulation                                                                          |
| GSM Global System for Mobile Communications (2G)                                                           |
| HEC header error control                                                                                   |
| HSDPA high-speed downlink packet access                                                                    |
| HSPA high-speed packet access                                                                              |
| IBN isolated bonding networks                                                                              |
| ICMP Internet control message protocol                                                                     |
| ICP IMA control protocol cells                                                                             |
| IEEE Institute of Electrical and Electronics Engineers                                                     |
| IES Internet Enhanced Service                                                                              |
| IETF Internet Engineering Task Force                                                                       |
| ILER ingress label edge router                                                                             |
| ILM incoming label map                                                                                     |
| IMA inverse multiplexing over ATM                                                                          |
| IOM input/output module                                                                                    |

| Acronym | Expansion                                                  |
|---------|------------------------------------------------------------|
| IP      | Internet Protocol                                          |
| LCP     | link control protocol                                      |
| LDP     | label distribution protocol                                |
| LER     | label edge router                                          |
| LLID    | loopback location ID                                       |
| LSP     | label switched path                                        |
| LSR     | label switch router                                        |
| LTN     | LSP ID to NHLFE                                            |
| MAC     | media access control                                       |
| MBB     | make-before-break                                          |
| MBS     | maximum buffer space maximum burst size media buffer space |
| MD5     | message digest version 5 algorithm                         |
| MDA     | media dependent adapter                                    |
| MEF     | Metro Ethernet Forum                                       |
| MFC     | multi-field classification                                 |
| MIB     | management information base                                |
| MIR     | minimum information rate                                   |
| MLPPP   | multilink point-to-point protocol                          |
| MP      | multilink protocol                                         |
| MPLS    | multiprotocol label switching                              |
| MRRU    | maximum received reconstructed unit                        |
| MRU     | maximum receive unit                                       |
| MTSO    | mobile trunk switching office                              |
| MTU     | maximum transmission unit multi-tenant unit                |

| Acronym | Expansion                                                                                                        |  |
|---------|------------------------------------------------------------------------------------------------------------------|--|
|         |                                                                                                                  |  |
| NHLFE   | next hop label forwarding entry                                                                                  |  |
| NNI     | network-to-network interface                                                                                     |  |
| Node B  | similar to BTS but used in 3G networks — term is used in UMTS (3G systems) while BTS is used in GSM (2G systems) |  |
| OAM     | operations, administration, and maintenance                                                                      |  |
| OAMPDU  | OAM protocol data units                                                                                          |  |
| OS      | operating system                                                                                                 |  |
| OSS     | operations support system                                                                                        |  |
| PDU     | protocol data units                                                                                              |  |
| PDV     | packet delay variation                                                                                           |  |
| PDVT    | packet delay variation tolerance                                                                                 |  |
| PE      | provider edge router                                                                                             |  |
| РНВ     | per-hop behavior                                                                                                 |  |
| PHY     | physical layer                                                                                                   |  |
| PID     | protocol ID                                                                                                      |  |
| PIR     | peak information rate                                                                                            |  |
| POP     | point of presence                                                                                                |  |
| PPP     | point-to-point protocol                                                                                          |  |
| PSN     | packet switched network                                                                                          |  |
| PVC     | permanent virtual circuit                                                                                        |  |
| PVCC    | permanent virtual channel connection                                                                             |  |
| PW      | pseudowire                                                                                                       |  |
| PWE3    | pseudowire emulation edge-to-edge                                                                                |  |
| QoS     | quality of service                                                                                               |  |
| RAN     | Radio Access Network                                                                                             |  |
| RDI     | remote defect indication                                                                                         |  |

| Acronym | Expansion                                                   |
|---------|-------------------------------------------------------------|
|         |                                                             |
| RED     | random early discard                                        |
| RNC     | Radio Network Controller                                    |
| RSVP-TE | resource reservation protocol - traffic engineering         |
| R&TTE   | Radio and Telecommunications Terminal Equipment             |
| RT      | receive/transmit                                            |
| RTM     | route table manager                                         |
| RTN     | battery return                                              |
| RTP     | real-time protocol                                          |
| SAA     | service assurance agent                                     |
| SAP     | service access point                                        |
| SAR-8   | 7705 Service Aggregation Router - 8-slot chassis            |
| SAR-F   | 7705 Service Aggregation Router - fixed form-factor chassis |
| SAToP   | structure-agnostic TDM over packet                          |
| SDP     | service destination point                                   |
| SIR     | sustained information rate                                  |
| SLA     | Service Level Agreement                                     |
| SNMP    | Simple Network Management Protocol                          |
| SNTP    | simple network time protocol                                |
| SPE     | source provider edge router                                 |
| SPF     | shortest path first                                         |
| SR      | service router (includes 7710 SR, 7750 SR)                  |
| SSH     | secure shell                                                |
| SSU     | system synchronization unit                                 |
| SVC     | switched virtual circuit                                    |
| TCP     | transmission control protocol                               |
| TDM     | time division multiplexing                                  |

| Acronym | Expansion                                                                            |
|---------|--------------------------------------------------------------------------------------|
|         |                                                                                      |
| TLDP    | targeted LDP                                                                         |
| TLV     | type length value                                                                    |
| ToS     | type of service                                                                      |
| TPE     | target provider edge router                                                          |
| TPID    | tag protocol identifier                                                              |
| TTL     | time to live                                                                         |
| TTM     | tunnel table manager                                                                 |
| UBR     | unspecified bit rate                                                                 |
| UDP     | user datagram protocol                                                               |
| UMTS    | Universal Mobile Telecommunications System (3G)                                      |
| UNI     | user-to-network interface                                                            |
| VC      | virtual circuit                                                                      |
| VCC     | virtual channel connection                                                           |
| VCCV    | virtual circuit connectivity verification                                            |
| VCI     | virtual circuit identifier                                                           |
| VLAN    | virtual LAN                                                                          |
| VLL     | virtual leased line                                                                  |
| VoIP    | voice over IP                                                                        |
| VP      | virtual path                                                                         |
| VPC     | virtual path connection                                                              |
| VPI     | virtual path identifier                                                              |
| VPN     | virtual private network                                                              |
| VPRN    | virtual private routed network                                                       |
| WCDMA   | wideband code division multiple access (transmission protocol used in UMTS networks) |
| WRED    | weighted random early discard                                                        |

## **Preface**

## **About This Guide**

This guide describes subscriber services support provided by the 7705 Service Aggregation Router (7705 SAR) and presents examples to configure and implement various protocols and services.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

#### **Audience**

This guide is intended for network administrators who are responsible for configuring the 7705 SAR routers. It is assumed that the network administrators have an understanding of networking principles and configurations. Protocols, standards, and services described in this guide include the following:

- CLI concepts
- subscriber services
- operations, administration and maintenance (OAM) operations

#### **List of Technical Publications**

The 7705 SAR OS documentation set is composed of the following guides:

- 7705 SAR OS Basic System Configuration Guide
   This guide describes basic system configurations and operations.
- 7705 SAR OS System Management Guide
   This guide describes system security and access configurations as well as event logging and accounting logs.
- 7705 SAR OS Interface Configuration Guide
   This guide describes card and port provisioning.

- 7705 SAR OS Router Configuration Guide
   This guide describes logical IP routing interfaces, IP-based filtering, and routing policies.
- 7705 SAR OS MPLS Guide
   This guide describes how to configure Multiprotocol Label Switching (MPLS) and Label Distribution Protocol (LDP).
- This guide describes how to configure service parameters such as service access points (SAPs), service destination points (SDPs), customer information, user services, and Operations, Administration and Management (OAM) tools.
- 7705 SAR OS Quality of Service Guide
   This guide describes how to configure Quality of Service (QoS) policy management.

7705 SAR OS Services Guide

## **Technical Support**

If you purchased a service agreement for your 7705 SAR router and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center at:

Web: http://www1.alcatel-lucent.com/comps/pages/carrier support.jhtml

# **Getting Started**

## In This Chapter

This chapter provides the process flow information required to configure services.

# Alcatel-Lucent 7705 SAR Services Configuration Process

Table 1 lists the tasks necessary to configure subscriber services. This guide is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

**Table 1: 7705 SAR Configuration Process** 

| Area                             | Task                                                    | Reference                                               |  |
|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| Subscriber services              | Configure subscriber services                           |                                                         |  |
|                                  | Global entities                                         | Configuring Global Service Entities with CLI on page 51 |  |
| VLL services                     | Apipe service                                           | ATM VLL (Apipe) Services on page 94                     |  |
|                                  | Cpipe service                                           | Circuit Emulation VLL (Cpipe) Services on page 97       |  |
|                                  | Epipe service                                           | Ethernet VLL (Epipe) Services on page 114               |  |
| Internet Enhanced<br>Service     | Configure in-band management of 7705 SAR over ATM links | Internet Enhanced Service on page 237                   |  |
| Diagnostics/Service verification | OAM                                                     | OAM and SAA on page 277                                 |  |
| Reference                        | List of IEEE, IETF, and other proprietary entities      | Standards and Protocol Support on page 357              |  |

#### Notes on 7705 SAR-F and 7705 SAR-8

The 7705 SAR-F and the 7705 SAR-8 run the same operating system software. The main difference between the products is their hardware configuration. The 7705 SAR-8 has an 8-slot chassis that supports two CSMs, six adapter cards, and a Fan module. The 7705 SAR-F chassis has a fixed hardware configuration, replacing the 7705 SAR-8 physical components (the CSM, Fan module, and adapter cards) with an all-in-one unit that provides comparable functional blocks, as detailed in Table 2.

The fixed configuration of the 7705 SAR-F means that provisioning the router at the "card slot" and "type" levels is preset and is not user-configurable. Operators begin configurations at the port level.



**Note:** Unless stated otherwise, references to the terms "Adapter card" and "CSM" throughout the 7705 SAR OS documentation set include the equivalent functional blocks on the 7705 SAR-F.

Table 2: 7705 SAR-8 and 7705 SAR-F Comparison

| 7705 SAR-8                         | 7705 SAR-F                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSM                                | Control and switching functions                     | The control and switching functions include the console and management interfaces, the alarm and fan functions, the synchronization interfaces, system LEDs, and so on.                                                                                                                                                                                                                  |
| Fan module                         | Integrated with the control and switching functions |                                                                                                                                                                                                                                                                                                                                                                                          |
| 16-port T1/E1 ASAP<br>Adapter card | 16 individual T1/E1 ports on the faceplate          | The T1/E1 ports on the 7705 SAR-F are equivalent to a 16-port T1/E1 ASAP Adapter card on the 7705 SAR-8 with additional support for multiple synchronization sources. The 7705 SAR-8 CLI indicates that the MDA type for the T1/E1 ASAP Adapter card is a16-chds1. The 7705 SAR-F supports MDA type a16-chds1v2.                                                                         |
| 8-port Ethernet<br>Adapter card    | 8 individual Ethernet ports on the faceplate        | The Ethernet ports on the 7705 SAR-F are equivalent to one 8-port Ethernet Adapter card (version 2) on the 7705 SAR-8 with additional support for multiple synchronization sources. The 7705 SAR-8 CLI indicates that the MDA type for the Ethernet Adapter card is a8-eth or a8-ethv2. The 7705 SAR-F supports MDA type a8-ethv3. Versions 2 and 3 support Synchronous Ethernet timing. |

Table 2: 7705 SAR-8 and 7705 SAR-F Comparison (Continued)

| 7705 SAR-8                                                                       | 7705 SAR-F                                                                                              | Notes |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------|
| Requires user<br>configuration at card<br>(IOM) and MDA<br>(adapter card) levels | Configuration at card (IOM) and MDA (adapter card) levels is preset and users cannot change these types |       |

Getting Started

## **Services Overview**

## In This Chapter

This chapter provides an overview of the 7705 SAR subscriber services, service model, and service entities. Additional details on the individual subscriber services are found in subsequent chapters.

Topics in this chapter include:

- Introduction to Services on the 7705 SAR on page 26
  - → Service Types on page 27
  - → Service Policies on page 28
- Alcatel-Lucent Service Model on page 29
- Service Entities on page 30
  - → Customers on page 31
  - → Service Types on page 31
  - → Service Access Points (SAPs) on page 31
  - → Service Destination Points (SDPs) on page 35
- Mobile Solutions on page 44
  - → HSDPA Offload on page 44
- Service Creation Overview on page 47
- Port and SAP CLI Identifiers on page 50
- Configuring Global Service Entities with CLI on page 51
- Global Service Command Reference on page 67

## Introduction to Services on the 7705 SAR

A service is a type of telecommunications connection from one place to another. These telecommunications connections have the particular attributes and characteristics that are needed to provide a specific communications link through which an information flow or exchange can occur. The 7705 Service Access Router (7705 SAR) offers Layer 2 point-to-point VPN services.

The 7705 SAR service model uses (logical) service entities to construct a service. These logical entities provide a uniform, service-centric configuration, management, and billing model for service provisioning (see Alcatel-Lucent Service Model on page 29 for more information). Many services can be created on the same 7705 SAR at the same time, and each service is uniquely identified by a service ID.

The 7705 SAR offers Virtual Leased Line (VLL) services (also referred to as pseudowire (PW) services or pipes), which emulate a Layer 1/2 entity, such as a wire or a leased line. These emulated services provide connectivity between a service access point (SAP) on one 7705 SAR and on another SAP on the same router, or on a remote 7705 SAR, 7710 SR, or 7750 SR. VLL services offer SAP logical entities — such as a VLAN or a virtual connection — Layer 2 visibility or processing (IMA termination). A SAP is the point where customer traffic enters and exits the service.

When the connection is between two SAPs on the same router, this is known as local service. When the connection is between SAPs on a local and a remote router, this is known as distributed service. In Release 1.1, SAP-to-SAP connections are supported for ATM and TDM VLLs.

Distributed services use service destination points (SDPs) to direct traffic from a local router to a remote router through a service tunnel. An SDP is created on the local router and identifies the endpoint of a logical unidirectional service tunnel. Traffic enters the tunnel at the SDP on the local router and exits the tunnel at the remote router. Hence, a service tunnel provides a path from a 7705 SAR to another service router, such as another 7705 SAR, a 7710 SR, or a 7750 SR. Because an SDP is unidirectional, two service tunnels are needed for bidirectional communication between two service routers (one SDP on each router).

SDPs are configured on each participating 7705 SAR or service router, specifying the address of the source router (the 7705 SAR participating in the service communication) and the address of the destination router, such as another 7705 SAR or service router. After SDPs are created, they are bound to a specific service. The binding process is needed to associate the far-end devices to the service; otherwise, far-end devices are not able to participate in the service.

## **Service Types**

Services are commonly called customer or subscriber services. The 7705 SAR offers the following types of service, which are described in more detail in the referenced chapters:

- Virtual Leased Line (VLL) services
  - → ATM VLL (Apipe) a pseudowire emulation edge-to-edge (PWE3) ATM service over MPLS or GRE tunnels on 7705 SAR nodes. See ATM VLL (Apipe) Services on page 94.
  - → Circuit emulation VLL (Cpipe) a PWE3 circuit emulation service over MPLS or GRE tunnels on 7705 SAR nodes. See Circuit Emulation VLL (Cpipe) Services on page 97.
  - → Ethernet VLL (Epipe) a PWE3 Ethernet service over MPLS or GRE tunnels for Ethernet frames on 7705 SAR nodes. See Ethernet VLL (Epipe) Services on page 114.
- Internet Enhanced Service (IES)
  - → In Release 1.1, IES is used only for in-band management of the 7705 SAR and is not used as a routing service. See Internet Enhanced Service on page 237.

Table 3 lists the pseudowire (PW) service types supported in Release 1.1. The values are as defined in RFC 4446.

**Table 3: Pseudowire Service Types** 

| PW Service Type (EtherType)    | Value  |
|--------------------------------|--------|
| Ethernet tagged mode           | 0x0004 |
| Ethernet raw                   | 0x0005 |
| ATM N-to-one VCC cell mode (1) | 0x0009 |
| ATM N-to-one VPC cell mode     | 0x000A |
| SAToP E1                       | 0x0011 |
| SAToP T1                       | 0x0012 |
| CESoPSN basic mode             | 0x0015 |
| CESoPSN TDM with CAS           | 0x0017 |

Note 1: "N-to-one" is expressed as "N-to-1" throughout this guide.

#### **Service Policies**

Common to all 7705 SAR connectivity services are policies that are assigned to the service. Policies are defined at the global level and then applied to a service on the router. Policies are used to define 7705 SAR service enhancements.

The types of policies that are common to all 7705 SAR connectivity services are SAP Quality of Service (QoS) policies and accounting policies.

- SAP Quality of Service (QoS) policies allow for different classes of traffic within a service at SAP ingress and SAP egress.
  - QoS ingress and egress policies determine the QoS characteristics for a SAP. A QoS policy applied to a SAP specifies the number of queues, queue characteristics (such as forwarding class, committed and peak information rates) and the mapping of traffic to a forwarding class. A QoS policy must be created before it can be applied to a SAP. A single ingress and a single egress QoS policy can be associated with a SAP.
- Accounting policies define how to count the traffic usage for a service for billing purposes.

The 7705 SAR routers provide a comprehensive set of service-related counters. Accounting data can be collected on a per-service, per-forwarding class basis, which enables network operators to accurately measure network usage and bill each customer for each individual service using any of a number of different billing models.

For more information on provisioning QoS policies, including queuing behaviors, refer to the 7705 SAR OS Quality of Service Guide.

## **Alcatel-Lucent Service Model**

The 7705 SAR routers are deployed at the provider edge (PE). Services are provisioned on the 7705 SAR and other network equipment in order to facilitate the transport of telecommunications data across an IP/MPLS provider's core network. The data is formatted so that it can be transported in encapsulation tunnels created using generic routing encapsulation (GRE) or MPLS label switched paths (LSPs).

The service model has four main logical components, referred to as (logical) service entities. The entities are: customers, service types, service access points (SAPs), and service destination points (SDPs) (see Service Entities on page 30). In accordance with the service model, the operator uses the (logical) service entities to construct an end-to-end service. The service entities are designed to provide a uniform, service-centric model for service provisioning. This service-centric design implies the following characteristics.

- Many services can be bound to a single customer.
- Many services can be bound to a single tunnel.
- Tunnel configurations are independent of the services they carry.
- Changes are made to a single service entity rather than to multiple ports on multiple devices. It is easier to change one tunnel rather than several services.
- The operational integrity of a service entity (such as a service tunnel or service endpoint) can be verified by one operation rather than through the verification of dozens of parameters, thereby simplifying management operations, network scalability, and performance.
- A failure in the network core can be correlated to specific subscribers and services.
- QoS policies and accounting policies are applied to each service.

Additional properties can be configured for bandwidth assignments, class of service, and accounting and billing on the appropriate entity.

## **Service Entities**

The basic (logical) service entities in the service model used to construct an end-to-end service are:

- Customers
- Service Types
- Service Access Points (SAPs)
- Service Destination Points (SDPs)

Figure 1 shows an example of how the service entities relate to the service model. A subscriber (or customer) attachment circuit connects to a SAP. SDPs define the entrance and exit points of unidirectional service tunnels, which carry one-way traffic between the two routers (ALU-A and ALU-B). After SDPs have been configured, they are bound to a service, which is the final step in making the end-to-end service connection. In Figure 1, the entrance point is labeled SDP and the exit point is labeled Exit.

Traffic encapsulation occurs at the SAP and SDP. The SAP encapsulation types are Ethernet and TDM. The SDP encapsulation types are MPLS and GRE. For information on SAP encapsulation types, see SAP Encapsulation Types and Identifiers. For information on SDP encapsulation types, see SDP Encapsulation Types.




Figure 1: Service Entities and the Service Model

#### **Customers**

The terms customers and subscribers are used synonymously. Every customer account must have a customer ID, which is assigned when the customer account is created. To provision a service, a customer ID must be associated with the service at the time of service creation.

## **Service Types**

Service types provide the traffic adaptation needed by customer attachment circuits (ACs). This (logical) service entity adapts customer traffic to service tunnel requirements. The 7705 SAR provides three types of VLL service: ATM VLL (Apipe), circuit emulation VLL (Cpipe), and Ethernet VLL (Epipe) service types.

## **Service Access Points (SAPs)**

A service access point (SAP) is the point at which a service begins (ingress) or ends (egress) and represents the access point associated with a service. A SAP may be a physical port or a logical entity within a physical port. For example, a SAP may be a channel group within a DS1 or E1 frame, an ATM endpoint, an Ethernet port, or a VLAN that is identified by an Ethernet port and a VLAN tag. Each subscriber service connection on the 7705 SAR is configured to use only one SAP.

A SAP identifies the customer interface point for a service on an 7705 SAR router. Figure 2 shows one customer connected to two services via two SAPs. The SAP identifiers are 1/1/5 and 1/1/6, which represent the physical ports associated with these SAPs. The physical port information should be configured prior to provisioning a service. Refer to the 7705 SAR OS Interface Configuration Guide for more information on configuring a port. See Port and SAP CLI Identifiers on page 50 for more information on identifiers.

There are three VLL service types available on the 7705 SAR: Apipe, Cpipe, and Epipe. For each service type, the SAP has slightly different parameters. In general, SAPs are logical endpoints that are local to the 7705 SAR and are uniquely identified by:

- the physical Ethernet port or TDM channel group
- the encapsulation type for the service (for example, ATM)
- the encapsulation identifier (ID), which is, for example, the optional VLAN ID for Epipes, or the channel group ID for Cpipes

Depending on the encapsulation, a physical port or channel can have more than one SAP associated with it (for example, a port may have several circuit groups, where each group has an associated SAP). SAPs can only be created on ports or channels designated as "access" in the physical port configuration.

SAPs cannot be created on ports designated as core-facing "network" ports because these ports have a different set of features enabled in software.

Customer 27 SAP 1/1/5 dot1q Service SDP IP/MPLS network 1/1/6 dot1q ALU-A

Figure 2: Service Access Point (SAP)

19479

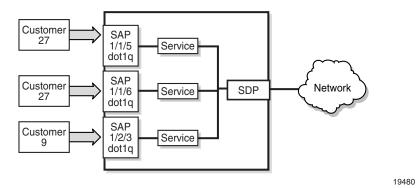
## **SAP Encapsulation Types and Identifiers**

The SAP encapsulation type is an access property of the Ethernet port or TDM channel group used for the service. It identifies the protocol that is used to provide the service. The 7705 SAR supports two SAP encapsulation types: Ethernet and TDM. Encapsulation types may have more than one option to choose from. For example, the options for TDM encapsulation type are "cem" (for circuit emulation service) and "atm" (for ATM service).

The encapsulation ID is an optional suffix that is appended to a *port-id* to specify a logical sub-element for a SAP. For example, a port can be tagged to use IEEE 802.1Q encapsulation (referred to as dot1q), where each individual tag can identify with an individual service. The encapsulation ID for an ATM SAP is a special case because it requires that a channel group identifier (which always uses the value 1) precede the VPI/VCI value.



Note: Throughout this guide, the term "channel group" is often simplified to "channel".


**Note:** Do not confuse the term "encapsulation ID" (described here) with the term "Encapsulation ID", which is used with the SNMP and MIBs for the 7705 SAR.

#### **Ethernet Encapsulations**

The following encapsulation service options are available on Ethernet ports:

- Null supports a single service on the port; for example, where a single customer with a single service customer edge (CE) device is attached to the port.
- Dot1q supports multiple services for one customer or services for multiple customers (see Figure 3). An example of dot1q use might be the case where the Ethernet port is connected to a multi-tenant unit device with multiple downstream customers. The encapsulation ID used to distinguish an individual service is the VLAN ID in the IEEE 802.1Q header.

Figure 3: Multiple SAPs on a Single Port/Channel



#### **TDM Encapsulations**

The following service encapsulation options are available on TDM ports:

- atm supports multiple services for one customer
- cem supports multiple services for one customer. Structured cem service (circuit emulation service over packet switched network (CESoPSN (n × DS0)) and unstructured cem service (structure-agnostic TDM over packet (SAToP)) are supported.

#### Service Types and SAP Encapsulations — Summary

Table 4 lists the SAP encapsulations available to 7705 SAR service types. These encapsulations apply to access-facing ports. The service (port) type and encapsulations are configured at the port level.

**Table 4: Service Types and SAP Encapsulations** 

| Service (Port) Type | <b>Encapsulation Option</b> |
|---------------------|-----------------------------|
| Ethernet            | null                        |
| Ethernet            | dot1q                       |
| TDM                 | cem                         |
| TDM                 | atm                         |

## **SAP Configuration Considerations**

In addition to being an entry or exit point for a service traffic, a SAP has to be configured for a service and, therefore, has properties. When configuring a SAP, consider the following.

- A SAP is a local entity and is only locally unique to a given device. The same SAP ID value can be used on another 7705 SAR.
- There are no default SAPs. All subscriber service SAPs must be created.
- The default administrative state for a SAP at creation time is administratively enabled.
- When a SAP is deleted, all configuration parameters for the SAP are also deleted.
- A SAP is owned by and associated with the service in which it is created.
- An Ethernet port or channel with a dot1q encapsulation type means that the traffic
  for the SAP is identified based on a specific IEEE 802.1Q VLAN ID value. The
  VLAN ID is stripped off at SAP ingress and the appropriate VLAN ID is placed on
  at SAP egress. As a result, VLAN IDs only have local significance, so the VLAN
  IDs for the SAPs for a service need not be the same at each SAP
- A TDM circuit emulation service (for example, CESoPSN) requires a channel group. The channel group must be created before it can be assigned to a SAP.
- An ATM service (for example, ATM N-to-1 VCC cell transport) requires a channel group. For this case, the channel group requires the assignment of all 24 timeslots (T1) or 30 timeslots (E1). The timeslot assignments are made automatically after a channel group is configured for ATM encapsulation.
- If a port or channel is administratively shut down, all SAPs on that port or channel will be operationally out of service.

- A SAP cannot be deleted until it has been administratively disabled (shut down).
- Each SAP can have one of the following policies assigned to it:
  - → Ingress QoS policy
  - → Egress QoS policy
  - → Accounting policy

## **Service Destination Points (SDPs)**

An SDP identifies the endpoint of a logical unidirectional service tunnel. The service tunnel provides a path from one 7705 SAR to another network device, such as another 7705 SAR, a 7710 SR, or a 7750 SR.

In more general terms, SDP refers to the service tunnel itself. The SDP terminates at the farend router, which is responsible for directing the flow of packets to the correct service egress SAPs on that device.



**Note:** In this document and in command line interface (CLI) usage, SDP is defined as Service Destination Point. However, it is not uncommon to find the term SDP defined in several different ways, as listed below. In essence, all variations of SDP have the same meaning:

- Service Destination Point
- Service Distribution Point
- · Service Destination Path
- · Service Distribution Path
- · Service Delivery Path

When an SDP is bound to a service, the service is referred to as a distributed service. A distributed service consists of a configuration with at least one SAP on a local node, one SAP on a remote node, and an SDP binding that binds the service to the service tunnel.

An SDP has the following characteristics.

- An SDP is locally unique to a participating 7705 SAR. The same SDP ID can appear on other 7705 SAR routers.
- An SDP uses the system IP address of the far-end edge router to locate its destination.
- An SDP is not specific to any one service or to any type of service. Once an SDP is created, services are bound to the SDP. An SDP can also have more than one service type associated with it.
- All services bound to an SDP use the same SDP (transport) encapsulation type defined for the SDP (GRE or MPLS).
- An SDP is a service entity used for service management. Even though the SDP configuration and the services carried within it are independent, they are related objects. Operations on the SDP affect all the services associated with the SDP. For example, the operational and administrative state of an SDP controls the state of services bound to the SDP.
- An SDP tunnel from the local device (typically, a 7705 SAR) to the far-end device (router) requires a return SDP tunnel from the far end back to the local device. Each device must have an SDP defined for every remote router to which it wants to provide service. The SDP must be created before a distributed service can be configured.

## SDP Binding

To configure a distributed service pointing from ALU-A to ALU-B, the SDP ID on the ALU-A side (see Figure 4) must be specified during service creation in order to bind the service to the tunnel (the SDP). Otherwise, service traffic is not directed to a far-end point and the far-end 7705 SAR device(s) cannot participate in the service (there is no service). To configure a distributed service pointing from ALU-B to ALU-A, the SDP ID on the ALU-B side must be specified.

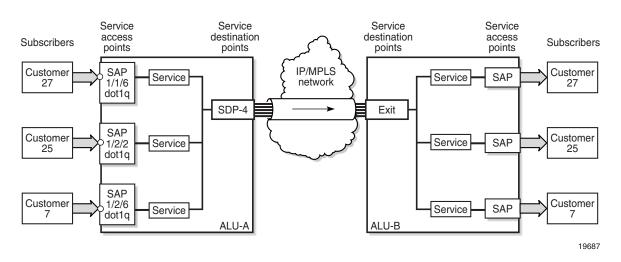



Figure 4: SDP Tunnel Pointing from ALU-A to ALU-B

### Spoke SDPs

There are two types of SDPs: spoke and mesh. The type of SDP defines how flooded traffic (or broadcast traffic, such as an ARP request) is transmitted. Since point-to-point PW/VLL Services are the only supported service type on the 7705 SAR, spoke SDPs are the only way to bind services to the far-end router.

A spoke SDP that is bound to a service operates like a traditional bridge port. Flooded traffic that is received on the spoke SDP is transmitted to all the spoke SDPs to which it is connected. Flooded traffic is not transmitted back toward the port from which it was received.



**Note:** In contrast, a mesh SDP that is bound to a service operates like a single bridge port. Flooded traffic received on a mesh SDP is transmitted to all spoke SDPs and SAPs to which it is connected. Flooded traffic is not transmitted to any other mesh SDPs or back toward the port from which it was received. This property of mesh SDPs is important for multi-node networks; mesh SDPs are used to prevent the creation of routing loops.

### SDP Encapsulation Types

The Alcatel-Lucent service model uses encapsulation tunnels (also referred to as service tunnels) through the core to interconnect 7705 SAR and SR routers. An SDP is a logical way of referencing the entrance to an encapsulation tunnel.

In Release 1.1, the following encapsulation types are supported:

- Layer 2 within LDP signaled (see MPLS Encapsulation)
- Layer 2 within generic routing encapsulation (GRE GRE Encapsulation)

Each SDP service tunnel has an entrance and an exit point for the pseudowires contained within it.

### **MPLS Encapsulation**

Multiprotocol label switching (MPLS) encapsulation has the following characteristics.

- An MPLS 7705 SAR router supports both signaled and non-signaled LSPs through the network.
- Non-signaled paths are defined at each hop through the network.

An SDP has an implicit Maximum Transmission Unit (MTU) value because services are carried in encapsulation tunnels and an SDP is an entrance to the tunnel. The MTU is configurable (in octets), where the transmitted frame can be no larger than the MTU. With MPLS, the MTU for the network port permits the addition of labels for transmission across the MPLS network. Ethernet frames that are sent out of a network port toward the MPLS core network (or a P router) are allowed to be oversized in order to include the MPLS labels without the need to fragment large frames. See MTU Settings on page 126 for more information.

The following ways of configuring an MPLS tunnel are supported:

- LDP signaled
- user-configured (static LSP)

### **GRE Encapsulation**

Generic routing encapsulation (GRE) is one of the most common tunneling techniques in the industry. GRE tunnels are used to transport various network layer packets and are especially useful for facilitating pseudowires over IP networks. Since MPLS is a Layer 2.5 protocol, MPLS packets cannot be natively transported over a Layer 3 (IP) network. Therefore, GRE is the ideal alternative for applications where traffic must travel over a Layer 3 network; for example, in DSL applications.

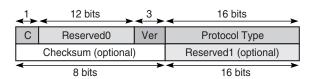
For the HSDPA offload application (see HSDPA Offload on page 44), ATM pseudowires are transported over IP using GRE tunneling. For other applications, Ethernet and TDM pseudowires over GRE are also supported.

GRE SDPs are supported on any port of the 8-port Ethernet Adapter card (for the 7705 SAR-8) or any Ethernet port on the 7705 SAR-F.

#### **GRE format**

In accordance with RFC 2784, a GRE encapsulated packet has the following format:

- delivery header
- GRE header
- payload packet


#### **Delivery Header**

The delivery header is always an IP header.

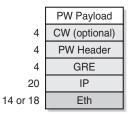
#### **GRE Header**

The GRE header format is shown in Figure 5 and described in Table 5.

Figure 5: GRE Header



19874


**Table 5: GRE Header Descriptions** 

| Field                | Description                                                                                                                                                                                                                                                |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                    | Specifies whether there is a checksum in the header                                                                                                                                                                                                        |
|                      | If set to 1, both the checksum and reserved1 fields must be present                                                                                                                                                                                        |
|                      | On the 7705 SAR, in the network egress (transmit) direction, the C bit is always set to 0; therefore, the checksum and reserved1 fields are omitted from the header. The GRE header is therefore always 4 bytes (32 bits) in the network egress direction. |
|                      | In the network ingress direction, the C bit validity is checked. If it is set to a non-zero value, the GRE packet is discarded and the IP discards counter is increased.                                                                                   |
| Reserved0            | Indicates whether the header contains optional fields                                                                                                                                                                                                      |
|                      | Not applicable to the 7705 SAR — first 5 bits of the field are always set to 0 and bits 6 to 12 are reserved for future use and also set to 0 by the 7705 SAR                                                                                              |
| Ver                  | Always set to 000 for GRE                                                                                                                                                                                                                                  |
|                      | At network ingress, if a GRE packet is received with the version field set to any value other than 000, the packet is discarded and the IP discards counter is increased                                                                                   |
| Protocol Type        | Specifies the protocol type of the original payload packet — identical to Ethertype with the only supported option being MPLS unicast (0x8847)                                                                                                             |
| Checksum (optional)  | Not applicable                                                                                                                                                                                                                                             |
| Reserved1 (optional) | Not applicable                                                                                                                                                                                                                                             |

### **Payload packet**

The payload encapsulation format for pseudowires over GRE is shown in Figure 6 and described in Table 6.

Figure 6: GRE Pseudowire Payload Packet over Ethernet



19873

**Table 6: GRE Pseudowire Payload Packet Descriptions** 

| Field         | Description                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eth           | This field is the Layer 2 transport header In Release 1.1, the only Layer 2 protocol supported is Ethernet MTU size depends on the encapsulation type (14 bytes for null encapsulation and 18 bytes for dot1q encapsulation) |
| IP            | Indicates the transport protocol  The Ethertype is always set to IP (0x800), and in case of a mismatch, the unexpected or illegal Ethertype counters are increased (1)                                                       |
| GRE           | Indicates the encapsulation protocol                                                                                                                                                                                         |
| PW header     | The pseudowire header identifies a service within the GRE tunnel                                                                                                                                                             |
| CW (optional) | The pseudowire control word (CW) is a 32-bit (4-byte) field that is inserted between the VC label and the Layer 2 frame For more information on the control word, see Pseudowire Control Word on page 130                    |
| PW payload    | The PW payload is the payload of the service being encapsulated (Ethernet, ATM, or TDM)                                                                                                                                      |

**Note** (1): The only exception to the Ethertype is if the packets are address resolution protocol (ARP) packets. For information on ARP, refer to the 7705 SAR OS Router Configuration Guide.

When using GRE, the service MTU might have to be set to a value smaller than 1514 octets. For more information on MTU, see MTU Settings on page 126.

At the network egress of the 7705 SAR, the source address of the IP header is always set to the system IP address. The destination IP address is set to the system IP address of the service router on which the GRE SDP is configured. Using the system IP addresses to bring up the GRE session ensures that any IP link between the two routers can be used to transport GRE/IP packets. It might therefore be necessary to use static IP address configuration over DSL networks to ensure connectivity between the routers (especially if the DSL modem is in bridge mode).

### SDP Ping

Ping is an application that allows a user to test whether a particular host is reachable. SDP Ping is an application that allows a user to test whether a particular SDP endpoint is reachable.

SDP ping uses the SDP identifier that is stored in the 7705 SAR that originates the ping request. SDP ping responses can be configured to return through the corresponding return tunnel as a round-trip ping, or out-of band when unidirectional pings are requested. See SDP Ping on page 279 for more information.

### SDP Keepalives

The SDP keepalive application allows a system operator to actively monitor the SDP operational state using periodic Alcatel-Lucent SDP Echo Request and Echo Reply messages. Automatic SDP keepalives work in a manner that is similar to a manual SDP ping command. The SDP Echo Request and Echo Reply messages provide a mechanism for exchanging far-end SDP statuses.

SDP keepalive Echo Request messages are only sent after the SDP has been completely configured and is administratively up and the SDP keepalives are administratively up. If the SDP is administratively down, keepalives for the SDP are disabled.

SDP keepalive Echo Request messages are sent out periodically based on the configured Hello Time. An optional message length for the Echo Request can be configured.

The SDP is immediately brought operationally down when:

- the Max Drop Count Echo Request messages do not receive an Echo Reply
- a keepalive response is received that indicates an error condition

After a response is received that indicates the error has cleared and the Hold Down Time interval has expired, the SDP is eligible to be put into the operationally up state. If no other condition prevents the operational change, the SDP enters the operational state.

Configuring SDP keepalives on a given SDP is optional. SDP keepalives have the following configurable keepalive parameters:

- · Hello Time
- Message Length
- Max Drop Count
- Hold Down Time
- Timeout

For information about configuring keepalive parameters, refer to Configuring an SDP on page 61.

## **Mobile Solutions**

The Mobile Radio Access Network (RAN) is rapidly growing to meet the increased demand in mobile services. This in turn increases demands on carriers to provide high-bandwidth, mobile broadband services. Today, at a typical cell site, 2G and 3G base stations are connected to high-cost, T1/E1 leased lines that are used to backhaul both voice and data traffic to the MTSO. For mission-critical, delay-sensitive, and low-bandwidth traffic such as voice, signaling, and synchronization traffic, it is vital that the high availability of these leased lines is ensured. SLA agreements also promise a high level of availability for customers.

Currently, however, best-effort traffic such as high-speed downlink packet access (HSDPA) is also switched over these SLA-enabled leased lines. HSDPA is a 3G mobile telephony communications service that allows UMTS networks to have higher data transfer speeds and capacity, allowing the mobile customer (end user) to browse the Internet or to use the mobile device. The increasing use of HSDPA is having a dramatic impact on the ability of the T1/E1 leased lines to scale with the traffic growth as well as on the operating costs of these lines.

Similar issues confront CDMA EVDO networks today.

Alcatel-Lucent provides a solution that enables mobile operators to keep their existing infrastructure (circuit-based leased lines), while gradually migrating to a packet-based infrastructure that will allow scalability, decrease costs, and ease the transition to the next-generation, all-IP network solutions.

### **HSDPA Offload**

The Alcatel-Lucent solution is to make use of widely available DSL networks and split the traffic being backhauled. Mission-critical traffic (voice, signaling, synchronization) remains on the T1/E1 leased line circuits, while the best-effort, bandwidth-hungry HSDPA traffic is offloaded to DSL networks.

The 7705 SAR-F, introduced in Release 1.1, is an ideal candidate for this scenario. The 7705 SAR-F is a small-scale, fixed version of the 7705 SAR product family. It is optimized for use in standalone small or midsized sites where traffic aggregation from multiple cell sites is not needed. For more information on the 7705 SAR-F, refer to the 7705 SAR-F Chassis Installation Guide.

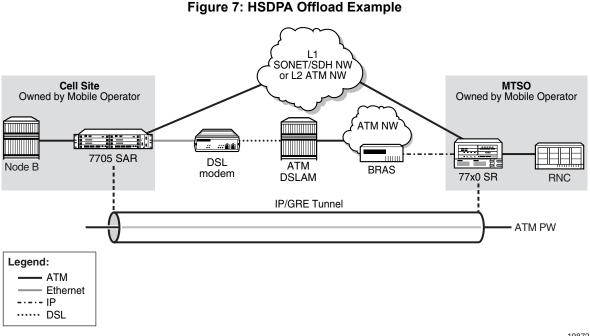



Figure 7 shows a typical example of HSDPA offload.

19872

A 3G Node B is connected to a 7705 SAR-F (or 7705 SAR-8) over an ATM/IMA access port (SAP endpoint). An ATM SAP-to-SAP connection is set up in the 7705 SAR and a pseudowire is configured between the two endpoints to emulate local ATM switching. Traffic from the Node B enters an ATM/IMA port, the VCs transporting mission-critical traffic are locally switched (SAP-to-SAP) to another ATM/IMA port (SAP endpoint), and then switched over the leased lines to the MTSO.



**Note:** ATM SAP-to-SAP connections are supported between any T1/E1 ASAP port that is in access mode with ATM/IMA encapsulation and another port with the same configuration. One endpoint of a SAP connection can be an IMA group, while the other endpoint can be on a single ATM port.

For non-mission-critical traffic, for example, HSDPA traffic, an Ethernet interface on the 7705 SAR is connected to an external DSL modem. HSDPA traffic is interworked to ATM pseudowires and transported over the DSL network to the BRAS, then forwarded to the service router at the MTSO.

### **Failure Detection**

Failure of the GRE SDP or the IP network it rides over can be detected by OAM tools as well as by BFD. With SAA, OAM tools can be configured to run periodically in order to facilitate faster failure detection. If a failure occurs, the ATM SAPs must be rerouted by the 5620 SAM to the ATM ports used for backhauling the traffic. The mission-critical traffic is still serviced before the best-effort HSDPA traffic.

For information on OAM and SAA tools, see the chapter OAM and SAA on page 277. For information on BFD, refer to the 7705 SAR OS Router Configuration Guide.

## **Service Creation Overview**

Figure 8 shows a flow chart that provides an overview of the process to create a service. Service creation can be separated into two main functional areas — core services tasks and subscriber services tasks. Core services tasks are performed prior to subscriber services tasks.

Before starting the process shown in Figure 8, ensure that the 7705 SAR system has been configured with an IP address and (for the 7705 SAR-8) has the appropriate adapter cards installed and activated.

Core tasks include the following items:

- create customer accounts
- create template QoS and accounting policies
- create LSPs
- create SDPs

Subscriber services tasks include the following items:

- create Apipe, Cpipe, or Epipe services or IES
- configure SAPs
- bind SDPs
- create exclusive QoS policies

See Subscriber Services Components on page 49 for additional information on subscriber services.

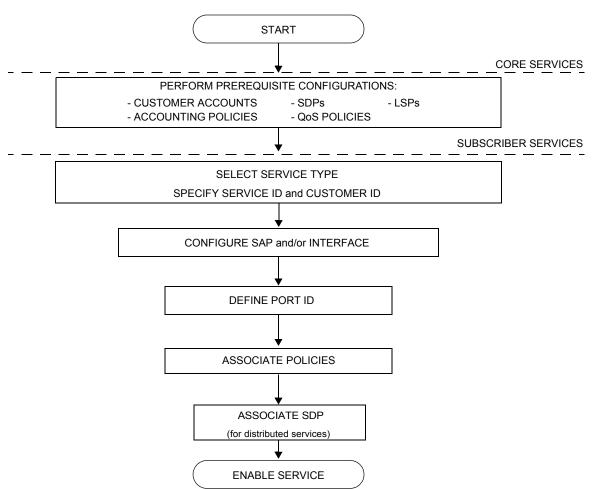



Figure 8: Service Creation and Implementation Flow Chart

## **Subscriber Services Components**

Figure 9 shows the basic components of a subscriber service. The items in the figure are described in the list following Figure 9.

**Figure 9: Subscriber Service Components** 

```
CUSTOMER ID

SERVICE TYPE

SERVICE ID

PORT ID

INGRESS—QoS POLICY (default)

EGRESS —QoS POLICY (default)

FAR-END

LSP (for MPLS encapsulation)
```

- Customer ID associates information with a particular customer
- Service type specifies the connectivity type, such as Apipe, Cpipe, or Epipe
- Service ID identifies each service with a unique ID number
- SAP the subscriber-side service entry (access) and exit point for a service
  - → Port ID identifies the physical port part of the SAP definition
  - → QoS policy identifies the QoS policy associated with an ingress or egress SAP or IP interface. QoS policy ID 1 is the default.
- SDP the (logical) service entity that ties a far-end 7705 SAR to a specific service without having to specifically define the far-end SAPs. Each SDP, identified by a local SDP ID, represents a method for reaching a far-end 7705 SAR.

## **Port and SAP CLI Identifiers**

When typing text in the command line interface (CLI), *port-id* is often displayed to indicate that a port identifier may need to be typed in the command line. Similarly, to identify a SAP, the *port-id* is used, but additional information may need to be appended to indicate a logical sub-element of the port.

On the CLI, a *port-id* is defined using the format *slot/mda/port*, where *slot* identifies the IOM card slot (always 1), *mda* identifies the physical slot in the chassis for the adapter card, and *port* identifies the physical port on the adapter card.

The value that can be appended to a SAP has the format [:][ID] or [.][ID]. The colon or dot and following ID identify a sub-element of the port (if applicable), such as a TDM channel group for a Cpipe or a VPI/VCI value for an Apipe.

For example, a SAP associated with a TDM channel group on port 12 of an ASAP card in MDA slot 3 is identified as <1/3/12.3>, where ".3" is the appended value and identifies that for this SAP the channel group begins in timeslot 3.

### **Reference Sources**

For information on standards and supported MIBs, refer to Standards and Protocol Support on page 357.

# **Configuring Global Service Entities with CLI**

This section provides information to create subscriber (customer) accounts and to configure service destination points (SDPs) using the command line interface.

Topics in this section include:

- Service Model Entities on page 52
- Service CLI Command Structure on page 53
- List of Commands on page 55
- Basic Configuration on page 57
- Common Configuration Tasks on page 59
  - → Configuring Customer Accounts on page 59
  - → Configuring SDPs on page 60
- Service Management Tasks on page 63

## **Service Model Entities**

The Alcatel-Lucent service model uses (logical) service entities to construct a service. Each entity within the model has properties that describe it and influence its behavior. The service model has four main entities to configure a service. The entities are:

- Customers
  - → Configuring Customer Accounts on page 59
- Service Destination Points (SDPs)
  - → Configuring SDPs on page 60
- Service Types
  - → ATM VLL (Apipe) Services on page 94
  - → Circuit Emulation VLL (Cpipe) Services on page 97
  - → Ethernet VLL (Epipe) Services on page 114
  - → Internet Enhanced Service on page 237
- Service Access Points (SAPs)
  - → Configuring Apipe SAP Parameters on page 143
  - → Configuring Cpipe SAP parameters on page 146
  - → Configuring Epipe SAP Parameters on page 150
  - → Configuring IES SAP Parameters on page 249

## **Service CLI Command Structure**

There are two main areas that need to be configured in order to set up a service:

- core and customer configuration
- global service configuration

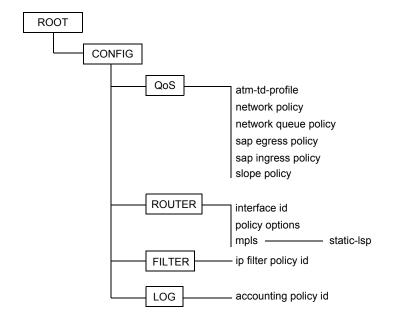

#### **Core and Customer Configuration**

Figure 10 displays the structural overview of the basic CLI commands used for core and customer configuration. These commands should be performed prior to provisioning a subscriber service.

For command and syntax information needed to use these commands, refer to the following guides:

- 7705 SAR OS Quality of Service Guide
- 7705 SAR OS Router Configuration Guide
- 7705 SAR OS System Management Guide
- 7705 SAR OS MPLS Guide

Figure 10: Core and Customer Command Overview



#### **Global Service Configuration**

Figure 11 displays the structural overview of the CLI commands used to configure a service. The service configuration commands are located under the config>service context and are described in this guide (7705 SAR OS Services Guide). Use the show>service context to view information about an aspect of the service.

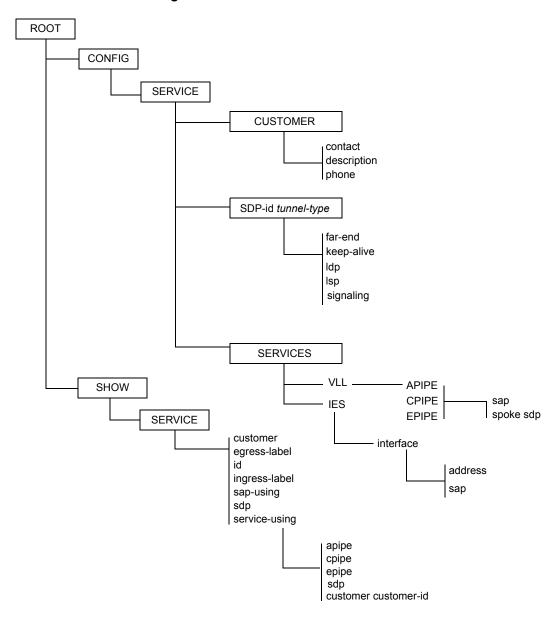



Figure 11: Global Service CLI Command Overview

## **List of Commands**

Table 7 lists all the configuration commands required to configure subscriber accounts and SDPs, indicating the configuration level at which each command is implemented with a short command description.

The command list is organized in the following task-oriented manner:

- Configure the customer account
- Configure an SDP
- Configure SDP keepalive parameters

**Table 7: CLI Commands to Configure Service Parameters** 

| Command                        | Description                                                                                                 | Page |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------|------|--|--|
| Configure the customer account |                                                                                                             |      |  |  |
| config>service>custome         | c c                                                                                                         | 59   |  |  |
| contact                        | Creates a customer ID and the customer context used to associate information with a particular customer     | 73   |  |  |
| description                    | Creates a text description of the customer that is stored in the configuration file                         | 71   |  |  |
| phone                          | Adds phone number information for a customer ID                                                             | 74   |  |  |
|                                |                                                                                                             |      |  |  |
| Configure an SDP               |                                                                                                             |      |  |  |
| config>service>sdp             |                                                                                                             | 60   |  |  |
| adv-mtu-override               | Overrides the advertised VC MTU                                                                             | 76   |  |  |
| description                    | Specifies a text string describing the SDP                                                                  | 71   |  |  |
| far-end                        | Configures the system IP address of the far-end destination router for the SDP that is terminating services | 76   |  |  |
| gre                            | Specifies that the SDP uses GRE encapsulation                                                               | 75   |  |  |
| keep-alive                     | Configures SDP connectivity monitoring keepalive messages for the SDP ID                                    | 80   |  |  |
| ldp                            | Enables LDP-signaled LSPs on MPLS-encapsulated SDPs                                                         | 77   |  |  |
| lsp                            | Creates associations between an LSP and an MPLS SDP                                                         | 77   |  |  |

Table 7: CLI Commands to Configure Service Parameters (Continued)

| Command                   | Description                                                                                                                                                 | Page |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| mpls                      | Specifies that the SDP uses MPLS encapsulation                                                                                                              | 75   |
| metric                    | Specifies the metric to be used within the tunnel table manager for decision-making purposes                                                                | 78   |
| path-mtu                  | Configures the MTU in bytes that the SDP can transmit to the far-end router without packet dropping the SDP-type default path-mtu                           | 78   |
| shutdown                  | Administratively enables or disables the SDP                                                                                                                | 71   |
| signaling                 | Enables the signaling protocol (targeted LDP) to obtain the ingress and egress labels in frames transmitted and received on the SDP                         | 79   |
| vlan-vc-etype             | Specifies the VLAN VC EtherType                                                                                                                             | 79   |
| Configure SDP keepalive p | parameters                                                                                                                                                  | 60   |
| config>service>sdp>ke     | eep-alive                                                                                                                                                   | 80   |
| hello-time                | Configures the time period between SDP keepalive messages on the SDP-ID for the SDP connectivity monitoring messages                                        | 81   |
| hold-down-time            | Configures the minimum time period the SDP will remain in the operationally down state in response to SDP keepalive monitoring                              | 81   |
| max-drop-count            | Configures the number of consecutive SDP keepalive failed request attempts or remote replies that can be missed after which the SDP is operationally downed | 82   |
| message-length            | Configures the size of SDP monitoring keepalive request messages                                                                                            | 82   |
| shutdown                  | Administratively enables or disables the keepalive messages                                                                                                 | 71   |
| timeout                   | Configures the time interval that the SDP waits before tearing down the session                                                                             | 83   |

## **Basic Configuration**

Before configuring a subscriber service, the QoS, logs, and MPLS LSPs (if applicable) must be configured. Refer to the following guides for more information:

- 7705 SAR OS Quality of Service Guide
- 7705 SAR OS Router Configuration Guide
- 7705 SAR OS System Management Guide
- 7705 SAR OS MPLS Guide

A basic service configuration must have the following items configured:

- a customer ID
- a service type
- a service ID
- a SAP identifying a port and encapsulation value
- an interface (where required) identifying an IP address, IP subnet, and broadcast address
- an associated SDP (for distributed services)

The following example shows an Epipe service configuration displaying the SDP and Epipe service entities. SDP ID 2 was created with the far-end node 10.10.10.104. Epipe ID 6000 was created for customer ID 6, which uses the SDP ID 2.

```
A:ALU-B>config>service# info detail
       sdp 2 mpls create
           description "MPLS-10.10.10.104"
           far-end 10.10.10.104
           signaling tldp
           no vlan-vc-etype
           no path-mtu
           keep-alive
               shutdown
               hello-time 10
               hold-down-time 10
               max-drop-count 3
               timeout 5
               no message-length
           exit
           no shutdown
       exit
       epipe 6000 customer 6 vpn 6000 create
          service-mtu 1514
          sap 1/1/2:0 create
             no multi-service-site
```

```
ingress
                qos 1
             exit
             egress
              qos 1
            no shutdown
          exit
          spoke-sdp 2:6111 create
            ingress
                no vc-label
            egress
               no vc-label
             no shutdown
          exit
         no shutdown
      exit
A:ALU-B>config>service#
```

# **Common Configuration Tasks**

This section provides a brief overview of the following common configuration tasks that must be performed to configure a customer account and an SDP:

- Configuring Customer Accounts
- Configuring SDPs

## **Configuring Customer Accounts**

Use the customer command to configure customer information. Every customer account must have a customer ID. Optional parameters include:

- · description
- contact name
- telephone number

If special characters are included in the customer description string, such as spaces, #, or ?, the entire string must be enclosed in double quotes.

Use the following CLI syntax to create and input customer information.

The following example displays the customer account configuration output.

```
A:ALU-12>config>service# info

...

customer 5 create

contact "Technical Support"

description "Alcatel-Lucent Customer"

phone "650 555-5100"

exit

...

A:A:ALU-12>config>service#
```

## **Configuring SDPs**

Every service destination point (SDP) must have the following items configured:

- a locally unique SDP identification (ID) number
- the system IP address of the far-end router
- an SDP encapsulation type either GRE or MPLS

### **SDP Configuration Considerations**

Consider the following SDP characteristics when creating and configuring an SDP.

- SDPs can be configured as either GRE or MPLS.
- If an SDP configuration does not include the IP address of the associated far-end router, then VLL services to the far-end router cannot be provided.
- A service must be bound to an SDP.
- An SDP is only used when a service is bound to it.
   By default, SDPs are not associated with services. Once an SDP is created, services can be associated with that SDP.
- An SDP can have more than one service bound to it. That is, an SDP is not specific or exclusive to any one service or any type of service.
- When configuring an SDP:
  - → The far-end SDP IP address must be the system IP address of a 7705 SAR or an SR-series router.
  - → For MPLS SDPs, the LSPs must be configured before the LSP-to-SDP associations can be assigned. The LSP-to-SDP associations must be created explicitly.
  - → Automatic ingress and egress labeling (targeted LDP) is enabled by default. Ingress and egress VC labels are signaled over a targeted LDP connection between two 7705 SAR routers.



**Note:** If signaling is disabled for an SDP, then ingress and egress vc-labels for the services using that SDP must be configured manually.

### **Configuring an SDP**

When configuring an SDP, consider the following points.

• If you do not specify an encapsulation type, the default is MPLS.

**CLI Syntax:** config>service>sdp sdp-id [gre | mpls] create

adv-mtu-override

- When configuring a distributed service, you must identify an SDP ID and the farend IP address. Use the show>service>sdp command to display a list of qualifying SDPs.
- When specifying MPLS SDP parameters, you can either specify an LSP or enable an LDP. There cannot be two methods of transport in a single SDP.
- LSPs are configured in the config>router>mpls context. See the 7705 SAR OS MPLS Guide for configuration and command information.

Use the following CLI syntax to create an SDP.

```
description description-string
               far-end ip-addr
               keep-alive
                  hello-time seconds
                  hold-down-time seconds
                  max-drop-count count
                  message-length octets
                  timeout timeout
                  no shutdown
                                      (for MPLS SDPs only)
               ldp
               lsp lsp-name [lsp-name] (for MPLS SDPs only)
               path-mtu octets
               signaling {off | tldp}
               no shutdown
Example:
          config>service# sdp 2 gre create
          config>service>sdp# description "GRE-10.10.10.104"
          config>service>sdp# far-end "10.10.10.104"
          config>service>sdp# no shutdown
          config>service>sdp# exit
          config>service# sdp 4 mpls create
          config>service>sdp# description "MPLS-10.10.10.104"
          config>service>sdp# far-end "10.10.10.104"
          config>service>sdp# ldp
          config>service>sdp# no shutdown
          config>service>sdp# exit
          config>service# sdp 8 mpls create
          config>service>sdp# description "MPLS-10.10.10.104"
          config>service>sdp# far-end "10.10.10.104"
          config>service>sdp# lsp "to-104"
```

```
config>service>sdp# no shutdown
config>service>sdp# exit
config>service# sdp 104 mpls create
config>service>sdp# description "MPLS-10.10.10.94"
config>service>sdp# far-end "10.10.10.94"
config>service>sdp# ldp
config>service>sdp# no shutdown
config>service>sdp# exit
```

The following example displays the SDP sample configuration output.

```
A:ALU-12>config>service# info
       sdp 2 create
           description "GRE-10.10.10.104"
           far-end 10.10.10.104
           keep-alive
               shutdown
           no shutdown
       sdp 4 create
           description "MPLS-10.10.10.104"
           far-end 10.10.10.104
           ldp
           keep-alive
               shutdown
           exit
           no shutdown
        exit
        sdp 8 mpls create
           description "MPLS-10.10.10.104"
           far-end 10.10.10.104
           lsp "to-104"
           keep-alive
               shutdown
           exit
           no shutdown
        sdp 104 mpls create
           description "MPLS-10.10.10.94"
           far-end 10.10.10.94
           keep-alive
              shutdown
           exit
           no shutdown
       exit
A:ALU-12>config>service#
```

# **Service Management Tasks**

This section provides a brief overview of the following service management tasks:

- Modifying Customer Accounts
- Deleting Customers
- Modifying SDPs
- Deleting SDPs
- Deleting LSP Associations

## **Modifying Customer Accounts**

Use the show>service>customer command to display a list of customer IDs.

To modify a customer account:

- 1. Access the specific account by specifying the customer ID.
- 2. Enter the parameter to modify (description, contact, phone) and then enter the new information.

```
CLI Syntax: config>service# customer customer-id create
```

[no] contact contact-information

[no] description description-string

[no] phone phone-number

#### **Example:** config>service# customer 27 create

config>service>customer\$ description "Western Division"

config>service>customer# contact "John Dough"

config>service>customer# no phone "(650) 237-5102"

## **Deleting Customers**

The no form of the customer command typically removes a customer ID and all associated information; however, all service references to the customer must be shut down and deleted before a customer account can be deleted.

CLI Syntax: config>service# no customer customer-id

**Example:** config>service# epipe 5 customer 27 shutdown

config>service# epipe 9 customer 27 shutdown

config>service# no epipe 5
config>service# no epipe 9
config>service# no customer 27

## **Modifying SDPs**

Use the show>service>sdp command to display a list of SDP IDs.

