Table of Contents

Preface .. 13

Getting Started
Alcatel-Lucent 7750 SR Router Configuration Process .. 17

Security
Authentication, Authorization, and Accounting .. 20
 - Authentication ... 21
 - Local Authentication ... 22
 - RADIUS Authentication ... 22
 - TACACS+ Authentication ... 25
 - Authorization .. 26
 - Local Authorization .. 27
 - RADIUS Authorization .. 27
 - TACACS+ Authorization ... 27
 - Accounting .. 28
 - RADIUS Accounting ... 28
 - TACACS+ Accounting ... 28
 - Security Controls .. 30
 - When a Server Does Not Respond ... 30
 - Access Request Flow ... 31
 - CPU Protection .. 32
 - Vendor-Specific Attributes (VSAs) .. 35
 - Sample User (VSA) Configuration .. 37
 - Alcatel-Lucent Dictionary .. 38
 - Other Security Features .. 41
 - Secure Shell (SSH) ... 41
 - Per Peer CPM Queuing ... 43
 - CPM Filters and Traffic Management ... 44
 - TTL Security for BGP and LDP .. 45
 - Exponential Login Backoff .. 45
 - User Lockout ... 47
 - Encryption .. 48
 - 802.1x Network Access Control ... 48
 - TCP Enhanced Authentication Option .. 48
 - Packet Formats .. 50
 - Keychain ... 51
 - Configuration Notes .. 52
 - General .. 52
 - Configuring Security with CLI .. 53
 - Setting Up Security Attributes .. 54
 - Configuring Authentication .. 54
 - Configuring Authorization ... 55
 - Configuring Accounting ... 57
 - Security Configurations .. 58
 - Configuration Tasks ... 60
Table of Contents

Security Configuration Procedures .. 61
Configuring Management Access Filters ... 61
Configuring IP CPM Filters .. 63
Configuring MAC CPM Filters ... 65
Configuring IPv6 CPM Filters ... 66
Configuring CPM Queues .. 67
Configuring Password Management Parameters 68
Configuring Profiles ... 69
Configuring Users .. 70
Configuring Keychains .. 71
Copying and Overwriting Users and Profiles 72
 User ... 72
 Profile .. 74
RADIUS Configurations .. 76
 Configuring RADIUS Authentication ... 76
 Configuring RADIUS Authorization ... 77
 Configuring RADIUS Accounting ... 78
Configuring 802.1x RADIUS Policies .. 79
Configuring CPU Protection Policies .. 80
TACACS+ Configurations ... 81
 Enabling TACACS+ Authentication ... 81
 Configuring TACACS+ Authorization .. 82
 Configuring TACACS+ Accounting ... 83
 Enabling SSH ... 84
Configuring Login Controls ... 85
Security Command Reference .. 87
Command Hierarchies .. 87
 Configuration Commands ... 87
 LLDP Commands .. 88
 Configuration Commands ... 105
 General Security Commands ... 105
 LLDP Commands .. 109
 Login, Telnet, SSH and FTP Commands .. 112
Management Access Filter Commands .. 117
Password Commands ... 132
Profile Management Commands .. 138
User Management Commands .. 142
RADIUS Client Commands .. 150
TACACS+ Client Commands .. 155
Generic 802.1x COMMANDS .. 159
TCP Enhanced Authentication .. 162
CPM Filter Commands ... 168
CPM Queue Commands ... 180
TTL Security Commands ... 182
CPU Protection Commands .. 183
Show Commands ... 189
Security Commands ... 189
Login Control ... 212
Clear Commands ... 213
Table of Contents

SNMP

- SNMP Overview ... 218
- SNMP Architecture ... 218
- Management Information Base 218
- SNMP Protocol Operations 219
- SNMP Versions ... 219
- Management Information Access Control 220
- User-Based Security Model Community Strings 221
- Views .. 222
- Access Groups .. 222
- Users .. 222
- Which SNMP Version to Use? 223
- Configuration Notes ... 225
- General .. 225
- Configuring SNMP with CLI 227

SNMP Configuration Overview 228

- Configuring SNMPv1 and SNMPv2c 228
- Configuring SNMPv3 .. 228

Basic SNMP Security Configuration 229

- Configuring SNMP Components 230
- Configuring a Community String 231
- Configuring View Options 232
- Configuring Access Options 233
- Configuring USM Community Options 235
- Configuring Other SNMP Parameters 236

SNMP Command Reference 237

- Command Hierarchies .. 237
- Configuration Commands .. 237
- Configuration Commands .. 239
- SNMP System Commands ... 239
- SNMP Security Commands 241
- Show Commands .. 247

Event and Accounting Logs

- Logging Overview .. 266
- Log Destinations ... 268
- Console ... 268
- Session .. 268
- Memory Logs ... 268
- Log Files .. 269
- SNMP Trap Group ... 271
- Syslog .. 271
- Event Logs .. 273
- Event Sources ... 274
- Event Control ... 276

SNMP

- Event Logs .. 273
- Event Sources ... 274
- Event Control ... 276
Table of Contents

Log Manager and Event Logs .. 278
Event Filter Policies .. 279
Event Log Entries ... 280
Simple Logger Event Throttling ... 282
Default System Log ... 283
Accounting Logs ... 284
Accounting Records ... 284
Accounting Files ... 295
Design Considerations .. 295
Reporting and Time-Based Accounting 296
Overhead Reduction in Accounting: Custom Record 297
 User Configurable Records .. 297
 Changed Statistics Only .. 297
 Configurable Accounting Records .. 298
 Significant Change Only Reporting 299
Immediate Completion of Records .. 300
Configuration Notes ... 301
Configuring Logging with CLI ... 303
Log Configuration Overview .. 304
Log Types ... 304
Basic Event Log Configuration ... 305
Common Configuration Tasks ... 306
 Configuring an Event Log .. 306
 Configuring a File ID .. 308
 Configuring an Accounting Policy 309
 Configuring Event Control .. 310
 Configuring Throttle Rate .. 311
 Configuring a Log Filter ... 312
 Configuring an SNMP Trap Group ... 313
 Setting the Replay Parameter .. 315
 Shutdown In-Band Port .. 317
 No Shutdown Port .. 319
 Configuring a Syslog Target .. 321
 Configuring an Accounting Custom Record 322
Log Management Tasks ... 323
 Modifying a Log File ... 324
 Deleting a Log File .. 326
 Modifying a File ID .. 327
 Deleting a File ID .. 328
 Modifying a Syslog ID .. 329
 Deleting a Syslog ... 330
 Modifying an SNMP Trap Group .. 331
 Deleting an SNMP Trap Group ... 332
 Modifying a Log Filter ... 333
 Deleting a Log Filter ... 335
 Modifying Event Control Parameters 336
 Returning to the Default Event Control Configuration 337
Log Command Reference ... 339
 Command Hierarchies ... 339
Table of Contents

- Configuration Commands .. 347
- Generic Commands ... 347
- Event Control ... 349
- Log File Commands .. 352
- Log Filter Commands .. 355
- Log Filter Entry Commands .. 356
- Log Filter Entry Match Commands ... 358
- Syslog Commands ... 363
- SNMP Trap Groups ... 368
- Logging Destination Commands .. 372
- Accounting Policy Commands .. 378
- Show Commands ... 399
- Clear Commands ... 421

Standards and Protocol Support

 ... 423

Index

 ... 429
Table of Contents
List of Tables

Getting Started
Table 1: Configuration Process ... 17

Security
Table 2: Supported Authorization Configurations 26
Table 3: Security Methods Capabilities .. 30
Table 4: Keychain Mapping ... 51
Table 5: Security Configuration Requirements ... 60
Table 6: Opcode Values ... 125
Table 7: IP Protocol Names ... 170
Table 8: Show System Security Access Group Output Fields 189
Table 9: Show System Security Authentication Output Fields 190
Table 10: Show Communities Output Fields .. 192
Table 11: Show CPM IP Filter Output Fields .. 193
Table 12: Show CPM IPv6 Filter Output Fields ... 195
Table 13: Show Communities Output Fields .. 197
Table 14: Show Management Access Filter Output Fields 200
Table 15: Show Management Access Filter Output Fields 203
Table 16: Show Per-Peer-Queuing Output Fields 204
Table 17: Show User Profile Output Fields .. 205
Table 18: Show Source Address Output Fields .. 206
Table 19: Show View Output Fields ... 210
Table 20: Show Users Output Fields .. 212

SNMP
Table 21: Counters Output Fields ... 247
Table 22: Show System Information Output Fields 248
Table 23: Show System Information Output Fields 252
Table 24: Show Communities Output Fields .. 255
Table 25: Show SSH Output Fields ... 260
Table 26: Show User Output Fields .. 261
Table 27: Show System Security View Output Fields 262

Event and Accounting Logs
Table 28: Event Severity Levels ... 266
Table 29: 7750 SR-Series to Syslog Severity Level Mappings 272
Table 30: Valid Filter Policy Operators .. 279
Table 31: Log Entry Field Descriptions ... 280
Table 32: Accounting Record Name and Collection Periods 284
Table 33: Accounting Record Name Details .. 285
Table 34: Show Accounting Policy Output Fields 399
Table 35: Accounting Policy Output Fields .. 401
Table 36: Event Log Filter Summary Output Fields 409
Table 37: Event Log Filter Detail Output Fields ... 410
Table 38: Log Filter Match Criteria Output Fields 410
Table 39: Show Log-Collector Output Fields .. 412
List of Tables

Table 40: SNMP Trap Group Output Fields ... 417
Table 41: Show Log Syslog Output Fields ... 419
LIST OF FIGURES

Security
Figure 1: RADIUS Requests and Responses ... 20
Figure 2: Security Flow ... 31
Figure 3: Profile Marking ... 33

SNMP
Figure 4: SNMPv1 and SNMPv2c Configuration and Implementation Flow 224

Event and Accounting Logs
Figure 5: Event Logging Block Diagram ... 273
Figure 6: Show Log Applications Command Output .. 275
List of Figures
Preface

About This Guide

This guide describes general information you will need to configure router security, SNMP features, as well as configuring event and accounting logs. It covers basic tasks such as configuring management access filters that control traffic in and out of the CPM, passwords, user profiles, security such as RADIUS, TACACS+, and SSH servers, the router clock, and virtual routers.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring the 7750 SRs. It is assumed that the network administrators have an understanding of networking systems and configurations. Protocols, standards, and processes described in this manual include the following:

- CLI concepts
- System and user access and security
- SNMP
- Event and accounting logs

List of Technical Publications

The 7750 SR documentation set is composed of the following books:

- 7750 SR OS Basic System Configuration Guide
 This guide describes basic system configurations and operations.
- 7750 SR OS System Management Guide
This guide describes system security and access configurations as well as event logging and accounting logs.

- **7750 SR OS Interface Configuration Guide**
 This guide describes card, Media Dependent Adapter (MDA), and port provisioning.

- **7750 SR OS Router Configuration Guide**
 This guide describes logical IP routing interfaces and associated attributes such as an IP address, port, link aggregation group (LAG) as well as IP and MAC-based filtering, VRRP, and Cflowd.

- **7750 SR OS Routing Protocols Guide**
 This guide provides an overview of routing concepts and provides configuration examples for RIP, OSPF, IS-IS, Multicast, BGP, and route policies.

- **7750 SR OS MPLS Guide**
 This guide describes how to configure Multiprotocol Label Switching (MPLS) and Label Distribution Protocol (LDP).

- **7750 SR OS Services Guide**
 This guide describes how to configure service parameters such as service distribution points (SDPs), customer information, and user services.

- **7750 SR OS OAM and Diagnostic Guide**
 This guide describes how to configure features such as service mirroring and Operations, Administration and Management (OAM) tools.

- **7750 SR OS Triple Play Guide**
 This guide describes Triple Play services and support provided by the 7750 SR and presents examples to configure and implement various protocols and services.

- **7750 SR Quality of Service Guide**
 This guide describes how to configure Quality of Service (QoS) policy management.

- **OS Multi-Service ISA Guide**
 This guide describes services provided by integrated service adapters such as Application Assurance, IPSec, ad insertion (ADI) and Network Address Translation (NAT).
If you purchased a service agreement for your 7750 SR router and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center:

Web: http://www1.alcatel-lucent.com/comps/pages/carrier_support.jhtml
In This Chapter

This chapter provides process flow information to configure system security and access functions as well as event and accounting logs.

Alcatel-Lucent 7750 SR Router Configuration Process

Table 1 lists the tasks necessary to configure system security and access functions and logging features. Each chapter in this book is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>System security</td>
<td>Configure system security parameters, such as authentication, authorization, and accounting.</td>
<td>Security on page 19</td>
</tr>
<tr>
<td>Network management</td>
<td>Configure SNMP elements.</td>
<td>SNMP on page 217</td>
</tr>
<tr>
<td>Operational functions</td>
<td>Configure event and accounting logs.</td>
<td>Event and Accounting Logs on page 265</td>
</tr>
<tr>
<td>Reference</td>
<td>List of IEEE, IETF, and other proprietary entities.</td>
<td>Standards and Protocol Support on page 423</td>
</tr>
</tbody>
</table>
In This Chapter

This chapter provides information to configure security parameters. Topics in this chapter include:

- Authentication, Authorization, and Accounting on page 20
 → Authentication on page 21
 → Authorization on page 26
 → Accounting on page 28
- Security Controls on page 30
 → When a Server Does Not Respond on page 30
 → Access Request Flow on page 31
- CPU Protection on page 32
- Vendor-Specific Attributes (VSAs) on page 35
- Other Security Features on page 41
 – CPM Filters and Traffic Management on page 44
 – Secure Shell (SSH) on page 41
 – Encryption on page 48
- Configuration Notes on page 52
Authentication, Authorization, and Accounting

This chapter describes authentication, authorization, and accounting (AAA) used to monitor and control network access on 7750 SR-Series routers. Network security is based on a multi-step process. The first step, authentication, validates a user’s name and password. The second step is authorization, which allows the user to access and execute commands at various command levels based on profiles assigned to the user.

Another step, accounting, keeps track of the activity of a user who has accessed the network. The type of accounting information recorded can include a history of the commands executed, the amount of time spent in the session, the services accessed, and the data transfer size during the session. The accounting data can then be used to analyze trends, and also for billing and auditing purposes.

You can configure 7750 SR-Series routers to use local, Remote Authentication Dial In User Service (RADIUS), or Terminal Access Controller Access Control System Plus (TACACS+) security to validate users who attempt to access the router by console, Telnet, or FTP. You can select the authentication order which determines the authentication method to try first, second, and third.

7750 SR OS supports the following security features:

- RADIUS can be used for authentication, authorization, and accounting.
- TACACS+ can be used for authentication, authorization, and accounting.
- Local security can be implemented for authentication and authorization.

Figure 1 depicts end user access-requests sent to a RADIUS server. After validating the user names and passwords, the RADIUS server returns an access-accept message to the users on ALA-1 and ALA-2. The user name and password from ALA-3 could not be authenticated, thus access was denied.
Authentication

Authentication validates a user name and password combination when a user attempts to log in.

When a user attempts to log in through the console, Telnet, SSH, SCP, or FTP, the 7750 SR-Series client sends an access request to a RADIUS, TACACS+, or local database.

Transactions between the client and a RADIUS server are authenticated through the use of a shared secret. The secret is never transmitted over the network. User passwords are sent encrypted between the client and RADIUS server which prevents someone snooping on an insecure network to learn password information.

If the RADIUS server does not respond within a specified time, the router issues the access request to the next configured servers. Each RADIUS server must be configured identically to guarantee consistent results.

If any RADIUS server rejects the authentication request, it sends an access reject message to the router. In this case, no access request is issued to any other RADIUS servers. However, if other authentication methods such as TACACS+ and/or local are configured, then these methods are attempted. If no other authentication methods are configured, or all methods reject the authentication request, then access is denied.

For the RADIUS server selection, round-robin is used if multiple RADIUS servers are configured. Although, if the first alive server in the list cannot find a user-name, the router does not re-query the next server in the RADIUS server list and denies the access request. It may get authenticated on the next login attempt if the next selected RADIUS server has the appropriate user-name. It is recommended that the same user databases are maintained for RADIUS servers in order to avoid inconsistent behavior.

The user login is successful when the RADIUS server accepts the authentication request and responds to the router with an access accept message.

Implementing authentication without authorization for the 7750 SR-Series routers does not require the configuration of VSAs (Vendor Specific Attributes) on the RADIUS server. However, users, user access permissions, and command authorization profiles must be configured on each router.

Any combination of these authentication methods can be configured to control network access from a 7750 SR-Series router:

- Local Authentication on page 22
- RADIUS Authentication on page 22
- TACACS+ Authentication on page 25
Local Authentication

Local authentication uses user names and passwords to authenticate login attempts. The user names and passwords are local to each router not to user profiles.

By default, local authentication is enabled. When one or more of the other security methods are enabled, local authentication is disabled. Local authentication is restored when the other authentication methods are disabled. Local authentication is attempted if the other authentication methods fail and local is included in the authentication order password parameters.

Locally, you can configure user names and password management information. This is referred to as local authentication. Remote security servers such as RADIUS or TACACS+, are not enabled.

RADIUS Authentication

Remote Authentication Dial-In User Service (RADIUS) is a client/server security protocol and software that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize access to the requested system or service.

RADIUS allows you to maintain user profiles in a shared central database and provides better security, allowing a company to set up a policy that can be applied at a single administered network point.

RADIUS Server Selection

The RADIUS server selection algorithm is used by different applications:

- RADIUS operator management
- RADIUS authentication for Enhanced Subscriber Management
- RADIUS accounting for Enhanced Subscriber Management
- RADIUS PE-discovery

In all these applications, up to 5 RADIUS servers pools (per RADIUS policy, if used) can be configured.

The RADIUS server selection algorithm can work in 2 modes, either Direct mode or Round-robin mode.
Direct Mode

The first server is used as the primary server. If this server is unreachable, the next server, based on the server index, of the server pool is used. This continues until either all servers in the pool have been tried or an answer is received.

If a server is unreachable, it will not be used again by the RADIUS application for the next 30 seconds to allow the server to recover from its unreachable state. After 30 seconds the unreachable server is available again for the RADIUS application. If in these 30 seconds the RADIUS application receives a valid response for a previously sent RADIUS packet on that unreachable server, the server will be available for the RADIUS application again, immediately after reception of that response.

Round-Robin Mode

The RADIUS application sends the next RADIUS packet to the next server in the server pool. The same server non-reachability behavior is valid as in the Direct mode.

Server Reachability Detection

A server is reachable, when the operational state UP, when a valid response is received within a timeout period which is configurable by the retry parameter on the RADIUS policy level.

A server is treated as not-reachable, when the operational state down, when the following occurs:

- A timeout — If a number of consecutive timeouts are encountered for a specific server. This number is configurable by the retry parameter on RADIUS policy level.
- A send failed — If a packet cannot be sent to the RADIUS server because the forwarding path towards the RADIUS server is broken (for example, the route is not available, the interface shutdown, etc.), then, no retry mechanism is invoked and immediately, the next server in line is used.

A server that is down can only be used again by the RADIUS algorithm after 30 seconds, unless, during these 30 seconds a valid RADIUS reply is received for that server. Then, the server is immediately marked UP again.

The operational state of a server can also be “unknown” if the RADIUS application is not aware of the state of the RADIUS server (for example, if the server was previously down but no requests had been sent to the server, thus, it is not certain yet whether the server is actually reachable).
Application Specific Behavior

Operator Management

The server access mode is fixed to Round-Robin (Direct cannot be configured for operator management). A health-check function is available for operator management, which can optionally be disabled. The health-check polls the server once every 10 seconds with an improbable user name. If the server does not respond to this health-check, it will be marked down.

If the first server in the list cannot find a user, the next server in the RADIUS server list is not queried and access is denied. If multiple RADIUS servers are used, it is assumed they all have the same user database.

RADIUS Authentication

If the first server in the list cannot find a user, the next server in the RADIUS server list is not queried and access is denied. If multiple RADIUS servers are used, it is assumed they all have the same user database.

RADIUS Accounting

The RADIUS accounting application will try to send all the concerned packets of a subscriber host to the same server. If that server is down, then the packet is sent to the next server and, from that moment on, the RADIUS application uses that server to send its packets for that subscriber host.

RADIUS PE-Discovery

If the first server in the list cannot find a user, the next server in the RADIUS server list is not queried and access is denied. If multiple RADIUS servers are used, it is assumed they all have the same user database.

The RADIUS PE-discovery application makes use of a 10 second time period instead of the generic 30 seconds and uses a fixed consecutive timeout value of 2 (see Server Reachability Detection on page 23).

As long as the Session-Timeout (attribute in the RADIUS user file) is specified, it is used for the polling interval. Otherwise, the configured polling interval will be used (60 seconds by default).
TACACS+ Authentication

Terminal Access Controller Access Control System, commonly referred to as TACACS is an authentication protocol that allows a remote access server to forward a user's logon password to an authentication server to determine whether access can be allowed to a given system. TACACS is an encryption protocol and therefore less secure than the later Terminal Access Controller Access Control System Plus (TACACS+) and RADIUS protocols.

TACACS+ and RADIUS have largely replaced earlier protocols in the newer or recently updated networks. TACACS+ uses Transmission Control Protocol (TCP) and RADIUS uses the User Datagram Protocol (UDP). TACACS+ is popular as TCP is thought to be a more reliable protocol. RADIUS combines authentication and authorization. TACACS+ separates these operations.
Authorization

7750 SR-Series routers support local, RADIUS, and TACACS+ authorization to control the actions of specific users by applying a profile based on user name and password configurations once network access is granted. The profiles are configured locally as well as VSAs on the RADIUS server. See Vendor-Specific Attributes (VSAs) on page 35.

Once a user has been authenticated using RADIUS (or another method), the 7750 SR-Series router can be configured to perform authorization. The RADIUS server can be used to:

- Download the user profile to the 7750 SR-Series router
- Send the profile name that the node should apply to the 7750 SR-Series router.

Profiles consist of a suite of commands that the user is allowed or not allowed to execute. When a user issues a command, the authorization server looks at the command and the user information and compares it with the commands in the profile. If the user is authorized to issue the command, the command is executed. If the user is not authorized to issue the command, then the command is not executed.

Profiles must be created on each 7750 SR-Series router and should be identical for consistent results. If the profile is not present, then access is denied.

Table 2 displays the following scenarios:

- Remote (RADIUS) authorization cannot be performed if authentication is done locally (on the 7750 SR-Series router).
- The reverse scenario is supported if RADIUS authentication is successful and no authorization is configured for the user on the RADIUS server, then local (7750 SR-Series router) authorization is attempted, if configured in the authorization order.

When authorization is configured and profiles are downloaded to the router from the RADIUS server, the profiles are considered temporary configurations and are not saved when the user session terminates.

Table 2: Supported Authorization Configurations

<table>
<thead>
<tr>
<th></th>
<th>7750 SR</th>
<th>RADIUS Supplied Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>7750 SR-Series configured user</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>RADIUS server configured user</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>TACACS+ server configured user</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
When using authorization, maintaining a user database on the router is not required. User names can be configured on the RADIUS server. User names are temporary and are not saved in the configuration when the user session terminates. Temporary user login names and their associated passwords are not saved as part of the configuration.

- Local Authorization on page 27
- RADIUS Authorization on page 27
- TACACS+ Authorization on page 27

Local Authorization

Local authorization uses user profiles and user access information after a user is authenticated. The profiles and user access information specifies the actions the user can and cannot perform.

By default, local authorization is enabled. Local authorization is disabled only when a different remote authorization method is configured (RADIUS authorization). Local authorization is restored when RADIUS authorization is disabled.

You must configure profile and user access information locally.

RADIUS Authorization

RADIUS authorization grants or denies access permissions for a 7750 SR-Series router. Permissions include the use of FTP, Telnet, SSH (SCP), and console access. When granting Telnet, SSH (SCP) and console access to the 7750 SR-Series router, authorization can be used to limit what CLI commands the user is allowed to issue and which file systems the user is allowed or denied access.

TACACS+ Authorization

Like RADIUS authorization, TACACS+ grants or denies access permissions for a 7750 SR-Series router. The TACACS+ server sends a response based on the username and password.

TACACS+ separates the authentication, authorization, and accounting function. RADIUS combines the authentication and authorization functions.
Accounting

When enabled, RADIUS accounting sends command line accounting from the 7750 SR-Series router to the RADIUS server. The router sends accounting records using UDP packets at port 1813 (decimal).

The router issues an accounting request packet for each event requiring the activity to be recorded by the RADIUS server. The RADIUS server acknowledges each accounting request by sending an accounting response after it has processed the accounting request. If no response is received in the time defined in the timeout parameter, the accounting request must be retransmitted until the configured retry count is exhausted. A trap is issued to alert the NMS (or trap receiver) that the server is unresponsive. The router issues the accounting request to the next configured RADIUS server (up to 5).

User passwords and authentication keys of any type are never transmitted as part of the accounting request.

RADIUS Accounting

Accounting tracks user activity to a specified host. When RADIUS accounting is enabled, the server is responsible for receiving accounting requests and returning a response to the client indicating that it has successfully received the request. Each command issued on the 7750 SR-Series router generates a record sent to the RADIUS server. The record identifies the user who issued the command and the timestamp.

Accounting can be configured independently from RADIUS authorization and RADIUS authentication.

TACACS+ Accounting

7750 SR OS allows you to configure the type of accounting record packet that is to be sent to the TACACS+ server when specified events occur on the device. The accounting record-type parameter indicates whether TACACS+ accounting start and stop packets be sent or just stop packets be sent. Start/stop messages are only sent for individual commands, not for the session.

When a user logs in to request access to the network using Telnet or SSH, or a user enters a command for which accounting parameters are configured, or a system event occurs, such as a reboot or a configuration file reload, the 7750 SR OS checks the configuration to see if TACACS+ accounting is required for the particular event.
If TACACS+ accounting is required, then, depending on the accounting record type specified, sends a start packet to the TACACS+ accounting server which contains information about the event.

The TACACS+ accounting server acknowledges the start packet and records information about the event. When the event ends, the device sends a stop packet. The stop packet is acknowledged by the TACACS+ accounting server.
Security Controls

You can configure 7750 SR-Series routers to use RADIUS, TACACS+, and local authentication to validate users requesting access to the network. The order in which password authentication is processed among RADIUS, TACACS+ and local passwords can be specifically configured. In other words, the authentication order can be configured to process authorization via TACACS+ first, then RADIUS for authentication and accounting. Local access can be specified next in the authentication order in the event that the RADIUS and TACACS+ servers are not operational.

<table>
<thead>
<tr>
<th>Method</th>
<th>Authentication</th>
<th>Authorization</th>
<th>Accounting*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

* Local commands always perform account logging using the `config log` command.

When a Server Does Not Respond

A trap is issued if a RADIUS + server is unresponsive. An alarm is raised if RADIUS is enabled with at least one RADIUS server and no response is received to either accounting or user access requests from any server.

Periodic checks to determine if the primary server is responsive again are not performed. If a server is down, it will not be contacted for 5 minutes. If a login is attempted after 5 minutes, then the server is contacted again. When a server does not respond with the health check feature enabled, the server’s status is checked every 30 seconds. Health check is enabled by default. When a service response is restored from at least one server, the alarm condition is cleared. Alarms are raised and cleared on Alcatel-Lucent’s Fault Manager or other third party fault management servers.

The servers are accessed in order from lowest to highest specified index (from 1 to 5) for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received, implying a lower indexed server is not available. If a response from the server is received, no other server is queried.
Access Request Flow

In Figure 2, the authentication process is defined in the `config>system>security>` password context. The authentication order is determined by specifying the sequence in which password authentication is attempted among RADIUS, TACACS+, and local passwords. This example uses the authentication order of RADIUS, then TACACS+, and finally, local. An access request is sent to RADIUS server 1. One of two scenarios can occur. If there is no response from the server, the request is passed to the next RADIUS server with the next lowest index (RADIUS server 2) and so on, until the last RADIUS server is attempted (RADIUS server 5). If server 5 does not respond, the request is passed to the TACACS+ server 1. If there is no response from that server, the request is passed to the next TACACS+ server with the next lowest index (TACACS+ server 2) and so on.

If a request is sent to an active RADIUS server and the user name and password is not recognized, access is denied and passed on to the next authentication option, in this case, the TACACS+ server. The process continues until the request is either accepted, denied, or each server is queried. Finally, if the request is denied by the active TACACS+ server, the local parameters are checked for user name and password verification. This is the last chance for the access request to be accepted.

Figure 2: Security Flow
CPU Protection

CPU protection protects the CPU of the node that it is configured on from a DOS attack by limiting the amount of traffic coming in from one of its ports and destined to the CPM (to be processed by its CPU) using a combination of the configurable limits.

Some of the limits are configured globally for the node, and some of the limits are configured in CPU Protection profiles which are assigned to interfaces.

The following limits are configured globally for the node:

- link-specific rate — Applies to all link-level protocols such as LACP (LAG for example). The rate is a per-link limit (each link in the system will have link-level protocol packets limited to this rate).
- port-overall-rate – Applies to all control traffic each port. The rate is a per-port limit (each port in the system will have control traffic destined to the CPM limited to this rate).
- protocol-protection — Blocks network control traffic for unconfigured protocols. If IS-IS is not configured on an IP interface all IS-IS-related traffic will be dropped and not reach the CPU.

The following limits are configured within CPU Protection policies (1-255). CPU Protection policies are created, configured, and then assigned to interfaces.

- overall-rate — Applies to all control traffic destined to the CPM (all sources) received on the interface (only where the policy is applied). This is a per-interface limit. Control traffic received above this rate will be discarded.
- per-source-rate — Applies to all control traffic destined to the CPM that is received from the same source (subscriber host / MAC) (only where the policy is applied). This is a per-source limit.
- out-profile-rate – Applies to all control traffic destined to the CPM (all sources) received on the interface (only where the policy is applied). This is a per-interface limit. Control traffic received above this rate will be marked as discard eligible and is more likely to be discarded if there is contention for CPU resources.

A 3-color marking mechanism uses a green, yellow and red marking function. This allows greater flexibility in how traffic limits are implemented. A CLI command within the DoS protection policy called out-profile-rate maps the boundary between the green (accept) and yellow (mark as discard eligible) regions. The overall-rate command marks the boundary between the yellow and red (drop) regions point for the associated policy (Figure 4).
There are two default CPU protection policies. They are modifiable, but cannot be deleted.

Policy 254:
- This is the default policy that is automatically applied to access interfaces
- Traffic above 6000 pps is discarded
- overall-rate = 6000
- per-source-rate = max
- out-profile-rate = 6000

Policy 255:
- This is the default policy that is automatically applied to Network interfaces
- Traffic above 6000 pps is marked as discard eligible, but is not discarded unless there is congestion in the queueing towards the CPU
- overall-rate = max
- per-source-rate = max
- out-profile-rate = 6000

All traffic destined to the CPM and that will be processed by its CPU will be subject to the limit specified. Therefore, if there is a protocol running on the violating interface, then protocol traffic on that interface will be affected. The objective of CPU protection is to limit the amount of traffic that the CPU will process at an early stage, therefore, the good and bad traffic coming in cannot be distinguished when it arrives at a rate higher than the user-configured limit.

If the overall rate is set to 1000 pps and as long as the total traffic that is destined to the CPM and intended to be processed by the CPU is less than or equal to 1000 pps, all traffic will be processed. If the rate exceeds 1000 pps, then protocol traffic is discarded (or marked as discard eligible in the case of the out-profile-rate) and traffic on the interface is affected.

This protects all the other interfaces on the system and make sure that a violation from one interface does not affect the rest of the box.
The protocol-protection configuration is not a rate (just an enable/disable configuration). When enabled, this feature causes the network processor on the CPM to discard all packets received for protocols that are not configured on the particular interface. This helps mitigate DoS attacks by filtering invalid control traffic before it hits the CPU. The system automatically populates and maintains a per-interface list of configured (such as valid) protocols (based on interface config, etc). For example, if an interface does not have IS-IS configured, then protocol-protection will discard any IS-IS packets received on that interface.

Protocols controlled by this mechanism include:

- OSPFv2
- OSPFv3
- IS-IS
- RSVP-TE
- LDP
- RIP
- PIM
- MLD
- IGMP
- BGP
- BFD
- L2PT
- PPP
- DHCP

Note: If PIM or PIM snooping is not configured on any interfaces/SAPs then all PIM packets will be discarded. If PIM or PIM snooping is configured on an interface/SAP, then multicast PIM messages are filter based on PIM being enabled on that particular interface. All unicast PIM messages are sent to the CPU to be processed.

The CPU protection features are supported on the following platforms:

- 7750 SR-7/SR-12
- 7450 ESS-6/ESS-7/ESS-12

The CPU protection features are not supported on the following platforms:

- 7750 SR-1
- 7450 ESS-1
- 7710 SR-c4/c12
- 7750 c12
Vendor-Specific Attributes (VSAs)

7750 SR OS software supports the configuration of Alcatel-Lucent-specific RADIUS attributes. These attributes are known as vendor-specific attributes (VSAs) and are discussed in RFC 2138. VSAs must be configured when RADIUS authorization is enabled. It is up to the vendor to specify the format of their VSA. The attribute-specific field is dependent on the vendor's definition of that attribute. The Alcatel-Lucent-defined attributes are encapsulated in a RADIUS vendor-specific attribute with the vendor ID field set to 6527, the vendor ID number.

Note that the PE-record entry is required in order to support the RADIUS Discovery for Layer 2 VPN feature. Note that a PE-record is only relevant if the RADIUS Discovery feature is used, not for the standard RADIUS setup.

The following RADIUS vendor-specific attributes (VSAs) are supported by Alcatel-Lucent.

- **timetra-access <ftp> <console> <both>** — This is a mandatory command that must be configured. This command specifies if the user has FTP and/or console (serial port, Telnet, and SSH) access.

- **timetra-profile <profile-name>** — When configuring this VSA for a user, it is assumed that the user profiles are configured on the local 7750 SR-Series router and the following applies for local and remote authentication:

 1. The authentication-order parameters configured on the router must include the local keyword.
 2. The user name may or may not be configured on the 7750 SR-Series router.
 3. The user must be authenticated by the RADIUS server.
 4. Up to 8 valid profiles can exist on the router for a user. The sequence in which the profiles are specified is relevant. The most explicit matching criteria must be ordered first. The process stops when the first complete match is found.

 If all the above mentioned conditions are not met, then access to the router is denied and a failed login event/trap is written to the security log.

- **timetra-default-action <permit-all|deny-all|none>** — This is a mandatory command that must be configured even if the timetra-cmd VSA is not used. This command specifies the default action when the user has entered a command and no entry configured in the timetra-cmd VSA for the user resulted in a match condition.

- **timetra-cmd <match-string>** — Configures a command or command subtree as the scope for the match condition.

 The command and all subordinate commands in subordinate command levels are specified.
Configure from most specific to least specific. The 7750 SR-Series implementation exits on the first match, subordinate levels cannot be modified with subsequent action commands. Subordinate level VSAs must be entered prior to this entry to be effective.

All commands at and below the hierarchy level of the matched command are subject to the \texttt{timetra-action} VSA.

Multiple match-strings can be entered in a single \texttt{timetra-cmd} VSA. Match strings must be semicolon (;) separated (maximum string length is 254 characters).

One or more \texttt{timetra-cmd} VSAs can be entered followed by a single \texttt{timetra-action} VSA.

- \texttt{timetra-action <deny|permit>} — Causes the permit or deny action to be applied to all match strings specified since the last \texttt{timetra-action} VSA.
- \texttt{timetra-home-directory <home-directory string>} — Specifies the home directory that applies for the FTP and CLI user. If this VSA is not configured, the home directory is Compact Flash slot 1 (\texttt{cf1}).
- \texttt{timetra-restrict-to-home-directory <true|false>} — Specifies if user access is limited to their home directory (and directories and files subordinate to their home directory). If this VSA is not configured the user is allowed to access the entire file system.
- \texttt{timetra-login-exec <login-exec-string>} — Specifies the login exec file that is executed when the user login is successful. If this VSA is not configured no login exec file is applied.

If no VSAs are configured for a user, then the following applies:

1. The password authentication-order command on the 7750 SR-Series router must include \texttt{local}.
2. The user name must be configured on the 7750 SR-Series router.
3. The user must be successfully be authenticated by the RADIUS server
4. A valid profile must exist on the 7750 SR-Series router for this user.

If all conditions listed above are not met, then access to the 7750 SR-Series router is denied and a failed login event/trap is written to the security log.

The complete list of TiMetra VSAs is available on a file included on the compact flash shipped with the image.
Sample User (VSA) Configuration

The following example displays a user-specific VSA configuration. This configuration shows attributes for users named **ruser1** and **ruser2**.

The following example shows that user **ruser1** is granted console access. **ruser1**’s home directory is in compact flash slot 3 and is limited to the home directory. The default action permits all packets when matching conditions are not met. The **timetra-cmd** parameters allow the user to use the **tools;telnet;configure system security** commands. Matching strings specified in the **timetra-action** command are denied for this user.

The user **ruser2** is granted FTP access. The default action denies all packets when matching conditions are not met. The **timetra-cmd** parameters allow the user to use the **configure**, **show**, and **debug** commands. Matching strings specified in the **timetra-action** command are permitted for this user.

```
users.timetra

ruser1  Auth-Type := System, Password == "ruser1"
        Service-Type = Login-User,
        Idle-Timeout = 600,
        Timetra-Access = console,
        Timetra-Home-Directory = cf3:
        Timetra-Restrict-To-Home = true
        Timetra-Default-Action = permit-all,
        Timetra-Cmd = "tools;telnet;configure system security",
        Timetra-Action = deny

ruser2  Auth-Type := System, Password == "ruser2"
        Service-Type = Login-User,
        Idle-Timeout = 600,
        Timetra-Access = ftp
        Timetra-Default-Action = deny-all,
        Timetra-Cmd = "configure",
        Timetra-Cmd = "show",
        Timetra-Action = permit,
        Timetra-Cmd = "debug",
        Timetra-Action = permit,
```
Vendor-Specific Attributes (VSAs)

Alcatel-Lucent Dictionary

Revision: 1.29.6.2

VENDOR Alcatel-IPD 6527

User management VSAs

ATTRIBUTE Timetra-Access 1 integer Alcatel-IPD

VALUE Timetra-Access ftp 1
VALUE Timetra-Access console 2
VALUE Timetra-Access both 3

ATTRIBUTE Timetra-Home-Directory 2 string Alcatel-IPD

ATTRIBUTE Timetra-Restrict-To-Home 3 integer Alcatel-IPD

VALUE Timetra-Restrict-To-Home true 1
VALUE Timetra-Restrict-To-Home false 2

ATTRIBUTE Timetra-Profile 4 string Alcatel-IPD

ATTRIBUTE Timetra-Default-Action 5 integer Alcatel-IPD

VALUE Timetra-Default-Action permit-all 1
VALUE Timetra-Default-Action deny-all 2
VALUE Timetra-Default-Action none 3

ATTRIBUTE Timetra-Cmd 6 string Alcatel-IPD

ATTRIBUTE Timetra-Action 7 integer Alcatel-IPD

VALUE Timetra-Action permit 1
VALUE Timetra-Action deny 2

ATTRIBUTE Timetra-Exec-File 8 string Alcatel-IPD

RADIUS subscriber authorization and CoA VSAs

ATTRIBUTE Alc-Primary-Dns 9 ipaddr Alcatel-IPD
ATTRIBUTE Alc-Secondary-Dns 10 ipaddr Alcatel-IPD
ATTRIBUTE Alc-Subsc-ID-Str 11 string Alcatel-IPD
ATTRIBUTE Alc-Subsc-Prof-Str 12 string Alcatel-IPD
ATTRIBUTE Alc-SLA-Prof-Str 13 string Alcatel-IPD
ATTRIBUTE Alc-Force-Renew 14 string Alcatel-IPD # CoA
ATTRIBUTE Alc-Create-Host 15 string Alcatel-IPD # CoA
ATTRIBUTE Alc-ANCP-Str 16 string Alcatel-IPD
ATTRIBUTE Alc-Retail-Serv-Id 17 integer Alcatel-IPD
ATTRIBUTE Alc-Default-Router 18 ipaddr Alcatel-IPD

RADIUS subscriber accounting VSAs

ATTRIBUTE Alc-Acct-I-Inprof-Octets-64 19 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-I-Outprof-Octets-64 20 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-O-Inprof-Octets-64 21 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-O-Outprof-Octets-64 22 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-I-Inprof-Pkts-64 23 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-O-Outprof-Pkts-64 24 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-O-Inprof-Pkts-64 25 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-O-Outprof-Pkts-64 26 octets Alcatel-IPD
ATTRIBUTE Alc-Client-Hardware-Addr 27 string Alcatel-IPD
ATTRIBUTE Alc-Int-Dest-Id-Str 28 string Alcatel-IPD
ATTRIBUTE Alc-Primary-Nbns 29 ipaddr Alcatel-IPD
ATTRIBUTE Alc-Secondary-Nbns 30 ipaddr Alcatel-IPD
ATTRIBUTE Alc-MSAP-Serv-Id 31 integer Alcatel-IPD
ATTRIBUTE Alc-MSAP-Policy 32 string Alcatel-IPD
ATTRIBUTE Alc-MSAP-Interface 33 string Alcatel-IPD
ATTRIBUTE Alc-PPPoE-PADO-Delay 34 integer Alcatel-IPD
ATTRIBUTE Alc-PPPoE-Service-Name 35 string Alcatel-IPD
ATTRIBUTE Alc-DHCP-Vendor-Class-Id 36 string Alcatel-IPD

RADIUS subscriber accounting VSAs (HSDPA override counters)
ATTRIBUTE Alc-Acct-OC-I-Inprof-Octets-64 37 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-I-Outprof-Octets-64 38 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-O-Inprof-Octets-64 39 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-O-Outprof-Octets-64 40 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-I-Inprof-Pkts-64 41 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-I-Outprof-Pkts-64 42 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-O-Inprof-Pkts-64 43 octets Alcatel-IPD
ATTRIBUTE Alc-Acct-OC-O-Outprof-Pkts-64 44 octets Alcatel-IPD

ATTRIBUTE Alc-App-Prof-Str 45 string Alcatel-IPD
ATTRIBUTE Alc-Tunnel-Group 46 string Alcatel-IPD
ATTRIBUTE Alc-Tunnel-Algorithm 47 integer Alcatel-IPD

VALUE Alc-Tunnel-Algorithm weighted-access 1
VALUE Alc-Tunnel-Algorithm existing-first 2

ATTRIBUTE Alc-BGP-Policy 55 string Alcatel-IPD
ATTRIBUTE Alc-BGP-Auth-Keychain 56 string Alcatel-IPD
ATTRIBUTE Alc-BGP-Auth-Key 57 octets Alcatel-IPD
ATTRIBUTE Alc-BGP-Export-Policy 58 string Alcatel-IPD
ATTRIBUTE Alc-BGP-Import-Policy 59 string Alcatel-IPD
ATTRIBUTE Alc-BGP-PeerAS 60 integer Alcatel-IPD
ATTRIBUTE Alc-IPsec-Serv-Id 61 integer Alcatel-IPD
ATTRIBUTE Alc-IPsec-Interface 62 string Alcatel-IPD
ATTRIBUTE Alc-IPsec-Tunnel-Template-Id 63 integer Alcatel-IPD
ATTRIBUTE Alc-IPsec-SA-Lifetime 64 integer Alcatel-IPD
ATTRIBUTE Alc-IPsec-SA-PFS-Group 65 integer Alcatel-IPD

Match TC TmnxIkePolicyDHGroup in TIMETRA-IPSEC-MIB
VALUE Alc-IPsec-SA-PFS-Group group1 1
VALUE Alc-IPsec-SA-PFS-Group group2 2
VALUE Alc-IPsec-SA-PFS-Group group5 5

ATTRIBUTE Alc-IPsec-SA-Encr-Algorithm 66 integer Alcatel-IPD

Match TC TmnxEncrAlgorithm in TIMETRA-IPSEC-MIB
VALUE Alc-IPsec-SA-Encr-Algorithm null 1
VALUE Alc-IPsec-SA-Encr-Algorithm des 2
VALUE Alc-IPsec-SA-Encr-Algorithm des3 3
VALUE Alc-IPsec-SA-Encr-Algorithm aes128 4
VALUE Alc-IPsec-SA-Encr-Algorithm aes192 5
VALUE Alc-IPsec-SA-Encr-Algorithm aes256 6

ATTRIBUTE Alc-IPsec-SA-Auth-Algorithm 67 integer Alcatel-IPD

Match TC TmnxAuthAlgorithm in TIMETRA-IPSEC-MIB
VALUE Alc-IPsec-SA-Auth-Algorithm null 1
VALUE Alc-IPsec-SA-Auth-Algorithm md5 2
Vendor-Specific Attributes (VSAs)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>Attribute</th>
<th>Value</th>
<th>Type</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alc-IPsec-SA-Auth-Algorithm</td>
<td>sha1</td>
<td>string</td>
<td>Alcatel-IPD</td>
</tr>
<tr>
<td></td>
<td>Alc-IPsec-SA-Replay-Window</td>
<td>68</td>
<td>integer</td>
<td>Alcatel-IPD</td>
</tr>
</tbody>
</table>

RADIUS subscriber accounting VSAs (custom records)

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>Value</th>
<th>Type</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alc-Acct-I-High-Octets-Drop_64</td>
<td>69</td>
<td>octets</td>
<td>Alcatel-IPD</td>
</tr>
<tr>
<td>Alc-Acct-I-All-Octets-Drop_64</td>
<td>79</td>
<td>octets</td>
<td>Alcatel-IPD</td>
</tr>
<tr>
<td>Alc-Acct-I-All-Pack-Drop_64</td>
<td>80</td>
<td>octets</td>
<td>Alcatel-IPD</td>
</tr>
<tr>
<td>Alc-Acct-O-Outprof-Octs-Drop_64</td>
<td>83</td>
<td>octets</td>
<td>Alcatel-IPD</td>
</tr>
</tbody>
</table>

credit control VSAs

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>Value</th>
<th>Type</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alc-Credit-Control-CategoryMap</td>
<td>95</td>
<td>string</td>
<td>Alcatel-IPD</td>
</tr>
<tr>
<td>Alc-Credit-Control-Quota</td>
<td>96</td>
<td>string</td>
<td>Alcatel-IPD</td>
</tr>
</tbody>
</table>

CoA
Other Security Features

Secure Shell (SSH)

Secure Shell Version 1 (SSH) is a protocol that provides a secure, encrypted Telnet-like connection to a router. A connection is always initiated by the client (the user). Authentication takes place by one of the configured authentication methods (local, RADIUS, or TACACS+). With authentication and encryption, SSH allows for a secure connection over an insecure network.

7750 SR-Series allows you to configure Secure Shell (SSH) Version 2 (SSH2). SSH1 and SSH2 are different protocols and encrypt at different parts of the packets. SSH1 uses server as well as host keys to authenticate systems whereas SSH2 only uses host keys. SSH2 does not use the same networking implementation that SSH1 does and is considered a more secure, efficient, and portable version of SSH. Rather than validating identities via passwords, SSH2 can also use public key encryption to authenticate remote hosts. For example, if you were to connect to a remote host also running SSH2, the secure shell would use this system to verify that the remote system is the host and not a computer set up to imitate it.

SSH runs on top of a transport layer (like TCP or IP), and provides authentication and encryption capabilities. SSH supports remote login to another computer over a network, remote command execution, and file relocation from one host to another.

7750 SR OS has a global SSH server process to support inbound SSH and SCP sessions initiated by external SSH or SCP client applications. The SSH server supports SSHv1. Note that this server process is separate from the SSH and SCP client commands on the 7750 SR OS which initiate outbound SSH and SCP sessions.

Inbound SSH sessions are counted as inbound telnet sessions for the purposes of the maximum number of inbound sessions specified by Login Control. Inbound SCP sessions are counted as inbound ftp sessions by Login Control.

When SSH server is enabled, an SSH security key is generated. The key is only valid until either the node is restarted or the SSH server is stopped and restarted. The key size is non-configurable and set at 1024 bits. When the server is enabled, both inbound SSH and SCP sessions will be accepted provided the session is properly authenticated.

When the global SSH server process is disabled, no inbound SSH or SCP sessions will be accepted.

When using SCP to copy files from an external device to the file system, the 7750 SR OS SCP server will accept either forward slash (“/”) or backslash (“\”) characters to delimit directory and/or filenames. Similarly, the 7750 SR OS SCP client application can use either slash or backslash characters, but not all SCP clients treat backslash characters as equivalent to slash characters. In
particular, UNIX systems will often times interpret the backslash character as an “escape” character which does not get transmitted to the 7750 SR OSSCP server. For example, a destination directory specified as “cf1:\dir1\file1” will be transmitted to the 7750 SR OS SCP server as “cf1:dir1file1” where the backslash escape characters are stripped by the SCP client system before transmission. On systems where the client treats the backslash like an “escape” character, a double backslash “\" or the forward slash “/” can typically be used to properly delimit directories and the filename.
Per Peer CPM Queuing

System-level security is crucial in service provider networks to address the increased threat of Denial-of-Service (DoS) attacks.

Control Processor Module Queuing (CPMQ) implements separate hardware-based queues which are allocated on a per-peer basis. CPMQ allocates a separate queue for each LDP and BGP peer and ensures that each queue is served in a round-robin fashion. This mechanism guarantees fair and “non-blocking” access to shared CPU resources across all peers. This would ensure, for example, that an LDP-based DoS attack from a given peer would be mitigated and compartmentalized so that not all CPU resources would be dedicated to the otherwise overwhelming control traffic sent by that specific peer.

CPMQ, using the “per-peer-queuing” command, ensures that service levels would not (or only partially be) impacted in case of an attack from a spoofed LDP or BGP peer IP address.

Per Peer CPM Queueing is supported on the 7750 SR-7/12 and 7750 SR-c12 platforms. It is not supported on the 7750 SR-1.
Other Security Features

CPM Filters and Traffic Management

7750 SR-Series routers have traffic management and queuing hardware dedicated to protecting the control plane. CPM filters are supported on the following platforms: 7750 SR-7/SR-12/SR-c12. CPM queueing is supported on the following platforms: 7750 SR-7/SR-12 and 7750 SR-c12 (not 7750 SR-1). These filters can be used to drop or accept packets, as well as allocate dedicated hardware shaping queues for traffic directed to the control processors.

Users can allocate dedicated CPM hardware queues for certain traffic designated to the CPUs and can set the corresponding rate-limit for the queues.

The following traffic management features are supported:

- Traffic classification using these filters:
 - Packets going to the CPM are first classified by the IOM into forwarding classes (FCs) before CPM hardware sees them. CPM/CFM filters can be used to further classify the packets using Layer 3/Layer 4 information (for example, destination IP, DSCP value, TCP SYN/ACK, etc.).

- Queue allocation:
 - Allocatable queues: 33 — 2000
 - Queues 1 — 8 are default queues. They cannot be modified or deleted.
 - Queues 9 — 32 are reserved for future use.
 - Queues 2001 — 8000 are used for per-peer queuing.

- Specifying PIR, CIR, CBS, and MBS for the queues

- The queuing scheduler works in such a way that the queues within their CIR will be scheduled first in a round-robin fashion, followed by the queues above their CIR.

- Unclassified traffic is directed to default queues (1 — 8).
TTL Security for BGP and LDP

The BGP TTL Security Hack (BTSH) was originally designed to protect the BGP infrastructure from CPU utilization-based attacks. It is derived on the fact that the vast majority of ISP eBGP peerings are established between adjacent routers. Since TTL spoofing cannot be performed, a mechanism based on an expected TTL value can provide a simple and reasonably robust defense from infrastructure attacks based on forged BGP packets.

While TSH is most effective in protecting directly connected peers, it can also provide a lower level of protection to multi-hop sessions. When a multi-hop BGP session is required, the expected TTL value can be set to 255 minus the configured range-of-hops. This approach can provide a qualitatively lower degree of security for BGP (for example, a DoS attack could, theoretically, be launched by compromising a box in the path). However, BTSH will catch a vast majority of observed distributed DoS (DDoS) attacks against eBGP. For further information, refer to draft-gill-btsh-xx.txt, The BGP TTL Security Hack (BTSH).

TSH can be used to protect LDP peering sessions as well. For details, see draft-chen-ldp-ttl-xx.txt, TTL-Based Security Option for LDP Hello Message.

The TSH implementation supports the ability to configure TTL security per BGP/LDP peer and evaluate (in hardware) the incoming TTL value against the configured TTL value. If the incoming TTL value is less than the configured TTL value, the packets are discarded and a log is generated.

Exponential Login Backoff

A malicious user may attempt to gain CLI access by means of a dictionary attack using a script to automatically attempt to login as an “admin” user and using a dictionary list to test all possible passwords. Using the exponential-backoff feature in the config>system>login-control context the 7750 SR OS increases the delay between login attempts exponentially to mitigate attacks.

When trying to access the router, the user is only allowed three attempts per session, by default, to login to the system before the connectivity session is terminated. It is during that single connectivity session that the exponential backoff is utilized. Each time an invalid password is entered for a login account name, a delay is inserted before the next display of the login/password prompt. The first delay is 1 second, and each subsequent delay is 2 times the last delay (for example, 1 second, 2 seconds, 4 seconds). Once the connectivity session is terminated after the third failed login attempt, the exponential backoff timer is reset to 1 second.

Note that the config>system>login-control>[no] exponential-backoff command works in conjunction with the config>system>security>password>attempts command which is also a system wide configuration.

For example:
Other Security Features

*A:*A:ALC-48>config>system# security password attempts
- attempts <count> [time <minutes1>] [lockout <minutes2>]
- no attempts

<count> : [1..64]
<minutes1>: [0..60]
<minutes2>: [0..1440]

Exponential backoff applies to any user and by any login method such as console, SSH and Telnet.

Refer to Configuring Login Controls on page 85. The commands are described in Login, Telnet, SSH and FTP Commands on page 112.
User Lockout

When a user exceeds the maximum number of attempts allowed (the default is 3 attempts) during a certain period of time (the default is 5 minutes) the account used during those attempts will be locked out for a pre-configured lock-out period (the default is 10 minutes).

An security event log will be generated as soon as a user account has exceeded the number of allowed attempts and the `show>system>security>user` command can be used to display the total number of failed attempts per user.

The account will be automatically re-enabled as soon as the lock-out period has expired.
Encryption

Data Encryption Standard (DES) and Triple DES (3DES) are supported for encryption.

- DES is a widely-used method of data encryption using a private (secret) key. Both the sender and the receiver must know and use the same private key.
- 3DES is a more secure version of the DES protocol.

802.1x Network Access Control

The Alcatel-Lucent 7750 SR OS supports network access control of client devices (PCs, STBs, etc.) on an Ethernet network using the IEEE 802.1x standard. 802.1x is known as Extensible Authentication Protocol (EAP) over a LAN network or EAPOL.

TCP Enhanced Authentication Option

The TCP Enhanced Authentication Option, currently covered in draft-bonica-tcp-auth-05.txt, *Authentication for TCP-based Routing and Management Protocols*, extends the previous MD5 authentication option to include the ability to change keys without tearing down the session, and allows for stronger authentication algorithms to be used.
The TCP Enhanced Authentication Option is a TCP extension that enhances security for BGP, LDP and other TCP-based protocols. This includes the ability to change keys in a BGP or LDP session seamlessly without tearing down the session. It is intended for applications where secure administrative access to both the end-points of the TCP connection is normally available.

TCP peers can use this extension to authenticate messages passed between one another. This strategy improves upon current practice, which is described in RFC 2385, Protection of BGP Sessions via the TCP MD5 Signature Option. Using this new strategy, TCP peers can update authentication keys during the lifetime of a TCP connection. TCP peers can also use stronger authentication algorithms to authenticate routing messages.
Packet Formats

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind</td>
</tr>
</tbody>
</table>

Option Syntax

- **Kind**: 8 bits
 The Kind field identifies the TCP Enhanced Authentication Option. This value will be assigned by IANA.

- **Length**: 8 bits
 The Length field specifies the length of the TCP Enhanced Authentication Option, in octets. This count includes two octets representing the Kind and Length fields.
 The valid range for this field is from 4 to 40 octets, inclusive.
 For all algorithms specified in this memo the value will be 16 octets.

- **T-Bit**: 1 bit
 The T-bit specifies whether TCP Options were omitted from the TCP header for the purpose of MAC calculation. A value of 1 indicates that all TCP options other than the Extended Authentication Option were omitted. A value of 0 indicates that TCP options were included.
 The default value is 0.

- **K-Bit**: 1 bit
 This bit is reserved for future enhancement. Its value MUST be equal to zero.

- **Alg ID**: 6 bits
 The Alg ID field identifies the MAC algorithm.

- **Res**: 2 bits
 These bits are reserved. They MUST be set to zero.

- **Key ID**: 6 bits
 The Key ID field identifies the key that was used to generate the message digest.

- **Authentication Data**: Variable length
 The Authentication Data field contains data that is used to authenticate the TCP segment. This data includes, but need not be restricted to, a MAC. The length and format of the Authentication Data Field can be derived from the Alg ID.