To modify an SDP:

- 1. Access the specific SDP by specifying the SDP ID.
- 2. Enter the parameter to modify, such as description, far-end, or lsp, and then enter the new information.



**Note:** Once the SDP is created, you cannot modify the SDP encapsulation type.

**CLI Syntax:** config>service# sdp sdp-id

**Example:** config>service# sdp 79

config>service>sdp# description "Path-to-107"

config>service>sdp# shutdown

config>service>sdp# far-end "10.10.10.107"

config>service>sdp# path-mtu 1503
config>service>sdp# no shutdown

## **Deleting SDPs**

The no form of the sdp command typically removes an SDP ID and all associated information; however, before an SDP can be deleted, the SDP must be shut down and removed (unbound) from all customer services where it is applied.

CLI Syntax: config>service# no sdp 79

**Example:** config>service# epipe 5 spoke-sdp 79:5

config>service>epipe>spoke-sdp# shutdown
config>service>epipe>spoke-sdp# exit
config>service>epipe 5 no spoke-sdp 79:5

config>service>epipe# exit
config>service# no sdp 79

## **Deleting LSP Associations**

The no form of the 1sp command removes an LSP ID and all associated information; however, before an LSP can be deleted, it must be removed from all SDP associations.

**CLI Syntax:** config>service# sdp sdp-id

[no] lsp lsp-name

**Example:** config>service# sdp 79

config>service>sdp# no lsp 123
config>service>sdp# exit all

Service Management Tasks

# **Global Service Command Reference**

# **Command Hierarchies**

- Global Service Configuration Commands
  - → Customer Commands
  - → SDP Commands
  - → SAP Commands
- Show Commands

## **Global Service Configuration Commands**

#### **Customer Commands**

```
config

— service

— customer customer-id [create]

— no customer customer-id

— customer contact-information

— no customer

— description description-string

— no description

— phone phone-number

— [no] phone
```

#### **SDP Commands**

```
config
     — service
             — sdp sdp-id [gre | mpls] [create]
             — no sdp sdp-id
                      — [no] adv-mtu-override
                      — description description-string
                      — no description
                      — far-end ip-address
                      - no far-end
                      - keep-alive
                              — hello-time seconds
                              — no hello-time
                              — hold-down-time seconds
                              - no hold-down-time
                              — max-drop-count count
                              - no max-drop-count
                              - message-length octets
                              - no message-length
                              — [no] shutdown
                              — timeout timeout
                              - no timeout
                      — [no] ldp
                      — [no] lsp lsp-name
                      — metric metric
                      — no metric
                      — path-mtu bytes
                      — no path-mtu
                      — signaling {off | tldp}
                      — [no] shutdown
                      — vlan-vc-etype 0x0600..0xffff
                      — no vlan-vc-etype [x0600.0xffff]
```

#### **SAP Commands**

```
config

— service

— apipe

— sap sap-id [create]

— no sap sap-id

— cpipe

— sap sap-id [create]

— no sap sap-id

— epipe

— sap sap-id [create]

— no sap sap-id

— ies

— interface ip-int-name [create]

— sap sap-id [create]

— no sap sap-id [create]

— no sap sap-id
```

### **Show Commands**

# **Global Service Configuration Commands**

- Generic Commands on page 71
- Customer Commands on page 73
- SDP Commands on page 75
- SDP Keepalive Commands on page 80

### **Generic Commands**

### description

Syntax description description-string

no description

Context config>service>customer

config>service>sdp

**Description** This command creates a text description stored in the configuration file for a configuration context.

The **no** form of this command removes the string from the context.

**Default** No description is associated with the configuration context.

**Parameters** description-string — the description character string. Allowed values are any string up to 80

characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, \$, spaces, etc.), the entire string must be enclosed within double quotes.

### shutdown

Syntax [no] shutdown

Context config>service>sdp

config>service>sdp>keep-alive

**Description** The **shutdown** command administratively disables an entity. The operational state of the entity is

disabled as well as the operational state of any entities contained within. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many objects must be shut down before they may be deleted. Many entities must be explicitly enabled using the **no shutdown** 

command.

The **no** form of this command places the entity into an administratively enabled state.

Services are created in the administratively down state (**shutdown**). When a **no shutdown** command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities are described in the following Special

Cases.

#### **Special Cases**

**Service Admin State** — bindings to an SDP within the service will be put into the out-of-service state when the service is shut down. While the service is shut down, all customer packets are dropped and counted as discards for billing and debugging purposes.

**SDP (global)** — when an SDP is shut down at the global service level, all bindings to that SDP are put into the out-of-service state and the SDP itself is put into the administratively and operationally

### Global Service Configuration Commands

down states. Packets that would normally be transmitted using this SDP binding will be discarded and counted as dropped packets.

**SDP** (service level) — shutting down an SDP within a service only affects traffic on that service from entering or being received from the SDP. The SDP itself may still be operationally up for other services.

**SDP Keepalives** — enables SDP connectivity monitoring keepalive messages for the SDP ID. Default state is disabled (shutdown), in which case the operational state of the SDP-ID is not affected by the keepalive message state.

## **Customer Commands**

#### customer

Syntax customer customer-id [create]

no customer customer-id

Context config>service

**Description** This command creates a customer ID and customer context used to associate information with a

particular customer. Services can later be associated with this customer at the service level.

Each customer-id must be unique and the create keyword must follow each new customer customer-

id entry.

To edit a customer's parameters, enter the existing **customer** customer-id without the **create** 

keyword.

Default **customer 1** always exists on the system and cannot be deleted.

The **no** form of this command removes a *customer-id* and all associated information. Before removing a *customer-id*, all references to that customer in all services must be deleted or changed to a

different customer ID.

**Parameters** customer-id — specifies the ID number to be associated with the customer, expressed as an integer

**Values** 1 to 2147483647

#### contact

Syntax contact contact-information

no contact

Context config>service>customer

**Description** This command allows you to configure contact information for a customer. Include any customer-

related contact information such as a technician's name or account contract name.

The **no** form of this command removes the contact information from the customer ID.

**Default** No contact information is associated with the *customer-id*.

**Parameters** contact-information — the customer contact information entered as an ASCII character string.

Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, \$, spaces, etc.), the entire string must be

enclosed within double quotes.

# phone

Syntax [no] phone phone-number

Context config>service>customer

**Description** This command adds telephone number information for a customer ID.

The **no** form of this command removes the phone number value from the customer ID.

**Default** No telephone number information is associated with a customer.

**Parameters** phone-number — the customer phone number entered as an ASCII string. Allowed values are any

string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string

contains special characters (#, \$, spaces, etc.), the entire string must be enclosed within double

quotes.

## **SDP Commands**

sdp

Syntax sdp sdp-id [gre | mpls] [create]

no sdp sdp-id

Context config>service

**Description** This command creates or edits an SDP. SDPs must be explicitly configured.

An SDP is a (logical) service entity that is created on the local router. An SDP identifies the endpoint of a logical, unidirectional service tunnel. Traffic enters the tunnel at the SDP on the local router and exits the tunnel at the remote router. Thus, it is not necessary to specifically define far-end SAPs.

In Release 1.1, generic routing encapsulation (GRE) and multiprotocol label switching (MPLS) tunnels are supported. For MPLS, a 7705 SAR supports both signaled and non-signaled label switched paths (LSPs) through the network. Non-signaled paths are defined at each hop through the network. Signaled LSPs are established in LDP-DU (downstream unsolicited) mode.

SDPs are created and then bound to services. Many services may be bound to a single SDP. The operational and administrative state of the SDP controls the state of the SDP binding to the service.

If *sdp-id* does not exist, a new SDP is created. SDPs are created in the admin down state (**shutdown**). Once all relevant parameters are defined, the **no shutdown** command must be executed before the SDP can be used.

If *sdp-id* exists, the current CLI context is changed to that SDP for editing and modification. If editing an existing SDP, the **gre** or **mpls** keyword is not specified. If a keyword is specified for an existing *sdp-id*, an error is generated and the context of the CLI is not changed to the specified *sdp-id*.

The **no** form of this command deletes the specified SDP. Before an SDP can be deleted, it must be administratively down (**shutdown**) and not bound to any services. If the specified SDP is bound to a service, the **no sdp** command fails, generating an error message specifying the first bound service found during the deletion process. If the specified *sdp-id* does not exist, an error is generated.

**Default** none

**Parameters** *sdp-id* — the SDP identifier

**Values** 1 to 17407

gre — specifies that the SDP will use GRE encapsulation tunnels. Only one GRE SDP is supported to a given destination 7705 SAR or 7710/7750 SR.

mpls — specifies that the SDP will use MPLS encapsulation and one or more LSP tunnels to reach the far-end 7705 SAR or 7710/7750 SR. Multiple MPLS SDPs are supported to a given destination service router. Multiple MPLS SDPs to a single destination service router are helpful when they use divergent paths.

#### adv-mtu-override

Syntax [no] adv-mtu-override

Context config>service>sdp

**Description** This command overrides the advertised VC-type MTU. When enabled, the 7705 SAR signals a VC

MTU equal to the service MTU that includes the Layer 2 header. Under normal operations it will advertise the service MTU minus the Layer 2 header. In the receive direction, it will accept either one.

The **no** form of this command disables the VC-type MTU override.

**Default** no adv-mtu-override

### far-end

Syntax far-end ip-address

no far-end

Context config>service>sdp

**Description** This command configures the system IP address of the far-end destination 7705 SAR, 7710 SR,

7750 SR, or other router ID platform for the SDP that is the termination point for a service.

The far-end IP address must be explicitly configured. The destination IP address must be a 7705 SAR, 7710 SR, 7750 SR, or other router ID platform system IP address.

If the SDP uses GRE for the destination encapsulation, the local 7705 SAR might not know whether the *ip-address* is actually a system IP interface address on the far-end service router.

If the SDP uses MPLS encapsulation, the **far-end** *ip-address* is used to check LSP names when added to the SDP. If the "**to** IP address" defined within the LSP configuration does not exactly match the SDP **far-end** *ip-address*, the LSP will not be added to the SDP and an error message will be generated.

An SDP cannot be administratively enabled until a **far-end** *ip-address* is defined. The SDP is operational when it is administratively enabled (**no shutdown**).

The **no** form of this command removes the currently configured destination IP address for the SDP. The *ip-address* parameter is not specified and will generate an error message if used in the **no far-end** command. The SDP must be administratively disabled using the **config>service>sdp>shutdown** command before the **no far-end** command can be executed. Removing the far-end IP address will cause all *lsp-name* associations with the SDP to be removed.

**Default** none

**Parameters** *ip-address* — the system address of the far-end 7705 SAR for the SDP

Values a.b.c.d

ldp

Syntax [no] ldp

Context config>service>sdp

**Description** This command enables LDP-signaled LSPs on MPLS-encapsulated SDPs.

In MPLS SDP configurations, either one LSP can be specified or LDP can be enabled. The SDP **ldp** and **lsp** commands are mutually exclusive. If an LSP is specified on an MPLS SDP, then LDP cannot be enabled on the SDP. To enable LDP on the SDP when an LSP is already specified, the LSP must be removed from the configuration using the **no lsp** *lsp-name* command.

Alternatively, if LDP is already enabled on an MPLS SDP, then an LSP cannot be specified on the SDP. To specify an LSP on the SDP, LDP must be disabled. The LSP must have already been created in the **config>router>mpls** context with a valid far-end IP address.

**Default** no ldp (disabled)

Isp

Syntax [no] Isp Isp-name

Context config>service>sdp

**Description** This command creates an association between an LSP and an MPLS SDP. This command is implemented only on MPLS-type encapsulated SDPs.

In MPLS SDP configurations, either one LSP can be specified or LDP can be enabled. The SDP **ldp** and **lsp** commands are mutually exclusive. If an LSP is specified on an MPLS SDP, then LDP cannot be enabled on the SDP. To enable LDP on the SDP when an LSP is already specified, the LSP must be removed from the configuration using the **no lsp** *lsp-name* command.

Alternatively, if LDP is already enabled on an MPLS SDP, then an LSP cannot be specified on the SDP. To specify an LSP on the SDP, LDP must be disabled. The LSP must have already been created in the **config>router>mpls** context with a valid far-end IP address. Refer to the 7705 SAR OS MPLS Guide for CLI syntax and command usage.

If no LSP is associated with an MPLS SDP, the SDP cannot enter the operationally up state. The SDP can be administratively enabled (**no shutdown**) with no LSP associations. The *lsp-name* may be shut down, causing the association with the SDP to be operationally down (the LSP will not be used by the SDP).

LSP SDPs also require that the TLDP signaling be specified and that the SDP keepalive parameter be enabled and not timed out.

The **no** form of this command deletes an LSP association from an SDP. If the *lsp-name* does not exist as an association or as a configured LSP, no error is returned. An *lsp-name* must be removed from all SDP associations before the *lsp-name* can be deleted from the system. The SDP must be administratively disabled (**shutdown**) before the last *lsp-name* association with the SDP is deleted.

**Default** No LSP names are defined.

**Parameters** *lsp-name* — the name of the LSP to associate with the SDP. An LSP name is case-sensitive and is

limited to 32 ASCII 7-bit printable characters with no spaces. If an exact match of *lsp-name* does not already exist as a defined LSP, an error message is generated. If the *lsp-name* does exist and

the LSP to IP address matches the SDP far-end IP address, the association is created.

### metric

Syntax metric metric

no metric

Context config>service>sdp

**Description** This command specifies the metric to be used within the tunnel table manager for decision-making

purposes. When multiple SDPs going to the same destination exist, this value is used as a tie-breaker

by tunnel table manager users to select the route with the lower value.

**Parameters** *metric* — specifies the SDP metric

**Values** 1 to 17407

## path-mtu

Syntax path-mtu bytes

no path-mtu

Context config>service>sdp

**Description** This command configures the Maximum Transmission Unit (MTU) in bytes that the SDP can

transmit to the far-end router without packet dropping.

The default SDP-type path-mtu can be overridden on a per-SDP basis.

Dynamic maintenance protocols on the SDP may override this setting.

If the physical **mtu** on an egress interface indicates that the next hop on an SDP path cannot support the current **path-mtu**, the operational **path-mtu** on that SDP will be modified to a value that can be

transmitted without fragmentation.

The **no** form of this command removes any **path-mtu** defined on the SDP and the SDP will use the

system default for the SDP type.

**Default** The default **path-mtu** defined on the system for the type of SDP is used.

**Parameters** bytes — specifies the number of bytes in the path MTU

**Values** 576 to 1554

# signaling

Syntax signaling {off | tldp}

Context config>service>sdp

**Description** This command specifies the signaling protocol used to obtain the ingress and egress labels in frames

transmitted and received on the SDP. When signaling is **off**, then labels are manually configured when the SDP is bound to a service. The signaling value can only be changed while the administrative

status of the SDP is down.

The **no** form of this command is not applicable. To modify the signaling configuration, the SDP must

be administratively shut down and then the signaling parameter can be modified and re-enabled.

Default tldp

**Parameters** off — ingress and egress signal auto-labeling is not enabled. If this parameter is selected, then each

service using the specified SDP must manually configure VPN labels. This configuration is

independent of the SDP's transport type, MPLS (LDP).

tldp — ingress and egress signaling auto-labeling is enabled

vlan-vc-etype

Syntax vlan-vc-etype 0x0600..0xffff

no vlan-vc-etype [0x0600..0xffff]

Context config>service>sdp

**Description** This command configures the VLAN VC EtherType. The **no** form of this command returns the value

to the default. The etype value populates the EtherType field in the Ethernet frame. It is used to indicate which protocol is being transported in the Ethernet frame. The default value indicates that the

payload is an IEEE 802.1q-tagged frame.

**Default** no vlan-vc-etype (0x8100)

**Parameters** 0x0600..0xffff — specifies a valid VLAN etype identifier.

# **SDP Keepalive Commands**

## keep-alive

Syntax keep-alive

Context config>service>sdp

**Description** This command is the context for configuring SDP connectivity monitoring keepalive messages for the SDP-ID.

SDP-ID keepalive messages use SDP Echo Request and Reply messages to monitor SDP connectivity. The operating state of the SDP is affected by the keepalive state on the SDP-ID. SDP Echo Request messages are only sent when the SDP-ID is completely configured and administratively up. If the SDP-ID is administratively down, keepalives for that SDP-ID are disabled. SDP Echo Requests, when sent for keepalive messages, are always sent with the *originator-sdp-id*. All SDP-ID keepalive SDP Echo Replies are sent using generic IP OAM encapsulation.

When a keepalive response is received that indicates an error condition, the SDP ID will immediately be brought operationally down. Once a response is received that indicates the error has cleared and the **hold-down-time** interval has expired, the SDP ID will be eligible to be put into the operationally up state. If no other condition prevents the operational change, the SDP ID will enter the operational state.

A set of event counters track the number of keepalive requests sent, the size of the message sent, nonerror replies received and error replies received. A keepalive state value is kept, indicating the last response event. A keepalive state timestamp value is kept, indicating the time of the last event. With each keepalive event change, a log message is generated, indicating the event type and the timestamp value.

Table 8 describes keepalive interpretation of SDP Echo Reply response conditions and the effect on the SDP ID operational status.

Table 8: SDP Echo Reply Response Conditions

| Result of             | Request                                                | Stored Response State          | Operational State |
|-----------------------|--------------------------------------------------------|--------------------------------|-------------------|
| keepalive 1           | request timeout without reply                          | Request Timeout                | Down              |
|                       | request not sent due to non-<br>ig-sdp-id (1)          | Orig-SDP Non-Existent          | Down              |
|                       | request not sent due to tively down <i>orig-sdp-id</i> | Orig-SDP Admin-Down            | Down              |
| keepalive origination | reply received, invalid<br>i-id                        | Far End: Originator-ID Invalid | Down              |

Table 8: SDP Echo Reply Response Conditions (Continued)

| Result of Request                              | Stored Response State       | Operational State                   |
|------------------------------------------------|-----------------------------|-------------------------------------|
| keepalive reply received, invalid responder-id | Far End: Responder-ID Error | Down                                |
| keepalive reply received, No Error             | Success                     | Up (if no other condition prevents) |

1. This condition should not occur.

### hello-time

Syntax hello-time seconds

no hello-time

Context config>service>sdp>keep-alive

**Description** This command configures the time period between SDP keepalive messages on the SDP-ID for the

SDP connectivity monitoring messages.

The **no** form of this command reverts the **hello-time** seconds value to the default setting.

**Parameters** seconds — the time period in seconds between SDP keepalive messages, expressed as a decimal

integer

Default 10

**Values** 1 to 3600

#### hold-down-time

Syntax hold-down-time seconds

no hold-down-time

**Context** config>service>sdp>keep-alive

**Description** This command configures the minimum time period the SDP will remain in the operationally down

state in response to SDP keepalive monitoring.

This parameter can be used to prevent the SDP operational state from "flapping" by rapidly transitioning between the operationally up and operationally down states based on keepalive messages

messages.

When an SDP keepalive response is received that indicates an error condition or the **max-drop-count** keepalive messages receive no reply, the *sdp-id* will immediately be brought operationally down. If a keepalive response is received that indicates the error has cleared, the *sdp-id* will be eligible to be put into the operationally up state only after the **hold-down-time** interval has expired.

The **no** form of this command reverts the **hold-down-time** seconds value to the default setting.

**Parameters** 

seconds — the time in seconds, expressed as a decimal integer, the sdp-id will remain in the operationally down state after an SDP keepalive error before it is eligible to enter the operationally up state. A value of 0 indicates that no hold-down-time will be enforced for sdp-id.

Default 10

**Values** 0 to 3600

## max-drop-count

Syntax max-drop-count count

no max-drop-count

**Context** config>service>sdp>keep-alive

**Description** This command configures the number of consecutive SDP keepalive failed request attempts or remote

replies that can be missed after which the SDP is operationally downed.

If the **max-drop-count** consecutive keepalive request messages cannot be sent or no replies are received, the SDP-ID will be brought operationally down by the keepalive SDP monitoring.

The **no** form of this command reverts the **max-drop-count** count value to the default settings.

**Parameters** count — the number of consecutive SDP keepalive requests that can fail to be sent or replies missed

before the SDP is brought down, expressed as a decimal integer

Default 3

Values 1 to 5

# message-length

Syntax message-length octets

no message-length

**Context** config>service>sdp>keep-alive

**Description** This command configures the size of SDP monitoring keepalive request messages transmitted on the

SDP

The **no** form of this command reverts the **message-length** *octets* value to the default setting.

**Parameters** octets — the size of keepalive request messages in octets, expressed as a decimal integer. The size

keyword overrides the default keepalive message size.

The message length should be equal to the SDP operating path MTU as configured in the path-

mtu command.

If the default size is overridden, the actual size used will be the smaller of the operational SDP-ID path MTU and the size specified.

**Default** 0

**Values** 72 to 1500

## timeout

Syntax timeout timeout

no timeout

**Context** config>service>sdp>keep-alive

**Description** This command configures the time interval that the SDP waits before tearing down the session.

**Parameters** timeout — the timeout in seconds, expressed as a decimal integer

**Default** 5

Values 1 to 10

# **Show Commands**

### customer

Syntax customer customer-id

Context show>service

**Description** This command displays service customer information.

**Parameters** customer-id — displays only information for the specified customer ID

**Default** all customer IDs display

**Values** 1 to 2147483647

Output Show Customer Command Output — The following table describes show customer command

output fields.

**Table 9: Show Customer Command Output Fields** 

| Label           | Description                                                                     |
|-----------------|---------------------------------------------------------------------------------|
| Customer-ID     | Displays the unique customer identification number                              |
| Contact         | Displays the name of the primary contact person                                 |
| Description     | Displays generic information about the customer                                 |
| Phone           | Displays the telephone or pager number used to reach the primary contact person |
| Total Customers | Displays the total number of customers configured                               |

#### **Sample Output**

Customer-ID : 1
Contact : Manager

Description : Default customer

Phone : (123) 555-1212

Customer-ID : 2
Contact : Tech Support
Description : ABC Networks
Phone : (234) 555-1212

Customer-ID : 3
Contact : Fred

Description : ABC Networks

```
Phone: (345) 555-1212
Customer-ID : 6
Contact : Ethel
Description : Epipe Customer
Phone : (456) 555-1212
Customer-ID : 7
Contact : Lucy
Description : VPLS Customer
Phone : (567) 555-1212
Customer-ID: 8
Contact : Customer Service
Description : IES Customer
Phone : (678) 555-1212
Customer-ID : 274
Contact : Mssrs. Beaucoup
Description : ABC Company
Phone: 650 123-4567
Customer-ID : 94043
Contact : Test Engineer on Duty
Description : TEST Customer
Phone : (789) 555-1212
_____
Total Customers: 8
*A:ALU-12# show service customer 274
______
Customer 274
______
Customer-ID : 274
Contact : Mssrs. Beaucoup
Description : ABC Company
Phone: 650 123-4567
Total Customers : 1
*A:ALU-12#
```

# sdp

Syntax sdp [sdp-id | far-end ip-address] [detail | keep-alive-history]

Context show>service

**Description** This command displays SDP information.

If no optional parameters are specified, a summary SDP output for all SDPs is displayed.

**Parameters** *sdp-id* — the SDP ID for which to display information

Default all SDPsValues 1 to 17407

far-end ip-address — displays only SDPs matching with the specified far-end IP address

**Default** SDPs with any far-end IP address

detail — displays detailed SDP information

**Default** SDP summary output

**keep-alive-history** — displays the last fifty SDP keepalive events for the SDP

**Default** SDP summary output

**Output** Show Service SDP — The following table describes show service SDP output fields.

**Table 10: Show Service SDP Output Fields** 

| Label                   | Description                                                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| SDP Id                  | Identifies the SDP                                                                                                          |
| Description             | Identifies the SDP by the text description stored its configuration file                                                    |
| SDP Source              | Specifies the SDP source type                                                                                               |
| Adm MTU<br>Adm Path MTU | Specifies the desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end router |
| Opr MTU<br>Opr Path MTU | Specifies the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router  |
| Far End                 | Specifies the IP address of the remote end of the GRE or MPLS tunnel defined by this SDP                                    |
| Adm<br>Admin State      | Specifies the desired state of the SDP                                                                                      |
| Opr<br>Oper State       | Specifies the operating state of the SDP                                                                                    |
| Deliver<br>Delivery     | Specifies the type of delivery used by the SDP: GRE or MPLS                                                                 |

Table 10: Show Service SDP Output Fields (Continued)

| Label                | Description                                                                                                                                    |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flags                | Specifies all the conditions that affect the operating status of this SDP                                                                      |  |
| Signal<br>Signaling  | Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on the SDP               |  |
| Metric               | Specifies the value used as a tie-breaker by the tunnel table manager to select a route                                                        |  |
| Last Status Change   | Specifies the time of the most recent operating status change to this SDP                                                                      |  |
| Last Mgmt Change     | Specifies the time of the most recent management-initiated change to this SDP                                                                  |  |
| Adv. MTU Over        | Specifies the state of the advertised VC-type MTU override command                                                                             |  |
| VLAN VC Etype        | Specifies the VLAN VC EtherType for the SDP                                                                                                    |  |
| Number of SDPs       | Specifies the total number of SDPs displayed according to the criteria specified                                                               |  |
| Keepalive Informatio | n:                                                                                                                                             |  |
| Hello Time           | Specifies how often the SDP Echo Request messages are transmitted on this SDP                                                                  |  |
| Hello Msg Len        | Specifies the length of the SDP Echo Request messages transmitted on this SDP                                                                  |  |
| Hello Timeout        | Specifies the number of seconds to wait for an SDP echo response message before declaring a timeout                                            |  |
| Unmatched Replies    | Specifies the number of SDP unmatched message replies timer expired                                                                            |  |
| Max Drop Count       | Specifies the maximum number of consecutive SDP Echo Request messages that can be unacknowledged before the keepalive protocol reports a fault |  |
| Hold Down Time       | Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state                                |  |
| TX Hello Msgs        | Specifies the number of SDP echo request messages transmitted since the keepalive was administratively enabled or the counter was cleared      |  |
| Rx Hello Msgs        | Specifies the number of SDP echo request messages received since the keepalive was administratively enabled or the counter was cleared         |  |
| Collect Stats.       | Specifies that the collection of accounting and statistical data for the SDP is enabled or disabled                                            |  |

Table 10: Show Service SDP Output Fields (Continued)

| escription |
|------------|
|            |

#### Associated LSP LIST:

Note: If the SDP type is GRE, the following message displays: SDP Delivery Mechanism is not **MPLS** 

For MPLS: identifies the name of the static LSP Lsp Name

Time since Last Trans\* For MPLS: specifies the time that the associated static LSP has been in

service

#### Sample Output

\*A:ALU-12# show service sdp

|                     | s: Service                             |             | on Points    |     |     |            |              |
|---------------------|----------------------------------------|-------------|--------------|-----|-----|------------|--------------|
| SdpId               | Adm MTU                                | Opr MTU     | IP address   | Adm | Opr | Deliver Si | gnal         |
| <br>10              |                                        |             | 10.10.10.24  |     |     |            |              |
| 20                  |                                        |             | 10.10.10.24  |     |     |            |              |
| 30                  | 4462                                   | 1514        | 10.20.1.21   |     |     |            | JDP          |
| Number              | of SDPs : 3                            | <br>3       |              |     |     |            |              |
|                     | 12# show se                            |             |              |     |     |            |              |
| Service             | Destination                            | on Point (S | 3dp Id : 10) |     |     |            |              |
| =====<br>SdpId      | Adm MTU                                | Opr MTU     | IP address   |     | _   |            | ====<br>gnal |
| ======<br>SdpId<br> | ====================================== | Opr MTU     |              |     |     |            |              |
| ======<br>SdpId<br> | Adm MTU  0                             | Opr MTU     | IP address   |     |     |            |              |

Sdp Id 8 -(10.10.10.104)

Description : MPLS-10.10.10.104

SDP Id : 8 SDP-Source : manual Admin Path MTU : 0 Oper Path MTU : 1550

Far End : 10.10.10.104 Delivery : MPLS Admin State : Up Oper State : Down Signaling : TLDP Metric : 0

Last Status Change : 02/01/2007 09:11:39 Adv. MTU Over. : No

Last Mgmt Change : 02/01/2007 09:11:46 VLAN VC Etype : 0x8100

: SignalingSessDown TransportTunnDown

KeepAlive Information :

Admin State : Disabled Oper State : Disabled Hello Time : 10 Hello Msg Len : 0 Hello Timeout : 5 Unmatched Replies : 0 Hello Time : 10
Hello Timeout : 5
Max Drop Count : 3
Tx Hello Msgs : 0 Hold Down Time : 10 Rx Hello Msgs

Associated LSP LIST :

Lsp Name : to-104 Admin State : Up

Oper State : Down

Time Since Last Tran\*: 01d07h36m

\_\_\_\_\_

# sdp-using

Syntax sdp-using [sdp-id[:vc-id] | far-end ip-address]

Context show>service

Description This command displays services using SDP or far-end address options.

**Parameters** sdp-id — displays only services bound to the specified SDP ID

> **Values** 1 to 17407

vc-id — the virtual circuit identifier

**Values** 1 to 4294967295

far-end ip-address — displays only services matching with the specified far-end IP address

Default services with any far-end IP address

Output **Show Service SDP Using** — The following table describes show service sdp-using output fields.

Table 11: Show Service sdp-using Output Fields

| Label     | Description                                   |
|-----------|-----------------------------------------------|
| SvcID     | Identifies the service                        |
| SdpID     | Identifies the SDP                            |
| Type      | Indicates the type of SDP (spoke)             |
| Far End   | Displays the far-end address of the SDP       |
| Opr State | Displays the operational state of the service |

<sup>\*</sup> indicates that the corresponding row element may have been truncated.

<sup>\*</sup>A:ALU-12#

Table 11: Show Service sdp-using Output Fields (Continued)

| Label    | Description                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------|
| I. Label | Displays the ingress label used by the far-end device to send packets to this device in this service by this SDP    |
| E. Label | Displays the egress label used by this device to send packets to the far-<br>end device in this service by this SDP |

### **Sample Output**

\*A:ALU-1# show service sdp-using 300

Service Destination Point (Sdp Id : 300)

SvcId SdpId Type Far End Opr State I.Label E.Label

1 300:1 Spok 10.0.0.13 Up 131071 131071
2 300:2 Spok 10.0.0.13 Up 131070 131070
100 300:100 Spok 10.0.0.13 Up 131069 131069
101 300:101 Spok 10.0.0.13 Up 131068 131068
102 300:102 Spok 10.0.0.13 Up 131067

Number of SDPs : 5

### service-using

Syntax service-using [epipe] [apipe] [cpipe] [sdp sdp-id] [customer customer-id]

Context show>service

**Description** This command displays the services matching certain usage properties.

If no optional parameters are specified, all services defined on the system are displayed.

**Parameters** epipe — displays matching Epipe services

apipe — displays matching Apipe services

**cpipe** — displays matching Cpipe services

sdp sdp-id — displays only services bound to the specified SDP ID

**Default** services bound to any SDP ID

**Values** 1 to 17407

**customer** customer-id — displays services only associated with the specified customer ID

**Default** services associated with a customer

**Values** 1 to 2147483647

<sup>\*</sup>A:ALU-1#

#### **Output**

Show Service Service-Using — The following table describes show service serviceusing output fields.

Table 12: Show Service service-using Output Fields

| Label            | Description                                                                               |
|------------------|-------------------------------------------------------------------------------------------|
| Service Id       | Identifies the service                                                                    |
| Type             | Specifies the service type configured for the service ID                                  |
| Adm              | Displays the desired state of the service                                                 |
| Opr              | Displays the operating state of the service                                               |
| CustomerID       | Displays the ID of the customer who owns this service                                     |
| Last Mgmt Change | Displays the date and time of the most recent management-initiated change to this service |

#### Sample Output all services used in system

Sample for service-using \_\_\_\_\_

\*A:ALU-12# show service service-using

Services \_\_\_\_\_\_ ServiceId Type Adm Opr CustomerId Last Mgmt Change Cpipe Down Down 1
Apipe Up Up 104
Epipe Up Up 104
Epipe Up Up 104
Cpipe Up Up 104
Cpipe Up Up 104
Cpipe Up Up 104
Apipe Up Down 1
Cpipe Up Up 1 \_\_\_\_\_\_ 10/10/2007 04:11:09 10/10/2007 05:20:22 2 10/10/2007 03:35:01 103 104 10/10/2007 03:35:01 10/10/2007 03:35:01 105 10/10/2007 03:35:01 303 304 10/10/2007 03:35:03 10/10/2007 03:35:06 30.5 701 10/10/2007 03:35:10 10/10/2007 03:35:10 702 703 10/10/2007 03:35:10 704 10/10/2007 03:35:10 705 10/10/2007 03:35:10 10/10/2007 03:35:10 706 10/10/2007 03:35:10 806 807 10/10/2007 03:35:11 808 10/10/2007 03:35:11 903 10/10/2007 03:35:08 904 10/10/2007 03:35:08 \_\_\_\_\_\_

\_\_\_\_\_\_

Matching Services : 19

### Sample Output services used by customer

\*A:ALU-12# show service service-using customer 1  $\,$ 

| Services Customer 1 |       |      |      |            |                     |  |  |
|---------------------|-------|------|------|------------|---------------------|--|--|
| ServiceId           | Туре  | Adm  | Opr  | CustomerId | Last Mgmt Change    |  |  |
| 1                   | Cpipe | Down | Down | 1          | 10/10/2007 04:11:09 |  |  |
| 2                   | Apipe | Down | Down | 1          | 10/10/2007 05:20:22 |  |  |
| 701                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 702                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 703                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 704                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 705                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 706                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 806                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:10 |  |  |
| 807                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:11 |  |  |
| 808                 | Apipe | Up   | Down | 1          | 10/10/2007 03:35:11 |  |  |
| 903                 | Cpipe | Up   | Up   | 1          | 10/10/2007 03:35:08 |  |  |
| 904                 | Cpipe | Up   | Up   | 1          | 10/10/2007 03:35:08 |  |  |
|                     |       |      |      |            |                     |  |  |

Matching Services : 13

### Sample Output by service type

\*A:ALU-12# show service service-using epipe

| Services [epipe] |       |        |     |            |                     |  |
|------------------|-------|--------|-----|------------|---------------------|--|
| ServiceId        | Type  | Adm    | Opr | CustomerId | Last Mgmt Change    |  |
| 103              | Epipe | Up     | Up  | 104        | 10/10/2007 03:35:01 |  |
| 104              | Epipe | Uр     | Up  | 104        | 10/10/2007 03:35:01 |  |
| 105              | Epipe | Up<br> | Up  | 104        | 10/10/2007 03:35:01 |  |

Matching Services : 3

<sup>\*</sup>A:ALU-12#

<sup>\*</sup>A:ALU-12#

# **VLL Services**

# **In This Chapter**

This chapter provides information about Virtual Leased Line (VLL) services and implementation notes.

Topics in this chapter include:

- ATM VLL (Apipe) Services on page 94
- Circuit Emulation VLL (Cpipe) Services on page 97
- Ethernet VLL (Epipe) Services on page 114
- VLL Service Considerations on page 121
- Configuring a VLL Service with CLI on page 131
- VLL Services Command Reference on page 163

# ATM VLL (Apipe) Services

This section provides information about the Apipe service. Topics in this section include:

- ATM VLL for End-to-End ATM Service
- ATM SAP-to-SAP Service
- ATM Traffic Management Support
- Control Word

Apipe configuration information is found under the following topics:

- List of Commands on page 132
- Common Configuration Tasks on page 140
- Configuring VLL Components on page 141
  - → Creating an Apipe Service on page 141
- Service Management Tasks on page 157

## ATM VLL for End-to-End ATM Service

ATM VLLs (Apipe) provide a point-to-point ATM service between users connected to 7705 SAR nodes or other SR routers over an IP/MPLS network (see Figure 12). User ATM traffic is connected to a 7705 SAR either directly or through an ATM access network. In both cases, an ATM PVC—for example, a virtual channel (VC) or a virtual path (VP)—is configured on the 7705 SAR. VPI/VCI translation is supported in the ATM VLL.

The 7705 SAR receives standard UNI/NNI cells on the ATM service access point (SAP), which are then encapsulated into a pseudowire packet using N-to-1 cell mode encapsulation in accordance with RFC 4717.

The ATM pseudowire (PW) is initiated using targeted LDP signaling as specified in RFC 4447, *Pseudowire Setup and Maintenance using LDP*; alternatively, it can be configured manually. The 7705 SAR supports MPLS and GRE as the tunneling technologies for transporting ATM PWs.

In addition to supporting N-to-1 cell mode encapsulation, ATM VLL service supports cell concatenation, control word (CW), SAP-to-SAP (local service), and SAP-to-SDP binding (distributed service). See SAP Encapsulations and Pseudowire Types on page 122 for more information on N-to-1 cell mode encapsulation.

ATM VLL optimizes the ATM cell from a 53-byte cell to a 52-byte packet by removing the header error control (HEC) byte at the near end. The far end regenerates the HEC before switching ATM traffic to the attached circuit.

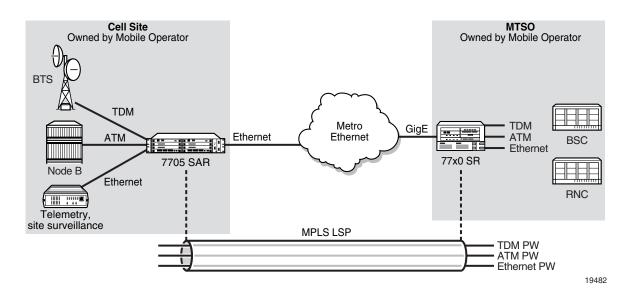



Figure 12: ATM VLL for End-to-End ATM Service

# ATM SAP-to-SAP Service

ATM VLLs can be configured with both endpoints (SAPs) on the same 7705 SAR. This is referred to as ATM SAP-to-SAP or local ATM service. ATM SAP-to-SAP emulates local ATM switching between two ATM endpoints on the 7705 SAR. Both ingress and egress traffic is legacy ATM traffic.

An ATM SAP-to-SAP connection is set up in the 7705 SAR and a pseudowire is configured between the two endpoints. One endpoint of the SAP connection can be an IMA group, while the other endpoint can be an unbundled port.



**Note:** ATM SAP-to-SAP connections are supported between any T1/E1 ASAP port that is in access mode with ATM/IMA encapsulation and another port with the same configuration. One endpoint of a SAP connection can be an IMA group, while the other endpoint can be on a single ATM port.

# **ATM Traffic Management Support**

The 7705 SAR supports the ATM Forum Traffic Management Specification Version 4.1.

# **Network Ingress Classification**

Classification is based on the EXP value of the pseudowire label and EXP-to-FC mapping is determined by the network ingress QoS policy.

The ingress MPLS packets are mapped to forwarding classes based on EXP bits that are part of the headers in the MPLS packets. The EXP bits are used to ensure an end-to-end QoS application. For PW services, there are two labels: one for the MPLS tunnel and one for the pseudowire itself. Mapping is done according to the outer tunnel EXP bit settings. This ensures that if the EXP bit settings are altered along the path by the intermediate LSR nodes, the newly requested FC selection is carried out properly.

Ingress GRE packets are mapped to forwarding classes based on DSCP bit settings of the IP header.

# **ATM Access Egress Queuing and Shaping**

The 7705 SAR provides a per-SAP queuing architecture on the T1/E1 ASAP Adapter card. After the ATM pseudowire is terminated at the access egress point, all the ATM cells are mapped to default queue 1, and queuing is performed on a per-SAP basis.

Access ingress and access egress traffic management features are identical for SAP-to-SAP and SAP-to-SDP applications. For more information on ATM access egress queuing and scheduling, refer to the 7705 SAR OS Quality of Service Guide.

# **Control Word**

ATM VLL supports an optional control word (CW). Refer to Pseudowire Control Word on page 130 for more information.

# Circuit Emulation VLL (Cpipe) Services

This section provides information about the Cpipe service.

Topics in this section include:

- Cpipe Service Overview
  - → TDM SAP-to-SAP Service
  - → Cpipe Service Modes
  - → TDM PW Encapsulation
  - → Circuit Emulation Parameters and Options
  - → Error Situations

Cpipe configuration information is found under the following topics:

- List of Commands on page 132
- Common Configuration Tasks on page 140
- Configuring VLL Components on page 141
  - → Creating a Cpipe Service on page 146
- Service Management Tasks on page 157

# **Cpipe Service Overview**

Cpipe service is the Alcatel-Lucent implementation of TDM PW VLL as defined in the IETF PWE3 working group.

The 7705 SAR can support TDM circuit applications that are able to transport delay-sensitive TDM traffic over a packet network. For example, in the case of cell site aggregation, Cpipe services provide transport service for 2G connectivity between the base transceiver station and the base station controller, and for 3G backhaul applications (for example, EVDO traffic from T1/E1 ports with MLPPP). In Release 1.1, Cpipe services over MPLS or GRE tunnels are supported.

The 2G traffic is transported encapsulated in a TDM VLL over the packet switched network (PSN). The entire T1/E1 frame or part of a frame ( $n \times 64 \text{ kb/s}$ ) is carried as a TDM VLL over the PSN. At the far end, the transport layer frame structure is regenerated when structured circuit emulation is used, or simply forwarded as part of the payload when unstructured circuit emulation is used. The 3G UMTS R99 traffic uses ATM/IMA as the transport protocol. The IMA sessions are terminated at the site by the 7705 SAR and the 3G ATM traffic is transported across the PSN through the use of ATM VLLs (PWE3).

### **TDM SAP-to-SAP Service**

TDM VLLs can be configured with both endpoints (SAPs) on the same 7705 SAR. This is referred to as TDM SAP-to-SAP or local TDM service. TDM SAP-to-SAP emulates a TDM multiplexing and switching function on the 7705 SAR.

A TDM SAP-to-SAP connection is set up in the 7705 SAR and a pseudowire is configured between the two endpoints.



**Note:** TDM SAP-to-SAP connections are supported between any T1/E1 ASAP port or channel that is configured for access mode and circuit emulation service and another port or channel with the same configuration.

# **Cpipe Service Modes**

Cpipe services support unstructured circuit emulation mode (SAToP) as per RFC 4553 and structured circuit emulation mode (CESoPSN) for DS1, E1 and  $n \times 64$  kb/s circuits as per RFC 5086.

#### **Unstructured Mode (SAToP)**

Structure-agnostic TDM over Packet (SAToP) is an unstructured circuit emulation mode used for the transport of unstructured TDM or structured TDM (where the structure is ignored).



**Note:** The word "agnostic" is used in RFC 4553, but it is not used in the literal sense. The meaning of agnostic in this case is "unaware or independent"; therefore, structure-agnostic is used to mean structure-unaware or structure-independent.

As a structure-unaware or structure-independent service, SAToP service does not align to any framing; the framing mode for the port is set to unframed. For structured TDM, SAToP disregards the bit sequence and TDM structure in order to transport the entire signal over a PSN as a pseudowire.

#### Structured Mode (CESoPSN)

Structure-aware circuit emulation is used for the transport of structured TDM, taking at least some level of the structure into account. By selecting only the necessary  $n \times 64$  kb/s timeslots to transport, bandwidth utilization is reduced or optimized (compared to a full DS1 or E1). Full DS1s or E1s can be transported by selecting all the timeslots in the DS1 or E1 circuit. Framing bits (DS1) or FAS (E1) are terminated at the near end and reproduced at the far end.

The 7705 SAR supports CESoPSN without CAS for DS1 and E1, and CESoPSN with CAS for E1.

Channel Associated Signaling (CAS) includes four signaling bits (A, B, C, and D) in the messages sent over a voice trunk. These messages provide information such as the dialed digits and the call state (whether on-hook or off-hook).

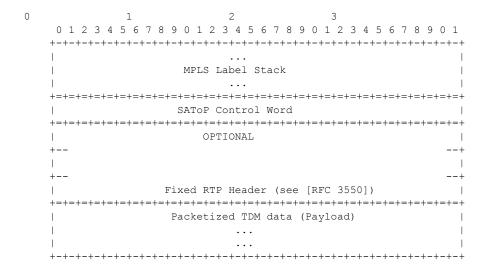
The mechanism for E1 CAS is described in ITU-T G.732. When the vc-type is configured for E1 CAS, timeslot 17 carries the signaling information for the timeslots used for voice trunking. Each channel requires four signaling bits, so grouping 16 E1 frames into a multiframe allows the signaling bits for all 30 channels to be trunked.

As shown in Figure 13, timeslot 1 of all frames within the E1 multiframe is reserved for alignment, alarm indication, and CRC. For Frame 0, timeslot 17 is reserved for multiframe alignment bits. For the remaining 15 frames, timeslot 17 contains ABCD bits for two channels.



Note: For E1 CAS, timeslots are numbered 1 to 32 on the 7705 SAR.

Timeslot 17 Timeslot 1 16 18 ---125 ms Frame 0 C<sub>1</sub> • • 0 0 1 1 0 0 0 0 0 •  $a_1 b_1$ d, C, a<sub>16</sub> 0 Α • b<sub>16</sub> • 1 • C<sub>17</sub> d<sub>17</sub> 0 1 1 0 1  $a_2 \mid b_2$  $C_2$ d, a<sub>17</sub> b<sub>17</sub> • 0 1 0 1 Α  $a_3 \mid b_3 \mid$ Сз  $d_3$ a<sub>18</sub> b<sub>18</sub> • Submultiframe 1 b<sub>4</sub> d, 0 0 1 1 0 1 1 C 4 a,, 0 b<sub>5</sub> C 5  $d_{5}$ 5 Α a<sub>20</sub> C<sub>20</sub> • 1  $b_6$ 6 C<sub>4</sub> 0 0 1 1 0 1 C 6  $d_6$ a<sub>21</sub> b<sub>21</sub> 0 Α b, C<sub>7</sub>  $d_7 | a_{22} | b_{22}$ C<sub>22</sub> 0 0 0 1  $d_8 | a_{23} | b_{23}$  $d_9$ 0 Α C<sub>9</sub>  $|a_{24}|b_{24}$ c24 d24 • 10 C<sub>2</sub> 0 0  $d_{10} a_{25} b_{25}$ 1 1 1 • C 1.  $d_{11} a_{26} b_{26}$ 11 0 Α a,, b,, Submultiframe 2 12 C<sub>3</sub> 0 0 a<sub>12</sub> b<sub>12</sub> C 12  $|d_{12}|a_{27}|b_{27}$ • 1 0 1 • 13 E 1 b 13 d<sub>13</sub> a<sub>28</sub> b<sub>28</sub> d 14 a 29 14 C<sub>4</sub> a<sub>14</sub> b<sub>14</sub> C 14 0 0 1 1 0 1 • • s s 15 E a<sub>15</sub> b<sub>15</sub> C 15  $d_{15} a_{30} b_{30}$ c 30 d 30 --2 ms 30 Channel 1 15 16 a<sub>1</sub> b<sub>1</sub> c<sub>1</sub> d<sub>1</sub> Channel CAS bits 1 1 1 ... 0 Alignment bits Remote alarm indicator Channel bytes CRC-4 error signaling bits Spare bits C<sub>1</sub> | C<sub>2</sub> | C<sub>3</sub> | C<sub>4</sub> | CRC-4 bits 19966


Figure 13: E1 Framing for CAS Support in a Multiframe

When CESoPSN with CAS is selected, the ABCD bits are coded into the E1 multiframe, transported within the TDM PW, and reconstructed in the E1 multiframe at the far end for each timeslot.

# **TDM PW Encapsulation**

TDM circuits are MPLS-encapsulated as per RFC 4533 (SAToP) and RFC 5086 (CESoPSN) (see Figure 14 and Figure 15).

Figure 14: SAToP MPLS Encapsulation



### Figure 15: CESoPSN MPLS Encapsulation

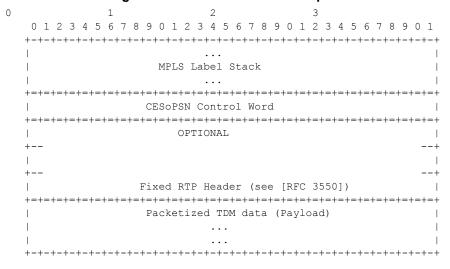



Figure 16 shows the format of the CESoPSN TDM payload (with and without CAS) for packets carrying trunk-specific  $n \times 64$  kb/s service.

Figure 16: CESoPSN Packet Payload Format for Trunk-Specific n x 64 kb/s (with and without CAS transport)

|             | 0 1 2 3 4 5 6 7          | 0 1 2 3 4 5 6 7        |
|-------------|--------------------------|------------------------|
|             | Timeslot 1               | Timeslot 1             |
|             | +-+-+-+-+-+-+            | +-+-+-+-+-+            |
|             | Timeslot 2               | Timeslot 2             |
| Frame #1    | · · · · · ·              | Frame #1               |
|             | Timeslot n               | Timeslot n             |
|             | +-+-+-+-+-+-+            | +-+-+-+-+-+            |
|             | +-+-+-+-+-+-+            | +-+-+-+-+-+            |
|             | $\mid$ Timeslot 1 $\mid$ | Timeslot 1             |
|             | +-+-+-+-+-+-+            | +-+-+-+-+-+            |
|             | Timeslot 2               | Timeslot 2             |
| Frame #2    |                          | Frame #2               |
|             | Timeslot n               | Timeslot n             |
|             | +-+-+-+-+-+-+            | +-+-+-+-+-+            |
| • • •       | · · · · · ·              |                        |
|             | +-+-+-+-+-+-+            | +-+-+-+-+-+            |
|             | Timeslot 1               | Timeslot 1             |
|             | +-+-+-+-+-+-+            | +-+-+-+-+              |
|             | Timeslot 2               | Timeslot 2             |
| Frame #m    | · · · · · ·              | Frame #m               |
|             | Timeslot n               | Timeslot n             |
|             | +-+-+-+-+-+-+-+          | +-+-+-+-+-+            |
| •           | A B C D A B C D          |                        |
|             | +-+-+-+-+-+-+-+          |                        |
| Nibbles 3,4 | ABCD ABCD                |                        |
|             | +-+-+-+-+-+-+            |                        |
|             | A B C D  (pad)           |                        |
| (odd) & pad | +-+-+-+-+-+-+            |                        |
| (a) Pac     | ket with CAS             | (b) Packet without CAS |

For CESoPSN without CAS, select the packet size so that an integer number of frames are transported. That is, if n timeslots per frame are to be encapsulated in a TDM PW, then the packet size must be a multiple of n (where n is not equal to 1). For example, if n = 4 timeslots, then the packet size can be 8, 12, 16 and so on.

For CESoPSN with CAS, the packet size is an integer number of frames, where the number of frames is a multiple of 16 for E1 and is not user-configurable. The extra bytes for ABCD (CAS) signaling bits are not included when setting the packet size.



**Note:** The extra bytes for CAS signaling bits must be included when setting the service-mtu size. See Structured E1 CES with CAS on page 107 for more information.

# **Circuit Emulation Parameters and Options**

All ports on a 16-port T1/E1 ASAP Adapter card can be configured independently to support TDM circuit emulation across the packet network. Structure-aware mode (CESoPSN) is supported for  $n \times 64$  kb/s channel groups in DS1 and E1 circuits. Unstructured mode (SAToP) is supported for full DS1 and E1 circuits. The following parameters and options are described in this section:

- Unstructured
- Structured DS1/E1 CES without CAS
- Structured E1 CES with CAS
- Packet Payload Size
- Jitter Buffer
- RTP Header
- Control Word

#### Unstructured

Unstructured CES is configured by choosing satop-t1 or satop-e1 as the vc-type when creating a Cpipe service. For DS1 and E1 unstructured circuit emulation, the framing parameter of the port must be set to ds1-unframed and e1-unframed (respectively) because SAToP service ignores the underlying framing. Additionally, channel group 1 must contain all 24 or 32 timeslots, which is configured automatically when channel group 1 is created.

For DS1 and E1 circuit emulation, the payload packet size is configurable and must be an integer value between 2 and 1514 octets. The payload packet size affects the packet efficiency and packetization delay. Table 13 shows the default values for packet size and packetization delay. See Packet Payload Size on page 110 for more information.



**Note:** When using SAToP to transport DS1 traffic, the framing bit (bit 193) in the DS1 overhead is included and packed in the payload and sent over the PSN. If the underlying framing is ESF, then the Facility Data Link (FDL) channel is transported over the Cpipe as part of the SAToP service. No matter the case, the framing parameter of the port must be set to unframed.

**Table 13: Unstructured Payload Defaults** 

| Circuit | Payload Size<br>(Octets) | Packetization Delay (ms) |  |  |
|---------|--------------------------|--------------------------|--|--|
| DS1     | 192                      | 1.00                     |  |  |
| E1      | 256                      | 1.00                     |  |  |

#### Structured DS1/E1 CES without CAS

Structured CES without CAS is configured by choosing cesopsn as the vc-type when creating a Cpipe service. For  $n \times 64$  kb/s structured circuit emulation operation, the framing parameter of the port must be set to a framed setting (such as ESF for DS1). Each channel group contains n DS0s (timeslots), where n is between 1 and 24 timeslots for DS1 and between 1 and 31 timeslots for E1.

The packet payload size is configurable (in octets) and must be an integer multiple of the number of timeslots in the channel group. The minimum payload packet size is 2 octets (based on two frames per packet and one timeslot per frame). See Table 14 for default and minimum payload size values. The maximum payload packet size is 1514 octets.

Each DS1 or E1 frame contributes a number of octets to the packet payload. That number is equal to the number of timeslots configured in the channel group. Thus, a channel group with four timeslots contributes 4 octets to the payload. The timeslots do not need to be contiguous.

Note that a smaller packet size results in a lower packetization delay; however, it increases the packet overhead (when expressed as a percentage of the traffic).

### **Calculation of Payload Size**

The payload size (S), in octets, can be calculated using the following formula:

```
S = N \times F
```

where:

N = the number of octets (timeslots) collected per received frame (DS1 or E1)
F = the number of received frames (DS1 or E1) that are accumulated in each CESoPSN packet

For example, assume the packet collects 16 frames (F) and the channel group contains 4 octets (timeslots) (N). Then the packet payload size (S) is:

```
S = 4 octets/frame x 16 frames
= 64 octets
```

#### **Calculation of Packetization Delay**

Packetization delay is the time needed to collect the payload for a CESoPSN packet. DS1 and E1 frames arrive at a rate of 8000 frames per second. Therefore, the received frame arrival period is  $125~\mu s$ .

In the previous example, 16 frames were accumulated in the CESoPSN packet. In this case, the packetization delay (D) can be calculated as follows:

```
D = 125 \mus/frame × 16 frames
= 2.000 ms
```

Table 14 shows the default and minimum values for frames per packet, payload size, and packetization delay as they apply to the number of timeslots (N) that contribute to the packet payload. The default values are set by the operating system as follows:

- for N = 1, the default is 64 frames/packet
- for  $2 \le N \le 4$ , the default is 32 frames/packet
- for  $5 \le N \le 15$ , the default is 16 frames/packet
- for  $N \ge 16$ , the default is 8 frames/packet

Table 14: Default and Minimum Payload Size for CESoPSN without CAS

|                               | Default Values        |                                 |                                    | Minimum Values              |                                 |                                    |
|-------------------------------|-----------------------|---------------------------------|------------------------------------|-----------------------------|---------------------------------|------------------------------------|
| Number of<br>Timeslots<br>(N) | Frames per Packet (F) | Payload Size<br>(Octets)<br>(S) | Packetization<br>Delay (ms)<br>(D) | Frames<br>per Packet<br>(F) | Payload Size<br>(Octets)<br>(S) | Packetization<br>Delay (ms)<br>(D) |
| 1                             | 64                    | 64                              | 8.000                              | 2                           | 2                               | 0.250                              |
| 2                             | 32                    | 64                              | 4.000                              | 2                           | 4                               | 0.250                              |
| 3                             | 32                    | 96                              | 4.000                              | 2                           | 6                               | 0.250                              |
| 4                             | 32                    | 128                             | 4.000                              | 2                           | 8                               | 0.250                              |
| 5                             | 16                    | 80                              | 2.000                              | 2                           | 10                              | 0.250                              |
| 6                             | 16                    | 96                              | 2.000                              | 2                           | 12                              | 0.250                              |
| 7                             | 16                    | 112                             | 2.000                              | 2                           | 14                              | 0.250                              |
| 8                             | 16                    | 128                             | 2.000                              | 2                           | 16                              | 0.250                              |
| 9                             | 16                    | 144                             | 2.000                              | 2                           | 18                              | 0.250                              |
| 10                            | 16                    | 160                             | 2.000                              | 2                           | 20                              | 0.250                              |
| 11                            | 16                    | 176                             | 2.000                              | 2                           | 22                              | 0.250                              |
| 12                            | 16                    | 192                             | 2.000                              | 2                           | 24                              | 0.250                              |
| 13                            | 16                    | 208                             | 2.000                              | 2                           | 26                              | 0.250                              |
| 14                            | 16                    | 224                             | 2.000                              | 2                           | 28                              | 0.250                              |
| 15                            | 16                    | 240                             | 2.000                              | 2                           | 30                              | 0.250                              |
| 16                            | 8                     | 128                             | 1.000                              | 2                           | 32                              | 0.250                              |
| 17                            | 8                     | 136                             | 1.000                              | 2                           | 34                              | 0.250                              |
| 18                            | 8                     | 144                             | 1.000                              | 2                           | 36                              | 0.250                              |
| 19                            | 8                     | 152                             | 1.000                              | 2                           | 38                              | 0.250                              |
| 20                            | 8                     | 160                             | 1.000                              | 2                           | 40                              | 0.250                              |
| 21                            | 8                     | 168                             | 1.000                              | 2                           | 42                              | 0.250                              |
| 22                            | 8                     | 176                             | 1.000                              | 2                           | 44                              | 0.250                              |
| 23                            | 8                     | 184                             | 1.000                              | 2                           | 46                              | 0.250                              |

Table 14: Default and Minimum Payload Size for CESoPSN without CAS (Continued)

11

|                               | Default Values        |                                 |                                    | Minimum Values              |                                 |                                    |
|-------------------------------|-----------------------|---------------------------------|------------------------------------|-----------------------------|---------------------------------|------------------------------------|
| Number of<br>Timeslots<br>(N) | Frames per Packet (F) | Payload Size<br>(Octets)<br>(S) | Packetization<br>Delay (ms)<br>(D) | Frames<br>per Packet<br>(F) | Payload Size<br>(Octets)<br>(S) | Packetization<br>Delay (ms)<br>(D) |
| 24                            | 8                     | 192                             | 1.000                              | 2                           | 48                              | 0.250                              |
| 25                            | 8                     | 200                             | 1.000                              | 2                           | 50                              | 0.250                              |
| 26                            | 8                     | 208                             | 1.000                              | 2                           | 52                              | 0.250                              |
| 27                            | 8                     | 216                             | 1.000                              | 2                           | 54                              | 0.250                              |
| 28                            | 8                     | 224                             | 1.000                              | 2                           | 56                              | 0.250                              |
| 29                            | 8                     | 232                             | 1.000                              | 2                           | 58                              | 0.250                              |
| 30                            | 8                     | 240                             | 1.000                              | 2                           | 60                              | 0.250                              |
| 31                            | 8                     | 248                             | 1.000                              | 2                           | 62                              | 0.250                              |

### Structured E1 CES with CAS

In Release 1.1, structured circuit emulation with CAS is only supported for E1 circuits.

Structured CES with CAS service is configured by choosing cesopsn-cas as the vc-type when creating a Cpipe service. The E1 service on the port associated with the Cpipe SAP should be configured to support CAS (via the signal-mode {cas} command) before configuring the Cpipe service to support E1 with CAS. Refer to the 7705 SAR OS Interface Configuration Guide for information on configuring signal mode.

For  $n \times 64$  kb/s structured circuit emulation with CAS, the implementation is almost identical to that of CES without CAS. When CAS operation is enabled, timeslot 16 cannot be included in the channel group on E1 carriers. The CAS option is enabled or disabled at the port level; therefore, it applies to all channel groups on that E1 port.

The packet size is based on 16 frames per packet for E1 when CAS is enabled and is not user-configurable. For example, if the number of timeslots is 4, then the payload size is 64 octets. This 16-frame fixed configuration is logical because an E1 multiframe contains 16 frames; therefore, proper bit positioning for the A, B, C, and D CAS signaling bits can be ensured at each end of the pseudowire. Table 15 shows the payload sizes based on the number of timeslots

For CAS, the signaling portion adds (n/2) bytes (n is an even integer) or ((n+1)/2) bytes (n is odd) to the packet, where n is the number of timeslots in the channel group. Note that you do not include the additional signaling bytes in the configuration setting of the TDM payload size. However, the operating system includes the additional bytes in the total packet payload, and the total payload must be accounted for when setting the service-mtu size. Continuing the example above, since n = 4, the total payload is 64 octets plus (4/2 = 2) CAS octets, or 66 octets. Refer to Figure 16 to see the structure of the CES with CAS payload.



**Note:** If you configure the service-mtu size to be smaller than the total payload size (payload plus CAS bytes), then the Cpipe will not become operational. This must be considered if you change the service-mtu from its default value.

CES fragmentation is not supported.

Table 15: Payload Size for E1 CESoPSN with CAS

| Number of<br>Timeslots | Number of Frames per Packet | Payload Size<br>(Octets) | Packetization Delay (ms) |
|------------------------|-----------------------------|--------------------------|--------------------------|
| 1                      | 16                          | 16                       | 2.00                     |
| 2                      | 16                          | 32                       | 2.00                     |
| 3                      | 16                          | 48                       | 2.00                     |
| 4                      | 16                          | 64                       | 2.00                     |
| 5                      | 16                          | 80                       | 2.00                     |
| 6                      | 16                          | 96                       | 2.00                     |
| 7                      | 16                          | 112                      | 2.00                     |
| 8                      | 16                          | 128                      | 2.00                     |
| 9                      | 16                          | 144                      | 2.00                     |
| 10                     | 16                          | 160                      | 2.00                     |
| 11                     | 16                          | 176                      | 2.00                     |
| 12                     | 16                          | 192                      | 2.00                     |
| 13                     | 16                          | 208                      | 2.00                     |
| 14                     | 16                          | 224                      | 2.00                     |
| 15                     | 16                          | 240                      | 2.00                     |
| 16                     | 16                          | 256                      | 2.00                     |
| 17                     | 16                          | 272                      | 2.00                     |
|                        |                             |                          |                          |

Table 15: Payload Size for E1 CESoPSN with CAS (Continued)

| Number of<br>Timeslots | Number of Frames per Packet | Payload Size<br>(Octets) | Packetization Delay (ms) |
|------------------------|-----------------------------|--------------------------|--------------------------|
| 18                     | 16                          | 288                      | 2.00                     |
| 19                     | 16                          | 304                      | 2.00                     |
| 20                     | 16                          | 320                      | 2.00                     |
| 21                     | 16                          | 336                      | 2.00                     |
| 22                     | 16                          | 352                      | 2.00                     |
| 23                     | 16                          | 368                      | 2.00                     |
| 24                     | 16                          | 384                      | 2.00                     |
| 25                     | 16                          | 400                      | 2.00                     |
| 26                     | 16                          | 416                      | 2.00                     |
| 27                     | 16                          | 432                      | 2.00                     |
| 28                     | 16                          | 448                      | 2.00                     |
| 29                     | 16                          | 464                      | 2.00                     |
| 30                     | 16                          | 480                      | 2.00                     |

### **Packet Payload Size**

The packet payload size defines the number of octets contained in the payload of a TDM PW packet when the packet is transmitted. Each DS0 (timeslot) in a DS1 or E1 frame contributes 1 octet to the payload, and the total number of octets contributed per frame depends on the number of timeslots in the channel group (for example, 10 timeslots contribute 10 octets per frame).

#### **Jitter Buffer**

A circuit emulation service uses a jitter buffer to ensure that received packets are tolerant to packet delay variation (PDV). The selection of jitter buffer size must take into account the size of the TDM-encapsulated packets (payload size). A properly configured jitter buffer provides continuous play-out, thereby avoiding discards due to overruns and underruns (packets arriving too early or too late). The maximum receive jitter buffer size is configurable for each SAP configured for circuit emulation. The range of values is from 3 to 250 ms in increments of 1 ms.

#### **Configuration/design Considerations**

Determining the best configuration value for the jitter buffer may require some adjustments to account for the requirements of your network, which can change PDV as nodes are added or removed.

The buffer size must be set to at least 3 times the packetization delay and no greater than 32 times the packetization delay. Use a buffer size (in ms) that is equal to or greater than the peak-to-peak packet delay variation (PDV) expected in the network used by circuit emulation service. For example, for a PDV of  $\pm 5$  ms, configure the jitter buffer to be at least 10 ms.



**Note:** The jitter buffer setting and payload size (packetization delay) interact such that it may be necessary for the operating system to adjust the jitter buffer setting in order to ensure no loss of packets. Thus, the configured jitter buffer value may not be the value used by the system. Use the show>service>id service\_id>all command to show the effective PDVT (packet delay variation tolerance).

The following values are the default jitter buffer times for structured circuits, where N is the number of timeslots:

- for N = 1, the default is 32 ms
- for  $2 \le N \le 4$ , the default is 16 ms
- for  $5 \le N \le 15$ , the default is 8 ms
- for  $N \ge 16$ , the default is 5 ms

Jitter buffer overrun and underrun counters are available for statistics and can raise an alarm (optional) while the circuit is operational. For overruns, excess packets are discarded and counted. For underruns, an all-ones pattern is sent for unstructured circuits and an all-ones or a user-defined pattern is sent for structured circuits (based on configuration).

The circuit status and statistics can be displayed using the show command.

#### **RTP Header**

For all circuit emulation channels, the RTP in the header is optional (as per RFC 5086). When enabled for absolute mode operation, an RTP header is inserted in the MPLS frame upon transmit. Absolute mode is defined in RFC 5086 and means that the ingress PE will set timestamps using the clock recovered from the incoming TDM circuit. When an MPLS frame is received, the RTP header is ignored. The RTP header mode is for TDM PW interoperability purposes only and should be enabled when the other device requires an RTP header.

#### **Control Word**

The structure of the control word is mandatory for SAToP and CESoPSN and is shown in Figure 17. Table 16 describes the bit fields. Refer to Pseudowire Control Word on page 130 for more information.

**Figure 17: Control Word Bit Structure** 



**Table 16: Control Word Bit Descriptions** 

| Bit(s)                                     | Description                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bits 0 to 3                                | The use of bits 0 to 3 is described in RFC 4385. These bits are set to 0 unless they are being used to indicate the start of an Associated Channel Header (ACH) for the purposes of VCCV.                                                                                                                                                             |
| L<br>(Local TDM Failure)                   | The L bit is set to 1 if an abnormal condition of the attachment circuit such as LOS, LOF, or AIS has been detected and the TDM data carried in the payload is invalid. The L bit is cleared (set back to 0) when fault is rectified.                                                                                                                 |
| R<br>(Remote Loss of<br>Frames indication) | The R bit is set to 1 if the local CE-bound interworking function (IWF) is in the packet loss state and cleared (reset to 0) after the local CE-bound IWF is no longer in the packet loss state.                                                                                                                                                      |
| M<br>(Modifier)                            | The M bits are a 2-bit modifier field. For SAToP, M is set to 00 as per RFC 4553. For CESoPSN, M is set according to RFC 5086, summarized as follows:                                                                                                                                                                                                 |
|                                            | <ul> <li>When L bit = 0, and M = 00 - Normal conditions M = 01 - Reserved for future use M = 10 - RDI condition for the attachment circuit (AC) M = 11 - Reserved for CESoPSN</li> <li>When L bit = 1, and M = 00 - TDM data is invalid M = 01 - Reserved for future use M = 10 - Reserved for future use M = 11 - Reserved for future use</li> </ul> |
| FRG                                        | The FRG bits in the CESoPSN control word are set to 00.                                                                                                                                                                                                                                                                                               |
| LEN                                        | The LEN bits (bits 10 to 15) carry the length of the CESoPSN packet (defined as the size of the CESoPSN header plus the payload size) if it is less than 64 bytes, and set to 0 otherwise.                                                                                                                                                            |
| Sequence number                            | The sequence number is used to provide the common PW sequencing function as well as detection of lost packets.                                                                                                                                                                                                                                        |

#### **Error Situations**

The CE-bound interworking function (IWF) uses the sequence numbers in the control word to detect lost and incorrectly ordered packets. Incorrectly ordered packets that cannot be reordered are discarded.

For unstructured CES, the payload of received packets with the L bit set is replaced with an all-ones pattern. For structured CES, the payload of received packets with the L bit set is replaced with an all-ones or a user-configurable bit pattern. This is configured using the idle-payload-fill command. For structured CES with CAS (E1 only in Release 1.1), the signaling bits are replaced with an all-ones or a user-configurable bit pattern. This is configured using the idle-signal-fill command. Refer to the 7705 SAR OS Interface Configuration Guide for more information.

All circuit emulation services can have a status of up, loss of packets (LOP) or admin down, and any jitter buffer overruns or underruns are logged.

# **Ethernet VLL (Epipe) Services**

This section provides information about the Epipe service.

Topics in this section include:

- Epipe Service Overview
  - → Ethernet Access Egress Queuing and Scheduling
  - → Control Word
  - $\rightarrow$  MTU
  - → Raw and Tagged Modes

Epipe configuration information is found under the following topics:

- List of Commands on page 132
- Common Configuration Tasks on page 140
- Configuring VLL Components on page 141
  - → Creating an Epipe Service on page 150
- Service Management Tasks on page 157

## **Epipe Service Overview**

An Ethernet pseudowire (PW) is used to carry Ethernet/802.3 protocol data units (PDUs) over an MPLS or IP network, allowing service providers to offer emulated Ethernet services over existing MPLS or IP networks. For the 7705 SAR, Ethernet emulation is a point-to-point service.

The 7705 SAR uses Ethernet VLLs to carry Ethernet traffic from various sources at a site, including traffic such as e911 locators, power supply probes, and HSPA-dedicated interfaces. Native Ethernet bridging is not supported.

An MPLS Epipe service is the Alcatel-Lucent implementation of an Ethernet VLL based on the IETF RFC 4448, *Encapsulation Methods for Transport of Ethernet over MPLS Networks* 

19767

Figure 18 shows a typical Ethernet VLL frame together with its MPLS tunnel encapsulation:

Ethernet II Preamble SFD Preamble DA SA TPID VLAN | Prio Ethertype Payload FCS

TCI

802.1p/q (optional)

Payload

Payload

Figure 18: Ethernet VLL Frame with MPLS Encapsulation

An Epipe service is a Layer 2 point-to-point service where the customer data is encapsulated and transported across a service provider's MPLS or IP network. An Epipe service is completely transparent to the subscriber's data and protocols. Like other PW VLL services, Epipe service behaves like a non-learning Ethernet bridge. A distributed Epipe service consists of a SAP and an SDP pair, where one SDP is on same router as the SAP, and the second SDP is on the far-end router.

Each SAP configuration includes a specific port on which service traffic enters the 7705 SAR from the customer side (also called the access side). Each port is configured with an encapsulation type (SAP encapsulation). Thus, a whole Ethernet port can be bound to a single service (that is, the whole Ethernet port is configured as an SAP), or if a port is configured for IEEE 802.1Q encapsulation (referred to as dot1q), then a unique encapsulation value (ID) must be specified.

Customer 2

Epipe (VLL)

Customer 2

Customer 2

Service 1

Service 2

Figure 19: Epipe Service

## **Ethernet Access Egress Queuing and Scheduling**

Ethernet access egress queuing and scheduling is very similar to the Ethernet access ingress behavior. Once the Ethernet pseudowire is terminated, traffic is mapped to up to eight different forwarding classes per SAP. Mapping traffic to different forwarding classes is performed based on the EXP bit settings of the received Ethernet pseudowire.

For more information on Ethernet access egress queuing and scheduling, refer to the 7705 SAR OS Quality of Service Guide.

#### **Control Word**

Ethernet VLL supports an optional control word (CW). Refer to Pseudowire Control Word on page 130 for more information.

#### **MTU**

The largest maximum transmission unit (MTU) supported on an Ethernet port is 1572 bytes. The default MTU for a Gigabit Ethernet port is 1572 bytes; whereas, the default MTU for a 10/100 Ethernet port is 1514 or 1518 bytes, depending on the encapsulation type setting (null or dot1q).

Network-facing Ethernet ports must support a larger MTU than access-facing Ethernet ports in order to account for the pseudowire headers that are added to the access Ethernet frames.

The following list gives the worst-case MTU sizes for Ethernet VLLs over Ethernet port(s) under various configurations, where the worst case is the largest MTU size required in order to carry the payload:

- Access, null mode: 1514 bytes (1500 bytes payload)
- Access, dot1q mode: 1518 bytes (1500 bytes payload)
- Network, null mode: 1572 bytes (1514 bytes payload)
- Network, dot1q mode: 1572 bytes (1518 bytes payload)



**Note:** Since it is not practical to split a Layer 2 Ethernet frame into smaller frames, the access port (SAP) MTU must be smaller than the service and network port MTU. If the access port MTU is larger than the tunnel MTU, the Ethernet VLL does not come into service and remains in the inoperative state. See MTU Settings on page 126 for information on MTU for VLL service.

## **Raw and Tagged Modes**

An Ethernet PW operates in one of two modes: raw or tagged. Raw and tagged modes relate to the way the router handles VLAN tags embedded in the header of an Ethernet frame. Both modes are supported by the 7705 SAR.

Raw and tagged modes are configured using the vc-type {ether | vlan} parameter under the spoke-sdp command. To configure raw mode, choose the ether option; to configure tagged mode, choose vlan.

VLAN tags can provide service-affecting information about a frame. Service-affecting means that information in the tag affects the forwarding decisions that are made to route the packet. The port connected to the attachment circuit (AC) can be configured for null or dotlq operation. When the port is configured for null, the 7705 SAR treats any attached tag received at the SAP (from the AC) as not service affecting; when configured for dotlq, received tags are service affecting.

#### **Raw Mode**

In raw mode, VLAN tags are not service affecting (that is, the port is set to null and the tags do not affect frame forwarding decisions) and are forwarded over the Epipe as part of the payload.

If a service-affecting tag arrives from the ingress AC (that is, the port is set to dot1q and a tag is received), the tag is removed (popped) from the payload before the Ethernet frame gets switched over the PSN via the Epipe.

In raw mode, all traffic from the ingress port gets switched to the same endpoint. However, if the MTU (or configured size) of the tunnel is exceeded then service is affected because the frame is dropped.

In raw mode, when the 7705 SAR detects a failure on the Ethernet ingress port or the port is administratively disabled, the 7705 SAR sends a PW status notification message to the remote router.

## **Tagged Mode**

In tagged mode, every frame sent on the Ethernet PW has a service-affecting VLAN tag. If the frame received by the 7705 SAR from the attachment circuit (AC) does not have a service-affecting VLAN tag, then the 7705 SAR inserts (pushes) a VLAN tag into the frame header before sending the frame to the SDP and the PW. If the frame received from the AC has a service-affecting VLAN tag, the tag is replaced.

In tagged mode, when the 7705 SAR detects a failure on the Ethernet physical port or the port is administratively disabled, the 7705 SAR sends a PW status notification message for all PWs associated with the port.

#### **VLAN Translation**

VLAN ID translation is supported, as appropriate. Table 19 (see Tagging Rules) shows the VLAN ID translation operation for the various packet types. The payload part of the packet is shown in parentheses.

The operations to add, strip (remove), or forward the VLAN headers are performed based on the encapsulation type at the ingress of the attachment circuit (the SAP), in the network, and at the egress circuit.

### **Tagging Rules**

Table 17 and Table 18 show the general tagging rules for combinations of interface port type (null or dot1q) and Epipe type (Ethernet or VLAN) for SAP ingress and SAP egress directions.

An attachment circuit (ingress or egress) can be configured for one of the following encapsulation types:

- null
- dot1q
- QinQ



**Note:** The QinQ mode is not supported in Release 1.1 of the 7705 SAR.

**Table 17: Ingress SAP Tagging Rules** 

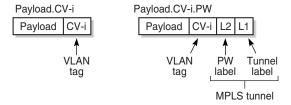
| Ingress SAP Type (1) | VC Type (Epipe) |                                   |  |  |
|----------------------|-----------------|-----------------------------------|--|--|
|                      | Raw (Ethernet)  | Tagged (VLAN)                     |  |  |
| Null                 | No operation    | Push (VC tag)                     |  |  |
| Dot1q                | Pop (outer tag) | Pop (outer tag) Push (VC tag) (2) |  |  |

#### Notes:

- 1. Ingress SAP type is configured at the port level.
- 2. If the VC tag is not set, then the original tag is preserved.

**Table 18: Egress SAP Tagging Rules** 

| Egress SAP Type (1) | VC Type (Epipe)    |                                 |  |  |
|---------------------|--------------------|---------------------------------|--|--|
|                     | Raw (Ethernet)     | Tagged (VLAN)                   |  |  |
| Null                | No operation       | Pop (VC tag)                    |  |  |
| Dot1q               | Push (SAP tag) (2) | Pop (VC tag) Push (SAP tag) (3) |  |  |


#### Notes

- 1. Ingress SAP type is configured at the port level.
- 2. If the SAP tag is 0, then no VLAN tag is pushed.
- 3. If the SAP tag is 0, then only the pop operation is performed.

Table 19 shows the VLAN ID translation operation (from ingress to egress) for the various packet types. In Table 19, the following abbreviations are used to simplify the operations shown in each cell, and the text in the cell represents the packet format.

- The packet payload at the service level is shown in parenthesis. It includes any SAP headers.
- CV represents the Customer VLAN tag, where CV-i and CV-x represent the ingress VLAN tag, and CV-e represents egress VLAN tag.
- PV represents the Provider VLAN tag, where PV can be either the customer-configured VLAN tag (that is, CV-x) or a provider-configured VLAN tag (that is, configured using the spoke-sdp>vlan-vc-tag CLI command)
- PW represents the MPLS label, which consists of a PW label and a tunnel label.
- Dots in packet formats represent the places in an Ethernet frame where labels or tags are added to a packet. Figure 20 shows two examples using the more familiar representation of a packet format, where the packet starts on the right-hand side.

Figure 20: Ethernet Frame Representations



19786



**Note:** When the SAP type is dot1q, the SAP VLAN tag always affects the ingress traffic, regardless of the Ethernet VLL type (raw or tagged). Similarly, when the SAP type is dot1q, untagged frames are dropped at the SAP ingress. That is, only the frames with an outer VLAN tag that matches the SAP VLAN tag are forwarded. The exception to this occurs when the VLAN tag = 0. When a SAP is configured with VLAN ID = 0, any untagged packets received are processed.

**Table 19: Ethernet VLL Encapsulation Translation** 

| Ingress / Attachment Circuit (Ethernet) | MPLS Network              | Egress / Attachment Circuit (Ethernet) |       |                        |
|-----------------------------------------|---------------------------|----------------------------------------|-------|------------------------|
|                                         | Packet Format             | VC Type                                | Encap | Packet Format          |
| Null (untagged Ethernet)                |                           |                                        |       |                        |
| Payload                                 | (Payload).PW              | Raw                                    | Null  | Payload                |
|                                         | (Payload).PV.PW           | Tag                                    | Dot1q | Payload.CV-e           |
| Payload.CV-i                            | (Payload.CV-i).PW         | Raw                                    | Null  | Payload.CV-i           |
|                                         | (Payload.CV-i).PV.PW      | Tag                                    | Dot1q | Payload.CV-i.CV-e      |
| Payload.CV-i.CV-x                       | (Payload.CV-i.CV-x).PW    | Raw                                    | Null  | Payload.CV-i.CV-x      |
|                                         | (Payload.CV-i.CV-x).PV.PW | Tag                                    | Dot1q | Payload.CV-i.CV-x.CV-e |
| Dot1q                                   |                           |                                        |       |                        |
| Payload                                 | (Payload).PW              | Raw                                    | Null  | Payload                |
|                                         | (Payload).PV.PW           | Tag                                    | Dot1q | Payload.CV-e           |
| Payload.CV-i                            | (Payload).PW              | Raw                                    | Null  | Payload                |
|                                         | (Payload).PV.PW           | Tag                                    | Dot1q | Payload.CV-e           |
| Payload.CV-i.CV-x                       | (Payload.CV-i).PW         | Raw                                    | Null  | Payload.CV-i           |
|                                         | (Payload.CV-i).PV.PW      | Tag                                    | Dot1q | Payload.CV-i.CV-e      |

## **VLL Service Considerations**

This section describes the general 7705 SAR service features and any special capabilities or considerations as they relate to VLL services.

Topics in this section include:

- Service Support
- SDPs
- SAP Encapsulations and Pseudowire Types
- QoS Policies
- MTU Settings
- Pseudowire Control Word

## **Service Support**

ATM VLL service is supported on any T1/E1 port on the 16-port T1/E1 ASAP Adapter card when the port is configured for ATM or IMA.

Ethernet VLL service is supported on any Ethernet port on the 8-port Ethernet Adapter card.

TDM VLL service is supported on any T1/E1 port on the 16-port T1/E1 ASAP Adapter card when the port is configured for circuit emulation encapsulation.

The 7705 SAR supports a combined total of 1024 VLLs for ATM, Ethernet, and TDM VLLs.



Note: MPLS and VLL service over MPLS is not supported on access ports.

## **SDPs**

The most basic SDPs must have the following characteristics:

- a locally unique SDP identification (ID) number and a VC-ID
- the system IP address of the far-end 7705 SAR routers
- an SDP encapsulation type GRE or MPLS

#### SDP Statistics for VLL Services

Release 1.1 supports local CLI-based and SNMP-based statistics collection for each VC used in the SDPs. This allows for traffic management of tunnel usage by the different services and, with aggregation, the total tunnel usage.

## **SAP Encapsulations and Pseudowire Types**

The section describes encapsulations and PW types for the following VLL services:

- Apipe
- Cpipe
- Epipe

#### **Apipe**

ATM VLLs can be configured with both endpoints (SAPs) on the same router or with the two endpoints on different routers. In the latter case, Pseudowire Emulation Edge-to-Edge (PWE3) signaling can be used to establish a pseudowire between the devices, allowing ATM traffic to be tunneled through an MPLS or IP network.

As an alternative to signaled pseudowires, manual configuration of pseudowires is also supported.

The Apipe service supports both VP and VC connections, which are identified by specifying the vc-type when provisioning the Apipe. The N-to-1 VCC cell transport mode is supported (see ATM PWE3 N-to-1 Cell Mode Encapsulation on page 123). The value of N is always 1.

The PW service types supported in Release 1.1 are 0x0009 (for ATM N-to-1 VCC cell mode) and 0x000A (for ATM N-to-1 VPC cell mode), as defined in RFC 4446.

#### **Cpipe**

Cpipe service supports CESoPSN and SAToP encapsulation over MPLS or GRE tunnels to connect to the far-end circuit. In Release 1.1, Cpipes support SAP-to-SAP and SAP-to-spoke SDP binding with a default service MTU of 1514 bytes.

The PW service types supported in Release 1.1 are 0x0011 (SAToP E1), 0x0012 (SAToP T1), 0x0015 (CESoPSN basic mode), and 0x0017 (CESoPSN TDM with CAS).

#### **Epipe**

Epipe service is designed to carry Ethernet frame payloads, so it can provide connectivity between any two SAPs on different nodes that pass Ethernet frames. The following SAP encapsulations are supported on the 7705 SAR Epipe service:

- Ethernet null
- Ethernet dot1q

While different encapsulation types can be used at either end, encapsulation mismatching can occur if the encapsulation behavior is not understood by connecting devices and if those devices are unable to send and receive the expected traffic. For example, if the encapsulation type on one side of the Epipe is dot1q and the other is null, tagged traffic received on the null SAP will be double-tagged when it is transmitted out of the dot1q SAP.

The PW service types supported in Release 1.1 are 0x0004 (Ethernet tagged mode), and 0x0005 (Ethernet raw).

## **ATM PWE3 N-to-1 Cell Mode Encapsulation**

ATM PWE3 signaling over a PSN uses N-to-1 cell mode encapsulation (as per RFC 4717). For Release 1.1, N is not user-configurable and N = 1 is the only value supported. Figure 21 shows the structure of an N-to-1 cell mode frame.

In N-to-1 mode, OAM cells are transported through the VLL in the same way as any other cell.

Common Port

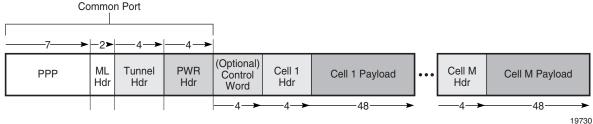



Figure 21: N-to-1 Cell Mode Encapsulation

#### **VPI/VCI Translation**

To simplify provisioning, the same VPI and VCI can be used at different sites. Before traffic from various sites can be switched to a Radio Network Controller (RNC), VPI and VCI translation must occur in order to uniquely identify the site and the far-end equipment.

The endpoints of a PWE3 N-to-1 cell mode ATM VLL can be:

- ATM VCs—VPI/VCI translation is supported (the VPI/VCI at each endpoint does not need to be the same)
  - In this case, when the VPI and VCI used at the endpoints are different, both the VPI and the VCI can be modified at the endpoint (VPI and/or VCI can only be changed by the far-end PE node, before the cells are switched to the ATM interface).
- ATM VPs—VPI translation is supported (the VPI at each endpoint need not be the same, but the original VCI will be maintained)
  - In this case, when the VPI and VCI used at the endpoints are different, only the VPI can be modified at the endpoint (VPI can only be changed by the far-end PE node, before the cells are switched to the ATM interface).

#### **Control Word**

An optional control word (CW) is supported for ATM VLLs. Refer to Pseudowire Control Word on page 130 for more information.

#### **Cell Concatenation**

Cell concatenation (or packing) into a pseudowire packet payload at the VC and VP levels is supported. Cells are packed on ingress to the VLL and unpacked on egress.

Cell concatenation is supported only for N-to-1 cell mode, where N = 1.

The number of cells in the payload of a single VLL packet is user-configurable, which ensures proper transport of traffic sensitive to delay and jitter. (For example, for voice traffic in 3G/WCDMA, delay is a crucial factor and the time spent for concatenation should be minimized. The payload is extremely delay-sensitive and should be transported with only a small amount of bandwidth optimization.) In all cases, the number of cells in a VLL packet must be less than the MTU size, where the MTU maximum is 1514 bytes and the maximum N-to-1 mode payload is 29 cells (52 ATM bytes per cell (no HEC byte)).

While cells are being packed, the concatenation process may be terminated by any one of the following conditions. Each condition has a configurable attribute associated with it:

- reaching a maximum number of cells per packet
- expiring of a timer
- changing of the cell loss priority (CLP) bit

If none of the conditions are met, the packet is sent when the MTU is reached. The CLP bits are untouched, even if VPI/VCI translation occurs at egress.



**Note:** Configuring the attributes that provide the best compromise between minimizing delay (low number of cells concatenated) and maximizing bandwidth (high number of cells concatenated) requires careful planning.

### **QoS Policies**

When applied to 7705 SAR Apipe, Cpipe, and Epipe services, service ingress QoS policies only create the unicast queues defined in the policy.

With Apipe, Cpipe, and Epipe services, egress QoS policies function as with other services where the class-based queues are created as defined in the policy.

Both Layer 2 and Layer 3 criteria can be used in the QoS policies for traffic classification in a Cpipe or Epipe service. QoS policies on Apipes cannot perform any classification.

## **MTU Settings**

There are several MTU values that must be set properly for a VLL service (Apipe, Cpipe, or Epipe) to work from end to end. Figure 22 locates the MTU point for each value. Table 20 describes the MTU points. The MTU points are:

- access port MTU
- SAP MTU
- service MTU
- path MTU
- network port MTU

In order for a VLL service to be declared "up" without any MTU-related error messages, the following rule must be true:

#### **SAP MTU** $\geq$ **Service MTU** $\leq$ **Path MTU**

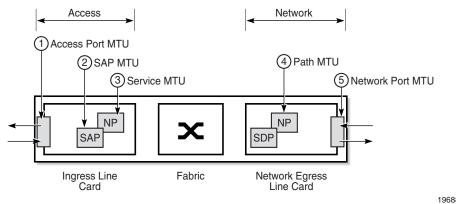



Figure 22: MTU Points on the 7705 SAR

**Table 20: MTU Points and Descriptions** 

| Key | MTU Point           | Description                                                                                                                                                                                                                                                                                                              |
|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Access port<br>MTU  | The access port MTU value is a configurable value that accounts for the L2 header and the payload. The default access port MTU value for the following Fast Ethernet port SAP encapsulations is:                                                                                                                         |
|     |                     | • <b>Null:</b> 1514 bytes (payload = 1500 bytes, L2 header = 14 bytes)                                                                                                                                                                                                                                                   |
|     |                     | • <b>dot1q:</b> 1518 bytes (payload = 1500 bytes, L2 header = 18 bytes)                                                                                                                                                                                                                                                  |
| 2   | SAP MTU             | The SAP MTU value is not a configurable value. It is set at the SAP by the 7705 SAR operating system. It defines the service payload capability of the service and is automatically set to be the same value as the access port MTU.                                                                                     |
| 3   | Service MTU         | The service MTU value is a configurable value and is the same size as the VLL payload. The service MTU is sometimes called the VC-type MTU in the 7705 SAR documentation set. In Figure 22, NP stands for network processor.                                                                                             |
|     |                     | For CESoPSN with CAS service, ensure that the service MTU is set to a value large enough to account for the extra bytes appended to the packet payload for CAS bits. See Structured E1 CES with CAS on page 107 for more information.                                                                                    |
| 4   | Path MTU            | The path MTU is configured at the SDP. It is the maximum that the SDP can transmit without rejecting and discarding the packet. The path MTU value is derived from the network port MTU value by subtracting the Layer 2 and Layer 2.5 overhead values (for MPLS) and the Layer 2 and Layer 3 overhead values (for GRE). |
|     |                     | If the network port SDP binding is Ethernet, then the following equations hold:                                                                                                                                                                                                                                          |
|     |                     | <ul> <li>For MPLS:</li> <li>Path MTU = Port MTU - (Ethernet header [14 bytes or 18 bytes] + Tunnel header + PW header)</li> </ul>                                                                                                                                                                                        |
|     |                     | <ul> <li>For GRE:</li> <li>Path MTU = Port MTU - (Ethernet header [14 bytes or 18 bytes] + IP header [20 bytes] + Tunnel header [4 bytes] + PW header [4 bytes])</li> </ul>                                                                                                                                              |
| 5   | Network port<br>MTU | The network port MTU is a configurable value equal to the payload plus all headers (L2, IP (for GRE), tunnel and PW), up to the maximum supported value (hardware limit) of 1572 bytes.                                                                                                                                  |

Table 21 shows a breakdown of the various payload and overhead components that contribute to the MTU sizes of the VLL services at the MTU points shown in Figure 22.

Table 21: MTU Values — Service Creation (Worst Case)

|                     | Access<br>MTU | s Port | SAP<br>MTU | Service<br>MTU |      | k Port Mī<br>rst-case \$ |              | ITU <sup>(1)</sup> ) |                             |                 |
|---------------------|---------------|--------|------------|----------------|------|--------------------------|--------------|----------------------|-----------------------------|-----------------|
| Packet<br>Component | TDM/<br>ATM   | Eth    |            | Cpipe (1)      | PPP  | ML-<br>PPP               | Eth-<br>Null | Eth-<br>dot1q        | Eth-<br>QinQ <sup>(2)</sup> | IP              |
| Eth-FCS             |               |        |            |                |      |                          |              |                      |                             |                 |
| Payload             | 1514          | 1500   | 1514       | 1514           | 1514 | 1514                     | 1514         | 1514                 | 1514                        | 1510 or<br>1514 |
| RTP Header          |               |        |            | 12             | 12   | 12                       | 12           | 12                   | 12                          | 12              |
| Ctrl Word           |               |        |            | 4              | 4    | 4                        | 4            | 4                    | 4                           | 4               |
| PW Header           |               |        |            |                | 4    | 4                        | 4            | 4                    | 4                           | 4               |
| MPLS Header         |               |        |            |                | 4    | 4                        | 4            | 4                    | 4                           | 0               |
| GRE Header          |               |        |            |                |      |                          |              |                      |                             | 4               |
| IP                  |               |        |            |                |      |                          |              |                      |                             | 20              |
| QinQ (2)            |               |        |            |                |      |                          |              |                      | 4                           |                 |
| VLAN                |               |        |            |                |      |                          |              | 4                    | 4                           | 4 (3)           |
| Eth-Type            |               | 2      |            |                |      |                          | 2            | 2                    | 2                           | 2               |
| Eth-SA              |               | 6      |            |                |      |                          | 6            | 6                    | 6                           | 6               |
| Eth-DA              |               | 6      |            |                |      |                          | 6            | 6                    | 6                           | 6               |
| PPP-FCS             |               |        |            |                |      |                          |              |                      |                             |                 |
| ML-Sequence         |               |        |            |                |      | 3                        |              |                      |                             |                 |
| ML-Preamble         |               |        |            |                |      | 1                        |              |                      |                             |                 |
| PPP-Protocol        |               |        |            |                | 2    | 2                        |              |                      |                             |                 |
| PPP-Control         |               |        |            |                | 1    | 1                        |              |                      |                             |                 |
| PPP-Address         |               |        |            |                | 1    | 1                        |              |                      |                             |                 |
| PPP-Flag            |               |        |            |                |      |                          |              |                      |                             |                 |
| Total               | 1514          | 1514   | 1514       | 1530           | 1542 | 1546                     | 1552         | 1556                 | 1560                        | 1572 (4)        |

#### Notes

- 1. The service MTU value for Cpipe represents the worst-case value for the Apipe, Cpipe, and Epipe services.
- 2. Ethernet QinQ is not supported in Release 1.1 and is shown here for reference purposes only.
- Optional
- 4. The maximum MTU cannot exceed 1572 bytes (hardware limit); therefore, the payload value might have to be less than 1514 bytes.



**Note:** In order to accommodate current and future services (including overhead), the MTU value for Gigabit Ethernet and PPP/MLPPP ports have the default value set to 1572 bytes. For 10/100 Ethernet ports, the MTU value is set to 1514 or 1518 bytes, depending on the encapsulation setting (null or dot1q).

**Note:** The default service MTU value is 1514 bytes; the maximum value is 1522 bytes.

## **Targeted LDP and MTU**

The extended discovery mechanism for Label Distribution Protocol (LDP) sends LDP Targeted Hello messages to a specific address. This is known as targeted LDP or TLDP. Refer to RFC 5036 for detailed information about the extended discovery mechanism.

During the VLL service creation process (that is, using targeted LDP signaling), the MTU or payload size of a service is signaled to the far-end peer. MTU settings at both ends (near and far peers) must match in order for the VLL service to operate. Table 22 shows the values that are expected to match.

Table 22: Matching MTU or Payload Values for Signaled VLL Services

|                             | Apipe | Cpipe | Epipe |  |
|-----------------------------|-------|-------|-------|--|
| Payload size (bytes)        |       | Yes   |       |  |
| Bit rate                    |       | Yes   |       |  |
| Maximum number of ATM cells | Yes   |       |       |  |
| Service MTU                 |       |       | Yes   |  |
| Must match at both ends     | Yes   | Yes   | Yes   |  |

### **Pseudowire Control Word**

The PW control word (CW) is a 32-bit field that is inserted between the VC label and the Layer 2 frame. The presence of the control word is indicated by the C bit of the FEC element used in LDP signaling. The PW control word is described in RFC 4385.

The PW control word is supported for all implemented PW types (ATM N-to-1 cell mode, Ethernet VLLs, SAToP, and CESoPSN PW) in Release 1.1 of the 7705 SAR.

The following points describe the behavior of the 7705 SAR when it receives a Label Mapping message for a PW. It is assumed that no Label Mapping message for the PW has been sent to the next PW router yet. The 7705 SAR operating system does the following.

- If the received Label Mapping message has C = 0 (where C refers to the C bit of the FEC element), a Label Mapping message with C = 0 is sent forward to the next router (or hop). In this case, the control word is not used.
- If the received Label Mapping message has C = 1 and the PW is locally configured such that the use of the control word is mandatory, then the 7705 SAR sends a Label Mapping message with C = 1. In this case, the control word is used. (Note: SAToP and CESoPSN are the only services in Release 1.1 that require the control word.)
- If the received Label Mapping message has C = 1 and the locally configured PW does not support use of an optional control word (that is, Ethernet or ATM N-to-1 cell mode PWs), then the 7705 SAR sends a new Label Mapping message in which the C bit is set to correspond to the locally configured preference for use of the control word (that is, C = 0).

## Configuring a VLL Service with CLI

This section provides the information required to configure Virtual Leased Line (VLL) services using the command line interface.

Topics in this section include:

- List of Commands on page 132
- Common Configuration Tasks on page 140
- Configuring VLL Components on page 141
  - → Creating an Apipe Service on page 141
  - → Creating a Cpipe Service on page 146
  - → Creating an Epipe Service on page 150
  - → Configuring Ingress and Egress SAP Parameters on page 154
  - → Using the Control Word on page 155
- Service Management Tasks on page 157
  - → Modifying Service Parameters on page 157
  - → Disabling a Service on page 159
  - → Re-enabling a Service on page 161
  - → Deleting a Service on page 161

## **List of Commands**

Table 23 lists all the service configuration commands, indicating the configuration level at which each command is implemented with a short command description. VLL services are configured in the config>service context. The command list is organized in the following task-oriented manner:

- Apipe
  - → Configure an Apipe service
  - → Configure Apipe service parameters
  - → Configure Apipe SAP parameters
  - → Configure Apipe SAP egress and ingress parameters
  - → Configure Apipe SAP ATM parameters
  - → Configure Apipe SAP ATM egress and ingress parameters
  - → Configure Apipe spoke SDP parameters
  - → Configure Apipe spoke SDP cell concatenation parameters
  - → Configure Apipe spoke SDP egress or ingress parameters
- Cpipe
  - → Configure a Cpipe service
  - → Configure Cpipe service parameters
  - → Configure Cpipe SAP parameters
  - → Configure Cpipe SAP egress and ingress parameters
  - → Configure Cpipe SAP cem parameters
  - → Configure Cpipe spoke SDP parameters
  - → Configure Cpipe spoke SDP egress or ingress parameters
- Epipe
  - → Configure an Epipe service
  - → Configure Epipe service parameters
  - → Configure Epipe SAP parameters
  - → Configure Epipe SAP egress and ingress parameters
  - → Configure Epipe spoke SDP parameters
  - → Configure Epipe spoke SDP egress or ingress parameters

**Table 23: CLI Commands to Configure VLL Service Parameters** 

| Command                         | Description                                                                                    | Page |
|---------------------------------|------------------------------------------------------------------------------------------------|------|
| Configure an Apip               | e service                                                                                      |      |
| config>service> type {atm-vcc a | <pre>apipe service-id [customer customer-id] [vpn vpn-id] [vc-<br/>atm-vpc}]</pre>             | 171  |
| service-id                      | Specifies a unique service identification number identifying the service in the service domain | 171  |
| customer-id                     | Specifies the existing customer ID number associated with the service                          | 171  |
| vpn-id                          | Specifies the VPN ID number which allows you to identify VPNs                                  | 171  |
| vc-type                         | Specifies a 15-bit value that defines the type of the VC signaled to the peer                  | 171  |
| Configure Apipe so              | ervice parameters                                                                              |      |
| config>service>                 | Papipe Papipe                                                                                  |      |
| description                     | Specifies a text string describing the service                                                 | 169  |
| sap                             | Enables access to the context to configure SAP-related attributes                              | 175  |
| service-mtu                     | Configures the MTU to be used for this service                                                 | 173  |
| shutdown                        | Administratively enables or disables the Apipe service                                         | 169  |
| spoke-sdp                       | Binds a service to an existing SDP (for distributed service)                                   | 184  |
| Configure Apipe S               | AP parameters                                                                                  |      |
| config>service>                 | >apipe>sap                                                                                     | 175  |
| accounting-<br>policy           | Specifies the accounting policy to apply to the SAP                                            | 181  |
| atm                             | Enables access to the context to configure ATM-related attributes                              | 190  |
| collect-stats                   | Enables the collection of accounting and statistical data for the SAP or network port          | 181  |
| description                     | Specifies a text string describing the Apipe SAP                                               | 169  |
| egress                          | Enables access to the context to configure egress SAP QoS policies                             | 182  |
| ingress                         | Enables access to the context to configure ingress SAP QoS policies                            | 182  |
|                                 |                                                                                                |      |

Table 23: CLI Commands to Configure VLL Service Parameters (Continued)

| Command                | Description                                                                                                                                                                                 | Page |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| shutdown               | Administratively enables or disables the SAP                                                                                                                                                | 123  |
|                        |                                                                                                                                                                                             |      |
| Configure Apipe SA     | P egress and ingress parameters                                                                                                                                                             |      |
| config>service>a       | apipe>sap>egress<br>apipe>sap>ingress                                                                                                                                                       |      |
| qos                    | Associates a QoS policy with an ingress or egress SAP                                                                                                                                       | 182  |
| Configure Apipe SA     | AP ATM parameters                                                                                                                                                                           |      |
| config>service>a       | apipe>sap>atm                                                                                                                                                                               |      |
| egress                 | Configures egress ATM attributes for the SAP                                                                                                                                                | 190  |
| ingress                | Configures ingress ATM attributes for the SAP                                                                                                                                               | 190  |
| oam                    | Enables access to the context to configure OAM functionality for a PVCC delimiting a SAP                                                                                                    | 192  |
| Configure Apipe SA     | P ATM egress and ingress parameters                                                                                                                                                         |      |
|                        | apipe>sap>atm>egress<br>apipe>sap>atm>ingress                                                                                                                                               |      |
| traffic-desc           | Assigns an ATM traffic descriptor profile to a given context, such as to a SAP                                                                                                              | 190  |
| Configure Apipe sp     | oke SDP parameters                                                                                                                                                                          |      |
| config>service>a       | apipe>spoke-sdp                                                                                                                                                                             | 184  |
| cell-<br>concatenation | Enables access to the context to configure the various options that control the termination of ATM cell concatenation into an MPLS frame. Several options can be configured simultaneously. | 187  |
| egress                 | Configures the egress spoke SDP context                                                                                                                                                     | 188  |
| ingress                | Configures the ingress spoke SDP context                                                                                                                                                    | 188  |
| shutdown               | Administratively enables or disables the spoke SDP binding                                                                                                                                  | 169  |

Table 23: CLI Commands to Configure VLL Service Parameters (Continued)

| Command              | Description                                                                                                                                   | Page |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Configure Apipe spo  | ke SDP cell concatenation parameters                                                                                                          |      |
| config>service>a     | pipe>spoke-sdp>cell-concatenation                                                                                                             |      |
| clp-change           | Enables the CLP change to be an indication to complete the cell concatenation operation                                                       | 187  |
| max-cells            | Configures the maximum number of ATM cells to accumulate in an MPLS packet                                                                    | 188  |
| max-delay            | Configures the maximum amount of time to wait while performing ATM cell concatenation into an MPLS packet before transmitting the MPLS packet | 189  |
| Configure Apipe spo  | ke SDP egress or ingress parameters                                                                                                           |      |
|                      | pipe>spoke-sdp>egress<br>pipe>spoke-sdp>ingress                                                                                               |      |
| vc-label             | Configures the egress or ingress VC label                                                                                                     | 185  |
| Configure a Cpipe se | ervice                                                                                                                                        |      |
| <del>-</del>         | <pre>pipe service-id [customer customer-id] [vpn vpn-id] [vc-<br/>satop-t1   cesopsn}   cesopsn-cas}]</pre>                                   | 171  |
| customer-id          | Specifies the existing customer ID number associated with the service                                                                         | 172  |
| service-id           | Specifies a unique service identification number identifying the service in the service domain                                                | 172  |
| vpn-id               | Specifies the VPN ID number which allows you to identify VPNs                                                                                 | 172  |
| vc-type              | Specifies a 15-bit value that defines the type of the VC signaled to the peer                                                                 | 172  |
| Configure Cpipe serv | vice parameters                                                                                                                               |      |
| config>service>c     | pipe                                                                                                                                          |      |
| description          | Specifies a text string describing the service                                                                                                | 169  |
| sap                  | Enables access to the context to configure SAP-related attributes                                                                             | 175  |
| service-mtu          | Configures the MTU to be used for this service                                                                                                | 173  |
| shutdown             | Administratively enables or disables the Cpipe service                                                                                        | 169  |

Table 23: CLI Commands to Configure VLL Service Parameters (Continued)

| Command               | Description                                                                                          | Page |
|-----------------------|------------------------------------------------------------------------------------------------------|------|
| spoke-sdp             | Binds a service to an existing SDP (for distributed service)                                         | 184  |
|                       |                                                                                                      |      |
| Configure Cpipe SAP   | parameters                                                                                           |      |
| config>service>cp     | pipe>sap                                                                                             |      |
| accounting-<br>policy | Specifies the accounting policy to apply to the SAP                                                  | 181  |
| cem                   | Enables access to the context to configure circuit emulation service parameters                      | 178  |
| collect-stats         | Enables the collection of accounting and statistical data for the SAP or network port                | 181  |
| description           | Specifies a text string describing the Cpipe SAP                                                     | 169  |
| egress                | Enables access to the context to configure egress SAP QoS policies                                   | 182  |
| ingress               | Enables access to the context to configure ingress SAP QoS policies                                  | 182  |
| shutdown              | Administratively enables or disables the SAP                                                         | 169  |
|                       |                                                                                                      |      |
| Configure Cpipe SAP   | cem parameters                                                                                       |      |
| config>service>cp     | ipe>sap>cem                                                                                          |      |
| packet                | Enables access to the context to configure packet parameters                                         | 178  |
| report-alarm          | Enables or disables alarm reporting for CES circuit alarm conditions                                 | 179  |
| rtp-header            | Specifies the optional RTP header, if one has been inserted in the circuit emulation service packets | 180  |
|                       |                                                                                                      |      |
| Configure Cpipe SAP   | cem packet parameters                                                                                |      |
| config>service>cp     | ipe>sap>cem>packet                                                                                   |      |
| jitter-buffer         | Configures the size of the receive jitter buffer for the circuit emulation service SAP               | 178  |
| payload-size          | Configures the size of the payload for one circuit emulation service packet                          | 179  |

## Table 23: CLI Commands to Configure VLL Service Parameters (Continued)

| Command                                                                                                         | Description                                                                                    | Page |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|--|--|--|
| Configure Cpipe SAP egress and ingress parameters                                                               |                                                                                                |      |  |  |  |
| config>service>cpipe>sap>egress<br>config>service>cpipe>sap>ingress                                             |                                                                                                |      |  |  |  |
| qos                                                                                                             | Associates a QoS policy with an ingress or egress SAP                                          | 182  |  |  |  |
|                                                                                                                 |                                                                                                |      |  |  |  |
| Configure Cpipe spoke SDP parameters                                                                            |                                                                                                |      |  |  |  |
| config>service>cp                                                                                               | pipe>spoke-sdp                                                                                 |      |  |  |  |
| egress                                                                                                          | Configures the egress spoke SDP context                                                        | 188  |  |  |  |
| ingress                                                                                                         | Configures the ingress spoke SDP context                                                       | 188  |  |  |  |
| shutdown                                                                                                        | Administratively enables or disables the SDP                                                   | 169  |  |  |  |
|                                                                                                                 |                                                                                                |      |  |  |  |
| Configure Cpipe spol                                                                                            | ke SDP egress or ingress parameters                                                            |      |  |  |  |
| <pre>config&gt;service&gt;cpipe&gt;spoke-sdp&gt;egress config&gt;service&gt;cpipe&gt;spoke-sdp&gt;ingress</pre> |                                                                                                |      |  |  |  |
| vc-label                                                                                                        | Configures the egress or ingress VC label                                                      | 185  |  |  |  |
|                                                                                                                 |                                                                                                |      |  |  |  |
| Configure an Epipe s                                                                                            | ervice                                                                                         |      |  |  |  |
| config>service>epipe service-id [customer customer-id] [vpn vpn-id]                                             |                                                                                                |      |  |  |  |
| customer-id                                                                                                     | Specifies the customer ID number to be associated with the service                             |      |  |  |  |
| service-id                                                                                                      | Specifies a unique service identification number identifying the service in the service domain |      |  |  |  |
| vpn-id                                                                                                          | Specifies the VPN ID number which allows you to identify VPNs                                  | 173  |  |  |  |
|                                                                                                                 |                                                                                                |      |  |  |  |
| Configure Epipe service parameters                                                                              |                                                                                                |      |  |  |  |
| config>service>epipe                                                                                            |                                                                                                |      |  |  |  |
| description                                                                                                     | Specifies a text string describing the Epipe service                                           | 169  |  |  |  |
| sap                                                                                                             | Enables access to the context to configure SAP-related attributes                              | 175  |  |  |  |

Table 23: CLI Commands to Configure VLL Service Parameters (Continued)

| Command                                                                                             | Description                                                                                                     |     |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| service-mtu                                                                                         | Configures the service payload MTU in bytes for the service ID overriding the service-type default MTU          |     |  |  |  |
| shutdown                                                                                            | Administratively enables or disables the service                                                                |     |  |  |  |
| spoke-sdp                                                                                           | Binds a service to an existing SDP                                                                              |     |  |  |  |
| Configure Epipe SAP parameters                                                                      |                                                                                                                 |     |  |  |  |
| config>service>epipe>sap                                                                            |                                                                                                                 |     |  |  |  |
| accounting-<br>policy                                                                               | Associates the accounting policy ID with the SAP. Accounting policies are configured in the config>log context. | 181 |  |  |  |
| collect-stats                                                                                       | Enables the collection of accounting and statistical data for the SAP, network port, or IP interface            |     |  |  |  |
| description                                                                                         | Specifies a text string describing the Epipe SAP                                                                |     |  |  |  |
| egress                                                                                              | Enables access to the context to configure egress SAP QoS policies                                              |     |  |  |  |
| ingress                                                                                             | Configures ingress SAP QoS policies                                                                             |     |  |  |  |
| Configure Epipe SAP egress and ingress parameters                                                   |                                                                                                                 |     |  |  |  |
| <pre>config&gt;service&gt;epipe&gt;sap&gt;egress config&gt;service&gt;epipe&gt;sap&gt;ingress</pre> |                                                                                                                 |     |  |  |  |
| qos                                                                                                 | Associates a QoS policy with an egress or ingress SAP or IP interface                                           | 182 |  |  |  |
| Configure Epipe spoke SDP parameters                                                                |                                                                                                                 |     |  |  |  |
| config>service>epipe>spoke-sdp                                                                      |                                                                                                                 |     |  |  |  |
| egress                                                                                              | Configures the egress spoke SDP context                                                                         | 188 |  |  |  |
| ingress                                                                                             | Configures the ingress spoke SDP context                                                                        | 188 |  |  |  |
| shutdown                                                                                            | Administratively enables the SDP                                                                                | 169 |  |  |  |
| vlan-vc-tag                                                                                         | Specifies an explicit dot1q value used for encapsulation to the SDP far end                                     |     |  |  |  |

### Table 23: CLI Commands to Configure VLL Service Parameters (Continued)

| Command         | Description                                             | Page |
|-----------------|---------------------------------------------------------|------|
| Configure Epipe | e spoke SDP egress or ingress parameters                |      |
| _               | ce>epipe>spoke-sdp>egress<br>ce>epipe>spoke-sdp>ingress |      |
| vc-label        | Configures the egress or ingress VC label               | 185  |
|                 |                                                         |      |

# **Common Configuration Tasks**

The list below provides a brief overview of the tasks that must be performed to configure a VLL service.

- Associate the service with a customer ID.
- Define SAP parameters.
  - → Optional select egress and ingress QoS policies (configured in config>qos context)
- Define spoke SDP parameters.
  - → Optional select egress and ingress vc label parameters
- Enable the service.

# **Configuring VLL Components**

This section provides configuration examples for components of VLL services. Each component includes some or all of the following: introductory information, CLI syntax, a specific CLI example, and a sample CLI display output. Included are the following VLL components:

- Apipe
  - → Creating an Apipe Service
  - → Configuring Apipe SAP Parameters
  - → Configuring Apipe SDP Bindings
- Cpipe
  - → Creating a Cpipe Service
  - → Configuring Cpipe SAP parameters
  - → Configuring Cpipe SDP bindings
- Epipe
  - → Creating an Epipe Service
  - → Configuring Epipe SAP Parameters
  - → Configuring Epipe SDP Bindings
- Configuring Ingress and Egress SAP Parameters
- Using the Control Word

## **Creating an Apipe Service**

Use the following CLI syntax to create an Apipe service.

PE router 1 (A:ALU-41):

```
Example: A:ALU-41>config>service# apipe 5 customer 1 create
```

A:ALU-41config>service>apipe# description "apipe test" A:ALU-41config>service>apipe# service-mtu 1400

A:ALU-41config>service>apipe# no shutdown

A:ALU-41config>service>apipe#

#### PE router 2 (A:ALU-42):

```
Example: A:ALU-42>config>service# apipe 5 customer 1 create
A:ALU-42>config>service>apipe# description "apipe test"
A:ALU-42>config>service>apipe# service-mtu 1400
A:ALU-42>config>service>apipe# no shutdown
A:ALU-42>config>service>apipe#
```

The following example displays the Apipe service creation output.

#### PE Router 1 (ALU-41):

```
A:ALU-41>config>service# info
     apipe 5 customer 1 create
        description "apipe test"
         service-mtu 1400
        no shutdown
     exit
_____
A:ALU-41>config>service#
PE Router 2 (ALU-42):
A:ALU-42>config>service# info
     apipe 5 customer 1 create
        description "apipe test"
        service-mtu 1400
        no shutdown
     exit
_____
A:ALU-42>config>service#
```

## **Configuring Apipe SAP Parameters**

Use the following CLI syntax to configure Apipe SAP parameters. For ingress and egress configuration information, see Configuring Ingress and Egress SAP Parameters on page 154.

```
CLI Syntax: config>service# apipe service-id [customer customer-id]
[create] [vpn vpn-id] [vc-type {atm-vcc|atm-vpc}]
               sap sap-id [create]
                  accounting-policy acct-policy-id
                  atm
                        traffic-desc traffic-desc-profile-id
                     ingress
                        traffic-desc traffic-desc-profile-id
                     oam
                        alarm-cells
                  collect-stats
                  description description-string
                  egress
                     qos policy-id
                  ingress
                     gos policy-id
                  no shutdown
Example:
          A:ALU-41>config>service# apipe 5
          A:ALU-41>config>service>apipe# sap 1/1/1.1:0/32 create
          A:ALU-41>config>service>apipe>sap# ingress
          A:ALU-41>config>service>apipe>sap>ingress# qos 102
          A:ALU-41>config>service>apipe>sap>ingress# exit
          A:ALU-41>config>service>apipe>sap# egress
          A:ALU-41>config>service>apipe>sap>egress# gos 103
          A:ALU-41>config>service>apipe>sap>egress# exit
          A:ALU-41>config>service>apipe>sap# no shutdown
          A:ALU-41>config>service>apipe>sap# exit
          A:ALU-41>config>service>apipe#
```

The following example displays the Apipe SAP configuration output for PE Router 1 (ALU-41).

```
A:ALU-41>config>service# info

...

apipe 5 customer 1 create
description "apipe test"
service-mtu 1400
sap 1/1/1.1:0/32 create
ingress
qos 102
exit
egress
qos 103
exit
exit
no shutdown
exit
...
```

To configure a basic local Apipe service (SAP-to-SAP), enter the sap sap-id command twice with different port IDs in the same service configuration.

The following example displays an ATM SAP-to-SAP configuration:

```
A:ALU-4>config>service# info

...

apipe 5 customer 1 create
description "ATM sap2sap"
service-mtu 1514
sap 1/1/1.1:0/32
sap 1/2/1.1:0/100
no shutdown
exit
...
```

## **Configuring Apipe SDP Bindings**

Use the following CLI syntax to create a spoke SDP binding with an Apipe service (for distributed service). For SDP configuration information, see Configuring SDPs on page 60.

```
CLI Syntax: config>service# apipe service-id [customer customer-id]
[create] [vpn vpn-id] [vc-type {atm-vcc|atm-vpc}]
               spoke-sdp sdp-id:vc-id [create]
                  cell-concatenation
                     clp-change
                     max-cells cell-count
                     max-delay delay-time
                  egress
                     vc-label egress-vc-label
                  ingress
                     vc-label ingress-vc-label
                  no shutdown
Example:
          A:ALU-41>config>service# apipe 5
          A:ALU-41>config>service>apipe# spoke-sdp 1:5 create
          A:ALU-41>config>service>apipe>spoke-sdp# no shutdown
          A:ALU-41>config>service>apipe>spoke-sdp# exit
```

The following example displays the Apipe spoke SDP configuration output for PE Router 1 (ALU-41).

```
A:ALU-41>config>service# info
        apipe 5 customer 1 create
           description "apipe test"
           service-mtu 1400
           sap 1/1/1.1:0/32 create
              ingress
                  qos 102
              exit
              earess
                  qos 103
               exit
            exit
            spoke-sdp 1:5 create
           exit
           no shutdown
       exit
A:ALU-41>config>service#
```

# **Creating a Cpipe Service**

Use the following CLI syntax to create a Cpipe service.

The following example displays the Cpipe service creation output for PE Router 1 (ALU-41).

```
A:ALU-41>config>service# info

...

cpipe 234 customer 123 create
description "cpipe test"
service-mtu 1400
no shutdown
exit
...

A:ALU-41>config>service#
```

## **Configuring Cpipe SAP parameters**

Use the following CLI syntax to configure Cpipe SAP parameters. For ingress and egress configuration information, see Configuring Ingress and Egress SAP Parameters on page 154.

**Example:** A:ALU-41>config>service# cpipe 5 cesopsn

A:ALU-41>config>service>cpipe# sap 1/1/1.1 create

A:ALU-41>config>service>cpipe>sap# ingress

A:ALU-41>config>service>cpipe>sap>ingress# qos 102 A:ALU-41>config>service>cpipe>sap>ingress# exit

A:ALU-41>config>service>cpipe>sap# egress

A:ALU-41>config>service>cpipe>sap>egress# qos 103 A:ALU-41>config>service>cpipe>sap>egress# exit A:ALU-41>config>service>cpipe>sap# no shutdown

A:ALU-41>config>service>cpipe>sap# exit

A:ALU-41>config>service>cpipe#

The following example displays the Cpipe SAP configuration output for PE Router 1 (ALU-41).

To configure a basic local Cpipe service (SAP-to-SAP), enter the sap sap-id command twice with different port IDs in the same service configuration.

The following example displays a TDM SAP-to-SAP configuration:

## **Configuring Cpipe SDP bindings**

Use the following CLI syntax to create a spoke SDP binding with a Cpipe service. For SDP configuration information, see Configuring SDPs on page 60.

Example: A:ALU-41>config>service# cpipe 5
A:ALU-41>config>service>cpipe# spoke-sdp 1:5 create
A:ALU-41>config>service>cpipe>spoke-sdp# no shutdown
A:ALU-41>config>service>cpipe>spoke-sdp# exit

The following example displays the Cpipe spoke SDP configuration output for PE Router 1 (ALU-41).

```
A:ALU-41>config>service# info
       cpipe 5 customer 1 create
           description "cpipe test"
           service-mtu 1400
           sap 1/1/1.1 create
              ingress
                 qos 102
              exit
              egress
                  qos 103
              exit
           exit
           spoke-sdp 1:5 create
           exit
           no shutdown
       exit
A:ALU-41>config>service#
```

# **Creating an Epipe Service**

Use the following CLI syntax to create an Epipe service.