- **The Authentication for TCP-based Routing and Management Protocols draft provides and overview of the TCP Enhanced Authentication Option. The details of this feature are described in draft-bonica-tcp-auth-04.txt.**
Keychain

A keychain is a set of up to 64 keys, where each key is \{A[i], K[i], V[i], S[i], T[i], S'[i], T'[i]\} as described in draft-bonica-tcp-auth-05.txt, *Authentication for TCP-based Routing and Management Protocols*. They keys can be assigned to both sides of a BGP or LDP peer. The individual keys in a keychain have a begin- and end-time indicating when to use this key. These fields map to the CLI tree as:

Table 4: Keychain Mapping

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>The key identifier expressed as an integer (0..63)</td>
<td>config>system>security>keychain>direction>bi>entry</td>
</tr>
<tr>
<td>A[i]</td>
<td>Authentication algorithm to use with key[i]</td>
<td>config>system>security>keychain>direction>bi>entry with algorithm parameter</td>
</tr>
<tr>
<td>K[i]</td>
<td>Shared secret to use with key[i].</td>
<td>config>system>security>keychain>direction>uni>receive>entry with shared secret parameter</td>
</tr>
<tr>
<td>V[i]</td>
<td>A vector that determines whether the key[i] is to be used to generate MACs for inbound segments, outbound segments, or both.</td>
<td>config>system>security>keychain>direction</td>
</tr>
<tr>
<td>S[i]</td>
<td>Start time from which key[i] can be used by sending TCPs.</td>
<td>config>system>security>keychain>direction>bi>entry>begin-time</td>
</tr>
<tr>
<td>T[i]</td>
<td>End time after which key[i] cannot be used by sending TCPs.</td>
<td>Inferred by the begin-time of the next key (youngest key rule).</td>
</tr>
<tr>
<td>S'[i]</td>
<td>Start time from which key[i] can be used by receiving TCPs.</td>
<td>config>system>security>keychain>direction>bi>entry>begin-time</td>
</tr>
<tr>
<td>T'[i]</td>
<td>End time after which key[i] cannot be used by receiving TCPs</td>
<td>config>system>security>keychain>direction>uni>receive>entry>end-time</td>
</tr>
</tbody>
</table>
Configuration Notes

This section describes security configuration caveats.

General

- If a RADIUS or a TACACS+ server is not configured, then password, profiles, and user access information must be configured on each router in the domain.
- If a RADIUS authorization is enabled, then VSAs must be configured on the RADIUS server.
Configuring Security with CLI

This section provides information to configure security using the command line interface.

Topics in this section include:

- Setting Up Security Attributes on page 54
 - Configuring Authorization on page 55
 - Configuring Authorization on page 55
 - Configuring Accounting on page 57
- Configuration Tasks on page 60
- Security Configuration Procedures on page 61
 - Configuring Management Access Filters on page 61
 - Configuring IP CPM Filters on page 63
 - Configuring MAC CPM Filters on page 65
 - Configuring IPv6 CPM Filters on page 66
 - Configuring CPM Queues on page 67
 - Configuring Password Management Parameters on page 68
 - Configuring Profiles on page 69
 - Configuring Users on page 70
 - Copying and Overwriting Users and Profiles on page 72
 - Enabling SSH on page 84
 - Configuring Login Controls on page 85
 - RADIUS Configurations on page 76
 - Configuring RADIUS Authentication on page 76
 - Configuring RADIUS Authorization on page 77
 - Configuring RADIUS Accounting on page 78
 - TACACS+ Configurations on page 81
 - Enabling TACACS+ Authentication on page 81
 - Configuring TACACS+ Authorization on page 82
 - Configuring TACACS+ Accounting on page 83
 - A:ALA-1>config>system# on page 79
Setting Up Security Attributes

Configuring Authentication

Refer to the following sections to configure authentication:

- Local authentication
 → Configuring Password Management Parameters on page 68
 → Configuring Profiles on page 69
 → Configuring Users on page 70
- RADIUS authentication (only)
 By default, authentication is enabled locally. Perform the following tasks to configure security on each participating 7750 SR-Series router:
 → Configuring Profiles on page 69
 → Configuring RADIUS Authentication on page 76
 → Configuring Users on page 70
- RADIUS authentication
 To implement only RADIUS authentication, with authorization, perform the following tasks on each participating 7750 SR-Series router:
 → Configuring RADIUS Authentication on page 76
 → Configuring RADIUS Authorization on page 77
- TACACS+ authentication
 To implement only TACACS+ authentication, perform the following tasks on each participating 7750 SR-Series router:
 → Configuring Profiles on page 69
 → Configuring Users on page 70
 → Enabling TACACS+ Authentication on page 81
Configuring Authorization

Refer to the following sections to configure authorization.

- Local authorization
 For local authorization, configure these tasks on each participating 7750 SR-Series router:
 → Configuring Profiles on page 69
 → Configuring Users on page 70

- RADIUS authorization (only)
 For RADIUS authorization (without authentication), configure these tasks on each participating 7750 SR-Series router:
 → Configuring RADIUS Authorization on page 77
 → Configuring Profiles on page 69
 For RADIUS authorization, VSAs must be configured on the RADIUS server. See Vendor-Specific Attributes (VSAs) on page 35.

- RADIUS authorization
 For RADIUS authorization (with authentication), configure these tasks on each participating 7750 SR-Series router:
 → Configuring RADIUS Authorization on page 77
 For RADIUS authorization, VSAs must be configured on the RADIUS server. See Vendor-Specific Attributes (VSAs) on page 35.
 → Configuring RADIUS Authentication on page 76
 → Configuring Profiles on page 69

- TACACS+ authorization (only)
 For TACACS+ authorization (without authentication), configure these tasks on each participating 7750 SR-Series router:
 → Configuring TACACS+ Authorization on page 82

- TACACS+ authorization
For TACACS+ authorization (with authentication), configure these tasks on each participating 7750 SR-Series router:

→ Enabling TACACS+ Authentication on page 81
→ Configuring TACACS+ Authorization on page 82
Configuring Accounting

Refer to the following sections to configure accounting.

- Local accounting is not implemented. For information about configuring accounting policies, refer to Configuring Logging with CLI on page 303
- Configuring RADIUS Accounting on page 78
- Configuring TACACS+ Accounting on page 83
Security Configurations

This section provides information to configure security and configuration examples of configuration tasks.

To implement security features, configure the following components:

- Management access filters
- Profiles
- User access parameters
- Password management parameters
- Enable RADIUS and/or TACACS+
 - One to five RADIUS and/or TACACS+ servers
 - RADIUS and/or TACACS+ parameters

The following example displays default values for security parameters.

```
A:ALA-1>config>system>security# info detail
----------------------------------------------
no hash-control
no telnet-server
no telnet6-server
no ftp-server
management-access-filter
  ip-filter
    no shutdown
  exit
mac-filter
  no shutdown
  exit
exit
profile "default"
  default-action none
  no li
  entry 10
    no description
    match "exec"
    action permit
    ...
password
  authentication-order radius tacplus local
  no aging
  minimum-length 6
  attempts 3 time 5 lockout 10
  complexity
  exit
user "admin"
  password "./3KQWERTYnQ6w" hash
  access console
  no home-directory
  no restricted-to-home
```
console
 no login-exec
 no cannot-change-password
 no new-password-at-login
 member "administrative"
exit
exit
snmp
 view iso subtree 1
 mask ff type included
exit

... access group snmp-ro security-model snmpv1 security-level no-auth-no-privacy read
 no-security notify no-security
 access group snmp-ro security-model snmpv2c security-level no-auth-no-privacy read
 no-security write no-security notify no-security
 access group snmp-rw security-model snmpv1 security-level no-auth-no-privacy read
 no-security write no-security notify no-security
 access group snmp-rw security-model snmpv2c security-level no-auth-no-privacy read
 no-security write no-security notify no-security
 access group snmp-rwa security-model snmpv1 security-level no-auth-no-privacy read
 iso write iso notify iso
 access group snmp-rwa security-model snmpv2c security-level no auth-no-privacy read
 iso write iso notify iso
 access group snmp-trap security-model snmpv1 security-level no-auth-no-privacy notify iso
 access group snmp-trap security-model snmpv2c security-level no-auth-no-privacy notify iso
 access group cli-readonly security-model snmpv2c security-level
 no-auth-no-privacy read iso notify iso
 access group cli-readwrite security-model snmpv2c security-level
 no-auth-no-privacy read iso write iso notify iso
 attempts 20 time 5 lockout 10
exit
no ssh
Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure security and provides the CLI commands. Table 5 depicts the capabilities of authentication, authorization, and accounting configurations. For example, authentication can be enabled locally and on RADIUS and TACACS+ servers. Authorization can be executed locally, on a RADIUS server, or on a TACACS+ server. Accounting can be performed on a RADIUS or TACACS+ server.

Table 5: Security Configuration Requirements

<table>
<thead>
<tr>
<th>Authentication</th>
<th>Authorization</th>
<th>Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Local</td>
<td>None</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Local and RADIUS</td>
<td>RADIUS</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Local</td>
<td>TACACS+</td>
</tr>
</tbody>
</table>
Security Configuration Procedures

- Configuring Management Access Filters on page 61
- Configuring IP CPM Filters on page 63
- Configuring MAC CPM Filters on page 65
- Configuring IPv6 CPM Filters on page 66
- Configuring CPM Queues on page 67
- Configuring Password Management Parameters on page 68
- Configuring Profiles on page 69
- Configuring Users on page 70
- Copying and Overwriting Users and Profiles on page 72
- Enabling SSH on page 84

Configuring Management Access Filters

Creating and implementing management access filters is optional. Management access filters control all traffic going in to the CPM, including all routing protocols. They apply to packets from all ports. The filters can be used to restrict management of the 7750 SR OS router by other nodes outside either specific (sub)networks or through designated ports. By default, there are no filters associated with security options. The management access filter and entries must be explicitly created on each router. These filters also apply to the management Ethernet port.

The 7750 SR OS implementation exits the filter when the first match is found and execute the actions according to the specified action. For this reason, entries must be sequenced correctly from most to least explicit.

An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword CPM to be considered complete. Entries without the action keyword are considered incomplete and will be rendered inactive.

Use the following CLI commands to configure a management access filter. This example only accepts packets matching the criteria specified in entries 1 and 2. Non-matching packets are denied.

CLI Syntax:
```
config>system
    security
    management-access-filter
    ip-filter
    ipv6-filter
    mac-filter
```
The following displays a management access filter configuration example:

A:ALA-1>config>system>security# info
--
no hash-control
telnet-server
no telnet6-server
no ftp-server
management-access-filter
 ip-filter
 no shutdown
 exit
ipv6-filter
 no shutdown
 exit
mac-filter
 no shutdown
 exit
exit
profile "default"
 default-action none
 no 11
 entry 10
 no description
 match "exec"
 action permit
 exit
 entry 20
 no description
snmp
 community "private" rwa version both
 exit
--
A:ALA-1>config>system>security#
Configuring IP CPM Filters

CPM filters and queues control all traffic going into the CPM, including all routing protocols. They apply to packets from all network and access ports, but not to packets from a management Ethernet port. CPM packet filtering and queuing is performed by network processor hardware using no resources on the main CPUs. CPM filters and queues are not configurable on one-slot chassis.

Use the following CLI commands to configure a CPM filter.

CLI Syntax:
```
config>system>security
    cpm-filter
        default-action {accept | drop}
        ip-filter
            entry entry-id
                action {accept | drop | queue queue-id }
                description description-string
                log log-id
                match [protocol protocol-id]
                    dscp dscp-name
                    dst-ip {ip-address/mask|ip-address netmask}
                    dst-port [tcp/udp port-number] [mask]
                    fragment {true|false}
                    icmp-code icmp-code
                    icmp-type icmp-type
                    ip-option ip-option-value [ip-option-mask]
                    multiple-option {true|false}
                    option-present {true|false}
                    router service-name service-name
                    router router-instance
                    src-ip {ip-address/mask|ip-address netmask}
                    src-port src-port-number [mask]
                    tcp-ack {true|false}
                    tcp-syn {true|false}
            rennum old-entry-id new-entry-id
```
The following displays an IP CPM filter configuration example:

```
A:ALA-49>config>sys>sec>cpm>ip-filter# info
----------------------------------------------
cpm-queue
  queue 33 create
cbs 50
mbs 50
rate 300 cir 300
exit
exit
cpm-filter
  ip-filter
    entry 10 create
      action queue 33
      match protocol tcp
tcp-syn true
exit
exit
    entry 50 create
      action drop
      match
      fragment true
exit
exit
  no shutdown
exit
exit
----------------------------------------------
A:ALA-49>config>sys>sec>cpm>ip-filter#
```
Configuring MAC CPM Filters

CPM filters and queues control all traffic going into the CPM, including all routing protocols. They apply to packets from all network and access ports, but not to packets from a management Ethernet port. CPM packet filtering and queuing is performed by network processor hardware using no resources on the main CPUs. CPM filters and queues are not configurable on one-slot chassis.

The following displays a MAC CPM filter configuration example:

*A:ALA-49>config>sys>sec>cpm>mac-filter# info

entry 10 create
description "MAC-CPM-Filter 10.10.10.100 #007"
match
exit
log 101
action drop
exit
entry 20 create
description "MAC-CPM-Filter 10.10.10.100 #008"
match
exit
log 101
action drop
exit
no shutdown

*A:ALA-49>config>sys>sec>cpm>mac-filter#
Configuring IPv6 CPM Filters

Use the following CLI commands to configure an IPv6 CPM filter.

CLI Syntax:
```
cfg>sys>sec>cpm-filter

cpm-filter
  default-action {accept | drop}
  ipv6-filter
    entry entry-id
      action {accept | drop | queue queue-id}
      description description-string
      log log-id
      match [next-header next-header]
      dscp dscp-name
      dst-ip ipv6-address/prefix-length
      dst-port [tcp/udp port-number] [mask]
      flow-label value
      icmp-code icmp-code
      icmp-type icmp-type
      router [router-name | service-id]
      src-ip ipv6-address/prefix-length
      src-port src-port-number [mask]
      tcp-ack {true|false}
      tcp-syn {true|false}
      renum old-entry-id new-entry-id
```

The following example displays a CPM filter configuration:

```
A:ALA-48>cfg>sys>sec>cpm>ipv6-filter# info
----------------------------------------------
entry 10 create
description "IPv6 CPM Filter"
log 101
match next-header igp
src-ip 2000:1::1/96
flow-label 5000
exit
exit
entry 20 create
description "CPM-Filter 10.4.101.2 #201"
log 101
match next-header tcp
dscp af11
dst-ip 3FEE:12E1:2AC1:EA32::/64
src-ip 3FEE:1FE1:2AC1:EA32::/64
flow-label 5050
exit
exit
reconfig
no shutdown
----------------------------------------------
A:ALA-48>cfg>sys>sec>cpm>ipv6-filter#
```
Configuring CPM Queues

Use the following CLI commands to configure a CPM queue. The first queue available is 33.

CLI Syntax:
```plaintext
config>system>security# cpm-queue
  queue queue-id
cbs  cbs
  mbs  mbs
rate rate [cir  cir]
```

The following example displays a CPM queue configuration:

```
A:ALA-987>config>sys>security>cpm-queue# info
----------------------------------------------
queue 33 create
exit
queue 101 create
  cbs 5
  mbs 5
  rate 5 cir 5
exit
queue 102 create
  cbs 5
  mbs 5
  rate 5 cir 5
exit
queue 103 create
  cbs 5
  mbs 5
  rate 5 cir 5
exit
queue 104 create
  cbs 5
  mbs 5
  rate 5 cir 5
----------------------------------------------
A:ALA-987>config>sys>security>cpm-queue#
```
Configuring Password Management Parameters

Password management parameters consists of defining aging, the authentication order and authentication methods, password length and complexity, as well as the number of attempts a user can enter a password.

Depending on your authentication requirements, password parameters are configured locally.

Use the following CLI commands to configure password support:

CLI Syntax:
```
config>system>security
password
   admin-password password [hash|hash2]
   aging days
   attempts count [time minutes] [lockout minutes]
   authentication-order [method-1] [method-2] [method-3]
   [exit-on-reject]
   complexity [numeric] [special-character] [mixed-case]
   health-check
   minimum-length value
```

The following example displays a password configuration:

```
A:ALA-1>config>system>security# info
----------------------------------------------
password
   authentication-order radius tacplus local
   aging 365
   minimum-length 8
   attempts 5 time 5 lockout 20
   exit
----------------------------------------------
A:ALA-1>config>system>security#
```
Configuring Profiles

Profiles are used to deny or permit access to a hierarchical branch or specific commands. Profiles are referenced in a user configuration. A maximum of sixteen user profiles can be defined. A user can participate in up to sixteen profiles. Depending on the the authorization requirements, passwords are configured locally or on the RADIUS server.

Use the following CLI commands to configure user profiles:

CLI Syntax:
```
config>system>security
profile user-profile-name
  default-action {deny-all|permit-all|none}
  renum old-entry-number new-entry-number
  entry entry-id
    description description-string
    match command-string
    action {permit|deny}
```

The following example displays a user profile output:

```
A:ALA-1>config>system>security# info
----------------------------------------------
... profile "ghost"
  default-action permit-all
  entry 1
    match "configure"
    action permit
  exit
  entry 2
    match "show"
  exit
  entry 3
    match "exit"
  exit
... exit
----------------------------------------------
A:ALA-1>config>system>security# 
```
Configuring Users

Configure access parameters for individual users. For user, define the login name for the user and, optionally, information that identifies the user. Use the following CLI commands to configure RADIUS support:

CLI Syntax:
```
config>system>security
user-template template-name
user user-name
access [ftp] [snmp] [console]
canonical cannot-change-password
login-exec url-prefix:source-url
member user-profile-name [user-profile-name...(up to 8 max)]
new-password-at-login
home-directory url-prefix [directory][directory/directory ..]
password [password] [hash|hash2]
restricted-to-home
snmp
    authentication {[none]|[hash] [md5 key-1|sha key-1] pri-
    vacy {none|des-key key-2]}
group group-name
```

The following displays a user configuration example:

```
A:ALA-1>config>system>security# info
----------------------------------------------
...
user "49ers"
    password "gObnuzLd7H/VxGdUqdh7bE" hash2
    access console ftp snmp
    restricted-to-home
    console
    member "default"
    member "ghost"
exit
exit
...  
----------------------------------------------
A:ALA-1>config>system>security#
```
Configuring Keychains

The following displays a keychain configuration.

```
A:ALA-1>config>system>security# info
----------------------------------------------
... keychain "abc"
    direction bi
    entry 1 key "ZcvSElJzJx/wBZ9biCtUvQJ9YqVvU.S" hash2 algorithm aes-128-cmac-96
    begin-time 2006/12/18 22:55:20
    exit
    exit
    exit
    exit
keychain "basasd"
    direction uni
    receive entry 1 key "Ee7xdK1YO2DOm7v3Ijv/84LIu96R2fZh" hash2 algorithm aes-128-cmac-96
    tolerance forever
    exit
    exit
    exit
    exit
... ----------------------------------------------
A:ALA-1>config>system>security#
```
Copying and Overwriting Users and Profiles

You can copy a profile or user. You can copy a profile or user or overwrite an existing profile or user. The **overwrite** option must be specified or an error occurs if the destination profile or username already exists.

User

CLI Syntax: config>system>security# copy {user source-user | profile source-profile} to destination [overwrite]

Example:

```
config>system>security# copy user testuser to testuserA
MINOR: CLI User "testuserA" already exists - use overwrite flag.
```

```
config>system>security# copy user testuser to testuserA overwrite
```

The following output displays the copied user configurations:

```
A:ALA-12>config>system>security# info
----------------------------------------------
... user "testuser" password "F6XjryaATzM" hash
snmp
   authentication hash md5 e14672e71d3e96e7a1e19472527ee969 privacy none
   group "testgroup"
exit
exit
user "testuserA"
   password "" hash2
   access snmp console
   new-password-at-login
   snmp
      authentication hash md5 e14672e71d3e96e7a1e19472527ee969 privacy none
      group "testgroup"
exit
exit
...  
----------------------------------------------
A:ALA-12>config>system>security# info
```

Note that the cannot-change-password flag is not replicated when a copy user command is performed. A new-password-at-login flag is created instead.

```
A:ALA-12>config>system>security>user# info
-----------------------------------------------
    password "F6XjryAATzM" hash
    access snmp
    console
    cannot-change-password
    exit
    snmp
        authentication hash md5 e14672e71d3e96e7a1e19472527ee969 privacy none
        group "testgroup"
    exit
-----------------------------------------------
A:ALA-12>config>system>security>user# exit
A:ALA-12>config>system>security# user testuserA
A:ALA-12>config>system>security>user# info
-----------------------------------------------
    password "" hash2
    access snmp
    console
        new-password-at-login
    exit
    snmp
        authentication hash md5 e14672e71d3e96e7a1e19472527ee969 privacy none
        group "testgroup"
    exit
-----------------------------------------------
A:ALA-12>config>system>security>user#
```
Profile

CLI Syntax:
`config>system>security# copy {user source-user | profile source-profile} to destination [overwrite]`

Example:
`config>system>security# copy profile default to testuser`

The following output displays the copied profiles:

```
A:ALA-49>config>system>security# info
----------------------------------------------
...
A:ALA-49>config>system>security# info detail
----------------------------------------------
...
profile "default"
default-action none
  entry 10
  no description
  match "exec"
  action permit
  exit
  entry 20
  no description
  match "exit"
  action permit
  exit
  entry 30
  no description
  match "help"
  action permit
  exit
  entry 40
  no description
  match "logout"
  action permit
  exit
  entry 50
  no description
  match "password"
  action permit
  exit
  entry 60
  no description
  match "show config"
  action deny
  exit
  entry 70
  no description
  match "show"
  action permit
  exit
  entry 80
  no description
  match "enable-admin"
```
action permit
exit
exit
profile "testuser"
default-action none
entry 10
 no description
 match "exec"
 action permit
exit
entry 20
 no description
 match "exit"
 action permit
exit
entry 30
 no description
 match "help"
 action permit
exit
entry 40
 no description
 match "logout"
 action permit
exit
entry 50
 no description
 match "password"
 action permit
exit
entry 60
 no description
 match "show config"
 action deny
exit
entry 70
 no description
 match "show"
 action permit
exit
entry 80
 no description
 match "enable-admin"
 action permit
exit
exit
profile "administrative"
default-action permit-all exit

...
RADIUS Configurations

- Configuring RADIUS Authentication on page 76
- Configuring RADIUS Authorization on page 77
- Configuring RADIUS Accounting on page 78
- Configuring 802.1x RADIUS Policies on page 79

Configuring RADIUS Authentication

RADIUS is disabled by default and must be explicitly enabled. The mandatory commands to enable RADIUS on the local router are `radius` and `server server-index address ip-address secret key`.

Also, the system IP address must be configured in order for the RADIUS client to work. See Configuring a System Interface of the 7750 SR OS Router Configuration Guide.

The other commands are optional. The `server` command adds a RADIUS server and configures the RADIUS server’s IP address, index, and key values. The index determines the sequence in which the servers are queried for authentication requests.

On the local router, use the following CLI commands to configure RADIUS authentication:

CLI Syntax:
```
config>system>security
radius
    port port
    retry count
    server server-index address ip-address secret key
    timeout seconds
    no shutdown
```

The following displays a RADIUS authentication configuration example:

```
A:ALA-1>config>system>security# info
----------------------------------------------
    retry 5
    timeout 5
    server 1 address 10.10.10.103 secret "test1"
    server 2 address 10.10.0.1 secret "test2"
    server 3 address 10.10.0.2 secret "test3"
    server 4 address 10.10.0.3 secret "test4"
----------------------------------------
A:ALA-1>config>system>security#
```
Configuring RADIUS Authorization

In order for RADIUS authorization to function, RADIUS authentication must be enabled first. See Configuring RADIUS Authentication on page 76.

In addition to the local configuration requirements, VSAs must be configured on the RADIUS server. See Vendor-Specific Attributes (VSAs) on page 35.

On the local router, use the following CLI commands to configure RADIUS authorization:

CLI Syntax:
```
config>system>security
radius
authorization
```

The following displays a RADIUS authorization configuration example:

```
A:ALA-1>config>system>security# info
----------------------------------------------
...                          
  radius
authorization
  retry 5
  timeout 5
  server 1 address 10.10.103 secret "test1"
  server 2 address 10.10.0.1 secret "test2"
  server 3 address 10.10.0.2 secret "test3"
  server 4 address 10.10.0.3 secret "test4"
  exit
...                          
----------------------------------------------
A:ALA-1>config>system>security#
```
Configuring RADIUS Accounting

On the local router, use the following CLI commands to configure RADIUS accounting:

CLI Syntax:

```
config>system>security
radius
accounting
```

The following displays RADIUS accounting configuration example:

```
A:ALA-1>config>system>security# info
----------------------------------------------
... radius
    shutdown
    authorization
    accounting
    retry 5
    timeout 5
    server 1 address 10.10.10.103 secret "test1"
    server 2 address 10.10.0.1 secret "test2"
    server 3 address 10.10.0.2 secret "test3"
    server 4 address 10.10.0.3 secret "test4"
    exit
...----------------------------------------------
A:ALA-1>config>system>security#
```
Configuring 802.1x RADIUS Policies

Use the following CLI commands to configure generic authentication parameters for clients using 802.1x EAPOL. Additional parameters are configured per Ethernet port. Refer to the 7750 SR OS Interface Configuration Guide

To configure generic parameters for 802.1x authentication, enter the following CLI syntax.

CLI Syntax:
```
config>system>security
dot1x
    radius-plcy policy-name
        server server-index address ip-address secret key [port
        port]
        source-address ip-address
        no shutdown
```

The following displays a 802.1x configuration example:

```
A:ALA-1>config>system>security# info
----------------------------------------------
dot1x
    radius-plcy policy-name
        server 1 address 1.1.1.1 port 65535 secret "a"
        server 2 address 1.1.1.2 port 6555 secret "a"
        source-address 1.1.1.255
        no shutdown

----------------------------------------------
A:ALA-1>config>system#
```
Configuring CPU Protection Policies

The CPU protection features are supported on the 7750 SR-7/12 platforms. These features are not available on the 7750 SR-1 or 7750 SR-c12.

The following output displays a configuration of the CPU protection parameters and a CPU protection policy:

```
Node_3>config>sys>security>cpu-protection# info
----------------------------------------------
link-specific-rate 4000
policy 4 create
   no alarm
description "My new CPU Protection policy"
   overall-rate 9000
   per-source-rate 2000
   out-profile-rate 4000
exit
policy 254 create
exit
policy 255 create
exit
port-overall-rate 12000
protocol-protection
----------------------------------------------
Node_3>config>sys>security>cpu-protection#
```

The following output displays an application to an interface:

```
Node_3>config>service>ies>if# info
----------------------------------------------
cpu-protection 4
   sap 1/1/5 create
exit
----------------------------------------------
Node_3>config>sys>security>cpu-protection#
```
TACACS+ Configurations

- Enabling TACACS+ Authentication on page 81
- Configuring TACACS+ Authorization on page 82
- Configuring TACACS+ Accounting on page 83

Enabling TACACS+ Authentication

To use TACACS+ authentication on the router, configure one or more TACACS+ servers on the network.

Use the following CLI commands to configure profiles:

CLI Syntax: config>system>security
tacplus
server server-index address ip-address secret key
timeout seconds
no shutdown

The following displays a TACACS+ authentication configuration example:

A:ALA-1>config>system>security>tacplus# info
--
timeout 5
server 1 address 10.10.0.5 secret "test1"
server 2 address 10.10.0.6 secret "test2"
server 3 address 10.10.0.7 secret "test3"
server 4 address 10.10.0.8 secret "test4"
server 5 address 10.10.0.9 secret "test5"
--
A:ALA-1>config>system>security>tacplus#
Configuring TACACS+ Authorization

In order for TACACS+ authorization to function, TACACS+ authentication must be enabled first. See Enabling TACACS+ Authentication on page 81.

On the local router, use the following CLI commands to configure RADIUS authorization:

CLI Syntax:
```
config>system>security
tacplus
  authorization
  no shutdown
```

The following displays a TACACS+ authorization configuration example:

```
A:ALA-1>config>system>security>tacplus# info
----------------------------------------------
| authorization |
| timeout 5 |
| server 1 address 10.10.0.5 secret "test1" |
| server 2 address 10.10.0.6 secret "test2" |
| server 3 address 10.10.0.7 secret "test3" |
| server 4 address 10.10.0.8 secret "test4" |
| server 5 address 10.10.0.9 secret "test5" |
----------------------------------------------
A:ALA-1>config>system>security>tacplus#
```
Configuring TACACS+ Accounting

On the local router, use the following CLI commands to configure TACACS+ accounting:

CLI Syntax:
```
config>system>security
tacplus
accounting
```

The following displays a TACACS+ accounting configuration example:

```
A:ALA-1>config>system>security>tacplus# info
-----------------------------------------------
accounting
authorization
  timeout 5
server 1 address 10.10.0.5 secret "test1"
server 2 address 10.10.0.6 secret "test2"
server 3 address 10.10.0.7 secret "test3"
server 4 address 10.10.0.8 secret "test4"
server 5 address 10.10.0.9 secret "test5"
-----------------------------------------------
A:ALA-1>config>system>security>tacplus#
```
Enabling SSH

Use the SSH command to configure the SSH server as SSH1, SSH2 or both. The default is SSH2 (SSH version 2). This command should only be enabled or disabled when the SSH server is disabled. This setting should not be changed while the SSH server is running since the actual change only takes place after SSH is disabled or enabled.

CLI Syntax:
```
config>system>security
    ssh
        preserve-key
        no server-shutdown
        version ssh-version
```

The following displays a SSH server configuration as both SSH and SSH2 using a host-key:

```
A:sim1>config>system>security>ssh# info
-----------------------------------------------
    preserve-key
    version 1-2
-----------------------------------------------
A:sim1>config>system>security>ssh#
```
Configuring Login Controls

Configure login control parameters for console, Telnet, and FTP sessions.

To configure login controls, enter the following CLI syntax.

CLI Syntax:
```
config>system
    login-control
        exponential-backoff
        ftp
            inbound-max-sessions value
        telnet
            inbound-max-sessions value
            outbound-max-sessions value
        idle-timeout {minutes | disable}
        pre-login-message login-text-string [name]
        login-banner
        motd {url url-prefix: source-url|text motd-text-string}
```

The following displays a login control configuration example:

```
A:ALA-1>config>system# info
----------------------------------------------
...
    login-control
        ftp
            inbound-max-sessions 5
        exit
telnet
        inbound-max-sessions 7
        outbound-max-sessions 2
        exit
        idle-timeout 1440
        pre-login-message "Property of Service Routing Inc. Unauthorized access prohibited."
        motd text "Notice to all users: Software upgrade scheduled 3/2 1:00 AM"
        exit
        no exponential-backoff
...
----------------------------------------------
A:ALA-1>config>system#
```
Security Command Reference

Command Hierarchies

Configuration Commands

- Security Commands
 - CPM Filter Commands on page 88
 - IP CPM Filter Commands on page 88
 - IPv6 CPM Filter Commands on page 91
 - MAC CPM Filter Commands on page 90
 - LLDP Commands on page 88
 - CPM Queue Commands on page 92
 - CPU Protection Commands on page 93
 - Management Access Filter Commands on page 97
 - Password Commands on page 97
 - Profile Commands on page 97
 - RADIUS Commands on page 97
 - SSH Commands on page 98
 - TACACS+ Commands on page 98
 - User Commands on page 98
 - Dot1x Commands on page 99
 - Keychain Commands on page 99
 - TCP Enhanced Authentication Commands on page 99
- Login Control Commands on page 101
- Show Commands on page 102
- Clear Commands on page 103
- Debug Commands on page 103
Security Command Reference

Security Commands

```
config    ------- system
               ------- security
                  ------- copy {user source-user | profile source-profile} to destination [overwrite]
                  ------- [no] ftp-server
                  ------- hash-control [read-version {1 | 2 | all}] [write-version {1 | 2}]
                  ------- [no] hash-control
                  ------- [no] per-peer-queueing
                  ------- source-address
                      ------- application app [ip-int-name|ip-address|ipv6-address]
                      ------- [no] application app
                  ------- [no] telnet-server
                  ------- [no] telnet6-server
```

LLDP Commands

```
configure    ------- system
               ------- lldp
                  ------- message-fast-tx time
                  ------- [no] message-fast-tx
                  ------- message-fast-tx-init count
                  ------- [no] message-fast-tx-init
                  ------- notification-interval time
                  ------- [no] notification-interval
                  ------- reinit-delay time
                  ------- [no] reinit-delay
                  ------- tx-credit-max count
                  ------- [no] tx-credit-max
                  ------- tx-hold-multiplier multiplier
                  ------- [no] tx-hold-multiplier
                  ------- tx-interval interval
                  ------- [no] tx-interval
```

CPM Filter Commands

```
config    ------- system
               ------- security
                  ------- [no] cpm-filter
                      ------- default-action {accept | drop}
```

IP CPM Filter Commands

```
config
   ------- system
       ------- security
          ------- [no] cpm-filter
              ------- [no] ip-filter
```
— [no] entry entry-id
 — action {accept | drop} queue queue-id
 — no action
 — description description-string
 — no description
 — log log-id
 — no log
 — match [protocol protocol-id]
 — no match
 — dscp dscp-name
 — no dscp
 — dst {ip-address/mask | ip-address netmask}
 — no dst
 — dst-port [tcp/udp port-number] [mask]
 — no dst-port
 — fragment {true | false}
 — no fragment
 — icmp-code icmp-code
 — no icmp-code
 — icmp-type icmp-type
 — no icmp-type
 — ip-option [ip-option-value] [ip-option-mask]
 — no ip-option
 — multiple-option {true | false}
 — no multiple-option
 — option-present {true | false}
 — no option-present
 — router service-name service-name
 — router [router-instance]
 — no router
 — src {ip-address/mask | ip-address netmask}
 — no src
 — src-port [src-port-number] [mask]
 — no src-port
 — tcp-ack {true | false}
 — no tcp-ack
 — tcp-syn {true | false}
 — no tcp-syn
 — renum old-entry-id new-entry-id
 — [no] shutdown
MAC CPM Filter Commands

```
config
  — system
  — security
    — [no] cpm-filter
    — [no] mac-filter
      — default-action {permit | deny}
      — [no] entry entry-id
        — action deny
        — action permit
        — no action
        — description description-string
        — no description
        — log log-id
        — no log
        — match {frame-type frame-type}
        — no match
          — cfm-opcode {lt | gt | eq} opcode
          — cfm-opcode range start end
          — no cfm-opcode
          — dot1p dot1p-value [dot1p-mask]
          — This command configures dsap match conditions. dsap-value [dsap-mask]
          — dst-mac ieee-address [ieee-address-mask]
          — no dst-mac
          — etype 0x0600..0xfff
          — no etype
          — snap-oui {zero | non-zero}
          — snap-pid snap-pid
          — no snap-pid
          — src-mac ieee-address [ieee-address-mask]
          — no src-mac
          — ssap ssap-value [ssap-mask]
          — no ssap
          — svc-id service-id
          — no svc-id
          — renum old-entry-number new-entry-number
          — [no] shutdown
```
IPv6 CPM Filter Commands

```bash
config
  system
  security
    [no] cpm-filter
    [no] ipv6-filter
      [no] entry entry-id
        action {accept | drop | queue queue-id}
        no action
        description description-string
        no description
        log log-id
        no log
        match [next-header next-header]
        no match
          dscp dscp-name
          no dscp
          dst-ip [ipv6-address/prefix-length]
          no dst-ip
          dst-port [tcp/udp port-number] [mask]
          no dst-port
          flow-label value
          no flow-label
          icmp-code icmp-code
          no icmp-code
          icmp-type icmp-type
          no icmp-type
          router [router-name | service-id]
          no router
          src-ip [ipv6-address/prefix-length]
          no src-ip
          src-port [src-port-number] [mask]
          no src-port
          tcp-ack {true | false}
          no tcp-ack
          tcp-syn {true | false}
          no tcp-syn
        renum old-entry-id new-entry-id
        [no] shutdown
```
CPM Queue Commands

```plaintext
config
  system
    security
      [no] cpm-queue
        [no] queue queue-id
          cbs cbs
          no cbs
          mbs mbs
          no mbs
          rate rate [cir cir]
          no rate
```
CPU Protection Commands

```
config
  -- system
    security
      cpu-protection
        -- link-specific-rate packet-rate-limit
        -- no link-specific-rate
        policy cpu-protection-policy-id [create]
        -- no policy cpu-protection-policy-id
          -- [no] alarm
          -- description description-string
          -- no description
          -- out-profile-rate packet-rate-limit
          -- no out-profile-rate
          -- overall-rate packet-rate-limit
          -- no overall-rate
          -- per-source-rate packet-rate-limit
          -- no per-source-rate
        port-overall-rate packet-rate-limit
        -- no port-overall-rate
        -- [no] protocol-protection [allow-sham-links]
```

Refer to the Services Guide and the Video ISA Guide for command, syntax, and usage information about applying CPU Protection policies to interfaces. CPU protection can be applied to the following entities:

```
config
  -- service
    ies service-id [customer customer-id]
      interface ip-int-name
        cpu-protection policy-id
      subscriber-interface ip-int-name [create]
        group-interface ip-int-name [create]
        -- sap sap-id [create]
          -- cpu-protection policy-id [mac-monitoring]
      video-interface ip-int-name
        cpu-protection policy-id
    vpls service-id
      sap sap-id [create]
        -- cpu-protection policy-id [mac-monitoring]
      video-interface ip-int-name
        cpu-protection policy-id
    vprn service-id
      interface ip-int-name
        cpu-protection policy-id
      subscriber-interface ip-int-name [create]
        group-interface ip-int-name
          sap sap-id
          -- cpu-protection policy-id [mac-monitoring]
```

Page 93

7750 SR OS System Management Guide
— video-interface ip-int-name
 — cpu-protection policy-id

config
 — subscriber-mgmt
 — msap-policy msap-policy-name
 — cpu-protection policy-id [mac-monitoring]
Management Access Filter Commands

```config
    system
    security

    [no] management-access-filter

    [no] ip-filter
      default-action {permit | deny | deny-host-unreachable}
      [no] entry entry-id
        action {permit | deny | deny-host-unreachable}
        no action
        description description-string
        no description
        dst-port [mask]
        no dst-port
        [no] log
        protocol protocol-id
        no protocol
        router {router-instance}
        no router
        src-ip [ip-prefix/mask | ip-prefix netmask]
        no src-ip
        src-port {port-id | cpm | lag lag-id}
        no src-port

    renum old-entry-number new-entry-number
    [no] shutdown

    [no] ipv6-filter
      default-action {permit | deny | deny-host-unreachable}
      [no] entry entry-id
        action {permit | deny | deny-host-unreachable}
        no action
        description description-string
        no description
        dst-port [mask]
        no dst-port
        flow-label value
        no flow-label
        [no] log
        next-header next-header
        no next-header
        router {router-instance}
        no router
        src-ip [ip-prefix/mask | ip-prefix netmask]
        no src-ip
        src-port {port-id | cpm | lag lag-id}
        no src-port

    renum old-entry-number new-entry-number
    [no] shutdown

    [no] mac-filter
      default-action {permit | deny | deny-host-unreachable}
      [no] entry entry-id
        action deny
        action permit
```
— no action
— description description-string
— no description
— [no] log
— match frame-type
— no match
 — cfm-opcode {lt | gt | eq} opcode
 — cfm-opcode range start end
 — no cfm-opcode
 — dot1p dot1p-value [dot1p-mask]
 — This command configures dsap match conditions, dsap-value [dsap-mask]
 — dst-mac ieee-address [ieee-address-mask]
 — no dst-mac
 — etype 0x0600..0xfff
 — no etype
 — snap-oui {zero | non-zero}
 — snap-pid snap-pid
 — no snap-pid
 — src-mac ieee-address [ieee-address-mask]
 — no src-mac
 — ssap ssap-value [ssap-mask]
 — no ssap
 — svc-id service-id
 — no svc-id
— renum old-entry-number new-entry-number
— [no] shutdown
Security Password Commands

```plaintext
cfg
  - system
    - security
      - password
        - admin-password password [hash | hash2]
        - no admin-password
        - aging days
        - no aging
        - attempts count [time minutes] [lockout minutes]
        - no attempts
        - authentication-order [method-1] [method-2] [method-3] [exit-on-reject]
        - no authentication-order
        - [no] complexity [numeric] [special-character] [mixed-case]
        - [no] health-check [interval interval]
        - minimum-length value
        - no minimum-length
```

Profile Commands

```plaintext
cfg
  - system
    - security
      - [no] profile user-profile-name
        - default-action {deny-all | permit-all | none}
        - [no] entry entry-id
          - action {deny | permit}
          - description description-string
          - no description
          - match command-string
          - no match
        - renum old-entry-number new-entry-number
```

RADIUS Commands

```plaintext
cfg
  - system
    - security
      - [no] radius
        - access-algorithm {direct | round-robin}
        - no access-algorithm
        - [no] accounting
        - accounting-port port
        - no accounting-port
        - [no] authorization
        - port port
        - no port
        - retry count
        - no retry
        - server server-index address ip-address secret key [hash | hash2]
        - no server server-index
        - [no] shutdown
```
SSH Commands

- `config system security ssh` -
 - `no preserve-key`
 - `no server-shutdown`
 - `no version SSH-version`

TACPLUS Commands

- `config system security tacplus` -
 - `no tacplus`
 - `accounting [record-type {start-stop | stop-only}]`
 - `no accounting`
 - `no authorization`
 - `server server-index address ip-address secret key [hash | hash2] [port]`
 - `no server server-index`
 - `no shutdown`
 - `timeout seconds`
 - `no timeout`
 - `no use-default-template`

User Commands

- `config system security user` -
 - `no user user-name`
 - `no access [ftp] [snmp] [console] [li]`
 - `console`
 - `no cannot-change-password`
 - `login-exec url-prefix::source-url`
 - `no login-exec`
 - `member user-profile-name [user-profile-name...(up to 8 max)]`
 - `no member user-profile-name`
 - `no new-password-at-login`
 - `home-directory url-prefix [directory] [directory/directory...]`
 - `no home-directory`
 - `password [password] [hash | hash2]`
 - `no restricted-to-home`
 - `snmp`
 - `authentication [[none] | [[hash] {md5 key-1 | sha key-1}]`
 - `privacy [none | des-key key-2]`
 - `group group-name`
 - `no group`
User Template Commands

```
config
  system
    security
      user-template { tacplus_default | radius_default }
      [no] access [ftp] [console]
      console
        login-exec url-prefix:source-url
        no login-exec
      home-directory url-prefix [directory] [directory/directory...]
      no home-directory
      profile user-profile-name
      no profile
      [no] restricted-to-home
```

Dot1x Commands

```
config
  system
    security
dot1x
  radius-plcy name
    retry count
    no retry
    server (dot1x) server-index address ip-address secret key [port port]
    source-address ip-address
    [no] shutdown
    timeout seconds
    no timeout
    [no] shutdown
```

Keychain Commands

```
config
  system
    security
    [no] keychain keychain-name
    description description-string
    no description
    direction {uni | bi}
    entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm algorithm
      begin-time [date] [hours-minutes] [UTC]
      [now] [forever]
      [no] shutdown
      tolerance [seconds | forever]
    uni
    receive
    entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm algorithm
      begin-time [date] [hours-minutes] [UTC]
      [now] [forever]
```
— end-time [date][hours-minutes] [UTC]
 [now] [forever]
— [no] shutdown
— tolerance [seconds | forever]
— send
 — entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm
 — begin-time [date] [hours-minutes] [UTC]
 [now] [forever]
 — [no] shutdown
— [no] shutdown
— tcp-option-number
 — receive option-number
 — send option-number

TTL Security Commands

config — router — bgp
 — group
 — ttl-security min-ttl-value
 — neighbor
 — ttl-security min-ttl-value

config — router — ldp
 — peer-parameters
 — peer
 — ttl-security min-ttl-value
Login Control Commands

config
 — system
 — login-control
 — [no] exponential-backoff
 — ftp
 — inbound-max-sessions value
 — no inbound-max-sessions
 — idle-timeout {minutes | disable}
 — no idle-timeout
 — [no] login-banner
 — motd {url url-prefix source-url | text motd-text-string}
 — no motd
 — pre-login-message login-text-string [name]
 — no pre-login-message
 — telnet
 — inbound-max-sessions value
 — no inbound-max-sessions
 — outbound-max-sessions value
 — no outbound-max-sessions
Show Commands

Security
show
 — system
 — security
 — access-group [group-name]
 — authentication [statistics]
 — communities
 — cpm-filter
 — ip-filter [entry entry-id]
 — ipv6-filter [entry entry-id]
 — cpm-queue queue-id
 — cpu-protection
 — excessive-sources [service-id service-id sap-id sap-id]
 — policy [policy-id] association
 — protocol-protection
 — keychain keychain-name [detail]
 — management-access-filter [entry-id]
 — ip-filter [entry entry-id]
 — ipv6-filter [entry entry-id]
 — password-options
 — per-peer-queuing
 — profile [profile-name]
 — source-address
 — ssh
 — user [user-id] [detail]
 — view [view-name] [detail]

Login Control
show
 — users
Clear Commands

Authentication

```
clear
   — router
      — authentication
         — statistics [interface ip-int-name | ip-address]
```

CPM Filter

```
— cpm-filter
   — ip-filter [entry entry-id]
   — mac-filter [entry entry-id]
   — ipv6-filter [entry entry-id]
```

CPU Protection

```
clear
   — cpu-protection
      — excessive-sources
      — protocol-protection
      — violators [port] [interface] [sap]
```

Debug Commands

```
depbug
   — radius [detail] [hex]
      — no radius
```
Configuration Commands

General Security Commands

description

Syntax

```
description description-string
no description
```

Context

```
config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry
config>sys>sec>cpm>ip-filter>entry
config>sys>sec>cpm>ipv6-filter>entry
config>sys>sec>cpm>mac-filter>entry
config>sys>security>keychain>direction>bi>entry
config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry
config>sys>security>cpu-protection>policy
config>system>security>mgmt-access-filter>mac-filter>entry
config>system>security>cpm-filter>mac-filter>entry
```

Description

This command creates a text description stored in the configuration file for a configuration context. This command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of the command removes the string.

Default

No description associated with the configuration context.

Parameters

```
string — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
```

shutdown

Syntax

```
[no] shutdown
```

Context

```
config>system>security>mgmt-access-filter>ip-filter
config>system>security>mgmt-access-filter>ipv6-filter
config>sys>sec>cpm>ip-filter
config>system>security>keychain>direction>bi>entry
config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry
config>sys>sec>cpm>ipv6-filter
config>sys>sec>cpm>mac-filter>entry
```
Description
The `shutdown` command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the `no shutdown` command. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The `no` form of the command puts an entity into the administratively enabled state.

Default
no shutdown

security

Syntax
```
security
```

Context
`config>system`

Description
This command creates the context to configure security settings. Security commands manage user profiles and user membership. Security commands also manage user login registrations.

ftp-server

Syntax
```
[no] ftp-server
```

Context
`config>system>security`

Description
This command enables FTP servers running on the system. FTP servers are disabled by default. At system startup, only SSH server are enabled.

The `no` form of the command disables FTP servers running on the system.

hash-control

Syntax
```
hash-control [read-version {1 | 2 | all}] [write-version {1 | 2}]
no hash-control
```

Context
`config>system>security`

Description
Whenever the user executes a `save` or `info` command, the system will encrypt all passwords, MD5 keys, etc., for security reasons. At present, two algorithms exist.

The first algorithm is a simple, short key that can be copied and pasted in a different location when the user wants to configure the same password. However, because it is the same password and the hash key is limited to the password/key, even the casual observer will notice that it is the same key.

The second algorithm is a more complex key, and cannot be copied and pasted in different locations in the configuration file. In this case, if the same key or password is used repeatedly in different contexts, each encrypted (hashed) version will be different.
Default

all — read-version set to accept both versions 1 and 2

Parameters

read-version {1 | 2 | all} — When the read-version is configured as “all,” both versions 1 and 2 will be accepted by the system. Otherwise, only the selected version will be accepted when reading configuration or exec files. The presence of incorrect hash versions will abort the script/startup.

write-version {1 | 2} — Select the hash version that will be used the next time the configuration file is saved (or an info command is executed). Be careful to save the read and write version correctly, so that the file can be properly processed after the next reboot or exec.

per-peer-queuing

Syntax

[no] per-peer-queuing

Context

config>system>security

Description

This command enables CPM hardware queuing per peer. This means that when a peering session is established, the router will automatically allocate a separate CPM hardware queue for that peer.

The `no` form of the command disables CPM hardware queuing per peer.

Default

per-peer-queuing

source-address

Syntax

source-address

Context

config>system>security

Description

This command specifies the source address that should be used in all unsolicited packets sent by the application.

application

Syntax

application app [ip-int-name|ip-address|ipv6-address]

no application app

Context

config>system>security>source-address

Description

This command specifies the application to use the source-IP address specified by the source-address command.

Parameters

`app` — Specify the application name.

Values

telnet, ftp, ssh, radius, tacplus, snmptrap, syslog, ping, traceroute, dns, sntp, ntp, cflowd
Configuration Commands

ip-int-name | ip-address | ipv6-address — Specifies the name of the IP interface, IP address or IPv6 address. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

telnet-server

Syntax

```bash
[no] telnet-server
```

Context

config>system>security

Description

This command enables Telnet servers running on the system.

Telnet servers are off by default. At system startup, only SSH servers are enabled.

Telnet servers in 7750 SR networks limit a Telnet client to three retries to login. The Telnet server disconnects the Telnet client session after three retries.

The `no` form of the command disables Telnet servers running on the system.

telnet6-server

Syntax

```bash
[no] telnet6-server
```

Context

config>system>security

Description

This command enables Telnet IPv6 servers running on the system.

Telnet servers are off by default. At system startup, only SSH server are enabled.

The `no` form of the command disables Telnet IPv6 servers running on the system.
LLDP Commands

lldp

Syntax

```
lldp
```

Context

```
config>system
```

Description

This command enables the context to configure system-wide Link Layer Discovery Protocol parameters.

message-fast-tx

Syntax

```
message-fast-tx time
no message-fast-tx
```

Context

```
config>system>lldp
```

Description

This command configures the duration of the fast transmission period.

Parameters

```
time — Specifies the fast transmission period in seconds.
```

Values

```
1 — 3600
```

Default

```
1
```

message-fast-tx-init

Syntax

```
message-fast-tx-init count
no message-fast-tx-init
```

Context

```
config>system>lldp
```

Description

This command configures the number of LLDPDUs to send during the fast transmission period.

Parameters

```
count — Specifies the number of LLDPDUs to send during the fast transmission period.
```

Values

```
1 — 8
```

Default

```
4
```
notification-interval

Syntax notification-interval time
default notification-interval

Context config>system>lldp

Description This command configures the minimum time between change notifications.

Parameters time — Specifies the minimum time, in seconds, between change notifications.

<table>
<thead>
<tr>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 — 3600</td>
<td>5</td>
</tr>
</tbody>
</table>

reinit-delay

Syntax reinit-delay time
default reinit-delay

Context config>system>lldp

Description This command configures the time before re-initializing LLDP on a port.

Parameters time — Specifies the time, in seconds, before re-initializing LLDP on a port.

<table>
<thead>
<tr>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 — 10</td>
<td>2</td>
</tr>
</tbody>
</table>

tx-credit-max

Syntax tx-credit-max count
default tx-credit-max

Context config>system>lldp

Description This command configures the maximum consecutive LLDPDUs transmitted.

Parameters count — Specifies the maximum consecutive LLDPDUs transmitted.

<table>
<thead>
<tr>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 — 100</td>
<td>5</td>
</tr>
</tbody>
</table>
tx-hold-multiplier

Syntax

```
  tx-hold-multiplier multiplier
  no tx-hold-multiplier
```

Context

`config>system>lldp`

Description

This command configures the multiplier of the tx-interval.

Parameters

- `multiplier` — Specifies the multiplier of the tx-interval.

 Values
 - 2 — 10
 - **Default** 4

tx-interval

Syntax

```
  tx-interval interval
  no tx-interval
```

Context

`config>system>lldp`

Description

This command configures the LLDP transmit interval time.

Parameters

- `interval` — Specifies the LLDP transmit interval time.

 Values
 - 1 — 100
 - **Default** 5
Login, Telnet, SSH and FTP Commands

exponential-backoff

Syntax

```
[no] exponential-backoff
```

Context

```
config>system>login-control
```

Description

This command enables the exponential-backoff of the login prompt. The exponential-backoff command is used to deter dictionary attacks, when a malicious user can gain access to the CLI by using a script to try `admin` with any conceivable password.

The `no` form of the command disables exponential-backoff.

Default

`no exponential-backoff`

ftp

Syntax

```
ftp
```

Context

```
config>system>login-control
```

Description

This command creates the context to configure FTP login control parameters.

idle-timeout

Syntax

```
idle-timeout {minutes | disable}
```

Context

```
config>system>login-control
```

Description

This command configures the idle timeout for FTP, console, or Telnet sessions before the session is terminated by the system.

By default, an idle FTP, console, or Telnet session times out after 30 minutes of inactivity. This timer can be set per session.

The `no` form of the command reverts to the default value.

Default

`30` — Idle timeout set for 30 minutes.

Parameters

- `minutes` — The idle timeout in minutes. Allowed values are 1 to 1440. 0 implies the sessions never timeout.

 Values

 `1 — 1440`

- `disable` — When the `disable` option is specified, a session will never timeout. To re-enable idle timeout, enter the command without the disable option.
inbound-max-sessions

Syntax inbound-max-sessions value
 no inbound-max-sessions

Context config>system>login-control>ftp

Description This command configures the maximum number of concurrent inbound FTP sessions. This value is the combined total of inbound and outbound sessions. The no form of the command reverts to the default value.

Default 3

Parameters value — The maximum number of concurrent FTP sessions on the node.

Values 0 — 5

inbound-max-sessions

Syntax inbound-max-sessions value
 no inbound-max-sessions

Context config>system>login-control>telnet

Description This parameter limits the number of inbound Telnet and SSH sessions. A maximum of 15 telnet and ssh connections can be established to the router. The local serial port cannot be disabled. The no form of the command reverts to the default value.

Default 5

Parameters value — The maximum number of concurrent inbound Telnet sessions, expressed as an integer.

Values 0 — 15

login-banner

Syntax [no] login-banner

Context config>system>login-control

Description This command enables or disables the display of a login banner. The login banner contains the 7750 SR OS copyright and build date information for a console login attempt. The no form of the command causes only the configured pre-login-message and a generic login prompt to display.
Configuration Commands

login-control

Syntax
login-control

Context
config>system

Description
This command creates the context to configure the session control for console, Telnet and FTP.

motd

Syntax
motd {url url-prefix: source-url | text motd-text-string}
no motd

Context
config>system>login-control

Description
This command creates the message of the day displayed after a successful console login. Only one message can be configured. The no form of the command removes the message.

Default
No motd is defined.

Parameters
url url-prefix: source-url — When the message of the day is present as a text file, provide both url-prefix and the source-url of the file containing the message of the day. The URL prefix can be local or remote.

text motd-text-string — The text of the message of the day. The motd-text-string must be enclosed in double quotes. Multiple text strings are not appended to one another.

Some special characters can be used to format the message text. The “\n” character creates multi-line MOTDs and the “\r” character restarts at the beginning of the new line. For example, entering “\nr” will start the string at the beginning of the new line, while entering “\n” will start the second line below the last character from the first line.

outbound-max-sessions

Syntax
outbound-max-sessions value
no outbound-max-sessions

Context
config>system>login-control>telnet

Description
This parameter limits the number of outbound Telnet and SSH sessions. A maximum of 15 telnet and ssh connections can be established from the router. The local serial port cannot be disabled.

The no form of the command reverts to the default value.

Default
5

Parameters
value — The maximum number of concurrent outbound Telnet sessions, expressed as an integer.

Values
0 — 15
pre-login-message

Syntax

pre-login-message login-text-string [name]
no pre-login-message

Context
cfg>system>login-control

Description
This command creates a message displayed prior to console login attempts on the console via Telnet. Only one message can be configured. If multiple pre-login-messages are configured, the last message entered overwrites the previous entry.

It is possible to add the name parameter to an existing message without affecting the current pre-login-message.

The no form of the command removes the message.

Default
No pre-login-message is defined.

Parameters

login-text-string — The string can be up to 900 characters. Any printable, 7-bit ASCII characters can be used. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

name — When the keyword name is defined, the configured system name is always displayed first in the login message. To remove the name from the login message, the message must be cleared and a new message entered without the name.

ssh

Syntax

ssh

Context
cfg>system>security

This command enables the context to configure the SSH parameters.

preserve-key

Syntax

[no] preserve-key

Context
cfg>system>security>ssh

Description
After enabling this command, private keys, public keys, and host key file will be saved by the server. It is restored following a system reboot or the ssh server restart.

The no form of the command specifies that the keys will be held in memory by the SSH server and is not restored following a system reboot.

Default
no preserve-key
server-shutdown

Syntax [no] server-shutdown
Context config>system>security>ssh
Description This command enables the SSH servers running on the system.
Default At system startup, only the SSH server is enabled.

version

Syntax version ssh-version
 no version
Context config>system>security>ssh
Description Specifies the SSH protocol version that will be supported by the SSH server.
Parameters ssh-version — Specifies the SSH version.
 Values
 1 — Specifies that the SSH server will only accept connections from clients that support SSH protocol version 1
 2 — Specifies that the SSH server will accept connections from clients supporting either SSH protocol version 2
 1-2 — Specifies that the SSH server will accept connections from clients supporting either SSH protocol version 1, or SSH protocol version 2 or both.
Default 2

telnet

Syntax telnet
Context config>system>login-control
Description This command creates the context to configure the Telnet login control parameters.
Management Access Filter Commands

management-access-filter

Syntax

```
[no] management-access-filter
```

Context

`config>system>security`

Description

This command creates the context to edit management access filters and to reset match criteria.

Management access filters control all traffic in and out of the CPM. They can be used to restrict management of the 7750 SR-Series router by other nodes outside either specific (sub)networks or through designated ports.

Management filters, as opposed to other traffic filters, are enforced by system software.

The `no` form of the command removes management access filters from the configuration.

Default

No management access filters are defined.

ip-filter

Syntax

```
[no] ip-filter
```

Context

`config>system>security>mgmt-access-filter`

Description

This command enables the context to configure management access IP filter parameters.

ipv6-filter

Syntax

```
[no] ipv6-filter
```

Context

`config>system>security>mgmt-access-filter`

Description

This command enables the context to configure management access IPv6 filter parameters.

action

Syntax

```
action (permit | deny | deny-host-unreachable)
no action
```

Context

`config>system>security>mgmt-access-filter>ip-filter>entry`
`config>system>security>mgmt-access-filter>ipv6-filter>entry`

Description

This command creates the action associated with the management access filter match criteria entry.
The action keyword is required. If no action is defined, the filter is ignored. If multiple action statements are configured, the last one overwrites previous configured actions.