The following example displays the Epipe service creation output.

config>service>epipe# no shutdown

## **Configuring Epipe SAP Parameters**

In Release 1.1, distributed Epipe service is supported. A distributed Epipe consists of two SAPs on different nodes. To configure a distributed Epipe service, you must configure service entities on the originating and far-end nodes.

Use the following CLI syntax to create distributed Epipe SAPs. For ingress and egress configuration information, see Configuring Ingress and Egress SAP Parameters on page 154.

```
Example:
          ALU-1>epipe 5500 customer 5 create
          config>service>epipe$ description "Distributed epipe
          service to east coast"
          config>service>epipe# sap 1/1/3.1:21 create
          config>service>epipe>sap# ingress
          config>service>epipe>sap>ingress# gos 555
          config>service>epipe>sap>ingress# exit
          config>service>epipe>sap# egress
          config>service>epipe>sap>egress# qos 627
          config>service>epipe>sap>egress# exit
          config>service>epipe>sap# no shutdown
          config>service>epipe>sap# exit
          config>service>epipe#
          ALU-2>config>service# epipe 5500 customer 5 create
          config>service>epipe$ description "Distributed epipe
          service to west coast"
          config>service>epipe# sap 1/1/4.1:550 create
          config>service>epipe>sap# ingress
          config>service>epipe>sap>ingress# qos 654
          config>service>epipe>sap>ingress# exit
          config>service>epipe>sap# egress
          config>service>epipe>sap>egress# qos 432
          config>service>epipe>sap>egress# exit
          config>service>epipe>sap# no shutdown
          config>service>epipe#
```

The following example displays the SAP configuration output for ALU-1 and ALU-2.

```
ALU-1>config>service# info

...

epipe 5500 customer 5 vpn 5500 create
    description "Distributed epipe service to east coast"
    sap 1/1/3.1:21 create
        ingress
        qos 555
    exit
    egress
        qos 627
    exit
    exit
    exit

ALU-1>config>service#
```

## **Configuring Epipe SDP Bindings**

Figure 23 displays an example of a distributed Epipe service configuration between two routers, identifying the service and customer IDs and the unidirectional SDPs required to communicate to the far-end routers. The spoke-sdp sdp-id:vc-id must match on both sides.

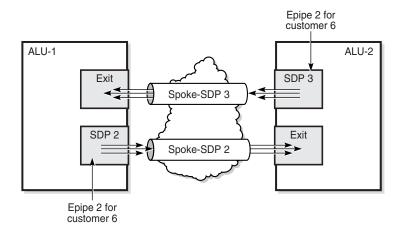



Figure 23: SDPs — Unidirectional Tunnels

Use the following CLI syntax to create a spoke SDP binding with an Epipe service. For SDP configuration information, see Configuring SDPs on page 60.

19484

```
CLI Syntax: config>service# epipe service-id [customer customer-id]
[create]
               spoke-sdp sdp-id:vc-id [vc-type {ether | vlan}]
                  [create] vlan-vc-tag 0..4094
                  egress
                     vc-label egress-vc-label
                  ingress
                     vc-label ingress-vc-label
                  no shutdown
Example:
          ALU-1>config>service# epipe 5500
          config>service>epipe# spoke-sdp 2:123
          config>service>epipe>spoke-sdp# egress
          config>service>epipe>spoke-sdp>egress# vc-label 5500
          config>service>epipe>spoke-sdp>egress# exit
          config>service>epipe>spoke-sdp# ingress
          config>service>epipe>spoke-sdp>ingress# vc-label 6600
          config>service>epipe>spoke-sdp>ingress# exit
          config>service>epipe>spoke-sdp# no shutdown
          ALU-2>config>service# epipe 5500
          config>service>epipe# spoke-sdp 2:123
          config>service>epipe>spoke-sdp# egress
          config>service>epipe>spoke-sdp>egress# vc-label 6600
          config>service>epipe>spoke-sdp>egress# exit
          config>service>epipe>spoke-sdp# ingress
          config>service>epipe>spoke-sdp>ingress# vc-label 5500
          config>service>epipe>spoke-sdp>ingress# exit
          config>service>epipe>spoke-sdp# no shutdown
```

The following example displays the configuration output for binding an Epipe service between ALU-1 and ALU-2. This example assumes the SAPs have already been configured (see Configuring Epipe SAP Parameters on page 150).

```
ALU-1>config>service# info
_____
      epipe 5500 customer 5 vpn 5500 create
          description "Distributed epipe service to east coast"
          sap 1/1/3:21 create
             ingress
                qos 555
             exit
             egress
                qos 627
             exit
          exit.
          spoke-sdp 2:123 create
             ingress
                 vc-label 6600
             exit
             earess
```

```
vc-label 5500
         exit
         no shiitdown
      exit
______
ALU-1>config>service#
ALU-2>config>service# info
exit
      epipe 5500 customer 5 vpn 5500 create
         description "Distributed epipe service to west coast"
         sap 1/1/4:550 create
            ingress
               qos 654
             egress
               qos 432
             exit.
         exit
         spoke-sdp 2:123 create
            ingress
               vc-label 5500
             exit
            earess
               vc-label 6600
             exit
         exi+
         no shutdown
     exit
_____
```

# **Configuring Ingress and Egress SAP Parameters**

By default, QoS policy ID 1 is applied to ingress and egress service SAPs. Existing QoS policies can be associated with service SAPs on ingress and egress ports.

Ingress and egress SAP parameters can be applied to distributed Epipe service SAPs, and to Apipe and Cpipe service SAPs.

```
Example: ALU-1>config>service# epipe 5500
config>service>epipe# sap 1/1/3:21
config>service>epipe>sap# ingress
config>service>epipe>sap>ingress# qos 555
config>service>epipe>sap>ingress# exit
config>service>epipe>sap# egress
config>service>epipe>sap>egress# qos 627
config>service>epipe>sap>egress# exit
config>service>epipe>sap>egress# exit
config>service>epipe>sap>egress# exit
```

The following example displays the Epipe SAP ingress and egress configuration output.

```
ALU-1>config>service#
       epipe 5500 customer 5 vpn 5500 create
           description "Distributed epipe service to east coast"
           sap 1/1/3:21 create
               ingress
                  qos 555
               exit
               earess
                 qos 627
               exit
           exit.
           spoke-sdp 2:123 create
               ingress
                  vc-label 6600
               earess
                  vc-label 5500
               exit
           exit
           no shutdown
       exit.
ALU-1>config>service#
```

# **Using the Control Word**

The control word is mandatory for Cpipe SAToP and CESoPSN configurations. It is optional for Apipe and Epipe configurations.

When the control word is enabled, the Admin Control Word is set to Preferred. Both sides of the VLL must be configured with a matching control word, either both enabled or both disabled, for the pipe to be up.

The control word state will be set to True or False depending on what is configured, either enabled (True) or disabled (False).

#### Example:

```
config>service# cpipe 2100 customer 1 config>service>cpipe$ description "Default cpipe description for service id 2100" config>service>cpipe$ sap 1/2/7.1:4 create config>service>cpipe>sap$ description "Default sap description for service id 2100" config>service>cpipe>sap$ exit config>service>cpipe# spoke-sdp 1:2001 create config>service>cpipe# spoke-sdp$ control-word config>service>cpipe>spoke-sdp$ exit config>service>cpipe>spoke-sdp$ exit config>service>cpipe>spoke-sdp$ exit config>service>cpipe>spoke-sdp$ exit config>service>cpipe=spoke-sdp$ exit config>service>cpipe# no shutdown
```

The following example displays the control word configuration output for a Cpipe service.

Control word cannot be disabled on Cpipe services. To disable the control word option on Apipe and Epipe services use the no control-word command.

**Example:** config>service>apipe# spoke-sdp 1:2001 no control-word config>service>apipe>spoke-sdp\$ exit

# **Service Management Tasks**

The service management tasks are similar for Apipe, Cpipe and Epipe services. This section discusses the following service management tasks:

- Modifying Service Parameters
- Disabling a Service
- Re-enabling a Service
- Deleting a Service

# **Modifying Service Parameters**

Use the show service service-using command to display a list of configured VLL services.

To modify a VLL service:

- 1. Access the specific account by specifying the service ID.
- 2. Enter the service parameter to modify and then enter the new information.

PE router 1 (A:ALU-41):

```
Example: A:ALU-41>config>service# apipe 5
A:ALU-41>config>service>apipe# sap 1/1/1.1:0/32 create
A:ALU-41>config>service>apipe>sap# accounting-policy 2
A:ALU-41>config>service>apipe>sap# exit
A:ALU-41>config>service>apipe# spoke-sdp 1:4
A:ALU-41>config>service>apipe# spoke-sdp# egress
A:ALU-41>config>service>apipe>spoke-sdp>egress# vc-label
2048
A:ALU-41>config>service>apipe>spoke-sdp>egress# exit
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-41>config>service>apipe>spoke-sdp>ingress# vc-label
18431
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
```

PE router 2 (A:ALU-42):

```
Example: A:ALU-42>config>service# apipe 5
A:ALU-42>config>service>apipe# sap 2/2/2.1:0/32 create
A:ALU-42>config>service>apipe>sap# accounting-policy 2
A:ALU-42>config>service>apipe>sap# exit
A:ALU-42>config>service>apipe# spoke-sdp 1:4
A:ALU-42>config>service>apipe*spoke-sdp# egress
A:ALU-42>config>service>apipe>spoke-sdp>egress# vc-label
18431
A:ALU-42>config>service>apipe>spoke-sdp>egress# exit
A:ALU-41>config>service>apipe>spoke-sdp# ingress
A:ALU-41>config>service>apipe>spoke-sdp# ingress
A:ALU-41>config>service>apipe>spoke-sdp>ingress# vc-label
2043
A:ALU-41>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-42>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-42>config>service>apipe>spoke-sdp>ingress# exit
A:ALU-42>config>service>apipe>spoke-sdp# exit
```

The following example displays the configuration output when adding an accounting-policy to an existing SAP and modifying the spoke-sdp parameters on an existing Apipe service for PE Router 1 (ALU-41) and PE Router 2 (ALU-42).

Use a similar syntax to modify Cpipe and Epipe services.

```
A:ALU-41>config>service# info
_____
      apipe 5 customer 1 create
         description "apipe test"
         service-mtu 1400
         sap 1/1/1.1:0/32 create
           accounting-policy 2
           ingress
               qos 102
            exit
            egress
              qos 103
            exit
         spoke-sdp 1:4 create
           egress
              vc-label 2048
           ingress
               vc-label 18431
       exit
        no shutdown
      exit
_____
A:ALU-41>config>service#
```

```
A:ALU-42>config>service# info
      apipe 5 customer 1 create
         description "apipe test"
          service-mtu 1400
          sap 2/2/2.1:0/32 create
            accounting-policy 2
            ingress
                gos 102
             egress
                qos 103
            exit
          exit
          spoke-sdp 1:4 create
            egress
                vc-label 18431
            ingress
               vc-label 2048
        no shutdown
       exit.
_____
A:ALU-42>config>service#
```

# **Disabling a Service**

A service can be shut down without deleting the service parameters.

Use the shutdown command to shut down a VLL service. The following CLI syntax displays the command to shut down an Apipe service. Use a similar syntax to shut down Cpipe and Epipe services.

The following example displays the configuration output for deleting an Apipe service on PE Router 1 (ALU-41) and PE Router 2 (ALU-42).

```
A:ALU-41>config>service# info
      apipe 5 customer 1 create
           shutdown
          description "apipe test"
           service-mtu 1400
           sap 1/1/1.1:0/32 create
             accounting-policy 2
              ingress
                 qos 102
              exit
              egress
                 qos 103
              exit
           exit
           spoke-sdp 1:4 create
            egress
                 vc-label 16
           no shutdown
       exit
A:ALU-41>config>service#
A:ALU-42>config>service# info
       apipe 5 customer 1 create
           shutdown
           description "apipe test"
           service-mtu 1400
           sap 2/2/2.1:0/32 create
              accounting-policy 2
              ingress
                 qos 102
              exit
              egress
                qos 103
              exit
           spoke-sdp 1:4 create
            egress
                 vc-label 16
          exit
       exit
A:ALU-42>config>service#
```

## Re-enabling a Service

Use the no shutdown command to re-enable a previously disabled VLL service. The following CLI syntax displays the command to re-enable an Apipe service. Use a similar syntax to re-enable Cpipe and Epipe services.

CLI Syntax: config>service# apipe service-id no shutdown

PE router 1 (A:ALU-41):

**Example:** A:ALU-41>config>service# apipe 5

A:ALU-41>config>service>apipe# no shutdown

A:ALU-41>config>service>apipe# exit

PE router 2 (A:ALU-42):

**Example:** A:ALU-42>config>service# apipe 5

A:ALU-42>config>service>apipe# no shutdown

A:ALU-42>config>service>apipe# exit

## **Deleting a Service**

Use the shutdown command to delete a VLL service. The SAP, and any associated protocols and spoke-SDPs, must be deleted from the VLL service before the VLL service can be deleted.

Perform the following steps to delete a service:

- 1. Shut down the SAP and SDP.
- 2. Delete the SAP and SDP.
- 3. Shut down the service.

Use the following syntax to delete Apipe services. Use a similar syntax to delete Cpipe and Epipe services.

```
CLI Syntax: config>service#
               apipe service-id
                  sap sap-id
                     shutdown
                     exit
                  no sap sap-id
                  spoke-sdp [sdp-id:vc-id]
                     shutdown
                     exit
                  no spoke-sdp [sdp-id:vc-id]
                  shutdown
                  exit
               no apipe service-id
Example:
          A:ALU-41>config>service# apipe 5
          A:ALU-41>config>service>apipe# sap 1/1/1.1:0/32
          A:ALU-41>config>service>apipe>sap# shutdown
          A:ALU-41>config>service>apipe>sap# exit
          A:ALU-41>config>service>apipe# no sap 1/1/1.1:0/32
          A:ALU-41>config>service>apipe# spoke-sdp 1:4
          A:ALU-41>config>service>apipe>spoke-sdp# shutdown
          A:ALU-41>config>service>apipe>spoke-sdp# exit
          A:ALU-41>config>service>apipe# no spoke-sdp 1:4
          A:ALU-41>config>service>apipe# shutdown
          A:ALU-41>config>service>apipe# exit
          A:ALU-41>config>service# no apipe 5
```

# **VLL Services Command Reference**

# **Command Hierarchies**

- VLL Service Configuration Commands
  - → Apipe Service Configuration Commands
  - → Cpipe Service Configuration Commands
  - → Epipe Service Configuration Commands
- Show Commands
- Clear Commands

## **VLL Service Configuration Commands**

### **Apipe Service Configuration Commands**

```
config
     — service
              — apipe service-id [customer customer-id] [create] [vpn vpn-id] [vc-type {atm-vcc | atm-
                  vpc}]
              - no apipe service-id
                       — description description-string
                       — no description
                       — sap sap-id [create]
                       — no sap sap-id
                                — accounting-policy acct-policy-id
                                - no accounting-policy
                                — atm
                                         — egress
                                                  — traffic-desc traffic-desc-profile-id
                                                  — no traffic-desc
                                         - ingress
                                                  — traffic-desc traffic-desc-profile-id
                                                  - no traffic-desc
                                         — oam
                                                  - [no] alarm-cells
                                - [no] collect-stats

    description description-string

                                - no description
                                — egress
                                          qos policy-id
                                         — no qos
                                — ingress

    qos policy-id

                                         — no qos
                                — [no] shutdown
                        service-mtu octets
                       - no service-mtu
                       — [no] shutdown
                       — spoke-sdp sdp-id:vc-id [create]
                                                              (see Note)
                       — no spoke-sdp sdp-id:vc-id
                                - cell-concatenation
                                        - [no] clp-change
                                         — max-cells cell-count
                                         — no max-cells [cell-count]
                                         — max-delay delay-time
                                         — no max-delay [delay-time]
                                — [no] control-word
                                — egress
                                           vc-label egress-vc-label
                                         — no vc-label [egress-vc-label]
                                — ingress
                                         — vc-label ingress-vc-label
```

```
no vc-label [ingress-vc-label][no] shutdown
```



**Note:** The spoke-sdp configuration does not apply to ATM SAP-to-SAP configuration (local service). It only applies to SAP-to-SDP configuration (distributed service).

### **Cpipe Service Configuration Commands**

```
config
       service
              — [no] cpipe service-id [customer customer-id] [create] [vpn vpn-id] [vc-type {satop-e1 |
                  satop-t1 | cesopsn | cesopsn-cas}]
                       — description description-string
                       — no description
                       — sap sap-id [create]
                       — [no] sap sap-id

    accounting-policy acct-policy-id

                                 - no accounting-policy
                                 — cem
                                          — [no] packet
                                                   — [no] jitter-buffer jitter-buffer value | payload-size
                                                   — payload-size size
                                         — [no] report-alarm [stray] [malformed] [pktloss] [overrun]
                                             [underrun] [rpktloss] [rfault] [rrdi]
                                          - [no] rtp-header
                                 - [no] collect-stats

    description description-string

                                 — no description
                                 — egress
                                         — qos policy-id
                                         — no qos
                                 — ingress
                                          — qos policy-id
                                          — no qos
                                 — [no] shutdown
                       — service-mtu octets
                       - no service-mtu
                       — [no] shutdown
                       — spoke-sdp sdp-id:vc-id [create]
                                                              (see Note)
                       — no spoke-sdp sdp-id:vc-id
                                 — control-word
                                 — [no] egress
                                         — [no] vc-label egress-vc-label
                                 - [no] ingress
                                           [no] vc-label ingress-vc-label
                                 — [no] shutdown
```



**Note:** The spoke-sdp configuration does not apply to TDM SAP-to-SAP configuration (local service). It only applies to SAP-to-SDP configuration (distributed service).

### **Epipe Service Configuration Commands**

```
config
       service
                - [no] epipe service-id [customer customer-id] [create] [vpn vpn-id]

    description description-string

                       — no description
                       — sap sap-id [create]
                       — no sap sap-id
                                — accounting-policy acct-policy-id
                                - no accounting-policy
                                — [no] collect-stats
                                — description description-string
                                — no description
                                — egress
                                         — qos policy-id
                                         — no qos
                                — ingress
                                         — qos policy-id
                                         — no qos
                       — service-mtu octets
                       - no service-mtu
                       - [no] shutdown
                       — spoke-sdp sdp-id:vc-id [vc-type {ether | vlan}] [create]
                       — no spoke-sdp sdp-id:vc-id
                                — [no] control-word
                                — egress
                                         — vc-label egress-vc-label
                                         — no vc-label [egress-vc-label]
                                — ingress
                                          vc-label ingress-vc-label
                                         — no vc-label [ingress-vc-label]
                                — vlan-vc-tag 0..4094
                                — no vlan-vc-tag [0..4094]
```

### **Show Commands**

```
show

- service

- egress-label start-label [end-label]

- id service-id

- all

- base

- labels

- sap [sap-id] [detail]]

- sdp [sdp-id | far-end ip-address] [detail]

- ingress-label start-label [end-label]

- sap-using [sap sap-id]

- sap-using [ingress | egress] atm-td-profile td-profile-id

- sap-using [ingress | egress] qos-policy qos-policy-id
```

### **Clear Commands**

```
clear

- service

- id service-id

- spoke-sdp sdp-id:vc-id ingress-vc-label

- statistics

- id service-id

- counters

- spoke-sdp sdp-id:vc-id {all | counters}

- sap sap-id {all | cem | counters}

- sdp sdp-id keep-alive
```

# **VLL Service Configuration Commands**

- Generic Commands on page 169
- VLL Global Commands on page 171
- VLL SAP Commands on page 175
- SAP cem Commands on page 178
- Service Billing Commands on page 181
- SAP QoS Policy Commands on page 182
- VLL SDP Commands on page 184
- SDP Cell Concatenation Commands on page 187
- ATM Commands on page 190
- ATM OAM Commands on page 192

### **Generic Commands**

## description

Syntax description description-string

no description

Context config>service>apipe

config>service>apipe>sap config>service>cpipe config>service>cpipe>sap config>service>epipe config>service>epipe>sap

**Description** This command creates a text description stored in the configuration file for a configuration context.

The **no** form of this command removes the string from the context.

**Default** No description is associated with the configuration context.

**Parameters** description-string — the description character string. Allowed values are any string up to 80

characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, \$, spaces, etc.), the entire string must be enclosed within double quotes.

#### shutdown

Syntax [no] shutdown

Context config>service>apipe

config>service>apipe>sap

config>service>apipe>spoke-sdp

config>service>cpipe
config>service>cpipe>sap

config>service>cpipe>spoke-sdp

config>service>epipe

#### Description

The **shutdown** command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many objects must be shut down before they may be deleted. Many entities must be explicitly enabled using the **no shutdown** command.

The **no** form of this command places the entity into an administratively enabled state.

Services are created in the administratively down (**shutdown**) state. When a **no shutdown** command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities are described in the following Special Cases.

#### **Special Cases**

- **Service Admin State** bindings to an SDP within the service will be put into the out-of-service state when the service is shut down. While the service is shut down, all customer packets are dropped and counted as discards for billing and debugging purposes.
- **Service Operational State** a service is considered operational if at least one SAP and one SDP are operational.
- **SDP** (global) when an SDP is shut down at the global service level, all bindings to that SDP are put into the out-of-service state and the SDP itself is put into the administratively and operationally down states. Packets that would normally be transmitted using this SDP binding will be discarded and counted as dropped packets.
- **SDP** (**service level**) shutting down an SDP within a service only affects traffic on that service from entering or being received from the SDP. The SDP itself may still be operationally up for other services.

### **VLL Global Commands**

## apipe

Syntax apipe service-id [customer customer-id] [create] [vpn vpn-id] [vc-type {atm-vcc | atm-

vpc}]

no apipe service-id

Context config>service

**Description** This command configures a point-to-point ATM service. The Apipe service provides a point-to-point

L2 VPN connection to a local or remote SAP. An Apipe can connect an ATM endpoint locally (in the

same 7705 SAR) or over a PSN to a remote endpoint of the same type.

**Parameters** service-id — uniquely identifies a service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The service-id must be the same

number used for every 7705 SAR on which this service is defined.

**Values** 1 to 2147483647

**customer** *customer-id* — specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

**Values** 1 to 2147483647

**vpn** *vpn-id* — specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN identification number. If this parameter is not specified, the VPN ID uses the

same service ID number.

**Values** 1 to 2147483647

**Default**  $\mathbf{null}(0)$ 

**vc-type** — specifies a 15-bit value that defines the type of the VC signaled to the peer. Its values are defined in *draft-ietf-pwe3-iana-allocation* and it defines both the signaled VC type as well as the resulting datapath encapsulation over the Apipe.

Values atm-vcc, atm-vpc

**Default** atm-vcc

## cpipe

Syntax [no] cpipe service-id [customer customer-id] [vpn vpn-id] [vc-type {satop-e1 | satop-t1 |

cesopsn | cesopsn-cas}]

Context config>service

**Description** This command configures a circuit emulation service utilizing MPLS or GRE encapsulation. The

vc-type defines the type of unstructured or structured circuit emulation service to be configured. All

other parameters (service-id, customer) have common usage with other service types.

### Default no cpipe

#### **Parameters**

service-id — uniquely identifies a service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The service-id must be the same number used for every 7705 SAR on which this service is defined.

**Values** 1 to 2147483647

**customer** *customer-id* — specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

**Values** 1 to 2147483647

vpn vpn-id — specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN identification number. If this parameter is not specified, the VPN ID uses the same service ID number.

**Values** 1 to 2147483647

**Default**  $\mathbf{null}(0)$ 

**vc-type** — specifies a value that defines the type of the VC signaled to the peer. This optional parameter is included when the Cpipe service is created.

**Values** satop-e1: unstructured E1 circuit emulation service

satop-t1: unstructured DS1 circuit emulation service

cesopsn: basic structured n × 64 kb/s circuit emulation service

cesopsn-cas: structured n × 64 kb/s circuit emulation service with signaling

Default cesopsn

## epipe

Syntax [no] epipe service-id [customer customer-id] [vpn vpn-id]

Context config>service

#### **Description**

This command configures a point-to-point Ethernet service. An Epipe connects two endpoints defined as SAPs. Both SAPs are defined on separate routers (7705 SAR routers or other Alcatel-Lucent service routers) connected over the service provider network. When the endpoint SAPs are separated by the service provider network, the far-end SAP is generalized into an SDP. This SDP describes a destination 7705 SAR and the encapsulation method used to reach it.

No MAC learning or filtering is provided (or needed) on an Epipe.

When a service is created, the **customer** keyword and *customer-id* must be specified, which associates the service with a customer. The *customer-id* must already exist, having been created using the **customer** command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the **customer** *customer-id* is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect *customer-id* specified will result in an error.

By default, Epipe services do not exist until they are explicitly created with this command.

The **no** form of this command deletes the Epipe service instance with the specified *service-id*. The service cannot be deleted until the service has been shut down.

#### **Parameters**

service-id — uniquely identifies a service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The service-id must be the same number used for every 7705 SAR on which this service is defined.

**Values** 1 to 2147483647

**customer** *customer-id* — specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

**Values** 1 to 2147483647

**vpn** *vpn-id* — specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN ID. If this parameter is not specified, the VPN ID uses the same service ID number.

**Values** 1 to 2147483647

**Default** null(0)

#### service-mtu

Syntax service-mtu octets

no service-mtu

Context config>service>apipe

config>service>cpipe config>service>epipe

#### Description

This command configures the service payload (Maximum Transmission Unit – MTU), in octets, for the service. This MTU value overrides the service-type default MTU.

The **service-mtu** defines the payload capabilities of the service. It is used by the system to validate the SAP and SDP binding's operational state within the service.

The service MTU and a SAP's service delineation encapsulation overhead (4 bytes for a dot1q tag) is used to derive the required MTU of the physical port or channel on which the SAP was created. If the required payload is larger than the port or channel MTU, then the SAP will be placed in an inoperative state. If the required MTU is equal to or less than the port or channel MTU, the SAP will be able to transition to the operative state.

When binding an SDP to a service, the service MTU is compared to the path MTU associated with the SDP. The path MTU can be administratively defined in the context of the SDP. The default or administrative path MTU can be dynamically reduced due to the MTU capabilities discovered by the tunneling mechanism of the SDP or the egress interface MTU capabilities based on the next hop in the tunnel path. If the service MTU is larger than the path MTU, the SDP binding for the service will be placed in an inoperative state. If the service MTU is equal to or less than the path MTU, then the SDP binding will be placed in an operational state.

In the event that a service MTU, port or channel MTU, or path MTU is dynamically or administratively modified, then all associated SAP and SDP binding operational states are automatically re-evaluated.

The **no** form of this command returns the default service-mtu for the indicated service type to the default value.

#### **Parameters**

octets — specifies the size of the MTU, expressed as a decimal integer

 Values
 1 to 1514

 Default
 apipe: 1508 cpipe: 1514

epipe: 1514

Table 24 displays MTU values for specific VC types.

**Table 24: Maximum Transmission Unit Values** 

| VC-Type                               | Example of<br>Service MTU | Advertised<br>MTU |
|---------------------------------------|---------------------------|-------------------|
| Ethernet                              | 1514                      | 1500              |
| Ethernet (with preserved dot1q)       | 1518                      | 1504              |
| VLAN (dot1p transparent to MTU value) | 1514                      | 1500              |

### **VLL SAP Commands**

### sap

Syntax sap sap-id [create]

no sap sap-id

Context config>service>apipe

config>service>cpipe config>service>epipe

**Description** This command creates a SAP within a service. Each SAP must be unique.

All SAPs must be explicitly created with the create keyword. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

To edit SAP parameters, enter an existing SAP without the **create** keyword.

A SAP can only be associated with a single service. The SAP is owned by the service in which it was created. A SAP can only be defined on a port that has been configured as an access port in the **config>port** *port-id* context using the **mode access** command. Fractional TDM ports are always access ports. Refer to the 7705 SAR OS Interface Configuration Guide.

If a port is shut down, all SAPs on that port become operationally down. When a service is shut down, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded. The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The following SAP types are supported:

- ATM VPI/VCI on an ATM port for vc-type atm-vcc
- ATM VPI on an ATM port for vc-type atm-vpc
- Ethernet-Ethernet
- SAToP
- CESoPSN (with and without CAS)

The **no** form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

**Default** No SAPs are defined.

#### Special Cases

A default SAP has the following format: port-id:\*. This type of SAP is supported only on Ethernet Adapter cards and its creation is allowed only in the scope of Layer 2 Epipe services. This type of SAP is mutually exclusive with a SAP defined by explicit null encapsulation (m 1/1/1:0).

**Parameters** sap-id — specifies the physical port identifier portion of the SAP definition

The *sap-id* can be configured in one of the formats described in Table 25.

**Table 25: SAP ID Configurations** 

| Туре    | Syntax                                                                                       | Example                                                                                                                                                                                                                                         |  |
|---------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| port-id | slot/mda/port[.channel]                                                                      | 1/1/5                                                                                                                                                                                                                                           |  |
| null    | [port-id   bundle-id]                                                                        | port-id: 1/1/3<br>bundle-id: bundle-ppp-1/1.1                                                                                                                                                                                                   |  |
| dot1q   | [port-id   bundle-id]:qtag1                                                                  | <pre>port-id:qtag1: 1/1/3:100 bundle-id: bundle-ppp-1/1.1</pre>                                                                                                                                                                                 |  |
| atm     | [port-id   bundle-id][:vpi/vci  vpi                                                          | port-id: 1/1/1.1<br>bundle-id: bundle-ima-1/1.1<br>bundle-ppp-1/1.1<br>vpi/vci: 16/26<br>vpi: 16                                                                                                                                                |  |
| cem     | slot/mda/port.channel                                                                        | 1/1/1.3                                                                                                                                                                                                                                         |  |
| Values  | dot1q [port atm [port atm [port slot/n bundle-type-should type bund qtag1 0 to 4 vpi NNI UNI | ort-id [port-id   bundle-id]:qtag1 m [port-id   bundle-id][:vpi/vci  vpi  vpi1.vpi2]  ort-id slot/mda/port[.channel] undle-type-slot/mda.bundle-num bundle keyword type ima, ppp bundle-num 1 to 10 ag1 0 to 4094 oi NNI 0 to 4095 UNI 0 to 255 |  |

port-id — specifies the physical port ID in the slot/mda/port format

If the card in the slot has an adapter card installed, the *port-id* must be in the slot\_number/MDA\_number/port\_number format. For example 1/2/3 specifies port 3 on MDA 2 in slot 1.

The *port-id* must reference a valid port type. When the *port-id* parameter represents TDM channels, the port ID must include the channel ID. A period "." separates the physical port from the *channel-id*. The port must be configured as an access port.

bundle-id — specifies the multilink bundle to be associated with this IP interface. The bundle keyword must be entered at the beginning of the parameter. The command syntax must be configured as follows:

bundle-id: **bundle-**type-slot-id/mda-slot.bundle-num

bundle-id value range: 1 to 10

### For example:

```
*A:ALU-12>config# port bundle-ppp-5/1.1
*A:ALU-12>config>port# multilink-bundle
```

*qtag1* — specifies the encapsulation value used to identify the SAP on the port or sub-port. If this parameter is not specificially defined, the default value is 0.

**Values** qtag1: 0 to 4094

The values depend on the encapsulation type configured for the interface. Table 26 describes the allowed values for the port and encapsulation types.

**Table 26: Port and Encapsulation Values** 

| Port Type | Encap-Type | Allowed Values | Comments                                                                                                                        |
|-----------|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Ethernet  | Null       | 0              | The SAP is identified by the port.                                                                                              |
| Ethernet  | Dot1q      | 0 to 4094      | The SAP is identified by the 802.1Q tag on the port. Note that a 0 qtag1 value also accepts untagged packets on the dot1q port. |

create — keyword used to create a SAP instance. The create keyword requirement can be enabled/disabled in the environment>create context.

### **SAP cem Commands**

#### cem

Syntax cem

Context config>service>cpipe>sap

**Description** This command configures the circuit emulation service parameters on a Cpipe.

This command is blocked for all SAPs except for E1, DS1 and  $n \times 64$  kb/s channels configured for

encap-type cem.

## packet

Syntax [no] packet

**Context** config>service>cpipe>sap>cem

**Description** This command enables the context to configure packet parameters on the SAP.

## jitter-buffer

Syntax [no] jitter-buffer value | payload-size size

**Context** config>service>cpipe>sap>cem>packet

**Description** This command defines the size of the receive jitter buffer for the circuit emulation service SAP.

**Default** The default value varies depending on the SAP bandwidth, as follows:

- 5 ms, where SAP bandwidth  $\geq$  16 DS0s (1024 kb/s)
- 8 ms, where SAP bandwidth is between 5 and 15 DS0s (between 320 and 960 kb/s)
- 16 ms, where SAP bandwidth is between 2 and 4 DS0s (between 128 and 256 kb/s)
- 32 ms, where SAP bandwidth = 1 DS0 (64 kb/s)

#### **Parameters**

value — This parameter describes the size of the receive jitter buffer, expressed in milliseconds. The range of supported values is 2 to 250 ms. The buffer size must be set to at least 2 times the value of the packetization delay and no greater than 32 times the value of the packetization delay.

To calculate the size of the buffer (in bytes), multiply the value of the buffer size (in ms) by the SAP TDM bandwidth (in bits per second) and divide by 8. After the initialization of the circuit emulation service, transmission of TDM data begins when the buffer is half full (50%).

size — For convenience, the payload size can be configured at the same time as the jitter buffer. This avoids any configuration errors due to interactions between the jitter buffer and payload size settings. See payload-size.

## payload-size

Syntax payload-size size

Context config>service>cpipe>sap>cem>packet

**Description** This parameter defines the payload size for one circuit emulation service packet.

**Default** For SAToP, see Table 13. For CESoPSN without CAS, see Table 14. For CESoPSN with CAS, see

Table 15.

**Parameters** size — The bytes value defines the payload size (in octets) to be encapsulated in one circuit emulation service packet. The valid range of supported values is 2 to 1514 bytes. The packetization delay for the circuit emulation service can be calculated by multiplying the payload size (in octets) by

8 (bits/octet) and then dividing by the SAP TDM bandwidth (in bits per second).

For CESoPSN with CAS, the configured value of the payload size does not need to include the extra bytes for the transport of CAS bits. The configured value of the **service-mtu** size must take the extra CAS bytes into account. See Structured E1 CES with CAS on page 107 for details.

For CESoPSN, the payload size may be specified as the number of bytes to be included in the packet.

For SAToP circuit emulation services, the payload size must be specified in multiples of 32 bytes. The minimum value is 64 bytes for both SAToP T1 and SAToP E1.

Interactions — The jitter-buffer value must be greater than or equal to twice the payload size to ensure that a frame arrives prior to the start of play-out. Therefore, the payload size may have to be decreased prior to setting the jitter-buffer value. Alternatively, the jitter-buffer value may have to be increased prior to setting the payload-size.

## report-alarm

Syntax [no] report-alarm [stray] [malformed] [pktloss] [overrun] [underrun] [rpktloss] [rfault]

[rrdi]

Context config>service>cpipe>sap>cem

**Description** This command enables or disables alarm reporting for CES circuit alarm conditions.

Default On: stray, malformed, pktloss, overrun and underun

Off: rpktloss, rfault, rrdi

**Parameters** stray — reports the reception of packets not destined for this CES circuit

malformed — reports the reception of packets not properly formatted as CES packets

**pktloss** — reports the lack of reception of CES packets

**overrun** — reports the reception of too many CES packets resulting in an overrun of the receive jitter buffer

**underrun** — reports the reception of too few CES packets resulting in an underrun of the receive jitter buffer

**rpktloss** — reports that the remote peer is currently in packet loss status

**rfault** — reports that the remote TDM interface is currently not in service

rrdi — reports that the remote TDM interface is currently in RDI status

## rtp-header

Syntax [no] rtp-header

**Context** config>service>cpipe>sap>cem

**Description** This optional command inserts RTP headers operating in absolute mode in the CES packets.

The **no** form of this command will not insert RTP headers into CES packets.

**Default** no rtp-header

# **Service Billing Commands**

## accounting-policy

Syntax accounting-policy acct-policy-id

no accounting-policy

Context config>service>apipe>sap

config>service>cpipe>sap config>service>epipe>sap

**Description** This command creates the accounting policy context that can be applied to a SAP.

An accounting policy must be defined before it can be associated with a SAP. If the *policy-id* does not

exist, an error message is generated.

A maximum of one accounting policy can be associated with a SAP at one time. Accounting policies

are configured in the **config>log** context.

The **no** form of this command removes the accounting policy association from the SAP, and the

accounting policy reverts to the default.

**Default** no accounting-policy

**Parameters** acct-policy-id — enter the accounting policy-id as configured in the config>log>accounting-policy

context

Values 1 to 99

#### collect-stats

Syntax [no] collect-stats

Context config>service>apipe>sap

config>service>cpipe>sap config>service>epipe>sap

**Description** This command enables accounting and statistical data collection for the SAP. When applying

accounting policies, the data, by default, is collected in the appropriate records and written to the

designated billing file.

When the **no collect-stats** command is issued, the statistics are still accumulated by the CSM cards. However, the CPU will not obtain the results and write them to the billing file. If a subsequent **collect-stats** command is issued, then the counters written to the billing file include all the traffic

while the **no collect-stats** command was in effect.

**Default** collect-stats

# **SAP QoS Policy Commands**

## egress

Syntax egress

Context config>service>apipe>sap

config>service>cpipe>sap config>service>epipe>sap

**Description** This command enables the context to configure egress SAP Quality of Service (QoS) policies.

If no sap-egress QoS policy is defined, the system default sap-egress QoS policy is used for egress

processing.

## ingress

Syntax ingress

Context config>service>apipe>sap

config>service>cpipe>sap config>service>epipe>sap

**Description** This command enables the context to configure ingress SAP QoS policies.

If no sap-ingress QoS policy is defined, the system default sap-ingress QoS policy is used for ingress

processing.

qos

Syntax qos policy-id

no qos

Context config>service>apipe>sap>egress

config>service>apipe>sap>ingress config>service>cpipe>sap>egress config>service>cpipe>sap>ingress config>service>epipe>sap>egress config>service>epipe>sap>ingress

**Description** This command associates a QoS policy with an ingress or egress SAP.

QoS ingress and egress policies are important for the enforcement of SLA agreements. The policy ID must be defined prior to associating the policy with a SAP. If the *policy-id* does not exist, an error will

be returned.

The **qos** command is used to associate both ingress and egress QoS policies. The **qos** command only allows ingress policies to be associated on SAP ingress and egress policies on SAP egress. Attempts to associate a QoS policy of the wrong type returns an error.

Only one ingress and one egress QoS policy can be associated with a SAP at one time. Attempts to associate a second QoS policy of a given type will return an error.

By default, no specific QoS policy is associated with the SAP for ingress or egress, so the default QoS policy is used.

The **no** form of this command removes the QoS policy association from the SAP, and the QoS policy reverts to the default.

#### **Parameters**

*policy-id* — Associates the ingress or egress policy ID with the SAP on ingress or egress. The policy ID must already exist.

**Values** 1 to 65535

## **VLL SDP Commands**

## spoke-sdp

Syntax spoke-sdp sdp-id[:vc-id] [create]

spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] [create]

no spoke-sdp sdp-id[:vc-id]

Context config>service>apipe

config>service>cpipe config>service>epipe

**Description** This command binds a service to an existing Service Destination Point (SDP).

A spoke SDP is treated like the equivalent of a traditional bridge "port" where flooded traffic received on the spoke SDP is replicated on all other "ports" (other spoke SDPs or SAPs) and not transmitted on the port it was received.

The SDP has an operational state that determines the operational state of the SDP within the service. For example, if the SDP is administratively or operationally down, the SDP for the service will be down.

The SDP must already be defined in the **config>service>sdp** context in order to associate an SDP with an Epipe service. If the **sdp** *sdp-id* is not already configured, an error message is generated. If the *sdp-id* does exist, a binding between that *sdp-id* and the service is created.

SDPs must be explicitly associated and bound to a service. If an SDP is not bound to a service, no far-end 7705 SAR devices can participate in the service.

The **no** form of this command removes the SDP binding from the service. The SDP configuration is not affected; only the binding of the SDP to a service. Once removed, no packets are forwarded to the far-end router.

**Default** No *sdp-id* is bound to a service.

**Parameters** *sdp-id* — uniquely identifies the SDP

**Values** 1 to 17407

vc-id — identifies the virtual circuit

**Values** 1 to 4294967295

vc-type — for Epipe services, this command overrides the default VC type signaled for the spoke binding to the far end of the SDP. The VC type is a 15-bit quantity containing a value which represents the type of VC. The actual signaling of the VC type depends on the signaling parameter defined for the SDP. If signaling is disabled, the vc-type command can still be used to define the dot1q value expected by the far-end provider equipment. A change of the binding's VC type causes the binding to signal the new VC type to the far end when signaling is enabled.

VC types are derived according to IETF draft-martini-l2circuit-trans-mpls.

- The VC type value for Ethernet is 0x0005.
- The VC type value for an Ethernet VLAN is 0x0004.

Values ether | vlan

**ether** — for Epipe services, this parameter defines the VC type as Ethernet. The **ethernet** and **vlan** keywords are mutually exclusive. When the VC type is not defined, then the default is Ethernet for spoke SDP bindings. Defining Ethernet is the same as executing **no vc-type** and restores the default VC type for the spoke SDP binding.

vlan — for Epipe services, this parameter defines the VC type as VLAN. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined, then the default is Ethernet for spoke SDP bindings. The VLAN VC-type requires at least one dot1Q tag within each encapsulated Ethernet packet transmitted to the far end.

### vc-label

Syntax [no] vc-label egress-vc-label

Context config>service>apipe>spoke-sdp>egress

config>service>cpipe>spoke-sdp>egress config>service>epipe>spoke-sdp>egress

**Description** This command configures the egress VC label.

**Parameters** *egress-vc-label* — indicates a specific connection

**Values** 16 to 1048575

#### vc-label

Syntax [no] vc-label ingress-vc-label

**Context** config>service>apipe>spoke-sdp>ingress

config>service>cpipe>spoke-sdp>ingress config>service>epipe>spoke-sdp>ingress

**Description** This command configures the ingress VC label.

**Parameters** ingress-vc-label — indicates a specific connection

**Values** 2048 to 18431

# vlan-vc-tag

Syntax vlan-vc-tag 0..4094

no vlan-vc-tag [0..4094]

Context config>service>epipe>spoke-sdp

**Description** This command specifies an explicit dot1q value used when encapsulating to the SDP far end. When

signaling is enabled between the near and far end, the configured dot1q tag can be overridden by a received TLV specifying the dot1q value expected by the far end. This signaled value must be stored as the remote signaled dot1q value for the binding. The provisioned local dot1q tag must be stored as

the administrative dot1q value for the binding.

When the dot1q tag is not defined, the default value of zero is stored as the administrative dot1q

value. Setting the value to zero is equivalent to not specifying the value.

The **no** form of this command disables the command

Default no vlan-vc-tag

**Parameters** 0..4094 — specifies a valid VLAN identifier to bind an 802.1Q VLAN tag ID

# **SDP Cell Concatenation Commands**

### cell-concatenation

Syntax cell-concatenation

Context config>service>apipe>spoke-sdp

**Description** This command enables the context to provide access to the various options that control the

termination of ATM cell concatenation into an MPLS frame. Several options can be configured simultaneously. The concatenation process for a given MPLS packet ends when the first

concatenation termination condition is met. The concatenation parameters apply only to ATM N-to-1

cell mode VLL.

In Release 1.1, frame boundaries are not configurable.

# clp-change

Syntax [no] clp-change

**Context** config>service>apipe>spoke-sdp>cell-concatenation

**Description** This command enables the configuration of CLP change to be an indication to complete the cell

concatenation operation.

The **no** form of the command resets the configuration to ignore the CLP change as an indication to

complete the cell concatenation.

#### control-word

Syntax control-word

no control-word

Context config>service>apipe>spoke-sdp

config>service>cpipe>spoke-sdp config>service>epipe>spoke-sdp

**Description** This command indicates whether the control word is used or not. The value of the control word is

negotiated with the peer.

This command is mandatory for SAToP and CESoPSN encapsulation.

## egress

Syntax [no] egress

Context config>service>apipe>spoke-sdp

config>service>cpipe>spoke-sdp config>service>epipe>spoke-sdp

**Description** This command configures the egress SDP context.

# ingress

Syntax [no] ingress

Context config>service>apipe>spoke-sdp

config>service>cpipe>spoke-sdp config>service>epipe>spoke-sdp

**Description** This command configures the ingress SDP context.

#### max-cells

Syntax max-cells cell-count

no max-cells [cell-count]

**Context** config>service>apipe>spoke-sdp>cell-concatenation

**Description** This command enables the configuration of the maximum number of ATM cells to accumulate in an

MPLS packet. The remote peer will also signal the maximum number of concatenated cells it is willing to accept in an MPLS packet. When the lesser of the configured value and the signaled value is reached, the MPLS packet is queued for transmission onto the pseudowire. It is ensured that the

MPLS packet MTU conforms to the configured service MTU.

If the max-delay and jitter buffer options are not configured, then the maximum number of cells

allowed in a single VLL frame must be less than the configured service-mtu size.

The no form of this command sets max-cells to the value "1", indicating that no concatenation will be

performed.

**Parameters** cell-count — specifies the maximum number of ATM cells to be accumulated in an MPLS packet

before queuing the packet for transmission onto the pseudowire

Values 1 to 29

Default 29

# max-delay

Syntax max-delay delay-time

no max-delay [delay-time]

**Context** config>service>apipe>spoke-sdp>cell-concatenation

**Description** This command enables the configuration of the maximum amount of time to wait while performing

ATM cell concatenation into an MPLS packet before transmitting the MPLS packet. This places an upper bound on the amount of delay introduced by the concatenation process. When this amount of time is reached from when the first ATM cell for this MPLS packet was received, the MPLS packet is

queued for transmission onto the pseudowire.

The **no** form of this command resets max-delay to its default value.

**Parameters** delay-time — specifies the maximum amount of time, in hundreds of microseconds, to wait before

transmitting the MPLS packet with whatever ATM cells have been received. For example, to bound the delay to 1 ms, the user would configure 10 (hundreds of microseconds). The delay-

time is rounded up to one of the following values 1, 5, 10, 50, 100, 200, 300 and 400.

**Values** 1 to 400

**Default** 400, which represents 40 ms of delay time (400 units of hundreds of microseconds)

# **ATM Commands**

#### atm

Syntax atm

Context config>service>apipe>sap

**Description** This comman

This command enables access to the context to configure ATM-related attributes. This command can only be used when a given context (for example, a channel or SAP) supports ATM functionality such as:

- configuring ATM port or ATM port-related functionality on T1/E1 ASAP Adapter cards
- configuring ATM-related configuration for ATM-based SAPs that exist on T1/E1 ASAP Adapter cards

If ATM functionality is not supported for a given context, the command returns an error.

### egress

Syntax egress

Context config>service>apipe>sap>atm

This command provides access to the context to configure egress ATM traffic policies for the SAP.

# ingress

Syntax ingress

**Context** config>service>apipe>sap>atm

**Description** This command provides access to the context to configure ingress ATM traffic policies for the SAP.

### traffic-desc

Syntax traffic-desc traffic-desc-profile-id

no traffic-desc

**Context** config>service>apipe>sap>atm>egress

config>service>apipe>sap>atm>ingress

**Description** This command assigns an ATM traffic descriptor profile to a given context (for example, a SAP).

When configured under the ingress context, the specified traffic descriptor profile defines the traffic contract in the forward direction.

When configured under the egress context, the specified traffic descriptor profile defines the traffic contract in the backward direction.

The **no** form of the command reverts the traffic descriptor to the default traffic descriptor profile.

**Default** The default traffic descriptor (trafficDescProfileId. = 1) is associated with newly created PVCC-delimited SAPs.

**Parameters** *traffic-desc-profile-id* — specifies a defined traffic descriptor profile (see the QoS **atm-td-profile** command)

## **ATM OAM Commands**

#### oam

Syntax oam

Context config>service>apipe>sap>atm

**Description** This command enables the context to configure OAM functionality for a PVCC delimiting a SAP.

The T1/E1 ASAP Adapter card supports the generation of F4 (VP) and F5 (VC) AIS cells when Apipe service is operationally down. When Apipe service is operationally up, OAM cells are transported over Apipe and transparent to the 7705 SAR. This capability is in accordance with ITU-T

Recommendation I.610 - B-ISDN Operation and Maintenance.

#### alarm-cells

Syntax [no] alarm-cells

**Context** config>service>apipe>sap>atm>oam

**Description** This command configures AIS/RDI fault management on a PVCC. Fault management allows PVCC

terminations to monitor and report the status of their connection by propagating fault information

through the network and by driving the PVCC's operational status.

The 7705 SAR Apipe does not support PVCC terminations. Instead, it allows OAM cells to be transported transparently from end-to-end. When this command is enabled, AIS cells are generated

when an Apipe or corresponding SAP is operationally down.

The **no** command disables alarm-cells functionality for the Apipe. When alarm-cells functionality is disabled, AIS cells are not generated as result of the Apipe or corresponding SAP going into the

operationally down state.

**Default** enabled

# **Show Commands**

all

Syntax all

Context show>service>id

**Description** This command displays detailed information for all aspects of the service.

Output Show Service-ID All Output — The following table describes the show service-id all command

output fields.

Table 27: Show Service-ID All Command Output Fields

| Label                   | Description                                                                                   |  |
|-------------------------|-----------------------------------------------------------------------------------------------|--|
| Service Detailed Inform | d Information                                                                                 |  |
| Service Id              | Identifies the service by its ID number                                                       |  |
| VPN Id                  | Identifies the VPN by its ID number                                                           |  |
| Service Type            | Specifies the type of service                                                                 |  |
| VLL Type                | Specifies the VLL type                                                                        |  |
| Description             | Displays generic information about the service                                                |  |
| Customer Id             | Identifies the customer by its ID number                                                      |  |
| Last Status Change      | Displays the date and time of the most recent status change to this service                   |  |
| Last Mgmt Change        | Displays the date and time of the most recent management-<br>initiated change to this service |  |
| Admin State             | Specifies the desired state of the service                                                    |  |
| Oper State              | Specifies the operating state of the service                                                  |  |
| MTU                     | Specifies the service MTU                                                                     |  |
| SAP Count               | Displays the number of SAPs specified for this service                                        |  |
| SDP Bind Count          | Displays the number of SDPs bound to this service                                             |  |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Service Destination Poi | nts (SDPs)                                                                                                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description             | Displays generic information about the SDP                                                                                                                                 |
| SDP Id                  | Identifies the SDP                                                                                                                                                         |
| Туре                    | Identifies the service SDP binding type (for example, spoke)                                                                                                               |
| VC Type                 | Displays the VC type for the SDP (for example, CESoPSN)                                                                                                                    |
| VC Tag                  | The explicit dot1Q value used when encapsulating to the SDP far end                                                                                                        |
| Admin Path MTU          | Specifies the desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented |
| Oper Path MTU           | Specifies the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented  |
| Far End                 | Displays the IP address of the remote end of the MPLS or GRE tunnel defined by this SDP                                                                                    |
| Delivery                | Specifies the type of delivery used by the SDP (MPLS or GRE)                                                                                                               |
| Admin State             | Specifies the administrative state of this SDP                                                                                                                             |
| Oper State              | Specifies the operational state of this SDP                                                                                                                                |
| Acct. Pol               | The accounting policy ID assigned to the SAP                                                                                                                               |
| Collect Stats           | Specifies whether collect stats is enabled                                                                                                                                 |
| Ingress Label           | Displays the label used by the far-end device to send packets to this device in this service by this SDP                                                                   |
| Egress Label            | Displays the label used by this device to send packets to the far-end device in this service by this SDP                                                                   |
| Admin ControlWord       | Specifies the administrative state of the control word:<br>Preferred (control word enabled) or Not Preferred (control word disabled)                                       |
| Oper ControlWord        | Specifies the operational state of the control word: True (control word enabled) or False (control word disabled)                                                          |
| Last Status Change      | Specifies the time of the most recent operating status change to this spoke SDP                                                                                            |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                 | Description                                                                                                                                                             |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signaling             | Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP                                       |
| Last Mgmt Change      | Specifies the time of the most recent management-initiated change to this spoke SDP                                                                                     |
| Flags                 | Displays the conditions that affect the operating status of this spoke SDP. Display output includes PathMTUtooSmall, SdpOperDown, NoIngVCLabel, NoEgrVCLabel, and so on |
| Mac Move              | Indicates the administrative state of the MAC movement feature associated with the service                                                                              |
| Peer Pw Bits          | Displays the setting of the pseudowire peer bits. Display output includes pwNotforwarding, psnIngressFault, psnEgressFault, IacIngressFault, lacEgressFault             |
| Peer Fault Ip         | N/A                                                                                                                                                                     |
| Peer Vccv CV Bits     | Displays the setting of the pseudowire peer VCCV control verification bits (lspPing)                                                                                    |
| Peer Vccv CC Bits     | Displays the setting of the pseudowire peer VCCV control channel bits (pwe3ControlWord and/or mplsRouterAlertLabel)                                                     |
| Keepalive Information |                                                                                                                                                                         |
| Admin State           | Specifies the administrative state of the keepalive protocol                                                                                                            |
| Oper State            | Specifies the operational state of the keepalive protocol                                                                                                               |
| Hello Time            | Specifies how often the SDP Echo Request messages are transmitted on this SDP                                                                                           |
| Hello Msg Len         | Specifies the length of the SDP Echo Request messages transmitted on this SDP                                                                                           |
| Max Drop Count        | Specifies the maximum number of consecutive SDP Echo<br>Request messages that can be unacknowledged before the<br>keepalive protocol reports a fault                    |
| Hold Down Time        | Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state                                                         |
| Statistics            |                                                                                                                                                                         |
| I. Fwd. Pkts.         | Specifies the number of forwarded ingress packets                                                                                                                       |
| I. Dro. Pkts.         | Specifies the number of dropped ingress packets                                                                                                                         |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                   | Description                                                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| I. Fwd. Octs.           | Specifies the number of forwarded ingress octets                                                                                             |
| I. Dro. Octs.           | Specifies the number of dropped ingress octets                                                                                               |
| E. Fwd. Pkts.           | Specifies the number of forwarded egress packets                                                                                             |
| E. Fwd. Octets          | Specifies the number of forwarded egress octets                                                                                              |
| Associated LSP LIST     |                                                                                                                                              |
| Lsp Name                | Specifies the name of the static LSP                                                                                                         |
| Admin State             | Specifies the administrative state of the associated LSP                                                                                     |
| Oper State              | Specifies the operational state of the associated LSP                                                                                        |
| Time Since Last Tr*     | Specifies the time that the associated static LSP has been inservice                                                                         |
| APIPE Service Destinati | on Point specifics                                                                                                                           |
| Admin Concat Limit      | Specifies the administrative (configured) value for the maximum number of cells for cell concatenation, as defined via the max-cells command |
| Oper Concat Limit       | Specifies the operational value for the maximum number of cells for cell concatenation                                                       |
| Peer Concat Limit       | Specifies the far-end value for the maximum number of cells for cell concatenation                                                           |
| Max Concat Delay        | Specifies the amount of time to wait while cell concatenation is occurring, as defined via the max-delay command                             |
| CPIPE Service Destinati | on Point specifics                                                                                                                           |
| Local Bit-rate          | Specifies the number of DS0s used by the local SDP                                                                                           |
| Peer Bit-rate           | Specifies the number of DS0s used by the far-end SDP                                                                                         |
| Local Payload Size      | Specifies the local payload size, in bytes, used by the local SDP                                                                            |
| Peer Payload Size       | Specifies the peer payload size, in bytes, used by the far-end SDP                                                                           |
| Local Sig Pkts          | Specifies the type of signaling packets used by the local SDP                                                                                |
| Peer Sig Pkts           | Specifies the type of signaling packets used by the far-end SDP                                                                              |
| Local CAS Framing       | Specifies the type of CAS framing used by the local SDP                                                                                      |
| Peer CAS Framing        | Specifies the type of CAS framing used by the far-end SDP                                                                                    |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                 | Description                                                                                                                                                                |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local RTP Header      | Specifies whether the local router inserts the RTP header                                                                                                                  |
| Peer RTP Header       | Specifies whether the peer router inserts the RTP header                                                                                                                   |
| Number of SDPs        | Specifies the number of SDPs bound to the service                                                                                                                          |
| Service Access Points |                                                                                                                                                                            |
| Service Id            | Identifies the service                                                                                                                                                     |
| SAP                   | Specifies the ID of the access port where this SAP is defined                                                                                                              |
| Encap                 | Specifies the encapsulation type for this SAP on the access port                                                                                                           |
| Admin State           | Specifies the desired state of the SAP                                                                                                                                     |
| Oper State            | Specifies the operating state of the SAP                                                                                                                                   |
| Flags                 | Specifies the conditions that affect the operating status of this SAP. Display output includes ServiceAdminDown, PortOperDown, and so on.                                  |
| Last Status Change    | Specifies the date and time of the most recent status change to this SAP                                                                                                   |
| Last Mgmt Change      | Specifies the date and time of the most recent management-initiated change to this SAP                                                                                     |
| Dot1Q Ethertype       | Identifies the value of the dot1q Ethertype                                                                                                                                |
| LLF Admin State       | Specifies the Link Loss Forwarding administrative state                                                                                                                    |
| LLF Oper State        | Specifies the Link Loss Forwarding operational state                                                                                                                       |
| Admin MTU             | Specifies the desired largest service frame size (in octets) that can be transmitted through this SAP to the far-end router, without requiring the packet to be fragmented |
| Oper MTU              | Specifies the actual largest service frame size (in octets) that can be transmitted through this SAP to the far-end router, without requiring the packet to be fragmented  |
| Ingr IP Fltr-ID       | Specifies the ingress IP filter policy ID assigned to the SAP                                                                                                              |
| Egr IP Fltr-Id        | Specifies the egress IP filter policy ID assigned to the SAP                                                                                                               |
| Ingr Mac Fltr-ID      | Specifies the ingress MAC filter policy ID assigned to the SAP                                                                                                             |
| Egr Mac Fltr-Id       | Specifies the egress MAC filter policy ID assigned to the SAP                                                                                                              |
| Acct. Pol             | Specifies the accounting policy applied to the SAP                                                                                                                         |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                   | Description                                                                                                                      |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Collect Stats           | Specifies whether accounting statistics are collected on the SAP                                                                 |
| Qos                     |                                                                                                                                  |
| Ingress qos-policy      | Displays the SAP ingress QoS policy ID                                                                                           |
| Egress qos-policy       | Displays the SAP egress QoS policy ID                                                                                            |
| SAP Statistics          |                                                                                                                                  |
| Last Cleared Time       | Displays the date and time that a clear command was issued on statistics                                                         |
| Forwarding Engine Stats |                                                                                                                                  |
| Dropped                 | Indicates the number of packets or octets dropped by the forwarding engine                                                       |
| Off. HiPrio             | Indicates the number of high-priority packets or octets offered to the forwarding engine                                         |
| Off. LowPrio            | Indicates the number of low-priority packets offered to the forwarding engine                                                    |
| Queueing Stats (Ingress | QoS Policy)                                                                                                                      |
| Dro. HiPrio             | Indicates the number of high-priority packets or octets discarded, as determined by the SAP ingress QoS policy                   |
| Dro. LowPrio            | Indicates the number of low-priority packets discarded, as determined by the SAP ingress QoS policy                              |
| For. InProf             | Indicates the number of in-profile packets or octets (rate below CIR) forwarded, as determined by the SAP ingress QoS policy     |
| For. OutProf            | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded, as determined by the SAP ingress QoS policy |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                  | Description                                                                                                                     |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Queueing Stats (Egress | QoS Policy)                                                                                                                     |
| Dro. InProf            | Indicates the number of in-profile packets or octets discarded, as determined by the SAP egress QoS policy                      |
| Dro. OutProf           | Indicates the number of out-of-profile packets or octets discarded, as determined by the SAP egress QoS policy                  |
| For. InProf            | Indicates the number of in-profile packets or octets (rate below CIR) forwarded, as determined by the SAP egress QoS policy     |
| For. OutProf           | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded, as determined by the SAP egress QoS policy |
| Sap per Queue stats    |                                                                                                                                 |
| Ingress Queue n        | Specifies the index of the ingress QoS queue of this SAP, where $n$ is the index number                                         |
| Off. HiPrio            | Indicates the packets or octets count of the high-priority traffic for the SAP (offered)                                        |
| Off. LoPrio            | Indicates the packets or octets count of the low-priority traffic for the SAP (offered)                                         |
| Dro. HiPrio            | Indicates the number of high-priority traffic packets/octets dropped                                                            |
| Dro. LoPrio            | Indicates the number of low-priority traffic packets/octets dropped                                                             |
| For. InProf            | Indicates the number of in-profile packets or octets (rate below CIR) forwarded                                                 |
| For. OutPro            | Indicates the number of out-of-profile octets (rate above CIR) forwarded                                                        |
| Egress Queue n         | Specifies the index of the egress QoS queue of the SAP, where $n$ is the index number                                           |
| For. InProf            | Indicates the number of in-profile packets or octets (rate below CIR) forwarded                                                 |
| For. OutProf           | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded                                             |
| Dro. InProf            | Indicates the number of in-profile packets or octets dropped for                                                                |

the SAP

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                   | Description                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dro. OutProf            | Indicates the number of out-of-profile packets or octets discarded                                                                                                                                                                                                                                                                                                                                             |
| ATM SAP Configuration I | nformation                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ingress TD Profile      | The profile ID of the traffic descriptor applied to the ingress SAP                                                                                                                                                                                                                                                                                                                                            |
| Egress TD Profile       | The profile ID of the traffic descriptor applied to the egress SAP                                                                                                                                                                                                                                                                                                                                             |
| Alarm Cell Handling     | Indicates that OAM cells are being processed                                                                                                                                                                                                                                                                                                                                                                   |
| OAM Termination         | Indicates whether this SAP is an OAM termination point                                                                                                                                                                                                                                                                                                                                                         |
| CEM SAP Configuration I | nformation                                                                                                                                                                                                                                                                                                                                                                                                     |
| Endpoint Type           | Specifies the type of endpoint                                                                                                                                                                                                                                                                                                                                                                                 |
| Bit-rate                | Specifies the number of DS0s or timeslots in the channel group                                                                                                                                                                                                                                                                                                                                                 |
| Payload Size            | Specifies the number of octets contained in the payload of a TDM PW packet when the packet is transmitted                                                                                                                                                                                                                                                                                                      |
| Jitter Buffer           | Specifies the size of the receive jitter buffer, expressed in milliseconds                                                                                                                                                                                                                                                                                                                                     |
| Use RTP Header          | Specifies whether RTP headers are used in CES packets (Yes or No)                                                                                                                                                                                                                                                                                                                                              |
| CAS Framing             | Specifies the type of CAS framing                                                                                                                                                                                                                                                                                                                                                                              |
| Effective PVDT          | Displays the peak-to-peak packet delay variation (PDV) used by the circuit emulation service.  Since the operating system may adjust the jitter buffer setting in order to ensure no packet loss, the configured jitter buffer value may not be the value used by the system. The effective PVDT provides an indication that the PVD has been adjusted by the operating system (see Jitter Buffer on page 110) |
| Cfg Alarm               | Specifies the alarms that have alarm reporting enabled                                                                                                                                                                                                                                                                                                                                                         |
| Alarm Status            | Indicates the current alarm state (for example, stray, malformed, packet loss, overrun, underrun, remote packet loss, remote fault, or remote RDI)                                                                                                                                                                                                                                                             |

Table 27: Show Service-ID All Command Output Fields (Continued)

| Label                   | Description                                                                                               |
|-------------------------|-----------------------------------------------------------------------------------------------------------|
| CEM SAP Statistics      |                                                                                                           |
| Packets                 | (Column heading) Displays the number of packets counted for<br>the statistic since the last counter reset |
| Seconds                 | (Column heading) Displays the number of seconds elapsed for<br>the statistic since the last counter reset |
| Events                  | (Column heading) Displays the number of events counted for<br>the statistic since the last counter reset  |
| Egress Stats            | Indicates that the following statistics are egress statistics                                             |
| Forwarded               | Displays the number of forwarded packets                                                                  |
| Missing                 | Displays the number of missing packets                                                                    |
| Reordered and Forwarded | Displays the number of packets that have been reordered and forwarded                                     |
| Underrun                | Displays the accumulated number of underrun packets for the number of underrun events                     |
| Overrun                 | Displays the accumulated number of overrun packets for the number of overrun events                       |
| Misordered Dropped      | Displays the number of misordered packets that have been dropped                                          |
| Malformed Dropped       | Displays the number of malformed packets that have been dropped                                           |
| Error                   | Displays the accumulated number of seconds that have passed while any error has occurred                  |
| Severely Error          | Displays the accumulated number of seconds that have passed while severe errors has occurred              |
| Unavailable             | Displays the accumulated number of seconds that have passed while the Cpipe is unavailable                |
| Failure Count           | Displays the accumulated number of failed events                                                          |
| Ingress Stats           | Indicates that the following statistics are ingress statistics                                            |
| Forwarded               | Displays the number of forwarded packets                                                                  |
| Dropped                 | Displays the number of dropped packets                                                                    |

The following CLI sample outputs are shown:

- Sample Output (Apipe ATMVcc service)
- Sample Output (Apipe ATMVpc service)
- Sample Output (Cpipe service)
- Sample Output (Epipe service)

### Sample Output (Apipe ATMVcc service)

```
______
 *A:ALU-A>show>service# id 2 all
Service Detailed Information
______
Service Type : Apipe
Customer Id : 2
                                             VLL Type : ATMVCC
Last Status Change: 03/11/2008 19:58:19
Last Mgmt Change : 03/28/2008 19:49:51
Admin State : Down
MTU : 1508
Vc Switching : False
SAP Count : 1
                              Oper State : Down
                                             SDP Bind Count : 1
 ______
Service Destination Points(SDPs)
 Sdp Id 2:2 -(138.120.38.1)
SDP Id : 2:2 Type

VC Type : ATMVCC VC Tag

Admin Path MTU : 0 Oper Path MTU

Far End : 138.120.38.1 Delivery
                                                    Type : Spoke VC Tag : 0
                                                   VC Tag
Oper Path MTU : 0
: MPLS
Admin State : Up Oper State : Down
Acct. Pol : None Collect Stats : Disabled
Ingress Label : 0 Egress Label : 0
Ing mac Fltr : n/a Egr mac Fltr : n/a
Ing ip Fltr : n/a Egr ip Fltr : n/a
Admin ControlWord : Not Preferred Oper ControlWord : False
Admin BW (Kbps) : 0 Oper BW (Kbps) : 0
Last Status Change : 03/11/2008 19:58:19
Last Mart Change : 03/28/2008 18:49:51
Admin State : Up
Acct. Pol : None
Ingress Label : 0
Ing mac Fltr : n/a
Ing ip Fltr : n/a
Last Status Change : 03/11/2000 15:00:11

Last Mgmt Change : 03/28/2008 19:49:51
                                                    Precedence
Endpoint
                     : N/A
                                                                         : 4
Class Fwding State : Down
Flags : SdpOperDown SdpOperDown
                       NoIngVCLabel NoEgrVCLabel
                       PathMTUTooSmall
Mac Move : Ukwn
Peer Pw Bits : None
Peer Fault Ip : None
                                                   Blockable Level : Unknown
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
```

```
KeepAlive Information :
Admin State : Disabled Hello Time : 10
                                          Oper State : Disabled Hello Msg Len : 0
                                          Hold Down Time : 10
Max Drop Count : 3
Statistics
Statistics : 0
I. Fwd. Pkts. : 0
I. Fwd. Octs. : 0
E. Fwd. Pkts. : 0
                                         I. Dro. Pkts. : 0
                                          I. Dro. Octs.
E. Fwd. Pkts.
                : 0
                                          E. Fwd. Octets : 0
Associated LSP LIST :
No LSPs Associated
APIPE Service Destination Point specifics
______
Admin Concat Limit: 1
                                        Oper Concat Limit : 1
Peer Concat Limit : n/a
                                          Max Concat Delay : 400
Service Access Points
SAP 1/4/1.1:0/32

      Service Id
      : 2

      SAP
      : 1/4/1.1:0/32

      Admin State
      : Up

                                         Encap
                                        Oper State : Down
                : ServiceAdminDown
Flags
                  PortOperDown L2OperDown
Multi Svc Site : None
Last Status Change : 03/11/2008 19:58:19
Last Mgmt Change : 03/28/2008 19:35:51
Sub Type
                : regular
                                          Oper MTU : 1572
Egr IP Fltr-Id : n/a
                : 1572
Admin MTU
Ingr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
                                          Egr Mac Fltr-Id : n/a
tod-suite : None
                                          ging-pbit-marking : both
Egr Agg Rate Limit : max
Endpoint
                : N/A
                                          Collect Stats : Disabled
Acct. Pol
                : None
OOS
Ingress qos-policy : 1
                                         Egress gos-policy: 1
Shared Q plcy : n/a
                                         Multipoint shared : Disabled
______
Sap Statistics
Last Cleared Time : N/A
                     Packets
                                          Octets
```

| Forwarding Engine                       | Stats              |              |                    |
|-----------------------------------------|--------------------|--------------|--------------------|
|                                         | : 0                | n/a          |                    |
| Off. HiPrio                             |                    | n/a          |                    |
| Off. LowPrio                            | : n/a              | n/a          |                    |
|                                         |                    |              |                    |
| Queueing Stats(Ing                      |                    |              |                    |
| Dro. HiPrio                             | : 0                | n/a          |                    |
| Dro. LowPrio                            | : n/a              | n/a          |                    |
| For. InProf                             | : 19596            | 19596        |                    |
| For. OutProf                            | : 19596            | 19596        |                    |
|                                         |                    |              |                    |
| Queueing Stats(Egr                      |                    |              |                    |
| Dro. InProf                             | : 0<br>: n/a       | n/a          |                    |
|                                         |                    | n/a          |                    |
| For. InProf                             | : 39192            | 39192        |                    |
| For. OutProf                            | : n/a              | n/a          |                    |
|                                         |                    |              |                    |
| Sap per Queue stat                      | S<br>              |              |                    |
|                                         | Packets            | Octets       |                    |
|                                         |                    |              |                    |
| Ingress Queue 1 (U                      | nicast) (Priority) |              |                    |
| Off. HiPrio                             | : 39192            | n/a          |                    |
| Off. LoPrio                             | : n/a              | n/a          |                    |
| Dro. HiPrio                             | : 0                | n/a          |                    |
| Dro. LoPrio                             | : n/a              | n/a          |                    |
| For. InProf                             | : 19596            | 19596        |                    |
| For. OutProf                            |                    | 19596        |                    |
|                                         |                    |              |                    |
| Egress Queue 1                          |                    |              |                    |
| For. InProf                             | : 39192            | 39192        |                    |
| For. OutProf                            | : n/a              | n/a          |                    |
| Dro. InProf                             | : 0                | n/a          |                    |
| Dro. OutProf                            | : n/a              | n/a          |                    |
|                                         |                    |              |                    |
| ATM SAP Configurat                      |                    |              |                    |
| Ingress TD Profile                      | : 1                | Egress TD    | Profile : 1        |
| Alarm Cell Handlin                      |                    | <del>-</del> | p : n/a            |
| OAM Termination                         |                    |              | oopback : Disabled |
|                                         |                    |              | -                  |
|                                         |                    |              |                    |
| Service Endpoints                       |                    |              |                    |
|                                         |                    |              |                    |
| No Endpoints found                      | ·<br>===========   |              |                    |
|                                         |                    |              |                    |
|                                         |                    |              |                    |
| Sample Output                           | Apipe ATMVpc se    | ervice)      |                    |
| Campio Carpar (                         | , . p. po po o .   | ,            |                    |
| ======================================= |                    |              |                    |
| *A:ALU-A>show>serv                      | ice# id 5 all      |              |                    |
|                                         |                    |              |                    |
|                                         |                    |              |                    |
| Service Detailed I                      |                    |              |                    |
| Service Id                              |                    | Vpn Id       | : 5                |
| Service Type                            |                    | VLL Type     |                    |
| Customer Id                             |                    |              |                    |
| JAJCOMOI IA                             | • -                |              |                    |

```
Last Status Change: 03/11/2008 19:58:19
Last Mgmt Change : 04/01/2008 16:51:59
Admin State : Down Oper State : Down MTU : 1508
Vc Switching : False SAP Count : 1
                                   SDP Bind Count : 1
______
Service Destination Points(SDPs)
 Sdp Id 5:5 -(138.120.20.1)
______
SDP Id : 5:5

VC Type : ATMVPC

Admin Path MTU : 0

Far End : 138.120.20.1
                                     Type
VC Tag
SDP Td
                                                       : Spoke
                                                       : 0
                                       Oper Path MTU : 0
                                       Delivery : MPLS
Admin State : Up
Acct. Pol : None
Ingress Label : 0
Ing mac Fltr : n/a
Ing ip Fltr : n/a
                                       Oper State
                                                      : Down
                                        Collect Stats : Disabled
                                       Egress Label : 0
Egr mac Fltr : n/a
Egr ip Fltr : n/a
Admin ControlWord : Not Preferred
                                       Oper ControlWord : False
Admin BW(Kbps) : 0
                                        Oper BW(Kbps) : 0
                                       Signaling
Last Status Change : 03/11/2008 19:58:19
                                                       : TLDP
Last Mgmt Change : 04/01/2008 16:51:59
Endpoint : N/A
                                        Precedence : 4
Class Fwding State : Down
       : SdpOperDown SdpOperDown
Flags
                  NoIngVCLabel NoEgrVCLabel
                  PathMTUTooSmall
                : Ukwn
                                       Blockable Level : Unknown
Mac Move
Peer Pw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
KeepAlive Information :
                                    Oper State : Disabled Hello Msg Len : 0
Admin State : Disabled Hello Time : 10
Max Drop Count : 3
                                        Hold Down Time : 10
Statistics
I. Fwd. Pkts. : 0
I. Fwd. Octs. : 0
                                       I. Dro. Pkts. : 0
                                       I. Dro. Octs. : 0
E. Fwd. Pkts.
               : 0
                                        E. Fwd. Octets : 0
Associated LSP LIST :
No LSPs Associated
APIPE Service Destination Point specifics
______
                                     Oper Concat Limit : 1
Admin Concat Limit: 1
Peer Concat Limit : n/a
                                       Max Concat Delay : 400
```

| SAP 1/4/14.1:55                                                                                                                                                        |                                                                                    |                                            |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| <br>Service Id                                                                                                                                                         | : 5                                                                                |                                            |                   |
| SAP                                                                                                                                                                    | : 1/4/14.1:55                                                                      | Encap                                      | : atm             |
| Admin State                                                                                                                                                            | : Up                                                                               | Oper State                                 | : Down            |
|                                                                                                                                                                        | : ServiceAdminDown                                                                 |                                            |                   |
| Multi Svc Site                                                                                                                                                         | PortOperDown L2OperDown                                                            |                                            |                   |
|                                                                                                                                                                        | : 03/11/2008 19:58:19                                                              |                                            |                   |
| -                                                                                                                                                                      | : 04/01/2008 17:03:42                                                              |                                            |                   |
|                                                                                                                                                                        | : regular                                                                          |                                            |                   |
| Admin MTU                                                                                                                                                              | : 1572                                                                             | Oper MTU                                   | : 1572            |
| Ingr IP Fltr-Id                                                                                                                                                        |                                                                                    | Egr IP Fltr-Id                             |                   |
| Ingr Mac Fltr-Id                                                                                                                                                       |                                                                                    | Egr Mac Fltr-Id                            |                   |
| tod-suite                                                                                                                                                              | : None                                                                             | qinq-pbit-marking                          | : both            |
| Egr Agg Rate Limit                                                                                                                                                     |                                                                                    |                                            |                   |
| Endpoint                                                                                                                                                               | : N/A                                                                              |                                            |                   |
| Acct. Pol                                                                                                                                                              | : None                                                                             | Collect Stats                              | : Disabled        |
| QOS                                                                                                                                                                    |                                                                                    |                                            |                   |
| Ingress qos-policy<br>Shared Q plcy                                                                                                                                    |                                                                                    | Egress qos-policy<br>Multipoint shared     | : 1<br>: Disabled |
| Sap Statistics                                                                                                                                                         |                                                                                    |                                            |                   |
| Last Cleared Time                                                                                                                                                      | : N/A                                                                              |                                            |                   |
|                                                                                                                                                                        | Packets                                                                            | Octets                                     |                   |
| Forwarding Engine :                                                                                                                                                    | Stats                                                                              |                                            |                   |
| Dropped                                                                                                                                                                | : 0                                                                                | n/a                                        |                   |
|                                                                                                                                                                        | : 30                                                                               | n/a                                        |                   |
| Off. HiPrio                                                                                                                                                            | - / -                                                                              | n/a                                        |                   |
|                                                                                                                                                                        | : n/a                                                                              |                                            |                   |
| Off. LowPrio<br>Queueing Stats(Ing:                                                                                                                                    | ress QoS Policy 1)                                                                 |                                            |                   |
| Off. LowPrio<br>Queueing Stats(Ing<br>Dro. HiPrio                                                                                                                      | ress QoS Policy 1)                                                                 | n/a                                        |                   |
| Off. LowPrio<br>Queueing Stats(Ing:<br>Dro. HiPrio<br>Dro. LowPrio                                                                                                     | ress QoS Policy 1) : 0 : n/a                                                       | n/a                                        |                   |
| Off. LowPrio Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf                                                                                                  | ress QoS Policy 1) : 0 : n/a : 15                                                  | n/a<br>15                                  |                   |
| Off. LowPrio Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf                                                                                                  | ress QoS Policy 1) : 0 : n/a                                                       | n/a                                        |                   |
| Off. LowPrio  Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf For. OutProf  Queueing Stats(Egre                                                               | ress QoS Policy 1) : 0 : n/a : 15 : 15                                             | n/a<br>15<br>15                            |                   |
| Off. LowPrio  Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf For. OutProf  Queueing Stats(Egre                                                               | ress QoS Policy 1) : 0 : n/a : 15 : 15 ess QoS Policy 1) : 0                       | n/a<br>15<br>15                            |                   |
| Off. LowPrio  Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf For. OutProf  Queueing Stats(Egre Dro. InProf Dro. OutProf                                      | ress QoS Policy 1) : 0 : n/a : 15 : 15 ess QoS Policy 1) : 0 : n/a                 | n/a<br>15<br>15<br>n/a<br>n/a              |                   |
| Off. LowPrio  Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf For. OutProf  Queueing Stats(Egre Dro. InProf Dro. OutProf For. OutProf                         | ress QoS Policy 1) : 0 : n/a : 15 : 15 ess QoS Policy 1) : 0                       | n/a<br>15<br>15                            |                   |
| Off. LowPrio  Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf For. OutProf  Queueing Stats(Egre Dro. InProf Dro. OutProf For. InProf For. OutProf For. InProf | ress QoS Policy 1) : 0 : n/a : 15 : 15 : 15 ess QoS Policy 1) : 0 : n/a : 30 : n/a | n/a<br>15<br>15<br>n/a<br>n/a<br>30<br>n/a |                   |
| Queueing Stats(Ing: Dro. HiPrio Dro. LowPrio For. InProf For. OutProf  Queueing Stats(Egre Dro. InProf Dro. OutProf For. OutProf For. InProf For. InProf For. OutProf  | ress QoS Policy 1) : 0 : n/a : 15 : 15 : 15 ess QoS Policy 1) : 0 : n/a : 30 : n/a | n/a<br>15<br>15<br>n/a<br>n/a<br>30<br>n/a |                   |

Ingress Queue 1 (Unicast) (Priority)

| Off. HiPrio                               | : 30     | n/a                          |
|-------------------------------------------|----------|------------------------------|
| Off. LoPrio                               | : n/a    | n/a                          |
| Dro. HiPrio                               | : 0      | n/a                          |
| Dro. LoPrio                               | : n/a    | n/a                          |
| For. InProf                               | : 15     | 15                           |
| For. OutProf                              | : 15     | 15                           |
|                                           |          |                              |
| Egress Queue 1                            |          |                              |
| For. InProf                               |          | 30                           |
| For. OutProf                              | : n/a    | n/a                          |
| Dro. InProf                               | : 0      | n/a                          |
| Dro. OutProf                              |          | n/a                          |
|                                           |          |                              |
| ATM SAP Configuratio                      |          |                              |
|                                           |          | Egress TD Profile : 1        |
| Ingress TD Profile:                       |          | Egress ID Profile : 1        |
| Alarm Cell Handling:<br>OAM Termination : |          | Deriodia Ioenhaak . Disabled |
| OAM TERMINACION :                         | Disabled | Periodic Loopback : Disabled |
|                                           |          |                              |
| Service Endpoints                         |          |                              |
| •                                         |          |                              |
| No Endpoints found.                       |          |                              |
|                                           |          |                              |
| *A:ALU-A>show>servic                      | e#       |                              |

### Sample Output (Cpipe service)

| *A:ALU-A>show>se                                                             | rvice# id 51 all                                                  |                                 |                       |
|------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------------------|
|                                                                              | .===========                                                      |                                 |                       |
| Service Detailed                                                             |                                                                   |                                 |                       |
| ======================================                                       |                                                                   | <br>Vpn Id : 0                  |                       |
| Service Type                                                                 | : Cpipe                                                           | VLL Type : C                    | ESOPSN                |
| Description                                                                  | : Henry Cpipe                                                     |                                 |                       |
| Customer Id                                                                  | : 2                                                               |                                 |                       |
| Last Status Chan                                                             | ge: 03/11/2008 19:58:1                                            | 19                              |                       |
| Last Mgmt Change                                                             | : 03/31/2008 20:41:1                                              | 13                              |                       |
| Admin State                                                                  | : Down                                                            | Oper State : D                  | own                   |
| MTU                                                                          | : 1514                                                            |                                 |                       |
|                                                                              |                                                                   |                                 |                       |
| Vc Switching                                                                 | : False                                                           |                                 |                       |
| SAP Count                                                                    | : 1                                                               | SDP Bind Count : 1              |                       |
| SAP Count                                                                    | : 1                                                               | SDP Bind Count : 1              |                       |
| SAP Count                                                                    | : 1                                                               |                                 |                       |
| SAP Count                                                                    | : 1                                                               |                                 |                       |
| SAP CountService Destinat                                                    | : 1<br>.ion Points(SDPs)                                          |                                 |                       |
| SAP Count                                                                    | : 1<br>                                                           |                                 |                       |
| SAP CountService Destinat                                                    | : 1<br>                                                           |                                 |                       |
| SAP Count Service Destinat Sdp Id 51:51 -                                    | : 1<br>ion Points(SDPs)<br>                                       |                                 | : Spoke               |
| SAP Count Service Destinat Sdp Id 51:51 -                                    | : 1<br>ion Points(SDPs)<br>(138.120.38.1)<br>: 51:51<br>: CESOPSN | Type                            | : Spoke<br>: 0        |
| SAP Count  Service Destinat  Sdp Id 51:51 -  SDP Id  VC Type  Admin Path MTU | : 1<br>ion Points(SDPs)<br>(138.120.38.1)<br>: 51:51<br>: CESOPSN | Type<br>VC Tag                  | : Spoke<br>: 0        |
| SAP Count  Service Destinat  Sdp Id 51:51 -  SDP Id  VC Type  Admin Path MTU | : 1                                                               | Type<br>VC Tag<br>Oper Path MTU | : Spoke<br>: 0<br>: 0 |

```
Ingress Label : 0
Ing mac Fltr : n/a
Ing ip Fltr : n/a
                                             Egress Label : 0
Egr mac Fltr : n/a
Egr ip Fltr : n/a
Admin ControlWord : Preferred
                                              Oper ControlWord : True
Admin BW(Kbps) : 0
                                              Oper BW(Kbps) : 0
                                              Signaling
Last Status Change : 03/11/2008 19:58:19
                                                               : TLDP
Last Mgmt Change : 03/31/2008 20:41:13
Endpoint : N/A
                                              Precedence : 4
Class Fwding State : Down
Flags : SdpOperDown SdpOperDown
                     NoIngVCLabel NoEgrVCLabel
                     PathMTUTooSmall
Mac Move
                  : Ukwn
                                             Blockable Level : Unknown
Peer Pw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
KeepAlive Information :
                                     Oper State : Disabled Hello Msg Len : 0
Admin State : Disabled Hello Time : 100
Max Drop Count : 3
                                              Hold Down Time : 10
Statistics
Statistics : I. Fwd. Pkts. : 0
I. Fwd. Octs. : 0
                                            I. Dro. Pkts. : 0
                                             I. Dro. Octs. : 0
                 : 0
                                             E. Fwd. Octets : 0
E. Fwd. Pkts.
Associated LSP LIST :
No LSPs Associated
CPIPE Service Destination Point specifics
______
                                           Peer Bit-rate : n/a
Peer Payload Size : n/a
Peer Sig Pkts : No Sig.
Peer CAS Framing : No CAS
Peer RTP Header : No
Local Bit-rate : 10
Local CAS Framing : No CAS
Local RTP Header : Yes
Local Differential : No
                                             Peer Differential : No
Local Timestamp : 0
                                             Peer Timestamp : 0
Service Access Points
SAP 1/4/5.1
Service Id : 51
                                            Encap
                 : 1/4/5.1
                                            Encap
Oper State
SAP
                                                               : cem
Admin State : Up
                                                              : Down
                  : ServiceAdminDown
Flags
                   PortOperDown
Multi Svc Site : None
Last Status Change : 03/11/2008 19:58:19
```

```
Last Mgmt Change : 03/31/2008 21:38:50
Sub Type
       : regular
Admin MTU
             : 1572
                                    Oper MTU : 1572
Ingr IP Fltr-Id : n/a
                                    Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
                                    Egr Mac Fltr-Id : n/a
tod-suite : None
                                    qinq-pbit-marking : both
Egr Agg Rate Limit : max
Endpoint : N/A
                                    Collect Stats
              : Default
008
Ingress qos-policy : 1
                             Egress qos-policy : 1
Shared Q plcy : n/a
                                  Multipoint shared : Disabled
______
Sap Statistics
Last Cleared Time : N/A
                 Packets
                                     Octets
Forwarding Engine Stats
Dropped : 0
Off. HiPrio : 0
Off. LowPrio : n/a
                                    0
                                     0
                                     n/a
Queueing Stats(Ingress QoS Policy 1)
Dro. HiPrio : 0
Dro. LowPrio
                 : n/a
                                     n/a
           : 0
For. InProf
For. OutProf
               : 0
Queueing Stats(Egress QoS Policy 1)
Dro. InProf : n/a
                                     n/a
               : n/a
Dro. OutProf
                                     n/a
           : n/a
: n/a
For. InProf
                                     n/a
For. OutProf
Sap per Queue stats
                 Packets
                                    Octets
Ingress Queue 1 (Unicast) (Priority)
Off. HiPrio : 0
                                     0
             : n/a
: 0
: n/a
Off. LoPrio
                                     n/a
Dro. HiPrio
Dro. LoPrio
                                     n/a
For. InProf
                 : 0
                : 0
For. OutProf
Egress Queue 1
For. InProf
               : n/a
                                     n/a
For. OutProf
               : n/a
                                     n/a
          : n/a
Dro. InProf
                                    n/a
Dro. OutProf
______
CEM SAP Configuration Information
```

| Endpoint Type : NxD<br>Payload Size : 160<br>Use RTP Header : Yes<br>Timestamp Freq : 0<br>Effective PDVT : +/-                                   |                                                                                       | Bit-rate<br>Jitter Buffer<br>Differential<br>CAS Framing | : 8<br>: No  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|
| Cfg Alarm : str<br>Alarm Status :                                                                                                                 |                                                                                       |                                                          |              |
| CEM SAP Statistics                                                                                                                                |                                                                                       |                                                          |              |
|                                                                                                                                                   | Packets                                                                               |                                                          | Fronts       |
| Egress Stats                                                                                                                                      | Idevees                                                                               | Seconds                                                  | Evenes       |
| Forwarded                                                                                                                                         | : 0                                                                                   |                                                          |              |
| Dropped                                                                                                                                           | : 0                                                                                   |                                                          |              |
| Missing                                                                                                                                           | : 0                                                                                   |                                                          |              |
| Reordered Forwarded                                                                                                                               |                                                                                       |                                                          |              |
| Underrun                                                                                                                                          | : 0                                                                                   |                                                          | 0            |
| Overrun                                                                                                                                           | : 0                                                                                   |                                                          | 0            |
| Misordered Dropped                                                                                                                                | : 0                                                                                   |                                                          |              |
| Malformed Dropped                                                                                                                                 |                                                                                       |                                                          |              |
| LBit Dropped                                                                                                                                      | : 0                                                                                   |                                                          |              |
| Multiple Dropped                                                                                                                                  | : 0                                                                                   |                                                          |              |
| Error                                                                                                                                             | :                                                                                     | 0                                                        |              |
| Severely Error                                                                                                                                    | :                                                                                     | 0                                                        |              |
| Unavailable                                                                                                                                       | :                                                                                     | 0                                                        |              |
| Failure Count                                                                                                                                     | :                                                                                     |                                                          | 0            |
| Ingress Stats                                                                                                                                     |                                                                                       |                                                          |              |
| Forwarded                                                                                                                                         | : 0                                                                                   |                                                          |              |
| Dropped                                                                                                                                           | : 0                                                                                   |                                                          |              |
|                                                                                                                                                   |                                                                                       |                                                          |              |
| Service Endpoints                                                                                                                                 |                                                                                       |                                                          |              |
|                                                                                                                                                   |                                                                                       |                                                          |              |
| No Endpoints found.                                                                                                                               | :========                                                                             |                                                          | .=========== |
|                                                                                                                                                   |                                                                                       |                                                          |              |
|                                                                                                                                                   |                                                                                       |                                                          |              |
| Sample Quitnut (F                                                                                                                                 | nine service)                                                                         |                                                          |              |
| Sample Output (E                                                                                                                                  |                                                                                       |                                                          |              |
| Sample Output (E*A:ALU-A>show>servic                                                                                                              | =======                                                                               |                                                          |              |
| *A:ALU-A>show>servic                                                                                                                              | e# id 101 all                                                                         |                                                          |              |
|                                                                                                                                                   | e# id 101 all                                                                         |                                                          |              |
| *A:ALU-A>show>servic                                                                                                                              | e# id 101 all                                                                         | ======================================                   | : 101        |
| *A:ALU-A>show>servic  Service Detailed Inf  Service Id :                                                                                          | e# id 101 all                                                                         |                                                          |              |
| *A:ALU-A>show>servic  Service Detailed Inf  Service Id :                                                                                          | e# id 101 all  cormation  101  Epipe                                                  |                                                          |              |
| *A:ALU-A>show>servic  Service Detailed Inf  Service Id : Service Type :                                                                           | Pe# id 101 all  Cormation  101  Epipe 2                                               | Vpn Id                                                   |              |
| *A:ALU-A>show>servic  Service Detailed Inf  Service Id : Service Type : Customer Id : Last Status Change:                                         | Pe# id 101 all  Cormation  101  Epipe 2 03/11/2008 19:58:19                           | ======================================                   |              |
| *A:ALU-A>show>service  Service Detailed Inf  Service Id : Service Type : Customer Id : Last Status Change: Last Mgmt Change :                     | Pe# id 101 all  Cormation  101  Epipe 2 03/11/2008 19:58:19                           | ======================================                   | : 101        |
| *A:ALU-A>show>service  Service Detailed Inf  Service Id : Service Type : Customer Id : Last Status Change: Last Mgmt Change : Admin State :       | Pe# id 101 all  Cormation  101  Epipe 2 03/11/2008 19:58:19 03/331/2008 18:35:46      | Vpn Id                                                   | : 101        |
| *A:ALU-A>show>service  Service Detailed Inf  Service Id : Service Type : Customer Id : Last Status Change: Last Mgmt Change : Admin State : MTU : | De# id 101 all  cormation  101  Epipe 2 03/11/2008 19:58:19 03/31/2008 18:35:46  Down | Vpn Id                                                   | : 101        |

Service Destination Points(SDPs)

```
Sdp Id 99:99 -(138.120.38.1)
______
SDP Id : 99:99
VC Type : Fthor
                                     Type
VC Tag
                                                      : Spoke
Admin Path MTU : 1512
                                      Oper Path MTU : 1512
Far End
               : 138.120.38.1
                                      Delivery
                                                      : MPLS
Admin State : Up
Acct. Pol : None
Ingress Label : 0
Ing mac Fltr : n/a
Ing ip Fltr : n/a
                                       Oper State
                                                      : Down
                                       Collect Stats : Disabled Egress Label : 0
                                      Egr mac Fltr
Egr ip Fltr
                                                      : n/a
                                                       : n/a
                                     Oper ControlWord : False
Admin ControlWord : Not Preferred
Class Fwding State : Down
      : SdpOperDown SdpOperDown
Flags
                 NoIngVCLabel NoEgrVCLabel
                 PathMTUTooSmall
Mac Move : Ukwn
Peer Pw Bits : None
Peer Fault Ip : None
                                      Blockable Level : Unknown
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
KeepAlive Information :
Admin State : Disabled Hello Time : 10
                                       Oper State : Disabled
                                       Hello Msg Len
                                                       : 0
Max Drop Count : 3
                                        Hold Down Time : 10
Statistics
I. Fwd. Pkts. : 0
                                       I. Dro. Pkts. : 0
               : 0
I. Fwd. Octs.
                                       I. Dro. Octs.
                                                      : 0
E. Fwd. Pkts.
                                       E. Fwd. Octets : 0
Associated LSP LIST :
No LSPs Associated
Service Access Points
SAP 1/3/1
Service Id : 101
                                    Encap
Oper State
SAP
               : 1/3/1
                                                      : null
Admin State
               : Down
                                                      : Down
Flags
               : ServiceAdminDown SapAdminDown
                PortOperDown
Multi Svc Site : None
Last Status Change : 03/11/2008 19:58:19
```

```
Last Mgmt Change : 03/31/2008 17:56:05
Sub Type : regular Dot1Q Ethertype : 0x8100
                                      QinQ Ethertype : 0x8100
LLF Admin State : Down
                                      LLF Oper State : Clear
Admin MTU : 1514
Ingr IP Fltr-Id : n/a
                                       Oper MTU : 1514
                                      Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
                                      Egr Mac Fltr-Id : n/a
tod-suite : None
                                       qinq-pbit-marking : both
Egr Agg Rate Limit : max
Endpoint : N/A
Q Frame-Based Acct : Disabled
Vlan-translation : None
                                      Collect Stats : Enabled
Acct. Pol
               : Default
005
                                 Egress qos-policy: 1
Ingress qos-policy : 1
Shared Q plcy : n/a
                                       Multipoint shared : Disabled
Sap Statistics
Last Cleared Time : N/A
                   Packets
                                        Octets
Forwarding Engine Stats
Dropped : 0
Off. HiPrio : 0
Off. HiPrio : 0
Off. LowPrio : 0
Queueing Stats(Ingress QoS Policy 1)
Dro. HiPrio : 0
Dro. LowPrio
                 : 0
For. InProf : 0
For. OutProf : 0
                                          Λ
Queueing Stats(Egress QoS Policy 1)
Dro. InProf : 0
Dro. OutProf : 0
                                         0
For. InProf
                  : 0
                                         0
For. OutProf : 0
Sap per Queue stats
______
                                        Octets
                    Packets
Ingress Queue 1 (Unicast) (Priority)
Off. HiPrio : 0
Off. LoPrio : 0
                 : 0
               : 0
Dro. HiPrio
Dro. LoPrio
                 : 0
For. InProf
                 : 0
                                         0
                 : 0
                                         Ω
For. OutProf
Egress Queue 1
           : 0
: 0
For. InProf
For. OutProf
                  : 0
                                          0
```

| Dro. InProf<br>Dro. OutProf | : 0<br>: 0 | 0<br>0 |  |
|-----------------------------|------------|--------|--|
| Service Endpoints           |            |        |  |
| No Endpoints found.         |            |        |  |

### base

**Syntax** base

Context show>service>id

**Description** This command displays basic information about the service specified by the ID, including service

type, description, SAPs and SDPs.

Output **Show Service-ID Base** — The following table describes show service-id base output fields.

**Table 28: Show Service-ID Base Output Fields** 

| Label                     | Description                                                                               |  |
|---------------------------|-------------------------------------------------------------------------------------------|--|
| Service Basic Information |                                                                                           |  |
| Service Id                | Identifies the service by its ID number                                                   |  |
| VPN Id                    | Identifies the VPN by its ID number                                                       |  |
| Service Type              | Specifies the type of service                                                             |  |
| VLL Type                  | Specifies the VLL type                                                                    |  |
| Description               | Displays generic information about the service                                            |  |
| Customer Id               | Identifies the customer by its ID number                                                  |  |
| Last Status<br>Change     | Displays the date and time of the most recent status change to this service               |  |
| Last Mgmt Change          | Displays the date and time of the most recent management-initiated change to this service |  |
| Admin State               | Specifies the desired state of the service                                                |  |
| Oper State                | Specifies the operating state of the service                                              |  |
| MTU                       | Specifies the service MTU                                                                 |  |
| SAP Count                 | Displays the number of SAPs specified for this service                                    |  |
| SDP Bind Count            | Displays the number of SDPs bound to this service                                         |  |

Table 28: Show Service-ID Base Output Fields (Continued)

| Label Desc | ription |
|------------|---------|
|------------|---------|

| Service Access and Destination Points |                                                                                                                                                                                                |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Identifier                            | Lists the SAP and SDP                                                                                                                                                                          |  |
| Туре                                  | Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on the SDP                                                               |  |
| AdmMTU                                | Specifies the desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end edge services router (ESR), without requiring the packet to be fragmented |  |
| OprMTU                                | Specifies the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end ESR, without requiring the packet to be fragmented                         |  |
| Adm                                   | Indicates the operating state of the SAP or SDP                                                                                                                                                |  |
| Opr                                   | Indicates the operating state of the SAP or SDP                                                                                                                                                |  |

### Sample Output (Apipe ATMVcc base)

\_\_\_\_\_\_ \*A:ALU-12# show service id 701 base

Service Basic Information

\_\_\_\_\_\_

Last Status Change: 02/10/2008 03:30:03 Last Mgmt Change : 02/10/2008 03:35:10

Admin State : Up Oper State : Down

: 1508 MTU Vc Switching : False

: 1 SAP Count SDP Bind Count : 1

Service Access & Destination Points

Type AdmMTU OprMTU Adm Identifier 

[<sap-id>] indicates a Managed SAP

# egress-label

Syntax egress-label start-label [end-label]

Context show>service

**Description** This command displays services using the range of egress labels.

If only the mandatory *start-label* parameter is specified, only services using the specified label are displayed.

If both *start-label* and *end-label* parameters are specified, the services using this range of labels are displayed.

Use the **show router ldp bindings** command to display dynamic labels.

**Parameters** 

start-label — indicates the starting egress label value for which to display services using the label range. If only start-label is specified, services only using start-label are displayed.

**Values** 0, 2048 to 131071

end-label — indicates the ending egress label value for which to display services using the label range

**Default** the *start-label* value **Values** 2049 to 131071

Output

**Show Service Egress Command Output** — The following table describes show service egress label output fields.

**Table 29: Show Service Egress Label Output Fields** 

| Label                    | Description                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------|
| Svc Id                   | Identifies the service                                                                                     |
| Sdp Binding              | Identifies the SDP                                                                                         |
| Туре                     | Specifies the SDP binding type (for example, spoke)                                                        |
| I. Lbl                   | Displays the VC label used by the far-end device to send packets to this device in this service by the SDP |
| E. Lbl                   | Displays the VC label used by this device to send packets to the far-end device in this service by the SDP |
| Number of bindings found | Indicates the total number of SDP bindings that exist within the specified egress label range              |

### **Sample Output**

\_\_\_\_\_

\*A:ALU-12# show service egress-label 0 131071

|     | Service Labels<br> |      |        | .=========== |
|-----|--------------------|------|--------|--------------|
|     | Sdp Binding        |      |        | E.Lbl        |
| 1   |                    | Spok |        | 0            |
| 103 | 101:103            | Spok | 131067 | 131067       |
| 104 | 301:104            | Spok | 131066 | 131067       |
| 105 | 501:105            | Spok | 131065 | 131068       |
| 303 | 101:303            | Spok | 131064 | 131066       |
| 304 | 301:304            | Spok | 131063 | 131064       |
| 305 | 501:305            | Spok | 131062 | 131065       |
| 701 | 101:701            | Spok | 131059 | 131064       |
| 702 | 101:702            | Spok | 131058 | 131063       |
| 703 | 501:703            | Spok | 131057 | 131064       |
| 704 | 501:704            | Spok | 131056 | 131063       |
| 705 | 301:705            | Spok | 131055 | 131062       |
| 706 | 301:706            | Spok | 131054 | 131061       |
| 805 | 201:805            | Spok | 131053 | 131062       |
| 806 | 201:806            | Spok | 131052 | 131061       |
| 807 | 401:807            | Spok | 131051 | 131060       |
| 808 | 401:808            | Spok | 131050 | 131059       |
| 903 | 201:903            | Spok | 131061 | 131065       |
| 904 | 401:904            | Spok | 131060 | 131063       |

Number of Bindings Found : 19

\_\_\_\_\_\_

### id

Syntax id service-id

Context show>service

**Description** This command displays information for a particular service-id.

**Parameters** service-id — identifies the service in the domain

# ingress-label

Syntax ingress-label start-label [end-label]

Context show>service

**Description** This command displays services using the range of ingress labels.

If only the mandatory *start-label* parameter is specified, only services using the specified label are displayed.

If both *start-label* and *end-label* parameters are specified, the services using this range of labels are displayed.

Use the **show router** *vprn-service-id* **ldp bindings** command to display dynamic labels.

#### **Parameters**

start-label — indicates the starting ingress label value for which to display services using the label range. If only start-label is specified, services only using start-label are displayed.

**Values** 0, 2048 to 131071

end-label — indicates the ending ingress label value for which to display services using the label range

**Default** the *start-label* value **Values** 2049 to 131071

#### Output

**Show Service Ingress-Label** — The following table describes show service ingress-label output fields:

Table 30: Show Service Ingress Label Output Fields

| Label                       | Description                                                                                                     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| Svc ID                      | Identifies the service                                                                                          |
| SDP Binding                 | Identifies the SDP                                                                                              |
| Туре                        | Specifies the SDP binding type (for example, spoke)                                                             |
| I.Lbl                       | Displays the ingress label used by the far-end device to send packets to this device in this service by the SDP |
| E.Lbl                       | Displays the egress label used by this device to send packets to the farend device in this service by the SDP   |
| Number of<br>Bindings Found | Indicates the number of SDP bindings within specified the label range                                           |

#### **Sample Output**

\*A:ALU-12# show service ingress-label 0

| Svc Id | Sdp Binding | Type | I.Lbl | E.Lbl |  |
|--------|-------------|------|-------|-------|--|
| 100    | 300:100     | Spok | 0     | 0     |  |
| 200    | 301:200     | Spok | 0     | 0     |  |
| 300    | 302:300     | Spok | 0     | 0     |  |
| 400    | 400:400     | Spok | 0     | 0     |  |

\*A:ALU-12#

#### labels

Syntax labels

Context show>service>id

**Description** This command displays the labels being used by the service.

**Output** Show Service-ID Labels — The following table describes show service-id labels output fields:

**Table 31: Service-ID Labels Output Fields** 

| Label       | Description                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------|
| Svc Id      | Identifies the service                                                                                     |
| Sdp Binding | Identifies the SDP bound to the service                                                                    |
| Туре        | Indicates the SDP binding type (for example, spoke)                                                        |
| I. Lbl      | Displays the VC label used by the far-end device to send packets to this device in this service by the SDP |
| E. Lbl      | Displays the VC label used by this device to send packets to the far-end device in this service by the SDP |

#### **Sample Output**

\*A:ALU-12# show service id 1 labels

| Martini Service Labels |           |       |       |  |
|------------------------|-----------|-------|-------|--|
|                        |           |       |       |  |
| Svc Id Sdp Bind        | ding Type | I.Lbl | E.Lbl |  |
|                        |           |       |       |  |
| 1 10:1                 | Spok      | 0     | 0     |  |
|                        |           |       |       |  |
| Number of Bound SDE    | Ps : 1    |       |       |  |
|                        |           |       |       |  |

<sup>\*</sup>A:ALU-12#

#### sap

Syntax sap sap-id [detail]

Context show>service>id

Description This command displays information for the SAPs associated with the service.

If no optional parameters are specified, a summary of all associated SAPs is displayed.

Parameters sap-id — identifies the SAPs for the service in the form slot/mda/port[.channel]

detail — displays detailed information for the SAP

### **Output** Show Service-ID SAP — The following table describes show service SAP fields:

Table 32: SAP Fields

| Label               | Description                                                                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service Access Poin | ts                                                                                                                                                                         |
| Service Id          | Identifies the service                                                                                                                                                     |
| SAP                 | Specifies the ID of the access port where this SAP is defined                                                                                                              |
| Encap               | Specifies the encapsulation type for this SAP on the access port                                                                                                           |
| Admin State         | Specifies the desired state of the SAP                                                                                                                                     |
| Oper State          | Specifies the operating state of the SAP                                                                                                                                   |
| Flags               | Specifies the conditions that affect the operating status of this SAP. Display output includes SeviceAdminDown, PortOperDown, and so on                                    |
| Last Status Change  | Specifies the date and time of the most recent status change to this SAP                                                                                                   |
| Last Mgmt Change    | Specifies the date and time of the most recent management-initiated change to this SAP                                                                                     |
| Dot1Q Ethertype     | Identifies the value of the dot1q Ethertype                                                                                                                                |
| LLF Admin State     | Specifies the Link Loss Forwarding administrative state                                                                                                                    |
| LLF Oper State      | Specifies the Link Loss Forwarding operational state                                                                                                                       |
| Admin MTU           | Specifies the desired largest service frame size (in octets) that can be transmitted through this SAP to the far-end router, without requiring the packet to be fragmented |
| Oper MTU            | Specifies the actual largest service frame size (in octets) that can be transmitted through this SAP to the far-end router, without requiring the packet to be fragmented  |
| Ingr IP Fltr-Id     | Specifies the ingress IP filter policy ID assigned to the SAP                                                                                                              |
| Egr IP Fltr-Id      | Specifies the egress IP filter policy ID assigned to the SAP                                                                                                               |
| Ingr Mac Fltr-Id    | Specifies the ingress MAC filter policy ID assigned to the SAP                                                                                                             |
| Egr Mac Fltr-Id     | Specifies the egress MAC filter policy ID assigned to the SAP                                                                                                              |
| Acct. Pol           | Specifies the accounting policy applied to the SAP                                                                                                                         |
| Collect Stats       | Specifies whether accounting statistics are collected on the SAP                                                                                                           |

Table 32: SAP Fields (Continued)

| Label               | Description                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
| QOS                 |                                                                                                                                  |
| Ingress qos-policy  | Displays the SAP ingress QoS policy ID                                                                                           |
| Egress qos-policy   | Displays the SAP egress QoS policy ID                                                                                            |
| SAP Statistics      |                                                                                                                                  |
| Last Cleared Time   | Displays the date and time that a clear command was issued on statistics                                                         |
| Forwarding Engine S | tats                                                                                                                             |
| Dropped             | Indicates the number of packets or octets dropped by the forwarding engine                                                       |
| Off. HiPrio         | Indicates the number of high-priority packets or octets offered to the forwarding engine                                         |
| Off. LowPrio        | Indicates the number of low-priority packets offered to the forwarding engine                                                    |
| Queueing Stats (Ing | ress QoS Policy)                                                                                                                 |
| Dro. HiPrio         | Indicates the number of high-priority packets or octets discarded, as determined by the SAP ingress QoS policy                   |
| Dro. LowPrio        | Indicates the number of low-priority packets discarded, as determined by the SAP ingress QoS policy                              |
| For. InProf         | Indicates the number of in-profile packets or octets (rate below CIR) forwarded, as determined by the SAP ingress QoS policy     |
| For. OutProf        | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded, as determined by the SAP ingress QoS policy |
| Queueing Stats (Egr | ess QoS Policy)                                                                                                                  |
| Dro. InProf         | Indicates the number of in-profile packets or octets discarded, as determined by the SAP egress QoS policy                       |
| Dro. OutProf        | Indicates the number of out-of-profile packets or octets discarded, as determined by the SAP egress QoS policy                   |
| For. InProf         | Indicates the number of in-profile packets or octets (rate below CIR) forwarded, as determined by the SAP egress QoS policy      |
| For. OutProf        | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded, as determined by the SAP egress QoS policy  |

Table 32: SAP Fields (Continued)

| Label                  | Description                                                                              |
|------------------------|------------------------------------------------------------------------------------------|
| Sap per Queue stats    |                                                                                          |
| Ingress Queue n        | Specifies the index of the ingress QoS queue of this SAP, where n is the index number    |
| Off. HiPrio            | Indicates the number of packets or octets of high-priority traffic for the SAP (offered) |
| Off. LoPrio            | Indicates the number or packets or octets of low-priority traffic for the SAP (offered)  |
| Dro. HiPrio            | Indicates the number of high-priority traffic packets or octets dropped                  |
| Dro. LoPrio            | Indicates the number of low-priority traffic packets or octets dropped                   |
| For. InProf            | Indicates the number of in-profile packets or octets (rate below CIR) forwarded          |
| For. OutProf           | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded      |
| Egress Queue n         | Specifies the index of the egress QoS queue of the SAP, where n is the index number      |
| For. InProf            | Indicates the number of in-profile packets or octets (rate below CIR) forwarded          |
| For. OutProf           | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded      |
| Dro. InProf            | Indicates the number of in-profile packets or octets dropped for the SAP                 |
| Dro. OutProf           | Indicates the number of out-of-profile packets or octets discarded                       |
| ATM SAP Configuration  | on Information                                                                           |
| Ingress TD Profile     | The profile ID of the traffic descriptor applied to the ingress SAP                      |
| Egress TD Profile      | The profile ID of the traffic descriptor applied to the egress SAP                       |
| Alarm Cell<br>Handling | Indicates that OAM cells are being processed                                             |
| OAM Termination        | Indicates whether this SAP is an OAM termination point                                   |

Table 32: SAP Fields (Continued)

| Label | Description |
|-------|-------------|
|-------|-------------|

| CEM SAP Configuration Information |                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Endpoint Type                     | Specifies the type of endpoint                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Bit-rate                          | Specifies the number of DS0s or timeslots in the channel group                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Payload Size                      | Specifies the number of octets contained in the payload of a TDM PW packet when the packet is transmitted                                                                                                                                                                                                                                                                                                      |  |  |
| Jitter Buffer                     | Specifies the size of the receive jitter buffer, expressed in milliseconds                                                                                                                                                                                                                                                                                                                                     |  |  |
| Use RTP Header                    | Specifies whether RTP headers are used in CES packets (Yes or No)                                                                                                                                                                                                                                                                                                                                              |  |  |
| CAS Framing                       | Specifies the type of CAS framing                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Effective PVDT                    | Displays the peak-to-peak packet delay variation (PDV) used by the circuit emulation service.  Since the operating system may adjust the jitter buffer setting in order to ensure no packet loss, the configured jitter buffer value may not be the value used by the system. The effective PVDT provides an indication that the PVD has been adjusted by the operating system (see Jitter Buffer on page 110) |  |  |
| Cfg Alarm                         | Specifies the alarms that have alarm reporting enabled                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Alarm Status                      | Indicates the current alarm state (for example, stray, malformed, packet loss, overrun, underrun, remote packet loss, remote fault, or remote RDI)                                                                                                                                                                                                                                                             |  |  |
| CEM SAP Statistics                |                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Packets                           | (Column heading) Displays the number of packets counted for the statistic since the last counter reset                                                                                                                                                                                                                                                                                                         |  |  |
| Seconds                           | (Column heading) Displays the number of seconds elapsed for the statistic since the last counter reset                                                                                                                                                                                                                                                                                                         |  |  |
| Events                            | (Column heading) Displays the number of events counted for the statistic since the last counter reset                                                                                                                                                                                                                                                                                                          |  |  |
| Egress Stats                      | Indicates that the following statistics are egress statistics                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Forwarded                         | Displays the number of forwarded packets                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Missing                           | Displays the number of missing packets                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Reordered and Forwarded           | Displays the number of packets that have been reordered and forwarded                                                                                                                                                                                                                                                                                                                                          |  |  |

Table 32: SAP Fields (Continued)

| Label              | Description                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------|
| Underrun           | Displays the accumulated number of underrun packets for the number of underrun events        |
| Overrun            | Displays the accumulated number of overrun packets for the number of overrun events          |
| Misordered Dropped | Displays the number of misordered packets that have been dropped                             |
| Malformed Dropped  | Displays the number of malformed packets that have been dropped                              |
| Error              | Displays the accumulated number of seconds that have passed while any error has occurred     |
| Severely Error     | Displays the accumulated number of seconds that have passed while severe errors has occurred |
| Unavailable        | Displays the accumulated number of seconds that have passed while the Cpipe is unavailable   |
| Failure Count      | Displays the accumulated number of failed events                                             |
| Ingress Stats      | Indicates that the following statistics are ingress statistics                               |
| Forwarded          | Displays the number of forwarded packets                                                     |
| Dropped            | Displays the number of dropped packets                                                       |

The following CLI sample outputs are shown:

- Sample Output (Apipe)
- Sample Output (Epipe)

#### Sample Output (Apipe)

\*A:csasim2>show>service>id# sap 1/4/1.1:2 detail

\_\_\_\_\_\_ Service Access Points(SAP)

\_\_\_\_\_\_

Service Id : 2

SAP : 1/4/1.1:2 Encap : atm

Description : Apipe SAP

Admin State : Up Oper State : Down

Flags : PortOperDown L2OperDown

Multi Svc Site : None

Last Status Change : 04/30/2008 13:55:04

Last Mgmt Change : 05/07/2008 15:51:51

Sub Type : regular

Admin MTU : 1572 Oper MTU : 1572 Ingr IP Fltr-Id : n/a Egr IP Fltr-Id : n/a

```
Ingr Mac Fltr-Id : n/a
                                           Egr Mac Fltr-Id : n/a
tod-suite : None
                                           qinq-pbit-marking : both
Egr Agg Rate Limit : max
Endpoint : N/A
                                           Collect Stats : Disabled
Acct. Pol : None
                                      Egress qos-poiro; .
Multipoint shared : Disabled
Ingress qos-policy: 1
Shared Q plcy : n/a
Sap Statistics
Last Cleared Time : N/A
                      Packets
                                            Octets
Forwarding Engine Stats
Dropped : 0
Off. HiPrio : 21900
Off. LowPrio : n/a
                                             n/a
                                             n/a
Queueing Stats(Ingress QoS Policy 1)

      Dro. HiPrio
      : 0

      Dro. LowPrio
      : n/a

      For. InProf
      : 10950

      For. OutProf
      : 10950

                                            n/a
                                            n/a
                                             10950
                                             10950
Queueing Stats(Egress QoS Policy 1)
Dro. InProf : 0
Dro. OutProf : n/a
                                            n/a
Dro. OutProf
                                             n/a
                : 21900
For. InProf
                                            21900
For. OutProf
                   : n/a
                                            n/a
Sap per Queue stats
                      Packets
                                             Octets
Ingress Queue 1 (Unicast) (Priority)
Off. HiPrio : 21900
Off. LoPrio : n/a
                                            n/a
                                            n/a
                  : 0
Dro. HiPrio
                                            n/a
Dro. LoPrio
                  : n/a
                  : 10950
For. InProf
                                            10950
                   : 10950
                                             10950
For. OutProf
Egress Queue 1
                  : 21900
                                            21900
For. InProf
For. OutProf
                    : n/a
                                             n/a
Dro. InProf
                   : 0
                                            n/a
Dro. OutProf
                    : n/a
ATM SAP Configuration Information
______
Ingress TD Profile : 1
                                           Egress TD Profile : 1
Alarm Cell Handling: Enabled
                                   Periodic Loopback : Disabled
OAM Termination : Disabled
_____
```

#### Sample Output (Epipe)

\*A:csasim2>show>service>id# sap 1/3/1:\* detail

| Service Id                          | • 3                                                                                                                                                                         |                                                          |            |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------|
|                                     | : 1/3/1:*                                                                                                                                                                   | Encap                                                    | : q-tag    |
| Admin State                         |                                                                                                                                                                             | Oper State                                               |            |
|                                     | : ServiceAdminDown                                                                                                                                                          | 00000                                                    | . 20       |
| Multi Svc Site                      |                                                                                                                                                                             |                                                          |            |
|                                     | : 04/30/2008 13:55:04                                                                                                                                                       |                                                          |            |
| <del>-</del>                        | : 05/07/2008 16:54:57                                                                                                                                                       |                                                          |            |
| Sub Type                            | : regular                                                                                                                                                                   |                                                          |            |
| Dot1Q Ethertype                     | : 0x8100                                                                                                                                                                    | QinQ Ethertype                                           | : 0x8100   |
| Admin MTU                           | : 1518                                                                                                                                                                      | Oper MTU                                                 | : 1518     |
| Ingr IP Fltr-Id                     |                                                                                                                                                                             | Egr IP Fltr-Id                                           | : n/a      |
| Ingr Mac Fltr-Id                    |                                                                                                                                                                             | Egr Mac Fltr-Id                                          | : n/a      |
| tod-suite                           |                                                                                                                                                                             | qinq-pbit-marking                                        |            |
| Egr Agg Rate Limit                  | : max                                                                                                                                                                       |                                                          |            |
| Endpoint                            | : N/A                                                                                                                                                                       |                                                          |            |
| Q Frame-Based Acct                  | : Disabled                                                                                                                                                                  |                                                          |            |
| Vlan-translation                    | : None                                                                                                                                                                      |                                                          |            |
| Acct. Pol                           | : None                                                                                                                                                                      | Collect Stats                                            | : Disabled |
|                                     |                                                                                                                                                                             |                                                          |            |
| Ingress qos-policy<br>Shared Q plcy | : n/a                                                                                                                                                                       | Egress qos-policy<br>Multipoint shared                   | : Disabled |
| Shared Q plcySap Statistics         | : n/a                                                                                                                                                                       | Multipoint shared                                        | : Disabled |
| Shared Q plcySap Statistics         | : n/a                                                                                                                                                                       | Multipoint shared                                        | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32 Packets                                                                                                                                         | Multipoint shared                                        | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32 Packets Stats                                                                                                                                   | Multipoint shared                                        | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32  Packets Stats : 0                                                                                                                              | Multipoint shared  Octets                                | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264                                                                                                                   | Multipoint shared  Octets  0 2655264                     | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32  Packets Stats : 0                                                                                                                              | Multipoint shared  Octets                                | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32  Packets Stats : 0 : 2655264 : 2655264 ress QoS Policy 1)                                                                                       | Multipoint shared  Octets  0 2655264 2655264             | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0                                                                                | Multipoint shared  Octets  0 2655264 2655264             | : Disabled |
| Shared Q plcy                       | : n/a : 05/07/2008 21:32:32  Packets Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0                                                                              | Multipoint shared  Octets  0 2655264 2655264             | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0 : 3982896                                                                  | Multipoint shared  Octets  0 2655264 2655264 0 0 3982896 | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0 : 3982896                                                                  | Multipoint shared  Octets  0 2655264 2655264             | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0 : 3982896 : 1327632                                                        | Octets  0 2655264 2655264  0 3982896 1327632             | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0 : 3982896 : 1327632  ess QoS Policy 1) : 0                                 | Octets  0 2655264 2655264  0 3982896 1327632             | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0 : 3982896 : 1327632  ess QoS Policy 1) : 0 : 0 : 0 : 0 : 3982896 : 1327632 | Octets  0 2655264 2655264  0 3982896 1327632             | : Disabled |
| Shared Q plcy                       | : n/a  : 05/07/2008 21:32:32  Packets  Stats : 0 : 2655264 : 2655264  ress QoS Policy 1) : 0 : 0 : 3982896 : 1327632  ess QoS Policy 1) : 0                                 | Octets  0 2655264 2655264  0 3982896 1327632             | : Disabled |

<sup>\*</sup>A:csasim2>show>service>id#

| Sap per Queue stat | .s                 |        |
|--------------------|--------------------|--------|
|                    | Packets            | Octets |
| Ingress Queue 1 (U | nicast) (Priority) |        |
| Off. HiPrio        | : 0                | 0      |
| Off. LoPrio        | : 0                | 0      |
| Dro. HiPrio        | : 0                | 0      |
| Dro. LoPrio        | : 0                | 0      |
| For. InProf        | : 0                | 0      |
| For. OutProf       | : 0                | 0      |
|                    |                    |        |
| Egress Queue 1     |                    |        |
| For. InProf        | : 0                | 0      |
| For. OutProf       | : 0                | 0      |
| Dro. InProf        | : 0                | 0      |
| Dro. OutProf       | : 0                | 0      |
|                    |                    |        |

<sup>\*</sup>A:csasim2>show>service>id#

### sap-using

Syntax sap-using [sap sap-id]

sap-using [ingress | egress] atm-td-profile td-profile-id sap-using [ingress | egress] qos-policy qos-policy-id

Context show>service

**Description** This command displays SAP information.

If no optional parameters are specified, the command displays a summary of all defined SAPs.