If the packet does not meet any of the match criteria the configured default action is applied.

Default

none — The action is specified by default-action command.

Parameters

permit — Specifies that packets matching the configured criteria will be permitted.

deny — Specifies that packets matching the configured selection criteria will be denied and that an ICMP host unreachable message will not be issued.

deny-host-unreachable — Specifies that packets matching the configured selection criteria will be denied and that a host unreachable message will not be issued.

default-action

Syntax

default-action {permit | deny | deny-host-unreachable}

Context

config>system>security>mgmt-access-filter>ip-filter
config>system>security>mgmt-access-filter>ipv6-filter

Description

This command creates the default action for management access in the absence of a specific management access filter match.

The default-action is applied to a packet that does not satisfy any match criteria in any of the management access filters. Whenever management access filters are configured, the default-action must be defined.

Default

No default-action is defined.

Parameters

permit — Specifies that packets not matching the configured selection criteria in any of the filter entries will be permitted.

deny — Specifies that packets not matching the selection criteria be denied and that an ICMP host unreachable message will not be issued.

deny-host-unreachable — Specifies that packets not matching the selection criteria be denied and a host unreachable message will be issued.

dst-port

Syntax

[no] dst-port value [mask]

Context

config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry

Description

This command configures a source TCP or UDP port number or port range for a management access filter match criterion.

The no form of the command removes the source port match criterion.

Default

No src-port match criterion.
Parameters

value — The source TCP or UDP port number as match criteria.

Values

- 1 — 65535 (decimal)

mask — Mask used to specify a range of source port numbers as the match criterion.

This 16 bit mask can be configured using the following formats:

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDDDD</td>
<td>63488</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHHHH</td>
<td>0xF800</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBBBBBBBBBB</td>
<td>0b1111100000000000</td>
</tr>
</tbody>
</table>

To select a range from 1024 up to 2047, specify 1024 0xFC00 for value and mask.

Default

65535 (exact match)

Values

- 1 — 65535 (decimal)

Context

config>system>security>mgmt-access-filter>ip-filter

config>system>security>mgmt-access-filter>ipv6-filter

Description

This command is used to create or edit a management access filter entry. Multiple entries can be created with unique entry-id numbers. The 7750 SR OS exits the filter upon the first match found and executes the actions according to the respective action command. For this reason, entries must be sequenced correctly from most to least explicit.

An entry may not have any match criterias defined (in which case, everything matches) but must have at least the keyword **action** defined to be considered complete. Entries without the **action** keyword are considered incomplete and inactive.

The **no** form of the command removes the specified entry from the management access filter.

Default

No entries are defined.

Parameters

entry-id — An entry ID uniquely identifies a match criteria and the corresponding action. It is recommended that entries are numbered in staggered increments. This allows users to insert a new entry in an existing policy without having to renumber the existing entries.

Values

- 1 — 9999
flow-label

Syntax
flow-label value
no flow-label

Context config>system>security>mgmt-access-filter>ipv6-filter>entry

Description This command configures flow label match conditions. Flow labeling enables the labeling of packets belonging to particular traffic flows for which the sender requests special handling, such as non-default quality of service or real-time service.

Parameters
value — Specify the flow identifier in an IPv6 packet header that can be used to discriminate traffic flows (See RFC 3595, Textual Conventions for IPv6 Flow Label.)

Values 0 — 1048575

log

Syntax [no] log

Context config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry

Description This command enables match logging.

Default no log

next-header

Syntax next-header next-header
no next-header

Context config>system>security>mgmt-access-filter>ipv6-filter>entry

Description This command specifies the next header to match. The protocol type such as TCP / UDP / OSPF is identified by its respective protocol number. Well-known protocol numbers include ICMP(1), TCP(6), UDP(17).

Parameters
next-header — Specifies for IPv4 MAF the IP protocol field, and for IPv6 the next header type to be used in the match criteria for this Management Access Filter Entry.

Values
next-header: 0 — 255, protocol numbers accepted in DHB
keywords: none, crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, idrp, igmp, igp, ip, ipv6, ipv6-icmp, ipv6-no-nxt, isis, iso-ip, l2tp, ospf-igp, pim, pnni, ptp, rdp, rsvp, stp, tcp, udp, vrrp
protocol

Syntax [no] protocol protocol-id
Context config>system>security>mgmt-access-filter>ip-filter>entry
Description This command configures an IP protocol type to be used as a management access filter match criterion.

The protocol type, such as TCP, UDP, and OSPF, is identified by its respective protocol number. Well-known protocol numbers include ICMP (1), TCP (6), and UDP (17).

The no form the command removes the protocol from the match criteria.

Default No protocol match criterion is specified.

Parameters protocol — The protocol number for the match criterion.

Values 1 to 255 (decimal)

router

Syntax router service-name service-name
router (router-instance)
no router
Context config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry

Description This command configures a router name or service ID to be used as a management access filter match criterion.

The no form the command removes the router name or service ID from the match criteria.

Parameters router-instance — Specify one of the following parameters for the router instance:

 router-name — Specifies a router name up to 32 characters to be used in the match criteria.

 service-id — Specifies an existing service ID to be used in the match criteria.

Values 1 — 2147483647

service-name service-name — Specifies an existing service name up to 64 characters in length.

renum

Syntax renum old-entry-number new-entry-number
Context config>system>security>mgmt-access-filter>ip-filter
config>system>security>mgmt-access-filter>ipv6-filter

Description This command rennumbers existing management access filter entries to re-sequence filter entries.
The exits on the first match found and executes the actions in accordance with the accompanying action command. This may require some entries to be re-numbered differently from most to least explicit.

Parameters
old-entry-number — Enter the entry number of the existing entry.
Values
1 — 9999

new-entry-number — Enter the new entry number that will replace the old entry number.
Values
1 — 9999

mac-filter

Syntax
```plaintext
[no] mac-filter
```

Context
```
config>system>security>mgmt-access-filter  
config>system>security>cpm-filter
```

Description
This command configures a management access MAC-filter.

default-action

Syntax
```plaintext
default-action {permit | deny| deny-host-unreachable}
```

Context
```
config>system>security>mgmt-access-filter>mac-filter  
config>system>security>cpm-filter>mac-filter
```

Description
This command sets the default-action for the management-access-filter. The will be applied to packets when the packets do not match the specified criteria in all of the IP filter entries of the filter.

entry

Syntax
```plaintext
[no] entry entry-id
```

Context
```
config>system>security>mgmt-access-filter>mac-filter  
config>system>security>cpm-filter>mac-filter
```

Description
This command matches criteria entry for the management-access-filter. Multiple entries can be created using unique entry-id numbers within the filter. The implementation exits the filter on the first match found and executes the actions in accordance with the accompanying action command. For this reason, entries must be sequenced correctly from most to least explicit.

An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword action for it to be considered complete. Entries without the action keyword will be considered incomplete and hence will be rendered inactive.

The no form of the command removes the specified entry from the management-access-filter configuration.
Parameters

(entry-id) — Specifies the MAC filter entry ID.

Values
1 — 9999

renum

Syntax
renum old-entry-number new-entry-number

Context
config>system>security>mgmt-access-filter>mac-filter
config>system>security>cpm-filter>mac-filter

Description
This command remembers existing entries.

Parameters
old-entry-number — Specifies the existing entry to renumber.

Values
1 — 9999

new-entry-number — Specifies the new entry number.

Values
1 — 9999

shutdown

Syntax
[no] shutdown

Context
config>system>security>mgmt-access-filter>mac-filter
config>system>security>cpm-filter>mac-filter

Description
This command shuts down the management-access-filter.

action

Syntax
action deny
action permit
no action

Context
config>system>security>mgmt-access-filter>mac-filter>entry
config>system>security>cpm-filter>mac-filter>entry

Description
This command indicates the action to take when a packet matches this entry.

Parameters
deny — Packets matching the configured criteria are denied and an ICMP host unreachable message is issued.

permit — Packets matching the configured criteria are permitted.
Configuration Commands

log

Syntax
[no] log log-id

Context
config>system>security>mgmt-access-filter>mac-filter>entry
config>system>security>cpm-filter>mac-filter>entry

Description
This command enables or disables match logging.

match

Syntax
match [frame-type frame-type]
no match

Context
config>system>security>mgmt-access-filter>mac-filter>entry
config>system>security>cpm-filter>mac-filter>entry

Description
This command configures match criteria for this MAC filter entry.

Parameters
frame-type frame-type — Specifies the type of MAC frame to use as match criteria.

Values
none, 802dot2-llc, ethernet_II

cfm-opcode

Syntax
cfm-opcode {lt | gt | eq} opcode
cfm-opcode range start end
no cfm-opcode

Context
config>system>security>mgmt-access-filter>mac-filter>entry
config>system>security>cpm-filter>mac-filter>entry>match

Description
This command specifies the type of opcode checking to be performed.

If the cfm-opcode match condition is configured then a check must be made to see if the Ethertype is either IEEE802.1ag or Y1731. If the Ethertype does not match then the packet is not CFM and no match to the cfm-opcode is attempted.

The CFM (ieee802.1ag or Y1731) opcode can be assigned as a range with a start and an end number or with a (less than lt, greater than gt, or equal to eq) operator.

If no range with a start and an end or operator (lt, gt, eq) followed by an opcode with the value between 0 and 255 is defined then the command is invalid.
The following table provides opcode values.

Table 6: Opcode Values

<table>
<thead>
<tr>
<th>CFM PDU or Organization</th>
<th>Acronym</th>
<th>Configurable Numeric Value (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved for IEEE 802.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Continuity Check Message</td>
<td>CCM</td>
<td>1</td>
</tr>
<tr>
<td>Loopback Reply</td>
<td>LBR</td>
<td>2</td>
</tr>
<tr>
<td>Loopback Message</td>
<td>LBM</td>
<td>3</td>
</tr>
<tr>
<td>Linktrace Reply</td>
<td>LTR</td>
<td>4</td>
</tr>
<tr>
<td>Linktrace Message</td>
<td>LTM</td>
<td>5</td>
</tr>
<tr>
<td>Reserved for IEEE 802.1</td>
<td>6 – 31</td>
<td>6 – 31</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>AIS</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>LCK</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>TST</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>APS</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>MCC</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>LMR</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>LMM</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>1DM</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>DMR</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>DMM</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td>48 – 63</td>
<td>48 – 63</td>
</tr>
<tr>
<td>Reserved for IEEE 802.1</td>
<td>64 - 255</td>
<td>64 - 255</td>
</tr>
</tbody>
</table>

Default
no cfm-opcode

Parameters
- *opcode* — Specifies the opcode checking to be performed.
- *start* — Specifies the start number.
Values 0 — 255

end — Specifies the end number.

Values 0 — 255

dot1p

Syntax
```
dot1p dot1p-value [dot1p-mask]
```

Context
```
config>system>security>mgmt-access-filter>mac-filter>entry>match
config>system>security>cpm-filter>mac-filter>entry>match
```

Description
This command configures Dot1p match conditions.

Parameters
- **dot1p-value** — The IEEE 802.1p value in decimal.
 - **Values** 0 — 7
 - **mask** — This 3-bit mask can be configured using the following formats:
 - **Values** 0 — 7

dsap

Syntax
```
dsap dsap-value [dsap-mask]
```

Context
```
config>system>security>mgmt-access-filter>mac-filter>entry>match
config>system>security>cpm-filter>mac-filter>entry>match
```

Description
This command configures dsap match conditions.

Parameters
- **dsap-value** — The 8-bit dsap match criteria value in hexadecimal.
 - **Values** 0x00 — 0xFF (hex)
 - **mask** — This is optional and may be used when specifying a range of dsap values to use as the match criteria.

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xH</td>
<td>0x4</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBB</td>
<td>0b100</td>
</tr>
</tbody>
</table>
This 8 bit mask can be configured using the following formats:

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDD</td>
<td>240</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHH</td>
<td>0xFF</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBBB</td>
<td>0b1111000</td>
</tr>
</tbody>
</table>

Default
FF (hex) (exact match)

Values
0x00 — 0xFF

dst-mac

Syntax

dst-mac ieee-address [ieee-address-mask]

no dst-mac

Context
config>system>security>mgmt-access-filter>mac-filter>entry>match
cfg-system>security>cpm-filter>mac-filter>entry>match

Description
This command configures the destination MAC match condition.

Parameters
- **ieee-address** — The MAC address to be used as a match criterion.

Values
HH:HH:HH:HH:HH:HH or HH-HH-HH-HH-HH-HH-HH where H is a hexadecimal digit

- **mask** — A 48-bit mask to match a range of MAC address values.

etype

Syntax

etype 0x0600xx0xffff

no etype

Context
config>system>security>mgmt-access-filter>mac-filter>entry>match
cfg-system>security>cpm-filter>mac-filter>entry>match

Description
Configures an Ethernet type II Ethertype value to be used as a MAC filter match criterion.

The Ethernet type field is a two-byte field used to identify the protocol carried by the Ethernet frame. For example, 0800 is used to identify the IPv4 packets.

The Ethernet type field is used by the Ethernet version-II frames. IEEE 802.3 Ethernet frames do not use the type field. For IEEE 802.3 frames, use the dsap, ssap or snap-pid fields as match criteria.

The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and may not be part of the same match criteria. “MAC Match Criteria Exclusivity Rules” on page 309 describes fields that are exclusive based on the frame format.

The **no** form of the command removes the previously entered etype field as the match criteria.
Default

Parameters

ethernet-type — The Ethernet type II frame Ethertype value to be used as a match criterion expressed in hexadecimal.

Values

0x0600 — 0xFFFF

snap-oui

Syntax

snap-oui {zero | non-zero}

Context

config>system>security>mgmt-access-filter>mac-filter>entry>match
cfgi>system>security>cpm-filter>mac-filter>entry>match

Description

This command configures an IEEE 802.3 LLC SNAP Ethernet Frame OUI zero or non-zero value to be used as a MAC filter match criterion.

The no form of the command removes the criterion from the match criteria.

Default

no snap-oui

Parameters

zero — Specifies to match packets with the three-byte OUI field in the SNAP-ID set to zero.

non-zero — Specifies to match packets with the three-byte OUI field in the SNAP-ID not set to zero.

snap-pid

Syntax

snap-pid snap-pid

no snap-pid

Context

config>system>security>mgmt-access-filter>mac-filter>entry>match
cfgi>system>security>cpm-filter>mac-filter>entry>match

Description

This command configures an IEEE 802.3 LLC SNAP Ethernet Frame PID value to be used as a MAC filter match criterion.

This is a two-byte protocol id that is part of the IEEE 802.3 LLC SNAP Ethernet Frame that follows the three-byte OUI field.

The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and may not be part of the same match criteria. “MAC Match Criteria Exclusivity Rules” on page 309 describes fields that are exclusive based on the frame format.

Note: The snap-pid match criterion is independent of the OUI field within the SNAP header. Two packets with different three-byte OUI fields but the same PID field will both match the same filter entry based on a snap-pid match criteria.

The no form of the command removes the snap-pid value as the match criteria.

Default

no snap-pid
Parameters

pid-value — The two-byte snap-pid value to be used as a match criterion in hexadecimal.

Values

0x0000 — 0xFFFF

src-mac

Syntax

src-mac ieee-address [ieee-address-mask]

no src-mac

Context

config>system>security>mgmt-access-filter>mac-filter>entry>match
config>system>security>cpm-filter>mac-filter>entry>match

Description

This command configures a source MAC address or range to be used as a MAC filter match criterion. The no form of the command removes the source mac as the match criteria.

Default

no src-mac

Parameters

ieee-address — Enter the 48-bit IEEE mac address to be used as a match criterion.

Values

HH:HH:HH:HH:HH:HH or HH-HH-HH-HH-HH-HH where H is a hexadecimal digit

ieee-address-mask — This 48-bit mask can be configured using:

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDDDDDDDDDDDD</td>
<td>281474959933440</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHHHHHHHHHHHH</td>
<td>0xFF000000</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBB...B</td>
<td>0b111110000...B</td>
</tr>
</tbody>
</table>

To configure so that all packets with a source MAC OUI value of 00-03-FA are subject to a match condition then the entry should be specified as: 003FA000000 0xFFFFFFFFFFFF

Default

0xFFFFFFFFFFFF (exact match)

Values

0x00000000000000 — 0xFFFFFFFFFFFF

ssap

Syntax

ssap ssap-value [ssap-mask]

no ssap

Context

config>system>security>mgmt-access-filter>mac-filter>entry>match
config>system>security>cpm-filter>mac-filter>entry>match

Description

This command configures an Ethernet 802.2 LLC SSAP value or range for a MAC filter match criterion.

This is a one-byte field that is part of the 802.2 LLC header of the IEEE 802.3 Ethernet Frame.
The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and may not be part of the same match criteria. “MAC Match Criteria Exclusivity Rules” on page 309 describes fields that are exclusive based on the frame format.

The **no** form of the command removes the ssap match criterion.

Default

no ssap

Parameters

- **ssap-value** — The 8-bit ssap match criteria value in hex.
 - **Values**
 - 0x00 — 0xFF
 - **ssap-mask** — This is optional and may be used when specifying a range of ssap values to use as the match criteria.

svc-id

Syntax

```
svc-id service-id
no svc-id
```

Context

```
config>system>security>mgmt-access-filter>mac-filter>entry>match
config>system>security>mgmt-access-filter
config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>cpm-filter>mac-filter>entry>match
```

Description

This command specifies an existing svc-id to use as a match condition.

Parameters

- **service-id** — Specifies a service-id to match.
 - **Values**
 - service-id: 1 — 2147483647
 - svc-name: 64 characters maximum

src-port

Syntax

```
src-port {port-id | cpm | lag port-id}
no src-port
```

Context

```
config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry
```

Description

This command restricts ingress management traffic to either the CPM Ethernet port or any other logical port (LAG, port, or channel) on the device.

When the source interface is configured, only management traffic arriving on those ports satisfy the match criteria.

The **no** form of the command reverts to the default value.

Default

any interface

Parameters

- **port-id** — The port ID in the following format: slot[/mda]/port.
 - For example: To configure port 3 on MDA 2 on card 1 would be specified as 1/2/3.
Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-id</td>
<td>slot/mda/port[.channel]</td>
</tr>
<tr>
<td>encap-val</td>
<td>0 for null, 0 — 4094 for dot1q</td>
</tr>
<tr>
<td>aps-id</td>
<td>aps-group-id[.channel]</td>
</tr>
<tr>
<td>aps</td>
<td>keyowrd</td>
</tr>
<tr>
<td>group-id</td>
<td>1 — 64, ccag-id, ccag-id.path-id[.cc-type]</td>
</tr>
<tr>
<td>ccag</td>
<td>keyowrd</td>
</tr>
<tr>
<td>id</td>
<td>1 — 8</td>
</tr>
<tr>
<td>path-id</td>
<td>a, b</td>
</tr>
<tr>
<td>cc-type</td>
<td>.sap-net, .net-sap</td>
</tr>
<tr>
<td>cc-id</td>
<td>0 — 4094</td>
</tr>
<tr>
<td>lag-id</td>
<td>lag-id</td>
</tr>
<tr>
<td>lag</td>
<td>keyowrd</td>
</tr>
<tr>
<td>id</td>
<td>1 — 200</td>
</tr>
<tr>
<td>cpm</td>
<td>keyowrd</td>
</tr>
</tbody>
</table>

cpm — Configure the Ethernet port on the primary CPMCPMCFM to match the criteria.

src-ip

Syntax

```
[no] src-ip {[ip-prefix]mask} | [ip-prefix]
```

Context

config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry

Description

This command configures a source IP address range to be used as a management access filter match criterion.

To match on the source IP address, specify the address and the associated mask (e.g., 10.1.0.0/16). The conventional notation of 10.1.0.0 255.255.0.0 can also be used.

The no form of the command removes the source IP address match criterion.

Default

No source IP match criterion is specified.

Parameters

- **ip-prefix’mask** — The IP prefix for the IP match criterion in dotted decimal notation.
- **mask** — Specifies the subnet mask length expressed as a decimal integer.

Values

1 — 32 (mask length), 0.0.0.0 — 255.255.255.255 (dotted decimal)
Password Commands

admin-password

Syntax

| admin-password password [hash | hash2] |
| no admin-password |

Context

config>system>security>password

Description

This command allows a user (with admin permissions) to configure a password which enables a user to become an administrator.

This password is valid only for one session. When enabled, no authorization to TACACS+ or RADIUS is performed and the user is locally regarded as an admin user.

This functionality can be enabled in two contexts:

config>system>security>password>admin-password
<global> enable-admin

NOTE: See the description for the enable-admin on the next page. If the admin-password is configured in the config>system>security>password context, then any user can enter the special mode by entering the enable-admin command.

enable-admin is in the default profile. By default, all users are given access to this command.

Once the enable-admin command is entered, the user is prompted for a password. If the password matches, user is given unrestricted access to all the commands.

The minimum length of the password is determined by the minimum-length command. The complexity requirements for the password is determined by the complexity command.

NOTE: The password argument of this command is not sent to the servers. This is consistent with other commands which configure secrets.

Also note that usernames and passwords in the FTP and TFTP URLs will not be sent to the authorization or accounting servers when the file>copy source-url dest-url command is executed.

For example:

file copy ftp://test:secret@131.12.31.79/test/srcfile cf1: \destfile

In this example, the username 'test' and password 'secret' will not be sent to the AAA servers (or to any logs). They will be replaced with '*****'.

The no form of the command removes the admin password from the configuration.

Default

no admin-password

Parameters

password — Configures the password which enables a user to become a system administrator. The maximum length can be up to 20 characters if unhashed, 32 characters if hashed, 54 characters if the hash2 keyword is specified.

hash — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted
hash2 — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.

enable-admin

Syntax enable-admin
Context <global>
Description NOTE: See the description for the admin-password on the previous page. If the admin-password is configured in the config>system>security>password context, then any user can enter the special administrative mode by entering the enable-admin command.

enable-admin is in the default profile. By default, all users are given access to this command.

Once the enable-admin command is entered, the user is prompted for a password. If the password matches, user is given unrestricted access to all the commands.

The minimum length of the password is determined by the minimum-length command. The complexity requirements for the password is determined by the complexity command.

There are two ways to verify that a user is in the enable-admin mode:

• show users — Administrator can know which users are in this mode.

• Enter the enable-admin command again at the root prompt and an error message will be returned.

A:ALA-1# show users
===
User Type From Login time Idle time
===
admin Telnet 10.20.30.93 09AUG2006 08:35:23 0d 00:00:00 A
===
Number of users : 2
'A' indicates user is in admin mode
===
A:ALA-1#
A:ALA-1# enable-admin
MINOR: CLI Already in admin mode.
A:ALA-1#

aging

Syntax aging days
no aging
Context config>system>security>password
Configuration Commands

Description
This command configures the number of days a user password is valid before the user must change their password. This parameter can be used to force the user to change the password at the configured interval.

The no form of the command reverts to the default value.

Default
No aging is enforced.

Parameters
days — The maximum number of days the password is valid.

Values 1 — 500

attempts

Syntax
attempts count [time minutes1] [lockout minutes2]
no attempts

Context
config>system>security>password

Description
This command configures a threshold value of unsuccessful login attempts allowed in a specified time frame.

If the threshold is exceeded, the user is locked out for a specified time period.

If multiple attempts commands are entered, each command overwrites the previously entered command.

The no attempts command resets all values to default.

Default
count: 3

time minutes: 5

lockout minutes: 10

Parameters
count — The number of unsuccessful login attempts allowed for the specified time. This is a mandatory value that must be explicitly entered.

Values 1 — 64

time minutes — The period of time, in minutes, that a specified number of unsuccessful attempts can be made before the user is locked out.

Values 0 — 60

lockout minutes — The lockout period in minutes where the user is not allowed to login. Allowed values are decimal integers.

Values 0 — 1440

When the user exceeds the attempted count times in the specified time, then that user is locked out from any further login attempts for the configured time period.

Default 10

Values 0 — 1440
authentication-order

Syntax

```
authentication-order [method-1] [method-2] [method-3] [exit-on-reject]
```

Context

```
config>system>security>password
```

Description

This command configures the sequence in which password authentication, authorization, and accounting is attempted among RADIUS, TACACS+, and local passwords.

The order should be from the most preferred authentication method to the least preferred. The presence of all methods in the command line does not guarantee that they are all operational. Specifying options that are not available delays user authentication.

If all (operational) methods are attempted and no authentication for a particular login has been granted, then an entry in the security log register the failed attempt. Both the attempted login identification and originating IP address is logged with the a timestamp.

The `no` form of the command reverts to the default authentication sequence.

Default

```
aduthentication-order radius tacplus local - The preferred order for password authentication is 1. RADIUS, 2. TACACS+ and 3. local passwords.
```

Parameters

```
method-1 — The first password authentication method to attempt.
  
  Default: radius
  
  Values: radius, tacplus, local

method-2 — The second password authentication method to attempt.
  
  Default: tacplus
  
  Values: radius, tacplus, local

method-3 — The third password authentication method to attempt.
  
  Default: local
  
  Values: radius, tacplus, local

radius — RADIUS authentication.
	
tacplus — TACACS+ authentication.

local — Password authentication based on the local password database.

exit-on-reject — When enabled and if one of the AAA methods configured in the authentication order sends a reject, then the next method in the order will not be tried. If the `exit-on-reject` keyword is not specified and if one AAA method sends a reject, the next AAA method will be attempted. If in this process, all the AAA methods are exhausted, it will be considered as a reject.

Note that a rejection is distinct from an unreachable authentication server. When the `exit-on-reject` keyword is specified, authorization and accounting will only use the method that provided an affirmation authentication; only if that method is no longer readable or is removed from the configuration will other configured methods be attempted. If the local keyword is the first authentication and:
Configuration Commands

•

exit-on-reject is configured and the user does not exist, the user will not be
authenticated.

•

The user is authenticated locally, then other methods, if configured, will be used for
authorization and accounting.

•

The user is configured locally but without console access, login will be denied.

complexity
Syntax
Context
Description

[no] complexity [numeric] [special-character] [mixed-case]
config>system>security>password
This command configures the complexity requirements of locally administered passwords, HMACMD5-96, HMAC-SHA-96 and des-keys configured in the authentication section.
If more than one complexity command is entered, each command overwrites the previous command.
The no form of the command cancels all requirements. To remove a single requirement, enter the no
form of the command followed by the requirement that needs to be removed.
For example, no complexity numeric.

Default
Parameters

No complexity requirements are configured.
mixed-case — Specifies that at least one upper and one lower case character must be present in the
password. This keyword can be used in conjunction with the numeric and special-character
parameters. However, if this command is used with the authentication none command, the
complexity command is rejected.
numeric — Specifies that at least one numeric character must be present in the password. This
keyword can be used in conjunction with the mixed-case and special-character parameters.
However, if this command is used with the authentication none command, the complexity
command is rejected.
special-character — Specifies that at least one special character must be present in the password.
This keyword can be used in conjunction with the numeric and special-character parameters.
However, if this command is used with the authentication none command, the complexity
command is rejected.
Special characters include: ~!@#$%^&*()_+|{}:”<>?`-=\[];’,./.

health-check
Syntax
Context

Page 136

[no] health-check [interval interval]
config>system>security>password

7750 SR OS System Management Guide


Description
This command specifies that RADIUS and TACACS+ servers are monitored for 3 seconds each at 30 second intervals. Servers that are not configured will have 3 seconds of idle time. If in this process a server is found to be unreachable, or a previously unreachable server starts responding, based on the type of the server, a trap will be sent.

The no form of the command disables the periodic monitoring of the RADIUS and TACACS+ servers. In this case, the operational status for the active server will be up if the last access was successful.

Default
health-check 30

Parameters
interval interval — Specifies the polling interval for RADIUS servers.

Values 6 — 1500

minimum-length

Syntax
minimum-length value
no minimum-length

Context config>system>security>password

Description
This command configures the minimum number of characters required for locally administered passwords, HMAC-MD5-96, HMAC-SHA-96, and des-keys configured in the system security section.

If multiple minimum-length commands are entered each command overwrites the previous entered command.

The no form of the command reverts to default value.

Default
minimum-length 6

Parameters value — The minimum number of characters required for a password.

Values 1 — 8

password

Syntax
password

Context config>system>security

Description
This command creates the context to configure password management parameters.
Profile Management Commands

action

Syntax  action {deny | permit}
Context  config>system>security>profile user-profile-name>entry entry-id
Description  This command configures the action associated with the profile entry.
Parameters  deny — Specifies that commands matching the entry command match criteria are to be denied.
permit — Specifies that commands matching the entry command match criteria will be permitted.

match

Syntax  match command-string
no match
Context  config>system>security>profile user-profile-name>entry entry-id
Description  This command configures a command or subtree commands in subordinate command levels are specified.
Because the 7750 SR exits when the first match is found, subordinate levels cannot be modified with subsequent action commands. More specific action commands should be entered with a lower entry number or in a profile that is evaluated prior to this profile.
All commands below the hierarchy level of the matched command are denied.
The no form of this command removes a match condition
Default  none
Parameters  command-string — The CLI command or CLI tree level that is the scope of the profile entry.

copy

Syntax  copy {user source-user | profile source-profile} to destination [overwrite]
Context  config>system>security
Description  This command copies a profile or user from a source profile to a destination profile.
Parameters  source-profile — The profile to copy. The profile must exist.
dest-profile — The copied profile is copied to the destination profile.
**overwrite** — Specifies that the destination profile configuration will be overwritten with the copied source profile configuration. A profile will not be overwritten if the `overwrite` command is not specified.

### default-action

**Syntax**
```
default-action {deny-all | permit-all | none}
```

**Context**
```
config>system>security>profile user-profile-name
```

**Description**
This command specifies the default action to be applied when no match conditions are met.

**Default**
none

**Parameters**
- **deny-all** — Sets the default of the profile to deny access to all commands.
- **permit-all** — Sets the default of the profile to permit access to all commands.
  
  **Note:** `permit-all` does not change access to security commands. Security commands are only and always available to members of the super-user profile.

- **none** — Sets the default of the profile to no-action. This option is useful to assign multiple profiles to a user.

  For example, if a user is a member of two profiles and the default action of the first profile is `permit-all`, then the second profile will never be evaluated because the `permit-all` is executed first. Set the first profile default action to `none` and if no match conditions are met in the first profile, then the second profile will be evaluated. If the default action of the last profile is `none` and no explicit match is found, then the default `deny-all` takes effect.

### description

**Syntax**
```
description description-string
no description
```

**Context**
```
config>system>security>profile user-profile-name>entry entry-id
```

**Description**
This command creates a text description stored in the configuration file for a configuration context. The `description` command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of the command removes the string from the context.

**Default**
No description is configured.

**Parameters**
- **string** — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
entry
Syntax \[no\] entry entry-id
Context config>system>security>profile user-profile-name
Description This command is used to create a user profile entry. More than one entry can be created with unique entry-id numbers. Exits when the first match is found and executes the actions according to the accompanying action command. Entries should be sequenced from most explicit to least explicit. An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword action for it to be considered complete. The no form of the command removes the specified entry from the user profile.
Default No entry IDs are defined.
Parameters entry-id — An entry-id uniquely identifies a user profile command match criteria and a corresponding action. If more than one entry is configured, the entry-ids should be numbered in staggered increments to allow users to insert a new entry without requiring renumbering of the existing entries.
Values 1 — 9999

profile
Syntax \[no\] profile user-profile-name
Context config>system>security
Description This command creates a context to create user profiles for CLI command tree permissions. Profiles are used to either deny or permit user console access to a hierarchical branch or to specific commands. Once the profiles are created, the user command assigns users to one or more profiles. You can define up to 16 user profiles but a maximum of 8 profiles can be assigned to a user. The user-profile-name can consist of up to 32 alphanumeric characters. The no form of the command deletes a user profile.
Default user-profile default
Parameters user-profile-name — The user profile name entered as a character string. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.
renum

Syntax  renum old-entry-number new-entry-number

Context  config>system>security>profile user-profile-name

Description  This command renumbers profile entries to re-sequence the entries.

Since the 7750 SR exits when the first match is found and executes the actions according to accompanying action command, re-numbering is useful to rearrange the entries from most explicit to least explicit.

Parameters  old-entry-number — Enter the entry number of an existing entry.

  Values  1 — 9999

new-entry-number — Enter the new entry number.

  Values  1 — 9999
User Management Commands

access

Syntax

[no] access [ftp] [snmp] [console] [li]

Context

config>system>security>user
config>system>security>user-template

Description

This command grants a user permission for FTP, SNMP, console or lawful intercept (LI) access. If a user requires access to more than one application, then multiple applications can be specified in a single command. Multiple commands are treated additively. The no form of command removes access for a specific application. no access denies permission for all management access methods. To deny a single access method, enter the no form of the command followed by the method to be denied, for example, no access FTP denies FTP access.

Default

No access is granted to the user by default.

Parameters

ftp — Specifies FTP permission.

snmp — Specifies SNMP permission. This keyword is only configurable in the config>system>security>user context.

console — Specifies console access (serial port or Telnet) permission.

li — Allows user to access CLI commands in the lawful intercept (LI) context.

authentication

Syntax

authentication {none} | [[hash] {md5 key-1 | sha key-1} privacy {none | des-key key-2}]

Context

config>system>security>user>snmp

Description

This command configures the authentication and encryption method the user must use in order to be validated by the 7750 SR device. SNMP authentication allows the device to validate the managing node that issued the SNMP message and determine if the message has been tampered.

The user password is encrypted first by the MD5/SHA/DES algorithm. The output of the algorithm is always a fixed length string (key). Copy the password key and paste the output in the appropriate authentication command key parameter.

Default

authentication none - No authentication is configured and privacy cannot be configured.

Parameters

none — Do not use authentication. If none is specified, then privacy cannot be configured.

hash — When hash is not specified, then non-encrypted characters can be entered. When hash is configured, then all specified keys are stored in an encrypted format in the configuration file. The password must be entered in encrypted form when the hash parameter is used.
md5 key — The authentication protocol can either be HMAC-MD5-96 or HMAC-SHA-96.

The MD5 authentication key is stored in an encrypted format. The minimum key length is determined by the `config>system>security>password>minimum-length` value. The maximum length is 16 octets (32 printable characters).

The complexity of the key is determined by the `complexity` command.

sha key — The authentication protocol can be either HMAC-MD5-96 or HMAC-SHA-96.

The sha authentication key is stored in an encrypted format. The minimum key length is determined by the `config>system>security>password>minimum-length` value. The maximum length is 20 octets (40 printable characters).

The complexity of the key is determined by the `complexity` command.

privacy none — Do not perform SNMP packet encryption.

Default privacy none

privacy des-key key — Configure the des-key for SNMP packet encryption. This key is stored in an encrypted format. The minimum key length is determined by the `config>system>security>password>minimum-length` value. The maximum length is 16 octets (32 printable characters). If privacy is configured then authentication must be enabled.

To remove a previously configured des-key, enter privacy none.

The complexity of the key is determined by the `complexity` command.

Default privacy none

group

Syntax group group-name

no group

Context config>system>security>user>snmp

Description This command associates (or links) a user to a group name. The group name must be configured with the `config>system>security>user >snmp>group` command. The access command links the group with one or more views, security model (s), security level (s), and read, write, and notify permissions

Default No group name is associated with a user.

Parameters group-name — Enter the group name (between 1 and 32 alphanumeric characters) that is associated with this user. A user can be associated with one group-name per security model.

cannot-change-password

Syntax [no] cannot-change-password

Context config>system>security>user>console
**Description**

This command allows a user the privilege to change their password for both FTP and console login.

To disable a user’s privilege to change their password, use the **cannot-change-password** form of the command.

Note that the cannot-change-password flag is not replicated when a user copy is performed. A new-password-at-login flag is created instead.

**Default**

no cannot-change-password

---

**console**

**Syntax**

```
console
```

**Context**

```
config>system>security>user
cfgi>system>security>user-template
```

**Description**

This command creates the context to configure user profile membership for the console (either Telnet or CPM serial port user).

---

**copy**

**Syntax**

```
copy {user source-user | profile source-profile} to destination [overwrite]
```

**Context**

```
config>system>security
```

**Description**

This command copies a specific user’s configuration parameters to another (destination) user.

The password is set to a carriage return and a new password at login must be selected.

**Parameters**

- **source-user** — The user to copy. The user must already exist.
- **dest-user** — The copied profile is copied to a destination user.
- **overwrite** — Specifies that the destination user configuration will be overwritten with the copied source user configuration. A configuration will not be overwritten if the **overwrite** command is not specified.

---

**home-directory**

**Syntax**

```
home-directory url-prefix [directory] [directory/directory…]
no home-directory
```

**Context**

```
config>system>security>user
cfgi>system>security>user-template
```

**Description**

This command configures the local home directory for the user for both console and FTP access.

If the URL or the specified URL/directory structure is not present, then a warning message is issued and the default is assumed.
The **no** form of the command removes the configured home directory.

**Default**

no home-directory

NOTE: If restrict-to-home has been configured no file access is granted and no home-directory is created, if restrict-to-home is not applied then root becomes the user’s home-directory.

**Parameters**

`local-url-prefix [directory] [directory/directory...]` — The user’s local home directory URL prefix and directory structure up to 190 characters in length.

### profile

**Syntax**

`profile user-profile-name`

`no profile`

**Context**

`config>system>security>user-template`

**Description**

This command configures the profile for the user based on this template.

**Parameters**

`user-profile-name` — The user profile name entered as a character string. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.

### login-exec

**Syntax**

`[no] login-exec url-prefix: source-url`

**Context**

`config>system>security>user>console`

`config>system>security>user-template>console`

**Description**

This command configures a user’s login exec file which executes whenever the user successfully logs in to a console session.

Only one exec file can be configured. If multiple `login-exec` commands are entered for the same user, each subsequent entry overwrites the previous entry.

The **no** form of the command disables the login exec file for the user.

**Default**

No login exec file is defined.

**Parameters**

`url-prefix: source-url` — Enter either a local or remote URL, up to 200 characters in length, that identifies the exec file that will be executed after the user successfully logs in.

### member

**Syntax**

`member user-profile-name [user-profile-name...]`

`no member user-profile-name`

**Context**

`config>system>security>user>console`

**Description**

This command is used to allow the user access to a profile.
A user can participate in up to eight profiles.

The no form of this command deletes access user access to a profile.

**Default**

default

**Parameters**

`user-profile-name` — The user profile name.

### new-password-at-login

**Syntax**

```
[no] new-password-at-login
```

**Context**

```
config>system>security>user>console
```

**Description**

This command forces the user to change a password at the next console login. The new password applies to FTP but the change can be enforced only by the console, SSH, or Telnet login.

The no form of the command does not force the user to change passwords.

**Default**

no new-password-at-login

### password

**Syntax**

```
password [password] [hash | hash2]
```

**Context**

```
config>system>security>user
```

**Description**

This command configures the user password for console and FTP access.

The use of the `hash` keyword sets the initial password when the user is created or modifies the password of an existing user and specifies that the given password was hashed using hashing algorithm version 1.

The password is stored in an encrypted format in the configuration file when specified. Passwords should be encased in double quotes (" ") at the time of the password creation. The double quote character (") is not accepted inside a password. It is interpreted as the start or stop delimiter of a string.

The use of the `hash2` keyword specifies that the given password is already hashed using hashing algorithm version 2. A semantic check is performed on the given password field to verify if it is a valid hash 2 key to store in the database.

In previous releases, the `password` command syntax included the hash (hash version 1) parameter that allowed you to specify a password and encryption. For example,

```
config>system>security>user# password testuser1
```

The password was hashed by default.

For example:

```
config>system>security# user testuser1
config>system>security>user$ password xyzabcd1
config>system>security>user# exit
```
In the current release, the **password** command allows you also to specify a different hashing scheme, hash version 2.

For example,

```plaintext
config>system>security# user testuser1
config>system>security>user$ password "zx/Uhcnu6ReMOZ3BvRwcvk." hash2
config>system>security>user# exit
```

```plaintext
config>system>security# info

... user "testuser1" password "zx/Uhcnu6ReMOZ3BvRwcvk." hash2
... exit

config>system>security#
```

**Parameters**

- **password** — This is the password for the user that must be entered by this user during the login procedure. The minimum length of the password is determined by the **minimum-length** command. The maximum length can be up to 20 chars if unhashed, 32 characters if hashed. The complexity requirements for the password is determined by the **complexity** command.

  All password special characters (#, $, spaces, etc.) must be enclosed within double quotes.

  For example:  
  ```plaintext
 config>system>security>user# password “south#bay?”
  ```

  The question mark character (?) cannot be directly inserted as input during a telnet connection because the character is bound to the **help** command during a normal Telnet/console connection.

  To insert a # or ? characters, they must be entered inside a notepad or clipboard program and then cut and pasted into the Telnet session in the password field that is encased in the double quotes as delimiters for the password.

  If a password is entered without any parameters, a password length of zero is implied: (carriage return).

- **hash** — Specifies that the given password is already hashed using hashing algorithm version 1. A semantic check is performed on the given password field to verify if it is a valid hash 1 key to store in the database.

- **hash2** — Specifies that the given password is already hashed using hashing algorithm version 2. A semantic check is performed on the given password field to verify if it is a valid hash 2 key to store in the database.
restricted-to-home

Syntax  [no] restricted-to-home

Context  config>system>security>user
         config>system>security>user-template

Description  This command prevents users from navigating above their home directories for file access. A user is not allowed to navigate to a directory higher in the directory tree on the home directory device. The user is allowed to create and access subdirectories below their home directory.

If a home-directory is not configured or the home directory is not available, then the user has no file access.

The no form of the command allows the user access to navigate to directories above their home directory.

Default  no restricted-to-home

snmp

Syntax  snmp

Context  config>system>security>user

Description  This command creates the context to configure SNMP group membership for a specific user and defines encryption and authentication parameters.

All SNMPv3 users must be configured with the commands available in this CLI node.

7750 SR OS always uses the configured SNMPv3 user name as the security user name.

user-template

Syntax  user-template {tacplus_default | radius_default}

Context  config>system>security

Description  This command configures default security user template parameters.

Parameters  tacplus_default — Specifies that the default TACACS+ user template is actively applied to the TACACS+ user.

radius_default — specifies that the default RADIUS user template is actively applied to the RADIUS user if no VSAs are returned with the auth-accept from the RADIUS server.
user

Syntax  
[no] user user-name

Context  
config>system>security

Description  
This command creates a local user and a context to edit the user configuration.

If a new user-name is entered, the user is created. When an existing user-name is specified, the user parameters can be edited.

When creating a new user and then entering the info command, the system displays a password in the output. This is expected behavior in the hash2 scenario. However, when using that user name, there will be no password required. The user can login to the system and then <ENTER> at the password prompt, the user will be logged in.

Unless an administrator explicitly changes the password, it will be null. The hashed value displayed uses the username and null password field, so when the username is changed, the displayed hashed value will change.

The no form of the command deletes the user and all configuration data. Users cannot delete themselves.

Default  
none

Parameters  
user-name — The name of the user up to 16 characters.
RADIUS Client Commands

access-algorithm

Syntax   access-algorithm {direct | round-robin}
         no access-algorithm

Context  config>system>security>radius

Description This command indicates the algorithm used to access the set of RADIUS servers.

Default   direct

Parameters direct — The first server will be used as primary server for all requests, the second as secondary and so on.

round-robin — The first server will be used as primary server for the first request, the second server as primary for the second request, and so on. If the router gets to the end of the list, it starts again with the first server.

accounting

Syntax   [no] accounting

Context  config>system>security>radius

Description This command enables RADIUS accounting.

The no form of this command disables RADIUS accounting.

Default   no accounting

accounting-port

Syntax   accounting-port port
         no accounting-port

Context  config>system>security>radius

Description This command specifies a UDP port number on which to contact the RADIUS server for accounting requests.

Parameters port — Specifies the UDP port number.

Values   1 — 65535

Default   1813
**authorization**

**Syntax**   
[no] authorization  

**Context**   
config>system>security>radius  

**Description**   
This command configures RADIUS authorization parameters for the system.

**Default**   
no authorization

---

**port**

**Syntax**   
port port  
no port  

**Context**   
config>system>security>radius  

**Description**   
This command configures the TCP port number to contact the RADIUS server.

The no form of the command reverts to the default value.

**Default**   
1812 (as specified in RFC 2865, Remote Authentication Dial In User Service (RADIUS))

**Parameters**   
port — The TCP port number to contact the RADIUS server.

**Values**   
1 — 65535

---

**radius**

**Syntax**   
[no] radius  

**Context**   
config>system>security  

**Description**   
This command creates the context to configure RADIUS authentication on the 7750 SR-Series router. Implement redundancy by configuring multiple server addresses for each 7750 SR-Series router.

The no form of the command removes the RADIUS configuration.

---

**retry**

**Syntax**   
retry count  
no retry  

Configuration Commands

Context

config>system>security>radius
config>system>security>dot1x>radius-plcy

Description

This command configures the number of times the router attempts to contact the RADIUS server for authentication if there are problems communicating with the server.

The no form of the command reverts to the default value.

Default

3

Parameters

count — The retry count.

Values

1 — 10

server

Syntax

server index address ip-address secret key [hash | hash2]
no server index

Context

config>system>security>radius

Description

This command adds a RADIUS server and configures the RADIUS server IP address, index, and key values.

Up to five RADIUS servers can be configured at any one time. RADIUS servers are accessed in order from lowest to highest index for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received from a lower indexed server (which implies that the server is not available). If a response from a server is received, no other RADIUS servers are queried. It is assumed that there are multiple identical servers configured as backups and that the servers do not have redundant data.

The no form of the command removes the server from the configuration.

Default

No RADIUS servers are configured.

Parameters

index — The index for the RADIUS server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from lowest to highest index.

Values

1 — 5

address ip-address — The IP address of the RADIUS server. Two RADIUS servers cannot have the same IP address. An error message is generated if the server address is a duplicate.

Values

ipv4-address a.b.c.d (host bits must be 0)
ipv6-address x:x:x:x:x:x:x (eight 16-bit pieces)
                 x:x:x:x:d.d.d
                 x: [0..FFFF]H
                 d: [0..255]D
**secret** key — The secret key to access the RADIUS server. This secret key must match the password on the RADIUS server.

**Values** Up to 20 characters in length.

**hash** — Specifies the key is entered in an encrypted form. If the **hash** parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the **hash** parameter specified.

**hash2** — Specifies the key is entered in a more complex encrypted form. If the **hash2** parameter is not used, the less encrypted **hash** form is assumed.

### shutdown

**Syntax** [no] shutdown  
**Context** config>system>security>radius  
**Description** This command administratively disables the RADIUS protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted. The **no** form of the command administratively enables the protocol which is the default state.

**Default** no shutdown

### timeout

**Syntax** timeout seconds  
**Context** config>system>security>radius  
**Description** This command configures the number of seconds the router waits for a response from a RADIUS server. The **no** form of the command reverts to the default value.

**Default** 3 seconds

**Parameters** seconds — The number of seconds the router waits for a response from a RADIUS server, expressed as a decimal integer.

**Values** 1 — 90
use-default-template

Syntax  [no] use-default-template
Context  config>system>security>radius
Description  This command specifies whether the RADIUS user template is actively applied to the RADIUS user if no VSAs are returned with the auth-accept from the RADIUS server. When enabled, the RADIUS user template is actively applied if no VSAs are returned with the auth-accept from the RADIUS server.

The no form of the command disables the command.
**TACACS+ Client Commands**

**server**

**Syntax**
```
server index address ip-address secret key [port port]
```
```
o server index
```

**Context**
```
config>system>security>tacplus
```

**Description**
This command adds a TACACS+ server and configures the TACACS+ server IP address, index, and key values.

Up to five TACACS+ servers can be configured at any one time. TACACS+ servers are accessed in order from lowest index to the highest index for authentication requests.

The `no` form of the command removes the server from the configuration.

**Default**
No TACACS+ servers are configured.

**Parameters**

- **index** — The index for the TACACS+ server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from the lowest index to the highest index.
  **Values**
  1 — 5

- **address ip-address** — The IP address of the TACACS+ server. Two TACACS+ servers cannot have the same IP address. An error message is generated if the server address is a duplicate.
  **Values**
  ipv4-address a.b.c.d (host bits must be 0)
  ipv6-address x:x:x:x:x:x:x:x (eight 16-bit pieces)
  x:x:x:x:x:d.d.d
  x: [0..FFFF]H
  d: [0..255]D

- **secret key** — The secret key to access the RADIUS server. This secret key must match the password on the RADIUS server.
  **Values**
  Up to 20 characters in length.

- **hash** — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.

- **hash2** — Specifies the key is entered in a more complex encrypted form. If the `hash2` parameter is not used, the less encrypted `hash` form is assumed.

- **port port** — Specifies the port ID.
  **Values**
  0 — 65535
shutdown

Syntax

[no] shutdown

Context

config>system>security>tacplus

Description

This command administratively disables the TACACS+ protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The no form of the command administratively enables the protocol which is the default state.

Default

no shutdown

tacplus

Syntax

[no] tacplus

Context

config>system>security

Description

This command creates the context to configure TACACS+ authentication on the 7750 SR-Series router.

Configure multiple server addresses for each 7750 SR-Series router for redundancy.

The no form of the command removes the TACACS+ configuration.

accounting

Syntax

accounting [record-type {start-stop | stop-only}]

no accounting

Context

config>system>security>tacplus

Description

This command configures the type of accounting record packet that is to be sent to the TACACS+ server. The record-type parameter indicates whether TACACS+ accounting start and stop packets be sent or just stop packets be sent.

Default

record-type stop-only

Parameters

record-type start-stop — Specifies that a TACACS+ start packet is sent whenever the user executes a command.

record-type stop-only — Specifies that a stop packet is sent whenever the command execution is complete.
authorization

Syntax  [no] authorization
Context  config>system>security>tacplus
Description  This command configures TACACS+ authorization parameters for the system.
Default  no authorization

timeout

Syntax  timeout seconds  
        no timeout
Context  config>system>security>tacplus
Description  This command configures the number of seconds the router waits for a response from a TACACS+ server.
The no form of the command reverts to the default value.
Default  3
Parameters  

shutdown

Syntax  [no] shutdown
Context  config>system>security>tacplus
Description  This command administratively disables the TACACS+ protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state.
The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.
The no form of the command administratively enables the protocol which is the default state.
Default  no shutdown
use-default-template

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] use-default-template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;system&gt;security&gt;_tacplus</td>
</tr>
<tr>
<td>Description</td>
<td>This command specifies whether or not the user template defined by this entry is to be actively applied to the TACACS+ user.</td>
</tr>
</tbody>
</table>
Generic 802.1x COMMANDS

dot1x

Syntax  [no] dot1x
Context  config>system>security
Description  This command creates the context to configure 802.1x network access control on the 7750 SR OS router.
The no form of the command removes the 802.1x configuration.

radius-plcy

Syntax  [no] radius-plcy
Context  config>system>security> dot1x
Description  This command creates the context to configure RADIUS server parameters for 802.1x network access control on the 7750 SR router.
NOTE: The RADIUS server configured under the config>system>security>dot1x>radius-plcy context authenticates clients who get access to the data plane of the 7750 SR as opposed to the RADIUS server configured under the config>system>radius context which authenticates CLI login users who get access to the management plane of the 7750 SR.
The no form of the command removes the RADIUS server configuration for 802.1x.

retry

Syntax  retry count
no retry
Context  config>system>security> dot1x
Description  This command configures the number of times the router attempts to contact the RADIUS server for authentication if there are problems communicating with the server.
The no form of the command reverts to the default value.
Default  3
Parameters  count — The retry count.
Values  1 — 10
server (dot1x)

**Syntax**

```
server server-index address ip-address secret key [hash | hash2] [auth-port auth-port] [acct-port acct-port] [type server-type]
no server index
```

**Context**

```
config>system>security> dot1x>radius-plcy
```

**Description**

This command adds a Dot1x server and configures the Dot1x server IP address, index, and key values.

Up to five Dot1x servers can be configured at any one time. Dot1x servers are accessed in order from lowest to highest index for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received from a lower indexed server (which implies that the server is not available). If a response from a server is received, no other Dot1x servers are queried. It is assumed that there are multiple identical servers configured as backups and that the servers do not have redundant data.

The **no** form of the command removes the server from the configuration.

**Default**

No Dot1x servers are configured.

**Parameters**

- **server-index** — The index for the Dot1x server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from lowest to highest index.
  
  **Values**
  
  1 — 5

- **address ip-address** — The IP address of the Dot1x server. Two Dot1x servers cannot have the same IP address. An error message is generated if the server address is a duplicate.

- **secret key** — The secret key to access the Dot1x server. This secret key must match the password on the Dot1x server.
  
  **Values**
  
  Up to 20 characters in length.

- **hash** — Specifies the key is entered in an encrypted form. If the **hash** parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the **hash** parameter specified.

- **hash2** — Specifies the key is entered in a more complex encrypted form. If the **hash2** parameter is not used, the less encrypted **hash** form is assumed.

- **acct-port acct-port** — The UDP port number on which to contact the RADIUS server for accounting requests.

- **auth-port auth-port** — Specifies a UDP port number to be used as a match criteria.
  
  **Values**
  
  1 — 65535

- **type server-type** — Specifies the server type.
  
  **Values**
  
  authorization, accounting, combined
source-address

Syntax  
source-address  ip-address  
no  source-address

Context  
config>system>security> dot1x>radius-plcy

Description  
This command configures the NAS IP address to be sent in the RADIUS packet.
The no form of the command reverts to the default value.

Default  
By default the System IP address is used in the NAS field.

Parameters  
ip-address  —  The IP prefix for the IP match criterion in dotted decimal notation.

Values  
0.0.0.0 — 255.255.255.255

shutdown

Syntax  
[no]  shutdown

Context  
config>system>security> dot1x
config>system>security>dot1x>radius-plcy

Description  
This command administratively disables the 802.1x protocol operation. Shutting down the protocol
does not remove or change the configuration other than the administrative state.
The operational state of the entity is disabled as well as the operational state of any entities contained
within.
The no form of the command administratively enables the protocol which is the default state.

Default  
shutdown

timeout

Syntax  
timeout seconds
no  timeout

Context  
config>system>security> dot1x>radius-plcy

Description  
This command configures the number of seconds the router waits for a response from a RADIUS
server.
The no form of the command reverts to the default value.

Default  
3 seconds

Parameters  
seconds  —  The number of seconds the router waits for a response from a RADIUS server, expressed
as a decimal integer.

Values  
1 — 90
TCP Enhanced Authentication

keychain

Syntax  
[no] keychain keychain-name

Context  
config>system>security

Description  
This command enables the context to configure keychain parameters. A keychain must be configured on the system before it can be applied to a session.

The no form of the command removes the keychain nodal context and everything under it from the configuration. If the keychain to be removed is in use when the no keychain command is entered, the command will not be accepted and an error indicating that the keychain is in use will be printed.

Default  
none

Parameters  
keychain-name — Specifies a keychain name which identifies this particular keychain entry.

   Values  
   An ASCII string up to 32 characters.

direction

Syntax  
direction

Context  
config>system>security>keychain

Description  
This command specifies the data type that indicates the TCP stream direction to apply the keychain.

Default  
none

bi

Syntax  
bi

Context  
config>system>security>keychain>direction

Description  
This command configures keys for both send and receive stream directions.

Default  
none
uni

Syntax: uni
Context: config>system>security>keychain>direction
Description: This command configures keys for send or receive stream directions.
Default: none

receive

Syntax: receive
Context: config>system>security>keychain>direction>uni
Description: This command enables the receive nodal context. Entries defined under this context are used to authenticate TCP segments that are being received by the router.
Default: none

send

Syntax: send
Context: config>system>security>keychain>direction>uni
Description: This command specifies the send nodal context to sign TCP segments that are being sent by the router to another device.
Default: none

entry

Syntax: entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm
algorithm
no entry entry-id
Context: config>system>security>keychain>direction>bi
config>system>security>keychain>direction>uni>receive
config>system>security>keychain>direction>uni>send
Description: This command defines a particular key in the keychain. Entries are defined by an entry-id. A key-chain must have valid entries for the TCP Enhanced Authentication mechanism to work.
The no form of the command removes the entry from the keychain. If the entry is the active entry for sending, then this will cause a new active key to be selected (if one is available using the youngest
key rule). If it is the ONLY possible send key, then the system will reject the command with an error indicating the configured key is the only available send key.

If the key is one of the eligible keys for receiving, it will be removed. If the key is the ONLY possible eligible key, then the command will not be accepted, and an error indicating that this is the only eligible key will be output.

The no form of the command deletes the entry.

**Default** There are no default entries.

**Parameters**

- *entry-id* — Specifies an entry that represents a key configuration to be applied to a keychain.
  - **Values** 0 — 63
- *key* — Specifies a key ID which is used along with *keychain-name* and *direction* to uniquely identify this particular key entry.
  - *authentication-key* — Specifies the *authentication-key* that will be used by the encryption algorithm. The key is used to sign and authenticate a protocol packet.
    - The *authentication-key* can be any combination of letters or numbers.
  - **Values** A key must be 160 bits for algorithm hmac-sha-1-96 and must be 128 bits for algorithm aes-128-cmac-96. If the key given with the entry command amounts to less than this number of bits, then it is padded internally with zero bits up to the correct length.
- *algorithm-algorithm* — Specifies an enumerated integer that indicates the encryption algorithm to be used by the key defined in the keychain.
  - **Values** aes-128-cmac-96 — Specifies an algorithm based on the AES standard hmac-sha-1-96 — Specifies an algorithm based on SHA-1.
- *hash-key | hash2-key* — The hash key. The key can be any combination of ASCII characters up to 33 for the hash-key and 96 characters for the hash2-key in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").
  - This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.
- *hash* — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.
- *hash2* — Specifies the key is entered in a more complex encrypted form.
begin-time

Syntax  
begin-time [date] [hours-minutes] [UTC] [now] [forever]

Context  
config>system>security>keychain>direction>bi>entry
config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry

Description  
This command specifies the calendar date and time after which the key specified by the keychain authentication key is used to sign and/or authenticate the protocol stream.

If no date and time is set, the begin-time is represented by a date and time string with all NULLs and the key is not valid by default.

Parameters  
date hours-minutes — Specifies the date and time for the key to become active.

Values  
date: YYYY/MM/DD
hours-minutes: hh:mm[:ss]

now — Specifies the key should become active immediately.

forever — Specifies that the key should always be active.

end-time

Syntax  
end-time [date] [hours-minutes] [UTC] [now] [forever]

Context  
config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry

Description  
This command specifies the calendar date and time after which the key specified by the authentication key is no longer eligible to sign and/or authenticate the protocol stream.

Default  
forever

Parameters  
date — Specifies the calendar date after which the key specified by the authentication key is no longer eligible to sign and/or authenticate the protocol stream in the YYYY/MM/DD format. When no year is specified the system assumes the current year.

hours-minutes — Specifies the time after which the key specified by the authentication key is no longer eligible to sign and/or authenticate the protocol stream in the hh:mm[:ss] format. Seconds are optional, and if not included, assumed to be 0.

UTC — Indicates that time is given with reference to Coordinated Universal Time in the input.

now — Specifies a time equal to the current system time.

forever — Specifies a time beyond the current epoch.
tolerance

**Syntax**

tolerance [seconds | forever]

**Context**

config>system>security>keychain>direction>bi>entry  
config>system>security>keychain>direction>uni>receive>entry  
config>system>security>keychain>direction>uni>send>entry

**Description**

This command configures the amount of time that an eligible receive key should overlap with the active send key or to never expire.

**Parameters**

- **seconds** — Specifies the duration that an eligible receive key overlaps with the active send key.
  - **Values**
    - 0 — 4294967294 seconds
  - **forever** — Specifies that an eligible receive key overlap with the active send key forever.

---

tcp-option-number

**Syntax**

tcp-option-number

**Context**

config>system>security>keychain

**Description**

This command enables the context to configure the TCP option number to be placed in the TCP packet header.

**receive**

**Syntax**

receive option-number

**Context**

config>system>security>keychain>tcp-option-number

**Description**

This command configures the TCP option number accepted in TCP packets received.

**Default**

254

**Parameters**

- **option-number** — Specifies an enumerated integer that indicates the TCP option number to be used in the TCP header.
  - **Values**
    - 253, 254, 253&254

**send**

**Syntax**

send option-number

**Context**

config>system>security>keychain>tcp-option-number
<table>
<thead>
<tr>
<th><strong>Description</strong></th>
<th>This command configures the TCP option number accepted in TCP packets sent.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
<td>254</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td><em>option-number</em> — Specifies an enumerated integer that indicates the TCP option number to be used in the TCP header.</td>
</tr>
<tr>
<td><strong>Values</strong></td>
<td>253, 254</td>
</tr>
</tbody>
</table>
CPM Filter Commands

cpm-filter

Syntax    cpm-filter
Context    config>system>security
Description    This command enables the context to configure a CPM filter. A CPM filter is a hardware filter done by the P chip on the CPMCFM that applies to all the traffic going to the CPM CPU. It can be used to drop, accept packets, as well as allocate dedicated hardware queues for the traffic. The no form of the command disables the CPM filter.

default-action

Syntax    default-action {accept | drop}
Context    config>system>security>cpm-filter
Description    This command specifies the action to take on the traffic when the filter entry matches. If there are no filter entry defined, the packets received will either be dropped or forwarded based on that default action.
Default    accept
Parameters
accept — Specifies that packets matching the filter entry are forwarded.
drop — Specifies that packets matching the filter entry are dropped.

ip-filter

Syntax    [no] ip-filter
Context    config>system>security>cpm-filter
Description    This command enables the context to configure CPM IP filter parameters.
Default    shutdown

ipv6-filter

Syntax    [no] ipv6-filter
Context    config>system>security>cpm-filter
**Description**  This command enables the context to configure CPM IPv6 filter parameters.

**Default**  shutdown

### entry

**Syntax**  entry entry-id

**Context**  config>sys>sec>cpm>ip-filter
              config>sys>sec>cpm>ipv6-filter

**Description**  This command specifies a particular CPM filter match entry. Every CPM filter must have at least one filter match entry. A filter entry with no match criteria set will match every packet, and the entry action will be taken. Entries are created and deleted by user.

**Parameters**  entry-id — Identifies a CPM filter entry as configured on this system.

**Values**  1 — 2048

### action

**Syntax**  action accept
               action drop
               action queue queue-id
               no action

**Context**  config>sys>sec>cpm>ip-filter>entry
              config>sys>sec>cpm>ipv6-filter>entry

**Description**  This command specifies the action to take for packets that match this filter entry.

**Default**  drop

**Parameters**  accept — Specifies packets matching the entry criteria will be forwarded.

drop — Specifies packets matching the entry criteria will be dropped.

queue queue-id — Specifies packets matching the entry criteria will be forwarded to the specified CPM hardware queue.

### log

**Syntax**  log log-id

**Context**  config>sys>sec>cpm>ip-filter>entry
              config>sys>sec>cpm>ipv6-filter>entry

**Description**  This command specifies the log in which packets matching this entry should be entered. The value zero indicates that logging is disabled.
The no form of the command deletes the log ID.

**Parameters**

$log-id$ — Specifies the log ID where packets matching this entry should be entered.

**match**

**Syntax**