The optional parameters restrict output to only SAPs matching the specified properties.

**Parameters** ingress — specifies matching an ingress policy

egress — specifies matching an egress policy

**qos-policy** *qos-policy-id* — identifies the ingress or egress QoS Policy for which to display matching SAPs

**Values** 1 to 65535

atm-td-profile td-profile-id — displays SAPs using this traffic description

sap sap-id — specifies the physical port identifier portion of the SAP definition

| Values | sap-id: | null        | [port-id   bi | ındle-id]                                      |
|--------|---------|-------------|---------------|------------------------------------------------|
|        |         | dot1q       | [port-id   bi | ındle-id]:qtag1                                |
|        |         | atm         | [port-id   bi | <pre>indle-id][:vpi/vci  vpi  vpi1.vpi2]</pre> |
|        |         | port-id     |               | ort[.channel]                                  |
|        |         | bundle-type | -slot/mda.bu  | ndle-num                                       |
|        |         |             | bundle        | keyword                                        |
|        |         |             | type          | ima, ppp                                       |
|        |         |             | bundle-num    | 1 to 10                                        |
|        |         | qtag1       | 0 to 4094     |                                                |
|        |         | vpi         | NNI           | 0 to 4095                                      |
|        |         | •           | UNI           | 0 to 255                                       |
|        |         | vci         | 1, 2, 5 to 65 | 5535                                           |

**Output** Show Service SAP — The following table describes show service SAP output fields.

**Table 33: Show Service SAP Output Fields** 

| Label   | Description                                                             |
|---------|-------------------------------------------------------------------------|
| PortID  | Displays the ID of the access port where the SAP is defined             |
| SvcID   | Identifies the service                                                  |
| Ing.QoS | Displays the SAP ingress QoS policy number specified on the ingress SAP |
| Egr.QoS | Displays the SAP egress QoS policy number specified on the egress SAP   |
| Adm     | Specifies the desired state of the SAP                                  |
| Opr     | Indicates the actual state of the SAP                                   |

#### **Sample Output**

\*A:ALU-48# show service sap-using

| 1/1/9.1:40       | 706        | 1              | none               | 1        | none              | Uр              | Down    |         |      |
|------------------|------------|----------------|--------------------|----------|-------------------|-----------------|---------|---------|------|
| 1/1/9.1:11/50    | 805        | 1              | none               | 1        | none              | υp              | Down    |         |      |
| 1/1/9.1:21       | 806        | 1              | none               | 1        | none              | qU              | Down    |         |      |
| 1/1/9.1:12/52    | 807        | 1              | none               | 1        | none              | Up              | Down    |         |      |
| 1/1/9.1:41       | 808        | 1              | none               | 1        | none              | qU              | Down    |         |      |
| 1/1/1.9          | 903        | 1              | none               | 1        | none              | qU              | Up      |         |      |
| 1/1/1.10         | 904        | 1              | none               | 1        | none              | Up              | Up      |         |      |
| 1/1/1.10         |            |                | 110116             |          | 110116            | p               | ор<br>  |         |      |
| Number of SAPs : | : 18       |                |                    |          |                   |                 |         |         |      |
|                  |            |                |                    |          |                   |                 |         |         |      |
| *A:ALU-48#       |            |                |                    |          |                   |                 |         |         |      |
| *A:ALU-48# show  | service sa | ap-usir        | ng sap 1           | /1/21:0  |                   |                 |         |         |      |
|                  |            | ======         | 1 /1 /01           | - 0      |                   |                 |         |         | ==== |
| Service Access F |            | -              |                    |          |                   | =====           | ======  | ======= |      |
| PortId           | Svo        | cId            | Inq.               | Inq.     | Egr.              | Egr.            | Adm     | Opr     |      |
|                  |            |                | QoS                | Fltr     | QoS               | Fltr            |         | -1      |      |
|                  |            |                |                    |          |                   |                 |         |         |      |
| 1/1/21:0         | 1          |                | 1                  | none     | 1                 | none            | Up      | Down    |      |
| Number of CADe   | <br>. 1    |                |                    |          |                   |                 |         |         |      |
| Number of SAPs : | : 1<br>    |                |                    |          |                   |                 |         |         |      |
| ===========      |            |                |                    |          |                   |                 |         |         |      |
| *A:ALU-48#       |            |                |                    |          |                   |                 |         |         |      |
| 43 3777 40 1 1   |            |                |                    |          |                   |                 |         |         |      |
| *A:ALU-48# show  | service sa | ap-usır<br>    | ng egres<br>====== | s atm-to | d-profi<br>====== | .le l<br>:===== | .====== | .====== | ===  |
| Service Access A | -          | •              |                    |          |                   |                 |         |         |      |
| PortId           | svcId      | ======<br>Inq. |                    | Egr.     | Egr.              | =====<br>Adm    | <br>Opr | :====== | ===  |
| 101010           | bvcia      | QoS            | Fltr               | QoS      | Fltr              | 210111          | OPI     |         |      |
|                  |            | Q03            | FILL               | 203      | FILL              |                 |         |         |      |
| 1/1/9.1:10/50    | 701        | 1              | none               | 1        | none              | qU              | Down    |         |      |
| 1/1/9.1:20       | 702        | 1              | none               | 1        | none              | qU              | Down    |         |      |
| 1/1/9.1:10/51    | 702        | 1              |                    | 1        |                   | -               |         |         |      |
|                  |            |                | none               |          | none              | Up              | Down    |         |      |
| 1/1/9.1:30       | 704        | 1              | none               | 1        | none              | Up              | Down    |         |      |
| 1/1/9.1:10/52    | 705        | 1              | none               | 1        | none              | Uр              | Down    |         |      |
| 1/1/9.1:40       | 706        | 1              | none               | 1        | none              | Up              | Down    |         |      |
| 1/1/9.1:11/50    | 805        | 1              | none               | 1        | none              | Uр              | Down    |         |      |
| 1/1/9.1:21       | 806        | 1              | none               | 1        | none              | Uр              | Down    |         |      |
| 1/1/9.1:12/52    | 807        | 1              | none               | 1        | none              | Up              | Down    |         |      |
| 1/1/9.1:41       | 808        | 1              | none               | 1        | none              | Up              | Down    |         |      |
|                  |            |                |                    |          |                   |                 |         |         |      |
| Saps : 10        |            |                |                    |          |                   |                 |         |         |      |

\*A:ALU-12#

### sdp

Syntax sdp [sdp-id | far-end ip-address] [detail]

Context show>service>id

Label

**Description** Displays information for the SDPs associated with the service.

If no optional parameters are specified, a summary of all associated SDPs is displayed.

**Parameters** *sdp-id* — Displays only information for the specified SDP ID.

**Values** 1 — 17407

far-end ip-address — Displays only SDPs matching the specified far-end IP address.

**Default** SDPs with any far-end IP address.

detail — Displays detailed SDP information.

**Output** Show Service-ID SDP — The following table describes show service-id SDP output fields.

Description

**Table 34: SDP Output Fields** 

| Label               | Description                                                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service Destination | Points (SDPs)                                                                                                                                                                    |
| Description         | Displays generic information about the SDP                                                                                                                                       |
| SDP Id              | Identifies the SDP                                                                                                                                                               |
| Туре                | Identifies the service SDP binding type (for example, spoke)                                                                                                                     |
| VC Type             | Displays the VC type for the SDP (for example, CESoPSN)                                                                                                                          |
| VC Tag              | The explicit dot1Q value used when encapsulating to the SDP far end                                                                                                              |
| Admin Path MTU      | Specifies the desired largest service frame size (in octets) that can<br>be transmitted through this SDP to the far-end router, without<br>requiring the packet to be fragmented |
| Oper Path MTU       | Specifies the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented        |
| Far End             | Displays the IP address of the far end of the MPLS or GRE tunnel defined by this SDP                                                                                             |
| Delivery            | Specifies the type of delivery used by the SDP (MPLS or GRE)                                                                                                                     |
| Admin State         | Specifies the administrative state of this SDP                                                                                                                                   |
| Oper State          | Specifies the operational state of this SDP                                                                                                                                      |
| Acct. Pol           | The accounting policy ID assigned to the SAP                                                                                                                                     |

**Table 34: SDP Output Fields (Continued)** 

| Label              | Description                                                                                                                                                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collect Stats      | Specifies whether collect stats is enabled                                                                                                                              |
| Ingress Label      | Displays the label used by the far-end device to send packets to this device in this service by this SDP                                                                |
| Egress Label       | Displays the label used by this device to send packets to the far-end device in this service by this SDP                                                                |
| Admin ControlWord  | Specifies the administrative state of the control word: Preferred (control word enabled) or Not Preferred (control word disabled)                                       |
| Oper ControlWord   | Specifies the operational state of the control word: True (control word enabled) or False (control word disabled)                                                       |
| Last Status Change | Specifies the time of the most recent operating status change to this spoke SDP                                                                                         |
| Signaling          | Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP                                       |
| Last Mgmt Change   | Specifies the time of the most recent management-initiated change to this spoke SDP                                                                                     |
| Flags              | Displays the conditions that affect the operating status of this spoke SDP. Display output includes PathMTUtooSmall, SdpOperDown, NoIngVCLabel, NoEgrVCLabel, and so on |
| Mac Move           | Indicates the administrative state of the MAC movement feature associated with the service                                                                              |
| Peer Pw Bits       | Displays the setting of the pseudowire peer bits. Display output includes pwNotforwarding, psnIngressFault, psnEgressFault, IacIngressFault, lacEgressFault             |
| Peer Fault Ip      | N/A                                                                                                                                                                     |
| Peer Vccv CV Bits  | Displays the setting of the pseudowire peer VCCV control verification bits (lspPing)                                                                                    |
| Peer Vccv CC Bits  | Displays the setting of the pseudowire peer VCCV control channel bits (pwe3ControlWord and/or mplsRouterAlertLabel)                                                     |

**Table 34: SDP Output Fields (Continued)** 

|                       | •                                                                                                                                              |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Keepalive Information |                                                                                                                                                |  |  |  |
| Admin State           | Specifies the administrative state of the keepalive protocol                                                                                   |  |  |  |
| Oper State            | Specifies the operational state of the keepalive protocol                                                                                      |  |  |  |
| Hello Time            | Specifies how often the SDP Echo Request messages are transmitted on this SDP                                                                  |  |  |  |
| Hello Msg Len         | Specifies the length of the SDP Echo Request messages transmitted on this SDP                                                                  |  |  |  |
| Max Drop Count        | Specifies the maximum number of consecutive SDP Echo Request messages that can be unacknowledged before the keepalive protocol reports a fault |  |  |  |
| Hold Down Time        | Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state                                |  |  |  |
| Statistics            |                                                                                                                                                |  |  |  |
| I. Fwd. Pkts.         | Specifies the number of forwarded ingress packets                                                                                              |  |  |  |
| I. Dro. Pkts.         | Specifies the number of dropped ingress packets                                                                                                |  |  |  |
| I. Fwd. Octs.         | Specifies the number of forwarded ingress octets                                                                                               |  |  |  |
| I. Dro. Octs.         | Specifies the number of dropped ingress octets                                                                                                 |  |  |  |
| E. Fwd. Pkts.         | Specifies the number of forwarded egress packets                                                                                               |  |  |  |
| E. Fwd. Octets        | Specifies the number of forwarded egress octets                                                                                                |  |  |  |
| Associated LSP LIST   |                                                                                                                                                |  |  |  |
| Lsp Name              | Specifies the name of the static LSP                                                                                                           |  |  |  |
| Admin State           | Specifies the administrative state of the associated LSP                                                                                       |  |  |  |
| Oper State            | Specifies the operational state of the associated LSP                                                                                          |  |  |  |
| Time Since Last Tr*   | Specifies the time that the associated static LSP has been in service                                                                          |  |  |  |

**Table 34: SDP Output Fields (Continued)** 

| Label                                     | Description                                                                                                                                  |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| APIPE Service Destination Point specifics |                                                                                                                                              |  |  |  |
| Admin Concat Limit                        | Specifies the administrative (configured) value for the maximum number of cells for cell concatenation, as defined via the max-cells command |  |  |  |
| Oper Concat Limit                         | Specifies the operational value for the maximum number of cells for cell concatenation                                                       |  |  |  |
| Peer Concat Limit                         | Specifies the far-end value for the maximum number of cells for cell concatenation                                                           |  |  |  |
| Max Concat Delay                          | Specifies the amount of time to wait while cell concatenation is occurring, as defined via the max-delay command                             |  |  |  |
| CPIPE Service Desti                       | nation Point specifics                                                                                                                       |  |  |  |
| Local Bit-rate                            | Specifies the number of DS0s used by the local SDP                                                                                           |  |  |  |
| Peer Bit-rate                             | Specifies the number of DS0s used by the far-end SDP                                                                                         |  |  |  |
| Local Payload Size                        | Specifies the local payload size, in bytes, used by the local SDP                                                                            |  |  |  |
| Peer Payload Size                         | Specifies the peer payload size, in bytes, used by the far-end SDP                                                                           |  |  |  |
| Local Sig Pkts                            | Specifies the type of signaling packets used by the local SDP                                                                                |  |  |  |
| Peer Sig Pkts                             | Specifies the type of signaling packets used by the far-end SDP                                                                              |  |  |  |
| Local CAS Framing                         | Specifies the type of CAS framing used by the local SDP                                                                                      |  |  |  |
| Peer CAS Framing                          | Specifies the type of CAS framing used by the far-end SDP                                                                                    |  |  |  |
| Local RTP Header                          | Specifies whether the local router inserts the RTP header                                                                                    |  |  |  |
| Peer RTP Header                           | Specifies whether the peer router inserts the RTP header                                                                                     |  |  |  |
| Number of SDPs                            | Specifies the number of SDPs bound to the service                                                                                            |  |  |  |

### Sample Output (Cpipe)

\*A:csasim2>show>service>id# sdp 1 detail

| LO.10.100)<br>                            |                                                                                                                                                                                                                                                     |            |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                           | Туре                                                                                                                                                                                                                                                | : Spoke    |
|                                           | VC Tag                                                                                                                                                                                                                                              | : 0        |
|                                           | Oper Path MTU                                                                                                                                                                                                                                       | : 0        |
| : 10.10.10.100                            | Delivery                                                                                                                                                                                                                                            | : LDP      |
| : Up                                      | Oper State                                                                                                                                                                                                                                          | : Down     |
| : None                                    | Collect Stats                                                                                                                                                                                                                                       | : Disabled |
| : 0                                       | Egress Label                                                                                                                                                                                                                                        | : 0        |
| : n/a                                     | Egr mac Fltr                                                                                                                                                                                                                                        | : n/a      |
| : n/a                                     | Egr ip Fltr                                                                                                                                                                                                                                         | : n/a      |
| : Preferred                               | Oper ControlWord                                                                                                                                                                                                                                    |            |
| : 0                                       | Oper BW(Kbps)                                                                                                                                                                                                                                       | : 0        |
| : 04/30/2008 13:55:10                     | Signaling                                                                                                                                                                                                                                           | : TLDP     |
| : 05/02/2008 21:37:14                     |                                                                                                                                                                                                                                                     |            |
| : N/A                                     | Precedence                                                                                                                                                                                                                                          | : 4        |
| : Down                                    |                                                                                                                                                                                                                                                     |            |
| : SdpOperDown                             |                                                                                                                                                                                                                                                     |            |
| NoIngVCLabel NoEgrVCLa<br>PathMTUTooSmall | bel                                                                                                                                                                                                                                                 |            |
| : Ukwn                                    | Blockable Level                                                                                                                                                                                                                                     | : Unknown  |
| : None                                    |                                                                                                                                                                                                                                                     |            |
| ion :                                     |                                                                                                                                                                                                                                                     |            |
|                                           | Oper State                                                                                                                                                                                                                                          | : Disabled |
| : 10                                      | =                                                                                                                                                                                                                                                   |            |
| : 3                                       | Hold Down Time                                                                                                                                                                                                                                      | : 10       |
|                                           |                                                                                                                                                                                                                                                     |            |
|                                           | I. Dro. Pkts                                                                                                                                                                                                                                        | . 0        |
|                                           |                                                                                                                                                                                                                                                     |            |
|                                           |                                                                                                                                                                                                                                                     |            |
| . •                                       | 1. 1.44. 000000                                                                                                                                                                                                                                     | . •        |
| ination Point specifics                   |                                                                                                                                                                                                                                                     |            |
|                                           |                                                                                                                                                                                                                                                     |            |
|                                           |                                                                                                                                                                                                                                                     |            |
|                                           |                                                                                                                                                                                                                                                     |            |
| <del>-</del>                              | =                                                                                                                                                                                                                                                   | _          |
|                                           |                                                                                                                                                                                                                                                     |            |
|                                           |                                                                                                                                                                                                                                                     |            |
| : 0                                       | Peer Timestamp                                                                                                                                                                                                                                      | . 110      |
|                                           | : Up : None : 0 : n/a : n/a : n/a : Preferred : 0 : 04/30/2008 13:55:10 : 05/02/2008 21:37:14 : N/A : Down : SdpOperDown NoIngVCLabel NoEgrVCLa PathMTUTooSmall : Ukwn : None : None : None : None : None : On: : Disabled : 10 : 3 : : : 0 : 0 : 0 | 1          |

<sup>\*</sup>A:csasim2>show>service>id#

### **Clear Commands**

#### counters

Syntax counters

Context clear>service>statistics>id

**Description** This command clears all traffic queue counters associated with the service ID.

id

Syntax id service-id

Context clear>service

clear>service>statistics

**Description** This command clears commands for a specific service.

**Parameters** service-id — uniquely identifies a service

sap

Syntax sap sap-id {all | cem | counters}

Context clear>service>statistics

**Description** This command clears SAP statistics for a SAP.

**Parameters** sap-id — specifies the physical port identifier portion of the SAP definition

**Values** sap-id: null [port-id | bundle-id]

dot1q [port-id | bundle-id ]:qtag1

atm [port-id | bundle-id][:vpi/vci |vpi |vpi1.vpi2]

port-id *slot/mda/port[.channel]* bundle-*type-slot/mda.bundle-num* 

bundle keyword

type ima, ppp bundle-num 1 to 10

qtag1 0 to 4094

vpi NNI 0 to 4095

UNI 0 to 255

vci 1, 2, 5 to 65535

all — clears all SAP queue statistics and STP statistics

cem — clears all queue statistics associated with a acem SAP

counters — clears all queue statistics associated with the SAP

sdp

Syntax sdp sdp-id keep-alive

Context clear>service>statistics

**Description** This command clears keepalive statistics associated with the SDP ID.

**Parameters** *sdp-id* — identifies the SDP for which to clear keepalive statistics

**Values** 1 to 17407

spoke-sdp

Syntax spoke-sdp sdp-id:vc-id ingress-vc-label

spoke-sdp sdp-id:vc-id {all | counters}

Context clear>service>id

clear>service>statistics>id

**Description** This command clears and resets the spoke SDP bindings for the service.

**Parameters** *sdp-id* — the spoke SDP ID to be reset

**Values** 1 to 17407

*vc-id* — the virtual circuit ID on the SDP ID to be reset

**Values** 1 to 4294967295

all — clears all queue statistics and STP statistics associated with the SDP

counters — clears all queue statistics associated with the SDP

ingress-vc-label — clears the VC ingress value associated with the specified connection

Clear Commands

# **Internet Enhanced Service**

# In This Chapter

This chapter provides information about Internet Enhanced Service (IES) used to facilitate the transport of in-band management datagrams of the 7705 SAR over ATM links.

Topics in this chapter include:

- IES for In-band Management on page 238
- Setting Up Connections Between the 5620 SAM and the 7705 SAR on page 239
- Encapsulation on page 240
- Layer 2 and Layer 3 Traffic Management on page 241
- Troubleshooting and Fault Detection Services on page 242
- Configuring an IES Management Service with CLI on page 243
- IES Management Command Reference on page 253

### **IES for In-band Management**

In the HSDPA offload application (see HSDPA Offload on page 44), the main uplink out of a typical cell site is over the ATM network using leased lines. Mission-critical traffic such as voice, signaling, and synchronization traffic is carried over the ATM network.

Internet Enhanced Service (IES) provides a reliable means of diverting the node management IP packets from the DSL IP network to the more reliable Layer 2 ATM network. To do this, IES provides an IP address and interworking function between the Layer 3 IP network and the Layer 2 ATM network. Without this capability, the in-band IP management traffic for the 7705 SAR could only be connected to an IP network.

In Release 1.1, IES is used only for in-band management of the 7705 SAR over the ATM network. It is not used to offer routing services for customers, which is a typical use with other service router products, such as the 7710 SR. The 7705 SAR supports VLL services (Apipes, Cpipes, and Epipes) to transport customer traffic.

IES is supported on the 16-port T1/E1 ASAP Adapter card of the 7705 SAR-8 or on the T1/E1 ports of the 7705 SAR-F. The service can be created on an ATM port or on an IMA group.

In the 7705 SAR, all traffic received over IES is extracted directly to the control plane (CSM) in the same way as management traffic received over the CSM console port or Ethernet management port, or management traffic destined for the 7705 SAR over an Ethernet or MLPPP encapsulated network port. With IES management, the traffic transported is always IP packets. At the termination point of the ATM link, the IP packets are extracted to the CSM for further processing.

# Setting Up Connections Between the 5620 SAM and the 7705 SAR

IP over ATM is used for in-band management of the 7705 SAR. This requires the use of IP addresses so that the packets can be routed through the network using a routing table to indicate the next hop. Because Apipe interfaces (SAPs) do not have IP addresses, Apipes cannot be used to carry the management traffic.

With IES, the ATM SAP can be used for the forwarding of management IP packets. To set up a connection, IES is enabled on an interface on the 7705 SAR and the IP address for the interface is defined. A PVCC connection is then set up between the 7705 SAR and the remote router (SR) attached to the network manager (5620 SAM).

The IP datagrams are encapsulated into AAL5 for transport over the ATM network.

At the remote SR end, the SAP is bound to a VPRN instance to ensure that LDP signaling to the system IP address of the 7705 SAR flows through the IP/GRE link and not over the ATM link. Within the VPRN, an IP address is assigned at the termination SAP. The IP datagram is extracted from the ATM cell at this termination point and is routed to the 5620 SAM.

Alternatively, manually configured connections can be used instead of signaled pseudowires.



**Note:** The remote IP address must be manually configured and a static route must be set up between the two connections. This configuration is beyond the scope of this document; refer to the 7705 SAR OS Router Configuration Guide for information.

For redundancy, it is recommended that two VCs be configured per ATM port or IMA group. This requires the configuration of two static routes. ECMP must be enabled to allow duplicate routes in the routing table, and BFD can be enabled to trigger a faster handover to the other route in case of route failure.

# **Encapsulation**

To run IP traffic over ATM links, the system uses routed VC-mux encapsulation as specified in RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*. Since the only supported Layer 3 protocol over the management VC is IP, the VC mux encapsulation method is implemented to reduce complexity and overhead; likewise, routing mode is preferred over bridged mode.

The maximum MTU size supported is 1524 bytes.

# Layer 2 and Layer 3 Traffic Management

ATM traffic descriptors can be applied at the ingress (policing) and egress (shaping and service category scheduling and prioritization) of the IES SAP in order to provide traffic management functions at Layer 2.

Management IP traffic that is destined for the CSM is classified at Layer 3 and is forwarded into the fabric from one of three of the adapter card control queues:

- high priority
- low priority
- FTP priority

The high-priority and low-priority queues are limited to 1 Mb/s and the FTP queue is rate-limited to 3 Mb/s ingress to the fabric toward the control plane.



**Note:** Proper configuration of the traffic descriptor profiles is essential for proper operation of the IES SAP. If no profile is assigned, the default UBR service category is assumed. All IES 7705 SAR traffic is scheduled; no shaping is supported in this mode. To ensure that IP traffic transported over the IES SAP is prioritized fairly, ATM layer traffic descriptors should be assigned. See IES SAP Commands on page 262 in the IES Management Command Reference section for information.

## **Troubleshooting and Fault Detection Services**

The IES in-band management service supports ATM OAM F4 (VP level) and F5 (VC level) cell generation and termination. For more information on OAM, refer to the chapter on OAM and SAA on page 277.

Bidirectional forwarding detection (BFD) can also be configured on the IES SAP. BFD is a simple protocol for detecting failures in a network. BFD uses a "hello" mechanism that sends control messages periodically to the far end and receives periodic control messages from the far end. In Release 1.1 of the 7705 SAR, BFD is implemented for static routes in asynchronous mode only, meaning that neither end responds to control messages; rather, the messages are sent in the time period configured at each end.

To support redundancy, ECMP must be enabled to allow duplicate routes in the routing table, and BFD must be enabled to trigger the handover to the other route in case of failure.

Due to the lightweight nature of BFD, it can detect failures faster than other detection protocols, making it ideal for use in applications such as mobile transport.

If the configured number of consecutive BFD messages is not received in the configured timeframe, the static route to the peer is declared not active.



**Note:** Layer 2 AIS/RDI cells that are received on the IES SAP will disable the IP interface. Link failures detected by BFD will also disable the IP interface.

## **Configuring an IES Management Service with CLI**

This section provides the information required to configure IES for in-band management of the 7705 SAR over ATM links.

Topics in this section include:

- List of Commands on page 244
- Common Configuration Tasks on page 246
- Configuring IES Components on page 247
  - → Creating an IES Service on page 247
  - → Configuring Interface Parameters on page 248
  - → Configuring IES SAP Parameters on page 249
- Service Management Tasks on page 251
  - → Modifying IES Service Parameters on page 251
  - → Disabling an IES Service on page 251
  - → Re-enabling an IES Service on page 252
  - → Deleting an IES Service on page 252

# **List of Commands**

Table 35 lists all the IES configuration commands, indicating the configuration level at which each command is implemented with a short command description. IES services are configured in the <code>config>service</code> context. The command list is organized in the following task-oriented manner:

- Configure an IES service
- Configure IES interface parameters
- Configure IES SAP parameters
- Configure IES ingress filter policies
- Configure IES SAP ATM parameters
- Configure IES SAP ATM egress and ingress parameters

**Table 35: CLI Commands to Configure IES Management Service Parameters** 

| Command                                                           | Description                                                                                                                                                                                     | Page |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Configure an IES service                                          |                                                                                                                                                                                                 |      |  |  |
| config>service>ies service-id [customer customer-id] [vpn vpn-id] |                                                                                                                                                                                                 |      |  |  |
| service-id                                                        | Specifies a unique service identification number identifying the service in the service domain                                                                                                  | 258  |  |  |
| customer-id                                                       | Specifies the existing customer ID number associated with the service                                                                                                                           | 258  |  |  |
| vpn-id                                                            | Specifies the VPN ID number, which allows you to identify VPNs                                                                                                                                  | 258  |  |  |
| description                                                       | Specifies a text string describing the service                                                                                                                                                  | 256  |  |  |
| shutdown                                                          | Administratively enables or disables the IES service                                                                                                                                            | 256  |  |  |
|                                                                   |                                                                                                                                                                                                 |      |  |  |
| Configure IES interf                                              | face parameters                                                                                                                                                                                 |      |  |  |
| config>service>ies>interface                                      |                                                                                                                                                                                                 |      |  |  |
| address                                                           | Assigns an IP address to the IES interface                                                                                                                                                      | 260  |  |  |
| bfd                                                               | Configures the time interval in which BFD control messages are transmitted and received on the interface and the number of control messages to be transmitted and received within that interval | 261  |  |  |
| description                                                       | Specifies a text string describing the interface                                                                                                                                                | 256  |  |  |
| ip-mtu                                                            | Configures the IP MTU for the interface                                                                                                                                                         | 261  |  |  |

Table 35: CLI Commands to Configure IES Management Service Parameters (Continued)

| Command                                             | Description                                                                              | Page |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------|------|--|--|--|
| shutdown                                            | Administratively enables or disables the IES interface                                   | 256  |  |  |  |
|                                                     |                                                                                          |      |  |  |  |
| Configure IES SAP I                                 | parameters                                                                               |      |  |  |  |
| config>service>i                                    | es>if>sap                                                                                | 262  |  |  |  |
| atm                                                 | Enables access to the context to configure ATM-related attributes                        | 265  |  |  |  |
| description                                         | Specifies a text string describing the IES SAP                                           | 256  |  |  |  |
| ingress                                             | Enables access to the context to associate ingress filter policies with the SAP          | 264  |  |  |  |
| shutdown                                            | Administratively enables or disables the SAP                                             | 256  |  |  |  |
|                                                     |                                                                                          |      |  |  |  |
| Configure IES ingres                                | ss filter policies                                                                       |      |  |  |  |
| config>service>i                                    | es>if>sap>ingress                                                                        |      |  |  |  |
| filter ip                                           | Associates a filter policy with an ingress SAP                                           | 264  |  |  |  |
|                                                     |                                                                                          |      |  |  |  |
| Configure IES SAP                                   | ATM parameters                                                                           |      |  |  |  |
| config>service>i                                    | es>if>sap>atm                                                                            |      |  |  |  |
| encapsulation                                       | Configures an ATM VC SAP for encapsulation in accordance with RFC 2684                   | 265  |  |  |  |
| egress                                              | Configures egress ATM attributes for the SAP                                             | 265  |  |  |  |
| ingress                                             | Configures ingress ATM attributes for the SAP                                            | 266  |  |  |  |
| oam                                                 | Enables access to the context to configure OAM functionality for a PVCC delimiting a SAP | 266  |  |  |  |
|                                                     |                                                                                          |      |  |  |  |
| Configure IES SAP ATM egress and ingress parameters |                                                                                          |      |  |  |  |
| <del>-</del>                                        | es>if>sap>atm>egress<br>es>if>sap>atm>ingress                                            |      |  |  |  |
| traffic-desc                                        | Assigns an ATM traffic descriptor profile to a SAP                                       | 266  |  |  |  |
|                                                     |                                                                                          |      |  |  |  |

# **Common Configuration Tasks**

The following list provides a brief overview of the tasks that must be performed to configure IES for in-band management service.

- Associate the IES service with a customer ID.
- Create an IP interface on the 7705 SAR.
- Specify the IP address of the interface.
- Define interface parameters.
- Define SAP parameters for the ATM VC (**Note**: defining two SAPs per port or IMA group is recommended for redundancy).
- Manually configure the remote address of the far-end router to which the 5620 SAM network manager is connected (far-end router must be enabled for IES service).\*
- Create a static route to the remote router and 5620 SAM.\*
- Enable the service.



**Note:** \*Remote address and static route configuration is beyond the scope of this document. For information, refer to the 7705 SAR OS Router Configuration Guide.

# **Configuring IES Components**

This section provides configuration examples for components of the IES Management service. Each component includes some or all of the following: introductory information, CLI syntax, a specific CLI example, and a sample CLI display output. Included are the following components:

- Creating an IES Service
- Configuring Interface Parameters
- Configuring IES SAP Parameters

### **Creating an IES Service**

Use the following CLI syntax to create an IES service.

The following example displays the IES service creation output.

```
A:ALU-41>config>service# info

...

ies 5 customer 1 create
description "IES for in-band management"
interface "ATMoIP Management"
no shutdown
exit
...
```

### **Configuring Interface Parameters**

Use the following CLI syntax to configure interface parameters for the IES service.

```
CLI Syntax: config>service# ies service-id [customer customer-id]
[create] [vpn vpn-id]
               interface ip-int-name
                  address if-ip-address
                  bfd transmit-interval [receive receive-interval]
                    [multiplier multiplier]
                  description description-string
                  ip-mtu octets
                  no shutdown
Example:
          A:ALU-41>config>service# ies 5
          A:ALU-41>config>service>ies# interface "ATMoIP
          Management"
          A:ALU-41>config>service>ies>if# address 3.3.3.3/24
          A:ALU-41>config>service>ies>if# ip-mtu 1524
          A:ALU-41>config>service>ies>if# no shutdown
          A:ALU-41>config>service>ies>if#
```

The following example displays the IES interface creation output.

```
A:ALU-41>config>service>ies>if# info detail
....

no description
address 3.3.3.3/24
ip-mtu 1524
no bfd
exit
no shutdown
...
```

### **Configuring IES SAP Parameters**

Use the following CLI syntax to configure IES SAP parameters.



**Note:** The encapsulation type is always aal5mux-ip.

```
[create] [vpn vpn-id]
               interface ip-int-name
                  sap sap-id [create]
                     atm
                        encapsulation encap-type
                        egress
                           traffic-desc traffic-desc-profile-id
                        ingress
                           traffic-desc traffic-desc-profile-id
                        oam
                           alarm-cells
                     description description-string
                        filter ip ip-filter-id
                     no shutdown
Example:
          A:ALU-41>config>service# ies 5
          A:ALU-41>config>service>ies# interface "ATMoIP
          Management"
          A:ALU-41>config>service>ies>if# sap 1/1/1.1:0/32 create
          A:ALU-41>config>service>ies>if>sap# ingress
          A:ALU-41>config>service>ies>if>sap>ingress# filter ip 3
          A:ALU-41>config>service>ies>if>sap>ingress# exit
          A:ALU-41>config>service>ies>if>sap# atm
          A:ALU-41>config>service>ies>if>sap>atm# encapsulation
          aal5mux-ip
          A:ALU-41>config>service>ies>if>sap>atm# egress
          A:ALU-41>config>service>ies>if>sap>atm>egress# traffic-
          A:ALU-41>config>service>ies>if>sap>atm>egress# exit
          A:ALU-41>config>service>ies>if>sap>atm# ingress
          A:ALU-41>config>service>ies>if>sap>atm>ingress# traffic-
          desc 2
          A:ALU-41>config>service>ies>if>sap>atm>ingress# exit
          A:ALU-41>config>service>ies>if>sap>atm# oam
          A:ALU-41>config>service>ies>if>sap>atm>oam# alarm-cells
          A:ALU-41>config>service>ies>if>sap>atm>oam# exit
          A:ALU-41>config>service>ies>if>sap>atm# exit
          A:ALU-41>config>service>ies>if>sap# exit
          A:ALU-41>config>service>ies>if# exit
```

**CLI Syntax:** config>service# ies service-id [customer customer-id]

#### A:ALU-41>config>service>ies#

The following example displays the IES SAP creation output.

```
A:ALU-41>config>service>ies>if>sap# info detail

...

no description
ingress
filter ip 3
exit
atm
encapsulation aal5mux-ip
ingress
traffic-desc 2
exit
egress
traffic-desc 3
exit
oam
alarm-cells
exit
exit
no shutdown

...
```

# **Service Management Tasks**

This section discusses the following service management tasks:

- Modifying IES Service Parameters
- Disabling an IES Service
- Re-enabling an IES Service
- Deleting an IES Service

### **Modifying IES Service Parameters**

Existing IES service parameters can be modified, added, removed, enabled, or disabled.

To display a list of customer IDs, use the show>service>customer command.

Enter the parameters (such as description, interface information, or SAP information), and then enter the new information.

The following is an example of changing the IP MTU size.

**Example:** A:ALU-41>config>service# ies 5

A:ALU-41>config>service>ies# interface "testname"

A:ALU-41>config>service>ies>if# ip-mtu 1517

A:ALU-41>config>service>ies>if# exit

### **Disabling an IES Service**

An IES service can be shut down without deleting the service parameters.

Use the shutdown command to shut down an IES service.

CLI Syntax: config>service# ies service-id

shutdown

**Example:** A:ALU-41>config>service# ies 5

A:ALU-41>config>service>ies# shutdown A:ALU-41>config>service>ies# exit

### Re-enabling an IES Service

Use the no shutdown command to re-enable a previously disabled IES service.

**CLI Syntax:** config>service# ies service-id no shutdown

**Example:** A:ALU-41>config>service# ies 5

A:ALU-41>config>service>ies# no shutdown

A:ALU-41>config>service>ies# exit

### **Deleting an IES Service**

An IES service cannot be deleted until SAPs and interfaces are shut down and deleted and the service is shut down on the service level.

Use the following CLI syntax to delete an IES service:

```
CLI Syntax: config>service#

ies service-id

interface ip-int-name

sap sap-id

shutdown

exit

no sap sap-id

interface ip-int-name

shutdown

exit

no interface ip-int-name

shutdown

exit

no interface ip-int-name

shutdown

exit

no is service-id
```

# **IES Management Command Reference**

### **Command Hierarchies**

- IES Management Configuration Commands
- Show Commands

### **IES Management Configuration Commands**

```
config
       service
              — ies service-id [customer customer-id] [create] [vpn vpn-id]
              — no ies service-id
                        — description description-string
                        - no description
                        — [no] interface ip-int-name [create]
                                 — address {ip-address/mask | ip-address netmask}
                                 - no address
                                 — bfd {transmit-interval} [receive receive-interval] [multiplier
                                    multiplier]
                                 — no bfd

    description description-string

                                 — no description
                                 — ip-mtu octets
                                 — no ip-mtu
                                 — [no] sap sap-id [create]
                                            – atm
                                                   — encapsulation atm-encap-type
                                                   - egress
                                                       — traffic-desc traffic-desc-profile-id
                                                       — no traffic-desc
                                                   - ingress
                                                       — traffic-desc traffic-desc-profile-id
                                                       — no traffic-desc
                                                       - [no] alarm-cells
                                          — description description-string
                                          — no description
                                          - ingress
                                                   — filter ip ip-filter-id
                                                   — no filter ip
                                                   — no filter ip [ip ip-filter-id]
                                          - [no] shutdown
                                 — [no] shutdown
                        - [no] shutdown
```

#### **Show Commands**

```
show
— service
— id service-id
— all
```

# **IES Management Configuration Commands**

- Generic Commands on page 256
- IES Global Commands on page 258
- IES Interface Commands on page 259
- IES SAP Commands on page 262

#### **Generic Commands**

#### description

Syntax description description-string

no description

**Context** config>service>ies

config>service>ies>interface config>service>ies>interface>sap

**Description** This command creates a text description stored in the configuration file for a configuration context.

The **no** form of this command removes the string from the context.

**Default** No description is associated with the configuration context.

**Parameters** description-string — the description character string. Allowed values are any string up to 80

characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, \$, spaces, etc.), the entire string must be enclosed within double quotes.

#### shutdown

Syntax [no] shutdown

Context config>service>ies

config>service>ies>interface config>service>ies>interface>sap

**Description** The **shutdown** command administratively disables an entity. The operational state of the entity is

disabled as well as the operational state of any entities contained within. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many objects must be shut down before they may be deleted. Many entities must be explicitly enabled using the **no shutdown** 

command.

The **no** form of this command places the entity into an administratively enabled state.

Services are created in the administratively down (**shutdown**) state. When a **no shutdown** command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities are described in the following Special

Cases.

#### **Special Cases**

**IES** — the default administrative status of an IES service is down. While the service is down, its associated interface is operationally down.

For example, if 1) An IES service is operational and its associated interface is shut down

- 2) The IES service is administratively shut down and brought back up
- 3) The interface that is shut down remains in the administrative shutdown state

A service is regarded as operational provided that one IP interface is operational.

**IES IP Interfaces** — when the IP interface is shut down, it enters the administratively and operationally down states. For a SAP bound to the IP interface, no packets are transmited out of the SAP and all packets received on the SAP are dropped and the packet discard counter is incremented.

#### **IES Global Commands**

ies

Syntax ies service-id [customer customer-id] [create] [vpn vpn-id]

no ies service-id

Context config>service

**Description** This command enables Internet Enhanced Service (IES). IES in Release 1.1 of the 7705 SAR is used

only for in-band management of the 7705 SAR over ATM links.

The **no** form of this command deletes the IES service instance with the specified *service-id*.

The service cannot be deleted until all the IP interfaces defined within the service ID have been shut

down and deleted.

**Parameters** 

*service-id* — uniquely identifies a service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The *service-id* must be the same number used for every 7705 SAR on which this service is defined.

**Values** 1 to 2147483647

**customer** *customer-id* — specifies the customer ID number to be associated with the service. This parameter is required on service creation and is optional for service editing or deleting.

**Values** 1 to 2147483647

**vpn** *vpn-id* — specifies the VPN ID number, which allows you to identify virtual private networks (VPNs) by a VPN identification number. If this parameter is not specified, the VPN ID uses the service ID number.

**Values** 1 to 2147483647

**Default** null (0)

#### **IES Interface Commands**

#### interface

Syntax interface ip-int-name [create]

no interface ip-int-name

Context config>service>ies

**Description** 

This command creates a logical IP routing interface for an Internet Enhanced Service (IES). Once created, attributes like an IP address and service access point (SAP) can be associated with the IP interface.

The **interface** command, under the context of services, is used to create and maintain IP routing interfaces within IES service IDs. The **interface** command can be executed in the context of an IES service ID. Two SAPs can be assigned to a single group interface.

Interface names are case-sensitive and must be unique within the group of IP interfaces defined for config router interface and config service ies interface (that is, the network core router instance). Interface names cannot be in the dotted decimal notation of an IP address. For example, the name "1.1.1.1" is not allowed, but "int-1.1.1.1" is allowed. Show commands for router interfaces use either interface names or the IP addresses. Use unique IP address values and IP address names to maintain clarity. It could be unclear to the user if the same IP address and IP address name values are used. Although not recommended, duplicate interface names can exist in different router instances.

When a new name is entered, a new logical router interface is created. When an existing interface name is entered, the user enters the router interface context for editing and configuration.

There are no default IP interface names defined within the system. All IES IP interfaces must be explicitly defined. Interfaces are created in an enabled state.

The **no** form of this command removes the IP interface and all the associated configurations. The interface must be administratively shut down before issuing the **no interface** command. The IP interface must be shut down before the SAP on that interface can be removed.

Default

No interfaces or names are defined within the system.

**Parameters** 

*ip-int-name* — the name of the IP interface. Interface names must be unique within the group of IP interfaces defined for the network core router instance. An interface name cannot be in the form of an IP address. If the string contains special characters (#, \$, spaces, etc.), the entire string must be enclosed within double quotes.

**Values** 1 to 32 characters (must start with a letter)

If the *ip-int-name* already exists, the context is changed to maintain that IP interface. If the *ip-int-name* already exists as an IP interface defined within the **config router** commands, an error will occur and the context will not be changed to that IP interface. If the *ip-int-name* does not exist, the interface is created and the context is changed to that interface for further command processing.

#### address

**Syntax** address {ip-address/mask | ip-address netmask}

no address

**Context** config>service>ies>interface *ip-int-name* 

**Description** This command assigns an IP address and IP subnet to an IES IP interface. Only one IP address can be associated with an IP interface.

An IP address must be assigned to each IP interface. An IP address and a mask combine to create a local IP prefix. The defined IP prefix must be unique within the context of the routing instance. The IP prefix cannot overlap with other existing IP prefixes defined as local subnets on other IP interfaces in the same routing context within the 7705 SAR.

The IP address for the interface can be entered in either CIDR (classless inter-domain routing) notation or traditional dotted decimal notation. **Show** commands display CIDR notation and are stored in configuration files.

By default, no IP address or subnet association exists on an IP interface until it is explicitly created.

The **no** form of the command removes the IP address assignment from the IP interface. The **no** form of this command can only be performed when the IP interface is administratively shut down. Shutting down the IP interface brings the interface operationally down.

**Default** No IP address is assigned to the IP interface.

**Parameters** 

*ip-address* — the IP address of the IP interface. The *ip-address* portion of the **address** command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation.

**Values** 1.0.0.0 to 223.255.255.255

/— the forward slash is a parameter delimiter that separates the *ip-address* portion of the IP address from the mask that defines the scope of the local subnet. No spaces are allowed between the *ip-address*, the "/", and the *mask* parameter. If a forward slash does not immediately follow the *ip-address*, a dotted decimal mask must follow the prefix.

mask — the subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the ip-address from the mask parameter. The mask parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address.

**Values** 1 to 32 (mask length of 32 is reserved for system IP addresses)

netmask — the subnet mask in dotted decimal notation

**Values** 0.0.0.0 to 255.255.255.255 (network bits all 1 and host bits all 0)

bfd

**Syntax bfd** {transmit-interval} [receive receive-interval] [multiplier multiplier]

no bfd

**Context** config>service>ies>interface *ip-int-name* 

**Description** This command configures the time interval in which BFD control messages are transmitted and

received on the interface and the number of control messages to be transmitted and received within that interval. This mechanism is used to detect failures in the network. If either end does not receive the specified number of messages in the specified time interval, the far end is declared to be down.

Default no bfd

**Parameters** transmit-interval — the number of milliseconds between transmitted control messages

**Values** 100 to 100000

Default 100

receive-interval — the number of milliseconds between received control messages

**Values** 100 to 100000

Default 100

multiplier — the number of control messages to be sent during the configured transmit and receive

intervals

Values 3 to 20

**Default** 3

ip-mtu

Syntax ip-mtu octets

no ip-mtu

**Context** config>service>ies>interface>*ip-int-name* 

**Description** This command configures the IP maximum transmit unit (packet size) for this interface.

The **no** form of the command returns the default value.

**Parameters** octets — the MTU for the interface

**Values** 512 to 1524

#### **IES SAP Commands**

sap

Syntax sap sap-id [create]

no sap sap-id

**Context** config>service>ies>interface *ip-int-name* 

**Description** This command creates a SAP within an IES service. Each SAP must be unique.

All SAPs must be explicitly created with the **create** keyword. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

Enter an existing SAP without the **create** keyword to edit SAP parameters.

A SAP can only be associated with a single service. The SAP is owned by the service in which it was created. An IES SAP can only be defined on an ATM port or IMA group that has been configured as an access port in the **config>port** *port-id* context using the **mode access** command. Fractional TDM ports are always access ports. Refer to the 7705 SAR OS Interface Configuration Guide for information on access ports.

If a port is shut down, all SAPs on that port become operationally down. When a service is shut down, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded. The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The **no** form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

**Default** No SAPs are defined.

**Parameters** sap-id — specifies the physical port identifier portion of the SAP definition

The *sap-id* can be configured in one of the formats described in Table 36.

**Table 36: SAP ID Configurations** 

| Туре                | Syntax            |                                         |                                | Examp                                     | le                                            |
|---------------------|-------------------|-----------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------------|
| port-id             | slot/mda/port[.cl | hannel]                                 |                                | 1/1/5                                     |                                               |
| atm or ima<br>group | [port-id   bundle | -id][:vpi/\                             | vci   vpi]                     | port-id:<br>bundle-id<br>vpi/vci:<br>vpi: | 1/1/1.1<br>d: bundle-ima-1/1.1<br>16/32<br>16 |
| Values              | sap-id:           | atm<br>IMA gr                           | [port-id][:vpi<br>oup [bundle- | , , ,                                     | $i \mid vpi]$                                 |
|                     |                   | port-id slot/mda/port[.cha              |                                | t[.channel]                               |                                               |
|                     |                   | bundle- <i>type-slot/mda.bundle-num</i> |                                |                                           | n                                             |
|                     |                   |                                         | bundle keyv                    | word                                      |                                               |
|                     |                   |                                         | <i>type</i> ima                |                                           |                                               |
|                     |                   | •                                       | bundle-num 1                   |                                           |                                               |
|                     |                   | vpi                                     |                                | 4095                                      |                                               |
|                     |                   |                                         | UNI 0 to                       |                                           |                                               |
|                     |                   | VC1                                     | 1, 2, 5 to 655                 | 35                                        |                                               |

port-id — specifies the physical port ID in the slot/mda/port format

If the card in the slot has a T1/E1 ASAP Adapter card installed, the *port-id* must be in the slot\_number/MDA\_number/port\_number format. For example 1/2/3 specifies port 3 on MDA 2 in slot 1.

The *port-id* must reference a valid port type. When the *port-id* parameter represents TDM channels, the port ID must include the channel ID. A period "." separates the physical port from the *channel-id*. The port must be configured as an access port.

bundle-id — specifies the multilink bundle to be associated with this IP interface. The **bundle** keyword must be entered at the beginning of the parameter. The command syntax must be configured as follows:

bundle-id: bundle-type-slot-id/mda-slot.bundle-num

bundle-id value range: 1 to 10

For example:

\*A:ALU-12>config# port bundle-ppp-5/1.1
\*A:ALU-12>config>port# multilink-bundle

create — keyword used to create a SAP instance. The create keyword requirement can be enabled/disabled in the environment>create context.

#### ingress

Syntax ingress

Context config>service>ies>interface ip-int-name>sap sap-id

**Description** This command enables access to the context to associate ingress filter policies with the SAP.

If an ingress filter is not defined, no filtering is performed.

### filter ip

Syntax filter ip ip-filter-id

no filter

no filter [ip ip-filter-id]

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>ingress

**Description** This command associates an IP filter policy with an ingress SAP. Filter policies control the

forwarding and dropping of packets based on the IP match criteria. Only one filter ID can be

specified.

The filter policy must already be defined before the filter command is executed. If the filter policy does not exist, the operation fails and an error message is returned. Filters applied to the ingress SAP

apply to all IP packets on the SAP.

The no form of this command removes any configured filter ID association with the SAP.

**Default** No filter is specified.

**Parameters** ip *ip-filter-id* — the filter name acts as the ID for the IP filter policy expressed as a decimal integer.

The filter policy must already exist within the **config>filter>ip-filter** context.

**Values** 1 to 65535



**Note:** For information on configuring IP filter IDs, see the 7705 SAR OS Router Configuration Guide.

#### atm

Syntax atm

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id* 

**Description** This command enables access to the context to configure ATM-related attributes. This command can

only be used when a given context (for example, a channel or SAP) supports ATM functionality such as:

.

 configuring ATM port or ATM port-related functionality on T1/E1 ASAP Adapter cards or T1/E1 ports

 configuring ATM-related configuration for ATM-based SAPs that exist on T1/E1 ASAP Adapter cards or T1/E1 ports

If ATM functionality is not supported for a given context, the command returns an error.

#### encapsulation

Syntax encapsulation atm-encap-type

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>atm

**Description** This command configures an ATM VC SAP for encapsulation in accordance with RFC 2684,

Multiprotocol Encapsulation over ATM Adaptation Layer 5.

In Release 1.1, the only supported encapsulation type is aal5mux-ip.

Ingress traffic that does not match the configured encapsulation is dropped.

Default aal5mux-ip

**Parameters** atm-encap-type — aal5mux-ip (routed IP encapsulation for a VC multiplexed circuit as defined in

RFC 2684)

egress

Syntax egress

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>atm

This command provides access to the context to configure egress ATM traffic policies for the SAP.

#### ingress

Syntax ingress

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>atm

**Description** This command provides access to the context to configure ingress ATM traffic policies for the SAP.

#### traffic-desc

Syntax traffic-desc traffic-desc-profile-id

no traffic-desc

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>atm>egress

config>service>ies>interface ip-int-name>sap sap-id>atm>ingress

**Description** This command assigns an ATM traffic descriptor profile to an egress or ingress SAP.

When configured under the ingress context, the specified traffic descriptor profile defines the traffic contract in the forward direction.

When configured under the egress context, the specified traffic descriptor profile defines the traffic contract in the backward direction.

-

**Note:** Proper configuration of the traffic descriptor profiles is essential for proper operation of the IES SAP. If no profile is assigned, the default UBR service category is assumed. All IES 7705 SAR traffic is scheduled; no shaping is supported in this mode. To ensure that IP traffic transported over the IES SAP is prioritized fairly, ATM layer traffic descriptors should be assigned.

The **no** form of the command reverts the traffic descriptor to the default traffic descriptor profile.

**Default** The default traffic descriptor (trafficDescProfileId. = 1) is associated with newly created ATM VC

SAPs.

**Parameters** traffic-desc-profile-id — specifies a defined traffic descriptor profile (for information on defining

traffic descriptor profiles, see the 7705 SAR OS Quality of Service Guide)

**Values** 1 to 1000

#### oam

Syntax oam

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>atm

**Description** This command enables the context to configure OAM functionality for an IES SAP.

The T1/E1 ASAP Adapter card supports F4 and F5 end-to-end OAM functionality (AIS, RDI, Loopback).

#### alarm-cells

Syntax [no] alarm-cells

**Context** config>service>ies>interface *ip-int-name*>sap *sap-id*>atm>oam

**Description** This command configures AIS/RDI fault management on a PVCC. Fault management allows PVCC terminations to monitor and report the status of their connection by propagating fault information

through the network and by driving the PVCC's operational status.

Layer 2 OAM AIS/RDI cells that are received on the IES SAP will cause the IP interface to be

disabled.

The **no** command disables alarm-cells functionality for the SAP. When alarm-cells functionality is

disabled, OAM cells are not generated as result of the SAP going into the operationally down state.

**Default** enabled

### **Show Commands**

all

Syntax all

Context show>service>id

**Description** This command displays detailed information for all aspects of the service.

Output Show service id <service-id> all Output — The following table describes the show service id <service-id> all command output fields.

**Table 37: Show Service ID All Command Output Fields** 

| Label                        | Description                                                                                   |  |
|------------------------------|-----------------------------------------------------------------------------------------------|--|
| Service Detailed Information |                                                                                               |  |
| Service Id                   | Identifies the service by its ID number                                                       |  |
| VPN Id                       | Identifies the VPN by its ID number                                                           |  |
| Service Type                 | Specifies the type of service (IES)                                                           |  |
| Description                  | Displays generic information about the service                                                |  |
| Customer Id                  | Identifies the customer by its ID number                                                      |  |
| Last Status Change           | Displays the date and time of the most recent status change to this service                   |  |
| Last Mgmt Change             | Displays the date and time of the most recent management-<br>initiated change to this service |  |
| Admin State                  | Specifies the desired state of the service                                                    |  |
| Oper State                   | Specifies the operating state of the service                                                  |  |
| MTU                          | Specifies the service MTU                                                                     |  |
| SAP Count                    | Displays the number of SAPs specified for this service                                        |  |
| Service Access Points        |                                                                                               |  |
| Service Id                   | Identifies the service                                                                        |  |
| SAP                          | Specifies the ID of the access port where this SAP is defined                                 |  |
| Encap                        | Specifies the encapsulation type for this SAP on the access port                              |  |
| Admin State                  | Specifies the desired state of the SAP                                                        |  |

Table 37: Show Service ID All Command Output Fields (Continued)

| Label              | Description                                                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oper State         | Specifies the operating state of the SAP                                                                                                                                   |
| Flags              | Specifies the conditions that affect the operating status of this SAP. Display output includes ServiceAdminDown, PortOperDown, and so on.                                  |
| Last Status Change | Specifies the date and time of the most recent status change to this SAP                                                                                                   |
| Last Mgmt Change   | Specifies the date and time of the most recent management-initiated change to this SAP                                                                                     |
| Admin MTU          | Specifies the desired largest service frame size (in octets) that can be transmitted through this SAP to the far-end router, without requiring the packet to be fragmented |
| Oper MTU           | Specifies the actual largest service frame size (in octets) that can be transmitted through this SAP to the far-end router, without requiring the packet to be fragmented  |
| Ingr IP Fltr-Id    | Specifies the ingress IP filter policy ID assigned to the SAP                                                                                                              |
| Egr IP Fltr-Id     | Specifies the egress IP filter policy ID assigned to the SAP (not applicable)                                                                                              |
| Ingr Mac Fltr-Id   | Specifies the ingress MAC filter policy ID assigned to the SAP (not applicable)                                                                                            |
| Egr Mac Fltr-Id    | Specifies the egress MAC filter policy ID assigned to the SAP (not applicable)                                                                                             |
| Acct. Pol          | Specifies the accounting policy applied to the SAP (not applicable)                                                                                                        |
| Collect Stats      | Specifies whether accounting statistics are collected on the SAP (not applicable)                                                                                          |
| QOS                |                                                                                                                                                                            |
| Ingress qos-policy | Displays the SAP ingress QoS policy ID                                                                                                                                     |
| Egress qos-policy  | Displays the SAP egress QoS policy ID                                                                                                                                      |
| SAP Statistics     |                                                                                                                                                                            |
| Last Cleared Time  | Displays the date and time that a clear command was issued on statistics                                                                                                   |

Table 37: Show Service ID All Command Output Fields (Continued)

| Label                   | Description                                                                                                                        |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Forwarding Engine Stats | Forwarding Engine Stats                                                                                                            |  |  |  |
| Dropped                 | Indicates the number of packets or octets dropped by the forwarding engine                                                         |  |  |  |
| Off. HiPrio             | Indicates the number of high-priority packets or octets offered to the forwarding engine                                           |  |  |  |
| Off. LowPrio            | Indicates the number of low-priority packets offered to the forwarding engine                                                      |  |  |  |
| Queueing Stats (Ingress | QoS Policy)                                                                                                                        |  |  |  |
| Dro. HiPrio             | Indicates the number of high-priority packets or octets discarded, as determined by the SAP ingress QoS policy                     |  |  |  |
| Dro. LowPrio            | Indicates the number of low-priority packets discarded, as determined by the SAP ingress QoS policy                                |  |  |  |
| For. InProf             | Indicates the number of in-profile packets or octets (rate<br>below CIR) forwarded, as determined by the SAP ingress QoS<br>policy |  |  |  |
| For. OutProf            | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded, as determined by the SAP ingress QoS policy   |  |  |  |
| Queueing Stats (Egress  | QoS Policy)                                                                                                                        |  |  |  |
| Dro. InProf             | Indicates the number of in-profile packets or octets discarded, as determined by the SAP egress QoS policy                         |  |  |  |
| Dro. OutProf            | Indicates the number of out-of-profile packets or octets discarded, as determined by the SAP egress QoS policy                     |  |  |  |
| For. InProf             | Indicates the number of in-profile packets or octets (rate<br>below CIR) forwarded, as determined by the SAP egress QoS<br>policy  |  |  |  |
| For. OutProf            | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded, as determined by the SAP egress QoS policy    |  |  |  |
| Sap per Queue stats     |                                                                                                                                    |  |  |  |
| Ingress Queue <i>n</i>  | Specifies the index of the ingress QoS queue of this SAP, where <i>n</i> is the index number                                       |  |  |  |
| Off. HiPrio             | Indicates the number of packets or octets of high-priority traffic for the SAP (offered)                                           |  |  |  |

Table 37: Show Service ID All Command Output Fields (Continued)

| Label                 | Description                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------|
| Off. LoPrio           | Indicates the number of packets or octets count of low-priority traffic for the SAP (offered) |
| Dro. HiPrio           | Indicates the number of high-priority traffic packets or octets dropped                       |
| Dro. LoPrio           | Indicates the number of low-priority traffic packets or octets dropped                        |
| For. InProf           | Indicates the number of in-profile packets or octets (rate below CIR) forwarded               |
| For. OutProf          | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded           |
| Egress Queue n        | Specifies the index of the egress QoS queue of the SAP, where <i>n</i> is the index number    |
| For. InProf           | Indicates the number of in-profile packets or octets (rate below CIR) forwarded               |
| For. OutProf          | Indicates the number of out-of-profile packets or octets (rate above CIR) forwarded           |
| Dro. InProf           | Indicates the number of in-profile packets or octets dropped for the SAP                      |
| Dro. OutProf          | Indicates the number of out-of-profile packets or octets discarded                            |
| ATM SAP Configuration | Information                                                                                   |
| Ingress TD Profile    | The profile ID of the traffic descriptor applied to the ingress SAP                           |
| Egress TD Profile     | The profile ID of the traffic descriptor applied to the egress SAP                            |
| Alarm Cell Handling   | Indicates that OAM cells are being processed                                                  |
| AAL-5 Encap           | Specifies the AAL-5 encapsulation type — for Release 1.1, this is always mux-ip               |
| OAM Termination       | Indicates whether this SAP is an OAM termination point                                        |
| Services Interfaces   |                                                                                               |
| If Name               | The name used to refer to the IES interface                                                   |
| Admin State           | The administrative state of the interface                                                     |
| Oper State            | The operational state of the interface                                                        |

Table 37: Show Service ID All Command Output Fields (Continued)

| Label             | Description                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP Addr/mask      | The IP address and subnet mask length of the interface                                                                                                                                                             |
| Address Type      | Specifies whether the IP address for the interface is the primary or secondary address on the interface (in Release 1.1, this is always primary)                                                                   |
| Broadcast Address | The broadcast address of the interface                                                                                                                                                                             |
| If Index          | The interface index corresponding to the IES interface                                                                                                                                                             |
| Virt. If Index    | The virtual interface index of the IES interface                                                                                                                                                                   |
| Last Oper Chg     | Specifies the date and time of the last operating state change on the interface                                                                                                                                    |
| Global IF Index   | The global interface index of the IES interface                                                                                                                                                                    |
| SAP Id            | The SAP identifier                                                                                                                                                                                                 |
| TOS Marking       | Specifies whether the ToS marking state is trusted or untrusted for the IP interface                                                                                                                               |
| If Type           | The type of interface: IES                                                                                                                                                                                         |
| IES ID            | The service identifier                                                                                                                                                                                             |
| MAC Address       | The IEEE 802.3 MAC address                                                                                                                                                                                         |
| Arp Timeout       | The timeout for an ARP entry learned on the interface                                                                                                                                                              |
| IP MTU            | The IP maximum transmit unit for the interface                                                                                                                                                                     |
| ICMP Mask Reply   | Specifies whether the IP interface replies to a received ICMP mask request                                                                                                                                         |
| ARP Populate      | Specifies if ARP is enabled or disabled                                                                                                                                                                            |
| ICMP Details      |                                                                                                                                                                                                                    |
| Redirects         | Specifies the maximum number of ICMP redirect messages that the IP interface will issue in a given period of time, in seconds  Disabled — indicates that the IP interface will not generate ICMP redirect messages |

Table 37: Show Service ID All Command Output Fields (Continued)

| Label        | Description                                                                                                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unreachables | Specifies the maximum number of ICMP destination unreachable messages that the IP interface will issue in a given period of time, in seconds  Disabled — indicates that the IP interface will not generate ICMP destination unreachable messages |
| TTL Expired  | Specifies the maximum number of ICMP TTL expired messages that the IP interface will issue in a given period of time, in seconds  Disabled — indicates that the IP interface will not generate ICMP TTL expired messages                         |

#### Sample Output (IES Management Service)

A:ALU-2# show service id 751 all Service Detailed Information Service Id : 751 Service Type : IES
Description : ATM\_Backhaul\_SAM\_Mgmt
Customer Id : 10 Last Status Change: 09/09/2008 16:26:25 Last Mgmt Change : 09/09/2008 16:25:04 Admin State : Up Oper State : Up SAP Count : 2 \_\_\_\_\_\_ Service Access Points \_\_\_\_\_\_ SAP bundle-ima-1/3.1:0/75 \_\_\_\_\_\_ Service Id : 751

SAP : bundle-ima-1/3.1:0/75 Encap : atm
Admin State : Up Oper State : Up
Flags : None Multi Svc Site : None Last Status Change : 09/09/2008 16:26:25 Last Mgmt Change : 09/09/2008 16:25:04 Sub Type : regular Ingr IP Fltr-Id : 1572
Ingr Mr : 1572 Oper MTU Egr IP Fltr-Id Egr Mac Fltr-Id : n/a Ingr Mac Fltr-Id : n/a tod-suite : None qinq-pbit-marking : both Egr Agg Rate Limit : max Acct. Pol : None Collect Stats : Disabled

Nbr Static Hosts : 0

Anti Spoofing : None

| QOS                                 |                   |                                                       |
|-------------------------------------|-------------------|-------------------------------------------------------|
| Ingress qos-policy<br>Shared Q plcy | : n/a             | Egress qos-policy : 1<br>Multipoint shared : Disabled |
| Sap Statistics                      |                   |                                                       |
| Last Cleared Time                   | : N/A             |                                                       |
|                                     | Packets           | Octets                                                |
| Forwarding Engine S                 | tats              |                                                       |
| Dropped                             | : 0               | n/a                                                   |
| Off. HiPrio                         | : 802789          | n/a                                                   |
| Off. LowPrio                        | : n/a             | n/a                                                   |
| Queueing Stats(Ingre                | ess QoS Policy 1) |                                                       |
| Dro. HiPrio                         | : 0               | n/a                                                   |
| Dro. LowPrio                        | : n/a             | n/a                                                   |
| For. InProf                         | : 802789          | 69039854                                              |
| For. OutProf                        | : 0               | 0                                                     |
| Queueing Stats(Egre                 |                   |                                                       |
| Dro. InProf                         | : 0<br>: n/a      | n/a                                                   |
| Dro. OutProf                        | : n/a             | n/a                                                   |
| For. InProf                         | : 802829          | 41753273                                              |
| For. OutProf                        | : n/a             | n/a                                                   |
| Sap per Queue stats                 |                   |                                                       |
|                                     | Packets           | Octets                                                |
| Ingress Queue 1 (Un                 | icast) (Priority) |                                                       |
| Off. HiPrio                         | : 802789          | n/a                                                   |
| Off. LoPrio                         | : n/a             | n/a                                                   |
| Dro. HiPrio                         | : 0               | n/a                                                   |
| Dro. LoPrio                         | : n/a             | n/a                                                   |
| For. InProf                         | : 802789          | 69039854                                              |
| For. OutProf                        | : 0               | 0                                                     |
| Egress Queue 1                      |                   |                                                       |
| For. InProf                         | : 802829          | 41753273                                              |
| For. OutProf                        | : n/a             | n/a                                                   |
| Dro. InProf                         | : 0               | n/a                                                   |
| Dro. OutProf                        | : n/a<br>         | n/a<br>                                               |
| ATM SAP Configuration               |                   |                                                       |
| Ingress TD Profile                  |                   | Egress TD Profile : 32                                |
| Alarm Cell Handling                 |                   | AAL-5 Encap : mux-ip                                  |
| OAM Termination                     | : Enabled         | Periodic Loopback : Disabled                          |

```
______
              : IP_10.75.11.0/24
If Name
Admin State : Up
                                  Oper State
              : None
Protocols
_____
Details
If Index : 3
                                  Virt. If Index : 3
Last Oper Chg : 09/09/2008 16:26:25 Global If Index : 32
SAP Id : bundle-ima-1/3.1:0/75

TOS Marking : Untrusted If Type : IES
SNTP B.Cast : False IES ID : 751

MAC Address : 00:00:00:00:10 Arp Timeout : 14400

IP MTU : 1524 ICMP Mask Reply : True
Arp Populate : Disabled Host Conn Verify : Disabled
LdpSyncTimer : None
Proxy ARP Details
Rem Proxy ARP : Disabled
                                 Local Proxy ARP : Disabled
Policies
              : none
ICMP Details
                                         Time (seconds) - 10
         : Number - 100
Redirects
                                         Time (seconds) - 10
Unreachables : Number - 100
TTL Expired : Number - 100
                                         Time (seconds) - 10
IPCP Address Extension Details
Peer IP Addr : Not configured
Peer Pri DNS Addr : Not configured
Peer Sec DNS Addr : Not configured
```



\*A:ALU-2#

**Note:** For more examples of Show commands for services, see Show Commands on page 193.

**Show Commands** 

## **OAM** and **SAA**

# In This Chapter

This chapter provides information about the Operations, Administration and Management (OAM) and Service Assurance Agent (SAA) commands available in the CLI for troubleshooting services.

Topics in this chapter include:

- OAM Overview on page 278
  - → LSP Diagnostics on page 278
  - → SDP Diagnostics on page 279
  - → Service Diagnostics on page 280
  - → VLL Diagnostics on page 281
  - → EFM OAM on page 283
  - → OAM Propagation to Attachment Circuits on page 284
  - → LDP Status Signaling on page 285
- Service Assurance Agent Overview on page 287
  - → SAA Application on page 287
- OAM and SAA List of Commands on page 288
- OAM and SAA Command Reference on page 293

### **OAM Overview**

Delivery of services requires that a number of operations occur properly and at different levels in the service delivery model. For example, operations—such as the association of packets to a service, VC-labels to a service, and each service to a service tunnel—must be performed properly in the forwarding plane for the service to function properly. In order to verify that a service is operational, a set of in-band, packet-based OAM tools is required, with the ability to test each of the individual packet operations.

For in-band testing, the OAM packets closely resemble customer packets in order to effectively test the customer's forwarding path, but they are distinguishable from customer packets so they can be kept within the service provider's network and not forwarded to the customer.

The suite of OAM diagnostics supplements the basic IP ping and traceroute operations with diagnostics specialized for the different levels in the service delivery model. In addition, there are diagnostics for MPLS LSPs, SDPs, and Services within a service.

### **LSP Diagnostics**

The 7705 SAR LSP diagnostics are implementations of LSP ping and LSP traceroute based on RFC 4379, *Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures*. LSP ping and LSP traceroute are modeled after the ICMP echo request/reply used by ping and traceroute to detect and localize faults in IP networks.

### **LSP Ping**

LSP ping, as described in RFC 4379, provides a mechanism to detect data plane failures in MPLS LSPs. For a given FEC, LSP ping verifies whether the packet reaches the egress label edge router (LER).

#### **LSP Traceroute**

In LSP traceroute mode, a packet is sent to each transit label switched router (LSR) along a communications path until the far-end router is reached. The path is traced one LSR at a time, where each LSR that receives a traceroute packet replies to the initiating 7705 SAR with a packet that identifies itself. Once the final LSR is identified, the initiating LSR has a list of all LSRs on the path. Like IP traceroute, LSP traceroute is a hop-by-hop operation (that is, LSR by LSR).

Use LSP traceroute to determine the exact litigation of LSP failures.

### **SDP Diagnostics**

The 7705 SAR SDP diagnostics include SDP ping and SDP MTU path discovery.

### **SDP Ping**

SDP ping performs in-band unidirectional or round-trip connectivity tests on SDPs. The SDP ping OAM packets are sent in-band, in the tunnel encapsulation, so it will follow the same path as traffic within the service. The SDP ping response can be received out-of-band in the control plane, or in-band using the data plane for a round-trip test.

For a unidirectional test, the SDP ping tests:

- the egress SDP ID encapsulation
- the ability to reach the far-end IP address of the SDP ID within the SDP encapsulation
- the path MTU to the far-end IP address over the SDP ID
- the forwarding class mapping between the near-end SDP ID encapsulation and the far-end tunnel termination

For a round-trip test, SDP ping uses a local egress SDP ID and an expected remote SDP ID. Since SDPs are unidirectional tunnels, the remote SDP ID must be specified and must exist as a configured SDP ID on the far-end 7705 SAR. SDP round-trip testing is an extension of SDP connectivity testing with the additional ability to test:

- the remote SDP ID encapsulation
- the potential service round-trip time
- the round-trip path MTU
- the round-trip forwarding class mapping

### **SDP MTU Path Discovery**

In a large network, network devices can support a variety of packet sizes that are transmitted across its interfaces. This capability is referred to as the maximum transmission unit (MTU) of network interfaces. It is important to understand the MTU of the entire path end-to-end when provisioning services, especially for VLL services where the service must support the ability to transmit the largest customer packet.

The Path MTU Discovery tool provides a powerful tool that enables service providers to get the exact MTU supported between the service ingress and service termination points, accurate to 1 byte.

### **Service Diagnostics**

The Alcatel-Lucent Service ping feature provides end-to-end connectivity testing for an individual service. Service ping operates at a higher level than the SDP diagnostics in that it verifies an individual service and not the collection of services carried within an SDP.

### **Service Ping**

Service (SVC) ping is initiated from a 7705 SAR router to verify round-trip connectivity and delay to the far-end of the service. The Alcatel-Lucent implementation functions for GRE and MPLS tunnels and tests the following from edge-to-edge:

- tunnel connectivity
- VC label mapping verification
- service existence
- service provisioned parameter verification
- round-trip path verification
- service dynamic configuration verification



**Note:** Service ping uses GRE encapsulation.

### **VLL Diagnostics**

This section describes VCCV ping, the VLL diagnostic capability for the 7705 SAR.

### VCCV Ping

VCCV ping is used to check connectivity (in-band) of a VLL. It checks that the destination (target) PE is the egress point for the Layer 2 FEC. It provides a cross-check between the data plane and the control plane. It is in-band, meaning that the VCCV ping message is sent using the same encapsulation and along the same path as user packets in that VLL. This is equivalent to the LSP ping for a VLL service. VCCV ping reuses an LSP ping message format and can be used to test a VLL configured over an MPLS or GRE SDP.

#### **VCCV Ping Application**

VCCV creates an IP control channel within the pseudowire between PE1 and PE2 (see Figure 24). PE2 should be able to distinguish, on the receive side, VCCV control messages from user packets on that VLL. The 7705 SAR uses the router alert label immediately above the VC label to identify the VCCV ping message. This method has a drawback in that if ECMP is applied to the outer LSP label, such as the transport label, the VCCV message will not follow the same path as the user packets.

When sending the label mapping message for the VLL, PE1 and PE2 include an optional VCCV TLV in the PW FEC interface parameter field. The TLV indicates that the control channel uses the router alert label method.

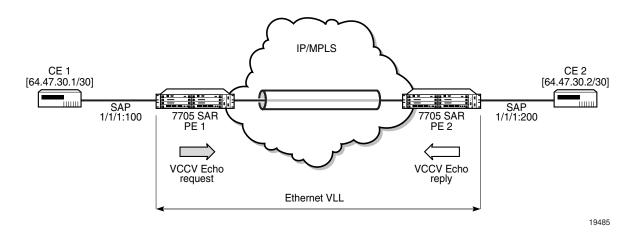



Figure 24: VCCV Ping Application

A VCCV-ping is an LSP echo request message as defined in the LSP ping specification. It contains a Layer 2 FEC stack TLV in which it must include the sub-TLV type 10 FEC 128 pseudowire. It also contains a field that indicates to the destination PE which reply mode to use.

The 7705 SAR supports the following reply modes:

- reply by an IPv4 UDP packet
   This is the default mode for any service that does not have Control Word enabled.
- reply by application-level control channel
   This mode sends the reply message in-band over the pseudowire from PE2 to PE1.
   PE2 will encapsulate the echo reply message using the CC type negotiated with PE1. This is the default mode of operation for Cpipe services.

The reply is an LSP echo reply message as defined in the LSP ping specification. The message is sent as per the reply mode requested by PE1. The return codes supported are the same as those currently supported in the 7705 SAR LSP ping capability.

The VCCV ping feature is in addition to the service ping OAM feature which can be used to test a service between 7705 SAR nodes. The VCCV ping feature can test connectivity of a VLL with any third party node that is compliant with *draft-ietf-pwe3-vccv-xx.txt*.

From the connection verification (CV) perspective, ICMP ping and LSP ping are both supported. From the control channel (CC) perspective, Router Alert is supported. In Release 1.1, VCCV based PW tests are only supported on dynamically signaled PWs (not on statically signaled PWs).

Table 38: Supported VCCV CC and CV Types

| Туре            | Supported for      | Details                                            |  |
|-----------------|--------------------|----------------------------------------------------|--|
| Control Channel |                    |                                                    |  |
| 1               | All supported VLLs | Use of CW, in-band, special bit stream "001b"      |  |
| 2               | All supported VLLs | With insertion of Router Alert header, out-of-band |  |
| Connec          | tion Verification  |                                                    |  |
| 0               | All supported VLLs | ICMP Ping                                          |  |
| 1               | All supported VLLs | LSP Ping                                           |  |

#### **EFM OAM**

802.3ah clause 57 defines the EFM OAM sublayer. It is a link level Ethernet OAM. It provides network operators the ability to monitor the health of link operation and quickly determine the location of failing links or fault conditions.

EFM OAM defines a set of events that may impact link operation. The following events are supported:

- critical link events (defined in 802.3ah clause 57.2.10.1)
  - → link fault: the PHY has determined a fault has occurred in the receive direction of the local DTE
  - → dying gasp: an unrecoverable local failure condition has occurred
  - → critical event: an unspecified critical event has occurred

These critical link events are signaled to the remote DTE by the flag field in OAMPDUs.

### **Unidirectional OAM Operation**

Some physical layer devices support unidirectional OAM operation. When a link is operating in unidirectional OAM mode, the OAM sublayer ensures that only information OAMPDUs with the Link Fault critical link event indication set and no Information TLVs are sent across the link.

### **Remote Loopback**

EFM OAM provides a link-layer frame loopback mode, which can be controlled remotely.

To initiate a remote loopback, the local EFM OAM client sends a loopback control OAMPDU with the "enable OAM remote loopback" command. After receiving the loopback control OAMPDU, the remote OAM client puts the port into frame loopback mode.

To exit a remote loopback, the local EFM OAM client sends a loopback control OAMPDU with the "disable OAM remote loopback" command. After receiving the loopback control OAMPDU, the remote OAM client put the port back into normal forwarding mode.

Note that during remote loopback test operation, all frames except EFM OAMPDUs are dropped at the local port for both receive and transmit directions, where remote loopback is enabled. This behavior can result in many protocols (e.g., STP) resetting their state machines.

When a port is in loopback mode, service mirroring is not operational if the port is a mirror-source or mirror-destination SAP.

### **802.3ah OAMPDU Tunneling for Epipe Services**

Some customers subscribing to Epipe services treat the service as a wire. They can run 802.3ah between devices located at each end of the Epipe. This only applies to port-based Epipe SAPs as 802.3ah runs at the port level not at the VLAN level.

When OAMPDU tunneling is enabled, 802.3ah OAMPDUs received at one end of an Epipe are forwarded through the service. This feature must be enabled at both ends of the Epipe; when OAMPDU tunneling is disabled (by default), OAMPDUs are dropped or processed locally according to the EFM OAM configuration.

OAMPDU tunneling and 802.3ah cannot both be enabled on the same port. This is enforced by the CLI.

### **OAM Propagation to Attachment Circuits**

Typically, T1/E1 equipment at a site relies on the physical availability of the T1/E1 ports to determine the uplink capacity. When a failure in the access link between the 7705 SAR and the T1/E1 equipment is detected, notification of the failure is propagated by the PW status signaling using one of two methods — label withdrawal or TLV (see LDP Status Signaling on page 285). In addition, the PW failure must also be propagated to the devices attached to the T1/E1 equipment. The propagation method depends on the type of port used by the access circuit (ATM, T1/E1 TDM, or Ethernet) and is described below.

#### **ATM Ports**

Propagation of ATM PW failures to the ATM port is achieved through the generation of AIS and RDI alarms.

In an HSDPA offload application, if a GRE SDP or the IP network it is riding over fails, the ATM SAPs must be rerouted to the ATM ports used for backhauling the traffic. When a fault is detected, the GRE tunnel is taken down and an SNMP trap is sent to the 5620 SAM. The 5620 SAM then reconfigures the ATM SAPs to use the network-facing ATM ports.

#### T1/E1 TDM Ports

If a port on a T1/E1 ASAP Adapter card is configured for CESoPSN VLL service, failure of the VLL forces a failure of the associated DS0s (timeslots). Since there can be  $n \times DS0s$  bound to a CESoPSN VLL service as the attachment circuit, an alarm is propagated to the bound DS0s only. In order to emulate the failure, an 'all 1s' or an 'all 0s' signal is sent through the DS0s. The bit pattern can be configured to be either all 1s or all 0s.

#### **Ethernet Ports**

For an Ethernet port-based Ethernet VLL, failure of the VLL forces a failure of the local Ethernet port. That is, the local attachment port is taken out of service at the physical layer and the Tx is turned off on the associated Ethernet port.

### LDP Status Signaling

The failure of a local circuit needs to be propagated to the far end PE, which then propagates the failure to its attached circuits. The 7705 SAR can propagate failures over the PW using one of the following methods:

- LDP status via label withdrawal
- LDP status via TLV

#### LDP Status via Label Withdrawal

Label withdrawal is negotiated during the PW status negotiation phase and needs to be supported by both the near-end and the far-end points. If the far-end does not support label withdrawal, the 7705 SAR still withdraws the label in case the local attachment circuit is removed or shut down.

Label withdrawal occurs only when the attachment circuit is administratively shut down or deleted. If there is a failure of the attached circuit, the label withdrawal message is not generated.

When the local circuit is re-enabled after shutdown, the VLL must be re-established, which causes some delays and signaling overhead.

#### **LDP Status via TLV**

Signaling PW status via TLV is supported as per RFC 4447. Signaling PW status via TLV is advertised during the PW capabilities negotiation phase. It is more efficient and is preferred over the label withdrawal method.

For cell mode ATM PWs, when an AIS message is received from the local attachment circuit, the AIS message is propagated to the far-end PE unaltered and PW status TLV is not initiated.

## **Service Assurance Agent Overview**

In the last few years, service delivery to customers has drastically changed. The introduction of Broadband Service Termination Architecture (BSTA) applications such as Voice over IP (VoIP), TV delivery, video and high-speed Internet services force carriers to produce services where the health and quality of Service Level Agreement (SLA) commitments are verifiable to the customer and internally within the carrier.

SAA is a feature that monitors network operations using statistics such as latency, response time, and packet loss. The information can be used to troubleshoot network problems, and help in problem prevention, and network topology planning.

The results are saved in SNMP tables that are queried by either the CLI or a management system. Threshold monitors allow for both rising and falling threshold events to alert the provider if SLA performance statistics deviate from the required parameters.

### **SAA Application**

SAA allows two-way timing for several applications. This provides the carrier and their customers with data to verify that the SLA agreements are being properly enforced.

Two-way time measures requests from this node to the specified DNS server. This is done by performing an address request followed by an immediate release of the acquired address once the time measurement has been performed.

### **Traceroute Implementation**

Various applications, such as lsp-trace, pass through the network processor on the way to the control CPU. At this point, and when it egresses the control CPU, the network processor should insert a timestamp inside the packet. Only packets processed by the control CPU are processed.

When interpreting these timestamps, care must be taken that some nodes are not capable of providing timestamps, as such timestamps must be associated with the same IP address that is being returned to the originator to indicate what hop is being measured.

### **OAM and SAA List of Commands**

Table 39 lists the OAM and SAA commands and command uses, indicating the configuration level at which each command is implemented with a short command description.

The command list is organized in the following task-oriented manner:

- ATM diagnostic commands
- LSP diagnostic commands
- SDP diagnostic commands
- Service diagnostic commands
- VLL diagnostic commands
- EFM diagnostic commands
- SAA configuration commands
- SAA test type configuration commands

**Table 39: OAM Command Summary** 

| Command                 | Description                                                                                        | Page |  |
|-------------------------|----------------------------------------------------------------------------------------------------|------|--|
| ATM diagnostic commands |                                                                                                    |      |  |
| oam                     |                                                                                                    |      |  |
| atm-ping                | Tests ATM path connectivity on an ATM VCC                                                          | 302  |  |
| LSP diagnostic c        | ommands                                                                                            |      |  |
| oam                     |                                                                                                    |      |  |
| lsp-ping                | Verifies LSP connectivity                                                                          | 322  |  |
| lsp-trace               | Determines the hop-by-hop path for an LSP                                                          | 323  |  |
| SDP diagnostic o        | commands                                                                                           |      |  |
| oam                     |                                                                                                    |      |  |
| sdp-mtu                 | Performs in-band MTU path tests on an SDP to determine the largest path-mtu supported on an SDP    | 304  |  |
| sdp-ping                | Tests an SDP for in-band unidirectional or round-trip connectivity with a round-trip time estimate | 325  |  |

## Table 39: OAM Command Summary (Continued)

| Command              | Description                                                                                                                                                                                                                                                                                                                                                                                                                               | Page |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Service diagnostic c | ommands                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| oam                  |                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| svc-ping             | Tests a service ID for correct and consistent provisioning between two service endpoints. The following information can be determined from svc-ping:  • local and remote service existence  • local and remote service state  • local and remote service type correlation  • local and remote customer association  • local and remote service-to-SDP bindings and state  • local and remote ingress and egress service label association | 306  |
| VLL diagnostic con   | nmands                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| oam                  |                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| vccv-ping            | Configures a Virtual Circuit Connectivity Verification (VCCV) test                                                                                                                                                                                                                                                                                                                                                                        | 332  |
| EFM diagnostic cor   | nmands                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| oam>efm              |                                                                                                                                                                                                                                                                                                                                                                                                                                           | 316  |
| local-loopback       | Enables local loopback tests on the specified port                                                                                                                                                                                                                                                                                                                                                                                        | 316  |
| remote-<br>loopback  | Enables remote EFM OAM loopback tests on the specified port                                                                                                                                                                                                                                                                                                                                                                               | 316  |
| SAA configuration    | commands                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| config>saa>test      |                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| description          | Description for this SAA test                                                                                                                                                                                                                                                                                                                                                                                                             | 317  |
| latency-event        | At the termination of an SAA test, evaluates the rising and falling thresholds against the configuration and generated events                                                                                                                                                                                                                                                                                                             | 320  |
| loss-event           | At the termination of an SAA test, evaluates the rising and falling thresholds against the configuration and generated events                                                                                                                                                                                                                                                                                                             | 321  |

**Table 39: OAM Command Summary (Continued)** 

| Command              | Description                                                               | Page |
|----------------------|---------------------------------------------------------------------------|------|
| shutdown             | Administratively enables or disables the saa test functionality           | 300  |
| type                 | Enables access to the context to provide the test type for the named test | 332  |
|                      |                                                                           |      |
| SAA test type config | guration commands                                                         |      |
| config>saa>test>     | type                                                                      |      |
| icmp-ping            | Specifies that icmp-ping packets be used for this test                    | 318  |
| lsp-ping             | Specifies that lsp-ping packets be used for this test                     | 322  |
| lsp-trace            | Specifies that lsp-trace packets be used for this test                    | 323  |
| sdp-ping             | Performs an SAA test on a SDP for either one-way or two-way timing        | 325  |
| vccv-ping            | Configures a VCCV ping test                                               | 332  |

# **Configuring SAA Test Parameters**

Use the following CLI syntax to create SAA test parameters.

The following example displays the saa test configuration output.

```
A:ALU-48>config>saa

test "t1"
type
lsp-ping "to-104" interval 4 send-count 5
exit
no shutdown
exit
```

#### The following example displays the result after running the test twice.

```
A:ALU-48>config>saa# show saa t1
Test Run: 1
Total number of attempts: 5
Number of requests that failed to be sent out: 1
Number of responses that were received: 4
Number of requests that did not receive any response: 0
Total number of failures: 1, Percentage: 20
Roundtrip Min: 0 ms, Max: 30 ms, Average: 15 ms
Per test packet:
   Sequence: 1, Result: The active lsp-id is not found., Roundtrip: 0 ms
    Sequence: 2, Result: Response Received, Roundtrip: 0 ms
   Sequence: 3, Result: Response Received, Roundtrip: 0 ms
   Sequence: 4, Result: Response Received, Roundtrip: 30 ms
   Sequence: 5, Result: Response Received, Roundtrip: 30 ms
Test Run: 2
Total number of attempts: 5
Number of requests that failed to be sent out: 0
Number of responses that were received: 5
Number of requests that did not receive any response: 0
Total number of failures: 0, Percentage: 0
Roundtrip Min: 0 ms, Max: 40 ms, Average: 14 ms
Per test packet:
    Sequence: 1, Result: Response Received, Roundtrip: 40 ms
    Sequence: 2, Result: Response Received, Roundtrip: 0 ms
    Sequence: 3, Result: Response Received, Roundtrip: 0 ms
    Sequence: 4, Result: Response Received, Roundtrip: 0 ms
    Sequence: 5, Result: Response Received, Roundtrip: 30 ms
```

OAM and SAA List of Commands

# **OAM and SAA Command Reference**

# **Command Hierarchies**

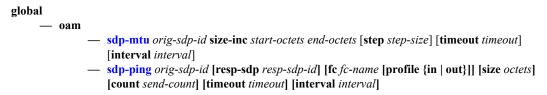
- Operational Commands
  - → ATM Diagnostics
  - → LSP Diagnostics
  - → SDP Diagnostics
  - → Service Diagnostics
  - → VLL Diagnostics
  - → Ethernet in the First Mile (EFM) Commands
- OAM Commands
- SAA Configuration Commands
  - → SAA Diagnostics
- Show Commands
- Clear Commands
- Debug Commands

# **Operational Commands**

#### global


- ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern pattern] [source ip-address] [interval seconds] [{next-hop ip-address | interface interface-name} | bypass-routing] [count requests] [do-not-fragment] [router router-instance] [timeout timeout]
- **traceroute** [ip-address | dns-name] [**ttl** ttl] [**wait** milli-seconds] [**no-dns**] [**source** ip-address] [**tos** type-of-service] [**router** [router-instance]]

#### **OAM Commands**


### **ATM Diagnostics**

global
— oam
— atm-ping port-id|bundle-id[:vpi|vpi/vci] [end-to-end | segment] [dest destination-id] [send-count sendcount] [timeout timeout] [interval]

### **LSP Diagnostics**



## **SDP Diagnostics**



# **Service Diagnostics**

```
global
— oam
— svc-ping ip-address service service-id [local-sdp] [remote-sdp]
```

### VLL Diagnostics

global

— oam

— vccv-ping sdp-id:vc-id [src-ip-address ip-addr dst-ip-address ip-addr pw-id] [reply-mode {ip-routed | control-channel}] [fc fc-name [profile {in | out}]] [size octets] [count send-count] [timeout timeout] [interval interval] [ttl vc-label-ttl]

### Ethernet in the First Mile (EFM) Commands



# **SAA Configuration Commands**



- instance] [timeout timeout]
   lsp-ping {{lsp-name [path path-name]} | {prefix ip-prefix/mask}} [fc
  fc-name [profile {in | out}]] [size octets] [ttl label-ttl] [send-count
  send-count] [timeout timeout] [interval interval] [path-destination ip-address[interface if-name | next-hop ip-address]]
- lsp-trace {{lsp-name [path path-name]} | {prefix ip-prefix/mask}} [fc fc-name [profile {in | out}]] [max-fail no-response-count] [probecount probes-per-hop] [size octets] [min-ttl min-label-ttl] [max-ttl max-label-ttl] [timeout timeout] [interval interval] [path-destination ip-address[interface if-name | next-hop ip-address]]
- sdp-ping orig-sdp-id [resp-sdp resp-sdp-id] [fc fc-name [profile in | out]] [size octets] [count send-count] [timeout timeout] [interval interval]
- vccv-ping sdp-id:vc-id [src-ip-address ip-addr dst-ip-address ip-addr pw-id pw-id] [reply-mode {ip-routed | control-channel}] [fc fc-name [profile {in | out}]] [size octets] [count send-count] [timeout timeout] [interval interval] [ttl vc-label-ttl]

## **SAA Diagnostics**

```
global
— oam
— saa test-name [owner test-owner] {start | stop}
```

### **Show Commands**

```
show
— saa [test-name [owner test-owner]]
```

### **Clear Commands**

# **Debug Commands**

```
debug
— [no] oam
— lsp-ping-trace [tx | rx | both] [raw | detail]
— no lsp-ping-trace
```

# **OAM and SAA Commands**

- Operational Commands on page 298
- ATM Diagnostics on page 302
- Service Diagnostics on page 304
- EFM Commands on page 316
- Service Assurance Agent (SAA) Commands on page 317
- OAM SAA Commands on page 336

# **Operational Commands**

ping

Syntax ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service] [size

bytes] [pattern pattern] [source ip-address] [interval interval] [{next-hop ip-address} | {interface interface-name} | bypass-routing] [count requests] [do-not-fragment] [router

router-instance] [timeout timeout]

Context <GLOBAL>

**Description** This command verifies the reachability of a remote host.

**Parameters** ip-address — identifies the far-end IP address to which to send the **svc-ping** request message in

dotted decimal notation

**Values** ipv4-address: a.b.c.d

dns-name

*dns-name* — identifies the DNS name of the far-end device to which to send the **svc-ping** request message, expressed as a character string

rapid — specifies that packets will be generated as fast as possible instead of the default 1 per second

detail — displays detailed information

ttl time-to-live — specifies the TTL value for the MPLS label, expressed as a decimal integer

**Values** 1 to 128

tos type-of-service — specifies the service type

**Values** 0 to 255

size bytes — specifies the request packet size in bytes, expressed as a decimal integer

**Values** 0 to 16384

**pattern** *pattern* — specifies the pattern that will be used to fill the date portion in a ping packet. If no pattern is specified, position information will be filled instead

**Values** 0 to 65535

source ip-address — specifies the IP address to be used

**Values** ipv4-address: a.b.c.d

**interval** *interval* — defines the minimum amount of time, expressed as a decimal integer, that must expire before the next message request is sent.

This parameter is used to override the default request message send interval. If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default

Values 1 to 10

**next-hop** *ip-address* — displays only the static routes with the specified next-hop IP address

**Values** ipv4-address: a.b.c.d (host bits must be 0)

**interface** *interface-name* — specifies the name of an IP interface. The name must already exist in the **config>router>interface** context

**bypass-routing** — specifies whether to send the ping request to a host on a directly attached network bypassing the routing table

**count** requests — specifies the number of times to perform an OAM ping probe operation. Each OAM echo message request must either time out or receive a reply before the next message request is sent.

**Values** 1 to 100000

Default 5

do-not-fragment — sets the DF (Do Not Fragment) bit in the ICMP ping packet

router router-instance — specifies the router name or service ID

**Values** router-name: Base, management

service-id: 1 to 2147483647

**Default** Base

**timeout** — specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

Default 5

Values 1 to 10

#### shutdown

Syntax [no] shutdown

Context config>saa>test

**Description** The **shutdown** command administratively disables a test. A **shutdown** can only be performed if a test

is not executing at the time the command is entered.

When a test is created, it remains in shutdown mode until a **no shutdown** command is executed.

In order to modify an existing test, it must first be shut down.

The **no** form of this command sets the state of the test to operational.

### traceroute

Syntax traceroute [ip-address | dns-name] [ttl ttl] [wait milli-seconds] [no-dns] [source ip-address]

[tos type-of-service] [router router-instance]

Context <GLOBAL>

**Description** This command determines the route to a destination address.

**Parameters** ip-address — specifies the far-end IP address to which to send the traceroute request message in

dotted decimal notation

**Values** ipv4-address: a.b.c.d

dns-name — specifies the DNS name of the far-end device to which to send the traceroute request message, expressed as a character string

**ttl** *ttl* — specifies the maximum Time-To-Live (TTL) value to include in the traceroute request, expressed as a decimal integer

**Values** 1 to 255

wait *milli-seconds* — specifies the time in milliseconds to wait for a response to a probe, expressed as a decimal integer

Default 5000

**Values** 10 to 60000

**no-dns** — when the **no-dns** keyword is specified, DNS lookups of the responding hosts will not be performed; only the IP addresses will be printed

**Default** DNS lookups of the responding hosts are performed

**source** *ip-address* — specifies the source IP address to use as the source of the probe packets in dotted decimal notation. If the IP address is not one of the device's interfaces, an error is returned

**tos** *type-of-service* — specifies the type-of-service (TOS) bits in the IP header of the probe packets, expressed as a decimal integer

**Values** 0 to 255

router router-instance — specifies a router name or service ID

**Default** Base

Values router-name Base, management service-id 1 to 2147483647

#### Output Sample Destination Address Route

\*A:ALU-1# traceroute 192.168.xx.xx4
traceroute to 192.168.xx.xx4, 30 hops max, 40 byte packets
1 192.168.xx.xx4 0.000 ms 0.000 ms
\*A:ALU-1#

# **ATM Diagnostics**

### atm-ping

Syntax atm-ping port-id | bundle-id [:vpi | vpi/vci] [end-to-end | segment] [dest destination-id]

[send-count send-count] [timeout timeout] [interval interval]

Context oam

**Description** This command tests ATM path connectivity on an ATM VCC.

**Parameters** port-id:vpi/vci — specifies the ID of the access port of the target VC. This parameter is required.

**Values** port-id slot/mda/port

bundle-id bundle-type-slot/mda.bundle-num

bundle keyword type ima bundle-num 1 to 10

vpi 0 to 4095 (NNI) 0 to 255 (UNI) vci 1, 2, 5 to 65535

end-to-end | segment — specifies whether the ATM OAM loopback cell is destined for the first segment point in the line direction or the PVCC's connection endpoint

**dest** destination-id — defines the LLID field in an OAM loopback cell. If set to all 1s, only the connection end (end-to-end ping) or segment end (segment ping) will respond to the ping. If the "segment" parameter is specified and 'dest' is set to a specific destination, only the destination will respond to the ping.

**Values** a 16-byte octet string, with each octet separated by a colon; if not specified, the value of 0x11 will be used

send-count send-count — the number of messages to send, expressed as a decimal integer. The send-count parameter is used to override the default number of message requests sent. Each message request must either time out or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1

**Values** 1 to 100

**timeout** *timeout* — specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

Default 5

Values 1 to 10

**interval** — specifies the minimum amount of time that must expire before the next message request is sent.

If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

This parameter is used to override the default request message send interval.

**Default** 

**Values** 1 to 10

# **Service Diagnostics**

### sdp-mtu

Syntax sdp-mtu orig-sdp-id size-inc start-octets end-octets [step step-size] [timeout timeout]

[interval interval]

Context oam

**Description** This command performs MTU path tests on an SDP to determine the largest path-mtu supported on

an SDP. The **size-inc** parameter can be used to easily determine the **path-mtu** of a given SDP-ID. The forwarding class is assumed to be Best-Effort Out-of-Profile. The message reply is returned with IP encapsulation from the far-end 7705 SAR. OAM request messages sent within an IP SDP must

have the "DF" IP header bit set to 1 to prevent message fragmentation.

To terminate an **sdp-mtu** in progress, use the CLI break sequence <Ctrl-C>.

#### **Special Cases**

**SDP Path MTU Tests** — SDP Path MTU tests can be performed using the **sdp-mtu size-inc** keyword to easily determine the **path-mtu** of a given SDP-ID. The forwarding class is assumed to be Best-Effort Out-of-Profile. The message reply is returned with IP encapsulation from the far-end 7705 SAR.

With each OAM Echo Request sent using the **size-inc** parameter, a response line is displayed as message output. The path MTU test displays incrementing packet sizes, the number sent at each size until a reply is received and the response message.

As the request message is sent, its size value is displayed followed by a period for each request sent of that size. Up to three requests will be sent unless a valid response is received for one of the requests at that size. Once a response is received, the next size message is sent. The response message indicates the result of the message request.

After the last reply has been received or a response timeout occurs, the maximum size message replied to indicates the largest size OAM Request message that received a valid reply.

#### **Parameters**

orig-sdp-id — specifies the SDP-ID to be used by sdp-ping, expressed as a decimal integer. The farend address of the specified SDP-ID is the expected responder-id within each reply received. The specified SDP-ID defines the SDP tunnel encapsulation used to reach the far end — GRE or MPLS. If orig-sdp-id is invalid or administratively down or unavailable for some reason, the SDP Echo Request message is not sent and an appropriate error message is displayed (once the interval timer expires, sdp-ping will attempt to send the next request if required).

**Values** 1 to 17407

**size-inc** *start-octets end-octets* — indicates that an incremental Path MTU test will be performed by sending a series of message requests with increasing MTU sizes

start-octets — specifies the beginning size in octets of the first message sent for an incremental MTU test, expressed as a decimal integer

**Values** 40 to 9198

*end-octets* — specifies the ending size in octets of the last message sent for an incremental MTU test, expressed as a decimal integer. The specified value must be greater than *start-octets*.

**Values** 40 to 9198

**step** *step-size* — specifies the number of octets to increment the message size request for each message sent for an incremental MTU test, expressed as a decimal integer. The next size message will not be sent until a reply is received or three messages have timed out at the current size.

If the incremented size exceeds the end-octets value, no more messages will be sent.

Default 32

**Values** 1 to 512

timeout timeout — specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A "request timeout" message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

This value is used to override the default **timeout** value.

Default 5

Values 1 to 10

**interval** *interval* — defines the minimum amount of time that must expire before the next message request is sent.

If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

This parameter is used to override the default request message send interval.

Default 1

Values 1 to 10

#### Output Sample SDP MTU Path Test Output

| *A:router | 1> sdp-mtu | 6 size-inc 512 3072 step 256 |
|-----------|------------|------------------------------|
| Size      | Sent       | Response                     |
|           |            |                              |
| 512       | •          | Success                      |
| 768       | •          | Success                      |
| 1024      | •          | Success                      |
| 1280      | •          | Success                      |
| 1536      | •          | Success                      |
| 1792      | •          | Success                      |
| 2048      | •          | Success                      |
| 2304      | •••        | Request Timeout              |
| 2560      | •••        | Request Timeout              |
| 2816      |            | Request Timeout              |

3072 ... Request Timeout Maximum Response Size: 2048

### svc-ping

Syntax svc-ping ip-address service service-id [local-sdp] [remote-sdp]

Context oam

**Description** 

This command tests a service ID for correct and consistent provisioning between two service endpoints. The command accepts a far-end IP address and a Service-ID for local and remote service testing. The following information can be determined from **svc-ping**:

- Local and remote service existence
- Local and remote service state
- Local and remote service type correlation
- · Local and remote customer association
- Local and remote service-to-SDP bindings and state
- Local and remote ingress and egress service label association

Unlike **sdp-ping**, only a single message will be sent per command; no count or interval parameter is supported and round-trip time is not calculated. A timeout value of 10 seconds is used before failing the request. The forwarding class is assumed to be Best-Effort Out-of-Profile.

If no request is sent or a reply is not received, all remote information will be shown as N/A.

To terminate an **svc-ping** in progress, use the CLI break sequence <Ctrl-C>.

Upon request timeout, message response, request termination, or request error, the following local and remote information will be displayed. Local and remote information is dependent upon service existence and reception of reply.

The following table describes the svc ping report fields.

Table 40: SVC Ping Report Fields

| Field                    | Description                                                                                                                                 | Values                                          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Request Result           | The result of the <b>svc-ping</b> request message                                                                                           | Sent - Request Timeout                          |
|                          |                                                                                                                                             | Sent - Request Terminated                       |
|                          |                                                                                                                                             | Sent - Reply Received                           |
|                          |                                                                                                                                             | Not Sent - Non-Existent<br>Service-ID           |
|                          |                                                                                                                                             | Not Sent - Non-Existent SDP for Service         |
|                          |                                                                                                                                             | Not Sent - SDP For Service<br>Down              |
|                          |                                                                                                                                             | Not Sent - Non-existent Service<br>Egress Label |
| Service-ID               | The Service-ID being tested                                                                                                                 | service-id                                      |
| Local Service Type       | The type of service being tested. If <i>service-id</i> does not exist locally, N/A is displayed.                                            | Epipe, Apipe                                    |
|                          |                                                                                                                                             | TLS                                             |
|                          |                                                                                                                                             | IES                                             |
|                          |                                                                                                                                             | Mirror-Dest                                     |
|                          |                                                                                                                                             | N/A                                             |
| Local Service Admin      | The local administrative state of <i>service-id</i> . If the service does not exist locally, the administrative state will be Non-Existent. | Admin-Up                                        |
| State                    |                                                                                                                                             | Admin-Down                                      |
|                          |                                                                                                                                             | Non-Existent                                    |
| Local Service Oper State | The local operational state of <i>service-id</i> . If the service does not exist locally, the state will be N/A.                            | Oper-Up                                         |
|                          |                                                                                                                                             | Oper-Down                                       |
|                          |                                                                                                                                             | N/A                                             |
| Remote Service Type      | The remote type of service being tested. If <i>service-id</i> does                                                                          | Epipe, Apipe                                    |
|                          | not exist remotely, N/A is displayed.                                                                                                       | TLS                                             |
|                          |                                                                                                                                             | IES                                             |
|                          |                                                                                                                                             | Mirror-Dest                                     |
|                          |                                                                                                                                             | N/A                                             |

Table 40: SVC Ping Report Fields (Continued)

| Field                         | Description                                                                                                                                                                                                                | Values                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Remote Service Admin<br>State | The remote administrative state of <i>service-id</i> . If the service does not exist remotely, the administrative state is Non-Existent.                                                                                   | Up                    |
|                               |                                                                                                                                                                                                                            | Down                  |
|                               |                                                                                                                                                                                                                            | Non-Existent          |
| Local Service MTU             | The local <b>service-mtu</b> for <i>service-id</i> . If the service does not                                                                                                                                               | service-mtu           |
|                               | exist, N/A is displayed.                                                                                                                                                                                                   | N/A                   |
| Remote Service MTU            | The remote <b>service-mtu</b> for <i>service-id</i> . If the service does                                                                                                                                                  | remote-service-mtu    |
|                               | not exist remotely, N/A is displayed.                                                                                                                                                                                      | N/A                   |
| Local Customer ID             | The local customer-id associated with service-id. If the                                                                                                                                                                   | customer-id           |
|                               | service does not exist locally, N/A is displayed.                                                                                                                                                                          | N/A                   |
| Remote Customer ID            | The remote <i>customer-id</i> associated with <i>service-id</i> . If the service does not exist remotely, N/A is displayed.                                                                                                | customer-id           |
|                               |                                                                                                                                                                                                                            | N/A                   |
| Local Service IP<br>Address   | The local system IP address used to terminate a remotely configured SDP-ID (as the <b>far-end</b> address). If an IP interface has not been configured to be the system IP address, N/A is displayed.                      | system-ip-address     |
|                               |                                                                                                                                                                                                                            | N/A                   |
| Local Service IP              | The name of the local system IP interface. If the local                                                                                                                                                                    | system-interface-name |
| Interface Name                | system IP interface has not been created, N/A is displayed.                                                                                                                                                                | N/A                   |
| Local Service IP              | The state of the local system IP interface. If the local system IP interface has not been created, Non-Existent is displayed.                                                                                              | Up                    |
| Interface State               |                                                                                                                                                                                                                            | Down                  |
|                               |                                                                                                                                                                                                                            | Non-Existent          |
| Expected Far-end              | The expected IP address for the remote system IP interface. This must be the <b>far-end</b> address entered for the <b>svc-ping</b> command.                                                                               | orig-sdp-far-end-addr |
| Address                       |                                                                                                                                                                                                                            | dest-ip-addr          |
|                               |                                                                                                                                                                                                                            | N/A                   |
| Actual Far-end Address        | The returned remote IP address. If a response is not received, the displayed value is N/A. If the far-end service IP interface is down or non-existent, a message reply is not expected. <b>sdp-ping</b> should also fail. | resp-ip-addr          |
|                               |                                                                                                                                                                                                                            | N/A                   |

Table 40: SVC Ping Report Fields (Continued)

| Field                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Values                              |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Responders Expected<br>Far-end Address     | The expected source of the originator's SDP-ID from the perspective of the remote 7705 SAR terminating the SDP-ID. If the far end cannot detect the expected source of the ingress SDP-ID or the request is transmitted outside the SDP-ID, N/A is displayed.                                                                                                                                                                                                                                                                                                                         | resp-rec-tunnel-far-end-address N/A |
| Originating SDP-ID                         | The SDP-ID used to reach the <b>far-end</b> IP address if <b>sdp-path</b> is defined. The originating SDP-ID must be bound to the <i>service-id</i> and terminate on the <b>far-end</b> IP address. If an appropriate originating SDP-ID is not found, Non-Existent is displayed.                                                                                                                                                                                                                                                                                                     | orig-sdp-id<br>Non-Existent         |
| Originating SDP-ID<br>Path Used            | Indicates whether the originating 7705 SAR used the originating SDP-ID to send the <b>svc-ping</b> request. If a valid originating SDP-ID is found, is operational and has a valid egress service label, the originating 7705 SAR should use the SDP-ID as the requesting path if <b>sdp-path</b> has been defined. If the originating 7705 SAR uses the originating SDP-ID as the request path, Yes is displayed. If the originating 7705 SAR does not use the originating SDP-ID as the request path, No is displayed. If the originating SDP-ID is non-existent, N/A is displayed. | Yes<br>No<br>N/A                    |
| Originating SDP-ID<br>Administrative State | The local administrative state of the originating SDP-ID. If the SDP-ID has been shut down, Admin-Down is displayed. If the originating SDP-ID is in the no shutdown state, Admin-Up is displayed. If an originating SDP-ID is not found, N/A is displayed.                                                                                                                                                                                                                                                                                                                           | Admin-Up Admin-Down N/A             |
| Originating SDP-ID Operating State         | The local operational state of the originating SDP-ID. If an originating SDP-ID is not found, N/A is displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oper-Up<br>Oper-Down<br>N/A         |
| Originating SDP-ID<br>Binding Admin State  | The local administrative state of the originating SDP-ID's binding to <i>service-id</i> . If an SDP-ID is not bound to the service, N/A is displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Admin-Up Admin-Down N/A             |
| Originating SDP-ID<br>Binding Oper State   | The local operational state of the originating SDP-ID's binding to <i>service-id</i> . If an SDP-ID is not bound to the service, N/A is displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oper-Up<br>Oper-Down<br>N/A         |

Table 40: SVC Ping Report Fields (Continued)

| Field                                                                                                                                                                                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                            | Values           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Responding SDP-ID                                                                                                                                                                                                                                                                                                                                  | The SDP-ID used by the far end to respond to the <b>svc-ping</b>                                                                                                                                                                                                                                                                                                                       | resp-sdp-id      |
| request. If the request was received without the <b>sdp-path</b> parameter, the responding 7705 SAR will not use an SDP-ID as the return path, but the appropriate responding SDP-ID will be displayed. If a valid SDP-ID return path is not found to the originating 7705 SAR that is bound to the <i>service-id</i> , Non-Existent is displayed. |                                                                                                                                                                                                                                                                                                                                                                                        | Non-Existent     |
| Responding SDP-ID                                                                                                                                                                                                                                                                                                                                  | Indicates whether the responding 7705 SAR used the                                                                                                                                                                                                                                                                                                                                     | Yes              |
| Path Used                                                                                                                                                                                                                                                                                                                                          | responding SDP-ID to respond to the <b>svc-ping</b> request. If the request was received via the originating SDP-ID and a                                                                                                                                                                                                                                                              | No               |
|                                                                                                                                                                                                                                                                                                                                                    | valid return SDP-ID is found, is operational and has a valid egress service label, the far-end 7705 SAR should use the SDP-ID as the return SDP-ID. If the far end uses the responding SDP-ID as the return path, Yes is displayed. If the far end does not use the responding SDP-ID as the return path, No is displayed. If the responding SDP-ID is non-existent, N/A is displayed. | N/A              |
| Responding SDP-ID                                                                                                                                                                                                                                                                                                                                  | The administrative state of the far-end SDP-ID associated with the return path for <i>service-id</i> . When a return path is administratively down, Admin-Down is displayed. If the                                                                                                                                                                                                    | Admin-Up         |
| Administrative State                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        | Admin-Down       |
| return SDP-ID is administratively up, Admin-Up is                                                                                                                                                                                                                                                                                                  | displayed. If the responding SDP-ID is non-existent, N/A is                                                                                                                                                                                                                                                                                                                            | N/A              |
| Responding SDP-ID                                                                                                                                                                                                                                                                                                                                  | The operational state of the far-end SDP-ID associated with the return path for <i>service-id</i> . When a return path is operationally down, Oper-Down is displayed. If the return SDP-ID is operationally up, Oper-Up is displayed. If the responding SDP-ID is non-existent, N/A is displayed.                                                                                      | Oper-Up          |
| Operational State                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        | Oper-Down        |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        | N/A              |
| Responding SDP-ID                                                                                                                                                                                                                                                                                                                                  | The local administrative state of the responder's SDP-ID binding to <i>service-id</i> . If an SDP-ID is not bound to the service, N/A is displayed.                                                                                                                                                                                                                                    | Admin-Up         |
| Binding Admin State                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                        | Admin-Down       |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        | N/A              |
| Responding SDP-ID                                                                                                                                                                                                                                                                                                                                  | The local operational state of the responder's SDP-ID                                                                                                                                                                                                                                                                                                                                  | Oper-Up          |
| Binding Oper State                                                                                                                                                                                                                                                                                                                                 | binding to <i>service-id</i> . If an SDP-ID is not bound to the service, N/A is displayed.                                                                                                                                                                                                                                                                                             | Oper-Down        |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        | N/A              |
| Originating VC-ID                                                                                                                                                                                                                                                                                                                                  | The originator's VC-ID associated with the SDP-ID to the                                                                                                                                                                                                                                                                                                                               | originator-vc-id |
|                                                                                                                                                                                                                                                                                                                                                    | far-end address that is bound to <i>service-id</i> . If the SDP-ID signaling is off, <i>originator-vc-id</i> is 0. If the <i>originator-vc-id</i> does not exist, N/A is displayed.                                                                                                                                                                                                    | N/A              |

Table 40: SVC Ping Report Fields (Continued)

| Field                                      | Description                                                                                                                                                                                                                                                                                                                                                | Values                                 |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Responding VC-ID                           | The responder's VC-ID associated with the SDP-ID to <i>originator-id</i> that is bound to <i>service-id</i> . If the SDP-ID signaling is off or the service binding to SDP-ID does not exist, <i>responder-vc-id</i> is 0. If a response is not received, N/A is displayed.                                                                                | responder-vc-id<br>N/A                 |
| Originating Egress<br>Service Label        | The originating service label (VC-Label) associated with the <i>service-id</i> for the originating SDP-ID. If <i>service-id</i> does not exist locally, N/A is displayed. If <i>service-id</i> exists, but the egress service label has not been assigned, Non-Existent is displayed.                                                                      | egress-vc-label<br>N/A<br>Non-Existent |
| Originating Egress<br>Service Label Source | The originating egress service label source. If the displayed egress service label is manually defined, Manual is displayed. If the egress service label is dynamically signaled, Signaled is displayed. If the <i>service-id</i> does not exist or the egress service label is non-existent, N/A is displayed.                                            | Manual Signaled N/A                    |
| Originating Egress<br>Service Label State  | The originating egress service label state. If the originating 7705 SAR considers the displayed egress service label operational, Up is displayed. If the originating 7705 SAR considers the egress service label inoperative, Down is displayed. If the <i>service-id</i> does not exist or the egress service label is non-existent, N/A is displayed.   | Up<br>Down<br>N/A                      |
| Responding Service<br>Label                | The actual responding service label in use by the far-end 7705 SAR for this <i>service-id</i> to the originating 7705 SAR. If <i>service-id</i> does not exist in the remote 7705 SAR, N/A is displayed. If <i>service-id</i> does exist remotely but the remote egress service label has not been assigned, Non-Existent is displayed.                    | rec-vc-label N/A Non-Existent          |
| Responding Egress<br>Service Label Source  | The responder's egress service label source. If the responder's egress service label is manually defined, Manual is displayed. If the responder's egress service label is dynamically signaled, Signaled is displayed. If the <i>service-id</i> does not exist on the responder or the responder's egress service label is non-existent, N/A is displayed. | Manual Signaled N/A                    |
| Responding Service<br>Label State          | The responding egress service label state. If the responding considers its egress service label operational, Up is displayed. If the responding 7705 SAR considers its egress service label inoperative, Down is displayed. If the <i>service-id</i> does not exist or the responder's egress service label is non-existent, N/A is displayed.             | Up<br>Down<br>N/A                      |

Table 40: SVC Ping Report Fields (Continued)

| Field                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                      | Values                |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Expected Ingress                          | The locally assigned ingress service label. This is the service                                                                                                                                                                                                                                                                                                                                                  | ingress-vc-label      |
| Service Label                             | label that the far end is expected to use for <i>service-id</i> when sending to the originating 7705 SAR. If <i>service-id</i> does not                                                                                                                                                                                                                                                                          | N/A                   |
|                                           | exist locally, N/A is displayed. If <i>service-id</i> exists but an ingress service label has not been assigned, Non-Existent is displayed.                                                                                                                                                                                                                                                                      | Non-Existent          |
| Expected Ingress Label                    | The originator's ingress service label source. If the                                                                                                                                                                                                                                                                                                                                                            | Manual                |
| Source                                    | originator's ingress service label is manually defined,<br>Manual is displayed. If the originator's ingress service label                                                                                                                                                                                                                                                                                        | Signaled              |
|                                           | is dynamically signaled, Signaled is displayed. If the <i>service-id</i> does not exist on the originator or the originator's ingress service label has not been assigned, N/A is displayed.                                                                                                                                                                                                                     | N/A                   |
| Expected Ingress                          | The originator's ingress service label state. If the originating 7705 SAR considers its ingress service label operational, Up is displayed. If the originating 7705 SAR considers its ingress service label inoperative, Down is displayed. If the <i>service-id</i> does not exist locally, N/A is displayed.                                                                                                   | Up                    |
| Service Label State                       |                                                                                                                                                                                                                                                                                                                                                                                                                  | Down                  |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                   |
| Responders Ingress                        | The assigned ingress service label on the remote 7705 SAR. This is the service label that the far end is expecting to receive for <i>service-id</i> when sending to the originating 7705 SAR. If <i>service-id</i> does not exist in the remote 7705 SAR, N/A is displayed. If <i>service-id</i> exists, but an ingress service label has not been assigned in the remote 7705 SAR, Non-Existent is displayed.   | resp-ingress-vc-label |
| Service Label                             |                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                   |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | Non-Existent          |
| Responders Ingress                        | The assigned ingress service label source on the remote 7705 SAR. If the ingress service label is manually defined on the remote 7705 SAR, Manual is displayed. If the ingress service label is dynamically signaled on the remote 7705 SAR, Signaled is displayed. If the <i>service-id</i> does not exist on the remote 7705 SAR, N/A is displayed.                                                            | Manual                |
| Label Source                              |                                                                                                                                                                                                                                                                                                                                                                                                                  | Signaled              |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                   |
| Responders Ingress<br>Service Label State | The assigned ingress service label state on the remote 7705 SAR. If the remote 7705 SAR considers its ingress service label operational, Up is displayed. If the remote 7705 SAR considers its ingress service label inoperative, Down is displayed. If the <i>service-id</i> does not exist on the remote 7705 SAR or the ingress service label has not been assigned on the remote 7705 SAR, N/A is displayed. | Up                    |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | Down                  |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                   |

#### **Parameters**

*ip-address* — specifies the far-end IP address to which to send the **svc-ping** request message in dotted decimal notation

service service-id — identifies the service being tested. The Service ID need not exist on the local 7705 SAR to receive a reply message.