```
match [protocol protocol-id]
no match
```

**Context**

```
config>sys>sec>cpm>ip-filter>entry
```

**Description**

This command enables the context to enter match criteria for the filter entry. When the match criteria have been satisfied the action associated with the match criteria is executed.

If more than one match criteria (within one match statement) are configured then all criteria must be satisfied (AND function) before the action associated with the match is executed.

A match context may consist of multiple match criteria, but multiple match statements cannot be entered per entry.

The no form of the command removes the match criteria for the entry-id.

**Parameters**

- **protocol** — Configures an IP protocol to be used as an IP filter match criterion. The protocol type such as TCP or UDP is identified by its respective protocol number.

- **protocol-id** — Configures the decimal value representing the IP protocol to be used as an IP filter match criterion. Well known protocol numbers include ICMP(1), TCP(6), UDP(17). The no form the command removes the protocol from the match criteria.

**Values**

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Protocol ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp</td>
<td>1</td>
<td>Internet Control Message</td>
</tr>
<tr>
<td>igmp</td>
<td>2</td>
<td>Internet Group Management</td>
</tr>
<tr>
<td>ip</td>
<td>4</td>
<td>IP in IP (encapsulation)</td>
</tr>
<tr>
<td>tcp</td>
<td>6</td>
<td>Transmission Control</td>
</tr>
<tr>
<td>egp</td>
<td>8</td>
<td>Exterior Gateway Protocol</td>
</tr>
<tr>
<td>igp</td>
<td>9</td>
<td>any private interior gateway (used by Cisco for their IGRP)</td>
</tr>
<tr>
<td>udp</td>
<td>17</td>
<td>User Datagram</td>
</tr>
<tr>
<td>rdp</td>
<td>27</td>
<td>Reliable Data Protocol</td>
</tr>
</tbody>
</table>
### Table 7: IP Protocol Names (Continued)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Protocol ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6</td>
<td>41</td>
<td>IPv6</td>
</tr>
<tr>
<td>ipv6-route</td>
<td>43</td>
<td>Routing Header for IPv6</td>
</tr>
<tr>
<td>ipv6-frag</td>
<td>44</td>
<td>Fragment Header for IPv6</td>
</tr>
<tr>
<td>idrp</td>
<td>45</td>
<td>Inter-Domain Routing Protocol</td>
</tr>
<tr>
<td>rsvp</td>
<td>46</td>
<td>Reservation Protocol</td>
</tr>
<tr>
<td>gre</td>
<td>47</td>
<td>General Routing Encapsulation</td>
</tr>
<tr>
<td>ipv6-icmp</td>
<td>58</td>
<td>ICMP for IPv6</td>
</tr>
<tr>
<td>ipv6-no-nxt</td>
<td>59</td>
<td>No Next Header for IPv6</td>
</tr>
<tr>
<td>ipv6-opts</td>
<td>60</td>
<td>Destination Options for IPv6</td>
</tr>
<tr>
<td>iso-ip</td>
<td>80</td>
<td>ISO Internet Protocol</td>
</tr>
<tr>
<td>eigrp</td>
<td>88</td>
<td>EIGRP</td>
</tr>
<tr>
<td>ospf-igp</td>
<td>89</td>
<td>OSPFIGP</td>
</tr>
<tr>
<td>ether-ip</td>
<td>97</td>
<td>Ethernet-within-IP Encapsulation</td>
</tr>
<tr>
<td>encap</td>
<td>98</td>
<td>Encapsulation Header</td>
</tr>
<tr>
<td>pnni</td>
<td>102</td>
<td>PNNI over IP</td>
</tr>
<tr>
<td>pim</td>
<td>103</td>
<td>Protocol Independent Multicast</td>
</tr>
<tr>
<td>vrp</td>
<td>112</td>
<td>Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>l2tp</td>
<td>115</td>
<td>Layer Two Tunneling Protocol</td>
</tr>
<tr>
<td>stp</td>
<td>118</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>ptp</td>
<td>123</td>
<td>Performance Transparency Protocol</td>
</tr>
<tr>
<td>isis</td>
<td>124</td>
<td>ISIS over IPv4</td>
</tr>
<tr>
<td>crtp</td>
<td>126</td>
<td>Combat Radio Transport Protocol</td>
</tr>
<tr>
<td>crudp</td>
<td>127</td>
<td>Combat Radio User Datagram</td>
</tr>
</tbody>
</table>

**Syntax**

match [next-header *next-header*]

no match

match
Context: config>sys>sec>cpm>ipv6-filter>entry

Description: This command specifies match criteria for the IP filter entry. The no form of this command removes the match criteria for the entry-id.

Parameters:
- next-header next-header — Specifies the next header to match.
  - The protocol type such as TCP / UDP / OSPF is identified by its respective protocol number.
  - Well-known protocol numbers include ICMP(1), TCP(6), UDP(17).
  - Values:
    - next-header: 1 — 42, 45 — 49, 52 — 59, 61 — 255 protocol numbers accepted in DHB
    - keywords: none, crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, idrp, igmp, igp, ip, ipv6, ipv6-icmp, ipv6-no-nxt, isis, iso-ip, l2tp, ospf-igp, pim, pnni, ptp, rdp, rsvp, stp, tcp, udp, vrrp
    - * — udp/tcp wildcard

**dscp**

Syntax:
- dscp dscp-name
- no dscp

Context: config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Description: This command configures a DiffServ Code Point (DSCP) name to be used as an IP filter match criterion. The no form of the command removes the DSCP match criterion.

Default: no dscp — No dscp match criterion.

Parameters:
- dscp-name — Configures a dscp name that has been previously mapped to a value using the dscp-name command. The DiffServ code point may only be specified by its name.

**dst-ip**

Syntax:
- dst-ip {ip-address/mask | ip-address netmask}
- no dst-ip

Context: config>sys>sec>cpm>ip-filter>entry>match

Description: This command configures a destination IP address range to be used as an IP filter match criterion. To match on the destination IP address, specify the address and its associated mask, for example, 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 may also be used.

The no form of the command removes the destination IP address match criterion.

Default: No destination IP match criterion

Parameters:
- ip-address — Specifies the IP address for the IP match criterion in dotted decimal notation.
Values 0.0.0.0 — 255.255.255.255

mask — Specifies the subnet mask length expressed as a decimal integer.
Values 1 — 32

netmask — Specifies the dotted quad equivalent of the mask length.
Values 0.0.0.0 — 255.255.255.255

dst-ip

Syntax dst-ip [ipv6-address /prefix-length]
no dst-ip

Context config>sys>sec>cpm>ipv6-filter>entry>match

Description This command configures a destination IPv6 address range to be used as an IPv6 filter match criterion.
To match on the destination IPv6 address, specify the address.
The no form of the command removes the destination IP address match criterion.

Default No destination IP match criterion

Parameters ipv6-address/prefix-length — Specifies the IPv6 address for the IPv6 match criterion in dotted decimal notation. An IPv6 IP address is written as eight 4-digit (16-bit) hexadecimal numbers separated by colons. One string of zeros per address can be left out, so that 1010::700:0:217A is the same as 1010:0:0:0:0:700:0:217A.

Values x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:d.d.d
    x: [0 — .FFFF]H
    d: [0 — 255]D
prefix-length: 1 — 128

dst-port

Syntax dst-port [tcp/udp port-number] [mask]
no dst-port

Context config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Description This command specifies the TCP/UDP port to match the destination-port of the packet.
The no form of the command removes the destination port match criterion.

Parameters dst-port-number — Specifies the destination port number to be used as a match criteria expressed as a decimal integer.

Values 0 — 65535 (accepted in decimal hex or binary)
Configuration Commands

*mask* — Specifies the 16 bit mask to be applied when matching the destination port.

### flow-label

**Syntax**

```
flow-label value
no flow-label
```

**Context**

```
config>sys>sec>cpm>ipv6-filter>entry>match
```

**Description**

This command configures flow label match conditions. Flow labeling enables the labeling of packets belonging to particular traffic flows for which the sender requests special handling, such as non-default quality of service or real-time service.

**Parameters**

*value* — Specify the flow identifier in an IPv6 packet header that can be used to discriminate traffic flows (See RFC 3595, *Textual Conventions for IPv6 Flow Label*.)

**Values**

0 — 1048575

### fragment

**Syntax**

```
fragment {true | false}
no fragment
```

**Context**

```
config>sys>sec>cpm>ip-filter>entry>match
```

**Description**

This command configures fragmented or non-fragmented IP packets as an IP filter match criterion. The `no` form of the command removes the match criterion.

**Default**

false

**Parameters**

*true* — Configures a match on all fragmented IP packets. A match will occur for all packets that have either the MF (more fragment) bit set OR have the Fragment Offset field of the IP header set to a non-zero value.

*false* — Configures a match on all non-fragmented IP packets. Non-fragmented IP packets are packets that have the MF bit set to zero and have the Fragment Offset field also set to zero.

### icmp-code

**Syntax**

```
icmp-code icmp-code
no icmp-code```

Context

```
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match
```

Description

This command configures matching on ICMP code field in the ICMP header of an IP packet as an IP filter match criterion.
The behavior of the `icmp-code` value is dependent on the configured `icmp-type` value, thus a configuration with only an `icmp-code` value specified will have no effect. To match on the `icmp-code`, an associated `icmp-type` must also be specified.

The `no` form of the command removes the criterion from the match entry.

Default

`no icmp-code` - no match criterion for the ICMP code.

Parameters

`icmp-code` — Specifies the ICMP code values that must be present to match.

Values

- 0 — 255

`icmp-type`

Syntax

```plaintext
icmp-type icmp-type
no icmp-type
```

Context

```plaintext
config>sys>sec>cpm>ip-filter>entry>match
cfg>sys>sec>cpm>ipv6-filter>entry>match
```

Description

This command configures matching on ICMP type field in the ICMP header of an IP packet as an IP filter match criterion.

The `no` form of the command removes the criterion from the match entry.

Default

`no icmp-type` — No match criterion for the ICMP type.

Parameters

`icmp-type` — Specifies the ICMP type values that must be present to match.

Values

- 0 — 255

`ip-option`

Syntax

```plaintext
ip-option ip-option-value ip-option-mask
no ip-option
```

Context

```plaintext
config>sys>sec>cpm>ip-filter>entry>match
```

Description

This command configures matching packets with a specific IP option or a range of IP options in the IP header as an IP filter match criterion.

The option-type octet contains 3 fields:

- 1 bit copied flag (copy options in all fragments)
- 2 bits option class,
- 5 bits option number.

The `no` form of the command removes the match criterion.

Default

No IP option match criterion
Parameters

ip-option-value — Enter the 8 bit option-type as a decimal integer. The mask is applied as an AND to the option byte, the result is compared with the option-value.

The decimal value entered for the match should be a combined value of the eight bit option type field and not just the option number. Thus to match on IP packets that contain the Router Alert option (option number =20), enter the option type of 148 (10010100).

Values

0 — 255

ip-option-mask — Specifies a range of option numbers to use as the match criteria.

This 8 bit mask can be configured using the following formats:

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDD</td>
<td>20</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHH</td>
<td>0x14</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBBBB</td>
<td>0b0010100</td>
</tr>
</tbody>
</table>

Default

255 (decimal) (exact match)

Values

1 — 255 (decimal)

Multiple-option

Syntax
multiple-option {true | false}

no multiple-option

Context

config>sys>sec>cpm>ip-filter>entry>match

Description

This command configures matching packets that contain more than one option fields in the IP header as an IP filter match criterion.

The *no* form of the command removes the checking of the number of option fields in the IP header as a match criterion.

Default

no multiple-option — No checking for the number of option fields in the IP header

Parameters

true — Specifies matching on IP packets that contain more that one option field in the header.

false — Specifies matching on IP packets that do not contain multiple option fields present in the header.

Option-present

Syntax

option-present {true | false}

no option-present

Context

config>sys>sec>cpm>ip-filter>entry>match
Description
This command configures matching packets that contain the option field or have an option field of zero in the IP header as an IP filter match criterion.

The no form of the command removes the checking of the option field in the IP header as a match criterion.

Parameters
true — Specifies matching on all IP packets that contain the option field in the header. A match will occur for all packets that have the option field present. An option field of zero is considered as no option present.

false — Specifies matching on IP packets that do not have any option field present in the IP header (an option field of zero). An option field of zero is considered as no option present.

router

Syntax
router service-name service-name
router router-instance
no router

Context
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Description
This command specifies a router name or a service-id to be used in the match criteria.

Parameters
router-instance — Specify one of the following parameters for the router instance:

router-name — Specifies a router name up to 32 characters to be used in the match criteria.

service-id — Specifies an existing service ID to be used in the match criteria.

Values
1 — 2147483647

service-name service-name — Specifies an existing service name up to 64 characters in length.

src-ip

Syntax
src-ip [ip-address/mask]
no src-ip

Context
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Description
This command specifies the IP or IPv6 address to match the source IP or IPv6 address of the packet.

To match on the source IP address, specify the address and its associated mask, such as 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 may also be used.

The no form of the command removes the source IP address match criterion.

Default
no src-ip — No source IP match criterion.

Parameters
ip-address/mask — Specifies the IP address for the match criterion in dotted decimal notation. An IP address is written as eight 4-digit (16-bit) hexadecimal numbers separated by colons. One string
of zeros per address can be left out, so that 1010::700:0:217A is the same as 1010:0:0:0:700:0:217A.

Values
- ipv4-address: a.b.c.d (host bits must be 0)
- ipv6-address: x:x::x:x[-interface]
- x:x::x:x:0:0:0:0:interface
- x: [0..FFFF]H
- d: [0..255]D
- interface: 32 characters maximum, mandatory for link local addresses
- mask: Specifies the 16 bit mask to be applied when matching the source IP address.
- 1 — 32

src-port

Syntax
```
src-port src-port-number [mask]
```

Context
```
config>sys>sec>cpm>ip-filter>entry>match
cfg>sys>sec>cpm>ipv6-filter>entry>match
```

Description
This command specifies the TCP/UDP port to match the source port of the packet.

Parameters
- src-port-number — The source port number to be used as a match criteria expressed as a decimal integer.
 - **Values**: 0 — 65535
- mask — Specifies the 16 bit mask to be applied when matching the source port.
 - **Values**: 0 — 128

tcp-ack

Syntax
```
tcp-ack {true | false}
no tcp-ack
```

Context
```
config>sys>sec>cpm>ip-filter>entry>match
cfg>sys>sec>cpm>ipv6-filter>entry>match
```

Description
This command configures matching on the ACK bit being set or reset in the control bits of the TCP header of an IP or IPv6 packet as an IP filter match criterion.

The **no** form of the command removes the criterion from the match entry.

Default
No match criterion for the ACK bit

Parameters
- **true** — Specifies matching on IP or IPv6 packets that have the ACK bit set in the control bits of the TCP header of an IP or IPv6 packet.
false — Specifies matching on IP or IPv6 packets that do not have the ACK bit set in the control bits of the TCP header of the IP or IPv6 packet.

tcp-syn

Syntax
```
tcp-syn {true | false}
no tcp-syn
```

Context
```
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match
```

Description
This command configures matching on the SYN bit being set or reset in the control bits of the TCP header of an IP or IPv6 packet as an IP filter match criterion.

The SYN bit is normally set when the source of the packet wants to initiate a TCP session with the specified destination IP or IPv6 address.

The **no** form of the command removes the criterion from the match entry.

Default
No match criterion for the SYN bit

Parameters
- **true** — Specifies matching on IP or IPv6 packets that have the SYN bit set in the control bits of the TCP header.
- **false** — Specifies matching on IP or IPv6 packets that do not have the SYN bit set in the control bits of the TCP header.

renum

Syntax
```
renum old-entry-id new-entry-id
```

Context
```
config>sys>sec>cpm>ip-filter
config>sys>sec>cpm>ipv6-filter>entry>match
```

Description
This command renumbers existing IP or IPv6 filter entries to re-sequence filter entries. This may be required in some cases since the OS exits when the first match is found and execute the actions according to the accompanying action command. This requires that entries be sequenced correctly from most to least explicit.

Parameters
- **old-entry-id** — Enter the entry number of an existing entry.
 - **Values**
 - 1 — 2048
- **new-entry-id** — Enter the new entry-number to be assigned to the old entry.
 - **Values**
 - 1 — 2048
CPM Queue Commands

cpm-queue

Syntax: cpm-queue

Context: config>system>security

Description: This command enables the context to configure a CPM queue.

queue

Syntax: queue queue-id

Context: config>system>security>cpm-queue

Description: This command allows users to allocate dedicated CPM.

cbs

Syntax: cbs cbs

Context: config>system>cpm-queue>queue

Description: This command specifies the amount of buffer that can be drawn from the reserved buffer portion of the queue’s buffer pool.

Parameters:
- cbs — Specifies the committed burst size in kbytes.

mbs

Syntax: mbs mbs

Context: config>system>security>cpm-queue>queue

Description: This command specifies the maximum queue depth to which a queue can grow.

Parameters:
- mbs — Specifies the maximum burst size in kbytes.
rate

Syntax
rate rate [cir cir]
no rate

Context
config>system>security>cpm-queue>queue

Description
This command specifies the maximum bandwidth that will be made available to the queue in kilobits per second (kbps).

Parameters
rate — Specifies the administrative Peak Information Rate (PIR) for the queue.
cir cir — Specifies the amount of bandwidth committed to the queue.
TTL Security Commands

ttl-security

Syntax

 ttl-security min-ttl-value
 no ttl-security

Context

 config>router:bgp>group
 config>router:bgp>group>neighbor

Description

This command configures TTL security parameters for incoming packets. When the feature is enabled, BGP/LDP will accept incoming IP packets from a peer only if the TTL value in the packet is greater than or equal to the minimum TTL value configured for that peer.

The no form of the command disables TTL security.

Parameters

 min-ttl-value — Specify the minimum TTL value for an incoming BGP packet.
 Values 1 — 255

ttl-security

Syntax

 ttl-security min-ttl-value
 no ttl-security

Context

 config>router:ldp>peer-parameters>peer

Description

This command configures TTL security parameters for incoming packets. When the feature is enabled, BGP/LDP will accept incoming IP packets from a peer only if the TTL value in the packet is greater than or equal to the minimum TTL value configured for that peer.

The no form of the command disables TTL security.

Default

 no ttl-security

Parameters

 min-ttl-value — Specifies the minimum TTL value for an incoming BGP/LDP packet.
 Values 1 — 255
CPU Protection Commands

cpu-protection

Syntax: `cpu-protection`

Context: `config>sys>security`

Description: This command enters the context to configure CPU protection parameters.

link-specific-rate

Syntax: `link-specific-rate packet-rate-limit`

Context: `config>sys>security>cpu-protection`

Description: This command configures a link-specific rate for CPU protection. This limit is applied to all ports within the system. The CPU will receive no more than the configured packet rate for all link level protocols such as LACP from any one port. The measurement is cleared each second and is based on the ingress port.

Default: `max (no limit)`

Parameters: `packet-rate-limit` — Specifies a packet arrival rate limit, in packets per second, for link level protocols.

Values: `1 — 65535, max (no limit)`

policy

Syntax: `policy cpu-protection-policy-id [create]`

Context: `config>sys>security>cpu-protection`

Description: This command configures CPU protection policies. The `no` form of the command deletes the specified policy from the configuration.

Policies 254 and 255 are reserved as the default access and network interface policies, and cannot be deleted. The parameters within these policies can be modified. An event will be logged (warning) when the default policies are modified.

Default: Policy 254 (default access interface policy):

- `per-source-rate`: max (no limit)
- `overall-rate`: 6000
out-profile-rate: 6000
alarm
Policy 255 (default network interface policy):
per-source-rate: max (no limit)
overall-rate: max (no limit)
out-profile-rate: 6000
alarm

Parameters

cpu-protection-policy-id — Assigns a policy ID to the specific CPU protection policy.

Values

1 — 255

create — Keyword used to create CPU protection policy. The create keyword requirement can be enabled/disabled in the environment>create context.

alarm

Syntax [no] alarm
Context config>sys>security>cpu-protection>policy
Description This command enables the generation of an event that includes information about the protocol, the offending source and the measured rate. Only one event is generated per monitor period.
The no form of the command disables the notifications.

Default no alarm

out-profile-rate

Syntax out-profile-rate packet-rate-limit
no out-profile-rate
Context config>sys>security>cpu-protection>policy
Description This command applies a packet arrival rate limit for the entire SAP/interface, above which packets will be marked as discard eligible. The rate defined is a global rate limit for the interface regardless of the number of subscribers or hosts are present on the SAP/interface. It is a per-SAP/interface rate.
The no form of the command sets out-profile-rate parameter back to the default value.

Default max for cpu-protection-policy-id 1-253

6000 for cpu-protection-policy-id 254 (default access interface policy)
6000 for cpu-protection-policy-id 255 (default network interface policy)

Parameters packet-rate-limit — Specifies a packet arrival rate limit in packets per second.
Values 1 — 65535, max (max indicates no limit)

overall-rate

Syntax overall-rate packet-rate-limit
 no overall-rate

Context config>sys>security>cpu-protection>policy

Description This command applies a maximum packet arrival rate limit (applied per SAP/interface) for the entire SAP/interface, above which packets will be discarded immediately. The rate defined is a global rate limit for the interface regardless of how many subscribers or hosts are present on the SAP/interface. It is a per-SAP/interface rate.

The no form of the command sets overall-rate parameter back to the default value.

Default max for cpu-protection-policy-id 1 — 253
 6000 for cpu-protection-policy-id 254 (default access interface policy)
 max for cpu-protection-policy-id 255 (default network interface policy)

Parameters packet-rate-limit — Specifies a packet arrival rate limit in packets per second.
 Values 1 — 65535, max (max indicates no limit)

per-source-rate

Syntax per-source-rate packet-rate-limit
 no per-source-rate

Context config>sys>security>cpu-protection>policy

Description This command configures a per-source packet arrival rate limit. Use this command to apply a packet arrival rate limit on a per MAC/subscriber basis. The CPU will receive no more than the configured packet rate for each source. The measurement is cleared each second and is based on the source of the packet such as SAP/IP/MAC (a known subscriber host for both DHCP and PPPoE), SAP/MAC/circuit-id (for DHCP and PPPoE session establishment), SAP/MAC/session-ID (for PPPoE without circuit-id or after the PADO phase), SAP/MAC.

This parameter is only applicable if the policy is assigned to a subscriber management interface and the mac-monitor keyword is specified in the cpu-protection command.

Default max, no limit

Parameters packet-rate-limit — Specifies a per-source packet (such as a subscriber host) arrival rate limit in packets per second.
 Values 1 — 65535, max (max indicates no limit)
port-overall-rate

Syntax

```
port-overall-rate packet-rate-limit
no port-overall-rate
```

Context

```
config>sys>security>cpu-protection
```

Description

This command configures a per-port overall rate limit for CPU protection.

Parameters

- **packet-rate-limit** — Specifies an overall per-port packet arrival rate limit in packets per second.

 Values

 - 1 — 65535, max (indicates no limit)

protocol-protection

Syntax

```
protocol-protection [allow-sham-links]
no protocol-protection
```

Context

```
config>sys>security>cpu-protection
```

Description

This command causes the network processor on the CPM to discard all packets received for protocols that are not configured on the particular interface. This helps mitigate DoS attacks by filtering invalid control traffic before it hits the CPU. For example, if an interface does not have IS-IS configured, then protocol protection will discard any IS-IS packets received on that interface.

Note that disabling the protocol protection feature can result in higher CPU loads.

Default

no protocol-protection

Parameters

- **allow-sham-links** — Allows sham links. As OSPF sham links form an adjacency over the MPLS-VPRN backbone network, when protocol-protection is enabled, the tunneled OSPF packets to be received over the backbone network must be explicitly allowed.

cpu-protection

Syntax

```
cpu-protection policy-id
no cpu-protection
```

Context

```
config>router>interface
cfgoservice>ies>interface
cfgoservice>ies>video-interface
cfgoservice>vpls>video-interface
cfgoservice>vprn>interface
cfgoservice>vprn>video-interface
```

Description

Use this command to apply a specific CPU protection policy to the associated interface. For these interface types, the per-source rate limit is not applicable.
If no CPU-protection policy is assigned to an interface, then the default policy is used to limit the overall-rate. The default policy is policy number 254 for access interfaces, 255 for network interfaces and no policy for video interfaces.

The no form of the command reverts to the default values.

Default
- cpu-protection 254 (for access interfaces)
- cpu-protection 255 (for network interfaces)
- none (for video-interfaces, shown as no cpu-protection in CLI)

The configuration of no cpu-protection returns the interface/SAP to the default policies as shown above.

cpu-protection

Syntax
```
cpu-protection policy-id [mac-monitoring]
nocpu-protection
```

Context
- config>service>ies>subscriber-interface>group-interface>sap
- config>service>vpls>sap
- config>service>vprn>subscriber-interface>group-interface>sap
- config>subscriber-mgmt>msap-policy

Description
Use this command to apply a specific CPU protection policy to the associated SAP. If the mac-monitoring keyword is given then per MAC rate limiting should be performed, using the per-source-rate from the associated cpu-protection policy.

If no CPU-protection policy is assigned to a SAP, then a default policy is used to limit the overall-rate according to the default policy. The default policy is policy number 254 for access interfaces, 255 for network interfaces and no policy for video interfaces.

The no form of the command reverts to the default values.

Default
- cpu-protection 254 (for access interfaces)
- cpu-protection 255 (for network interfaces)

The configuration of no cpu-protection returns the interface/SAP to the default policies as shown above.
Show Commands

Security Commands

access-group

Syntax

access-group [group-name]

Context

show>system>security

Description

This command displays SNMP access group information.

Parameters

`group-name` — This command displays information for the specified access group.

Output

Security Access Group Output — The following table describes security access group output fields.

Table 8: Show System Security Access Group Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>Security model</td>
<td>The security model required to access the views configured in this node.</td>
</tr>
<tr>
<td>Security level</td>
<td>Specifies the required authentication and privacy levels to access the views configured in this node.</td>
</tr>
<tr>
<td>Read view</td>
<td>Specifies the variable of the view to read the MIB objects.</td>
</tr>
<tr>
<td>Write view</td>
<td>Specifies the variable of the view to configure the contents of the agent.</td>
</tr>
<tr>
<td>Notify view</td>
<td>Specifies the variable of the view to send a trap about MIB objects.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-4# show system security access-group

<table>
<thead>
<tr>
<th>group name</th>
<th>security model</th>
<th>security level</th>
<th>read view</th>
<th>write view</th>
<th>notify view</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-ro</td>
<td>snmpv1</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td></td>
</tr>
<tr>
<td>snmp-ro</td>
<td>snmpv2c</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td></td>
</tr>
<tr>
<td>snmp-rw</td>
<td>snmpv1</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td></td>
</tr>
<tr>
<td>snmp-rw</td>
<td>snmpv2c</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td></td>
</tr>
<tr>
<td>snmp-rwa</td>
<td>snmpv1</td>
<td>iso</td>
<td>iso</td>
<td>iso</td>
<td>iso</td>
</tr>
<tr>
<td>snmp-rwa</td>
<td>snmpv2c</td>
<td>iso</td>
<td>iso</td>
<td>iso</td>
<td>iso</td>
</tr>
</tbody>
</table>
authentication

Syntax
```
authentication [statistics]
```

Context
```
show>system>security
```

Description
This command displays system login authentication configuration and statistics.

Parameters
```
statistics — Appends login and accounting statistics to the display.
```

Output
Authentication Output — The following table describes system security authentication output fields.

Table 9: Show System Security Authentication Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>The sequence in which authentication is processed.</td>
</tr>
<tr>
<td>Server address</td>
<td>The IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Status</td>
<td>Current status of the RADIUS server.</td>
</tr>
<tr>
<td>Type</td>
<td>The authentication type.</td>
</tr>
<tr>
<td>Timeout (secs)</td>
<td>The number of seconds the router waits for a response from a RADIUS server.</td>
</tr>
<tr>
<td>Single connection</td>
<td>Enabled — Specifies a single connection to the TACACS+ server and validates everything via that connection.</td>
</tr>
<tr>
<td></td>
<td>Disabled — The TACACS+ protocol operation is disabled.</td>
</tr>
<tr>
<td>Retry count</td>
<td>Displays the number of times the router attempts to contact the RADIUS server for authentication if there are problems communicating with the server.</td>
</tr>
<tr>
<td>Connection errors</td>
<td>Displays the number of times a user has attempted to login irrespective of whether the login succeeded or failed.</td>
</tr>
<tr>
<td>Accepted logins</td>
<td>The number of times the user has successfully logged in.</td>
</tr>
<tr>
<td>Rejected logins</td>
<td>The number of unsuccessful login attempts.</td>
</tr>
<tr>
<td>Sent packets</td>
<td>The number of packets sent.</td>
</tr>
<tr>
<td>Rejected packets</td>
<td>The number of packets rejected.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-4# `show system security authentication`

<table>
<thead>
<tr>
<th>server address</th>
<th>status</th>
<th>type</th>
<th>timeout(secs)</th>
<th>single connection</th>
<th>retry count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.103</td>
<td>up</td>
<td>radius</td>
<td>5</td>
<td>n/a</td>
<td>5</td>
</tr>
<tr>
<td>10.10.0.1</td>
<td>up</td>
<td>radius</td>
<td>5</td>
<td>n/a</td>
<td>5</td>
</tr>
<tr>
<td>10.10.0.2</td>
<td>up</td>
<td>radius</td>
<td>5</td>
<td>n/a</td>
<td>5</td>
</tr>
<tr>
<td>10.10.0.3</td>
<td>up</td>
<td>radius</td>
<td>5</td>
<td>n/a</td>
<td>5</td>
</tr>
</tbody>
</table>

radius admin status : down

tacplus admin status : up

health check : enabled

No. of Servers: 4

A:ALA-4#

A:ALA-7# `show>system>security# authentication statistics`

<table>
<thead>
<tr>
<th>server address</th>
<th>connection errors</th>
<th>accepted logins</th>
<th>rejected logins</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.103</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>local</td>
<td>n/a</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Authorization Statistics (TACACS+)

Accounting Statistics

Login Statistics

<table>
<thead>
<tr>
<th>server address</th>
<th>connection errors</th>
<th>sent packets</th>
<th>rejected packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.103</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>local</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
communities

Syntax communities

Context show>system>security

Description This command displays SNMP communities.

Output Communities Output — The following table describes community output fields.

Table 10: Show Communities Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>The community string name for SNMPv1 and SNMPv2c access only.</td>
</tr>
<tr>
<td>Access</td>
<td>r — The community string allows read-only access.</td>
</tr>
<tr>
<td>View</td>
<td>The view name.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version.</td>
</tr>
<tr>
<td>Group Name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>No of Communities</td>
<td>The total number of configured community strings.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-48# show system security communities

No. of Communities: 3
cpm-filter

Syntax
```
cpm-filter
```

Context
```
show>system>security
```

Description
This command displays CPM filters.

ip-filter

Syntax
```
ip-filter [entry entry-id]
```

Context
```
show>system>security>cpm-filter
```

Description
This command displays CPM IP filters.

Parameters

- **entry entry-id** — Identifies a CPM filter entry as configured on this system.
- **Values**
 1 — 2048

Output

CPM Filter Output — The following table describes CPM IP filter output fields.

Table 11: Show CPM IP Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-Id</td>
<td>Displays information about the specified management access filter entry.</td>
</tr>
<tr>
<td>Dropped</td>
<td>Displays the number of dropped events.</td>
</tr>
<tr>
<td>Forwarded</td>
<td>Displays the number of forwarded events.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the CPM filter description.</td>
</tr>
<tr>
<td>Log ID</td>
<td>Displays the log ID where matched packets will be logged.</td>
</tr>
<tr>
<td>Src IP</td>
<td>Displays the source IP address(/netmask).</td>
</tr>
<tr>
<td>Dest. IP</td>
<td>Displays the destination IP address(/netmask).</td>
</tr>
<tr>
<td>Src Port</td>
<td>Displays the source port number (range).</td>
</tr>
<tr>
<td>Dest. Port</td>
<td>Displays the destination port number (range).</td>
</tr>
<tr>
<td>Protocol</td>
<td>Displays the Protocol field in the IP header.</td>
</tr>
<tr>
<td>Dscp</td>
<td>Displays the DSCP field in the IP header.</td>
</tr>
<tr>
<td>Fragment</td>
<td>Displays the 3-bit fragment flags or 13-bit fragment offset field.</td>
</tr>
<tr>
<td>ICMP Type</td>
<td>Displays the ICMP type field in the ICMP header.</td>
</tr>
<tr>
<td>ICMP Code</td>
<td>Displays the ICMP code field in the ICMP header.</td>
</tr>
</tbody>
</table>
Table 11: Show CPM IP Filter Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP-syn</td>
<td>Displays the SYN flag in the TCP header.</td>
</tr>
<tr>
<td>TCP-ack</td>
<td>Displays the ACK flag in the TCP header.</td>
</tr>
<tr>
<td>Match action</td>
<td>When the criteria matches, displays drop or forward packet.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>In case match action is forward, indicates destination of the matched packet.</td>
</tr>
<tr>
<td>Dropped pkts</td>
<td>Indicates number of matched dropped packets.</td>
</tr>
<tr>
<td>Forwarded pkts</td>
<td>Indicates number of matched forwarded packets.</td>
</tr>
</tbody>
</table>

Sample Output

```plaintext
A:ALA-35# show system security cpm-filter ip-filter
===============================================================================
CPM IP Filters
===============================================================================
<table>
<thead>
<tr>
<th>Entry-Id</th>
<th>Dropped</th>
<th>Forwarded</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 10.4.101.2 #101</td>
</tr>
<tr>
<td>102</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 10.4.102.2 #102</td>
</tr>
<tr>
<td>103</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 10.4.103.2 #103</td>
</tr>
<tr>
<td>104</td>
<td>25882</td>
<td>0</td>
<td>CPM-Filter 10.4.104.2 #104</td>
</tr>
<tr>
<td>105</td>
<td>25926</td>
<td>0</td>
<td>CPM-Filter 10.4.105.2 #105</td>
</tr>
<tr>
<td>106</td>
<td>25926</td>
<td>0</td>
<td>CPM-Filter 10.4.106.2 #106</td>
</tr>
<tr>
<td>107</td>
<td>25944</td>
<td>0</td>
<td>CPM-Filter 10.4.107.2 #107</td>
</tr>
<tr>
<td>108</td>
<td>25950</td>
<td>0</td>
<td>CPM-Filter 10.4.108.2 #108</td>
</tr>
<tr>
<td>109</td>
<td>25968</td>
<td>0</td>
<td>CPM-Filter 10.4.109.2 #109</td>
</tr>
<tr>
<td>110</td>
<td>25984</td>
<td>0</td>
<td>CPM-Filter 10.4.110.2 #110</td>
</tr>
<tr>
<td>111</td>
<td>26000</td>
<td>0</td>
<td>CPM-Filter 10.4.111.2 #111</td>
</tr>
<tr>
<td>112</td>
<td>26018</td>
<td>0</td>
<td>CPM-Filter 10.4.112.2 #112</td>
</tr>
<tr>
<td>113</td>
<td>26034</td>
<td>0</td>
<td>CPM-Filter 10.4.113.2 #113</td>
</tr>
<tr>
<td>114</td>
<td>26050</td>
<td>0</td>
<td>CPM-Filter 10.4.114.2 #114</td>
</tr>
<tr>
<td>115</td>
<td>26066</td>
<td>0</td>
<td>CPM-Filter 10.4.115.2 #115</td>
</tr>
<tr>
<td>116</td>
<td>26084</td>
<td>0</td>
<td>CPM-Filter 10.4.116.2 #116</td>
</tr>
</tbody>
</table>
===============================================================================
A:ALA-35#
A:ALA-35# show system security cpm-filter ip-filter entry 101
===============================================================================
CPM IP Filter Entry
===============================================================================
| Entry Id : 101 |
| Description : CPM-Filter 10.4.101.2 #101 |
===============================================================================
Filter Entry Match Criteria :
===============================================================================
| Log Id : n/a |
| Src. IP : 10.4.101.2/32 |
| Dest. IP : 10.4.101.1/32 |
| Protocol : 6 |
| Src. Port : 0 |
| Dest. Port : 0 |
| Dscp : ef |
```
ICMP Type: Undefined ICMP Code: Undefined
Fragment: True Option-present: Off
IP-Option: 130/255 Multiple Option: True
TCP-syn: Off TCP-ack: True
Match action: Drop

ipv6-filter

Syntax ip-filter [entry entry-id]
Context show>system>security>cpm-filter
Description Displays CPM IPv6 filters.
Parameters
entry entry-id — Identifies a CPM IPv6 filter entry as configured on this system.
Values 1 — 2048
Output CPM Filter Output — The following table describes CPM IPv6 filter output fields..

Table 12: Show CPM IPv6 Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-Id</td>
<td>Displays information about the specified management access filter entry</td>
</tr>
<tr>
<td>Dropped</td>
<td>Displays the number of dropped events.</td>
</tr>
<tr>
<td>Forwarded</td>
<td>Displays the number of forwarded events.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the CPM filter description.</td>
</tr>
<tr>
<td>Log ID</td>
<td>Log Id where matched packets will be logged.</td>
</tr>
<tr>
<td>Src IP</td>
<td>Displays Source IP address(/netmask)</td>
</tr>
<tr>
<td>Dest. IP</td>
<td>Displays Destination IP address(/netmask).</td>
</tr>
<tr>
<td>Src Port</td>
<td>Displays Source Port Number (range).</td>
</tr>
<tr>
<td>Dest. Port</td>
<td>Displays Destination Port Number (range).</td>
</tr>
<tr>
<td>next-header</td>
<td>Displays next-header field in the IPv6 header.</td>
</tr>
<tr>
<td>Dscp</td>
<td>Displays Traffic Class field in the IPv6 header.</td>
</tr>
<tr>
<td>ICMP Type</td>
<td>Displays ICMP type field in the icmp header.</td>
</tr>
<tr>
<td>ICMP Code</td>
<td>Displays ICMP code field in the icmp header.</td>
</tr>
<tr>
<td>TCP-syn</td>
<td>Displays the SYN flag in the TCP header.</td>
</tr>
<tr>
<td>TCP-ack</td>
<td>Displays the ACK flag in the TCP header.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-35# show system security cpm-filter ipv6-filter

CPM IPv6 Filters

Entry-Id Dropped Forwarded Description

101 25880 0 CPM-Filter 11::101:2 #101
102 25880 0 CPM-Filter 11::102:2 #102
103 25880 0 CPM-Filter 11::103:2 #103
104 25880 0 CPM-Filter 11::104:2 #104
105 25880 0 CPM-Filter 11::105:2 #105
106 25880 0 CPM-Filter 11::106:2 #106
107 25880 0 CPM-Filter 11::107:2 #107
108 25880 0 CPM-Filter 11::108:2 #108
109 25880 0 CPM-Filter 11::109:2 #109

A:ALA-35#

A:ALA-35# show system security cpm-filter ipv6-filter entry 101

CPM IPv6 Filter Entry

Entry Id : 1
Description : CPM-Filter 11::101:2 #101

Filter Entry Match Criteria :

Log Id : n/a
Src. IP : 11::101:2 Src. Port : 0
Dest. IP : 11::101:1 Dest. Port : 0
next-header : none Dscp : Undefined
ICMP Type : Undefined ICMP Code : Undefined
TCP-syn : Off TCP-ack : Off
Match action : Drop
Dropped pkts : 25880 Forwarded pkts : 0

A:ALA-35#
cpm-queue

Syntax
```
cpm-queue queue-id
```

Context
```
show>system>security
```

Description
Displays CPM queues.

Parameters
- `queue-id` — Specifies an integer value that identifies a CPM queue.

Values
0, 33 — 2000

CPM queue Output — The following table describes CPM queue output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>Displays the administrative Peak Information Rate (PIR) for the queue.</td>
</tr>
<tr>
<td>CIR</td>
<td>Displays the amount of bandwidth committed to the queue.</td>
</tr>
<tr>
<td>CBS</td>
<td>Displays the amount of buffer drawn from the reserved buffer portion of the queue’s buffer pool.</td>
</tr>
<tr>
<td>MBS</td>
<td>Displays the maximum queue depth to which a queue can grow.</td>
</tr>
</tbody>
</table>

Sample Output
```
A:ALA-35# show system security cpm-queue 1001
===============================================================================================
CPM Queue Entry
===============================================================================================
Queue Id           : 1001
===============================================================================================
Queue Parameters :
PIR                : 10000000           CIR                : 1000000
CBS                : 4096               MBS                : 8192
===============================================================================================
A:ALA-35#
```

cpu-protection

Syntax
```
cpu-protection
```

Context
```
show>system>security
```

Description
This command enables the context to display CPU protection information.
excessive-sources

Syntax: excessive-sources [service-id service-id sap-id sap-id]

Context: show>system>security>cpu-protection

Description: This command displays sources exceeding their per-source rate limit.

Parameters:

- **service-id service-id** — Displays information for services exceeding their per-source rate limit.
- **sap-id sap-id** — Displays information for SAPs exceeding their per-source rate limit.

policy

Syntax: policy [policy-id] association

Context: show>system>security>cpu-protection

Description: This command displays CPU protection policy information.

Parameters:

- **policy-id** — Displays CPU protection policy information for the specified policy ID.
- **association** — This keyword displays policy-id associations.

protocol-protection

Syntax: protocol-protection

Context: show>system>security>cpu-protection

Description: This command displays all interfaces with non-zero drop counters.

violators

Syntax: violators [port] [interface] [sap] [video]

Context: show>system>security>cpu-protection

Description: This command displays all interfaces, ports or SAPs with CPU protection policy violators.

Parameters:

- **port** — Displays violators associated with the port.
- **interface** — Displays violators associated with the interface.
- **sap** — Displays violators associated with the SAP.
- **video** — Displays violators associated with the video entity.
keychain

Syntax

`keychain [key-chain] [detail]`

Context

`show>system>security`

Description

This command displays keychain information.

Parameters

- `key-chain` — Specifies the keychain name to display.
- `detail` — Displays detailed keychain information.

Sample Output

```
*A:ALA-A# show system security keychain test
-------------------------------------------------
Key chain:test
-------------------------------------------------
TCP-Option number send : 254     Admin state : Up
TCP-Option number receive: 254   Oper state : Up
-------------------------------------------------
*A:ALA-A#

*A:ALA-A# show system security keychain test detail
-------------------------------------------------
Key chain:test
-------------------------------------------------
TCP-Option number send: 254    Admin state: Up
TCP-Option number receive: 254  Oper state: Up
-------------------------------------------------
Key entries for key chain: test
-------------------------------------------------
Id          : 0
Direction   : send-receive       Algorithm : hmac-sha-1-96
Admin State : Up                Valid : Yes
Active       : Yes               Tolerance : 0
End Time     : N/A                End Time (UTC) : N/A
-------------------------------------------------
Id          : 1
Direction   : send-receive       Algorithm : aes-128-cmac-96
Admin State : Up                Valid : Yes
Active       : No                Tolerance : 300
-------------------------------------------------
Id          : 2
Direction   : send-receive       Algorithm : aes-128-cmac-96
Admin State : Up                Valid : Yes
Active       : No                Tolerance : 500
-------------------------------------------------
*A:ALA-A#
```
management-access-filter

Syntax
management-access-filter [entry-id]

Context
show>system>security

Description
This command displays management access control filter information. If no specific entry number is specified, all entries are displayed.

Parameters
entry-id — Displays information about the specified management access filter entry.

Default
All filter entries

Values
1 — 9999

Output
Management Access Filter Output — The following table describes management access filter output fields.

Table 14: Show Management Access Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def. action</td>
<td>Permit — Specifies that packets not matching the configured selection criteria in any of the filter entries are permitted.</td>
</tr>
<tr>
<td></td>
<td>Deny — Specifies that packets not matching the configured selection criteria in any of the filter entries are denied and that a ICMP host unreachable message will be issued.</td>
</tr>
<tr>
<td></td>
<td>Deny-host-unreachable — Specifies that packets not matching the configured selection criteria in the filter entries are denied.</td>
</tr>
<tr>
<td>Entry</td>
<td>The entry ID in a policy or filter table.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string describing the filter.</td>
</tr>
<tr>
<td>Src IP</td>
<td>The source IP address used for management access filter match criteria.</td>
</tr>
<tr>
<td>Src interface</td>
<td>The interface name for the nexthop to which the packet should be forwarded if it hits this filter entry.</td>
</tr>
<tr>
<td>Dest port</td>
<td>The destination port.</td>
</tr>
<tr>
<td>Matches</td>
<td>The number of times a management packet has matched this filter entry.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The IP protocol to match.</td>
</tr>
<tr>
<td>Action</td>
<td>The action to take for packets that match this filter entry.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-7# show system security management-access-filter

Management Access Filters

Def. Action : deny

Entry : 10
Description :
Src IP : 10.10.10.104
Src interface : undefined
Dest port : 10.10.10.103
Protocol : 6
Action : permit
Matches : 3876

Entry : 20
Description : Allow westcoast
Src IP : 192.168.0.0/16
Src interface : undefined
Dest port : undefined
Protocol : undefined
Action : permit
Matches : 3876

A:ALA-7#

ip-filter

Syntax ip-filter [entry entry-id]

Context show>system>security>mgmt-access-filter

Description This command displays management-access IP filters.

Parameters entry-id — Displays information for the specified entry.

Values 1 — 9999

*A:Dut-F# show system security management-access-filter ip-filter

IPv4 Management Access Filter

filter type: ip
Def. Action : permit
Admin Status : enabled (no shutdown)

Entry : 1
Src IP : 192.168.0.0/16
Src interface : undefined
Dest port : undefined
Protocol : undefined
Router : undefined
Action : none
ipv6-filter

Syntax ipv6-filter [entry entry-id]

Context show>system>security>mgmt-access-filter

Description This command displays management-access IPv6 filters.

Parameters

entry-id — Specifies the IPv6 filter entry ID to display.

Values

| 1 — 9999 |

Output

*A:Dut-C# show system security management-access-filter ipv6-filter entry 1

IPv6 Management Access Filter

filter type : ipv6
Def. Action : permit
Admin Status : enabled (no shutdown)

Entry : 1
Src IP : 2001::1/128
Flow label : undefined
Src interface : undefined
Dest port : undefined
Next-header : undefined
Router : undefined
Action : permit
Log : enabled
Matches : 0

password-options

Syntax password-options

Context show>system>security

Description This command displays configured password options.
Output

Password Options Output — The following table describes password options output fields.

Table 15: Show Management Access Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days</td>
<td>Displays the number of days a user password is valid before the user must change their password.</td>
</tr>
<tr>
<td>Number of invalid attempts permitted per login</td>
<td>Displays the number of unsuccessful login attempts allowed for the specified time.</td>
</tr>
<tr>
<td>Time in minutes per login attempt</td>
<td>Displays the period of time, in minutes, that a specified number of unsuccessful attempts can be made before the user is locked out.</td>
</tr>
<tr>
<td>Lockout period (when threshold breached)</td>
<td>Displays the lockout period in minutes where the user is not allowed to login.</td>
</tr>
<tr>
<td>Authentication order</td>
<td>Displays the sequence in which password authentication is attempted among RADIUS, TACACS+, and local passwords.</td>
</tr>
<tr>
<td>Configured complexity options</td>
<td>Displays the complexity requirements of locally administered passwords, HMAC-MD5-96, HMAC-SHA-96 and DES-keys configured in the authentication section.</td>
</tr>
<tr>
<td>Minimum password length</td>
<td>Displays the minimum number of characters required for locally administered passwords, HMAC-MD5-96, HMAC-SHA-96, and DES-keys configured in the system security section.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-7# show system security password-options
+-----------------------------------------------+---------------------------------------------------------------+
<table>
<thead>
<tr>
<th>Password Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days</td>
<td>: none</td>
</tr>
<tr>
<td>Number of invalid attempts permitted per login</td>
<td>: 3</td>
</tr>
<tr>
<td>Time in minutes per login attempt</td>
<td>: 5</td>
</tr>
<tr>
<td>Lockout period (when threshold breached)</td>
<td>: 10</td>
</tr>
<tr>
<td>Authentication order</td>
<td>: radius tacplus local</td>
</tr>
<tr>
<td>Configured complexity options</td>
<td></td>
</tr>
<tr>
<td>Minimum password length</td>
<td>: 6</td>
</tr>
</tbody>
</table>
+-----------------------------------------------+---------------------------------------------------------------+
A:ALA-7#
```
per-peer-queuing

Syntax: `per-peer-queuing`

Context: `show>system>security`

Description: This command enables or disables CPM hardware queuing per peer.

Output:

Per-Peer-Queuing Output — The following table describes per-peer-queuing output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Peer Queuing</td>
<td>Displays the status (enabled or disabled) of CPM hardware queuing per peer.</td>
</tr>
<tr>
<td>Total Num of Queues</td>
<td>Displays the total number of hardware queues.</td>
</tr>
<tr>
<td>Num of Queues In Use</td>
<td>Displays the total number of hardware queues in use.</td>
</tr>
</tbody>
</table>

Sample Output:

A:ALA-48# show system security per-peer-queuing

```
=================================================================
CPM Hardware Queuing
=================================================================
Per Peer Queuing : Enabled
Total Num of Queues : 8192
Num of Queues In Use : 2
=================================================================
A:ALA-48# configure
```

profile

Syntax: `profile [profile-name]`

Context: `show>system>security`

Description: This command displays user profile information.

If the `profile-name` is not specified, then information for all profiles are displayed.

Parameters:

- **profile-name** — Displays information for the specified user profile.
Output

User Profile Output — The following table describes user profile output fields.

Table 17: Show User Profile Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Profile</td>
<td>Displays the profile name used to deny or permit user console access to a</td>
</tr>
<tr>
<td></td>
<td>hierarchical branch or to specific commands.</td>
</tr>
<tr>
<td>Def. action</td>
<td>Permit all — Permits access to all commands.</td>
</tr>
<tr>
<td></td>
<td>Deny — Denies access to all commands.</td>
</tr>
<tr>
<td></td>
<td>None — No action is taken.</td>
</tr>
<tr>
<td>Entry</td>
<td>The entry ID in a policy or filter table.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the text string describing the entry.</td>
</tr>
<tr>
<td>Match Command</td>
<td>Displays the command or subtree commands in subordinate command levels.</td>
</tr>
<tr>
<td>Action</td>
<td>Permit all — Commands matching the entry command match criteria are permitted.</td>
</tr>
<tr>
<td></td>
<td>Deny — Commands not matching the entry command match criteria are not permitted.</td>
</tr>
<tr>
<td>No. of profiles</td>
<td>The total number of profiles listed.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-7# show system security profile administrative

User Profile

User Profile : administrative
Def. Action : permit-all

Entry : 10
Description :
Match Command: configure system security
Action : permit

Entry : 20
Description :
Match Command: show system security
Action : permit

No. of profiles:

A:ALA-7#
source-address

Syntax source-address
Context show>system>security
Description This command displays source-address configured for applications.
Output Source Address Output — The following table describes source address output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Displays the source-address application.</td>
</tr>
<tr>
<td>IP address</td>
<td>Displays the source address IP address or interface name.</td>
</tr>
<tr>
<td>Interface Name</td>
<td></td>
</tr>
<tr>
<td>Oper status</td>
<td>Up — The source address is operationally up.</td>
</tr>
<tr>
<td></td>
<td>Down — The source address is operationally down.</td>
</tr>
</tbody>
</table>

Sample Output

A:SR-7# show system security source-address

Source-Address applications

<table>
<thead>
<tr>
<th>Application</th>
<th>IP address/Interface Name</th>
<th>Oper status</th>
</tr>
</thead>
<tbody>
<tr>
<td>telnet</td>
<td>10.20.1.7</td>
<td>Up</td>
</tr>
<tr>
<td>radius</td>
<td>loopback1</td>
<td>Up</td>
</tr>
</tbody>
</table>

A:SR-7#

ssh

Syntax ssh
Context show>system>security
Description This command displays all the SSH sessions as well as the SSH status and fingerprint.
Output SSH Options Output — The following table describes SSH output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH status</td>
<td>SSH is enabled — Displays that SSH server is enabled.</td>
</tr>
<tr>
<td></td>
<td>SSH is disabled — Displays that SSH server is disabled.</td>
</tr>
</tbody>
</table>
Sample output

ALA-7# `show system security ssh`

SSH is enabled
SSH preserve key: Enabled
SSH protocol version 1: Enabled

SHA protocol version 2: Enabled

<table>
<thead>
<tr>
<th>Connection</th>
<th>Encryption</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.5.218</td>
<td>3des</td>
<td>admin</td>
</tr>
</tbody>
</table>

Number of SSH sessions: 1

ALA-7#

A:ALA-49>config>system>security# `show system security ssh`

SSH is disabled
A:ALA-49>config>system>security#
user

Syntax user [user-id] [detail]

Context show>system>security

Description This command displays user registration information.

If no command line options are specified, summary information for all users displays.

Parameters user-id — Displays information for the specified user.

Default All users
detail — Displays detailed user information to the summary output.

Output User Output — The following table describes user output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>The name of a system user.</td>
</tr>
<tr>
<td>Need new pwd</td>
<td>Y — The user must change his password at the next login.</td>
</tr>
<tr>
<td></td>
<td>N — The user is not forced to change his password at the next login.</td>
</tr>
<tr>
<td>Cannot change pwd</td>
<td>Y — The user has the ability to change the login password.</td>
</tr>
<tr>
<td></td>
<td>N — The user does not have the ability to change the login password.</td>
</tr>
<tr>
<td>User permissions</td>
<td>Console — Y - The user is authorized for console access.</td>
</tr>
<tr>
<td></td>
<td>N - The user is not authorized for console access.</td>
</tr>
<tr>
<td></td>
<td>FTP — Y - The user is authorized for FTP access.</td>
</tr>
<tr>
<td></td>
<td>N - The user is not authorized for FTP access.</td>
</tr>
<tr>
<td></td>
<td>SNMP — Y - The user is authorized for SNMP access.</td>
</tr>
<tr>
<td></td>
<td>N - The user is not authorized for SNMP access.</td>
</tr>
<tr>
<td>Password expires</td>
<td>The number of days in which the user must change his login password.</td>
</tr>
<tr>
<td>Attempted logins</td>
<td>The number of times the user has attempted to login irrespective of whether the login succeeded or failed.</td>
</tr>
<tr>
<td>Failed logins</td>
<td>The number of unsuccessful login attempts.</td>
</tr>
<tr>
<td>Local conf</td>
<td>Y — Password authentication is based on the local password database.</td>
</tr>
<tr>
<td></td>
<td>N — Password authentication is not based on the local password database.</td>
</tr>
<tr>
<td>Home directory</td>
<td>Specifies the local home directory for the user for both console and FTP access.</td>
</tr>
</tbody>
</table>
Sample Output

```plaintext
A:ALA-7# show system security user

Users

<table>
<thead>
<tr>
<th>user id</th>
<th>need</th>
<th>user permissions</th>
<th>password</th>
<th>attempted</th>
<th>failed</th>
<th>local new pwd</th>
<th>console</th>
<th>ftp</th>
<th>snmp</th>
<th>expires</th>
<th>logins</th>
<th>logins</th>
<th>conf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>n</td>
<td>never</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>

A:ALA-7#

A:

ALA-7# show system security user detail

Users

<table>
<thead>
<tr>
<th>user id</th>
<th>need</th>
<th>user permissions</th>
<th>password</th>
<th>attempted</th>
<th>failed</th>
<th>local new pwd</th>
<th>console</th>
<th>ftp</th>
<th>snmp</th>
<th>expires</th>
<th>logins</th>
<th>logins</th>
<th>conf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>n</td>
<td>never</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>

User Configuration Detail

<table>
<thead>
<tr>
<th>user id</th>
<th>: admin</th>
</tr>
</thead>
</table>

canvas parameters

<table>
<thead>
<tr>
<th>new pw required</th>
<th>: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>cannot change pw</td>
<td>: no</td>
</tr>
<tr>
<td>home directory</td>
<td>: cf3:</td>
</tr>
<tr>
<td>restricted to home</td>
<td>: no</td>
</tr>
<tr>
<td>login exec file</td>
<td>:</td>
</tr>
<tr>
<td>profile</td>
<td>: administrative</td>
</tr>
</tbody>
</table>

snmp parameters

A:ALA-7#

---

**Restricted to home**

Yes — The user is not allowed to navigate to a directory higher in the directory tree on the home directory device.