This is a mandatory parameter.

**Values** 1 to 2147483647

**local-sdp** — specifies that the **svc-ping** request message should be sent using the same service tunnel encapsulation labeling as service traffic.

If **local-sdp** is specified, the command attempts to use an egress SDP-ID bound to the service with the specified **far-end** IP address with the VC-Label for the service. The far-end address of the specified SDP-ID is the expected *responder-id* within the reply received. The SDP-ID defines the SDP tunnel encapsulation used to reach the far end — GRE or MPLS. On originator egress, the service-ID must have an associated VC-Label to reach the far-end address of the SDP-ID and the SDP-ID must be operational for the message to be sent.

If **local-sdp** is not specified, the **svc-ping** request message is sent with GRE encapsulation with the OAM label.

Table 41 indicates whether a message is sent and how the message is encapsulated based on the state of the service ID.

**Local Service State** local-sdp Not Specified local-sdp Specified Message Message Message Message Sent **Encapsulation** Sent **Encapsulation** Invalid Local Service Yes Generic IP/GRE OAM (PLP) No None No Valid SDP-ID Bound Yes Generic IP/GRE OAM (PLP) None No SDP-ID Valid But Down Yes Generic IP/GRE OAM (PLP) No None SDP-ID Valid and Up, But No Yes Generic IP/GRE OAM (PLP) No None Service Label SDP-ID Valid, Up and Egress Yes Generic IP/GRE OAM (PLP) SDP Encapsulation with Service Label Egress Service Label (SLP)

**Table 41: Local SDP Message Results** 

**remote-sdp** — specifies that the **svc-ping** reply message from the **far-end** should be sent using the same service tunnel encapsulation labeling as service traffic.

If **remote-sdp** is specified, the **far-end** responder attempts to use an egress SDP-ID bound to the service with the message originator as the destination IP address with the VC-Label for the service. The SDP-ID defines the SDP tunnel encapsulation used to reply to the originator — GRE or MPLS. On responder egress, the service-ID must have an associated VC-Label to reach the originator address of the SDP-ID and the SDP-ID must be operational for the message to be sent. If **remote-sdp** is not specified, the **svc-ping** request message is sent with GRE encapsulation with the OAM label.

Table 42 indicates how the message response is encapsulated based on the state of the remote Service ID.

**Table 42: Remote SDP Message Results** 

| Remote Service State                                          | Message Encapsulation       |                                                      |
|---------------------------------------------------------------|-----------------------------|------------------------------------------------------|
|                                                               | remote-sdp<br>Not Specified | remote-sdp<br>Specified                              |
| Invalid Ingress Service Label                                 | Generic IP/GRE OAM (PLP)    | Generic IP/GRE OAM (PLP)                             |
| Invalid Service-ID                                            | Generic IP/GRE OAM (PLP)    | Generic IP/GRE OAM (PLP)                             |
| No Valid SDP-ID Bound on Service-ID                           | Generic IP/GRE OAM (PLP)    | Generic IP/GRE OAM (PLP)                             |
| SDP-ID Valid But Down                                         | Generic IP/GRE OAM (PLP)    | Generic IP/GRE OAM (PLP)                             |
| SDP-ID Valid and Up, but No Service Label                     | Generic IP/GRE OAM (PLP)    | Generic IP/GRE OAM (PLP)                             |
| SDP-ID Valid and Up, Egress Service Label, but VC-ID Mismatch | Generic IP/GRE OAM (PLP)    | Generic IP/GRE OAM (PLP)                             |
| SDP-ID Valid and Up, Egress Service Label, but VC-ID Match    | Generic IP/GRE OAM (PLP)    | SDP Encapsulation with<br>Egress Service Label (SLP) |

#### **Sample Output**

\*A:router1> svc-ping far-end 10.10.10.10 service 101 local-sdp remote-sdp Service-ID: 101

| Err | Info                                                                                                                                                           | Local                                                        | Remote                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
|     | Type: Admin State: Oper State: Service-MTU: Customer ID:                                                                                                       | CPIPE<br>Up<br>Up<br>1000<br>1001                            | CPIPE<br>Up<br>Up<br>1000<br>1001   |
| ==> | IP Interface State:<br>Actual IP Addr:<br>Expected Peer IP:                                                                                                    | 10.10.10.11                                                  | 10.10.10.10 10 10.10.11             |
| ==> | SDP Path Used: SDP-ID: Admin State: Operative State: Binding Admin State Binding Oper State: Binding VC ID: Binding Type: Binding Vc-type: Binding Vlan-vc-tag | 123<br>Up<br>Up<br>Up<br>Up<br>Up<br>101<br>Spoke<br>CesoPsn | Yes 325 Up Up Up Up Spoke CesoPsn 0 |

==> Egress Label: 131066 131064 Ingress Label: 131064 131066 Egress Label Type: Signaled Signaled Ingress Label Type: Signaled Signaled

Request Result: Sent - Reply Received

## **EFM Commands**

#### efm

Syntax efm port-id

Context oam

**Description** This command enables Ethernet in the First Mile (EFM) OAM loopbacks on the specified port. The

EFM OAM remote loopback OAMPDU will be sent to the peering device to trigger a remote

loopback.

**Parameters** port-id — specifies the port ID in the slot/mda/port format

## local-loopback

Syntax local-loopback {start | stop}

Context oam>efm

**Description** This command enables local loopback tests on the specified port.

## remote-loopback

Syntax remote-loopback {start | stop}

Context oam>efm

**Description** This command enables remote EFM OAM loopback tests on the specified port. The EFM OAM

remote loopback OAMPDU will be sent to the peering device to trigger a remote loopback.

# **Service Assurance Agent (SAA) Commands**

saa

Syntax saa

Context config

**Description** This command creates the context to configure the SAA tests.

test

Syntax test test-name [owner test-owner]

[no] test test-name [owner test-owner]

Context config>saa

**Description** This command identifies a test and creates or modifies the context to provide the test parameters for

the named test. Subsequent to the creation of the test instance, the test can be started in the OAM

context.

A test must be shut down before it can be modified or removed from the configuration.

The **no** form of this command removes the test from the configuration.

**Parameters** *test-name* — identifies the saa test name to be created or edited

owner test-owner — specifies the owner of an SAA operation, up to 32 characters in length

**Values** if a *test-owner* value is not specified, tests created by the CLI have a default owner

"TiMOS CLI"

description

Syntax description description-string

no description

Context config>saa>test

**Description** This command creates a text description stored in the configuration file for a configuration context.

The **no** form of this command removes the string from the configuration.

**Default** No description associated with the configuration context.

#### **Parameters**

description-string — the description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, \$, spaces, etc.), the entire string must be enclosed within double quotes.

### icmp-ping

**Syntax** 

icmp-ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service]
[[size bytes] [pattern pattern] [source ip-address] [interval seconds] [{next-hop ip-address}]
| {interface interface-name/bypass-routing}] [count requests] [do-not-fragment] [router router-instance] [timeout timeout]

Context

config>saa>test>type

Description

This command configures an ICMP traceroute test.

**Parameters** 

*ip-address* — identifies the far-end IP address to which to send the **icmp-ping** request message in dotted decimal notation

abcd

**Values** 

ipv4-address:

dns-name — identifies the DNS name of the far-end device to which to send the **icmp-ping** request message, expressed as a character string to a maximum of 63 characters

**Values** 128 characters maximum

rapid — specifies that packets will be generated as fast as possible instead of the default 1 per second

detail — displays detailed information

ttl time-to-live — specifies the TTL value for the MPLS label, expressed as a decimal integer

Default 64

**Values** 1 to 128

tos type-of-service — specifies the service type

**Default** 0

**Values** 0 to 255

size bytes — specifies the request packet size in bytes, expressed as a decimal integer

Default 56

**Values** 0 to 16384

**pattern** *pattern* — specifies the pattern that will be used to fill the date portion in a ping packet. If no pattern is specified, position information will be filled instead.

**Values** 0 to 65535

**source** *ip-address* — specifies the IP address to be used

**Values** ipv4-address: a.b.c.d

**interval** seconds — defines the minimum amount of time, expressed as a decimal integer, that must expire before the next message request is sent.

This parameter is used to override the default request message send interval. If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default 1

**Values** 1 to 10000

**next-hop** *ip-address* — displays only the static routes with the specified next-hop IP address

**Values** ipv4-address: a.b.c.d (host bits must be 0)

**interface** *interface-name* — specifies the name of an IP interface. The name must already exist in the **config>router>interface** context.

**bypass-routing** — specifies whether to send the ping request to a host on a directly attached network bypassing the routing table

**count** requests — specifies the number of times to perform an OAM ping probe operation. Each OAM echo message request must either time out or receive a reply before the next message request is sent.

**Values** 1 to 100000

Default 5

do-not-fragment — sets the DF (Do Not Fragment) bit in the ICMP ping packet

router router-instance — specifies the router name or service ID

**Values** router-name: Base, management

service-id: 1 to 2147483647

**Default** Base

timeout timeout — specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A "request timeout" message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

Default 5

**Values** 1 to 10

### latency-event

Syntax [no] latency-event rising-threshold threshold [falling-threshold threshold] [direction]

Context config>saa>test

**Description** This command specifies that at the termination of an SAA test probe, the calculated latency event

value is evaluated against the configured rising and falling latency event thresholds. SAA threshold

events are generated as required.

The configuration of latency event thresholds is optional.

**Parameters** 

rising-threshold threshold — specifies a rising threshold latency value. When the test run is completed, the calculated latency value is compared to the configured latency rising threshold. If the test run latency value is greater than the configured rising threshold value, then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

**Default** 0

**Values** 0 to 2147483647 ms

falling-threshold threshold — specifies a falling threshold latency value. When the test run is completed, the calculated latency value is compared to the configured latency falling threshold. If the test run latency value is greater than the configured falling threshold value, then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

Default 0

**Values** 0 to 2147483647 ms

direction — specifies the direction for OAM ping responses received for an OAM ping test run

**Values** inbound — monitors the value of jitter calculated for the inbound, one-way, OAM

ping responses received for an OAM ping test run

**outbound** — monitors the value of jitter calculated for the outbound, one-way,

OAM ping requests sent for an OAM ping test run

**roundtrip** — monitors the value of jitter calculated for the round-trip, two-way,

OAM ping requests and replies for an OAM ping test run

**Default** roundtrip

#### loss-event

Syntax [no] loss-event rising-threshold threshold [falling-threshold threshold] [direction]

Context config>saa>test

**Description** This command specifies that at the termination of an SAA test run, the calculated loss event value is

evaluated against the configured rising and falling loss event thresholds. SAA threshold events are

generated as required.

The configuration of loss event thresholds is optional.

**Parameters** 

rising-threshold threshold — specifies a rising threshold loss event value. When the test run is completed, the calculated loss event value is compared to the configured loss event rising threshold. If the test run loss event value is greater than the configured rising threshold value, then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

**Default** 0

**Values** 0 to 2147483647 packets

**falling-threshold** — specifies a falling threshold loss event value. When the test run is completed, the calculated loss event value is compared to the configured loss event falling threshold. If the test run loss event value is greater than the configured falling threshold value, then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

Default 0

**Values** 0 to 2147483647 packets

direction — specifies the direction for OAM ping responses received for an OAM ping test run

**Values** inbound — monitors the value of jitter calculated for the inbound, one-way, OAM

ping responses received for an OAM ping test run

**outbound** — monitors the value of jitter calculated for the outbound, one-way,

OAM ping requests sent for an OAM ping test run

**roundtrip** — monitors the value of jitter calculated for the round-trip, two-way,

OAM ping requests and replies for an OAM ping test run

**Default** roundtrip

### Isp-ping

Isp-ping prefix ip-prefix/mask [fc fc-name [profile {in | out}]] [size octets] [ttl label-ttl] Syntax 1 4 1

[send-count send-count] [timeout timeout] [interval interval] [detail]

Context oam

config>saa>test>type

Description

This command performs in-band LSP connectivity tests using the protocol and data structures defined in RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures.

> The LSP ping operation is modeled after the IP ping utility, which uses ICMP echo request and reply packets to determine IP connectivity.

> In an LSP ping, the originating device creates an MPLS echo request packet for the LSP and path to be tested. The MPLS echo request packet is sent through the data plane and awaits an MPLS echo reply packet from the device terminating the LSP. The status of the LSP is displayed when the MPLS echo reply packet is received.

The detail parameter is available only from the oam context.

**Parameters** 

**prefix** ip-prefix/mask — Specifies the address prefix and subnet mask of the destination node

**Values** ipv4-address: a.b.c.d

> value must be 32 mask.

fc fc-name — Indicates the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.

The LSP-EXP mappings on the receive network interface control the mapping back to the internal forwarding class used by the far-end 7705 SAR that receives the message request. The egress mappings of the egress network interface on the far-end 7705 SAR control the forwarding class markings on the return reply message.

The LSP-EXP mappings on the receive network interface control the mapping of the message reply back at the originating 7705 SAR.

Default

Values be, 12, af, 11, h2, ef, h1, nc

**profile {in | out}** — Specifies the profile state of the MPLS echo request encapsulation

Default

**size** octets — Specifies the MPLS echo request packet size in octets, expressed as a decimal integer. The request payload is padded with zeroes to the specified size.

**Default** 80 — Prefix-specified ping

92 — LSP name-specified ping

The system sends the minimum packet size, depending on the type of LSP. No

padding is added

**Values** 80, and 85 to 1500 — Prefix-specified ping

92, and 97 to 1500 — LSP name-specified ping

ttl label-ttl — Specifies the TTL value for the MPLS label, expressed as a decimal integer

**Default** 255 **Values** 1 to 255

send-count send-count — The number of messages to send, expressed as a decimal integer. The send-count parameter is used to override the default number of message requests sent. Each message request must either time out or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

**Default** 

**Values** 1 to 100

timeout timeout — Specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A "request timeout" message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

**Default** 5 **Values** 1 to 10

**interval** *interval* — Specifies the minimum amount of time that must expire before the next message request is sent.

If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

This parameter is used to override the default request message send interval.

Default 1

**Values** 1 to 10

**detail** — Displays detailed information

# Isp-trace

Syntax | Isp-trace prefix ip-prefix/mask [max-fail no-response-count] [fc fc-name [profile {in | out}]]

[probe-count probes-per-hop] [size octets] [min-ttl min-label-ttl]] [max-ttl max-label-ttl]

[timeout timeout] [interval interval] [detail]

Context oam

config>saa>test>type

#### **Description**

This command displays the hop-by-hop path for an LSP traceroute using the protocol and data structures defined in RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures.

The LSP traceroute operation is modeled after the IP traceroute utility, which uses ICMP echo request and reply packets with increasing TTL values to determine the hop-by-hop route to a destination IP.

In an LSP traceroute, the originating device creates an MPLS echo request packet for the LSP to be tested with increasing values of the TTL in the outermost label. The MPLS echo request packet is sent through the data plane and awaits a TTL exceeded response or the MPLS echo reply packet from the device terminating the LSP. The devices that reply to the MPLS echo request packets with the TTL exceeded and the MPLS echo reply are displayed.

The detail parameter is available only from the oam context.

#### **Parameters**

**prefix** ip-prefix/mask — Specifies the address prefix and subnet mask of the destination node

**Values** ipv4-address: a.b.c.d (host bits must be 0)

mask: 0 to 32

**size** *octets* — Specifies the MPLS echo request packet size in octets, expressed as a decimal integer. The request payload is padded with zeroes to the specified size.

**Default** 104 — The system sends the minimum packet size, depending on the type of LSP.

No padding is added.

**Values** 104 to 1500

min-ttl min-label-ttl — Specifies the minimum TTL value in the MPLS label for the LSP trace test, expressed as a decimal integer

**Default** 

**Values** 1 to 255

max-ttl max-label-ttl — Specifies the maximum TTL value in the MPLS label for the LDP trace test, expressed as a decimal integer

Default 30

**Values** 1 to 255

max-fail no-response-count — Specifies the maximum number of consecutive MPLS echo requests, expressed as a decimal integer, that do not receive a reply before the trace operation fails for a given TTL

**Default** 5

Values 1 to 255

**probe-count** *probes-per-hop* — Specifies the number of OAM requests sent for a particular TTL value, expressed as a decimal integer

**Default** 

Values 1 to 10

timeout timeout — Specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A "request timeout" message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

Default 3

Values 1 to 60

**interval** *interval* — Specifies the minimum amount of time that must expire before the next message request is sent.

If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

This parameter is used to override the default request message send interval.

Default 1

Values 1 to 10

detail — Displays detailed information

**fc** *fc-name* — Indicates the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.

The LSP-EXP mappings on the receive network interface control the mapping back to the internal forwarding class used by the far-end 7705 SAR that receives the message request. The egress mappings of the egress network interface on the far-end 7705 SAR control the forwarding class markings on the return reply message.

The LSP-EXP mappings on the receive network interface control the mapping of the message reply back at the originating 7705 SAR.

**Default** be

**Values** be, 12, af, 11, h2, ef, h1, nc

**profile {in | out}** — Specifies the profile state of the MPLS echo request encapsulation

**Default** out

## sdp-ping

Syntax sdp-ping orig-sdp-id [resp-sdp resp-sdp-id] [fc fc-name [profile {in | out}]] [timeout

timeout] [interval interval] [size octets] [count send-count]

Context config>saa>test>type

#### Description

This command tests SDPs for unidirectional or round-trip connectivity and performs SDP MTU path tests.

The **sdp-ping** command accepts an originating SDP-ID and an optional responding SDP-ID. The size, number of requests sent, message time out and message send interval can be specified. All sdp-ping requests and replies are sent with PLP OAM-Label encapsulation, as a service-id is not specified.

For round-trip connectivity testing, the **resp-sdp** keyword must be specified. If resp-sdp is not specified, a unidirectional SDP test is performed.

To terminate an sdp-ping in progress, use the CLI break sequence <Ctrl-C>.

An sdp-ping response message indicates the result of the sdp-ping message request. When multiple response messages apply to a single SDP Echo Request/Reply sequence, the response message with the highest precedence will be displayed. The following table displays the response messages sorted by precedence.

**Table 43: SDP Ping Response Messages** 

| Result of Request                                                | Displayed Response Message     | Precedence |
|------------------------------------------------------------------|--------------------------------|------------|
| Request timeout without reply                                    | Request Timeout                | 1          |
| Request not sent due to non-existent <i>orig-sdp-id</i>          | Orig-SDP Non-Existent          | 2          |
| Request not sent due to administratively down <i>orig-sdp-id</i> | Orig-SDP Admin-Down            | 3          |
| Request not sent due to operationally down <i>orig-sdp-id</i>    | Orig-SDP Oper-Down             | 4          |
| Request terminated by user before reply or timeout               | Request Terminated             | 5          |
| Reply received, invalid origination-id                           | Far End: Originator-ID Invalid | 6          |
| Reply received, invalid responder-id                             | Far End: Responder-ID Error    | 7          |
| Reply received, non-existent resp-sdp-id                         | Far End: Resp-SDP Non-Existent | 8          |
| Reply received, invalid resp-sdp-id                              | Far End: Resp-SDP Invalid      | 9          |
| Reply received, <i>resp-sdp-id</i> down (admin or oper)          | Far-end: Resp-SDP Down         | 10         |
| Reply received, No Error                                         | Success                        | 11         |

#### **Parameters**

orig-sdp-id — The SDP-ID to be used by sdp-ping, expressed as a decimal integer. The far-end address of the specified SDP-ID is the expected responder-id within each reply received. The specified SDP-ID defines the SDP tunnel encapsulation used to reach the far end — GRE or MPLS. If orig-sdp-id is invalid or administratively down or unavailable for some reason, the SDP Echo Request message is not sent and an appropriate error message is displayed (once the interval timer expires, sdp-ping will attempt to send the next request if required).

**Values** 1 to 17407

resp-sdp resp-sdp-id — Specifies the return SDP-ID to be used by the far-end 7705 SAR for the message reply for round-trip SDP connectivity testing. If resp-sdp-id does not exist on the far-end 7705 SAR, terminates on another 7705 SAR different from the originating 7705 SAR, or another issue prevents the far-end 7705 SAR from using resp-sdp-id, the SDP Echo Reply will be sent using generic OAM encapsulaton. The received forwarding class (as mapped on the ingress network interface for the far end) defines the forwarding class encapsulation for the reply message.

This is an optional parameter.

**Default** null. Use the non-SDP return path for message reply.

**Values** 1 to 17407

**fc** *fc-name* — Indicates the forwarding class of the SDP encapsulation. The actual forwarding class encoding is controlled by the network egress DSCP or LSP-EXP mappings.

The DSCP or LSP-EXP mappings on the receive network interface control the mapping back to the internal forwarding class used by the far-end 7705 SAR that receives the message request. The egress mappings of the egress network interface on the far-end 7705 SAR control the forwarding class markings on the return reply message.

The DSCP or LSP-EXP mappings on the receive network interface control the mapping of the message reply back at the originating 7705 SAR. This is displayed in the response message output upon receipt of the message reply.

**Default** be

**Values** be, 12, af, 11, h2, ef, h1, nc

**profile {in | out}** — Specifies the profile state of the SDP encapsulation

**Default** out

timeout timeout — Specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A "request timeout" message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

Default 5

Values 1 to 10

**interval** *interval* — Specifies the minimum amount of time that must expire before the next message request is sent.

If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

This parameter is used to override the default request message send interval.

Default 1

Values 1 to 10

size octets — The size parameter in octets, expressed as a decimal integer. This parameter is used to override the default message size for the sdp-ping request. Changing the message size is a method of checking the ability of an SDP to support a path-mtu. The size of the message does not include the SDP encapsulation, VC-Label (if applied) or any DLC headers or trailers.

When the OAM message request is encapsulated in an SDP, the IP "DF" (Do Not Fragment) bit is set. If any segment of the path between the sender and receiver cannot handle the message size, the message is discarded. MPLS LSPs are not expected to fragment the message either, as the message contained in the LSP is not an IP packet.

Default 40

**Values** 72 to 1500

count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either time out or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1

**Values** 1 to 100

#### **Special Cases**

**Single Response Connectivity Tests** — A single response sdp-ping test provides detailed test results.

Upon request timeout, message response, request termination, or request error, the following local and remote information will be displayed. Local and remote information will be dependent upon SDP-ID existence and reception of reply.

**Table 44: Single Response Connectivity** 

| Field                | Description                                                                                                                                                                          | Values                                  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Request Result       | The result of the <b>sdp-ping</b> request message                                                                                                                                    | Sent - Request Timeout                  |
|                      |                                                                                                                                                                                      | Sent - Request<br>Terminated            |
|                      |                                                                                                                                                                                      | Sent - Reply Received                   |
|                      |                                                                                                                                                                                      | Not Sent - Non-Existent<br>Local SDP-ID |
|                      |                                                                                                                                                                                      | Not Sent - Local SDP-ID<br>Down         |
| Originating SDP-ID   | The originating SDP-ID specified by orig-sdp                                                                                                                                         | orig-sdp-id                             |
| Originating SDP-ID   | The local administrative state of the originating SDP-ID. If the SDP-                                                                                                                | Admin-Up                                |
| Administrative State | ID has been shut down, Admin-Down is displayed. If the originating SDP-ID is in the no shutdown state, Admin-Up is displayed. If the                                                 | Admin-Down                              |
|                      | orig-sdp-id does not exist, Non-Existent is displayed.                                                                                                                               | Non-Existent                            |
| Originating SDP-ID   | The local operational state of the originating SDP-ID. If <i>orig-sdp-id</i>                                                                                                         | Oper-Up                                 |
| Operating State      | does not exist, N/A will be displayed.                                                                                                                                               | Oper-Down                               |
|                      |                                                                                                                                                                                      | N/A                                     |
| Originating SDP-ID   | The local <b>path-mtu</b> for <i>orig-sdp-id</i> . If <i>orig-sdp-id</i> does not exist                                                                                              | orig-path-mtu                           |
| Path MTU             | locally, N/A is displayed.                                                                                                                                                           | N/A                                     |
| Responding SDP-ID    | The SDP-ID requested as the far-end path to respond to the <b>sdp</b> -                                                                                                              | resp-sdp-id                             |
|                      | <b>ping</b> request. If <b>resp-sdp</b> is not specified, the responding 7705 SAR will not use an SDP-ID as the return path and N/A will be displayed.                               | N/A                                     |
| Responding SDP-ID    | Displays whether the responding 7705 SAR used the responding                                                                                                                         | Yes                                     |
| Path Used            | SDP-ID to respond to the <b>sdp-ping</b> request. If <i>resp-sdp-id</i> is a valid, operational SDP-ID, it must be used for the SDP Echo Reply                                       | No                                      |
|                      | message. If the far end uses the responding SDP-ID as the return                                                                                                                     | N/A                                     |
|                      | path, Yes will be displayed. If the far end does not use the responding SDP-ID as the return path, No will be displayed. If <b>resp-sdp</b> is not specified, N/A will be displayed. |                                         |

Table 44: Single Response Connectivity (Continued)

| Field                               | Description                                                                                                                                       | Values                           |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Responding SDP-ID                   | The administrative state of the responding SDP-ID. When <i>resp-sdp-</i>                                                                          | Admin-Down                       |  |
| Administrative State                | <i>id</i> is administratively down, Admin-Down will be displayed. When <i>resp-sdp-id</i> is administratively up, Admin-Up will be displayed.     | Admin-Up                         |  |
|                                     | When <i>resp-sdp-id</i> exists on the far-end 7705 SAR but is not valid for the originating 7705 SAR, Invalid is displayed. When <i>resp-sdp-</i> | Invalid                          |  |
|                                     | id does not exist on the far-end 7705 SAR, Non-Existent is                                                                                        | Non-Existent                     |  |
|                                     | displayed. When <b>resp-sdp</b> is not specified, N/A is displayed.                                                                               | N/A                              |  |
| Responding SDP-ID                   | The operational state of the far-end SDP-ID associated with the                                                                                   | Oper-Up                          |  |
| Operational State                   | return path for <i>service-id</i> . When a return path is operationally down, Oper-Down is displayed. If the return SDP-ID is operationally up,   | Oper-Down                        |  |
|                                     | Oper-Up is displayed. If the responding SDP-ID is non-existent, N/A is displayed.                                                                 | N/A                              |  |
| Responding SDP-ID                   | The remote <b>path-mtu</b> for <i>resp-sdp-id</i> . If <i>resp-sdp-id</i> does not exist                                                          | resp-path-mtu                    |  |
| Path MTU                            | remotely, N/A is displayed.                                                                                                                       | N/A                              |  |
| Local Service IP                    | The local system IP address used to terminate remotely configured                                                                                 | system-ip-addr                   |  |
| Address                             | SDP-IDs (as the SDP-ID <b>far-end</b> address). If an IP address has not been configured to be the system IP address, N/A is displayed.           | N/A                              |  |
| Local Service IP                    | The name of the local system IP interface. If the local system IP                                                                                 | system-interface-name            |  |
| Interface Name                      | interface has not been created, N/A is displayed.                                                                                                 | N/A                              |  |
| Local Service IP                    | The state of the local system IP interface. If the local system IP                                                                                | Up                               |  |
| Interface State                     | interface has not been created, Non-Existent is displayed.                                                                                        | Down                             |  |
|                                     |                                                                                                                                                   | Non-Existent                     |  |
| Expected Far End                    | The expected IP address for the remote system IP interface. This                                                                                  | orig-sdp-far-end-addr            |  |
| Address                             | must be the <b>far-end</b> address configured for the <i>orig-sdp-id</i> .                                                                        | dest-ip-addr                     |  |
|                                     |                                                                                                                                                   | N/A                              |  |
| Actual Far End                      | The returned remote IP address. If a response is not received, the                                                                                | resp-ip-addr                     |  |
| Address                             | displayed value is N/A. If the far-end service IP interface is down or non-existent, a message reply is not expected.                             | N/A                              |  |
| Responders Expected Far End Address | The expected source of the originator's SDP-ID from the perspective of the remote 7705 SAR terminating the SDP-ID. If the                         | resp-rec-tunnel-far-end-<br>addr |  |
|                                     | far end cannot detect the expected source of the ingress SDP-ID, N/A is displayed.                                                                | N/A                              |  |
| Round Trip Time                     | The round-trip time between SDP Echo Request and the SDP Echo                                                                                     | delta-request-reply              |  |
|                                     | Reply. If the request is not sent, times out or is terminated, N/A is displayed.                                                                  | N/A                              |  |

#### **Single Response Round-trip Connectivity Test Sample Output**

| A:router1> | oam | sdn-ning | 10 | resp-sdp | 22 | fc | ۵f |
|------------|-----|----------|----|----------|----|----|----|
|            |     |          |    |          |    |    |    |

| Err SDP-ID Info                                 | Local       | Remote      |  |  |
|-------------------------------------------------|-------------|-------------|--|--|
| SDP-ID:                                         | 10          | 22          |  |  |
| Administrative State:                           | Up          | Up          |  |  |
| Operative State:                                | Up          | Up          |  |  |
| Path MTU:                                       | 4470        | 4470        |  |  |
| Response SDP Used:                              |             | Yes         |  |  |
| ==> IP Interface State:                         | Up          |             |  |  |
| Actual IP Address:                              | 10.10.10.11 | 10.10.10.10 |  |  |
| Expected Peer IP:                               | 10.10.10.10 | 10.10.10.11 |  |  |
| Forwarding Class                                | ef          | ef          |  |  |
| Profile                                         | Out         | Out         |  |  |
| Request Result: Sent - Reply Received RTT: 30ms |             |             |  |  |

**Multiple Response Connectivity Tests** — When the connectivity test count is greater than one (1), a single line is displayed per SDP Echo Request send attempt.

The request number is a sequential number starting with 1 and ending with the last request sent, incrementing by one for each request. This should not be confused with the message-id contained in each request and reply message.

A response message indicates the result of the message request. Following the response message is the round-trip time value. If any reply is received, the round-trip time is displayed.

After the last reply has been received or response timed out, a total is displayed for all messages sent and all replies received. A maximum, minimum and average round-trip time is also displayed. Error response and timed-out requests do not apply toward the average round-trip time.

#### **Multiple Response Round-trip Connectivity Test Sample Output**

| A:router1> oar | n sdp-ping 6 r | esp-sdp 101 size 1514 count 5 |
|----------------|----------------|-------------------------------|
| Request        | Response       | RTT                           |
|                |                |                               |
| 1              | Success        | 10ms                          |
| 2              | Success        | 15ms                          |
| 3              | Success        | 10ms                          |
| 4              | Success        | 20ms                          |
| 5              | Success        | 5ms                           |
| Sent: 5        | Received:      | 5                             |
| Min: 5ms       | Max: 20ms      | Avg: 12ms                     |

## type

Syntax type

[no] type

Context c

config>saa>test

Description

This command creates the context to provide the test type for the named test. Only a single test type can be configured.

A test can only be modified while the test is in shutdown mode.

Once a test type has been configured, the command can be modified by re-entering the command. The test type must be the same as the previously entered test type.

To change the test type, the old command must be removed using the **config>saa>test>no type** command.

## vccv-ping

**Syntax** 

vccv-ping sdp-id:vc-id [src-ip-address ip-addr dst-ip-address ip-addr pw-id] [reply-mode {ip-routed|control-channel}] [fc fc-name [profile {in | out}]] [size octets] [count send-count] [timeout timeout] [interval interval] [ttl vc-label-ttl]

Context

oam

config>saa>test>type

Description

This command configures a virtual circuit connectivity verification (VCCV) ping test. A vccv-ping test checks connectivity of a VLL in-band. It checks to verify that the destination (target) PE is the egress for the Layer 2 FEC. It provides for a cross-check between the data plane and the control plane. It is in-band, which means that the vccv-ping message is sent using the same encapsulation and along the same path as user packets in that VLL. The vccv-ping test is the equivalent of the lsp-ping test for a VLL service. The vccv-ping reuses an lsp-ping message format and can be used to test a VLL configured over an MPLS or GRE SDP.

Note that VCCV ping can be initiated on TPE or SPE. If initiated on the SPE, the **reply-mode** parameter must be used with the ip-routed value. The ping from the TPE can either have values or the values can be omitted.

If a VCCV ping is initiated from a TPE to a neighboring SPE (one segment only) it is sufficient to only use the *sdpid:vcid* parameter. However, if the ping is across two or more segments, at the least the *sdpId:vcId*, **src-ip-address** *ip-addr*, **dst-ip-address** *ip-addr*, **ttl** *vc-label-ttl* and **pw-id** parameters are used where:

- the *src-ip-address* is the system IP address of the router preceding the destination router
- the pw-id is actually the VC ID of the last pseudowire segment
- the *vc-label-ttl* must have a value equal to or greater than the number of pseudowire segments

#### **Parameters**

sdp-id:vc-id — Identifies the virtual circuit of the pseudowire being tested. The VC ID needs to exist on the local router and the far-end peer needs to indicate that it supports VCCV to allow the user to send a vccv-ping message.

This is a mandatory parameter.

Values sdp-id: 1 to 17407

vc-id: 1 to 2147483647

**src-ip-address** *ip-addr* — Specifies the source IP address

**Values** ipv4-address: a.b.c.d

**dst-ip-address** *ip-addr* — Specifies the destination IP address

**Values** ipv4-address: a.b.c.d

pw-id pw-id — Specifies the pseudowire ID to be used for performing a vccv-ping operation. The pseudowire ID is a non-zero, 32-bit connection ID required by the FEC 128, as defined in RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures.

**Values** 0 to 4294967295

**reply-mode** {**ip-routed** | **control-channel**} — Specifies the method for sending the reply message to the far-end 7705 SAR.

This is a mandatory parameter.

**Values** ip-routed — Indicates a reply mode out-of-band using UDP IPv4

**control-channel** — Indicates a reply mode in-band using vccv control channel

**Default** control-channel

**fc** *fc-name* — Indicates the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.

The LSP-EXP mappings on the receive network interface control the mapping back to the internal forwarding class used by the far-end 7705 SAR that receives the message request. The egress mappings of the egress network interface on the far-end router control the forwarding class markings on the return reply message. The LSP-EXP mappings on the receive network interface control the mapping of the message reply back at the originating SR.

**Default** be

**Values** be, 12, af, 11, h2, ef, h1, nc

**profile** {in | out} — Specifies the profile state of the MPLS echo request encapsulation

**Default** out

timeout timeout — Specifies the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A "request timeout" message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

This value is used to override the default timeout value.

Default 5
Values 1 to 10

**interval** *interval* — Specifies the minimum amount of time that must expire before the next message request is sent.

If the **interval** is set to 1 second, and the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

This parameter is used to override the default request message send interval.

Default 1
Values 1 to 10

**size** *octets* — Specifies the VCCV ping echo request packet size in octets, expressed as a decimal integer. The request payload is padded with zeroes to the specified size.

Default 88

**Values** 88 to 9198

count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either time out or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1

**Values** 1 to 100

**ttl** *vc-label-ttl* — Specifies the time-to-live value for the vc-label of the echo request message. The outer label TTL is still set to the default of 255 regardless of this value.

**Values** 1 to 255

#### Sample Output

#### Ping from TPE to TPE:

```
*A:ALU-dut-b_a# oam vccv-ping 1:1 src-ip-address 5.5.5.5 dst-ip-address 3.3.3.3 pw-id 1 ttl 3

VCCV-PING 1:1 88 bytes MPLS payload

Seq=1, reply from 3.3.3.3 via Control Channel
    udp-data-len=32 rtt=10ms rc=3 (EgressRtr)

---- VCCV PING 1:1 Statistics ----
1 packets sent, 1 packets received, 0.00% packet loss
round-trip min = 10.0ms, avg = 10.0ms, max = 10.0ms, stddev < 10ms
```

#### Ping from TPE to SPE:

```
*A:ALU-dut-b a# oam vccv-ping 1:1
VCCV-PING 1:1 88 bytes MPLS payload
Seq=1, reply from 4.4.4.4 via Control Channel
       udp-data-len=32 rtt<10ms rc=8 (DSRtrMatchLabel)
---- VCCV PING 1:1 Statistics ----
1 packets sent, 1 packets received, 0.00% packet loss
round-trip min < 10ms, avg < 10ms, max < 10ms, stddev < 10ms
*A:ALU-dut-b a# oam vccv-ping 1:1 src-ip-address 4.4.4.4 dst-ip-address 5.5.5.5 ttl 2
pw-id 200
VCCV-PING 1:1 88 bytes MPLS payload
Seq=1, reply from 5.5.5.5 via Control Channel
      udp-data-len=32 rtt<10ms rc=8 (DSRtrMatchLabel)
---- VCCV PING 1:1 Statistics ----
1 packets sent, 1 packets received, 0.00% packet loss
round-trip min < 10ms, avg < 10ms, max < 10ms, stddev < 10ms
Ping from SPE (on single or multi-segment):
*A:ALU-dut-b a# oam vccv-ping 4:200 reply-mode ip-routed
VCCV-PING 4:200 88 bytes MPLS payload
Seq=1, reply from 5.5.5.5 via IP
       udp-data-len=32 rtt<10ms rc=8 (DSRtrMatchLabel)
---- VCCV PING 4:200 Statistics ----
1 packets sent, 1 packets received, 0.00% packet loss
round-trip min < 10ms, avg < 10ms, max < 10ms, stddev < 10ms
*A:ALU-dut-b a# oam vccv-ping 4:200 reply-mode ip-routed src-ip-address 5.5.5.5 dst-
ip-address 3.3.3.3 ttl 2 pw-id 1
VCCV-PING 4:200 88 bytes MPLS payload
Seq=1, reply from 3.3.3.3 via IP
      udp-data-len=32 rtt<10ms rc=3 (EgressRtr)
---- VCCV PING 4:200 Statistics ----
1 packets sent, 1 packets received, 0.00% packet loss
round-trip min < 10ms, avg < 10ms, max < 10ms, stddev < 10ms
```

## **OAM SAA Commands**

saa

**Syntax** saa test-name [owner test-owner] {start | stop}

Context oam

**Description** This command starts or stops an SAA test.

**Parameters** test-name — Specifies the name of the SAA test to be run. The test name must already be configured in the **config>saa>test** context.

owner test-owner — Specifies the owner of an SAA operation, up to 32 characters in length

**Values** If a *test-owner* value is not specified, tests created by the CLI have a default owner

"TiMOS CLI"

**start** — Starts the test. A test cannot be started if the same test is still running.

A test cannot be started if it is in a shutdown state. An error message and log event will be generated to indicate a failed attempt to start an SAA test run.

**stop** — Stops a test in progress. A log message will be generated to indicate that an SAA test run has been aborted.

## **Show Commands**

#### saa

**Syntax saa** [test-name] [**owner** test-owner]

Context show>saa

**Description** This command displays information about the SAA test.

If no specific test is specified, a summary of all configured tests is displayed.

If a specific test is specified, then detailed test results for that test are displayed for the last three occurrences that this test has been executed, or since the last time the counters have been reset via a **system reboot** or **clear** command.

**Parameters** 

*test-name* — Specifies the SAA test to display. The test name must already be configured in the **config>saa>test** context.

This is an optional parameter.

**owner** *test-owner* — Specifies the owner of an SAA operation up to 32 characters in length.

**Default** If a *test-owner* value is not specified, tests created by the CLI have a default owner "TiMOS CLI"

Output

**SAA Output** — The following table describes SAA fields.

**Table 45: SAA Field Descriptions** 

| Label                      | Description                                                                              |
|----------------------------|------------------------------------------------------------------------------------------|
| Test name                  | Displays the name of the test                                                            |
| Owner name                 | Displays the test owner's name                                                           |
| Administrative status      | Indicates the administrative state of the test                                           |
| Test type                  | Identifies the type of test configured                                                   |
| Test runs since last clear | Indicates the total number of tests performed since the last time the tests were cleared |
| Number of failed tests run | Specifies the total number of tests that failed                                          |
| Last test result           | Indicates the last time a test was run                                                   |

## **Sample Output**

The following displays an SAA test result:

\*A:SR-3>config>saa>test\$ show saa

| SAA Test In                                                                                                                                                                                                                 | =======<br>formation |              | =======      |                           | :========    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------|---------------------------|--------------|
| Test name : test5  Owner name : reuben  Administrative status : Enabled  Test type : sdp-ping 600 resp-sdp 700 fc "nc" count 50  Test runs since last clear : 1  Number of failed test runs : 0  Last test result : Success |                      |              |              |                           | " count 50   |
| Threshold<br>Type                                                                                                                                                                                                           | Direction            | Threshold    |              | Last Event                | Run #        |
| Latency-in                                                                                                                                                                                                                  | Rising<br>Falling    | None<br>None | None<br>None | Never<br>Never            | None<br>None |
| Latency-out                                                                                                                                                                                                                 | Falling              | None         | None         | Never                     | None<br>None |
| Latency-rt                                                                                                                                                                                                                  | Falling              | 50           | 10           | 04/23/2008 22:29:40       | None<br>1    |
| Loss-in                                                                                                                                                                                                                     | _                    |              | None<br>None |                           | None<br>None |
| Loss-out                                                                                                                                                                                                                    | _                    |              | None<br>None |                           | None<br>None |
| Loss-rt                                                                                                                                                                                                                     | Rising<br>Falling    |              | None<br>0    | Never 04/23/2008 22:30:30 | None<br>1    |

\_\_\_\_\_\_

<sup>\*</sup>A:SR-3>config>saa>test\$

# **Clear Commands**

saa

Syntax saa-test [test-name] [owner test-owner]

Context clear

**Description** This command clears the SAA results for the specified test and the history for the test. If the test name

is omitted, all the results for all tests are cleared.

**Parameters** test-name — Specifies the SAA test to clear. The test name must already be configured in the

config>saa>test context.

owner test-owner — Specifies the owner of an SAA operation, up to 32 characters in length

**Default** If a *test-owner* value is not specified, tests created by the CLI have a default owner

"TiMOS CLI"

# **Debug Commands**

Isp-ping-trace

Syntax | Isp-ping-trace [tx | rx | both] [raw | detail]

no Isp-ping-trace

Context debug>oam

**Description** This command enables debugging for lsp-ping.

**Parameters** tx|rx|both — Specifies the direction for the LSP ping debugging: TX, RX, or both RX and TX

raw | detail — Displays output for the debug mode

# **Tools**

# **Tools Command Reference**

## **Command Hierarchies**

- Tools Dump Commands
- Tools Perform Commands

## **Tools Dump Commands**

```
tools
     — dump
              — ppp port-id
              — router router-instance
                       — ldp
                                — fec prefix ip-prefix/mask
                                — fec vc-type {ethernet | vlan} vc-id vc-id
                                — instance
                                — interface [ip-int-name | ip-address]
                                - memory-usage
                                — peer ip-address
                                — session [ip-addr[:label-space] [connection | peer | adjacency]
                                — sockets
                                — timers
                       — mpls
                                — ftn [endpoint | sender | sender | nexthop | lsp-id | lsp-id
                                    | tunnel-id tunnel-id | label start-label end-label |
                                — ilm [endpoint endpoint | sender sender | nexthop nexthop | lsp-id lsp-id
                                    | tunnel-id | label start-label end-label |
                                — Ispinfo [detail]
                                - memory-usage
              — system-resources slot-number
```

## **Tools Perform Commands**

```
tools
     — perform
              — cron
                       — action
                               — stop [action-name] [owner action-owner] [all]
              — ima
                       — reset [bundle-id]
              — log
                       — test-event
              — router [router-instance]
                       — mpls
                                — resignal lsp lsp-name path path-name
                                — trap-suppress number-of-traps time-interval
              — security
                       — authentication-server-check server-address ip-address [port port] user-name
                          DHCP client user name password password secret key [source-address ip-
                          address] [timeout seconds] [router router-instance]
```

# **Tools Configuration Commands**

- Generic Commands on page 345
- Dump Commands on page 346
- Router Commands on page 347

# **Generic Commands**

## tools

Syntax tools

Context <root>

**Description** This command creates the context to enable useful tools for debugging purposes.

**Default** none

## **Dump Commands**

## dump

Syntax dump

Context tools

**Description** This command creates the context to display information for debugging purposes.

**Default** none

ppp

Syntax ppp port-id

Context tools>dump

**Description** This command displays PPP information for a port.

**Default** none

**Parameters** port-id — specifies the port ID

**Syntax:** port-id slot/mda/port[.channel]

bundle bundle-type-slot/mda.bundle-num

bundle keyword type ima, ppp bundle-num1 to 10

## system-resources

Syntax system-resources slot-number

Context tools>dump

**Description** This command displays system resource information.

**Default** none

**Parameters** slot-number — Specifies a specific slot to view system resources information.

## **Router Commands**

#### router

Syntax router router-instance

Context tools>dump

tools>perform

**Description** This command enables tools for the router instance.

Default none

**Parameters** router router-instance — specifies the router name and service ID

**Values** router-name: Base, management

service-id: 1 to 2147483647

**Default** Base

fec

Syntax fec prefix ip-prefix/mask

fec vc-type {ethernet | vlan} vc-id vc-id

Context tools>dump>router>ldp

**Description** This command displays information for an LDP FEC.

**Default** none

**Parameters** *ip-prefix/mask* — specifies the IP prefix and host bits

Values host bits: must be 0 mask: 0 to 32

vc-type — Specifies the VC type signaled for the spoke or mesh binding to the far end of an SDP. The VC type is a 15-bit quantity containing a value that represents the type of VC. The actual signaling of the VC type depends on the signaling parameter defined for the SDP. If signaling is disabled, the vc-type command can still be used to define the dot1q value expected by the far-end provider equipment. A change of the binding's VC type causes the binding to signal the new VC type to the far end when signaling is enabled.

VC types are derived according to IETF draft-martini-l2circuit-trans-mpls.

- Ethernet The VC type value for Ethernet is 0x0005.
- VLAN The VC type value for an Ethernet VLAN is 0x0004.

vc-id — Specifies the virtual circuit identifier

**Values** 1 to 4294967295

ftn

Syntax ftn [endpoint endpoint | sender sender | nexthop nexthop | Isp-id | sp-id | tunnel-id tunnel-

id | label start-label end-label]

Context tools>dump>router>mpls

**Description** This command displays FEC-to-NHLFE (FTN) dump information for MPLS. (NHLFE is the

acronym for Next Hop Label Forwarding Entry.)

**Default** none

**Parameters** endpoint — specifies the IP address of the last hop

Values a.b.c.d

sender sender — specifies the IP address of the sender

Values a.b.c.d

**nexthop** — specifies the IP address of the next hop

Values a.b.c.d

**lsp-id** — specifies the label switched path that is signaled for this entry

**Values** 0 to 65535

tunnel-id tunnel-id — specifies the SDP ID

**Values** 0 to 65535

label start-label end-label — specifies the label range for the information dump

**Values** start-label — 32 to 131071 end-label — 32 to 131071

ilm

Syntax ilm [endpoint endpoint | sender sender | nexthop nexthop | Isp-id | sp-id | tunnel-id tunnel-

id | label start-label end-label]

Context tools>dump>router>mpls

**Description** This command displays incoming label map (ILM) information for MPLS.

**Default** none

**Parameters** endpoint — specifies the IP address of the last hop

Values a.b.c.d

sender sender — specifies the IP address of the sender

Values a.b.c.d

**nexthop** — specifies the IP address of the next hop

Values a.b.c.d

**lsp-id** *lsp-id* — specifies the label switched path that is signaled for this entry

**Values** 0 to 65535

tunnel-id tunnel-id — specifies the SDP ID

**Values** 0 to 65535

label start-label end-label — specifies the label range for the information dump

**Values** start-label — 32 to 131071

end-label — 32 to 131071

## instance

Syntax instance

Context tools>dump>router>ldp

**Description** This command displays information for an LDP instance.

### interface

**Syntax interface** [ip-int-name | ip-address]

Context tools>dump>router>ldp

**Description** This command displays information for an LDP interface.

**Default** none

**Parameters** *ip-int-name* — specifies the interface name

*ip-address* — specifies the IP address

## ldp

Syntax Idp

Context tools>dump>router

**Description** This command enables dump tools for LDP.

**Default** none

## **Tools Configuration Commands**

## Ispinfo

Syntax Ispinfo [detail]

Context tools>dump>router>mpls

**Description** This command displays LSP information for MPLS.

**Default** none

## memory-usage

Syntax memory-usage

Context tools>dump>router>ldp

**Description** This command displays memory usage information for the specific context (LDP or MPLS).

**Default** none

## mpls

Syntax mpls

Context tools>dump>router

**Description** This command enables the context to display MPLS information.

**Default** none

#### peer

Syntax peer ip-address

**Context** tools>dump>router>ldp

**Description** This command displays information for an LDP peer.

**Default** none

**Parameters** *ip-address* — specifies the IP address

#### session

Syntax session [ip-address |:label space] [connection | peer | adjacency]

Context tools>dump>router>ldp

**Description** This command displays information for an LDP session.

**Default** none

**Parameters** *ip-address* — specifies the IP address of the LDP peer

label-space — specifies the label space identifier that the router is advertising on the interface

connection — displays connection information

peer — displays peer information

adjacency — displays hello adjacency information

### sockets

Syntax sockets

**Context** tools>dump>router>ldp

**Description** This command displays information for all sockets being used by the LDP protocol.

**Default** none

#### timers

Syntax timers

Context tools>dump>router>ldp

**Description** This command displays timer information for LDP.

**Default** none

## **Tools Performance Commands**

## perform

Syntax perform

Context tools

**Description** This command enables the context to enable tools to perform specific tasks.

**Default** none

action

Syntax action

Context tools>perform>cron

**Description** This command enables the context to stop the execution of a script started by CRON action. See the

stop command.

authentication-server-check

Syntax authentication-server-check server-address [port port] user-name

dhcp-client-user-name password password secret key [source-address ip-address]

[timeout seconds] [router router-instance]

Context tools>perform>security

**Description** This command checks connection to the RADIUS server.

**Parameters** router router-instance — specifies the router name or service ID

Values router-name: Base, management

*service-id*: 1 to 2147483647

**Default** Base

**server-address** *ip-address* — specifies the server ID

Values a.b.c.d

port port — specifies the port ID

**Values** 1 to 65535

user-name DHCP client user name — specifies the DHCP client

**Values** 256 characters maximum

password password — specifies the CLI access password

**Values** 10 characters maximum

**secret** key — specifies the authenication key

Values 20 chars max

source-address ip-address — specifies the source IP address of the DHCP relay messages

Values a.b.c.d

timeout seconds — specifices the timeout in seconds

Values 1 to 90

cron

Syntax cron

Context tools>perform

**Description** This command enables the context to perform CRON (scheduling) control operations.

**Default** none

ima

Syntax ima

Context tools>perform

**Description** This command enables the context to perform IMA operations.

**Default** none

log

Syntax log

Context tools>perform

**Description** This command enables event logging tools.

mpls

Syntax mpls

Context tools>perform>router

#### **Tools Performance Commands**

**Description** This command enables the context to perform specific MPLS tasks.

**Default** none

reset

Syntax reset bundle-id

Context tools>perform>ima

**Description** This command resets an IMA bundle to the start-up state.

**Default** none

**Parameters** bundle-id — specifies the IMA bundle ID

**Syntax:** bundle-id bundle-ima-slot/mda.bundle-num

bundle-ima keyword bundle-num 1 to 10

resignal

Syntax resignal lsp /sp-name path path-name

**Context** tools>perform>router>mpls

**Description** This command resignals specified LSP paths.

**Default** none

**Parameters** lsp lsp-name — specifies the LSP name. The LSP name can be up to 32 characters long and must be

unique.

path path-name — specifies the name for the LSP path, up to 32 characters in length

security

Syntax security

Context tools>perform

**Description** This command provides tools for testing security.

stop

Syntax stop [action-name] [owner action-owner] [all]

Context tools>perform>cron>action

**Description** This command stops execution of a script started by CRON action.

**Parameters** *action-name* — specifies the action name

**Values** maximum 32 characters

owner action-owner — specifies the owner name

**Default** TiMOS CLI

all — specifies to stop all CRON scripts

### test-event

Syntax test-event

Context tools>perform>log

**Description** This command generates a test event.

## trap-suppress

**Syntax** trap-suppress [number-of-traps] [time-interval]

**Context** tools>perform>router>mpls

**Description** This command modifies thresholds for trap suppression.

**Default** none

**Parameters** number-of-traps — specifies the number of traps in multiples of 100. An error message is generated if

an invalid value is entered.

**Values** 100 to 1000

time-interval — specifies the timer interval in seconds

**Values** 1 to 300

**Tools Performance Commands** 

# **Standards and Protocol Support**

## **Standards Compliance**

IEEE 802.1p/q VLAN Tagging
IEEE 802.3 10BaseT
IEEE 802.3u 100BaseTX
IEEE 802.3x Flow Control
IEEE 802.3z 1000BaseSX/LX

### **Protocol Support**

#### LDP

RFC 5036 LDP Specification

#### **MPLS**

RFC 3031 MPLS Architecture
RFC 3032 MPLS Label Stack Encoding
RFC 4379 Detecting Multi-Protocol Label
Switched (MPLS) Data Plane Failures

#### **DIFFERENTIATED SERVICES**

RFC 2474 Definition of the DS Field in the IPv4 and IPv6 Headers

PFC 2597 Assured Forwarding PHB Group

RFC 2597 Assured Forwarding PHB Group
RFC 2598 An Expedited Forwarding PHB
RFC 3140 Per-Hop Behavior Identification Codes

#### TCP/IP

RFC 768 UDP
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 1350 The TFTP Protocol (Rev. 2)
RFC 1812 Requirements for IPv4 Routers

#### PPP

RFC 1332 PPP IPCP
RFC 1661 PPP
RFC 1662 PPP in HDLC-like Framing
RFC 1989 PPP Link Quality Monitoring
RFC 1990 The PPP Multilink Protocol (MP)

#### **ATM**

RFC 2514 Definitions of Textual Conventions and OBJECT\_IDENTITIES for ATM Management, February 1999

RFC 2515 Definition of Managed Objects for ATM Management, February 1999

RFC 2684 Multiprotocol Encapsulation over ATM Adaptation Layer 5

af-tm-0121.000 Traffic Management Specification Version 4.1, March 1999

ITU-T Recommendation I.610 - B-ISDN Operation and Maintenance Principles and Functions version 11/95

ITU-T Recommendation I.432.1 - B-ISDN usernetwork interface - Physical layer specification: General characteristics

GR-1248-CORE - Generic Requirements for Operations of ATM Network Elements (NEs). Issue 3 June 1996

GR-1113-CORE - Bellcore, Asynchronous Transfer Mode (ATM) and ATM Adaptation Layer (AAL) Protocols Generic Requirements, Issue 1, July 1994

#### **PSEUDOWIRES**

- RFC 4385 Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN
- RFC 4446 IANA Allocation for PWE3
- RFC 4447 Pseudowire Setup and Maintenance
  Using the Label Distribution Protocol (LDP)
- RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks
- RFC 4553 Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)
- RFC 4717 Encapsulation Methods for Transport of Asynchronous Transfer Mode (ATM) over MPLS Networks
- RFC 5086 Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)
- RFC 5085 Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires

#### **RADIUS**

- RFC 2865 Remote Authentication Dial In User Service
- RFC 2866 RADIUS Accounting

#### SSH

- draft-ietf-secsh-architecture.txt SSH Protocol Architecture
- draft-ietf-secsh-userauth.txt SSH Authentication Protocol
- draft-ietf-secsh-transport.txt SSH Transport Layer Protocol
- draft-ietf-secsh-connection.txt SSH Connection Protocol
- draft-ietf-secsh- newmodes.txt SSH Transport Layer Encryption Modes

#### TACACS+

draft-grant-tacacs-02.txt The TACACS+ Protocol

#### **SYNCHRONIZATION**

- G.813 Timing characteristics of SDH equipment slave clocks (SEC)
- G.8261 Timing and synchronization aspects in packet networks
- G.8262 Timing characteristics of synchronous Ethernet equipment slave clock
- GR 1244 CORE Clocks for the Synchronized Network: Common Generic Criteria

#### **NETWORK MANAGEMENT**

- ITU-T X.721: Information technology- OSI-Structure of Management Information
- ITU-T X.734: Information technology- OSI-Systems
   Management: Event Report Management Function
   M.3100/3120 Equipment and Connection Models
   TMF 509/613 Network Connectivity Model
- RFC 1157 SNMPv1
- RFC 1305 Network Time Protocol (Version 3) Specification, Implementation and Analysis
- RFC 1907 SNMPv2-MIB
- RFC 2011 IP-MIB
- RFC 2012 TCP-MIB
- RFC 2013 UDP-MIB
- RFC 2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI
- REC 2138 RADIUS
- RFC 2571 SNMP-FRAMEWORKMIB
- RFC 2572 SNMP-MPD-MIB
- RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
- RFC 2574 SNMP-USER-BASED-SMMIB
- RFC 2575 SNMP-VIEW-BASED ACM-MIB
- RFC 2576 SNMP-COMMUNITY-MIB
- RFC 2665 EtherLike-MIB
- RFC 2819 RMON-MIB
- RFC 2863 IF-MIB
- RFC 2864 INVERTED-STACK-MIB
- RFC 3014 NOTIFICATION-LOG MIB
- RFC 3164 The BSD Syslog Protocol
- RFC 3273 HCRMON-MIB
- RFC 3411 An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
- RFC 3412 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
- RFC 3413 Simple Network Management Protocol (SNMP) Applications
- RFC 3414 User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
- RFC 3418 SNMP MIB
- draft-ietf-disman-alarm-mib-04.txt
- draft-ietf-mpls-ldp-mib-07.txt
- IANA-IFType-MIB

## **Proprietary MIBs**

TIMETRA-ATM-MIB.mib

TIMETRA-CAPABILITY-7705-V1.mib

TIMETRA-CFLOWD-MIB.mib

TIMETRA-CHASSIS-MIB.mib

TIMETRA-CLEAR-MIB.mib

TIMETRA-FILTER-MIB.mib

TIMETRA-GLOBAL-MIB.mib

TIMETRA-LDP-MIB.mib

TIMETRA-LOG-MIB.mib

TIMETRA-MPLS-MIB.mib

TIMETRA-OAM-TEST-MIB.mib

TIMETRA-PORT-MIB.mib

TIMETRA-PPP-MIB.mib

TIMETRA-QOS-MIB.mib

TIMETRA-ROUTE-POLICY-MIB.mib

TIMETRA-SAP-MIB.mib

TIMETRA-SDP-MIB.mib

TIMETRA-SECURITY-MIB.mib

TIMETRA-SERV-MIB.mib

TIMETRA-SYSTEM-MIB.mib

TIMETRA-TC-MIB.mib

Standards and Protocol Support

# Customer documentation and product support



## Customer documentation

http://www.alcatel-lucent.com/osds

Product manuals and documentation updates are available through the Alcatel-Lucent Support Documentation and Software Download service at alcatel-lucent.com. If you are a new user and require access to this service, please contact your Alcatel-Lucent sales representative.



# Technical support

http://www.alcatel-lucent.com/support



Customer documentation feedback

documentation.feedback@alcatel-lucent.com