No — The user is allowed to navigate to a directory higher in the directory tree on the home directory device.

**Login exec file**

Displays the user’s login exec file which executes whenever the user successfully logs in to a console session.
view

Syntax
view [view-name] [detail]

Context
show>system>security

Description
This command displays the SNMP MIB views.

Parameters
view-name — Specify the name of the view to display output. If no view name is specified, the complete list of views displays.
detail — Displays detailed view information.

Output
View Output — The following table describes show view output fields.

Table 19: Show View Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>view name</td>
<td>The name of the view. Views control the accessibility of a MIB object within the configured MIB view and subtree.</td>
</tr>
<tr>
<td>oid tree</td>
<td>The object identifier of the ASN.1 subtree.</td>
</tr>
<tr>
<td>mask</td>
<td>The bit mask that defines a family of view subtrees.</td>
</tr>
<tr>
<td>permission</td>
<td>Indicates whether each view is included or excluded</td>
</tr>
<tr>
<td>No. of Views</td>
<td>Displays the total number of views.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-48# show system security view

Views

+-----------------+-----------------+-----------------+-----------------+
| view name       | oid tree        | mask            | permission      |
| iso             | 1               | 11111111        | included        |
| read1           | 1.1.1.1         | 11111111        | included        |
| write1          | 2.2.2.2         | 11111111        | included        |
| testview        | 1               | 11111111        | included        |
| testview        | 1.3.6.1.2       | 11111111        | excluded        |
| mgmt-view       | 1.3.6.1.2.1.2   |                | included        |
| mgmt-view       | 1.3.6.1.2.1.4   |                | included        |
| mgmt-view       | 1.3.6.1.2.1.5   |                | included        |
| mgmt-view       | 1.3.6.1.2.1.6   |                | included        |
| mgmt-view       | 1.3.6.1.2.1.7   |                | included        |
| mgmt-view       | 1.3.6.1.2.1.31  |                | included        |
| mgmt-view       | 1.3.6.1.2.1.77  |                | included        |
| mgmt-view       | 1.3.6.1.4.1.6527.3.1.2.3.7 | | included          |
| mgmt-view       | 1.3.6.1.4.1.6527.3.1.2.3.11 | | included          |
| vprn-view       | 1.3.6.1.2.1.2   |                | included        |
| vprn-view       | 1.3.6.1.2.1.4   |                | included        |
vprn-view  1.3.6.1.2.1.5  included
vprn-view  1.3.6.1.2.1.6  included
vprn-view  1.3.6.1.2.1.7  included
vprn-view  1.3.6.1.2.1.15  included
vprn-view  1.3.6.1.2.1.23  included
vprn-view  1.3.6.1.2.1.31  included
vprn-view  1.3.6.1.2.1.68  included
vprn-view  1.3.6.1.2.1.77  included
vprn-view  1.3.6.1.4.1.6527.3.1.2.3.7  included
vprn-view  1.3.6.1.4.1.6527.3.1.2.3.11  included
vprn-view  1.3.6.1.4.1.6527.3.1.2.20.1  included
no-security  1  included
no-security  1.3.6.1.6.3  excluded
no-security  1.3.6.1.6.3.10.2.1  included
no-security  1.3.6.1.6.3.11.2.1  included
no-security  1.3.6.1.6.3.15.1.1  included
on-security  2  00000000  included

No. of Views: 33

A:ALA-48#
Login Control

users

Syntax | users
Context | show
Description | Displays console user login and connection information.
Output | Users Output — The following table describes show users output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>The user name.</td>
</tr>
<tr>
<td>Type</td>
<td>The user is authorized this access type.</td>
</tr>
<tr>
<td>From</td>
<td>The originating IP address.</td>
</tr>
<tr>
<td>Login time</td>
<td>The time the user logged in.</td>
</tr>
<tr>
<td>Idle time</td>
<td>The amount of idle time for a specific login.</td>
</tr>
<tr>
<td>Number of users</td>
<td>Displays the total number of users logged in.</td>
</tr>
</tbody>
</table>

Sample Console Users Output

A:ALA-7# show users

<table>
<thead>
<tr>
<th>User</th>
<th>Type</th>
<th>From</th>
<th>Login time</th>
<th>Idle time</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>testuser</td>
<td>Console</td>
<td>--</td>
<td>21FEB2007 04:58:55</td>
<td>0d 00:00:00</td>
<td>A</td>
</tr>
</tbody>
</table>

Number of users : 1
'A' indicates user is in admin mode

A:ALA-7#
Clear Commands

Authentication Commands

statistics

Syntax  statistics [interface ip-int-name | ip-address]
Context  clear>router>authentication
Description  This command clears authentication statistics.
Parameters  

- **ip-int-name** — Clears the authentication statistics for the specified interface name. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

- **ip-address** — Clears the authentication statistics for the specified IP address.
CPM Filter Commands

ip-filter

Syntax: ip-filter [entry entry-id]
Context: clear>cpm-filter
Description: This command clears IP filter statistics.
Parameters:
- **entry entry-id** — Specifies a particular CPM IP filter entry.
  **Values**: 1 — 2048

mac-filter

Syntax: mac-filter [entry entry-id]
Context: clear>cpm-filter
Description: This command clears MAC filter statistics.
Parameters:
- **entry entry-id** — Specifies a particular CPM MAC filter entry.
  **Values**: 1 — 2048

ipv6-filter

Syntax: ipv6-filter [entry entry-id]
Context: clear>cpm-filter
Description: This command clears IPv6 filter information.
Parameters:
- **entry entry-id** — Specifies a particular CPM IPv6 filter entry.
  **Values**: 1 — 2048
**CPU Protection Commands**

**cpu-protection**

Syntax: `cpu-protection`

Context: clear

Description: This command enables the context to clear CPU protection data.

**excessive-sources**

Syntax: `excessive-sources`

Context: clear>cpu-protection

Description: This command clears the records of sources exceeding their per-source rate limit.

**protocol-protection**

Syntax: `protocol-protection`

Context: clear>cpu-protection

Description: This command clears the interface counts of packets dropped by protocol protection.

**violators**

Syntax: `violators [port][interface][sap]`

Context: clear>cpu-protection

Description: This command clears the rate limit violator record.

Parameters:
- `port` — Clears entries for ports.
- `interface` — Clears entries for interfaces.
- `sap` — Clears entries for SAPs.
Debug Commands

radius

**Syntax**

```
radius [detail] [hex]
noradius
```

**Context**
debug

**Description**
This command enables debugging for RADIUS connections. The `no` form of the command disables the debugging.

**Parameters**
- **detail** — Displays detailed output.
- **hex** — Displays the packet dump in hex format.
In This Chapter

This chapter provides information to configure SNMP.

Topics in this chapter include:

- SNMP Overview on page 218
  - SNMP Architecture on page 218
  - Management Information Base on page 218
  - SNMP Protocol Operations on page 219
  - SNMP Versions on page 219
  - Management Information Access Control on page 220
  - User-Based Security Model Community Strings on page 221
  - Views on page 221
  - Access Groups on page 221
  - Users on page 222
- Which SNMP Version to Use? on page 223
- Configuration Notes on page 225
SNMP Architecture

The Service Assurance Manager (SAM) is comprised of two elements: managers and agents. The manager is the entity through which network management tasks are facilitated. Agents interface managed objects. Managed devices, such as bridges, hubs, routers, and network servers can contain managed objects. A managed object can be a configuration attribute, performance statistic, or control action that is directly related to the operation of a device.

Managed devices collect and store management information and use Simple Network Management Protocol (SNMP). SNMP is an application-layer protocol that provides a message format to facilitate communication between SNMP managers and agents. SNMP provides a standard framework to monitor and manage devices in a network from a central location.

An SNMP manager controls and monitors the activities of network hosts which use SNMP. An SNMP manager can obtain (get) a value from an SNMP agent or store (set) a value in the agent. The manager uses definitions in the management information base (MIB) to perform operations on the managed device such as retrieving values from variables or blocks of data, replying to requests, and processing traps.

Between the SNMP agent and the SNMP manager the following actions can occur:

- The manager can get information from the agent.
- The manager can set the value of a MIB object that is controlled by an agent.
- The agent can send traps to notify the manager of significant events that occur on the 7750 SR-Series router.

Management Information Base

A MIB is a formal specifications document with definitions of management information used to remotely monitor, configure, and control a managed device or network system. The agent’s management information consists of a set of network objects that can be managed with SNMP. Object identifiers are unique object names that are organized in a hierarchical tree structure. The main branches are defined by the Internet Engineering Task Force (IETF). When requested, the Internet Assigned Numbers Authority (IANA) assigns a unique branch for use by a private organization or company. The branch assigned to Alcatel-Lucent (TiMetra) is 1.3.6.1.4.1.6527.
The SNMP agent provides management information to support a collection of IETF specified MIBs and a number of MIBs defined to manage device parameters and network data unique to Alcatel-Lucent’s 7750 SR-Series router.

---

**SNMP Protocol Operations**

Between the SNMP agent and the SNMP manager the following actions can occur:

- The manager can get information from the agent.
- The manager can set the value of a MIB object that is controlled by an agent.
- The agent notifies the manager of significant events that occur on the 7750 SR-Series router.

---

**SNMP Versions**

The agent supports multiple versions of the SNMP protocol.

- SNMP Version 1 (SNMPv1) is the original Internet-standard network management framework.
  SNMPv1 uses a community string match for authentication.
- The 7750 SR OS implementation uses SNMPv2c, the community-based administrative framework for SNMPv2. SNMPv2c uses a community string match for authentication.
- In SNMP Version 3 (SNMPv3), USM defines the user authentication and encryption features. View Access Control MIB (VACM) defines the user access control features. The SNMP-COMMUNITY-MIB is used to associate SNMPv1/SNMPv2c community strings with SNMPv3 VACM access control.
  SNMPv3 uses a username match for authentication.
Management Information Access Control

By default, the 7750 SR OS implementation of SNMP uses SNMPv3. SNMPv3 incorporates security model and security level features. A security model is the authentication type for the group and the security level is the permitted level of security within a security model. The combination of the security level and security model determines which security mechanism handles an SNMP packet.

To implement SNMPv1 and SNMPv2c configurations, several access groups are predefined. These access groups provide standard read-only, read-write, and read-write-all access groups and views that can simply be assigned community strings. In order to implement SNMP with security features, security models, security levels, and USM communities must be explicitly configured. Optionally, additional views which specify more specific OIDs (MIB objects in the subtree) can be configured.

Access to the management information in as SNMPv1/SNMPv2c agent is controlled by the inclusion of a community name string in the SNMP request. The community defines the subset of the agent’s managed objects can be accessed by the requester. It also defines what type of access is allowed: read-only or read-write.

The use of community strings provide minimal security and context checking for both agents and managers that receive requests and initiate trap operations. A community string is a text string that acts like a password to permit access to the agent on the 7750 SR-Series router.

Alcatel-Lucent’s implementation of SNMP has defined three levels of community-named access:

- Read-Only permission — Grants only read access to objects in the MIB, except security objects.
- Read-Write permission — Grants read and write access to all objects in the MIB, except security objects.
- Read-Write-All permission — Grants read and write access to all objects in the MIB, including security objects.
User-Based Security Model Community Strings

User-based security model (USM) community strings associates a community string with an SNMPv3 access group and its view. The access granted with a community string is restricted to the scope of the configured group.

Views

Views control the access to a managed object. The total MIB of a 7750 SR-Series router can be viewed as a hierarchical tree. When a view is created, either the entire tree or a portion of the tree can be specified and made available to a user to manage the objects contained in the subtree. Object identifiers (OIDs) uniquely identify managed objects. A view defines the type of operations for the view such as read, write, or notify.

OIDs are organized in a hierarchical tree with specific values assigned to different organizations. A view defines a subset of the agent’s managed objects controlled by the access rules associated with that view.

Pre-defined views are available that are particularly useful when configuring SNMPv1 and SNMPv2c.

The Alcatel-Lucent SNMP agent associates SNMPv1 and SNMPv2c community strings with a SNMPv3 view.

Access Groups

Access groups associate a user group and a security model to the views the group can access. An access group is defined by a unique combination of a group name, security model (SNMPv1, SNMPv2c, or SNMPv3), and security level (no-authorization-no-privacy, authorization-no-privacy, or privacy).

An access group, in essence, is a template which defines a combination of access privileges and views. A group can be associated to one or more network users to control their access privileges and views.

Additional access parameters must be explicitly configured if the preconfigured access groups and views for SNMPv1 and SNMPv2c do not meet your security requirements.
Users

By default, authentication and encryption parameters are not configured. Authentication parameters which a user must use in order to be validated by the 7750 SR device can be modified. SNMP authentication allows the device to validate the managing node that issued the SNMP message and determine if the message has been tampered with.

User access and authentication privileges must be explicitly configured. In a user configuration, a user is associated with an access group, which is a collection of users who have common access privileges and views (see Access Groups).
Which SNMP Version to Use?

SNMPv1 and SNMPv2c do not provide security, authentication, or encryption. Without authentication, a non authorized user could perform SNMP network management functions and eavesdrop on management information as it passes from system to system. Many SNMPv1 and SNMPv2c implementations are restricted read-only access, which, in turn, reduces the effectiveness of a network monitor in which network control applications cannot be supported.

To implement SNMPv3, an authentication and encryption method must be assigned to a user in order to be validated by the 7750 SR device. SNMP authentication allows the router to validate the managing node that issued the SNMP message and determine if the message was tampered with.

Figure 4 depicts the configuration requirements to implement SNMPv1/SNMPv2c, and SNMPv3.
Which SNMP Version to Use?

Figure 4: SNMPv1 and SNMPv2c Configuration and Implementation Flow
Configuration Notes

This section describes SNMP configuration caveats.

General

- To avoid management systems attempting to manage a partially booted system, SNMP will remain in a shut down state if the configuration file fails to complete during system startup. While shutdown, SNMP gets and sets are not processed. However, notifications are issued if an SNMP trap group has been configured.

In order to enable SNMP, the portions of the configuration that failed to load must be initialized properly. Start SNMP with the `config>system>snmp>no shutdown` CLI command.

- Use caution when changing the SNMP engine ID. If the SNMP engine ID is changed in the `config>system>snmp>engineID engine-id` context, the current configuration must be saved and a reboot must be executed. If not, the previously configured SNMP communities and logger trap-target notify communities will not be valid for the new engine ID.
Configuring SNMP with CLI

This section provides information about configuring SNMP with CLI.

Topics in this chapter include:

- SNMP Configuration Overview on page 228
- Basic SNMP Security Configuration on page 229
- Configuring SNMP Components on page 230
SNMP Configuration Overview

This section describes how to configure SNMP components which apply to SNMPv1 and SNMPv2c, and SNMPv3 on the 7750 SR-Series router.

- Configuring SNMPv1 and SNMPv2c on page 228
- Configuring SNMPv3 on page 228

Configuring SNMPv1 and SNMPv2c

Alcatel-Lucent 7750 SR-Series routers are based on SNMPv3. To use 7750 SR-Series routers with SNMPv1 and/or SNMPv2c, SNMP community strings must be configured. Three pre-defined access methods are available when SNMPv1 or SNMPv2c access is required. Each access method (r, rw, or rwa) is associated with an SNMPv3 access group that determines the access privileges and the scope of managed objects available. The `community` command is used to associate a community string with a specific access method and the required SNMP version (SNMPv1 or SNMPv2c). The access methods are:

- Read-Only — Grants read only access to the entire management structure with the exception of the security area.
- Read-Write — Grants read and write access to the entire management structure with the exception of the security area.
- Read-Write-All — Grants read and write access to the entire management structure, including security.

If the predefined access groups do not meet your access requirements, then additional access groups and views can be configured. The `usm-community` command is used to associate an access group with an SNMPv1 or SNMPv2c community string.

SNMP trap destinations are configured in the `config>log>snmp-trap-group` context.

Configuring SNMPv3

7750 SR OS implements SNMPv3. If security features other than the default views are required, then the following parameters must be configured:

- Configure views
- Configure access groups
- Configure SNMP users
Basic SNMP Security Configuration

This section provides information to configure SNMP parameters and provides examples of common configuration tasks. The minimal SNMP parameters are:

For SNMPv1 and SNMPv2c:

- Configure community string parameters.

For SNMPv3:

- Configure view parameters
- Configure SNMP group
- Configure access parameters
- Configure user with SNMP parameters

The following displays SNMP default views, access groups, and attempts parameters.

```
A:ALA-1>config>system>security>snmp# info detail
--
view iso subtree 1
 mask ff type included
 exit
view no-security subtree 1
 mask ff type included
 exit
view no-security subtree 1.3.6.1.6.3
 mask ff type excluded
 exit
view no-security subtree 1.3.6.1.6.3.10.2.1
 mask ff type included
 exit
view no-security subtree 1.3.6.1.6.3.11.2.1
 mask ff type included
 exit
view no-security subtree 1.3.6.1.6.3.15.1.1
 mask ff type included
 exit
access group snmp-ro security-model snmpv1 security-level no-auth-no-privacy read no-security notify no-security
 access group snmp-ro security-model snmpv2c security-level no-auth-no-privacy read no-security notify no-security
 access group snmp-rw security-model snmpv1 security-level no-auth-no-privacy read no-security write no-security notify no-security
 access group snmp-rw security-model snmpv2c security-level no-auth-no-privacy read no-security write no-security notify no-security
 access group snmp-rwa security-model snmpv1 security-level no-auth-no-privacy read iso write iso notify iso
 access group snmp-rwa security-model snmpv2c security-level no-auth-no-privacy read iso write iso notify iso
 access group snmp-trap security-model snmpv1 security-level no-auth-no-privacy notify iso
 access group snmp-trap security-model snmpv2c security-level no-auth-no-privacy notify iso
 attempts 20 time 5 lockout 10
```
Configuring SNMP Components

Use the CLI syntax displayed below to configure the following SNMP scenarios:

- Configuring a Community String on page 231
- Configuring View Options on page 232
- Configuring Access Options on page 233
- Configuring USM Community Options on page 235
- Configuring Other SNMP Parameters on page 236

**CLI Syntax:**

```plaintext
config>system>security>snmp
attempts [count] [time minutes1] [lockout minutes2]
community community-string access-permissions [version SNMP version]
usm-community community-string group group-name
view view-name subtree oid-value
 mask mask-value [type {included|excluded}]
access group group-name security-model security-model security-level
 security-level [context context-name [prefix-match]] [read
 view-name-1] [write view-name-2] [notify view-name-3]
```
Configuring a Community String

SNMPv1 and SNMPv2c community strings are used to define the relationship between an SNMP manager and agent. The community string acts like a password to permit access to the agent. The access granted with a community string is restricted to the scope of the configured group.

One or more of these characteristics associated with the string can be specified:

- Read-only, read-write, and read-write-all permission for the MIB objects accessible to the community.
- The SNMP version, SNMPv1 or SNMPv2c.

Default access features are pre-configured by the agent for SNMPv1/SNMPv2c.

Use the following CLI syntax to configure community options:

**CLI Syntax:**
```
config>system>security>snmp
community community-string access-permissions [version SNMP version]
```

The following displays an SNMP community configuration example:

```
*A:cses-A13>config>system>security>snmp# info
--
community "uTdc9j48PBRkxn5DcSjchk" hash2 rwa version both
community "Lla.RtAyRwZ" hash2 r version v2c
community "r0a159kIofg" hash2 r version both
--
*A:cses-A13>config>system>security>snmp#
```
Configuring View Options

Use the following CLI syntax to configure view options:

**CLI Syntax:**
```
config>system>security>snmp
 view view-name subtree oid-value
 mask mask-value [type {included|excluded}]
```

The following displays a view configuration example:

*A:cses-A13>config>system>security>snmp* info

```
--
view "testview" subtree "1"
 mask ff
exit
view "testview" subtree "1.3.6.1.2"
 mask ff type excluded
exit
community "uTdc9j48PBRkxn5DcSjchk" hash2 rwa version both
community "Lla.RtAyRW2" hash2 r version v2c
community "r0a159kIOfFg" hash2 r version both
--
*A:cses-A13>config>system>security>snmp#
```
Configuring Access Options

The **access** command creates an association between a user group, a security model and the views that the user group can access. Access must be configured unless security is limited to the preconfigured access groups and views for SNMPv1 and SNMPv2. An access group is defined by a unique combination of the group name, security model and security level.

Use the following CLI syntax to configure access features:

**CLI Syntax:**
```
config>system>security>snmp
 access group group-name security-model security-model
 security-level security-level [context context-name [prefix-match]]
 [read view-name-1] [write view-name-2] [notify view-name-3]
```

The following displays an access configuration with the view configurations.

```
*A:cses-A13>config>system>security>snmp# info
--
 view "testview" subtree "$1"
 mask ff
 exit
 view "testview" subtree "$1.3.6.1.2"
 mask ff type excluded
 exit
 access group "test" security-model usm security-level auth-no-pr
 ivacy read "testview" write "testview" notify "testview"
 community "uTdc9j48PBRkxn5DcSjchk" hash2 rwa version both
 community "Lla.RtAyRW2" hash2 r version v2c
 community "r0a159kIOfg" hash2 r version both
--
*A:cses-A13>config>system>security>snmp#
```
Use the following CLI syntax to configure user group and authentication parameters:

**CLI Syntax:**
```
config>system>security# user user-name
 access [ftp] [snmp] [console]
 snmp
 authentication [none] [[hash]{md5 key|sha key}] privacy
 {none|des-key key}
 group group-name
```

The following displays a user’s SNMP configuration example.

```
A:ALA-1>config>system>security# info
--
 user "testuser"
 access snmp
 snmp
 authentication hash md5 e14672e71d3e96e7a1e19472527ee969 privacy none
 group testgroup
 exit
exit
...
--
A:ALA-1>config>system>security#
```
Configuring USM Community Options

User-based security model (USM) community strings associate a community string with an SNMPv3 access group and its view. The access granted with a community string is restricted to the scope of the configured group.

By default, the 7750 SR OS implementation of SNMP uses SNMPv3. However, to implement SNMPv1 and SNMPv2c, USM community strings must be explicitly configured.

Use the following CLI syntax to configure USM community options:

**CLI Syntax:**
```
config>system>security>snmp
 usm-community community-string group group-name
```

The following displays a SNMP community configuration example:

```
A:ALA-1>config>system>security>snmp# info
--
view "testview" subtree "1"
 mask ff
 exit
 view "testview" subtree "1.3.6.1.2"
 mask ff type excluded
 exit
 access group "test" security-model usm security-level auth-no-pr
 ivacy read "testview" write "testview" notify "testview"
 community "uTdc9j48PBRkxn5DcJchk" hash2 rwa version both
 community "Lla.RtAyRW2" hash2 r version v2c
 community "r0a159kIOfg" hash2 r version both
--
A:ALA-1>config>system>security>snmp#
```

The group **grouptest** was configured in the **config>system>security>snmp>access** CLI context.
Configuring Other SNMP Parameters

Use the following CLI syntax to modify the system SNMP options:

**CLI Syntax:**
```
config>system>snmp
 engineID engine-id
 general-port port
 packet-size bytes
 no shutdown
```

The following example displays the system SNMP default values:

```
A:ALA-104>config>system>snmp# info detail
--
 shutdown
 engineID "0000xxxx000000000xxxxx00"
 packet-size 1500
 general-port 161
--
A:ALA-104>config>system>snmp#
```
SNMP Command Reference

Command Hierarchies

Configuration Commands

SNMP System Commands

config
  — system
    — snmp
      — engineID engine-id
      — no engineID
      — general-port port
      — no general-port
      — packet-size bytes
      — no packet-size
      — [no] shutdown

SNMP Security Commands

config
  — system
    — security
      — snmp
        — access group group-name security-model security-model security-level security-level [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]
        — no access group group-name [security-model security-model] [security-level security-level] [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]
        — attempts [count] [time minutes] [lockout minutes]
        — no attempts
        — community community-string access-permissions [version SNMP-version]
        — no community community-string
        — usm-community community-string group group-name
        — no usm-community community-string
        — view view-name subtree oid-value
        — no view view-name [subtree oid-value]
          — mask mask-value [type {included | excluded}]
          — no mask
The following commands configure user-specific SNMP features. Refer to the Security section for CLI syntax and command descriptions.

```
config
 — system
 — security
 — [no] user user-name
 — [no] snmp
 — authentication {[none] | [{hash} {md5 key-1 | sha key-1}]
 privacy {none | des-key key-2}]
 — group group-name
 — [no] group
```

Show Commands

```
show
 — snmp
 — counters
 — system
 — information
 — security
 — access-group [group-name]
 — authentication [statistics]
 — communities
 — password-options [entry-id]
 — password-options
 — per-peer-queueing
 — profile [profile-name]
 — ssh
 — user [user-id] [detail]
 — view [view-name] [detail]
```
Configuration Commands

SNMP System Commands

engineID

Syntax

[no] engineID engine-id

describe:
This command sets the SNMP engineID to uniquely identify the SNMPv3 node. By default, the
engineID is generated using information from the system backplane.

If SNMP engine ID is changed in the config>system>snmp> engineID engine-id context, the current
configuration must be saved and a reboot must be executed. If not, the previously configured SNMP
communities and logger trap-target notify communities will not be valid for the new engine ID.

Note: In conformance with IETF standard RFC 2274, User-based Security Model (USM) for
version 3 of the Simple Network Management Protocol (SNMPv3), hashing algorithms which generate
SNMPv3 MD5 or SHA security digest keys use the engineID. Changing the SNMP engineID
invalidates all SNMPv3 MD5 and SHA security digest keys and may render the node unmanageable.

When a chassis is replaced, use the engine ID of the first system and configure it in the new system to
preserve SNMPv3 security keys. This allows management stations to use their existing authentication
keys for the new system.

Ensure that the engine IDs are not used on multiple systems. A management domain can only have
one instance of each engineID.

The no form of the command reverts to the default setting.

Default

The engine ID is system generated.

Parameters

engine-id — An identifier from 10 to 64 hexadecimal digits (5 to 32 octet number), uniquely
identifying this SNMPv3 node. This string is used to access this node from a remote host with
SNMPv3.

general-port

Syntax

general-port port-number
no general-port

Context

cfg>system>snmp

Describe:
This command configures the port number used by this node to receive SNMP request messages and
to send replies. Note that SNMP notifications generated by the agent are sent from the port specified
in the config>log>snmp-trap-group>trap-target CLI command.
The no form of the command reverts to the default value.

**Default** 161  

**Parameters**

- **port-number** — The port number used to send SNMP traffic other than traps.  
  
  **Values** 1 — 65535 (decimal)

---

**packet-size**

**Syntax**

- packet-size bytes  
- no packet-size

**Context** config>system>snmp

**Description** This command configures the maximum SNMP packet size generated by this node. If the packet size exceeds the MTU size of the egress interface the packet will be fragmented.

The no form of this command to revert to default.

**Default** 1500 bytes

**Parameters**

- **bytes** — The SNMP packet size in bytes.  
  
  **Values** 484 — 9216

---

**snmp**

**Syntax** snmp

**Context** config>system

**Description** This command creates the context to configure SNMP parameters.

---

**shutdown**

**Syntax** [no] shutdown

**Context** config>system>snmp

**Description** This command administratively disables SNMP agent operations. System management can then only be performed using the command line interface (CLI). Shutting down SNMP does not remove or change configuration parameters other than the administrative state. This command does not prevent the agent from sending SNMP notifications to any configured SNMP trap destinations. SNMP trap destinations are configured under the **config>log>snmp-trap-group** context.

This command is automatically invoked in the event of a reboot when the processing of the configuration file fails to complete or when an SNMP persistent index file fails while the **bof persist on** command is enabled.

The no form of the command administratively enables SNMP which is the default state.

**Default** no shutdown
SNMP Security Commands

access group

Syntax  
[no] access group group-name security-model security-model security-level security-level [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]

Context  
config>system>security>snmp

Description  
This command creates an association between a user group, a security model, and the views that the user group can access. Access parameters must be configured unless security is limited to the preconfigured access groups and views for SNMPv1 and SNMPv2. An access group is defined by a unique combination of the group name, security model and security level.

Access must be configured unless security is limited to SNMPv1/SNMPv2c with community strings (see the community on page 243).

Default access group configurations cannot be modified or deleted.

To remove the user group with associated, security model(s), and security level(s), use:
no access group group-name

To remove a security model and security level combination from a group, use:
no access group group-name security-model {snmpv1 | snmpv2c | usm} security-level {no-auth-no-privacy | auth-no-privacy | privacy}

Default  
none

Parameters  
group-name — Specify a unique group name up to 32 characters.

security-model {snmpv1 | snmpv2c | usm} — Specifies the security model required to access the views configured in this node. A group can have multiple security models. For example, one view may only require SNMPv1/ SNMPv2c access while another view may require USM (SNMPv3) access rights.

security-level {no-auth-no-priv | auth-no-priv | privacy} — Specifies the required authentication and privacy levels to access the views configured in this node.

security-level no-auth-no-privacy — Specifies that no authentication and no privacy (encryption) is required. When configuring the user’s authentication, select the none option.

security-level auth-no-privacy — Specifies that authentication is required but privacy (encryption) is not required. When this option is configured, both the group and the user must be configured for authentication.

security-level privacy — Specifies that both authentication and privacy (encryption) is required. When this option is configured, both the group and the user must be configured for authentication. The user must also be configured for privacy.

context context-name — Specifies a set of SNMP objects that are associated with the context-name.
The context-name is treated as either a full context-name string or a context name prefix depending on the keyword specified (exact or prefix).

prefix-match — Specifies the context name prefix-match keywords, exact or prefix.

TiMOS VPRN context names begin with a vprn prefix. The numerical value is associated with the service ID that the VPRN was created with and identifies the service in the service domain. For example, when a new VPRN service is created such as config>service>vprn 2345 customer 1, a VPRN with context name vprn2345 is created.

The exact keyword specifies that an exact match between the context name and the prefix value is required. For example, when context vprn2345 exact is entered, matches for only vprn2345 are considered.

The prefix keyword specifies that only a match between the prefix and the starting portion of context name is required. If only the prefix keyword is specified, simple wildcard processing is used. For example, when context vprn prefix is entered, all vprn contexts are matched.

Default exact

read view-name — Specifies the keyword and variable of the view to read the MIB objects.

This command must be configured for each view to which the group has read access.

Default none

write view-name — Specifies the keyword and variable of the view to configure the contents of the agent.

This command must be configured for each view to which the group has write access.

Values Up to 32 characters

notify view-name — specifies keyword and variable of the view to send a trap about MIB objects.

This command must be configured for each view to which the group has notify access.

Values none

attempts

Syntax attempts [count] [time minutes1] [lockout minutes2]
no attempts

Context config>system>security>snmp

Description This command configures a threshold value of unsuccessful SNMP connection attempts allowed in a specified time frame. The command parameters are used to counter denial of service (DOS) attacks through SNMP.

If the threshold is exceeded, the host is locked out for the lockout time period.

If multiple attempts commands are entered, each command overwrites the previously entered command.

The no form of the command resets the parameters to the default values.

Default attempts 20 time 5 lockout 10 — 20 failed SNMP attempts allowed in a 5 minute period with a 10 minute lockout for the host if exceeded.
Parameters  

**count** — The number unsuccessful SNMP attempts allowed for the specified **time**.

**Default** 20  
**Values**  1 — 64

**time minutes**1 — The period of time, in minutes, that a specified number of unsuccessful attempts can be made before the host is locked out.

**Default** 5  
**Values**  0 — 60

**lockout minutes**2 — The lockout period in minutes where the host is not allowed to login.
When the host exceeds the attempted count times in the specified time, then that host is locked out from any further login attempts for the configured time period.

**Default** 10  
**Values**  0 — 1440

---

**community**

**Syntax**  
```
community community-string access-permissions [version SNMP-version]
no community community-string)
```

**Context**  
```
config>system>security>snmp
```

**Description**  
This command creates SNMP community strings for SNMPv1 and SNMPv2c access. This command is used in combination with the predefined access groups and views. To create custom access groups and views and associate them with SNMPv1 or SNMPv2c access use the usm-community command.

When configured, community implies a security model for SNMPv1 and SNMPv2c only. For SNMPv3 security, the **access group** command on page 241 must be configured.

The **no** form of the command removes a community string.

**Default**  
```
none
```

**Parameters**  

**community-string** — Configure the SNMPv1 / SNMPv2c community string.

**access-permissions** —  
- **r** — Grants only read access to objects in the MIB, except security objects.
- **rw** — Grants read and write access to all objects in the MIB, except security.
- **rwa** — Grants read and write access to all objects in the MIB, including security.
- **vpls-mgmt** — Assigns a unique SNMP community string to the management virtual router.

**version** {v1 | v2c | both} — Configures the scope of the community string to be for SNMPv1, SNMPv2c, or both SNMPv1 and SNMPv2c access.

**Default**  
```
both
```

mask

Syntax

```
mask mask-value [type {included | excluded}]
```

no mask

Context

cfg>system>security>snmp>view view-name

Description

The mask value and the mask type, along with the oid-value configured in the view command, determines the access of each sub-identifier of an object identifier (MIB subtree) in the view.

Each bit in the mask corresponds to a sub-identifier position. For example, the most significant bit for the first sub-identifier, the next most significant bit for the second sub-identifier, and so on. If the bit position on the sub-identifier is available, it can be included or excluded.

For example, the MIB subtree that represents MIB-II is 1.3.6.1.2.1. The mask that catches all MIB-II would be 0xfc or 0b11111100.

Only a single mask may be configured per view and OID value combination. If more than one entry is configured, each subsequent entry overwrites the previous entry.

Per RFC 2575, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP), each MIB view is defined by two sets of view subtrees, the included view subtrees, and the excluded view subtrees. Every such view subtree, both the included and the excluded ones, are defined in this table. To determine if a particular object instance is in a particular MIB view, compare the object instance’s object identifier (OID) with each of the MIB view’s active entries in this table. If none match, then the object instance is not in the MIB view. If one or more match, then the object instance is included in, or excluded from, the MIB view according to the value of vacmViewTreeFamilyType in the entry whose value of vacmViewTreeFamilySubtree has the most sub-identifiers.

The no form of this command removes the mask from the configuration.

Default

none

Parameters

```
mask-value — The mask value associated with the OID value determines whether the sub-identifiers are included or excluded from the view. (Default: all 1ˢ)
```

The mask can be entered either:

- In hex. For example, 0xfc.
- In binary. For example, 0b11111100.

Note: If the number of bits in the bit mask is less than the number of sub-identifiers in the MIB subtree, then the mask is extended with ones until the mask length matches the number of sub-identifiers in the MIB subtree.

```
type {included | excluded} — Specifies whether to include or exclude MIB subtree objects.
```

- included - All MIB subtree objects that are identified with a 1 in the mask are available in the view. (Default: included).
- excluded - All MIB subtree objects that are identified with a 1 in the mask are denied access in the view. (Default: included).

Default: included
**snmp**

**Syntax**

```
snmp
```

**Context**

`config>system>security`

**Description**

This command creates the context to configure SNMPv1, SNMPv2, and SNMPv3 parameters.

---

**usm-community**

**Syntax**

```
usm-community community-string group group-name
no usm-community community-string
```

**Context**

`config>system>security>snmp`

**Description**

This command is used to associate a community string with an SNMPv3 access group and its view. The access granted with a community string is restricted to the scope of the configured group.

Alcatel-Lucent’s SR OS implementation of SNMP uses SNMPv3. In order to implement SNMPv1 and SNMPv2c configurations, several access groups are predefined. In order to implement SNMP with security features (Version 3), security models, security levels, and USM communities must be explicitly configured. Optionally, additional views which specify more specific OIDs (MIB objects in the subtree) can be configured.

The no form of this command removes a community string.

**Default**

`none`

**Parameters**

- `community-string`: Configures the SNMPv1/SNMPv2c community string to determine the SNMPv3 access permissions to be used.
- `group`: Specify the group that governs the access rights of this community string. This group must be configured first in the `config system security snmp access group` context. (Default: `none`)

---

**view**

**Syntax**

```
view view-name subtree oid-value
no view view-name [subtree oid-value]
```

**Context**

`config>system>security>snmp`

**Description**

This command configures a view. Views control the accessibility of a MIB object within the configured MIB view and subtree. Object identifiers (OIDs) uniquely identify MIB objects in the subtree. OIDs are organized hierarchically with specific values assigned by different organizations.

Once the subtree (OID) is identified, a mask can be created to select the portions of the subtree to be included or excluded for access using this particular view. See the `mask` command. The view(s) configured with this command can subsequently be used in read, write, and notify commands which
are used to assign specific access group permissions to created views and assigned to particular access groups.

Multiple subtrees can be added or removed from a view name to tailor a view to the requirements of the user access group.

The `no view view-name` command removes a view and all subtrees.

The `no view view-name subtree oid-value` removes a sub-tree from the view name.

**Default**

No views are defined.

**Parameters**

`view-name` — Enter a 1 to 32 character view name. (Default: `none`)

`oid-value` — The object identifier (OID) value for the `view-name`. This value, for example, 1.3.6.1.6.3.11.2.1, combined with the mask and include and exclude statements, configures the access available in the view.

It is possible to have a view with different subtrees with their own masks and include and exclude statements. This allows for customizing visibility and write capabilities to specific user requirements.
Show Commands

counters

Syntax
counters

Context
show>snmp

Description
This command displays SNMP counters information. SNMP counters will continue to increase even when SNMP is shut down. Some internal modules communicate using SNMP packets.

Output

Counters Output — The following table describes SNMP counters output fields.

Table 21: Counters Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in packets</td>
<td>Displays the total number of messages delivered to SNMP from the transport service.</td>
</tr>
<tr>
<td>in gets</td>
<td>Displays the number of SNMP get request PDUs accepted and processed by SNMP.</td>
</tr>
<tr>
<td>in getnexts</td>
<td>Displays the number of SNMP get next PDUs accepted and processed by SNMP.</td>
</tr>
<tr>
<td>in sets</td>
<td>Displays the number of SNMP set request PDUs accepted and processed by SNMP.</td>
</tr>
<tr>
<td>out packets</td>
<td>Displays the total number of SNMP messages passed from SNMP to the transport service.</td>
</tr>
<tr>
<td>out get responses</td>
<td>Displays the number of SNMP get response PDUs generated by SNMP.</td>
</tr>
<tr>
<td>out traps</td>
<td>Displays the number of SNMP Trap PDUs generated by SNMP.</td>
</tr>
<tr>
<td>variables requested</td>
<td>Displays the number of MIB objects requested by SNMP.</td>
</tr>
<tr>
<td>variables set</td>
<td>Displays the number of MIB objects set by SNMP as the result of receiving valid SNMP set request PDUs.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show snmp counters
SNMP counters:
in packets: 463
in gets     : 93
in getnexts : 0
in sets     : 370
out packets:  463

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>out get responses : 463</td>
<td>out traps : 0</td>
</tr>
<tr>
<td>variables requested: 33</td>
<td>variables set : 497</td>
</tr>
</tbody>
</table>

A:ALA-1#

information

Syntax  information
Context show>system
Description This command lists the SNMP configuration and statistics.
Output  System Information Output Fields — The following table describes system information output fields.

Table 22: Show System Information Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>The name configured for the device.</td>
</tr>
<tr>
<td>System Contact</td>
<td>The text string that identifies the contact name for the device.</td>
</tr>
<tr>
<td>System Location</td>
<td>The text string that identifies the location of the device.</td>
</tr>
<tr>
<td>System Coordinates</td>
<td>The text string that identifies the system coordinates for the device location. For example, “37.390 -122.0550” is read as latitude 37.390 north and longitude 122.0550 west.</td>
</tr>
<tr>
<td>System Up Time</td>
<td>The time since the last reboot.</td>
</tr>
<tr>
<td>SNMP Port</td>
<td>The port which SNMP sends responses to management requests.</td>
</tr>
<tr>
<td>SNMP Engine ID</td>
<td>The ID for either the local or remote SNMP engine to uniquely identify the SNMPv3 node.</td>
</tr>
<tr>
<td>SNMP Max Message Size</td>
<td>The maximum size SNMP packet generated by this node.</td>
</tr>
<tr>
<td>SNMP Admin State</td>
<td>Enabled — SNMP is administratively enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — SNMP is administratively disabled.</td>
</tr>
<tr>
<td>SNMP Oper State</td>
<td>Enabled — SNMP is operationally enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — SNMP is operationally disabled.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SNMP Index Boot Status</td>
<td><strong>Persistent</strong> — Persistent indexes at the last system reboot was enabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Disabled</strong> — Persistent indexes at the last system reboot was disabled.</td>
</tr>
<tr>
<td>SNMP Sync State</td>
<td>The state when the synchronization of configuration files between the primary and secondary CPMs finish.</td>
</tr>
<tr>
<td>Telnet/SSH/FTP Admin</td>
<td>Displays the administrative state of the Telnet, SSH, and FTP sessions.</td>
</tr>
<tr>
<td>Telnet/SSH/FTP Oper</td>
<td>Displays the operational state of the Telnet, SSH, and FTP sessions.</td>
</tr>
<tr>
<td>BOF Source</td>
<td>The boot location of the BOF.</td>
</tr>
<tr>
<td>Image Source</td>
<td><strong>primary</strong> — Specifies whether the image was loaded from the primary location specified in the BOF.</td>
</tr>
<tr>
<td></td>
<td><strong>secondary</strong> — Specifies whether the image was loaded from the secondary location specified in the BOF.</td>
</tr>
<tr>
<td></td>
<td><strong>tertiary</strong> — Specifies whether the image was loaded from the tertiary location specified in the BOF.</td>
</tr>
<tr>
<td>Config Source</td>
<td><strong>primary</strong> — Specifies whether the configuration was loaded from the primary location specified in the BOF.</td>
</tr>
<tr>
<td></td>
<td><strong>secondary</strong> — Specifies whether the configuration was loaded from the secondary location specified in the BOF.</td>
</tr>
<tr>
<td></td>
<td><strong>tertiary</strong> — Specifies whether the configuration was loaded from the tertiary location specified in the BOF.</td>
</tr>
<tr>
<td>Last Booted Config File</td>
<td>Displays the URL and filename of the configuration file used for the most recent boot.</td>
</tr>
<tr>
<td>Last Boot Cfg Version</td>
<td>Displays the version of the configuration file used for the most recent boot.</td>
</tr>
<tr>
<td>Last Boot Config Header</td>
<td>Displays header information of the configuration file used for the most recent boot.</td>
</tr>
<tr>
<td>Last Boot Index Version</td>
<td>Displays the index version used in the most recent boot.</td>
</tr>
<tr>
<td>Last Boot Index Header</td>
<td>Displays the header information of the index used in the most recent boot.</td>
</tr>
<tr>
<td>Last Saved Config</td>
<td>Displays the filename of the last saved configuration.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Time Last Saved</td>
<td>Displays the time the configuration was most recently saved.</td>
</tr>
<tr>
<td>Changes Since Last Save</td>
<td><strong>Yes</strong> – The configuration changed since the last save.</td>
</tr>
<tr>
<td></td>
<td><strong>No</strong> – The configuration has not changed since the last save.</td>
</tr>
<tr>
<td>Time Last Modified</td>
<td>Displays the time of the last modification.</td>
</tr>
<tr>
<td>Max Cfg/BOF Backup Rev</td>
<td>The maximum number of backup revisions maintained for a configuration file.</td>
</tr>
<tr>
<td></td>
<td>This value also applies to the number of revisions maintained for the BOF file.</td>
</tr>
<tr>
<td>Cfg-OK Script</td>
<td><strong>URL</strong> – The location and name of the CLI script file executed following successful completion of the boot-up configuration file execution.</td>
</tr>
<tr>
<td></td>
<td><strong>N/A</strong> – No CLI script file is executed.</td>
</tr>
<tr>
<td>Cfg-OK Script Status</td>
<td><strong>Successful/Failed</strong> – The results from the execution of the CLI script file specified in the Cfg-OK Script location.</td>
</tr>
<tr>
<td></td>
<td><strong>Not used</strong> – No CLI script file was executed.</td>
</tr>
<tr>
<td>Cfg-Fail Script</td>
<td><strong>URL</strong> – The location and name of the CLI script file executed following a failed boot-up configuration file execution.</td>
</tr>
<tr>
<td></td>
<td><strong>Not used</strong> – No CLI script file was executed.</td>
</tr>
<tr>
<td>Cfg-Fail Script Status</td>
<td><strong>Successful/Failed</strong> – The results from the execution of the CLI script file specified in the Cfg-Fail Script location.</td>
</tr>
<tr>
<td></td>
<td><strong>Not used</strong> – No CLI script file was executed.</td>
</tr>
<tr>
<td>Management IP address</td>
<td>The Management IP address of the node.</td>
</tr>
<tr>
<td>DNS Server</td>
<td>The DNS address of the node.</td>
</tr>
<tr>
<td>DNS Domain</td>
<td>The DNS domain name of the node.</td>
</tr>
<tr>
<td>BOF Static Routes</td>
<td><strong>To</strong> – The static route destination.</td>
</tr>
<tr>
<td></td>
<td><strong>Next Hop</strong> – The next hop IP address used to reach the destination.</td>
</tr>
<tr>
<td></td>
<td><strong>Metric</strong> – Displays the priority of this static route versus other static routes.</td>
</tr>
<tr>
<td></td>
<td><strong>None</strong> – No static routes are configured.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-1# show system information
-------------------------------------------------------------------------------
System Information
-------------------------------------------------------------------------------
System Name : ALA-1
System Type  : 7750 SR-12
System Version : B-0.0.I1204
System Contact :
System Location :
System Coordinates :
System Active Slot : A
System Up Time : 1 days, 02:12:57.84 (hr:min:sec)
SNMP Port : 161
SNMP Engine ID : 0000197f00000479ff000000
SNMP Max Message Size : 1500
SNMP Admin State : Enabled
SNMP Oper State : Enabled
SNMP Index Boot Status : Not Persistent
SNMP Sync State : OK
Telnet/SSH/FTP Admin : Enabled/Enabled/Disabled
Telnet/SSH/FTP Oper : Up/Up/Down
BOF Source : cf1:
Image Source : primary
Config Source : primary
Last Booted Config File : ftp://172.22.184.249/./debby-sim1/debby-sim1-config.cfg
Last Boot Cfg Version : THU FEB 15 16:58:20 2007 UTC
Last Boot Config Header : # TiMOS-B=0.0.I1042 both/i386 Alcatel-Lucent SR 7750
Copyright (c) 2000-2007 Alcatel-Lucent. # All rights reserved. All use subject to applicable license agreements. # Built on Sun Feb 11 19:26:23 PST 2007 by builder in /rel0.0/I1042/panos/main # Generated THU FEB 11 16:58:20 2007 UTC
Last Boot Index Version : N/A
Last Boot Index Header : # TiMOS-B=0.0.I1042 both/i386 Alcatel-Lucent SR 7750
Copyright (c) 2000-2007 Alcatel-Lucent. # All rights reserved. All use subject to applicable license agreements. # Built on Sun Feb 11 19:26:23 PST 2007 by builder in /rel0.0/I1042/panos/main # Generated THU FEB 15 16:58:20 2007 UTC
Last Saved Config : N/A
Time Last Saved : N/A
Changes Since Last Save : No
Max Cfg/BOF Backup Rev : 5
Cfg-OK Script : N/A
Cfg-OK Script Status : not used
Cfg-Fail Script : N/A
Cfg-Fail Script Status : not used
Management IP Addr : 192.168.2.121/20
DNS Server : 192.168.1.246
DNS Domain : eng.timetra.com
BOF Static Routes :
access-group

Syntax       access-group group-name

Context      show>system>security

Description  This command displays access-group information.

Output       System Information Output — The following table describes the access-group output fields.

Table 23: Show System Information Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>Security model</td>
<td>The security model required to access the views configured in this node.</td>
</tr>
<tr>
<td>Security level</td>
<td>Specifies the required authentication and privacy levels to access the views configured in this node.</td>
</tr>
<tr>
<td>Read view</td>
<td>Specifies the view to read the MIB objects.</td>
</tr>
<tr>
<td>Write view</td>
<td>Specifies the view to configure the contents of the agent.</td>
</tr>
<tr>
<td>Notify view</td>
<td>Specifies the view to send a trap about MIB objects.</td>
</tr>
<tr>
<td>No. of access groups</td>
<td>The total number of configured access groups.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show system security access-group

-----------------------------------------------------------------------------------------------
Access Groups
-----------------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>group name</th>
<th>security</th>
<th>security</th>
<th>read</th>
<th>write</th>
<th>notify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>model</td>
<td>level</td>
<td>view</td>
<td>view</td>
<td>view</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------------------------
| snmp-ro    | snmpv1   | none     | no-security | no-security |
| snmp-ro    | snmpv2c  | none     | no-security | no-security |
| snmp-rw    | snmpv1   | none     | no-security | no-security |
authentication

Syntax  authentication [statistics]

Context  show>system>security

Description  This command displays authentication information.

Output  Authentication Output — The following table describes the authentication output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>The authentication order in which password authentication, authorization, and accounting is attempted among RADIUS, TACACS+, and local passwords.</td>
</tr>
<tr>
<td>server address</td>
<td>The address of the RADIUS, TACACS+, or local server.</td>
</tr>
<tr>
<td>status</td>
<td>The status of the server.</td>
</tr>
<tr>
<td>type</td>
<td>The type of server.</td>
</tr>
<tr>
<td>timeout (secs)</td>
<td>Number of seconds the server will wait before timing out.</td>
</tr>
<tr>
<td>single connection</td>
<td>Specifies whether a single connection is established with the server. The connection is kept open and is used by all the TELNET/SSH/FTP sessions for AAA operations.</td>
</tr>
<tr>
<td>retry count</td>
<td>The number of attempts to retry contacting the server.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-49>show>system>security# authentication

===============================================================================
Authentication                  sequence : radius tacplus local
===============================================================================
server address   status  type    timeout(secs)  single connection  retry count
-------------------------------------------------------------------------------
10.10.10.103     up      radius  5              n/a                5
10.10.0.1        up      radius  5              n/a                5
10.10.0.2        up      radius  5              n/a                5
10.10.0.3        up      radius  5              n/a                5
-------------------------------------------------------------------------------
radius admin status  : down
_tacplus admin status : up
health check         : enabled
-------------------------------------------------------------------------------
No. of Servers: 4
===============================================================================
A:ALA-49>show>system>security#

communities

Syntax      communities
Context     show>system>security
Description This command lists SNMP communities and characteristics.
Output      Communities Output — The following table describes the communities output fields.
Table 24: Show Communities Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>The community string name for SNMPv1 and SNMPv2c access only.</td>
</tr>
<tr>
<td>Access</td>
<td>r — The community string allows read-only access.</td>
</tr>
<tr>
<td></td>
<td>rw — The community string allows read-write access.</td>
</tr>
<tr>
<td></td>
<td>rwa — The community string allows read-write access.</td>
</tr>
<tr>
<td></td>
<td>mgmt — The unique SNMP community string assigned to the management router.</td>
</tr>
<tr>
<td>View</td>
<td>The view name.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version.</td>
</tr>
<tr>
<td>Group Name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>No of Communities</td>
<td>The total number of configured community strings.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show system security communities
=============================================================================
<table>
<thead>
<tr>
<th>community</th>
<th>access</th>
<th>view</th>
<th>version</th>
<th>group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>private</td>
<td>rw</td>
<td>iso</td>
<td>v1 v2c</td>
<td>snmp-rwa</td>
</tr>
<tr>
<td>public</td>
<td>r</td>
<td>no-security</td>
<td>v1 v2c</td>
<td>snmp-ro</td>
</tr>
<tr>
<td>rwa</td>
<td>rwa</td>
<td>n/a</td>
<td>v2c</td>
<td>snmp-trap</td>
</tr>
</tbody>
</table>
=============================================================================
No. of Communities: 3
=============================================================================
A:ALA-1#

password-options

Syntax    password-options
Context    show>system>security
Description This command displays password options.
Output

Password-Options Output — The following table describes password-options output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days</td>
<td>Number of days a user password is valid before the user must change his password.</td>
</tr>
<tr>
<td>Number of invalid attempts permitted per login</td>
<td>Displays the maximum number of unsuccessful login attempts allowed for a user.</td>
</tr>
<tr>
<td>Time in minutes per login attempt</td>
<td>Displays the time in minutes that user is to be locked out.</td>
</tr>
<tr>
<td>Lockout period (when threshold breached)</td>
<td>Displays the number of minutes the user is locked out if the threshold of unsuccessful login attempts has exceeded.</td>
</tr>
<tr>
<td>Authentication order</td>
<td>Displays the most preferred method to authenticate and authorize a user.</td>
</tr>
<tr>
<td>Configured complexity options</td>
<td>Displays the complexity requirements of locally administered passwords, HMAC-MD5-96, HMAC-SHA-96 and DES-keys configured in the authentication section.</td>
</tr>
<tr>
<td>Minimum password length</td>
<td>Displays the minimum number of characters required in the password.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-48>show>system>security# password-options
===============================================================================
<table>
<thead>
<tr>
<th>Password Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days</td>
</tr>
<tr>
<td>Number of invalid attempts permitted per login</td>
</tr>
<tr>
<td>Time in minutes per login attempt</td>
</tr>
<tr>
<td>Lockout period (when threshold breached)</td>
</tr>
<tr>
<td>Authentication order</td>
</tr>
<tr>
<td>Configured complexity options</td>
</tr>
<tr>
<td>Minimum password length</td>
</tr>
</tbody>
</table>

per-peer-queuing

Syntax  per-peer-queuing

Context  show>system>security

Description  This command displays displays the number of queues in use by the Qchip, which in turn is used by PPQ, CPM filter, SAP, etc.
Output  

**Per-Peer Queuing Output** — The following table describes the per-peer-queuing output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Peer Queuing</td>
<td>Displays whether per-peer-queuing is enabled or disabled. When enabled, a peering session is established and the router will automatically allocate a separate CPM hardware queue for that peer. When disabled, no hardware queuing per peer occurs.</td>
</tr>
<tr>
<td>Total Num of Queues</td>
<td>Displays the total number of CPM hardware queues.</td>
</tr>
<tr>
<td>Num of Queues In Use</td>
<td>Displays the number of CPM hardware queues that are in use.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-48>show>system>security# per-peer-queuing

CPM Hardware Queuing

Per Peer Queuing : Enabled
Total Num of Queues : 8192
Num of Queues In Use : 0

A:ALA-48>show>system>security#
```

**profile**

**Syntax**  
```
profile [profile-name]
```

**Context**  
```
show>system>security
```

**Description**  
This command displays user profiles for CLI command tree permissions.

**Parameters**  
`profile-name` — Specify the profile name to display information about a single user profile. If no profile name is displayed, the entire list of profile names are listed.

**Output**  

**Profile Output** — The following table describes the profile output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Profile</td>
<td><code>default</code> — The action to be given to the user profile if none of the entries match the command.</td>
</tr>
<tr>
<td></td>
<td><code>administrative</code> — specifies the administrative state for this profile.</td>
</tr>
</tbody>
</table>
### Label | Description
--- | ---
**Def. Action** | none  – No action is given to the user profile when none of the entries match the command.
  
  permit-all  – The action to be taken when an entry matches the command.

**Entry** | 10 - 80  – Each entry represents the configuration for a system user.

**Description** | A text string describing the entry.

**Match Command** | administrative  – Enables the user to execute all commands.
  
  configure system security  – Enables the user to execute the `config system security` command.
  
  enable-admin  – Enables the user to enter a special administrative mode by entering the `enable-admin` command.
  
  exec  – Enables the user to execute (exec) the contents of a text file as if they were CLI commands entered at the console.
  
  exit  – Enables the user to execute the `exit` command.
  
  help  – Enables the user to execute the `help` command.
  
  logout  – Enables the user to execute the `logout` command.
  
  password  – Enables the user to execute the `password` command.
  
  show config  – Enables the user to execute the `show config` command.
  
  show system security  – Enables the user to execute the `show system security` command.

**Action** | 
  
  permit  – Enables the user access to all commands.
  
  deny-all  – Denies the user access to all commands.

---

A:ALA-48>config>system>snmp# show system security profile
===============================================================================
User Profile
===============================================================================
User Profile : test
Def. Action : none
===============================================================================
Entry : 1
Description :
Match Command:
Action : unknown
User Profile : default
Def. Action : none

Entry : 10
Description :
Match Command: exec
Action : permit

Entry : 20
Description :
Match Command: exit
Action : permit

Entry : 30
Description :
Match Command: help
Action : permit

...  

Entry : 80
Description :
Match Command: enable-admin
Action : permit

User Profile : administrative
Def. Action : permit-all

Entry : 10
Description :
Match Command: configure system security
Action : permit

Entry : 20
Description :
Match Command: show system security
Action : permit

No. of profiles: 3

ssh

Syntax ssh

Context show>system>security

Description This command displays all the SSH sessions as well as the SSH status and fingerprint.
Output  SSH Options Output — The following table describes SSH output fields.

Table 25: Show SSH Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH status</td>
<td><strong>SSH is enabled</strong> — Displays that SSH server is enabled.</td>
</tr>
<tr>
<td></td>
<td><strong>SSH is disabled</strong> — Displays that SSH server is disabled.</td>
</tr>
<tr>
<td>Key fingerprint</td>
<td>The key fingerprint is the server’s identity. Clients trying to connect to</td>
</tr>
<tr>
<td></td>
<td>the server verify the server’s fingerprint. If the server fingerprint is</td>
</tr>
<tr>
<td></td>
<td>not known, the client may not continue with the SSH session since the server</td>
</tr>
<tr>
<td></td>
<td>might be spoofed.</td>
</tr>
<tr>
<td>Connection</td>
<td>The IP address of the connected router(s) (remote client).</td>
</tr>
<tr>
<td>Encryption</td>
<td>des — Data encryption using a private (secret) key.</td>
</tr>
<tr>
<td></td>
<td>3des — An encryption method that allows proprietary information to be</td>
</tr>
<tr>
<td></td>
<td>transmitted over untrusted networks.</td>
</tr>
<tr>
<td>Username</td>
<td>The name of the user.</td>
</tr>
<tr>
<td>Number of SSH sessions</td>
<td>The total number of SSH sessions.</td>
</tr>
</tbody>
</table>

Sample output

A:ALA-7#  show system security ssh
SSH is enabled
Connection Encryption Username
-------------------------------
192.168.5.218 3des admin
-------------------------------
Number of SSH sessions : 1
-------------------------------
A:ALA-7#

A:ALA-49>config>system>security# show system security ssh
SSH is disabled
A:ALA-49>config>system>security#
user

Syntax  
users [user-id] [detail]

Context  
show>system>security

Description  
This command displays user information.

Output  
User Output — The following table describes user information output fields.

Table 26: Show User Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>The name of a system user.</td>
</tr>
<tr>
<td>Need New PWD</td>
<td>Yes — The user must change his password at the next login.</td>
</tr>
<tr>
<td>No — The user is not forced to change his password at the next login.</td>
<td></td>
</tr>
<tr>
<td>User Permission</td>
<td>Console — Specifies whether the user is permitted console/Telnet access.</td>
</tr>
<tr>
<td></td>
<td>FTP — Specifies whether the user is permitted FTP access.</td>
</tr>
<tr>
<td></td>
<td>SNMP — Specifies whether the user is permitted SNMP access.</td>
</tr>
<tr>
<td>Password expires</td>
<td>The date on which the current password expires.</td>
</tr>
<tr>
<td>Attempted logins</td>
<td>The number of times the user has attempted to login irrespective of whether the login succeeded or failed.</td>
</tr>
<tr>
<td>Failed logins</td>
<td>The number of unsuccessful login attempts.</td>
</tr>
<tr>
<td>Local Conf.</td>
<td>Y — Password authentication is based on the local password database.</td>
</tr>
<tr>
<td></td>
<td>N — Password authentication is not based on the local password database.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show system security user

===============================================================================
<table>
<thead>
<tr>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>user id           need    user permissions  password    attempted failed  local</td>
</tr>
<tr>
<td>new pwd console ftp snmp  expires     logins    logins  conf</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>admin             n       y       n   n     never       2         0       y</td>
</tr>
<tr>
<td>testuser          n       n       n   y     never       0         0       y</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Number of users : 2</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
</tbody>
</table>

A:ALA-1#
view

**Syntax**
view [view-name] [detail]

**Context**
show>system>security

**Description**
This command lists one or all views and permissions in the MIB-OID tree.

**Output**
**System Security View Output** — The following table describes system security view output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View name</td>
<td>The name of the view. Views control the accessibility of a MIB object within the configured MIB view and subtree.</td>
</tr>
<tr>
<td>OID tree</td>
<td>The Object Identifier (OID) value. OIDs uniquely identify MIB objects in the subtree.</td>
</tr>
<tr>
<td>Mask</td>
<td>The mask value and the mask type, along with the <em>oid-value</em> configured in the <em>view</em> command, determines the access of each sub-identifier of an object identifier (MIB subtree) in the view.</td>
</tr>
<tr>
<td>Permission</td>
<td>Included — Specifies to include MIB subtree objects. Excluded — Specifies to exclude MIB subtree objects.</td>
</tr>
<tr>
<td>No. of Views</td>
<td>The total number of configured views.</td>
</tr>
<tr>
<td>Group name</td>
<td>The access group name.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
A:ALA-1# show system security view
Views

<table>
<thead>
<tr>
<th>view name</th>
<th>oid tree</th>
<th>mask</th>
<th>permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso</td>
<td>1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3</td>
<td></td>
<td>excluded</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.10.2.1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.11.2.1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.15.1.1</td>
<td></td>
<td>included</td>
</tr>
</tbody>
</table>

No. of Views: 6
```

A:ALA-1#
A:ALA-1# show system security view no-security detail

Views

<table>
<thead>
<tr>
<th>view name</th>
<th>oid tree</th>
<th>mask</th>
<th>permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-security</td>
<td>1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3</td>
<td></td>
<td>excluded</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.10.2.1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.11.2.1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.15.1.1</td>
<td></td>
<td>included</td>
</tr>
</tbody>
</table>

No. of Views: 5

no-security used in

<table>
<thead>
<tr>
<th>group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-ro</td>
</tr>
<tr>
<td>snmp-rw</td>
</tr>
</tbody>
</table>

A:ALA-1#
Event and Accounting Logs

In This Chapter

This chapter provides information about configuring event and accounting logs in the 7750 SR.

Topics in this chapter include:

- Logging Overview on page 266
- Log Destinations on page 268
- Event Logs on page 273
  - Event Sources on page 274
  - Event Control on page 276
  - Log Manager and Event Logs on page 278
  - Event Filter Policies on page 279
  - Event Log Entries on page 280
  - Simple Logger Event Throttling on page 282
  - Default System Log on page 283
- Accounting Logs on page 284
  - Accounting Records on page 284
  - Accounting Files on page 295
  - Design Considerations on page 295
  - Reporting and Time-Based Accounting on page 296
- Configuration Notes on page 301
Logging Overview

The two primary types of logging supported in the 7750 SR OS are event logging and accounting logs.

Event logging controls the generation, dissemination and recording of system events for monitoring status and troubleshooting faults within the system. The 7750 SR groups events into three major categories or event sources:

- Security events — Events that pertain to attempts to breach system security.
- Change events — Events that pertain to the configuration and operation of the node.
- Main events — Events that pertain to 7750 SR OS applications that are not assigned to other event categories/sources.
- Debug events — Events that pertain to trace or other debugging information.

The following are events within the 7750 SR OS and have the following characteristics:

- A time stamp in UTC or local time.
- The generating application.
- A unique event ID within the application.
- The VRF-ID.
- A subject identifying the affected object.
- A short text description.

Event control assigns the severity for each application event and whether the event should be generated or suppressed. The severity numbers and severity names supported in the 7750 SR OS conform to ITU standards M.3100 X.733 & X.21 and are listed in Table 28.

Table 28: Event Severity Levels

<table>
<thead>
<tr>
<th>Severity Number</th>
<th>Severity Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cleared</td>
</tr>
<tr>
<td>2</td>
<td>indeterminate (info)</td>
</tr>
<tr>
<td>3</td>
<td>critical</td>
</tr>
<tr>
<td>4</td>
<td>major</td>
</tr>
<tr>
<td>5</td>
<td>minor</td>
</tr>
<tr>
<td>6</td>
<td>warning</td>
</tr>
</tbody>
</table>
Events that are suppressed by event control will not generate any event log entries. Event control maintains a count of the number of events generated (logged) and dropped (suppressed) for each application event. The severity of an application event can be configured in event control.

An event log within the 7750 SR OS associates the event sources with logging destinations. Examples of logging destinations include, the console session, a specific telnet or SSH session, memory logs, file destinations, SNMP trap groups and syslog destinations. A log filter policy can be associated with the event log to control which events will be logged in the event log based on combinations of application, severity, event ID range, VRF ID, and the subject of the event.

The 7750 SR accounting logs collect comprehensive accounting statistics to support a variety of billing models. The routers collect accounting data on services and network ports on a per-service class basis. In addition to gathering information critical for service billing, accounting records can be analyzed to provide insight about customer service trends for potential service revenue opportunities. Accounting statistics on network ports can be used to track link utilization and network traffic pattern trends. This information is valuable for traffic engineering and capacity planning within the network core.

Accounting statistics are collected according to the parameters defined within the context of an accounting policy. Accounting policies are applied to customer Service Access Points (SAPs) and network ports. Accounting statistics are collected by counters for individual service queues defined on the customer’s SAP or by the counters within forwarding class (FC) queues defined on the network ports.

The type of record defined within the accounting policy determines where a policy is applied, what statistics are collected and time interval at which to collect statistics.

The only supported destination for an accounting log is a compact flash system device (cf1: or cf2:). Accounting data is stored within a standard directory structure on the device in compressed XML format.
Log Destinations

Both event logs and accounting logs use a common mechanism for referencing a log destination. 7750 SR-Series routers support the following log destinations:

- Console on page 268
- Session on page 268
- Memory Logs on page 268
- Log Files on page 269
- SNMP Trap Group on page 271
- Syslog on page 271

Only a single log destination can be associated with an event log or with an accounting log. An event log can be associated with multiple event sources, but it can only have a single log destination.

A file destination is the only type of log destination that can be configured for an accounting log.

Console

Sending events to a console destination means the message will be sent to the system console. The console device can be used as an event log destination.

Session

A session destination is a temporary log destination which directs entries to the active telnet or SSH session for the duration of the session. When the session is terminated, for example, when the user logs out, the event log is removed. Event logs configured with a session destination are not stored in the configuration file. Event logs can direct log entries to the session destination.

Memory Logs

A memory log is a circular buffer. When the log is full, the oldest entry in the log is replaced with the new entry. When a memory log is created, the specific number of entries it can hold can be specified, otherwise it will assume a default size. An event log can send entries to a memory log destination.
Log Files

Log files can be used by both event logs and accounting logs and are stored on the compact flash devices (specifically cf1: or cf2:) in the file system. It is recommended that event and accounting logs not be configured on the cf3: device that is used for software images and bootup configuration.

A log file is identified with a single log file ID, but a log file will generally be composed of a number individual files in the file system. A log file is configured with a rollover parameter, expressed in minutes, which represents the length of time an individual log file should be written to before a new file is created for the relevant log file ID. The rollover time is checked only when an update to the log is performed. Thus, complying to this rule is subject to the incoming rate of the data being logged. For example, if the rate is very low, the actual rollover time may be longer than the configured value.

The retention time for a log file specifies the amount of time the file should be retained on the system based on the creation date and time of the file.

When a log file is created, only the compact flash device for the log file is specified. Log files are created in specific subdirectories with standardized names depending on the type of information stored in the log file.

Event log files are always created in the \log directory on the specified compact flash device. The naming convention for event log files is:

log eeff-timestamp

where:

- eef is the event log ID
- ff is the log file destination ID
- timestamp is the timestamp when the file is created in the form of yyyyymmd-hhmmss
  where:
  - yyyy is the four-digit year (for example, 2007)
  - mm is the two digit number representing the month (for example, 12 for December)
  - dd is the two digit number representing the day of the month (for example, 03 for the 3rd of the month)
  - hh is the two digit hour in a 24-hour clock (for example, 04 for 4 a.m.)
  - mm is the two digit minute (for example, 30 for 30 minutes past the hour)
  - ss is the two digit second (for example, 14 for 14 seconds)
Accounting log files are created in the `act-collect` directory on a compact flash device (specifically cf1 or cf2). The naming convention for accounting log files is nearly the same as for log files except the prefix `act` is used instead of the prefix `log`. The naming convention for accounting logs is:

```
act.aaff-timestamp.xml.gz
```

where:

- `aa` is the accounting policy ID
- `ff` is the log file destination ID
- `timestamp` is the timestamp when the file is created in the form of `yyyyMMdd-hHmmss`

where:

- `yyyy` is the four-digit year (for example, 2007)
- `mm` is the two digit number representing the month (for example, 12 for December)
- `dd` is the two digit number representing the day of the month (for example, 03 for the 3rd of the month)
- `hh` is the two digit hour in a 24-hour clock (for example, 04 for 4 a.m.)
- `mm` is the two digit minute (for example, 30 for 30 minutes past the hour)
- `ss` is the two digit second (for example, 14 for 14 seconds)

Accounting logs are `.xml` files created in a compressed format and have a `.gz` extension.

The `act-collect` directory is where active accounting logs are written. When an accounting log is rolled over, the active file is closed and archived in the `act` directory before a new active accounting log file created in `act-collect`. 

---

Log Destinations
SNMP Trap Group

An event log can be configured to send events to SNMP trap receivers by specifying an SNMP trap group destination.

An SNMP trap group can have multiple trap targets. Each trap target can have different operational parameters.

A trap destination has the following properties:

- The IP address of the trap receiver.
- The UDP port used to send the SNMP trap.
- SNMP version (v1, v2c, or v3) used to format the SNMP notification.
- SNMP community name for SNMPv1 and SNMPv2c receivers.
- Security name and level for SNMPv3 trap receivers.

For SNMP traps that will be sent out-of-band through the Management Ethernet port on the SF/CPM, the source IP address of the trap is the IP interface address defined on the Management Ethernet port. For SNMP traps that will be sent in-band, the source IP address of the trap is the system IP address of the 7750 SR.

Each trap target destination of a trap group receives the identical sequence of events as defined by the log ID and the associated sources and log filter applied.

Syslog

An event log can be configured to send events to one syslog destination. Syslog destinations have the following properties:

- Syslog server IP address.
- The UDP port used to send the syslog message.
- The Syslog Facility Code (0 - 23) (default 23 - local 7).
- The Syslog Severity Threshold (0 - 7) - events exceeding the configured level will be sent.
Because syslog uses eight severity levels whereas the 7750 SR-Series uses six internal severity levels, the severity levels are mapped to syslog severities. Table 29 displays the severity level mappings to syslog severities.

Table 29: 7750 SR-Series to Syslog Severity Level Mappings

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Numerical Severity (highest to lowest)</th>
<th>Syslog Configured Severity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>emergency</td>
<td>emergency</td>
<td>System is unusable</td>
</tr>
<tr>
<td>3</td>
<td>alert</td>
<td>alert</td>
<td>Action must be taken immediately</td>
</tr>
<tr>
<td>4</td>
<td>critical</td>
<td>critical</td>
<td>Critical conditions</td>
</tr>
<tr>
<td>5</td>
<td>error</td>
<td>error</td>
<td>Error conditions</td>
</tr>
<tr>
<td>6</td>
<td>warning</td>
<td>warning</td>
<td>Warning conditions</td>
</tr>
<tr>
<td>5</td>
<td>notice</td>
<td>notice</td>
<td>Normal but significant condition</td>
</tr>
<tr>
<td>1 cleared</td>
<td>info</td>
<td>info</td>
<td>Informational messages</td>
</tr>
<tr>
<td>2 indeterminate</td>
<td>debug</td>
<td>debug</td>
<td>Debug-level messages</td>
</tr>
</tbody>
</table>
Event Logs

Event logs are the means of recording system generated events for later analysis. Events are messages generated by the system by applications or processes within the 7750 SR.

Figure 5 depicts a function block diagram of event logging.

Figure 5: Event Logging Block Diagram
Event Sources

In Figure 5, the event sources are the main categories of events that feed the log manager.

- **Security** — The security event source is all events that affect attempts to breach system security such as failed login attempts, attempts to access MIB tables to which the user is not granted access or attempts to enter a branch of the CLI to which access has not been granted. Security events are generated by the SECURITY application.
- **Change** — The change activity event source is all events that directly affect the configuration or operation of the node. Change events are generated by the USER application.
- **Debug** — The debug event source is the debugging configuration that has been enabled on the system. Debug events are generated by the DEBUG application.
- **Main** — The main event source receives events from all other applications within the 7750 SR-Series.

Examples of applications within 7750 SR-Series include IP, MPLS, OSPF, CLI, services, etc. Figure 6 displays an example of the **show log applications** command output which displays all applications.
Figure 6: Show Log Applications Command Output
Event Control

Event control pre-processes the events generated by applications before the event is passed into the main event stream. Event control assigns a severity to application events and can either forward the event to the main event source or suppress the event. Suppressed events are counted in event control, but these events will not generate log entries as it never reaches the log manager.

Simple event throttling is another method of event control and is configured similarly to the generation and suppression options. See Simple Logger Event Throttling on page 282.

Events are assigned a default severity level in the system, but the application event severities can be changed by the user.

Application events contain an event number and description that explains why the event is generated. The event number is unique within an application, but the number can be duplicated in other applications.

The following example, generated by querying event control for application generated events, displays a partial list of event numbers and names.

```
router# show log event-control

Log Events

Application ID# Event Name P g/s Logged Dropped

APS:
2001 apsEventSwitchover MI gen 0 0
2002 apsEventModeMismatch MI gen 0 0
2003 apsEventChannelMismatch MI gen 0 0

, , ,

ATM:
2004 tAtmTcSubLayerDown MI gen 0 0
2005 tAtmTcSubLayerClear MI gen 0 0
L 2006 atmVclStatusChange WA gen 0 0

...
BGP:
2001 bgpEstablished MI gen 1 0
2002 bgpBackwardTransition WA gen 7 0
2003 tBgpMaxPrefix90 WA gen 0 0

...
CCAG:

CFLOWD:
2001 cflowdCreated MI gen 1 0
2002 cflowdCreateFailure MA gen 0 0
2003 cflowdDeleted MI gen 0 0

...
CHASSIS:
2001 cardFailure MA gen 0 0
2002 cardInserted MI gen 4 0
2003 cardRemoved MI gen 0 0
```

...
CPMHWFILTER:
DHCP:
  2001 sdpTlsDHCPSuspiciousPcktRcvd   WA  gen          0           0
  2002 sapTlsDHCPLeaseStEntriesExceeded WA  gen          0           0
  2003 sapTlsDHCPLeaseStateOverride    WA  gen          0           0

...DEBUG:
L  2001 traceEvent                   MI  gen          0           0
DOT1X:
FILTER:
  2001 filterPBRPacketsDropped       MI  gen          0           0
IGMP:
  2001 vRtrIgmpIfRxQueryVerMismatch  WA  gen          0           0
  2002 vRtrIgmpIfCModeRxQueryMismatch WA  gen          0           0
IGMP_SNOOPING:
IP:
  L  2001 clearRTMError               MI  gen          0           0
  L  2002 ipEtherBroadcast            MI  gen          0           0
  L  2003 ipDuplicateAddress          MI  gen          0           0
...ISIS:
  2001 vRtrIsisDatabaseOverload      WA  gen          0           0
Log Manager and Event Logs

Events that are forwarded by event control are sent to the log manager. The log manager manages the event logs in the system and the relationships between the log sources, event logs and log destinations, and log filter policies.

An event log has the following properties:

- A unique log ID
  The log ID is a short, numeric identifier for the event log. A maximum of ten logs can be configured at a time.

- One or more log sources
  The source stream or streams to be sent to log destinations can be specified. The source must be identified before the destination can be specified. The events can be from the main event stream, events in the security event stream, or events in the user activity stream.

- One event log destination
  A log can only have a single destination. The destination for the log ID destination can be one of console, session, syslog, snmp-trap-group, memory, or a file on the local file system.

- An optional event filter policy
  An event filter policy defines whether to forward or drop an event or trap-based on match criteria.
Event Filter Policies

The log manager uses event filter policies to allow fine control over which events are forwarded or dropped based on various criteria. Like other policies with the 7750 SR, filter policies have a default action. The default actions are either:

- Forward
- Drop

Filter policies also include a number of filter policy entries that are identified with an entry ID and define specific match criteria and a forward or drop action for the match criteria.

Each entry contains a combination of matching criteria that define the application, event number, router, severity, and subject conditions. The entry’s action determines how the packets should be treated if they have met the match criteria.

Entries are evaluated in order from the lowest to the highest entry ID. The first matching event is subject to the forward or drop action for that entry.

Valid operators are displayed in Table 30:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
<tr>
<td>lt</td>
<td>less than</td>
</tr>
<tr>
<td>lte</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>gt</td>
<td>greater than</td>
</tr>
<tr>
<td>gte</td>
<td>greater than or equal to</td>
</tr>
</tbody>
</table>

A match criteria entry can include combinations of:

- Equal to or not equal to a given system application.
- Equal to, not equal to, less than, less than or equal to, greater than or greater than or equal to an event number within the application.
- Equal to, not equal to, less than, less than or equal to, greater than or greater than or equal to a severity level.
- Equal to or not equal to a router name string or regular expression match.
- Equal to or not equal to an event subject string or regular expression match.
Event Log Entries

Log entries that are forwarded to a destination are formatted in a way appropriate for the specific destination whether it be recorded to a file or sent as an SNMP trap, but log event entries have common elements or properties. All application generated events have the following properties:

- A time stamp in UTC or local time.
- The generating application.
- A unique event ID within the application.
- A router name identifying the VRF-ID that generated the event.
- A subject identifying the affected object.
- A short text description.

The general format for an event in an event log with either a memory, console or file destination is as follows.

```
nnnn YYYY/MM/DD HH:MM:SS.SS <severity>:<application> # <event_id> <router-name> <subject> description
```

The following is an event log example:

```
475 2006/11/27 00:19:40.38 WARNING: SNMP #2007 Base 1/1/1
"interface 1/1/1 came up"
```

The specific elements that compose the general format are described in Table 31.

**Table 31: Log Entry Field Descriptions**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnnn</td>
<td>The log entry sequence number.</td>
</tr>
<tr>
<td>YYYY/MM/DD</td>
<td>The UTC date stamp for the log entry.</td>
</tr>
<tr>
<td></td>
<td>YYYY — Year</td>
</tr>
<tr>
<td></td>
<td>MM — Month</td>
</tr>
<tr>
<td></td>
<td>DD — Date</td>
</tr>
<tr>
<td>HH:MM:SS.SS</td>
<td>The UTC time stamp for the event.</td>
</tr>
<tr>
<td></td>
<td>HH — Hours (24 hour format)</td>
</tr>
<tr>
<td></td>
<td>MM — Minutes</td>
</tr>
<tr>
<td></td>
<td>SS.SS — Seconds</td>
</tr>
</tbody>
</table>
Table 31: Log Entry Field Descriptions (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;severity&gt;</td>
<td>The severity level name of the event.</td>
</tr>
<tr>
<td></td>
<td>CLEARED — A cleared event (severity number 1).</td>
</tr>
<tr>
<td></td>
<td>INFO — An indeterminate/informational severity event (severity level 2).</td>
</tr>
<tr>
<td></td>
<td>CRITICAL — A critical severity event (severity level 3).</td>
</tr>
<tr>
<td></td>
<td>MAJOR — A major severity event (severity level 4).</td>
</tr>
<tr>
<td></td>
<td>MINOR — A minor severity event (severity level 5).</td>
</tr>
<tr>
<td></td>
<td>WARNING — A warning severity event (severity 6).</td>
</tr>
<tr>
<td>&lt;application&gt;</td>
<td>The application generating the log message.</td>
</tr>
<tr>
<td>&lt;event_id&gt;</td>
<td>The application’s event ID number for the event.</td>
</tr>
<tr>
<td>&lt;router&gt;</td>
<td>The router name representing the VRF-ID that generated the event.</td>
</tr>
<tr>
<td>&lt;subject&gt;</td>
<td>The subject/affected object for the event.</td>
</tr>
<tr>
<td>&lt;description&gt;</td>
<td>A text description of the event.</td>
</tr>
</tbody>
</table>
Simple Logger Event Throttling

Simple event throttling provides a mechanism to protect event receivers from being overloaded when a scenario causes many events to be generated in a very short period of time. A throttling rate, # events/# seconds, can be configured. Specific event types can be configured to be throttled. Once the throttling event limit is exceeded in a throttling interval, any further events of that type cause the dropped events counter to be incremented. Dropped events counts are displayed by the `show>log>event-control` context. Events are dropped before being sent to one of the logger event collector tasks. There is no record of the details of the dropped events and therefore no way to retrieve event history data lost by this throttling method.

A particular event type can be generated by multiple managed objects within the system. At the point this throttling method is applied the logger application has no information about the managed object that generated the event and cannot distinguish between events generated by object "A" from events generated by object "B". If the events have the same event-id, they are throttled regardless of the managed object that generated them. It also does not know which events may eventually be logged to destination log-id <n> from events that will be logged to destination log-id <m>.

Throttle rate applies commonly to all event types. It is not configurable for a specific event-type.

A timer task checks for events dropped by throttling when the throttle interval expires. If any events have been dropped, a TIMETRA-SYSTEM-MIB::tmnxTrapDropped notification is sent.

By default, event throttling is off for each specific event type. It must be explicitly enabled for each event type where throttling is desired. This makes backwards compatibility of configuration files easier to manage.
Default System Log

Log 99 is a pre-configured memory-based log which logs events from the main event source (not security, debug, etc.). Log 99 exists by default.

The following example displays the log 99 configuration.

```
ALA-1>config>log# info detail
#--
echo "Log Configuration"
#--
...
 snmp-trap-group 7
 exit
...
 log-id 99
 description "Default system log"
 no filter
 from main
 to memory 500
 no shutdown
 exit
#--
ALA-1>config>log#
```
Accounting Logs

Before an accounting policy can be created a target log file must be created to collect the accounting records. The files are stored in system memory on compact flash (cf1: or cf2:) in a compressed (tar) XML format and can be retrieved using FTP or SCP.

A file ID can only be assigned to either one event log ID or one accounting log.

Accounting Records

An accounting policy must define a record name and collection interval. Only one record name can be configured per accounting policy. Also, a record name can only be used in one accounting policy.

The record name, sub-record types, and default collection period for and network accounting policies are shown below.

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record Types</th>
<th>Accounting Object</th>
<th>Default Collection Period (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-ingress-octets</td>
<td>sio</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>service-egress-octets</td>
<td>seo</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>service-ingress-packets</td>
<td>sip</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>service-egress-packets</td>
<td>sep</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>network-ingress-octets</td>
<td>nio</td>
<td>Network port</td>
<td>15</td>
</tr>
<tr>
<td>network-egress-octets</td>
<td>neo</td>
<td>Network port</td>
<td>15</td>
</tr>
<tr>
<td>network-ingress-packets</td>
<td>nep</td>
<td>Network port</td>
<td>15</td>
</tr>
<tr>
<td>network-ingress-packets</td>
<td>nio</td>
<td>Network port</td>
<td>15</td>
</tr>
<tr>
<td>compact-service-ingress-octets</td>
<td>ctsio</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>combined-service-ingress</td>
<td>cmsipo</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>combined-network-ing-egc-octets</td>
<td>cmNio &amp; cmNeo</td>
<td>Network port</td>
<td>15</td>
</tr>
<tr>
<td>combined-service-ing-egc-octets</td>
<td>cmSio &amp; cmSeo</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>complete-service-ingress-egress</td>
<td>cpSipo &amp; cpSepo</td>
<td>SAP</td>
<td>5</td>
</tr>
<tr>
<td>combined-sdp-ingress-egress</td>
<td>cmSdpi &amp; cmSdpapo</td>
<td>SDP and SDP binding</td>
<td>5</td>
</tr>
<tr>
<td>complete-sdp-ingress-egress</td>
<td>cmSdpi &amp; cmSdpapo, cmSdpapo &amp; cmSdpapo</td>
<td>SDP and SDP binding</td>
<td>5</td>
</tr>
<tr>
<td>complete-subscriber-ingress-egress</td>
<td>cpSBipo &amp; cpSBepo</td>
<td>Subscriber profile</td>
<td>5</td>
</tr>
</tbody>
</table>
When creating accounting policies, one service accounting policy and one network accounting policy can be defined as default. If statistics collection is enabled on a SAP or network port and no accounting policy is applied, then the respective default policy is used. If no default policy is defined, then no statistics are collected unless a specifically defined accounting policy is applied.

Each accounting record name is composed of one or more sub-records which is in turn composed of multiple fields. Table 33 lists the accounting policy record names and the statistics that are collected with each.

Refer to the Application Assurance Statistics Fields Generated per Record table in the 7750 SR-Series OS Integrated Services Adapter Guide for fields names for Application Assurance records.

### Table 33: Accounting Record Name Details

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-ingress-octets (sio) (**)</td>
<td>sio</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
</tbody>
</table>
## Table 33: Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-egress-octets (seo) (**)</td>
<td>seo</td>
<td>svc</td>
<td>Svcld</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Service-ingress-packets (sip) (*) (**)</td>
<td>sip</td>
<td>svc</td>
<td>Svcld</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncoloredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktDropped</td>
</tr>
<tr>
<td>Service-egress-packets (sep) (*) (**)</td>
<td>sep</td>
<td>svc</td>
<td>Svcld</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktDropped</td>
</tr>
<tr>
<td>Network-ingress-octets (nio)</td>
<td>nio</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Network-egress-octets (neo)</td>
<td>neo</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Record Name</td>
<td>Sub-Record</td>
<td>Field</td>
<td>Field Description</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>------------</td>
<td>-------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>Network-ingress-packets (nip)</td>
<td>nip</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td>Network Egress Packets (nep)</td>
<td>nep</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td>Compact-service-ingress-octets (ctSio)</td>
<td>ctSio</td>
<td>svc</td>
<td>SvcId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td>Combined-service-ingress (cmSipo)</td>
<td>cmSipo</td>
<td>svc</td>
<td>SvcId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncoloredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
</tbody>
</table>
**Table 33: Accounting Record Name Details (Continued)**

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined-network-ing-egr-octets</td>
<td>cmNio</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td>(cmNio &amp; cmNeo)</td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>cmNeo</td>
<td></td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Combined-service-ingr-egr-octets</td>
<td>cmSio</td>
<td>svc</td>
<td>SvcId</td>
</tr>
<tr>
<td>(cmSio &amp; CmSeo)</td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td>cmSeo</td>
<td></td>
<td>svc</td>
<td>SvcId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>
### Table 33: Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-service-ingress-egress (cpSipo &amp; cpSepo)</td>
<td>cpSipo</td>
<td>svc</td>
<td>SvclId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncoloredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>luo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ofp</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td>cpSepo</td>
<td>svc</td>
<td>SvclId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Complete-sdp-ingress-egress (cpSdpi &amp; cpSdpepo)</td>
<td>cpSdpi</td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td></td>
<td>cpSdpepo</td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
</tbody>
</table>
Table 33: Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined-sdp-ingress-egress (cmSdpipo &amp; cmSdpepo)</td>
<td>cmSdpipo</td>
<td>svc</td>
<td>SvcID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td>cmSdpepo</td>
<td></td>
<td>svc</td>
<td>SvcID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td>Complete-sdp-ingress-egress (cmSdpipo &amp; cmSdpepo) (cpSdpipo &amp; cpSdpepo)</td>
<td>cmSdpipo</td>
<td>svc</td>
<td>SvcID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td>cmSdpepo</td>
<td></td>
<td>svc</td>
<td>SvcID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td>cpSdpipo</td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td>cpSdpepo</td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td>Record Name</td>
<td>Sub-Record</td>
<td>Field</td>
<td>Field Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td><strong>Complete-subscriber-ingress-egress</strong></td>
<td>SubscriberInformation</td>
<td>subId</td>
<td>SubscriberId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subProfile</td>
<td>SubscriberProfile</td>
</tr>
<tr>
<td><strong>(cpSBipo &amp; cpSBepo)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SlaInformation****</td>
<td>svc</td>
<td>SvcId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slaProfile</td>
<td>SlaProfile</td>
</tr>
<tr>
<td></td>
<td>cpSBipo</td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncolouredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apo</td>
<td>AllPktsOffered ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aoo</td>
<td>AllOctetsOffered ****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncolouredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td>cpSBepo</td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>
Table 33: Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(continued)</td>
<td>cpSBipooc ***</td>
<td>cid</td>
<td>OverrideCounterId</td>
</tr>
<tr>
<td>Complete-subscriber- ingress- egress (cpSBipo &amp; cpSBepo) (cpSBipooc &amp; cpSBepooc) ***</td>
<td></td>
<td>apo</td>
<td>AllPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aoo</td>
<td>AllOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncolouredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncolouredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td>cpSBepooc ***</td>
<td>cid</td>
<td>OverrideCounterId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ofp</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncolouredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncolouredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td>saa</td>
<td>tmd</td>
<td>TestMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>own</td>
<td>OwnerName</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tst</td>
<td>TestName</td>
</tr>
<tr>
<td></td>
<td></td>
<td>png</td>
<td>PingRun subrecord</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rid</td>
<td>RunIndex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trr</td>
<td>TestRunResult</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mnr</td>
<td>MinRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxr</td>
<td>MaxRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avr</td>
<td>AverageRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rss</td>
<td>RttSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prb</td>
<td>ProbeResponses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spb</td>
<td>SentProbes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mnt</td>
<td>MinOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxt</td>
<td>MaxOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avt</td>
<td>AverageOutTt</td>
</tr>
</tbody>
</table>
(*) For a SAP in AAL5 SDU mode, packet counters refer to the number of SDU.

(*) For a SAP in N-to-1 cell mode, packet counters refer to the number of cells.
(**) The number of octets in an ATM sap excludes the Header Error Control (HEC) byte, thus meaning each packet/cell has only 52 bytes instead of the usual 53.

(***) If override counters on the HSMDA are configured (see the 7750 SR Quality of Service Guide).

(****) Not used to identify stats from HSMDA due to MDA architecture. If the statistics are from HSMDA: apo, aoo else lpo/hpo, loo/hoo.
Accounting Files

When a policy has been created and applied to a service or network port, the accounting file is stored on the compact flash in a compressed XML file format. The 7750 SR-Series creates two directories on the compact flash to store the files. The following output displays a directory named act-collect that holds accounting files that are open and actively collecting statistics. The directory named act stores the files that have been closed and are awaiting retrieval.

```
ALA-1>file cf1:\# dir act*
12/19/2006 06:08a <DIR> act-collect
12/19/2006 06:08a <DIR> act

ALA-1>file cf1:act-collect\ # dir
Directory of cf1:act-collect#
12/23/2006 01:46a <DIR> .
12/23/2006 12:47a <DIR> ..
12/23/2006 01:46a 112 act1111-20031223-014658.xml.gz
12/23/2006 01:38a 197 act1212-20031223-013800.xml.gz
```

Accounting files always have the prefix act followed by the accounting policy ID, log ID and timestamp. The accounting log file naming and log file destination properties like rollover and retention are discussed in more detail in Log Files on page 269.

Design Considerations

The 7750 SR has ample resources to support large scale accounting policy deployments. When preparing for an accounting policy deployment, verify that data collection, file rollover, and file retention intervals are properly tuned for the amount of statistics to be collected.

If the accounting policy collection interval is too brief there may be insufficient time to store the data from all the services within the specified interval. If that is the case, some records may be lost or incomplete. Interval time, record types, and number of services using an accounting policy are all factors that should be considered when implementing accounting policies.

The rollover and retention intervals on the log files and the frequency of file retrieval must also be considered when designing accounting policy deployments. The amount of data stored depends on the type of record collected, the number of services that are collecting statistics, and the collection interval that is used. For example, with a 1GB CF and using the default collection interval, the system is expected to hold 48 hours worth of billing information.
Reporting and Time-Based Accounting

Node support for volume and time-based accounting concept provides an extra level of intelligence at the network element level in order to provide service models such as “prepaid access” in a scalable manner. This means that the network element gathers and stores per-subscriber accounting information and compare it with “pre-defined” quotas. Once a quota is exceeded, the pre-defined action (such as re-direction to a web portal or disconnect) is applied.
Overhead Reduction in Accounting: Custom Record

User Configurable Records

Users can define a collection of fields that make up a record. These records can be assigned to an accounting policy. These are user-defined records rather than being limited to pre-defined record types. The operator can select what queues and the counters within these queues that need to be collected. Refer to the predefined records containing a given field for XML field name of a custom record field.

Changed Statistics Only

A record is only generated if a significant change has occurred to the fields being written in a given the record. This capability applies to both ingress and egress records regardless on the method of delivery (such as RADIUS and XML). The capability also applies to Application Assurance records; however without an ability to specify different significant change values and per-field scope (for example, all fields of a custom record are collected if any activity was reported against any of the statistics that are part of the custom record).
Configurable Accounting Records

- XML Accounting Files for Service and ESM-Based Accounting on page 298
- RADIUS Accounting in Networks Using ESM on page 298
- Application Assurance on page 298

XML Accounting Files for Service and ESM-Based Accounting

The custom-record command in the config>log>accounting-policy context provide the flexibility to reduce the volume of data generated, network operators can define the record that needs to be collected. This can eliminate queues or selected counters within these queues that are not relevant for billing.

Record headers including information such as service-ID, SAP-ID, etc., will always be generated.

RADIUS Accounting in Networks Using ESM

The custom-record command in the config>subscr-mgmt>radius-accounting-policy context provide the flexibility to include individual counters in RADIUS accounting messages. See the CLI tree for commands and syntax.

Application Assurance

An operator can also configure per-AA record type fields of interest to be reported to reduce the volume of statistics and processing times.
Significant Change Only Reporting

Another way to decrease accounting messaging related to overhead is to include only “active” objects in a periodical reporting. An “active object” in this context is an object which has seen a “significant” change in corresponding counters. A significant change is defined in terms of a cumulative value (the sum of all reference counters).

This concept is applicable to all methods used for gathering accounting information, such as an XML file and RADIUS, as well as to all applications using accounting, such as service-acct, ESM-acct, and Application Assurance.

Accounting records are reported at the periodical intervals. This periodic reporting is extended with an internal filter which omits periodical updates for objects whose counter change experienced lower changes than a defined (configurable) threshold.

Specific to RADIUS accounting the significant-change command does not affect ACCT-STOP messages. ACCT-STOP messages will be always sent, regardless the amount of change of the corresponding host.

For Application Assurance records, a significant change of 1 in any field of a customized record (send a record if any field changed) is supported. When configured, if any statistic field records activity, an accounting record containing all fields will be collected.
Immediate Completion of Records

Record Completion for XML Accounting

For ESM RADIUS accounting, an accounting stop message is sent when:

- A subscriber/subscriber-host is deleted.
- An SLA profile instance (non-HSMDA) or subscriber instance (HSMDA) is changed.

A similar concept is also used for XML accounting. In case the accounted object is deleted or changed, the latest information will be written in the XML file with a “final” tag indication in the record header.
Configuration Notes

This section describes logging configuration caveats.

- A file or filter cannot be deleted if it has been applied to a log.
- File IDs, syslog IDs, or SNMP trap groups must be configured before they can be applied to a log ID.
- A file ID can only be assigned to either one log ID or one accounting policy.
- Accounting policies must be configured in the `config>log` context before they can be applied to a service SAP or service interface, or applied to a network port.
- The `snmp-trap-id` must be the same as the `log-id`. 
Configuring Logging with CLI

This section provides information to configure logging using the command line interface.

Topics in this section include:

- Log Configuration Overview on page 304
  - Log Types on page 304
- Basic Event Log Configuration on page 305
- Common Configuration Tasks on page 306
- Log Management Tasks on page 323
Log Configuration Overview

Configure logging parameters to save information in a log file or direct the messages to other devices. Logging does the following:

- Provides you with logging information for monitoring and troubleshooting.
- Allows you to select the types of logging information to be recorded.
- Allows you to assign a severity to the log messages.
- Allows you to select the source and target of logging information.

Log Types

Logs can be configured in the following contexts:

- Log file — Log files can contain log event message streams or accounting/billing information. Log file IDs are used to direct events, alarms/traps and debug information to their respective targets.
- SNMP trap groups — SNMP trap groups contain an IP address and community names which identify targets to send traps following specified events.
- Syslog — Information can be sent to a syslog host that is capable of receiving selected syslog messages from a network element.
- Event control — Configures a particular event or all events associated with an application to be generated or suppressed.
- Event filters — An event filter defines whether to forward or drop an event or trap based on match criteria.
- Accounting policies — An accounting policy defines the accounting records that will be created. Accounting policies can be applied to one or more service access points (SAPs).
- Event logs — An event log defines the types of events to be delivered to its associated destination.
- Event throttling rate — Defines the rate of throttling events.
Basic Event Log Configuration

The most basic log configuration must have the following:

- Log ID or accounting policy ID
- A log source
- A log destination

The following displays a log configuration example.

A:ALA-12>config>log# info
#------------------------------------------
echo "Log Configuration "
#------------------------------------------
event-control "bgp" 2001 generate critical
  file-id 1
    description "This is a test file-id."
    location cf1:
    exit
  file-id 2
    description "This is a test log."
    location cf1:
    exit
snmp-trap-group 7
  trap-target 11.22.33.44 "snmpv2c" notify-community "public"
exit
log-id 2
  from main
to file 2
exit
#------------------------------------------
A:ALA-12>config>log#
Common Configuration Tasks

The following sections are basic system tasks that must be performed.

- Configuring a File ID on page 308
- Configuring an Event Log on page 306
- Configuring an Accounting Policy on page 309
- Configuring Event Control on page 310
- Configuring a Log Filter on page 312
- Configuring an SNMP Trap Group on page 313
- Configuring a Syslog Target on page 321
- Reporting and Time-Based Accounting Configurations (R7.0r4) on page 323

Configuring an Event Log

A event log file contains information used to direct events, alarms, traps, and debug information to their respective destinations. One or more event sources can be specified. File IDs, SNMP trap groups, or syslog IDs must be configured before they can be applied to an event log ID.

Use the following CLI syntax to configure a log file:

**CLI Syntax:**
```
config>log
log-id log-id
 description description-string
 filter filter-id
 from { [main] [security] [change] [debug-trace] }
 to console
 to file file-id
 to memory [size]
 to session
 to snmp [size]
 to syslog syslog-id
 time-format {local|utc}
 no shutdown
```
The following displays a log file configuration example:

ALA-12>config>log>log-id# info
----------------------------------------------
... log-id 2
    description "This is a test log file."
    filter 1
    from main security
to file 1
exit
...
----------------------------------------------
ALA-12>config>log>log-id#
Configuring a File ID

To create a log file a file ID is defined, specifies the target CF drive, and the rollover and retention interval period for the file. The rollover interval is defined in minutes and determines how long a file will be used before it is closed and a new log file is created. The retention interval determines how long the file will be stored on the CF before it is deleted.

Use the following CLI syntax to configure a log file:

**CLI Syntax:**
```
cfg>log
 file-id log-file-id
 description description-string
 location cflash-id [backup-cflash-id]
 rollover minutes [retention hours]
```

The following displays a log file configuration example:

```
A:ALA-12>cfg>log# info
--
file-id 1
 description "This is a log file."
 location cf1:
 rollover 600 retention 24
exit
--
A:ALA-12>cfg>log#
```
Configuring an Accounting Policy

Before an accounting policy can be created a target log file must be created to collect the accounting records. The files are stored in system memory of compact flash (cf1: or cf2:) in a compressed (tar) XML format and can be retrieved using FTP or SCP. See Configuring an Event Log on page 306 and Configuring a File ID on page 308.

Accounting policies must be configured in the `config>log` context before they can be applied to a service SAP or service interface, or applied to a network port.

The default accounting policy statement cannot be applied to LDP nor RSVP statistics collection records.

An accounting policy must define a record type and collection interval. Only one record type can be configured per accounting policy.

When creating accounting policies, one service accounting policy and one network accounting policy can be defined as default. If statistics collection is enabled on a SAP or network port and no accounting policy is applied, then the respective default policy is used. If no default policy is defined, then no statistics are collected unless a specifically defined accounting policy is applied.

Use the following CLI syntax to configure an accounting policy:

**CLI Syntax:**

```
config>log>
accounting-policy acct-policy-id interval minutes
description description-string
default
record record-name
to file log-file-id
no shutdown
```

The following displays a accounting policy configuration example:

```
A:ALA-12>config>log# info
--
accounting-policy 4
 description "This is the default accounting policy."
 record complete-service-ingress-egress
default
to file 1
exit
accounting-policy 5
 description "This is a test accounting policy."
 record service-ingress-packets
to file 3
exit
--
A:ALA-12>config>log#
```
Configuring Event Control

Use the following CLI syntax to configure event control. Note that the `throttle` parameter used in the `event-control` command syntax enables throttling for a specific event type. The `config>log>throttle-rate` command configures the number of events and interval length to be applied to all event types that have throttling enabled by this `event-control` command.

**CLI Syntax:**
```
config>log
 event-control application-id [event-name|event-number] generate [severity-level] [throttle]
 event-control application-id [event-name|event-number] suppress
 throttle-rate events [interval seconds]
```

The following displays an event control configuration:

```
A:ALA-12>config>log# info
#--
echo "Log Configuration"
#--
 throttle-rate 500 interval 10
 event-control "oam" 2001 generate throttle
 event-control "ospf" 2001 suppress
 event-control "ospf" 2003 generate cleared
 event-control "ospf" 2014 generate critical
```

A:ALA-12>config>log>filter#
```
Configuring Throttle Rate

This command configures the number of events and interval length to be applied to all event types that have throttling enabled by the `event-control` command.

Use the following CLI syntax to configure the throttle rate.

CLI Syntax:
```
config>log#
  throttle-rate events [interval seconds]
```

The following displays a throttle rate configuration example:

```
*A:gal171>config>log# info
---------------------------------------------
  throttle-rate 500 interval 10
  event-control "aps" 2001 generate throttle
---------------------------------------------
*A:gal171>config>log#
```
Configuring a Log Filter

Use the following CLI syntax to configure a log filter:

CLI Syntax:

```
config>log
    filter filter-id
        default-action {drop|forward}
        description description-string
        entry entry-id
            action {drop|forward}
            description description-string
            match
                application {eq|neq} application-id
                number {eq|neq|lt|lte|gt|gte} event-id
                router {eq|neq} router-instance [regexp]
                severity {eq|neq|lt|lte|gt|gte} severity-level
                subject {eq|neq} subject [regexp]
```

The following displays a log filter configuration example:

```
A:ALA-12>config>log# info
#------------------------------------------
| echo "Log Configuration " |
#------------------------------------------
file-id 1
    description "This is our log file."
    location cf1:
        rollover 600 retention 24
    exit
filter 1
    default-action drop
    description "This is a sample filter."
    entry 1
        action forward
        match
            application eq "mirror"
            severity eq critical
        exit
    exit
exit

... log-id 2
    shutdown
    description "This is a test log file."
    filter 1
        from main security
        to file 1
    exit
...
```

A:ALA-12>config>log#
Configuring an SNMP Trap Group

The associated log-id does not have to be configured before a snmp-trap-group can be created, however, the snmp-trap-group must exist before the log-id can be configured to use it.

Use the following CLI syntax to configure an SNMP trap group:

CLI Syntax:
```
config>log
snmp-trap-group log-id
   trap-target name [address ip-address] [port port]
       [snmpv1|snmpv2c| snmpv3] notify-community communityName |
       snmpv3SecurityName [security-level {no-auth-no-privacy|auth-no-privacy|privacy}]
       [replay]
```

The following displays a basic SNMP trap group configuration example:

```
A:ALA-12>config>log# info
----------------------------------------------
... snmp-trap-group 2
   trap-target 10.10.10.10:5 "snmpv3" notify-community "coummunitystring"
   exit
...
   log-id 2
       description "This is a test log file."
       filter 1
       from main security
to file 1
   exit
... 
----------------------------------------------
A:ALA-12>config>log#
```
The following displays a SNMP trap group, log, and interface configuration examples:

A:SetupCLI>config>log# snmp-trap-group 44
A:SetupCLI>config>log>snmp-trap-group# info

--
trap-target "xyz-test" address xx.xx.xxx snmpv2c notify-community "xyztesting"
trap-target "test2" address xx.xx.xx.x snmpv2c notify-community "xyztesting"
--

*A:SetupCLI>config>log>log-id# info

from main
to snmp

*A:SetupCLI>config>router# interface xyz-test
*A:SetupCLI>config>router>if# info

address xx.xx.x.x/24
port 1/1/1

*A:SetupCLI>config>router>if#
Setting the Replay Parameter

For this example the replay parameter was set by a SNMP SET request for the trap-target address 10.10.10.3 which is bound to port-id 1/1/1.

```
A:SetupCLI>config>log>snmp-trap-group 44
A:SetupCLI>config>log>snmp-trap-group# info
----------------------------------------------
trap-target "xyz-test" address 10.10.10.3 snmpv2c notify-community "xyztesting"
  replay
trap-target "test2" address 20.20.20.5 snmpv2c notify-community "xyztesting"
----------------------------------------------
A:SetupCLI>config>log>snmp-trap-group#
```

In the following output, note that the **Replay** field changed from disabled to enabled.

```
A:SetupCLI>config>log>snmp-trap-group# show log snmp-trap-group 44
===============================================================================
SNMP Trap Group 44
===============================================================================
Description : none
-------------------------------------------------------------------------------
Name       : xyz-test
Address    : 10.10.10.3
Port       : 162
Version    : v2c
Community  : xyztesting
Sec. Level : none
Replay     : **enabled**
Replay from : n/a
Last replay : never
-------------------------------------------------------------------------------
Name       : test2
Address    : 20.20.20.5
Port       : 162
Version    : v2c
Community  : xyztesting
Sec. Level : none
Replay     : **disabled**
Replay from : n/a
Last replay : never
===============================================================================
A:SetupCLI>config>log>snmp-trap-group#
```
Since no events are waiting to be replayed, the log displays as before.

A:SetupCLI>config>log>snmp-trap-group# show log log-id 44
===
Event Log 44
===
SNMP Log contents [size=100 next event=3819 (wrapped)]

3818 2008/04/22 23:35:39.89 UTC WARNING: SYSTEM #2009 Base IP
"Status of vRtrIfTable: router Base (index 1) interface xyz-test (index 35) changed administrative state: inService, operational state: inService"

3817 2008/04/22 23:35:39.89 UTC WARNING: SNMP #2005 Base xyz-test
"Interface xyz-test is operational"

3816 2008/04/22 23:35:39.89 UTC WARNING: SNMP #2005 Base 1/1/1
"Interface 1/1/1 is operational"

3815 2008/04/22 23:35:39.71 UTC WARNING: SYSTEM #2009 Base CHASSIS
"Status of Mda 1/1 changed administrative state: inService, operational state: inService"

3814 2008/04/22 23:35:38.88 UTC MINOR: CHASSIS #2002 Base Mda 1/2
"Class MDA Module : inserted"

3813 2008/04/22 23:35:38.88 UTC MINOR: CHASSIS #2002 Base Mda 1/1
Shutdown In-Band Port

A **shutdown** on the in-band port that the trap-target address is bound to causes the route to that particular trap target to be removed from the route table. When the SNMP module is notified of this event, it marks the trap-target as inaccessible and saves the sequence-id of the first SNMP notification that will be missed by the trap-target.

Example:

```
config>log>snmp-trap-group# exit all
#configure port 1/1/1 shutdown
#
# tools perform log test-event
#
```

The **Replay from** field is updated with the sequence-id of the first event that will be replayed when the trap-target address is added back to the route table.

```
*A:SetupCLI# show log snmp-trap-group 44
-----------------------------------------------------------------------------
SNMP Trap Group 44
-----------------------------------------------------------------------------
Description : none
-----------------------------------------------------------------------------
Name        : xyz-test
Address     : 10.10.10.3
Port        : 162
Version     : v2c
Community   : xyztesting
Sec. Level  : none
Replay      : enabled
Replay from : event #3819
Last replay : never
-----------------------------------------------------------------------------
Name        : test2
Address     : 20.20.20.5
Port        : 162
Version     : v2c
Community   : xyztesting
Sec. Level  : none
Replay      : disabled
Replay from : n/a
Last replay : never
-----------------------------------------------------------------------------
*A:SetupCLI#
```
A display of the event log indicates which trap targets are not accessible and waiting for notification replay and the sequence ID of the first notification that will be replayed. Note that if there are more missed events than the log size, the replay will actually start from the first available missed event.

```
*A:SetupCLI# show log log-id 44
===============================================================================
Event Log 44
===============================================================================
SNMP Log contents [size=100  next event=3821  (wrapped)]
Cannot send to SNMP target address 10.10.10.3.
Waiting to replay starting from event #3819

3820 2008/04/22 23:41:28.00 UTC INDETERMINATE: LOGGER #2011 Base Event Test
"Test event has been generated with system object identifier tmnxModelSR12Reg. System description: TiMOS-B-0.0.private both/i386 ALCATEL SR 7750 Copyright (c) 2000-2008 Alcatel-Lucent. All rights reserved. All use subject to applicable license agreements. Built on Tue Apr 22 14:41:18 PDT 2008 by test123 in /test123/ws/panos/main"

3819 2008/04/22 23:41:20.37 UTC WARNING: MC_REDUNDANCY #2022 Base operational state of peer chan*
"The MC-Ring operational state of peer 2.2.2.2 changed to outOfService."

3818 2008/04/22 23:35:39.89 UTC WARNING: SYSTEM #2009 Base IP
"Status of VRtrIfTable: router Base (index 1) interface xyz-test (index 35) changed administrative state: inService, operational state: inService"

3823 2008/04/22 23:41:49.82 UTC WARNING: SNMP #2005 Base xyz-test
"Interface xyz-test is operational"
```
No Shutdown Port

A **no shutdown** command executed on the in-band port to which the trap-target address is bound will cause the route to that trap target to be re-added to the route table. When the SNMP trap module is notified of this event, it resends the notifications that were missed while there was no route to the trap-target address.

Example:
```
configure# port 1/1/1 no shutdown
#
# tools perform log test-event
```

After the notifications have been replayed the **Replay from** field indicates n/a because there are no more notifications waiting to be replayed and the **Last replay** field timestamp has been updated.

```
*A:SetupCLI# show log snmp-trap-group 44
SNMP Trap Group 44
Description : none
Name        : xyz-test
Address     : 10.10.10.3
Port        : 162
Version     : v2c
Community   : xyztesting
Sec. Level  : none
Replay      : enabled
Replay from : n/a
Last replay : 04/22/2008 18:52:36
Name        : test2
Address     : 20.20.20.5
Port        : 162
Version     : v2c
Community   : xyztesting
Sec. Level  : none
Replay      : disabled
Replay from : n/a
Last replay : never
```

A:SetupCLI#
A display of the event log shows that it is no longer waiting to replay notifications to one or more of its trap target addresses. An event message has been written to the logger that indicates the replay to the trap-target address has happened and displays the notification sequence ID of the first and last replayed notifications.

*A:SetupCLI# show log log-id 44
===
Event Log 44
===
SNMP Log contents [size=100 next event=3827 (wrapped)]
3826 2008/04/22 23:42:02.15 UTC MAJOR: LOGGER #2015 Base Log-id 44
"Missed events 3819 to 3825 from Log-id 44 have been resent to SNMP notification target
address 10.10.10.3."
3825 2008/04/22 23:42:02.15 UTC INDETERMINATE: LOGGER #2011 Base Event Test
"Test event has been generated with system object identifier tmnxModelSR12Reg.
System description: TiMOS-B-0.0.private both/i386 ALCATEL SR 7750 Copyright (c) 2000-2008
Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Tue Apr 22 14:41:18 PDT 2008 by test123 in /test123/ws/panos/main"
3824 2008/04/22 23:41:49.82 UTC WARNING: SYSTEM #2009 Base IP
"Status of vRtrIfTable: router Base (index 1) interface xyz-test (index 35) changed admin-
istrative s
tate: inService, operational state: inService"
3823 2008/04/22 23:41:49.82 UTC WARNING: SNMP #2005 Base xyz-test
"Interface xyz-test is operational"
Configuring a Syslog Target

Log events cannot be sent to a syslog target host until a valid syslog ID exists.

Use the following CLI syntax to configure a syslog file:

CLI Syntax:
```
config>log
    syslog syslog-id
    description description-string
    address ip-address
    log-prefix log-prefix-string
    port port
    level {emergency|alert|critical|error|warning|notice|info|debug}
    facility syslog-facility
```

The following displays a syslog configuration example:

```
A:ALA-12>config>log# info
----------------------------------------------
...  
    syslog 1
    description "This is a syslog file."
    address 10.10.10.104
    facility user
    level warning
    exit
...  
----------------------------------------------
A:ALA-12>config>log#
```
Configuring an Accounting Custom Record

A:ALA-48>config>subscr-mgmt>acct-plcy# info
--
..
 custom-record
 queue 1
 i-counters
 high-octets-discarded-count
 low-octets-discarded-count
 in-profile-octets-forwarded-count
 out-profile-octets-forwarded-count
 exit
 e-counters
 in-profile-octets-forwarded-count
 in-profile-octets-discarded-count
 out-profile-octets-forwarded-count
 out-profile-octets-discarded-count
 exit
 exit
 significant-change 20
 ref-queue all
 i-counters
 in-profile-packets-forwarded-count
 out-profile-packets-forwarded-count
 exit
 e-counters
 in-profile-packets-forwarded-count
 out-profile-packets-forwarded-count
 exit
 exit
..
--
A:ALA-48>config>subscr-mgmt>acct-plcy#
Log Management Tasks

This section discusses the following logging tasks:

- Modifying a Log File on page 324
- Deleting a Log File on page 326
- Modifying a File ID on page 327
- Deleting a File ID on page 328
- Modifying a Syslog ID on page 329
- Deleting a Syslog on page 330
- Modifying an SNMP Trap Group on page 331
- Deleting an SNMP Trap Group on page 332
- Modifying a Log Filter on page 333
- Deleting a Log Filter on page 335
- Modifying Event Control Parameters on page 336
- Returning to the Default Event Control Configuration on page 337
Modifying a Log File

Use the following CLI syntax to modify a log file:

CLI Syntax:
```plaintext
cfg>log
log-id log-id
    description description-string
    filter filter-id
        from { [main] [security] [change] [debug-trace] }
        to console
        to file file-id
        to memory [size]
        to session
        to snmp [size]
        to syslog syslog-id
```

The following displays the current log configuration:

```
ALA-12>config>log>log-id# info
----------------------------------------------
... log-id 2
description "This is a test log file."
    filter 1
        from main security
to file 1
exit
...----------------------------------------------
ALA-12>config>log>log-id#
```

The following displays an example to modify log file parameters:

Example:
```plaintext
config# log
config# log# log-id 2
config#log#log-id# description "Chassi log file."
config#log#log-id# filter 2
config#log#log-id# from security
config#log#log-id# exit
```
The following displays the modified log file configuration:

```
A:ALA-12>config>log# info
----------------------------------------------
...  
   log-id 2  
   description "Chassis log file."  
   filter 2  
   from security  
   to file 1  
   exit  
...  
----------------------------------------------
A:ALA-12>config>log#  
```
Deleting a Log File

The log ID must be shutdown first before it can be deleted. In a previous example, file 1 is associated with log-id 2.

A:ALA-12>config>log# info
--
file-id 1
 description "LocationTest."
 location cf1:
 rollover 600 retention 24
 exit
...
log-id 2
 description "Chassis log file."
 filter 2
 from security
to file 1
 exit
...
--
A:ALA-12>config>log#

Use the following CLI syntax to delete a log file:

CLI Syntax:

```
config>log  
no log-id log-id  
shutdown
```

The following displays an example to delete a log file:

Example:

```
config# log  
config>log# log-id 2  
config>log>log-id# shutdown  
config>log>log-id# exit  
config>log# no log-id 2
```
Modifying a File ID

NOTE: When the **file-id** location parameter is modified, log files are not written to the new location until a rollover occurs or the log is manually cleared. A rollover can be forced by using the `clear>log` command. Subsequent log entries are then written to the new location. If a rollover does not occur or the log not cleared, the old location remains in effect.

Use the following CLI syntax to modify a log file:

CLI Syntax:
```
config>log
  file-id log-file-id
    description description-string
    location [cflash-id] [backup-cflash-id]
    rollover minutes [retention hours]
```

The following displays the current log configuration:

```
A:ALA-12>config>log# info
------------------------------------------
  file-id 1
    description "This is a log file."
    location cf1:
      rollover 600 retention 24
  exit
------------------------------------------
A:ALA-12>config>log#
```

The following displays an example to modify log file parameters:

Example:
```
config# log
config>log# file-id 1
config>log>file-id# description "LocationTest."
config>log>file-id# location cf2:
config>log>file-id# rollover 2880 retention 500
config>log>file-id# exit
```

The following displays the file modifications:

```
A:ALA-12>config>log# info
------------------------------------------
  ... file-id 1
    description "LocationTest."
    location cf2:
      rollover 2880 retention 500
  exit
  ...
------------------------------------------
A:ALA-12>config>log#
```
Deleting a File ID

NOTE: All references to the file ID must be deleted before the file ID can be removed.

Use the following CLI syntax to delete a log ID:

CLI Syntax: `config>log
 no file-id log-file-id`

The following displays an example to delete a file ID:

Example: `config>log# no file-id 1`
Modifying a Syslog ID

NOTE: All references to the syslog ID must be deleted before the syslog ID can be removed.

Use the following CLI syntax to modify a syslog ID parameters:

CLI Syntax: config>log
 syslog syslog-id
 description description-string
 address ip-address
 log-prefix log-prefix-string
 port port
 level {emergency|alert|critical|error|warning|notice|info|debug
 facility syslog-facility

The following displays an example of the syslog ID modifications:

Example: config# log
 config>log# syslog 1
 config>log>syslog$ description "Test syslog."
 config>log>syslog# address 10.10.0.91
 config>log>syslog# facility mail
 config>log>syslog# level info

The following displays the syslog configuration:

A:ALA-12>config>log# info
--
... ...
 syslog 1
 description "Test syslog."
 address 10.10.0.91
 facility mail
 level info
 exit
... ...
--
A:ALA-12>config>log#
Deleting a Syslog

Use the following CLI syntax to delete a syslog file:

CLI Syntax:
```
config>log
   no syslog syslog-id
```

The following displays an example to delete a syslog ID:

Example:
```
config# log
   config>log# no syslog 1
```
Modifying an SNMP Trap Group

Use the following CLI syntax to modify an SNMP trap group:

CLI Syntax:
```
config>log
snmp-trap-group log-id
  trap-target name [address ip-address] [port port]
    [snmpv1|snmpv2c|snmpv3] notify-community communityName
    [snmpv3SecurityName [security-level {no-auth-no-privacy|auth-no-privacy|privacy}]]
```

The following displays the current SNMP trap group configuration:

```
A:ALA-12>config>log# info
----------------------------------------------
... snmp-trap-group 10
  trap-target 10.10.10.104:5 "snmpv3" notify-community "communitystring"
  exit
... ----------------------------------------------
A:ALA-12>config>log#
```

The following displays an example of the command usage to modify an SNMP trap group:

Example:
```
config# log
config>log# snmp-trap-group 10
config>log>snmp-trap-group# no trap-target 10.10.104:5
config>log>snmp-trap-group# snmp-trap-group# trap-target 10.10.0.91:1 snmpv2c notify-community "com1"
```

The following displays the SNMP trap group configuration:

```
A:ALA-12>config>log# info
----------------------------------------------
... snmp-trap-group 10
  trap-target 10.10.0.91:1 "snmpv2c" notify-community "com1"
  exit
... ----------------------------------------------
A:ALA-12>config>log#
```
Deleting an SNMP Trap Group

Use the following CLI syntax to delete a trap target and SNMP trap group:

CLI Syntax:
```
config>log
go snmp-trap-group log-id
    no trap-target name
```

The following displays the SNMP trap group configuration:

```
A:ALA-12>config>log# info
----------------------------------------------
...                      
    snmp-trap-group 10
    trap-target 10.10.0.91:1 "snmpv2c" notify-community "com1"
    exit
...                      
----------------------------------------------
A:ALA-12>config>log#
```

The following displays an example to delete a trap target and an SNMP trap group.

Example:
```
config>log# snmp-trap-group 10
config>log>snmp-trap-group# no trap-target 10.10.0.91:1
config>log>snmp-trap-group# exit
config>log# no snmp-trap-group 10
```
Modifying a Log Filter

Use the following CLI syntax to modify a log filter:

CLI Syntax:
```
cfg>log
  filter filter-id
    default-action {drop|forward}
    description description-string
    entry entry-id
      action {drop|forward}
      description description-string
      match
        application {eq|neq} application-id
        number {eq|neq|lt|lte|gt|gte} event-id
        router {eq|neq} router-instance [regexp]
        severity {eq|neq|lt|lte|gt|gte} severity-level
        subject {eq|neq} subject [regexp]
```

The following output displays the current log filter configuration:

```
ALA-12>cfg>log# info
#------------------------------------------
echo "Log Configuration 
#------------------------------------------
...  
  filter 1
    default-action drop
    description "This is a sample filter."
  entry 1
    action forward
    match
      application eq "mirror"
      severity eq critical
    exit
  exit
...  
------------------------------------------
ALA-12>cfg>log#  
```

The following displays an example of the log filter modifications:

Example:
```
cfg# log
cfg>log# filter 1
cfg>log>filter# description "This allows <n>.
cfg>log>filter# default-action forward
cfg>log>filter# entry 1
cfg>log>filter>entry$ action drop
cfg>log>filter>entry# match
cfg>log>filter>entry>match# application eq user
```
The following displays the log filter configuration:

```
A:ALAs-12>config>log>filter# info
-----------------------------
...                        
  filter 1                  
   description "This allows <n>.
  entry 1                  
   action drop             
   match                   
    application eq "user"
    number eq 2001         
   exit                    
   exit                    
...                        
A:ALAs-12>config>log>filter#
```
Deleting a Log Filter

Use the following CLI syntax to delete a log filter:

CLI Syntax:

```
config>log
no filter filter-id
```

The following output displays the current log filter configuration:

```
A:ALA-12>config>log>filter# info
----------------------------------------
...  
    filter 1
    description "This allows <n>.
    entry 1
      action drop
      match
        application eq "user"
        number eq 2001
      exit
    exit
    exit
  ...
----------------------------------------
A:ALA-12>config>log>filter#
```

The following displays an example of the command usage to delete a log filter:

Example:

```
config>log# no filter 1
```
Modifying Event Control Parameters

Use the following CLI syntax to modify event control parameters:

CLI Syntax:
```
config>log
   event-control application-id [event-name|event-number] generate[severity-level] [throttle]
   event-control application-id [event-name|event-number] suppress
```

The following displays the current event control configuration:

```
A:ALA-12>config>log# info
----------------------------------------------
...  
   event-control "bgp" 2014 generate critical
...  
----------------------------------------------
A:ALA-12>config>log#
```

The following displays an example of an event control modifications:

Example:
```
config# log
config>log# event-control bgp 2014 suppress
```

The following displays the log filter configuration:

```
A:ALA-12>config>log# info
----------------------------------------------
...  
   event-control "bgp" 2014 suppress
...  
----------------------------------------------
A:ALA-12>config>log#
```
Returning to the Default Event Control Configuration

The `no` form of the `event-control` command returns modified values back to the default values.

Use the following CLI syntax to modify event control parameters:

CLI Syntax:
```
config>log
   no event-control application [event-name | event-number]
```

The following displays an example of the command usage to return to the default values:

Example:
```
config# log
config>log# no event-control "bgp" 2001
config>log# no event-control "bgp" 2002
config>log# no event-control "bgp" 2014
```

A:ALA-12>config>log# info detail
```
#------------------------------------------
#------------------------------------------
echo "Log Configuration"
#------------------------------------------
```
```
event-control "bgp" 2001 generate minor
event-control "bgp" 2002 generate warning
event-control "bgp" 2003 generate warning
event-control "bgp" 2004 generate critical
event-control "bgp" 2005 generate warning
event-control "bgp" 2006 generate warning
event-control "bgp" 2007 generate warning
event-control "bgp" 2008 generate warning
event-control "bgp" 2009 generate warning
event-control "bgp" 2010 generate warning
event-control "bgp" 2011 generate warning
event-control "bgp" 2012 generate warning
event-control "bgp" 2013 generate warning
```
```
event-control "bgp" 2014 generate warning
event-control "bgp" 2015 generate critical
event-control "bgp" 2016 generate warning
```
```
#------------------------------------------
A:ALA-12>config>log#
```
Log Command Reference

Command Hierarchies

- Log Command Reference on page 339
 - Accounting Policy Commands on page 339
 - Custom Record Commands on page 340
 - File ID Commands on page 343
 - Event Filter Commands on page 343
 - Log ID Commands on page 344
 - SNMP Trap Group Commands on page 344
 - Syslog Commands on page 345
- Show Commands on page 346
- Clear Command on page 346

Log Configuration Commands

```config
  log
    event-control application-id [event-name | event-number] [generate severity-level] [throttle]
    event-control application-id [event-name | event-number] suppress
    event-control application-id [event-name | event-number] [generate severity-level] [throttle]
    event-control application-id [event-name | event-number] suppress
    route-preference primary {inband | outband} secondary {inband | outband | none}
    route-preference primary {inband | outband} secondary {inband | outband | none}
    throttle-rate events [interval seconds]
    no throttle-rate
```

ACCOUNTING POLICY COMMANDS

```config
  log
    collection-interval minutes
    no collection-interval
    accounting-policy acct-policy-id
    no accounting-policy acct-policy-id
      default
      description description-string
      no description
      record record-name
      no record
      shutdown
      to file log-file-id
```
CUSTOM RECORD COMMANDS

config
 --- log
 --- accounting-policy acct-policy-id [interval minutes]
 --- no accounting-policy acct-policy-id
 --- collection-interval minutes
 --- no collection-interval
 --- [no] custom-record
 --- [no] aa-specific
 --- aa-sub-counters [all]
 --- no aa-sub-counters
 --- [no] long-duration-flow-count
 --- [no] medium-duration-flow-count
 --- [no] short-duration-flow-count
 --- [no] total-flow-duration
 --- [no] total-flows-completed-count
 --- from-aa-sub-counters [all]
 --- no from-aa-sub-counters
 --- [no] flows-active-count[all]
 --- [no] flows-admitted-count
 --- [no] flows-denied-count
 --- [no] octets-admitted-count
 --- [no] octets-denied-count
 --- [no] packets-admitted-count
 --- [no] packets-denied-count
 --- to-aa-sub-counters [all]
 --- to-aa-sub-counters
 --- [no] flows-active-count[all]
 --- [no] flows-admitted-count
 --- [no] flows-denied-count
 --- [no] octets-admitted-count
 --- [no] octets-denied-count
 --- [no] packets-admitted-count
 --- [no] packets-denied-count
 --- [no] override-counter override-counter-id
 --- e-counters [all]
 --- no e-counters
 --- [no] in-profile-octets-discarded-count
 --- [no] in-profile-octets-forwarded-count
 --- [no] in-profile-packets-discarded-count
 --- [no] in-profile-packets-forwarded-count
 --- [no] out-profile-octets-discarded-count
 --- [no] out-profile-octets-forwarded-count
 --- [no] out-profile-packets-discarded-count
 --- [no] out-profile-packets-forwarded-count
 --- i-counters [all]
 --- no i-counters
 --- [no] in-profile-octets-discarded-count
 --- [no] in-profile-octets-forwarded-count
 --- [no] in-profile-packets-discarded-count
 --- [no] in-profile-packets-forwarded-count
 --- [no] out-profile-octets-discarded-count
 --- [no] out-profile-octets-forwarded-count
— [no] out-profile-packets-discarded-count
— [no] out-profile-packets-forwarded-count

— [no] queue queue-id
 — e-counters [all]
 — no e-counters
 — [no] in-profile-octets-discarded-count
 — [no] in-profile-octets-forwarded-count
 — [no] in-profile-packets-discarded-count
 — [no] in-profile-packets-forwarded-count
 — [no] out-profile-octets-discarded-count
 — [no] out-profile-octets-forwarded-count
 — [no] out-profile-packets-discarded-count
 — [no] out-profile-packets-forwarded-count
 — i-counters [all]
 — no i-counters
 — [no] all-octets-offered-count
 — [no] all-packets-offered-count
 — [no] high-octets-discarded-count
 — [no] high-octets-forwarded-count
 — [no] high-packets-discarded-count
 — [no] high-packets-forwarded-count
 — [no] in-profile-octets-forwarded-count
 — [no] in-profile-packets-forwarded-count
 — [no] low-octets-discarded-count
 — [no] low-octets-forwarded-count
 — [no] low-octets-offered-count
 — [no] low-octets-offered-count
 — [no] low-packets-discarded-count
 — [no] low-packets-forwarded-count
 — [no] low-packets-forwarded-count
 — [no] uncoloured-octets-offered-count
 — [no] uncoloured-octets-offered-count
 — [no] uncoloured-packets-offered-count

— ref-aa-specific-counter any
— no ref-aa-specific-counter
— ref-override-counter ref-override-counter-id
— ref-override-counter all
— no ref-override-counter
 — e-counters [all]
 — no e-counters
 — [no] in-profile-octets-discarded-count
 — [no] in-profile-octets-forwarded-count
 — [no] in-profile-packets-discarded-count
 — [no] in-profile-packets-forwarded-count
 — [no] out-profile-octets-discarded-count
 — [no] out-profile-octets-forwarded-count
 — [no] out-profile-packets-discarded-count
 — [no] out-profile-packets-forwarded-count
 — i-counters [all]
 — no i-counters
 — [no] all-octets-offered-count
 — [no] all-packets-offered-count
 — [no] high-octets-discarded-count
 — [no] high-octets-forwarded-count
 — [no] high-packets-discarded-count
 — [no] high-packets-forwarded-count
 — [no] in-profile-octets-forwarded-count
 — [no] in-profile-octets-forwarded-count
 — [no] out-profile-octets-forwarded-count
 — [no] out-profile-octets-forwarded-count
 — [no] out-profile-packets-forwarded-count
 — [no] out-profile-packets-forwarded-count
 — [no] uncoloured-octets-offered-count
 — [no] uncoloured-octets-offered-count
 — [no] in-profile-octets-forwarded-count
— [no] in-profile-packets-forwarded-count
— [no] low-octets-discarded-count
— [no] low-packets-discarded-count
— [no] low-octets-offered-count
— [no] low-packets-offered-count
— [no] out-profile-octets-forwarded-count
— [no] out-profile-packets-forwarded-count
— [no] uncoloured-octets-offered-count
— [no] uncoloured-packets-offered-count
— ref-queue queue-id
— ref-queue all
— no ref-queue
— e-counters [all]
— no e-counters
— [no] in-profile-octets-discarded-count
— [no] in-profile-octets-forwarded-count
— [no] in-profile-packets-discarded-count
— [no] in-profile-packets-forwarded-count
— [no] out-profile-octets-discarded-count
— [no] out-profile-octets-forwarded-count
— [no] out-profile-packets-discarded-count
— [no] out-profile-packets-forwarded-count
— i-counters [all]
— no i-counters
— [no] all-octets-offered-count
— [no] all-packets-offered-count
— [no] high-octets-discarded-count
— [no] high-octets-forwarded-count
— [no] high-octets-offered-count
— [no] high-packets-discarded-count
— [no] high-packets-forwarded-count
— [no] high-packets-offered-count
— [no] in-profile-octets-forwarded-count
— [no] in-profile-octets-forwarded-count
— [no] in-profile-packets-forwarded-count
— [no] low-octets-discarded-count
— [no] low-octets-forwarded-count
— [no] low-octets-offered-count
— [no] low-packets-discarded-count
— [no] low-packets-forwarded-count
— [no] low-packets-offered-count
— [no] out-profile-octets-forwarded-count
— [no] out-profile-octets-forwarded-count
— [no] out-profile-packets-forwarded-count
— significant-change delta
— no significant-change
FILE ID COMMANDS

```
config log
  [no] file-id log-file-id
  [no] description description-string
  [no] location cflash-id
  [no] rollover minutes [retention hours]
```

EVENT FILTER COMMANDS

```
config log
  [no] filter filter-id
  [no] default-action {drop | forward}
  [no] description description-string
  [no] entry entry-id
    [no] action {drop | forward}
    [no] description description-string
    [no] match
      [no] application {eq | neq} application-id
      [no] number {eq | neq | lt | lte | gt | gte} event-id
      [no] router {eq | neq} router-instance [regexp]
      [no] severity {eq | neq | lt | lte | gt | gte} severity-level
      [no] subject {eq | neq} subject [regexp]
```
LOG ID COMMANDS

```
config log
  [no] log-id log-id
    [no] description description-string
    [no] filter filter-id
    [no] from [{main} {security} {change} {debug-trace}]
    [no] to console
    [no] to file log-file-id
    [no] to memory [size]
    [no] to session
    [no] to syslog syslog-id
    [no] to snmp [size]
    to memory
```

SNMP TRAP GROUP COMMANDS

```
config log
  [no] log-id
    [no] description description-string
    [no] filter filter-id
    [no] trap-target name [address ip-address] [port port] [snmpv1 | snmpv2c | snmpv3]
        notify-community communityName | snmpv3SecurityName [security-level {no-auth-no-privacy | auth-no-privacy | privacy}] [replay]
        [no] trap-target name
```

SYSLOG COMMANDS

```plaintext
config
  log
    [no] syslog syslog-id
      address ip-address
      no address
      description description-string
      no description
      facility syslog-facility
      no facility
      level {emergency | alert | critical | error | warning | notice | info | debug}
      no level
      log-prefix log-prefix-string
      no log-prefix
      port port
      no port
```
Show Commands

```plaintext
show
  — log
    — accounting-policy [acct-policy-id] [access | network]
    — accounting-records
    — applications
    — event-control [application [event-name | event-number]]
    — file-id [log-file-id]
    — filter-id [filter-id]
    — log-collector
    — log-id [log-id] [severity severity-level] [application application] [sequence from-seq [to-seq]] [count count] [subject subject] [ascending | descending]
    — snmp-trap-group [log-id]
    — syslog [syslog-id]
```

Clear Command

```plaintext
clear
  — log log-id
```
Configuration Commands

Generic Commands

description

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>description string</td>
<td></td>
</tr>
<tr>
<td>no description</td>
<td></td>
</tr>
</tbody>
</table>

Context

<table>
<thead>
<tr>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>config>log>filter</td>
</tr>
<tr>
<td>config>log>filter>entry</td>
</tr>
<tr>
<td>config>log>log-id</td>
</tr>
<tr>
<td>config>log>accounting-policy</td>
</tr>
<tr>
<td>config>log>file-id</td>
</tr>
<tr>
<td>config>log>syslog</td>
</tr>
<tr>
<td>config>log>snmp-trap-group</td>
</tr>
</tbody>
</table>

Description

This command creates a text description stored in the configuration file for a configuration context. The description command associates a text string with a configuration context to help identify the content in the configuration file.

The no form of the command removes the string from the configuration.

Default

No text description is associated with this configuration. The string must be entered.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The description can contain a string of up to 80 characters composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.</td>
</tr>
</tbody>
</table>

shutdown

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] shutdown</td>
<td></td>
</tr>
</tbody>
</table>

Context

<table>
<thead>
<tr>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>config>log>log-id</td>
</tr>
<tr>
<td>config>log>accounting-policy</td>
</tr>
</tbody>
</table>

Description

This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The no form of this command administratively enables an entity.

Default

no shutdown

Special Cases

<table>
<thead>
<tr>
<th>Special Cases</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log-id log-id</td>
<td>When a log-id is shut down, no events are collected for the entity. This leads to the loss of event data.</td>
</tr>
</tbody>
</table>
accounting-policy accounting Policy — When an accounting policy is shut down, no accounting data is written to the destination log ID. Counters in the billing data reflect totals, not increments, so when the policy is re-enabled (no shutdown) the counters include the data collected during the period the policy was shut down.
Event Control

event-control

```plaintext
Syntax  
event-control application-id [event-name | event-number] [generate [severity-level] [throttle]
event-control application-id [event-name | event-number] suppress
no event-control application [event-name | event-number]

Context  
config>log

Description  
This command is used to specify that a particular event or all events associated with an application is
either generated or suppressed.

Events are generated by an application and contain an event number and description explaining the
cause of the event. Each event has a default designation which directs it to be generated or
suppressed.

Events are generated with a default severity level that can be modified by using the severity-level
option.

Events that are suppressed by default are typically used for debugging purposes. Events are
suppressed at the time the application requests the event’s generation. No event log entry is generated
regardless of the destination. While this feature can save processor resources, there may be a negative
effect on the ability to troubleshoot problems if the logging entries are squelched. In reverse,
indiscriminate application may cause excessive overhead.

The rate of event generation can be throttled by using the throttle parameter.

The no form of the command reverts the parameters to the default setting for events for the
application or a specific event within the application. The severity, generate, and suppress options
will also be reset to the initial values.

Default  
Each event has a default suppress or generate state. To display a list of all events and the current
configuration use the event-control command.

Parameters  
application-id  — The application whose events are affected by this event control filter.

  Default  None, this parameter must be explicitly specified.

  Values  A valid application name. To display a list of valid application names, use the
applications command. Valid applications are:

    application_assurance, aps, atm, bgp, cflowd, chassis, debug, dhcp, dhcpv6,
efm_oam, eth_cfm, filter, gsm, igmp, igmp_snooping, ip, ipsec, isis, lag, ldp, li,
tcp, logger, mcp, mc_redunancy, mirror, mld, mld_snooping, mpls, msdp, ntp,
oam, ospf, ppt, ppt_snooping, port, ppt, pptoe, rip, route_policy, rsvp, security,
snmp, stp, svcmgr, system, user, vrrp, vrtr

  event-name | event-number  — To generate, suppress, or revert to default for a single event, enter the
specific number or event short name. If no event number or name is specified, the command
```
applies to all events in the application. To display a list of all event short names use the event-control command.

Default

```
none
```

Values

A valid event name or event number.

generate — Specifies that logger event is created when this event occurs. The generate keyword can be used with two optional parameters, severity-level and throttle.

Default

```
generate
```

severity-name — An ASCII string representing the severity level to associate with the specified generated events

Default

```
The system assigned severity name
```

Values

One of: cleared, indeterminate, critical, major, minor, warning.

throttle — Specifies whether or not events of this type will be throttled.

By default, event throttling is off for each specific event type. It must be explicitly enabled for each event type where throttling is desired. This makes backwards compatibility easier to manage.

suppress — This keyword indicates that the specified events will not be logged. If the suppress keyword is not specified then the events are generated by default. For example, event-control bgp suppress will suppress all BGP events.

Default

```
generate
```

route-preference

Syntax

```
route-preference primary {inband | outband} secondary {inband | outband | none}
```

```
o route-preference
```

Context

config>log

Description

This command specifies the primary and secondary routing preference for traffic generated for SNMP notifications and syslog messages. If the remote destination is not reachable through the routing context specified by primary route preference then the secondary routing preference will be attempted.

The no form of the command reverts to the default values.

Default

```
o route-preference
```

Parameters

primary — Specifies the primary routing preference for traffic generated for SNMP notifications and syslog messages.

Default

```
outband
```

secondary — Specifies the secondary routing preference for traffic generated for SNMP notifications and syslog messages. The routing context specified by the secondary route preference will be attempted if the remote destination was not reachable by the primary routing
preference, specified by primary route preference. The value specified for the secondary routing preference must be distinct from the value for primary route preference.

Default
inband

inband — Specifies that the logging utility will attempt to use the base routing context to send SNMP notifications and syslog messages to remote destinations.

outband — Specifies that the logging utility will attempt to use the management routing context to send SNMP notifications and syslog messages to remote destinations.

none — Specifies that no attempt will be made to send SNMP notifications and syslog messages to remote destinations.
Log File Commands

file-id

Syntax

[no] file-id file-id

Context

config>log

Description

This command creates the context to configure a file ID template to be used as a destination for an event log or billing file.

This command defines the file location and characteristics that are to be used as the destination for a log event message stream or accounting/billing information. The file defined in this context is subsequently specified in the to command under log-id or accounting-policy to direct specific logging or billing source streams to the file destination.

A file ID can only be assigned to either one log-id or one accounting-policy. It cannot be reused for multiple instances. A file ID and associated file definition must exist for each log and billing file that must be stored in the file system.

A file is created when the file ID defined in this command is selected as the destination type for a specific log or accounting record. Log files are collected in a “log” directory. Accounting files are collected in an “act” directory.

The file names for a log are created by the system as summarized in the table below:

<table>
<thead>
<tr>
<th>File Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log File</td>
<td>logllff-timestamp</td>
</tr>
<tr>
<td>Accounting File</td>
<td>actaaff-timestamp</td>
</tr>
</tbody>
</table>

Where:

• ll is the log-id
• aa is the accounting policy-id
• ff is the file-id
• The timestamp is the actual timestamp when the file is created. The format for the timestamp is yyyyymmdd-hhmmss where:
 – yyyy is the year (for example, 2006)
 – mm is the month number (for example, 12 for December)
 – dd is the day of the month (for example, 03 for the 3rd of the month)
 – hh is the hour of the day in 24 hour format (for example, 04 for 4 a.m.)
 – mm is the minutes (for example, 30 for 30 minutes past the hour)
 – ss is the number of seconds (for example, 14 for 14 seconds)
• The accounting file is compressed and has a gz extension.
When initialized, each file will contain:

- The log-id description.
- The time the file was opened.
- The reason the file was created.
- If the event log file was closed properly, the sequence number of the last event stored on the log is recorded.

If the process of writing to a log file fails (for example, the compact flash card is full) and if a backup location is not specified or fails, the log file will not become operational even if the compact flash card is replaced. Enter either a clear log command or a shutdown/no shutdown command to reinitialize the file.

If the primary location fails (for example, the compact flash card fills up during the write process), a trap is sent and logging continues to the specified backup location. This can result in truncated files in different locations.

The no form of the command removes the file-id from the configuration. A file-id can only be removed from the configuration if the file is not the designated output for a log destination. The actual file remains on the file system.

Default
No default file IDs are defined.

Parameters

- **file-id** — The file identification number for the file, expressed as a decimal integer.

Values
1 — 99

location

Syntax

- location cflash-id [backup-cflash-id]
- no location

Context
config>log>file file-id

Description

This command specifies the primary and optional backup location where the log or billing file will be created.

The location command is optional. If the location command not explicitly configured, log files will be created on cf1: and accounting files will be created on cf2: without overflow onto other devices. Generally, cf3: is reserved for system files (configurations, images, etc.).

When multiple location commands are entered in a single file ID context, the last command overwrites the previous command.

When the location of a file ID that is associated with an active log ID is changed, the log events are not immediately written to the new location. The new location does not take affect until the log is rolled over either because the rollover period has expired or a clear log log-id command is entered to manually rollover the log file.

When creating files, the primary location is used as long as there is available space. If no space is available, an attempt is made to delete unnecessary files that are past their retention date.
If sufficient space is not available an attempt is made to remove the oldest to newest closed log or accounting files. After each file is deleted, the system attempts to create the new file.

A medium severity trap is issued to indicate that a compact flash is either not available or that no space is available on the specified flash and that the backup location is being used.

A high priority alarm condition is raised if none of the configured compact flash devices for this file ID are present or if there is insufficient space available. If space does becomes available, then the alarm condition will be cleared.

Use the no form of this command to revert to default settings.

Default
Log files are created on cf1: and accounting files are created on cf2:.

Parameters
cflash-id — Specify the primary location.

Values
cflash-id: cf1:, cf2:, cf3:

backup-cflash-id — Specify the secondary location.

Values
cflash-id: cf1:, cf2:, cf3:

rollover

Syntax

```
rollover minutes [retention hours]
```

no rollover

Context

config>log>file file-id

Description

This command configures how often an event or accounting log is rolled over or partitioned into a new file.

An event or accounting log is actually composed of multiple, individual files. The system creates a new file for the log based on the rollover time, expressed in minutes.

The retention option, expressed in hours, allows you to modify the default time to keep the file in the system. The retention time is based on the rollover time of the file.

When multiple rollover commands for a file-id are entered, the last command overwrites the previous command.

Default

rollover 1440 retention 12

Parameters

minutes — The rollover time, in minutes.

Values

5 — 10080

retention hours. The retention period in hours, expressed as a decimal integer. The retention time is based on the time creation time of the file. The file becomes a candidate for removal once the creation datestamp + rollover time + retention time is less than the current timestamp.

Default

12

Values

1 — 500
Log Filter Commands

filter

Syntax

```
[no] filter filter-id
```

Context

```
config>log
```

Description

This command creates a context for an event filter. An event filter specifies whether to forward or drop an event or trap based on the match criteria.

Filters are configured in the `filter` `filter-id` context and then applied to a log in the `log-id` `log-id` context. Only events for the configured log source streams destined to the log ID where the filter is applied are filtered.

Any changes made to an existing filter, using any of the sub-commands, are immediately applied to the destinations where the filter is applied.

The `no` form of the command removes the filter association from log IDs which causes those logs to forward all events.

Default

No event filters are defined.

Parameters

- `filter-id` — The filter ID uniquely identifies the filter.

Values

- 1 — 1000

default-action

Syntax

```
default-action {drop | forward}
```

```
no default-action
```

Context

```
config>log>filter filter-id
```

Description

The default action specifies the action that is applied to events when no action is specified in the event filter entries or when an event does not match the specified criteria.

When multiple `default-action` commands are entered, the last command overwrites the previous command.

The `no` form of the command reverts the default action to the default value (forward).

Default

`default-action forward` — The events which are not explicitly dropped by an event filter match are forwarded.

Parameters

- `drop` — The events which are not explicitly forwarded by an event filter match are dropped.

- `forward` — The events which are not explicitly dropped by an event filter match are forwarded.
Log Filter Entry Commands

action

Syntax
```
action {drop | forward}
no action
```

Context
```
config>log>filter filter-id>entry entry-id
```

Description
This command specifies a drop or forward action associated with the filter entry. If neither `drop` nor `forward` is specified, the `default-action` will be used for traffic that conforms to the match criteria. This could be considered a No-Op filter entry used to explicitly exit a set of filter entries without modifying previous actions.

Multiple action statements entered will overwrite previous actions.

The `no` form of the command removes the specified `action` statement.

Default
Action specified by the `default-action` command will apply.

Parameters
- `drop` — Specifies packets matching the entry criteria will be dropped.
- `forward` — Specifies packets matching the entry criteria will be forwarded.

entry

Syntax
```
[no] entry entry-id
```

Context
```
config>log>filter filter-id
```

Description
This command is used to create or edit an event filter entry. Multiple entries may be created using unique `entry-id` numbers. The TiMOS implementation exits the filter on the first match found and executes the action in accordance with the action command.

Comparisons are performed in an ascending entry ID order. When entries are created, they should be arranged sequentially from the most explicit entry to the least explicit. Matching ceases when a packet matches an entry. The entry action is performed on the packet, either drop or forward. To be considered a match, the packet must meet all the conditions defined in the entry.

An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword action for it to be considered complete. Entries without the action keyword will be considered incomplete and are rendered inactive.

The `no` form of the command removes the specified entry from the event filter. Entries removed from the event filter are immediately removed from all log-id’s where the filter is applied.

Default
No event filter entries are defined. An entry must be explicitly configured.
Parameters

entry-id. The entry ID uniquely identifies a set of match criteria corresponding action within a filter. Entry ID values should be configured in staggered increments so you can insert a new entry in an existing policy without renumbering the existing entries.

Values

1 — 999
Log Filter Entry Match Commands

match

Syntax

[no] match

Context

config>log>filter filter-id>entry entry-id

Description

This command creates context to enter/edit match criteria for a filter entry. When the match criteria is satisfied, the action associated with the entry is executed.

If more than one match parameter (within one match statement) is specified, then all the criteria must be satisfied (AND functional) before the action associated with the match is executed.

Use the application command to display a list of the valid applications.

Match context can consist of multiple match parameters (application, event-number, severity, subject), but multiple match statements cannot be entered per entry.

The no form of the command removes the match criteria for the entry-id.

Default

No match context is defined.

application

Syntax

application {eq | neq} application-id

no application

Context

config>log>filter filter-id>entry entry-id>match

Description

This command adds an OS application as an event filter match criterion.

An OS application is the software entity that reports the event. Applications include IP, MPLS, OSPF, CLI, SERVICES etc. Only one application can be specified. The latest application command overwrites the previous command.

The no form of the command removes the application as a match criterion.

Default

no application — No application match criterion is specified.

Parameters

eq | neq — The operator specifying the type of match. Valid operators are listed in the table below.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
</tbody>
</table>

application-id — The application name string.

Values

aps, atm, bgp, cflowd, chassis, debug, dhcp, efm_oam, filter, gsm, igmp, igmp_snooping, ip, isis, lag, ldp, logger, mc_redundancy, mirror, mpls, msdp, ntp,
number

Syntax
number {eq | neq | lt | lte | gt | gte} event-id
no number

Context
config>log>filter filter-id>entry entry-id>match

Description
This command adds an SR OS application event number as a match criterion.
SR OS event numbers uniquely identify a specific logging event within an application.
Only one number command can be entered per event filter entry. The latest number command overwrites the previous command.
The no form of the command removes the event number as a match criterion.

Default
no event-number — No event ID match criterion is specified.

Parameters
eq | neq | lt | lte | gt | gte — This operator specifies the type of match. Valid operators are listed in the table below. Valid operators are:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
<tr>
<td>lt</td>
<td>less than</td>
</tr>
<tr>
<td>lte</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>gt</td>
<td>greater than</td>
</tr>
<tr>
<td>gte</td>
<td>greater than or equal to</td>
</tr>
</tbody>
</table>

event-id — The event ID, expressed as a decimal integer.

Values
1 — 4294967295

router

Syntax
router {eq | neq} router-instance [regexp]
no router

Context
config>log>filter>entry>match

Description
This command specifies the log event matches for the router.

Parameters
eq — Determines if the matching criteria should be equal to the specified value.
neq — Determines if the matching criteria should not be equal to the specified value.

router-instance — Specifies a router name up to 32 characters to be used in the match criteria.

regexp — Specifies the type of string comparison to use to determine if the log event matches the value of router command parameters. When the regexp keyword is specified, the string in the router command is a regular expression string that will be matched against the subject string in the log event being filtered.

severity

Syntax severity {eq | neq | lt | lte | gt | gte} severity-level

no severity

Context config>log>filter>entry>match

Description This command adds an event severity level as a match criterion. Only one severity command can be entered per event filter entry. The latest severity command overwrites the previous command. The no form of the command removes the severity match criterion.

Default no severity — No severity level match criterion is specified.

Parameters eq | neq | lt | lte | gt | gte — This operator specifies the type of match. Valid operators are listed in the table below.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
<tr>
<td>lt</td>
<td>less than</td>
</tr>
<tr>
<td>lte</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>gt</td>
<td>greater than</td>
</tr>
<tr>
<td>gte</td>
<td>greater than or equal to</td>
</tr>
</tbody>
</table>
severity-name — The ITU severity level name. The following table lists severity names and corresponding numbers per ITU standards M.3100 X.733 & X.21 severity levels.

<table>
<thead>
<tr>
<th>Severity Number</th>
<th>Severity Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cleared</td>
</tr>
<tr>
<td>2</td>
<td>indeterminate (info)</td>
</tr>
<tr>
<td>3</td>
<td>critical</td>
</tr>
<tr>
<td>4</td>
<td>major</td>
</tr>
<tr>
<td>5</td>
<td>minor</td>
</tr>
<tr>
<td>6</td>
<td>warning</td>
</tr>
</tbody>
</table>

Values cleared, intermediate, critical, major, minor, warning

subject

Syntax subject {eq|neq} subject [regexp]
no subject

Context config>log>filter filter-id>entry entry-id>match

Description This command adds an event subject as a match criterion.

The subject is the entity for which the event is reported, such as a port. In this case the port-id string would be the subject. Only one subject command can be entered per event filter entry. The latest subject command overwrites the previous command.

The no form of the command removes the subject match criterion.

Default no subject — No subject match criterion specified.

Parameters eq | neq — This operator specifies the type of match. Valid operators are listed in the following table:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neg</td>
<td>not equal to</td>
</tr>
</tbody>
</table>

subject — A string used as the subject match criterion.

regexp — Specifies the type of string comparison to use to determine if the log event matches the value of subject command parameters. When the regexp keyword is specified, the string in the subject command is a regular expression string that will be matched against the subject string in the log event being filtered.
When `regexp` keyword is not specified, the `subject` command string is matched exactly by the event filter.
Syslog Commands

syslog

Syntax
\[no\] syslog syslog-id

Context config>log

Description This command creates the context to configure a syslog target host that is capable of receiving selected syslog messages from this network element.

A valid syslog-id must have the target syslog host address configured.

A maximum of 10 syslog-id’s can be configured.

No log events are sent to a syslog target address until the syslog-id has been configured as the log destination (to) in the log-id node.

Default No syslog IDs are defined.

Parameters

- **syslog-id** — The syslog ID number for the syslog destination, expressed as a decimal integer.

 Values
 1 — 10

address

Syntax
address ip-address

no address

Context config>log>syslog syslog-id

Description This command adds the syslog target host IP address to/from a syslog ID.

This parameter is mandatory. If no address is configured, syslog data cannot be forwarded to the syslog target host.

Only one address can be associated with a syslog-id. If multiple addresses are entered, the last address entered overwrites the previous address.

The same syslog target host can be used by multiple log IDs.

The no form of the command removes the syslog target host IP address.

Default no address — There is no syslog target host IP address defined for the syslog ID.

Parameters

- **ip-address** — The IP address of the syslog target host in dotted decimal notation.
 Values
 ipv4-address a.b.c.d
 ipv6-address x:x:x:x:x:x:x:x[-interface]
 x:x:x:x:x:d.d.d.d[-interface]
 x: [0..FFFF]H
 d: [0..255]D
interface: 32 characters maximum, mandatory for link local addresses

facility

Syntax

```
facility syslog-facility
no facility
```

Context

```
config>log>syslog syslog-id
```

Description

This command configures the facility code for messages sent to the syslog target host.

Multiple syslog IDs can be created with the same target host but each syslog ID can only have one facility code. If multiple facility codes are entered, the last `facility-code` entered overwrites the previous facility-code.

If multiple facilities need to be generated for a single syslog target host, then multiple `log-id` entries must be created, each with its own filter criteria to select the events to be sent to the syslog target host with a given facility code.

The `no` form of the command reverts to the default value.

Default

`local7` — syslog entries are sent with the local7 facility code.

Parameters

```
syslog-facility — The syslog facility name represents a specific numeric facility code. The code should be entered in accordance with the syslog RFC. However, the software does not validate if the facility code configured is appropriate for the event type being sent to the syslog target host.
```

Values

```
kernel, user, mail, systemd, auth, syslogd, printer, netnews, uucp, cron, authpriv, ftp, ntp, logaudit, logalert, cron2, local0, local1, local2, local3, local4, local5, local6, local7
```

Valid responses per RFC3164, *The BSD syslog Protocol*, are listed in the table below.

<table>
<thead>
<tr>
<th>Numerical Code</th>
<th>Facility Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kernel</td>
</tr>
<tr>
<td>1</td>
<td>user</td>
</tr>
<tr>
<td>2</td>
<td>mail</td>
</tr>
<tr>
<td>3</td>
<td>systemd</td>
</tr>
<tr>
<td>4</td>
<td>auth</td>
</tr>
<tr>
<td>5</td>
<td>syslogd</td>
</tr>
<tr>
<td>6</td>
<td>printer</td>
</tr>
<tr>
<td>7</td>
<td>net-news</td>
</tr>
<tr>
<td>8</td>
<td>uucp</td>
</tr>
<tr>
<td>9</td>
<td>cron</td>
</tr>
<tr>
<td>10</td>
<td>auth-priv</td>
</tr>
<tr>
<td>11</td>
<td>ftp</td>
</tr>
<tr>
<td>12</td>
<td>ntp</td>
</tr>
<tr>
<td>13</td>
<td>log-audit</td>
</tr>
</tbody>
</table>
Values 0 — 23

log-prefix

Syntax log-prefix log-prefix-string
no log-prefix

Context config>log>syslog syslog-id

Description This command adds the string prepended to every syslog message sent to the syslog host.

RFC3164, The BSD syslog Protocol, allows a alphanumeric string (tag) to be prepended to the content of every log message sent to the syslog host. This alphanumeric string can, for example, be used to identify the node that generates the log entry. The software appends a colon (:) and a space to the string and it is inserted in the syslog message after the date stamp and before the syslog message content.

Only one string can be entered. If multiple strings are entered, the last string overwrites the previous string. The alphanumeric string can contain lowercase (a-z), uppercase (A-Z) and numeric (0-9) characters.

The no form of the command removes the log prefix string.

Default no log-prefix — no prepend log prefix string defined.

Parameters log-prefix-string — An alphanumeric string of up to 32 characters. Spaces and colons (:) cannot be used in the string.
level

Syntax
level
syslog-level
no
level

Context
config>log>syslog
syslog-id

Description
This command configures the syslog message severity level threshold. All messages with severity level equal to or higher than the threshold are sent to the syslog target host. Only a single threshold level can be specified. If multiple levels are entered, the last level entered will overwrite the previously entered commands. The no form of the command reverts to the default value.

Parameters
value — The threshold severity level name.

Values
emergency, alert, critical, error, warning, notice, info, debug

<table>
<thead>
<tr>
<th>7750 SR severity level</th>
<th>Numerical Severity (highest to lowest)</th>
<th>Configured Severity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>emergency</td>
<td>system is unusable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>alert</td>
<td>action must be taken immediately</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>critical</td>
<td>critical condition</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>error</td>
<td>error condition</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>warning</td>
<td>warning condition</td>
</tr>
<tr>
<td>1 cleared</td>
<td>5</td>
<td>notice</td>
<td>normal but significant condition</td>
</tr>
<tr>
<td>2 indeterminate</td>
<td>6</td>
<td>info</td>
<td>informational messages</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>debug</td>
<td>debug-level messages</td>
</tr>
</tbody>
</table>

port

Syntax
port
value
no
port

Context
config>log>syslog
syslog-id

Description
This command configures the UDP port that will be used to send syslog messages to the syslog target host. The port configuration is needed if the syslog target host uses a port other than the standard UDP syslog port 514.
Only one port can be configured. If multiple `port` commands are entered, the last entered port overwrites the previously entered ports.

The **no** form of the command reverts to default value.

Default

```
no port
```

Parameters

```
value — The value is the configured UDP port number used when sending syslog messages.
```

```
Values 1 — 65535
```

throttle-rate

Syntax

```
throttle-rate events [interval seconds]
no throttle-rate
```

Context

```
config>log
```

Description

This command configures an event throttling rate.

Parameters

```
events — Specifies the number of log events that can be logged within the specified interval for a specific event. Once the limit has been reached, any additional events of that type will be dropped. For example, the event drop count will be incremented. At the end of the throttle interval if any events have been dropped a trap notification will be sent.
```

```
Values 10 — 20000
```

```
Default 500
```

```
interval seconds — Specifies the number of seconds that an event throttling interval lasts.
```

```
Values 1 — 60
```

```
Default 1
```
SNMP Trap Groups

snmp-trap-group

Syntax

```
[no] snmp-trap-group log-id
```

Context

```
config>log
```

Description

This command creates the context to configure a group of SNMP trap receivers and their operational parameters for a given log-id.

A group specifies the types of SNMP traps and specifies the log ID which will receive the group of SNMP traps. A trap group must be configured in order for SNMP traps to be sent.

To suppress the generation of all alarms and traps see the `event-control` command. To suppress alarms and traps that are sent to this log-id, see the `filter` command. Once alarms and traps are generated they can be directed to one or more SNMP trap groups. Logger events that can be forwarded as SNMP traps are always defined on the main event source.

The `no` form of the command deletes the SNMP trap group.

Default

There are no default SNMP trap groups.

Parameters

- `log-id` — The log ID value of a log configured in the `log-id` context. Alarms and traps cannot be sent to the trap receivers until a valid `log-id` exists.

 Values

 1 — 99

trap-target

Syntax

```
trap-target name [address ip-address] [port port] [snmpv1 | snmpv2c | snmpv3] notify-community communityName | snmpv3SecurityName [security-level {no-auth-no-privacy | auth-no-privacy | privacy}] [replay]
```

Context

```
config>log>snmp-trap-group
```

Description

This command adds/modifies a trap receiver and configures the operational parameters for the trap receiver. A trap reports significant events that occur on a network device such as errors or failures.

Before an SNMP trap can be issued to a trap receiver, the `log-id`, and at least one `trap-target` must be configured.

The `trap-target` command is used to add/remove a trap receiver from an . The operational parameters specified in the command include:
• The IP address of the trap receiver
• The UDP port used to send the SNMP trap
• SNMP version
• SNMP community name for SNMPv1 and SNMPv2c receivers.
• Security name and level for SNMPv3 trap receivers.

A single snmp-trap-group log-id can have multiple trap-receivers. Each trap receiver can have different operational parameters.

An address can be configured as a trap receiver more than once as long as a different port is used for each instance.

To prevent resource limitations, only configure a maximum of 10 trap receivers.

Note that if the same trap-target name port port parameter value is specified in more than one SNMP trap group, each trap destination should be configured with a different notify-community value. This allows a trap receiving an application, such as NMS, to reconcile a separate event sequence number stream for each 7750 SR event log when multiple event logs are directed to the same IP address and port destination.

The no form of the command removes the SNMP trap receiver from the SNMP trap group.

Default
No SNMP trap targets are defined.

Parameters

- **name** — Specifies the name of the trap target up to 28 characters in length.
- **address ip-address** — The IP address of the trap receiver in dotted decimal notation. Only one IP address destination can be specified per trap destination group.

 Values

 | ipv4-address | a.b.c.d (host bits must be 0) |
 | ipv6-address | x:x:x:x:x:x:x:x [-interface] |
 | | x:x:x:x:x:d.d.d.d [-interface] |
 | | x: [0..FFFF]H |
 | | d: [0..255]D |
 | | interface: 32 characters maximum, mandatory for link local addresses |

- **port** port — The destination UDP port used for sending traps to the destination, expressed as a decimal integer. Only one port can be specified per trap-target statement. If multiple traps need to be issued to the same address then multiple ports must be configured.

 Default
 162

 Values

 1 — 65535

- **snmpv1 | snmpv2c | snmpv3** — Specifies the SNMP version format to use for traps sent to the trap receiver.

 The keyword **snmpv1** selects the SNMP version 1 format. When specifying **snmpv1**, the notify-community must be configured for the proper SNMP community string that the trap receiver expects to be present in alarms and traps messages. If the SNMP version is changed from **snmpv3** to **snmpv1**, then the notify-community parameter must be changed to reflect the community string rather than the security-name that is used by **snmpv3**.
The keyword `snmpv2c` selects the SNMP version 2c format. When specifying `snmpv2c`, the **notify-community** must be configured for the proper SNMP community string that the trap receiver expects to be present in alarms and traps messages. If the SNMP version is changed from `snmpv3` to `snmpv2c`, then the **notify-community** parameter must be changed to reflect the community string rather than the **security-name** that is used by `snmpv3`.

The keyword `snmpv3` selects the SNMP version 3 format. When specifying `snmpv3`, the **notify-community** must be configured for the SNMP **security-name**. If the SNMP version is changed from `snmpv1` or `snmpv2c` to `snmpv3`, then the **notify-community** parameter must be changed to reflect the **security-name** rather than the community string used by `snmpv1` or `snmpv2c`.

Pre-existing conditions are checked before the snmpv3SecurityName is accepted. These are:

- The user name must be configured.
- The v3 access group must be configured.
- The v3 notification view must be configured.

Default
`snmpv3`

Values
`snmpv1`, `snmpv2c`, `snmpv3`

notify-community
community | security-name — Specifies the community string for `snmpv1` or `snmpv2c` or the `snmpv3` **security-name**. If no **notify-community** is configured, then no alarms nor traps will be issued for the trap destination. If the SNMP version is modified, the **notify-community** must be changed to the proper form for the SNMP version.

community — The community string as required by the `snmpv1` or `snmpv2c` trap receiver. The community string can be an ASCII string up to 31 characters in length.

security-name — The **security-name** as defined in the config>system>security>user context for SNMP v3. The **security-name** can be an ASCII string up to 31 characters in length.

security-level
{no-auth-no-privacy | auth-no-privacy | privacy} — Specifies the required authentication and privacy levels required to access the views configured on this node when configuring an `snmpv3` trap receiver.

The keyword `no-auth-no-privacy` specifies no authentication and no privacy (encryption) are required.

The keyword `auth-no-privacy` specifies authentication is required but no privacy (encryption) is required. When this option is configured the **security-name** must be configured for authentication.

The keyword `privacy` specifies both authentication and privacy (encryption) is required. When this option is configured the **security-name** must be configured for authentication and `privacy`.

Default
`no-auth-no-privacy`. This parameter can only be configured if SNMPv3 is also configured.

Values
`no-auth-no-privacy`, `auth-no-privacy`, `privacy`

replay — Enable replay of missed events to target. If replay is applied to an SNMP trap target address, the address is monitored for reachability. Reachability is determined by whether or not there is a route in the routing table by which the target address can be reached. Before sending a trap to a target address, the SNMP module asks the PIP module if there is either an in-band or out-of-band route to the target address. If there is no route to the SNMP target address, the SNMP module saves the sequence-id of the first event that will be missed by the trap target.
When the routing table changes again so that there is now a route by which the SNMP target address can be reached, the SNMP module replays (for example, retransmits) all events generated to the SNMP notification log while the target address was removed from the route table.

Note that because of route table change convergence time, it is possible that one or more events may be lost at the beginning or end of a replay sequence.
Logging Destination Commands

filter

Syntax

filter filter-id
no filter

Context
config>log>log-id log-id

Description
This command adds an event filter policy with the log destination.

The `filter` command is optional. If no event filter is configured, all events, alarms and traps generated by the source stream will be forwarded to the destination.

An event filter policy defines (limits) the events that are forwarded to the destination configured in the log-id. The event filter policy can also be used to select the alarms and traps to be forwarded to a destination `snmp-trap-group`.

The application of filters for debug messages is limited to application and subject only.

Accounting records cannot be filtered using the `filter` command.

Only one filter-id can be configured per log destination.

The `no` form of the command removes the specified event filter from the `log-id`.

Default
no filter — No event filter policy is specified for a `log-id`.

Parameters
filter-id. The event filter policy ID is used to associate the filter with the `log-id` configuration. The event filter policy ID must already be defined in `config>log>filter filter-id`.

Values
1 — 1000

from

Syntax
from {[main] [security] [change] [debug-trace]}
no from

Context
config>log>log-id log-id

Description
This command selects the source stream to be sent to a log destination.

One or more source streams must be specified. The source of the data stream must be identified using the `from` command before you can configure the destination using the `to` command. The `from` command can identify multiple source streams in a single statement (for example: `from main change debug-trace`).

Only one `from` command may be entered for a single `log-id`. If multiple `from` commands are configured, then the last command entered overwrites the previous `from` command.

The `no` form of the command removes all previously configured source streams.
Default
No source stream is configured.

Parameters
main — Instructs all events in the main event stream to be sent to the destination defined in the to command for this destination log-id. The main event stream contains the events that are not explicitly directed to any other event stream. To limit the events forwarded to the destination, configure filters using the filter command.

security — Instructs all events in the security event stream to be sent to the destination defined in the to command for this destination log-id. The security stream contains all events that affect attempts to breach system security such as failed login attempts, attempts to access MIB tables to which the user is not granted access or attempts to enter a branch of the CLI to which access has not been granted. To limit the events forwarded to the destination, configure filters using the filter command.

tool change — Instructs all events in the user activity stream to be sent to the destination configured in the to command for this destination log-id. The change event stream contains all events that directly affect the configuration or operation of this node. To limit the events forwarded to the change stream destination, configure filters using the filter command.

debug-trace — Instructs all debug-trace messages in the debug stream to be sent to the destination configured in the to command for this destination log-id. Filters applied to debug messages are limited to application and subject.

log-id

Syntax
[no] log-id log-id

Context
cfg>log

Description
This command creates a context to configure destinations for event streams.

The log-id context is used to direct events, alarms/traps, and debug information to respective destinations.

A maximum of 10 logs can be configured.

Before an event can be associated with this log-id, the from command identifying the source of the event must be configured.

Only one destination can be specified for a log-id. The destination of an event stream can be an in-memory buffer, console, session, snmp-trap-group, syslog, or file.

Use the event-control command to suppress the generation of events, alarms, and traps for all log destinations.

An event filter policy can be applied in the log-id context to limit which events, alarms, and traps are sent to the specified log-id.

Log-IDs 99 and 100 are created by the agent. Log-ID 99 captures all log messages.
Log-ID 100 captures log messages with a severity level of major and above.

Note that Log-ID 99 provides valuable information for the admin-tech file. Removing or changing the log configuration may hinder debugging capabilities. It is strongly recommended not to alter the configuration for Log-ID 99.
The **no** form of the command deletes the log destination ID from the configuration.

Default

No log destinations are defined.

Parameters

- **log-id** — The log ID number, expressed as a decimal integer.

 Values

 1 — 100

to console

Syntax

`to console`

Context

`config>log>log-id log-id`

Description

This command specifies a log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the events selected for the log ID to be directed to the console. If the console is not connected, then all the entries are dropped.

The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

Default

No destination is specified.

to file

Syntax

`to file log-file-id`

Context

`config>log>log-id log-id`

Description

This command specifies a log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the events selected for the log ID to be directed to a specified file.

The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

Default

No destination is specified.

Parameters

- **log-file-id** — Instructs the events selected for the log ID to be directed to the **log-file-id**. The characteristics of the **log-file-id** referenced here must have already been defined in the `config>log>file log-file-id` context.

 Values

 1 — 99
to memory

Syntax
```
to memory [size]
```

Context
```
config>log>log-id log-id
```

Description
This command specifies a log ID destination. This parameter is mandatory when configuring a log
destination. This command instructs the events selected for the log ID to be directed to a memory log.
A memory file is a circular buffer. Once the file is full, each new entry replaces the oldest entry in the
log.

The source of the data stream must be specified in the `from` command prior to configuring the
destination with the `to` command.

The `to` command cannot be modified or re-entered. If the destination or maximum size of an SNMP
or memory log needs to be modified, the log ID must be removed and then re-created.

Default
none

Parameters
- **size** — The `size` parameter indicates the number of events that can be stored in the memory.
 - **Default** 100
 - **Values** 50 — 1024

to session

Syntax
```
to session
```

Context
```
config>log>log-id log-id
```

Description
This command specifies a log ID destination. This parameter is mandatory when configuring a log
destination. This command instructs the events selected for the log ID to be directed to the current
console or telnet session. This command is only valid for the duration of the session. When the
session is terminated the log ID is removed. A log ID with a `session` destination is not saved in the
configuration file.

The source of the data stream must be specified in the `from` command prior to configuring the
destination with the `to` command.

The `to` command cannot be modified or re-entered. If the destination or maximum size of an SNMP
or memory log needs to be modified, the log ID must be removed and then re-created.

Default
none
to snmp

Syntax

to snmp [size]

Context

config>log>log-id log-id

Description

This is one of the commands used to specify the log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the alarms and traps to be directed to the snmp-trap-group associated with log-id.

A local circular memory log is always maintained for SNMP notifications sent to the specified snmp-trap-group for the log-id.

The source of the data stream must be specified in the from command prior to configuring the destination with the to command.

The to command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

Default

none

Parameters

size — The size parameter defines the number of events stored in this memory log.

Default 100

Values 50 — 1024

to syslog

Syntax

to syslog syslog-id

Context

config>log>log-id

Description

This is one of the commands used to specify the log ID destination. This parameter is mandatory when configuring a log destination.

This command instructs the alarms and traps to be directed to a specified syslog. To remain consistent with the standards governing syslog, messages to syslog are truncated to 1k bytes.

The source of the data stream must be specified in the from command prior to configuring the destination with the to command.

The to command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

Default

none

Parameters

syslog-id — Instructs the events selected for the log ID to be directed to the syslog-id. The characteristics of the syslog-id referenced here must have been defined in the config>log>syslog syslog-id context.

Values 1 — 10
time-format

| Syntax | time-format {local | utc} |
|--------------|---------------------------|
| Context | config>log>log-id |
| Description | This command specifies whether the time should be displayed in local or Coordinated Universal Time (UTC) format. |
| Default | utc |
| Parameters | local — Specifies that timestamps are written in the system’s local time. |
| | utc — Specifies that timestamps are written using the UTC value. This was formerly called Greenwich Mean Time (GMT) and Zulu time. |
Accounting Policy Commands

accounting-policy

Syntax

accounting-policy policy-id [interval minutes]
noc accounting-policy policy-id

Context

config>log

Description

This command creates an access or network accounting policy. An accounting policy defines the
accounting records that are created.

Access accounting policies are policies that can be applied to one or more SAPs. Changes made to an
existing policy, using any of the sub-commands, are applied immediately to all SAPs where this
policy is applied.

If an accounting policy is not specified on a SAP, then accounting records are produced in
accordance with the access policy designated as the default. If a default access policy is not
specified, then no accounting records are collected other than the records for the accounting policies
that are explicitly configured.

Only one policy can be regarded as the default access policy. If a policy is configured as the default
policy, then a noc default command must be used to allow the data that is currently being collected to
be written before a new access default policy can be configured.

Network accounting policies are policies that can be applied to one or more network ports or
SONET/SDH channels. Any changes made to an existing policy, using any of the sub-commands,
will be applied immediately to all network ports or SONET/SDH channels where this policy is
applied.

If no accounting policy is defined on a network port, accounting records will be produced in
accordance with the default network policy as designated with the default command. If no network
default policy is created, then no accounting records will be collected other than the records for the
accounting policies explicitly configured.

Only one policy can be regarded as the default network policy. If a policy is configured as the default
policy, then a noc default command must be used to allow the data that is currently being collected to
be written before a new network default policy can be configured.

The noc form of the command deletes the policy from the configuration. The accounting policy cannot
be removed unless it is removed from all the SAPs, network ports or channels where the policy is
applied.

Default

No default accounting policy is defined.

Parameters

policy-id — The policy ID that uniquely identifies the accounting policy, expressed as a decimal
integer.

Values

1 — 99
collection-interval

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>collection-interval minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>no collection-interval</td>
<td></td>
</tr>
</tbody>
</table>

Context

config>log>acct-policy

Description

This command configures the accounting collection interval.

Parameters

minutes — Specifies the interval between collections, in minutes.

Values

1 — 120
A range of 1 — 4 is only allowed when the record type is set to SAA.

default

Syntax

[no] default

Context

config>log>accounting-policy

Description

This command configures the default accounting policy to be used with all SAPs that do not have an accounting policy.

If no access accounting policy is defined on a SAP, accounting records are produced in accordance with the default access policy. If no default access policy is created, then no accounting records will be collected other than the records for the accounting policies that are explicitly configured.

If no network accounting policy is defined on a network port, accounting records will be produced in accordance with the default network policy. If no network default policy is created, then no accounting records will be collected other than the records for the accounting policies explicitly configured.

Only one access accounting policy ID can be designated as the default access policy. Likewise, only one network accounting policy ID can be designated as the default network accounting policy.

The record name must be specified prior to assigning an accounting policy as default.

If a policy is configured as the default policy, then a no default command must be issued before a new default policy can be configured.

The no form of the command removes the default policy designation from the policy ID. The accounting policy will be removed from all SAPs or network ports that do not have this policy explicitly defined.
Syntax
[no] record record-name

Context
config>log>accounting-policy policy-id

Description
This command adds the accounting record type to the accounting policy to be forwarded to the configured accounting file. A record name can only be used in one accounting policy. To obtain a list of all record types that can be configured, use the show log accounting-records command.

A:ALA-49# show log accounting-records

Accounting Policy Records

<table>
<thead>
<tr>
<th>Record #</th>
<th>Record Name</th>
<th>Def. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>service-ingress-octets</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>service-egress-octets</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>service-ingress-packets</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>service-egress-packets</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>network-ingress-octets</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>network-egress-octets</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>network-ingress-packets</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>network-egress-packets</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>compact-service-ingress-octets</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>combined-service-ingress</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>combined-network-ing-egr-octets</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>combined-service-ing-egr-octets</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>complete-service-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>combined-sdp-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>complete-sdp-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>complete-subscriber-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>aa-protocol</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>aa-application</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>aa-app-group</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>aa-subscriber-protocol</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>aa-subscriber-application</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>aa-subscriber-app-group</td>
<td>15</td>
</tr>
<tr>
<td>23</td>
<td>custom-record-subscriber</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>custom-record-service</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>custom-record-aa-sub</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>queue-group-octets</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>queue-group-packets</td>
<td>15</td>
</tr>
<tr>
<td>28</td>
<td>combined-queue-group</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>combined-mpls-lsp-ingress</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>combined-mpls-lsp-egress</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>combined-ldp-lsp-egress</td>
<td>5</td>
</tr>
<tr>
<td>32</td>
<td>saa</td>
<td>5</td>
</tr>
</tbody>
</table>

A:ALA-49#

To configure an accounting policy for access ports, select a service record (for example, service-ingress-octets). To change the record name to another service record then the record command with the new record name can be entered and it will replace the old record name.
When configuring an accounting policy for network ports, a network record should be selected. When changing the record name to another network record, the record command with the new record name can be entered and it will replace the old record name.

If the change required modifies the record from network to service or from service to network, then the old record name must be removed using the **no** form of this command.

Only one record may be configured in a single accounting policy. For example, if an accounting-policy is configured with a **access-egress-octets** record, in order to change it to **service-ingress-octets**, use the **no record** command under the accounting-policy to remove the old record and then enter the **service-ingress-octets** record.

Note that collecting excessive statistics can adversely affect the CPU utilization and take up large amounts of storage space.

The **no** form of the command removes the record type from the policy.

Default

No accounting record is defined

Parameters

record-name — The accounting record name. The following table lists the accounting record names available and the default collection interval.

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Accounting Record Name</th>
<th>Default Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>service-ingress-octets</td>
<td>5 minutes</td>
</tr>
<tr>
<td>2</td>
<td>service-egress-octets</td>
<td>5 minutes</td>
</tr>
<tr>
<td>3</td>
<td>service-ingress-packets</td>
<td>5 minutes</td>
</tr>
<tr>
<td>4</td>
<td>service-egress-packets</td>
<td>5 minutes</td>
</tr>
<tr>
<td>5</td>
<td>network-ingress-octets</td>
<td>15 minutes</td>
</tr>
<tr>
<td>6</td>
<td>network-egress-octets</td>
<td>15 minutes</td>
</tr>
<tr>
<td>7</td>
<td>network-ingress-packets</td>
<td>15 minutes</td>
</tr>
<tr>
<td>8</td>
<td>network-egress-packets</td>
<td>15 minutes</td>
</tr>
<tr>
<td>9</td>
<td>compact-service-ingress-octets</td>
<td>15 minutes</td>
</tr>
<tr>
<td>10</td>
<td>combined-service-ingress</td>
<td>5 minutes</td>
</tr>
<tr>
<td>11</td>
<td>network-ingr-egr-octets</td>
<td>15 minutes</td>
</tr>
<tr>
<td>12</td>
<td>combined-svc-ingr-egr-octets</td>
<td>5 minutes</td>
</tr>
<tr>
<td>13</td>
<td>complete-service-ingress-egress</td>
<td>5 minutes</td>
</tr>
<tr>
<td>14</td>
<td>complete-sdp-ingress-egress</td>
<td>5 minutes</td>
</tr>
<tr>
<td>15</td>
<td>combined-sdp-ingress-egress</td>
<td>5 minutes</td>
</tr>
<tr>
<td>16</td>
<td>complete-subscriber- ingress-egress</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>
This command specifies the destination for the accounting records selected for the accounting policy.

Syntax
```
to file file-id
```

Context
```
config>log>accounting-policy policy-id
```
This command specifies the destination for the accounting records selected for the accounting policy.

Default
No destination is specified.

Parameters
```
file-id — The file-id option specifies the destination for the accounting records selected for this destination. The characteristics of the file-id must have already been defined in the config>log>file context. A file-id can only be used once.

The file is generated when the file policy is referenced. This command identifies the type of accounting file to be created. The file definition defines its characteristics.

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Accounting Record Name</th>
<th>Default Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>aa-protocol</td>
<td>15 minutes</td>
</tr>
<tr>
<td>18</td>
<td>aa-application</td>
<td>15 minutes</td>
</tr>
<tr>
<td>19</td>
<td>aa-application-group</td>
<td>15 minutes</td>
</tr>
<tr>
<td>20</td>
<td>aa-subscriber-protocol</td>
<td>15 minutes</td>
</tr>
<tr>
<td>21</td>
<td>a-subscriber-application</td>
<td>15 minutes</td>
</tr>
<tr>
<td>22</td>
<td>aa-subscriber-application-group</td>
<td>15 minutes</td>
</tr>
<tr>
<td>23</td>
<td>custom-record-subscriber</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>custom-record-service</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>custom-record-aa-sub</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>queue-group-octets</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>queue-group-packets</td>
<td>15</td>
</tr>
<tr>
<td>28</td>
<td>combined-queue-group</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>combined-mpls-lsp-ingress</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>saa</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>combined-mpls-lsp-egress</td>
<td>5</td>
</tr>
<tr>
<td>32</td>
<td>combined-ldp-lsp-egress</td>
<td>5</td>
</tr>
</tbody>
</table>
If the **to** command is executed while the accounting policy is in operation, then it becomes active during the next collection interval.

**Values**  
1 — 99
Accounting Policy Custom Record Commands

collection-interval

Syntax: `collection-interval minutes`
   `no collection-interval`

Context: `config>log>acct-policy`

Description: This command configures the accounting collection interval.
   The no form of the command returns the value to the default.

Default: 60

Parameters:
   `minutes` — Specifies the collection interval in minutes.
   
   Values: 5 — 120

custom-record

Syntax: `[no] custom-record`

Context: `config>log>acct-policy`

Description: This command enables the context to configure the layout and setting for a custom accounting record
   associated with this accounting policy.
   The no form of the command reverts the configured values to the defaults.

aa-specific

Syntax: `[no] aa-specific`

Context: `config>log>acct-policy>cr`

Description: This command enables the context to configure information for this custom record.
   The no form of the command
aa-sub-counters

Syntax

```
 aa-sub-counters [all]
 no aa-sub-counters
```

Context

cfg>log>acct-policy>cr>aa

Description

This command enables the context to configure subscriber counter information.

The `no` form of the command

Parameters

- `all` — Specifies all counters.

long-duration-flow-count

Syntax

```
 long-duration-flow-count
```

Context

cfg>log>acct-policy>cr>aa>aa-sub-cntr

Description

This command includes the long duration flow count.

The `no` form of the command excludes the long duration flow count in the AA subscriber's custom record.

Default

`no long-duration-flow-count`

medium-duration-flow-count

Syntax

```
 [no] medium-duration-flow-count
```

Context

cfg>log>acct-policy>cr>aa>aa-sub-cntr

Description

This command includes the medium duration flow count in the AA subscriber's custom record.

The `no` form of the command excludes the medium duration flow count.

Default

`no medium-duration-flow-count`

short-duration-flow-count

Syntax

```
 [no] short-duration-flow-count
```

Context

cfg>log>acct-policy>cr>aa>aa-sub-cntr

Description

This command includes the short duration flow count in the AA subscriber's custom record.

The `no` form of the command excludes the short duration flow count.

Default

`no short-duration-flow-count`
total-flow-duration

**Syntax**  
[no] total-flow-duration

**Context**  
config>log>acct-policy>cr>aa>aa-sub-cntr

**Description**  
This command includes the total flow duration flow count in the AA subscriber's custom record.  
The **no** form of the command excludes the total flow duration flow count.

---

total-flows-completed-count

**Syntax**  
[no] total-flows-completed-count

**Context**  
config>log>acct-policy>cr>aa>aa-sub-cntr

**Description**  
This command includes the total flows completed count in the AA subscriber's custom record.  
The **no** form of the command excludes the total flow duration flow count.

---

from-AA-sub-counters

**Syntax**  
[no] from-AA-sub-counters

**Context**  
config>log>acct-policy>cr>aa

**Description**  
This command enables the context to configure Application Assurance “from subscriber” counter parameters.  
The **no** form of the command excludes the “from subscriber” count.

---

flows-active-count

**Syntax**  
[no] flows-active-count

**Context**  
config>log>acct-policy>cr>aa>aa-from-sub-cntr  
config>log>acct-policy>cr>aa>aa-to-sub-cntr

**Description**  
This command includes the active flow count.  
The **no** form of the command excludes the active flow count in the AA subscriber's custom record.

**Default**  
no flows-active-count
flows-admitted-count

Syntax  
[no] flows-admitted-count

Context  
config>log>acct-policy>cr>aa>aa-from-sub-cntr
config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description  
This command includes the admitted flow count.
The no form of the command excludes the flow’s admitted count in the AA subscriber's custom record.

Default  
no flows-admitted-count

flows-denied-count

Syntax  
[no] flows-denied-count

Context  
config>log>acct-policy>cr>aa>aa-from-sub-cntr
config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description  
This command includes the flow’s denied count in the AA subscriber's custom record.
The no form of the command excludes the flow’s denied count.

Default  
no flows-denied-count

octets-admitted-count

Syntax  
[no] octets-admitted-count

Context  
config>log>acct-policy>cr>aa>aa-from-sub-cntr
config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description  
This command includes the admitted octet count in the AA subscriber's custom record.
The no form of the command excludes the admitted octet count.

Default  
no octets-admitted-count

octets-denied-count

Syntax  
[no] octets-denied-count

Context  
config>log>acct-policy>cr>aa>aa-from-sub-cntr
config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description  
This command includes the denied octet count in the AA subscriber's custom record.
The no form of the command excludes the denied octet count.
Default: no octets-denied-count

packets-admitted-count

Syntax: [no] packets-admitted-count

Context: config>log>acct-policy>cr>aa>aa-from-sub-cntr
        config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description: This command includes the admitted packet count in the AA subscriber's custom record.
              The no form of the command excludes the admitted packet count.

Default: no packets-admitted-count

packets-denied-count

Syntax: [no] packets-denied-count

Context: config>log>acct-policy>cr>aa>aa-from-sub-cntr
        config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description: This command includes the denied packet count in the AA subscriber's custom record.
              The no form of the command excludes the denied packet count.

Default: no packets-denied-count

to-aa-sub-counters

Syntax: to-aa-sub-counters
        no to-aa-sub-counters

Context: config>log>acct-policy>cr>aa

Description: This command enables the context to configure Application Assurance “to subscriber” counter parameters.
              The no form of the command excludes the “to subscriber” count.

override-counter

Syntax: [no] override-counter override-counter-id

Context: config>log>acct-policy>cr

Description: This command enables the context to configure override counter (HSMDA) parameters.
The \texttt{no} form of the command removes the ID from the configuration.

**Parameters**

\textit{override-counter-id} — Specifies the override counter ID.

**Values**

- 1 — 8

---

**queue**

**Syntax**

\[ \texttt{no queue queue-id} \]

**Context**

\texttt{config>log>acct-policy>cr}

**Description**

This command specifies the queue-id for which counters will be collected in this custom record. The counters that will be collected are defined in egress and ingress counters.

The \texttt{no} form of the command reverts to the default value.

**Parameters**

\textit{queue-id} — Specifies the queue-id for which counters will be collected in this custom record.

---

**e-counters**

**Syntax**

\texttt{e-counters}

\texttt{no e-counters}

**Context**

\texttt{config>log>acct-policy>cr>override-cntr}
\texttt{config>log>acct-policy>cr>queue}
\texttt{config>log>acct-policy>cr>ref-override-cntr}
\texttt{config>log>acct-policy>cr>ref-queue}

**Description**

This command configures egress counter parameters for this custom record.

The \texttt{no} form of the command

---

**i-counters**

**Syntax**

\texttt{i-counters [all]}

\texttt{no i-counters}

**Context**

\texttt{config>log>acct-policy>cr>override-cntr}
\texttt{config>log>acct-policy>cr>ref-override-cntr}
\texttt{config>log>acct-policy>cr>ref-queue}

**Description**

This command configures ingress counter parameters for this custom record.

The \texttt{no} form of the command

**Parameters**

\textit{all} — Specifies all ingress counters should be included.
in-profile-octets-discarded-count

**Syntax**  
[no] in-profile-octets-discarded-count

**Context**  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

**Description**  
This command includes the in-profile octets discarded count.  
The **no** form of the command excludes the in-profile octets discarded count.

in-profile-octets-forwarded-count

**Syntax**  
[no] in-profile-octets-forwarded-count

**Context**  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

**Description**  
This command includes the in-profile octets forwarded count.  
The **no** form of the command excludes the in-profile octets forwarded count.

in-profile-packets-discarded-count

**Syntax**  
[no] in-profile-packets-discarded-count

**Context**  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

**Description**  
This command includes the in-profile packets discarded count.  
The **no** form of the command excludes the in-profile packets discarded count.
in-profile-packets-forwarded-count

Syntax  
[no] in-profile-packets-forwarded-count

Context  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

Description  
This command includes the in-profile packets forwarded count.

The no form of the command excludes the in-profile packets forwarded count.

out-profile-octets-discarded-count

Syntax  
[no] out-profile-octets-discarded-count

Context  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

Description  
This command includes the out of profile packets discarded count.

The no form of the command excludes the out of profile packets discarded count.

out-profile-octets-forwarded-count

Syntax  
[no] out-profile-octets-forwarded-count

Context  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

Description  
This command includes the out of profile octets forwarded count.

The no form of the command excludes the out of profile octets forwarded count.
out-profile-packets-discarded-count

Syntax  
[no] out-profile-packets-discarded-count

Context  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

Description  
This command includes the out of profile packets discarded count.  
The no form of the command excludes the out of profile packets discarded count.

out-profile-packets-forwarded-count

Syntax  
[no] out-profile-packets-forwarded-count

Context  
config>log>acct-policy>cr>oc>e-count  
config>log>acct-policy>cr>roc>e-count  
config>log>acct-policy>cr>queue>e-count  
config>log>acct-policy>cr>ref-queue>e-count

Description  
This command includes the out of profile packets forwarded count.  
The no form of the command excludes the out of profile packets forwarded count.

all-octets-offered-count

Syntax  
[no] all-octets-offered-count

Context  
config>log>acct-policy>cr>oc>i-count  
config>log>acct-policy>cr>roc>i-count  
config>log>acct-policy>cr>queue>i-count  
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes all octets offered in the count.  
The no form of the command excludes the octets offered in the count.

Default  
no all-octets-offered-count
all-packets-offered-count

Syntax  
[no] all-packets-offered-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes all packets offered in the count.
The no form of the command excludes the packets offered in the count.

Default  
nob all-packets-offered-count

high-octets-discarded-count

Syntax  
[no] high-octets-discarded-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the high octets discarded count.
The no form of the command excludes the high octets discarded count.

Default  
nob high-octets-discarded-count

high-octets-offered-count

Syntax  
[no] high-octets-offered-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the high octets offered count.
The no form of the command excludes the high octets offered count.
high-packets-discarded-count

Syntax   [no] high-packets-discarded-count
Context  config>log>acct-policy>cr>oc>i-count
         config>log>acct-policy>cr>roc>i-count
         config>log>acct-policy>cr>queue>i-count
         config>log>acct-policy>cr>ref-queue>i-count
Description This command includes the high packets discarded count.
The no form of the command excludes the high packets discarded count.
Default   no high-packets-discarded-count

high-packets-offered-count

Syntax   [no] high-packets-offered-count
Context  config>log>acct-policy>cr>oc>i-count
         config>log>acct-policy>cr>roc>i-count
         config>log>acct-policy>cr>queue>i-count
         config>log>acct-policy>cr>ref-queue>i-count
Description This command includes the high packets offered count.
The no form of the command excludes the high packets offered count.
Default   no high-packets-offered-count

in-profile-octets-forwarded-count

Syntax   [no] in-profile-octets-forwarded-count
Context  config>log>acct-policy>cr>oc>i-count
         config>log>acct-policy>cr>roc>i-count
         config>log>acct-policy>cr>queue>i-count
         config>log>acct-policy>cr>ref-queue>i-count
Description This command includes the in profile octets forwarded count.
The no form of the command excludes the in profile octets forwarded count.
Default   no in-profile-octets-forwarded-count
in-profile-packets-forwarded-count

Syntax  
[no] in-profile-packets-forwarded-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the in profile packets forwarded count.
The no form of the command excludes the in profile packets forwarded count.

Default  
no in-profile-packets-forwarded-count

low-octets-discarded-count

Syntax  
[no] low-octets-discarded-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the low octets discarded count.
The no form of the command excludes the low octets discarded count.

Default  
no low-octets-discarded-count

low-packets-discarded-count

Syntax  
[no] low-packets-discarded-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the low packets discarded count.
The no form of the command excludes the low packets discarded count.

Default  
no low-packets-discarded-count
low-octets-offered-count

Syntax  

```
[no] low-octets-offered-count
```

Context  

```
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
```

Description  

This command includes the low octets discarded count.
The `no` form of the command excludes the low octets discarded count.

low-packets-offered-count

Syntax  

```
[no] low-packets-offered-count
```

Context  

```
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
```

Description  

This command includes the low packets discarded count.
The `no` form of the command excludes the low packets discarded count.

out-profile-octets-forwarded-count

Syntax  

```
[no] out-profile-octets-forwarded-count
```

Context  

```
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
```

Description  

This command includes the out of profile octets forwarded count.
The `no` form of the command excludes the out of profile octets forwarded count.

Default  

no out-profile-octets-forwarded-count
out-profile-packets-forwarded-count

Syntax  
[no] out-profile-packets-forwarded-count

Context  
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the out of profile packets forwarded count.
The no form of the command excludes the out of profile packets forwarded count.

Default  
no out-profile-packets-forwarded-count

uncoloured-octets-offered-count

Syntax  
[no] uncoloured-octets-offered-count

Context  
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the uncoloured octets offered in the count.
The no form of the command excludes the uncoloured octets offered in the count.

uncoloured-packets-offered-count

Syntax  
[no] uncoloured-packets-offered-count

Context  
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

Description  
This command includes the uncolored packets offered count.
The no form of the command excludes the uncoloured packets offered count.

ref-aa-specific-counter

Syntax  
ref-aa-specific-counter any
no ref-aa-specific-counter

Context  
config>log>acct-policy>cr

Description  
This command enables the use of significant-change so only those aa-specific records which have
changed in the last accounting interval are written.
The no form of the command disables the use of significant-change so all aa-specific records are
written whether or not they have changed within the last accounting interval.
Parameters  any — Indicates that a record is collected as long as any field records activity when non-zero significant-change value is configured.

ref-override-counter

Syntax  ref-override-counter ref-override-counter-id
        ref-override-counter all
        no ref-override-counter

Context  config>log>acct-policy>cr

Description  This command configures a reference override counter.
              The no form of the command reverts to the default value.

Default  no ref-override-counter

ref-queue

Syntax  ref-queue queue-id
        ref-queue all
        no ref-queue

Context  config>log>acct-policy>cr

Description  This command configures a reference queue.
              The no form of the command reverts to the default value.

Default  no ref-queue

significant-change

Syntax  significant-change delta
        no significant-change

Context  config>log>acct-policy>cr

Description  This command configures the significant change required to generate the record.

Parameters  delta — Specifies the delta change (significant change) that is required for the custom record to be written to the xml file.

Values  0 — 4294967295 (For custom-record-aa-sub only values 0 or 1 are supported.)
Show Commands

accounting-policy

**Syntax**

`accounting-policy [acct-policy-id] [access | network]`

**Context**

show>log

**Description**

This command displays accounting policy information.

**Parameters**

`policy-id` — The policy ID that uniquely identifies the accounting policy, expressed as a decimal integer.

**Values**

1 — 99

`access` — Only displays access accounting policies.

`network` — Only displays network accounting policies.

**Output**

**Accounting Policy Output** — The following table describes accounting policy output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy ID</td>
<td>The identifying value assigned to a specific policy.</td>
</tr>
<tr>
<td>Type</td>
<td>Identifies accounting record type forwarded to the configured accounting file.</td>
</tr>
<tr>
<td></td>
<td>access — Indicates that the policy is an access accounting policy.</td>
</tr>
<tr>
<td></td>
<td>network — Indicates that the policy is a network accounting policy.</td>
</tr>
<tr>
<td></td>
<td>none — Indicates no accounting record types assigned.</td>
</tr>
<tr>
<td>Def</td>
<td>Yes — Indicates that the policy is a default access or network policy.</td>
</tr>
<tr>
<td></td>
<td>No — Indicates that the policy is not a default access or network policy.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative state of the policy.</td>
</tr>
<tr>
<td></td>
<td>Up — Indicates that the policy is administratively enabled.</td>
</tr>
<tr>
<td></td>
<td>Down — Indicates that the policy is administratively disabled.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state of the policy.</td>
</tr>
<tr>
<td></td>
<td>Up — Indicates that the policy is operationally up.</td>
</tr>
<tr>
<td></td>
<td>Down — Indicates that the policy is operationally down.</td>
</tr>
</tbody>
</table>
Table 34: Show Accounting Policy Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intvl</td>
<td>Displays the interval, in minutes, in which statistics are collected and written to their destination. The default depends on the record name type.</td>
</tr>
<tr>
<td>File ID</td>
<td>The log destination.</td>
</tr>
<tr>
<td>Record Name</td>
<td>The accounting record name which represents the configured record type.</td>
</tr>
<tr>
<td>This policy is applied to</td>
<td>Specifies the entity where the accounting policy is applied.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show log accounting-policy

Accounting Policies

Policy Type    Def Admin Oper  Intvl     File Record Name
Id                 State State           Id
------------------------------------------------------------------------------
1      network No  Up    Up    15        1    network-ingress-packets
2      network Yes Up    Up    15        2    network-ingress-octets
10     access  Yes Up    Up    5         3    complete-service-ingress-egress

A:ALA-1#

A:ALA-1# show log accounting-policy 10

Accounting Policies

Policy Type    Def Admin Oper  Intvl     File Record Name
Id                 State State           Id
------------------------------------------------------------------------------
10     access  Yes Up    Up    5         3 complete-service-ingress-egress

Description : (Not Specified)

This policy is applied to:

Svc Id: 100  SAP : 1/1/8:0  Collect-Stats
Svc Id: 101  SAP : 1/1/8:1  Collect-Stats
Svc Id: 102  SAP : 1/1/8:2  Collect-Stats
Svc Id: 103  SAP : 1/1/8:3  Collect-Stats
Svc Id: 104  SAP : 1/1/8:4  Collect-Stats
Svc Id: 105  SAP : 1/1/8:5  Collect-Stats
Svc Id: 106  SAP : 1/1/8:6  Collect-Stats
Svc Id: 107  SAP : 1/1/8:7  Collect-Stats
Svc Id: 108  SAP : 1/1/8:8  Collect-Stats
Svc Id: 109  SAP : 1/1/8:9  Collect-Stats

...
accounting-records

Syntax      accounting-records

Context     show>log

Description This command displays accounting policy record names.

Output      Accounting Records Output. The following table describes accounting records output fields.

Table 35: Accounting Policy Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record #</td>
<td>The record ID that uniquely identifies the accounting policy, expressed as a decimal integer.</td>
</tr>
<tr>
<td>Record Name</td>
<td>The accounting record name.</td>
</tr>
<tr>
<td>Def. Interval</td>
<td>The default interval, in minutes, in which statistics are collected and written to their destination.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show log accounting-records

Accounting Policy Records

Record # Record Name  Def. Interval

A:ALA-1#
<table>
<thead>
<tr>
<th></th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>service-ingress-octets 5</td>
</tr>
<tr>
<td>2</td>
<td>service-egress-octets 5</td>
</tr>
<tr>
<td>3</td>
<td>service-ingress-packets 5</td>
</tr>
<tr>
<td>4</td>
<td>service-egress-packets 5</td>
</tr>
<tr>
<td>5</td>
<td>network-ingress-octets 15</td>
</tr>
<tr>
<td>6</td>
<td>network-egress-octets 15</td>
</tr>
<tr>
<td>7</td>
<td>network-ingress-packets 15</td>
</tr>
<tr>
<td>8</td>
<td>network-egress-packets 15</td>
</tr>
<tr>
<td>9</td>
<td>compact-service-ingress-octets 5</td>
</tr>
<tr>
<td>10</td>
<td>combined-service-ingress 5</td>
</tr>
<tr>
<td>11</td>
<td>combined-network-ing-egr-octets 15</td>
</tr>
<tr>
<td>12</td>
<td>combined-service-log-egr-octets 5</td>
</tr>
<tr>
<td>13</td>
<td>complete-service-ingress-egress 5</td>
</tr>
<tr>
<td>14</td>
<td>combined-sdp-ingress-egress 5</td>
</tr>
<tr>
<td>15</td>
<td>complete-sdp-ingress-egress 5</td>
</tr>
<tr>
<td>16</td>
<td>complete-subscriber-ingress-egress 5</td>
</tr>
<tr>
<td>17</td>
<td>aa-protocol 15</td>
</tr>
<tr>
<td>18</td>
<td>aa-application 15</td>
</tr>
<tr>
<td>19</td>
<td>aa-app-group 15</td>
</tr>
<tr>
<td>20</td>
<td>aa-subscriber-protocol 15</td>
</tr>
<tr>
<td>21</td>
<td>aa-subscriber-application 15</td>
</tr>
<tr>
<td>22</td>
<td>aa-subscriber-app-group 15</td>
</tr>
</tbody>
</table>

---

A:ALA-1#

applications

**Syntax**

applications

**Context**

show>log

**Description**

This command displays a list of all application names that can be used in event-control and filter commands.

**Output**

Sample Output

A:ALA-1# show log applications

----------------------------------
Log Event Application Names
----------------------------------
Application Name
----------------------------------
APS
ATM
BGP
CCAG
CFLOWD
CHASSIS
CPMHWFILTER
DHCP
DEBUG
DOT1X
FILTER
IGMP
IGMP_SNOOPING
IP
ISIS
LAG
event-control

**Syntax**  
`event-control [application [event-name | event-number]]`

**Context**  
`show>log`

**Description**  
This command displays event control settings for events including whether the event is suppressed or generated and the severity level for the event.

If no options are specified all events, alarms and traps are listed.

**Parameters**

`application` — Only displays event control for the specified application.

- **Default**  
  All applications.

- **Values**  
  aps, atm, bgp, cflowd, chassis, debug, dhcp, efm_oam, filter, gsmpe, igmp, igmp_snooping, ip, isis, lag, ldp, logger, mc_redundancy, mirror, mpls, ntp, oam, ospf, pim, port, ppp, rip, route_policy, rsvp, security, snmp, stp, svcmgr, system, user, vrrp, vrtr

`event-name` — Only displays event control for the named application event.

- **Default**  
  All events for the application.

`event-number` — Only displays event control for the specified application event number.

- **Default**  
  All events for the application.
Show Event Control Output — The following table describes the output fields for the event control.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>The application name.</td>
</tr>
<tr>
<td>ID#</td>
<td>The event ID number within the application.</td>
</tr>
<tr>
<td>L ID# —</td>
<td>An “L” in front of an ID represents event types that do not generate an associated SNMP notification. Most events do generate a notification, only the exceptions are marked with a preceding “L”.</td>
</tr>
<tr>
<td>Event Name</td>
<td>The event name.</td>
</tr>
<tr>
<td>P</td>
<td>CL — The event has a cleared severity/priority.</td>
</tr>
<tr>
<td></td>
<td>CR — The event has critical severity/priority.</td>
</tr>
<tr>
<td></td>
<td>IN — The event has indeterminate severity/priority.</td>
</tr>
<tr>
<td></td>
<td>MA — The event has major severity/priority.</td>
</tr>
<tr>
<td></td>
<td>MI — The event has minor severity/priority.</td>
</tr>
<tr>
<td></td>
<td>WA — The event has warning severity/priority.</td>
</tr>
<tr>
<td>g/s</td>
<td>gen — The event will be generated/logged by event control.</td>
</tr>
<tr>
<td></td>
<td>sup — The event will be suppressed/dropped by event control.</td>
</tr>
<tr>
<td></td>
<td>thr — Specifies that throttling is enabled.</td>
</tr>
<tr>
<td>Logged</td>
<td>The number of events logged/generated.</td>
</tr>
<tr>
<td>Dropped</td>
<td>The number of events dropped/suppressed.</td>
</tr>
</tbody>
</table>

Sample Output

A:gal171# show log event-control
=======================================================================
<table>
<thead>
<tr>
<th>Application</th>
<th>Event Name</th>
<th>P</th>
<th>g/s</th>
<th>Logged</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS:</td>
<td>2001 apsEventSwitchover</td>
<td>MI</td>
<td>thr</td>
<td>20</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>2002 apsEventModeMismatch</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2003 apsEventChannelMismatch</td>
<td>MI</td>
<td>sup</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2004 apsEventPSBF</td>
<td>MI</td>
<td>thr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005 apsEventFEPLF</td>
<td>MI</td>
<td>thr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ATM:</td>
<td>2004 tAtmTcSubLayerDown</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005 tAtmTcSubLayerClear</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2006 atmVclStatusChange</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BGP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Event and Accounting Logs

2001 bgpEstablished       MI gen 0 0
2002 bgpBackwardTransition WA gen 0 0
2003 tBgpMaxPrefix90       WA gen 0 0
2004 tBgpMaxPrefix100      CR gen 0 0
L 2005 sendNotification   WA gen 0 0
L 2006 receiveNotification WA gen 0 0
L 2007 bgpInterfaceDown   WA gen 0 0
L 2008 bgpConnNoKA        WA gen 0 0
L 2009 bgpConnNoOpenRcvd  WA gen 0 0
L 2010 bgpRejectConnBadLocAddr WA gen 0 0
L 2011 bgpRemoteEndClosedConn WA gen 0 0
L 2012 bgpPeerNotFound    WA gen 0 0
L 2013 bgpConnMgrTerminated WA gen 0 0
L 2014 bgpTerminated      WA gen 0 0
L 2015 bgpNoMemoryPeer    CR gen 0 0
L 2016 bgpVariableRangeViolation WA gen 0 0
L 2017 bgpCfgViol         WA gen 0 0
CFLOWD:
  2001 cflowdCreated       MI gen 0 0
  2002 cflowdCreateFailure MA gen 0 0
  2003 cflowdDeleted       MI gen 0 0
  2004 cflowdStateChanged  MI gen 0 0
  2005 cflowdCleared       MI gen 0 0
  2006 cflowdFlowCreateFailure MI gen 0 0
  2007 cflowdFlowFlushFailure MI gen 0 0
  2008 cflowdFlowUnsuppProto MI sup 0 0
CCAG:
...CHASSIS:
  2001 cardFailure         MA gen 0 0
  2002 cardInserted         MI gen 4 0
  2003 cardRemoved          MI gen 0 0
  2004 cardWrong            MI gen 0 0
  2005 EnvTemperatureTooHigh MA gen 0 0
...CPMHWFILTER:
DHCMP:
  2001 sdptldsDHCPSuspiciousPcktRcvd WA gen 0 0
  2002 sapTldsDHCPLeaseEntriesExceeded WA gen 0 0
  2003 sapTldsDHCPLeaseStateOverride WA gen 0 0
  2004 sapTldsDHCPSuspiciousPcktRcvd WA gen 0 0
  2005 svcTldsDHCPLeaseStRestoreProblem WA gen 0 0
  2006 svcTldsDHCPLeaseStatePopulateErr WA gen 0 0
  2007 tmnxVRtrDHCPLeaseStsExceeded WA gen 0 0
  2008 tmnxVRtrDHCPLeaseStateOverride WA gen 0 0
  2009 tmnxVRtrDHCPSuspiciousPcktRcvd WA gen 0 0
  2010 tmnxVRtrDHCPLeaseStRestoreProblem WA gen 0 0
  2011 tmnxVRtrDHCPLeaseStatePopulateErr WA gen 0 0
DEBUG:
L 2001 traceEvent         MI gen 0 0
DOTIX:
FILTER:
  2001 filterPBRPacketsDropped MI gen 0 0
IGMP:
  2001 vRtrIgmpIfRxQueryVerMismatch WA gen 0 0
  2002 vRtrIgmpIfCModeRxQueryMismatch WA gen 0 0
IGMP_SNOOPING:
IP:
L 2001 clearRTMError       MI gen 0 0
L  2002 ipEtherBroadcast   MI  gen  0  0
L  2003 ipDuplicateAddress   MI  gen  0  0
L  2004 ipArpInfoOverwritten   MI  gen  0  0
L  2005 fibAddFailed   MA  gen  0  0
L  2006 qosNetworkPolicyMallocFailed   MA  gen  0  0
L  2007 ipArpBadInterface   MI  gen  0  0
L  2008 ipArpDuplicateIpAddress   MI  gen  0  0
L  2009 ipArpDuplicateMacAddress   MI  gen  0  0
ISIS:
  2001 vRtrIsisDatabaseOverload   WA  gen  0  0
  2002 vRtrIsisManualAddressDrops   WA  gen  0  0
  2003 vRtrIsisCorruptedLSPDetected   WA  gen  0  0
  2004 vRtrIsisMaxSeqExceedAttempt   WA  gen  0  0
  2005 vRtrIsisIDLenMismatch   WA  gen  0  0
  2006 vRtrIsisMaxAreaAddrmismatch   WA  gen  0  0
....
USER:
L  2001 cli_user_login   MI  gen  2  0
L  2002 cli_user_logout   MI  gen  1  0
L  2003 cli_user_login_failed   MI  gen  0  0
L  2004 cli_user_login_max_attempts   MI  gen  0  0
L  2005 ftp_user_login   MI  gen  0  0
L  2006 ftp_user_logout   MI  gen  0  0
L  2007 ftp_user_login_failed   MI  gen  0  0
L  2008 ftp_user_login_max_attempts   MI  gen  0  0
L  2009 cli_user_io   MI  sup  0  48
L  2010 snmp_user_set   MI  sup  0  0
L  2011 cli_config_io   MI  gen  4357  0
VRRP:
  2001 vrrpTrapNewMaster   MI  gen  0  0
  2002 vrrpTrapAuthFailure   MI  gen  0  0
  2003 tmnxVrrpIPlistMismatch   MI  gen  0  0
  2004 tmnxVrrpIPlistMismatchClear   MI  gen  0  0
  2005 tmnxVrrpMultipleOwners   MI  gen  0  0
  2006 tmnxVrrpBecameBackup   MI  gen  0  0
  2007 vrrpPacketDiscarded   MI  gen  0  0
VRTR:
  2001 tmnxVRtrMidRouteTCA   MI  gen  0  0
  2002 tmnxVRtrHighRouteTCA   MI  gen  0  0
  2003 tmnxVRtrHighRouteCleared   MI  gen  0  0
  2004 tmnxVRtrIllegalLabelTCA   MA  gen  0  0
  2005 tmnxVRtrMcastMidRouteTCA   MI  gen  0  0
  2006 tmnxVRtrMcastMaxRoutesTCA   MI  gen  0  0
  2007 tmnxVRtrMcastMaxRoutesCleared   MI  gen  0  0
  2008 tmnxVRtrMaxArpEntriesTCA   MA  gen  0  0
  2009 tmnxVRtrMaxArpEntriesCleared   MI  gen  0  0
  2011 tmnxVRtrMaxRoutes   MI  gen  0  0

=======================================================================
A:ALA-1#

A:ALA-1#    show log event-control ospf
=======================================================================
Log Events
=======================================================================
Application
ID#  Event Name                    P  g/s  Logged  Dropped
------------------------------------------
  2001 ospfVirtIfStateChange   WA  gen  0  0
  2002 ospfNbrStateChange   WA  gen  1  0
  2003 ospfVirtNbrStateChange   WA  gen  0  0
A:ALA-1#

A:ALA-1# show log event-control ospf ospfVirtIfStateChange

Log Events

<table>
<thead>
<tr>
<th>Application</th>
<th>ID#</th>
<th>Event Name</th>
<th>P</th>
<th>g/s</th>
<th>Logged</th>
<th>Dropped</th>
</tr>
</thead>
</table>
2001 ospfVirtIfStateChange | WA gen | 0 | 0 | 0 | 0 |

A:ALA-1#

**file-id**

**Syntax**

`file-id [log-file-id]`

**Context**

`show>log`

**Description**

This command displays event file log information.

If no command line parameters are specified, a summary output of all event log files is displayed.

Specifying a file ID displays detailed information on the event file log.

**Parameters**

`log-file-id` — Displays detailed information on the specified event file log.

**Output**

**Log File Output** — The following table describes the output fields for a log file summary.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>file-id</code></td>
<td>The log file ID.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>rollover</td>
<td>The rollover time for the log file which is how long in between partitioning of the file into a new file.</td>
</tr>
<tr>
<td>retention</td>
<td>The retention time for the file in the system which is how long the file should be retained in the file system.</td>
</tr>
<tr>
<td>admin location</td>
<td>The primary flash device specified for the file location.</td>
</tr>
<tr>
<td>backup location</td>
<td>The secondary flash device specified for the file location if the admin location is not available.</td>
</tr>
<tr>
<td>oper location</td>
<td>The actual flash device on which the log file exists.</td>
</tr>
<tr>
<td>file-id</td>
<td>The log file ID.</td>
</tr>
<tr>
<td>rollover</td>
<td>The rollover time for the log file which is how long in between partitioning of the file into a new file.</td>
</tr>
<tr>
<td>retention</td>
<td>The retention time for the file in the system which is how long the file should be retained in the file system.</td>
</tr>
<tr>
<td>file name</td>
<td>The complete pathname of the file associated with the log ID.</td>
</tr>
<tr>
<td>expired</td>
<td>Indicates whether or not the retention period for this file has passed.</td>
</tr>
<tr>
<td>state</td>
<td>in progress — Indicates the current open log file.</td>
</tr>
<tr>
<td></td>
<td>complete — Indicates the old log file.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
A:ALA-1# show log file-id

File Id List

file-id rollover retention admin location backup location oper location

1 60 4 cf1: cf2: cf1:
2 60 3 cf1: cf3: cf1:
3 1440 12 cf1: none cf1:
10 1440 12 cf1: none none
11 1440 12 cf1: none none
15 1440 12 cf1: none none
20 1440 12 cf1: none none

A:ALA-1#
```

```
A:ALA-1# show log file-id 10

File Id List

```
filter-id

Syntax  
filter-id [filter-id]

Context  
show>log

Description  
This command displays event log filter policy information.

Parameters  
filter-id — Displays detailed information on the specified event filter policy ID.

Output  
Event Log Filter Summary Output — The following table describes the output fields for event log filter summary information.

Table 36: Event Log Filter Summary Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Id</td>
<td>The event log filter ID.</td>
</tr>
<tr>
<td>Applied</td>
<td>no. The event log filter is not currently in use by a log ID.</td>
</tr>
<tr>
<td></td>
<td>yes. The event log filter is currently in use by a log ID.</td>
</tr>
<tr>
<td>Default Action</td>
<td>drop. The default action for the event log filter is to drop events not matching filter entries.</td>
</tr>
<tr>
<td></td>
<td>forward. The default action for the event log filter is to forward events not matching filter entries.</td>
</tr>
<tr>
<td>Description</td>
<td>The description string for the filter ID.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-48>config>log# show log filter-id
Log Filters

Filter Applied Default Description

<table>
<thead>
<tr>
<th>Id</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no</td>
<td>forward</td>
</tr>
<tr>
<td>5</td>
<td>no</td>
<td>forward</td>
</tr>
<tr>
<td>10</td>
<td>no</td>
<td>forward</td>
</tr>
<tr>
<td>1001</td>
<td>yes</td>
<td>drop  Collect events for Serious Errors Log</td>
</tr>
</tbody>
</table>

*A:ALA-48>config>log#

Event Log Filter Detailed Output — The following table describes the output fields for detailed event log filter information.

**Table 37: Event Log Filter Detail Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter-id</td>
<td>The event log filter ID.</td>
</tr>
<tr>
<td>Applied</td>
<td>no — The event log filter is not currently in use by a log ID.</td>
</tr>
<tr>
<td></td>
<td>yes — The event log filter is currently in use by a log ID.</td>
</tr>
<tr>
<td>Default Action</td>
<td>drop — The default action for the event log filter is to drop events</td>
</tr>
<tr>
<td></td>
<td>not matching filter entries.</td>
</tr>
<tr>
<td></td>
<td>forward — The default action for the event log filter is to forward</td>
</tr>
<tr>
<td></td>
<td>events not matching filter entries.</td>
</tr>
<tr>
<td>Description</td>
<td>The description string for the filter ID.</td>
</tr>
</tbody>
</table>

**Table 38: Log Filter Match Criteria Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-id</td>
<td>The event log filter entry ID.</td>
</tr>
<tr>
<td>Action</td>
<td>default — There is no explicit action for the event log filter entry</td>
</tr>
<tr>
<td></td>
<td>and the filter’s default action is used on matching events.</td>
</tr>
<tr>
<td></td>
<td>drop — The action for the event log filter entry is to drop matching events.</td>
</tr>
<tr>
<td></td>
<td>forward — The action for the event log filter entry is to forward</td>
</tr>
<tr>
<td></td>
<td>matching events.</td>
</tr>
<tr>
<td>Description</td>
<td>The description string for the event log filter entry.</td>
</tr>
</tbody>
</table>


Table 38: Log Filter Match Criteria Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>The event log filter entry application match criterion.</td>
</tr>
<tr>
<td>Event Number</td>
<td>The event log filter entry application event ID match criterion.</td>
</tr>
</tbody>
</table>
| Severity    | cleared — The log event filter entry application event severity cleared match criterion.  
|             | indeterminate — The log event filter entry application event severity indeterminate match criterion.  
|             | critical — The log event filter entry application event severity critical match criterion.  
|             | major — The log event filter entry application event severity cleared match criterion.  
|             | minor — The log event filter entry application event severity minor match criterion.  
|             | warning — The log event filter entry application event severity warning match criterion.  |
| Subject     | Displays the event log filter entry application event ID subject string match criterion.  |
| Router      | Displays the event log filter entry application event ID router router-instance string match criterion.  |
| Operator    | There is an operator field for each match criteria: application, event number, severity, and subject.  
|             | equal — Matches when equal to the match criterion.                         |
|             | greaterThan — Matches when greater than the match criterion.               |
|             | greaterThanOrEqual — Matches when greater than or equal to the match criterion. |
|             | lessThan — Matches when less than the match criterion.                     |
|             | lessThanOrEqual — Matches when less than or equal to the match criterion.  |
|             | notEqual — Matches when not equal to the match criterion.                  |
|             | off — No operator specified for the match criterion.                       |

Sample Output
*A:ALA-48>config>log# show log filter-id 1001
*******************************************************************************
Log Filter

Filter-id     : 1001     Applied       : yes      Default Action: drop
Description   : Collect events for Serious Errors Log

Log Filter Match Criteria

Entry-id      : 10                      Action        : forward
Application   :                         Operator      : off
Event Number  : 0                       Operator      : off
Severity      : major                   Operator      : greaterThanOrEqual
Subject       :                         Operator      : off
Match Type    : exact string                          :
Router        :                         Operator      : off
Match Type    : exact string                          :
Description   : Collect only events of major severity or higher

*log-collector*

**Syntax**

log-collector

**Context**

show>log

**Description**

Show log collector statistics for the main, security, change and debug log collectors.

**Output**

**Log-Collector Output** — The following table describes log-collector output fields.

**Table 39: Show Log-Collector Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Collector Name&gt;</td>
<td>Main — The main event stream contains the events that are not explicitly directed to any other event stream.</td>
</tr>
<tr>
<td></td>
<td>Security — The security stream contains all events that affect attempts to breach system security such as failed login attempts, attempts to access MIB tables to which the user is not granted access or attempts to enter a branch of the CLI to which access has not been granted.</td>
</tr>
<tr>
<td></td>
<td>Change — The change event stream contains all events that directly affect the configuration or operation of this node.</td>
</tr>
<tr>
<td></td>
<td>Debug — The debug-trace stream contains all messages in the debug stream.</td>
</tr>
<tr>
<td>Dest. Log ID</td>
<td>Specifies the event log stream destination.</td>
</tr>
<tr>
<td>Filter ID</td>
<td>The value is the index to the entry which defines the filter to be applied to this log’s source event stream to limit the events output to this log’s destination. If the value is 0, then all events in the source log are forwarded to the destination.</td>
</tr>
</tbody>
</table>
### Table 39: Show Log-Collector Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Enabled — Logging is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Logging is disabled.</td>
</tr>
<tr>
<td>Dest. Type</td>
<td>Console — A log created with the console type destination displays events to the physical console device. Events are displayed to the console screen whether a user is logged in to the console or not. A user logged in to the console device or connected to the CLI via a remote telnet or SSH session can also create a log with a destination type of 'session'. Events are displayed to the session device until the user logs off. When the user logs off, the 'session' type log is deleted.</td>
</tr>
<tr>
<td></td>
<td>Syslog — All selected log events are sent to the syslog address.</td>
</tr>
<tr>
<td></td>
<td>SNMP traps — Events defined as SNMP traps are sent to the configured SNMP trap destinations and are logged in NOTIFICATION-LOG-MIB tables.</td>
</tr>
<tr>
<td></td>
<td>File — All selected log events will be directed to a file on one of the CPM’s compact flash disks.</td>
</tr>
<tr>
<td></td>
<td>Memory — All selected log events will be directed to an in-memory storage area.</td>
</tr>
</tbody>
</table>

### Sample Output

```
A:ALA-1# show log log-collector

Log Collectors

<table>
<thead>
<tr>
<th>Main</th>
<th>Logged</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest Log Id: 99</td>
<td>1224</td>
<td>0</td>
</tr>
<tr>
<td>Filter Id: 0</td>
<td>Status: enabled</td>
<td>Dest Type: memory</td>
</tr>
<tr>
<td>Dest Log Id: 100</td>
<td>3896</td>
<td>0</td>
</tr>
<tr>
<td>Filter Id: 1001</td>
<td>Status: enabled</td>
<td>Dest Type: memory</td>
</tr>
</tbody>
</table>

A:ALA-1#
```
log-id

Syntax

```
log-id [log-id] [severity severity-level] [application application] [sequence from-seq [to-seq]] [count count] [router router-instance [expression]] [subject subject [regexp]] [ascending | descending]
```

Context

show>log

Description

This command displays an event log summary with settings and statistics or the contents of a specific log file, SNMP log, or memory log.

If the command is specified with no command line options, a summary of the defined system logs is displayed. The summary includes log settings and statistics.

If the log ID of a memory, SNMP, or file event log is specified, the command displays the contents of the log. Additional command line options control what and how the contents are displayed.

Contents of logs with console, session or syslog destinations cannot be displayed. The actual events can only be viewed on the receiving syslog or console device.

Parameters

```
log-id — Displays the contents of the specified file log or memory log ID. The log ID must have a destination of an SNMP or file log or a memory log for this parameter to be used.

Default Displays the event log summary

Values 1 — 99

severity severity-level — Displays only events with the specified and higher severity.

Default All severity levels

Values cleared, indeterminate, critical, major, minor, warning

application application — Displays only events generated by the specified application.

Default All applications

Values aps, atm, bgp, cflowd, chassis, dhcp, debug, filter, igmp, ip, isis, lag, ldp, logger, mirror, mpls, oam, ospf, pim, port, ppp, rip, route_policy, rsvp, security, snmp, stp, svcmgr, system, user, vrrp, vrrt, ospf_ng|ntp

expression — Specifies to use a regular expression as match criteria for the router instance string.

sequence from-seq [to-seq] — Displays the log entry numbers from a particular entry sequence number (from-seq) to another sequence number (to-seq). The to-seq value must be larger than the from-seq value.

If the to-seq number is not provided, the log contents to the end of the log is displayed unless the count parameter is present in which case the number of entries displayed is limited by the count.

Default All sequence numbers

Values 1 — 4294967295

count count — Limits the number of log entries displayed to the number specified.

Default All log entries

Values 1 — 4294967295

router-instance — Specifies a router name up to 32 characters to be used in the display criteria.
subject subject — Displays only log entries matching the specified text subject string. The subject is the object affected by the event, for example the port-id would be the subject for a link-up or link-down event.

regexp — Specifies to use a regular expression as parameters with the specified subject string.

ascending | descending — Specifies sort direction. Logs are normally shown from the newest entry to the oldest in descending sequence number order on the screen. When using the ascending parameter, the log will be shown from the oldest to the newest entry.

Default Descending

Output Show Log-ID Output — The following table describes the log ID field output.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Id</td>
<td>An event log destination.</td>
</tr>
<tr>
<td>Source</td>
<td>no — The event log filter is not currently in use by a log ID.</td>
</tr>
<tr>
<td></td>
<td>yes — The event log filter is currently in use by a log ID.</td>
</tr>
<tr>
<td>Filter ID</td>
<td>The value is the index to the entry which defines the filter to be applied to this log's source event stream to limit the events output to this log's destination. If the value is 0, then all events in the source log are forwarded to the destination.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up — Indicates that the administrative state is up.</td>
</tr>
<tr>
<td></td>
<td>Down — Indicates that the administrative state is down.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up — Indicates that the operational state is up.</td>
</tr>
<tr>
<td></td>
<td>Down — Indicates that the operational state is down.</td>
</tr>
<tr>
<td>Logged</td>
<td>The number of events that have been sent to the log source(s) that were forwarded to the log destination.</td>
</tr>
<tr>
<td>Dropped</td>
<td>The number of events that have been sent to the log source(s) that were not forwarded to the log destination because they were filtered out by the log filter.</td>
</tr>
<tr>
<td>Dest. Type</td>
<td>Console — All selected log events are directed to the system console. If the console is not connected, then all entries are dropped.</td>
</tr>
<tr>
<td></td>
<td>Syslog — All selected log events are sent to the syslog address.</td>
</tr>
<tr>
<td></td>
<td>SNMP traps — Events defined as SNMP traps are sent to the configured SNMP trap destinations and are logged in NOTIFICATION-LOG-MIB tables.</td>
</tr>
<tr>
<td></td>
<td>File — All selected log events will be directed to a file on one of the CPM's compact flash disks.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-1# show log log-id

Event Logs

<table>
<thead>
<tr>
<th>Log Source Id</th>
<th>Filter Id</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Logged</th>
<th>Dropped</th>
<th>Dest Type</th>
<th>Dest Id</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>none</td>
<td>up</td>
<td>down</td>
<td>52</td>
<td>0</td>
<td>file</td>
<td>10</td>
</tr>
<tr>
<td>2 C</td>
<td>none</td>
<td>up</td>
<td>up</td>
<td></td>
<td>41</td>
<td>0</td>
<td>syslog</td>
<td>1</td>
</tr>
<tr>
<td>99 M</td>
<td>none</td>
<td>up</td>
<td>up</td>
<td></td>
<td>2135</td>
<td>0</td>
<td>memory</td>
<td>500</td>
</tr>
</tbody>
</table>

A:ALA-1#

Sample Memory or File Event Log Contents Output

A:gal171# show log log-id 99

Event Log 99

Description : Default System Log
Memory Log contents [size=500 next event=70 (not wrapped)]

69 2007/01/25 18:20:40.00 UTC CRITICAL: SYSTEM #2029 Base Redundancy
"The active CPM card A is operating in singleton mode. There is no standby CPM card."

68 2007/01/25 17:48:38.16 UTC WARNING: SYSTEM #2006 Base LOGGER
"New event throttle interval 10, configuration modified"

67 2007/01/25 00:34:53.97 UTC CRITICAL: SYSTEM #2029 Base Redundancy
"The active CPM card A is operating in singleton mode. There is no standby CPM card."

66 2007/01/24 22:59:22.00 UTC CRITICAL: SYSTEM #2029 Base Redundancy
"The active CPM card A is operating in singleton mode. There is no standby CPM card."

65 2007/01/24 02:08:47.92 UTC CRITICAL: SYSTEM #2029 Base Redundancy
"The active CPM card A is operating in singleton mode. There is no standby CPM card."
...

A:gal171

A:NS061550532>config>log>snmp-trap-group# show log log-id 1

A:NS061550532>config>log>snmp-trap-group#

A:gal171

A:NS061550532>config>log>snmp-trap-group# show log log-id 1

snmp-trap-group

Syntax snmp-trap-group [log-id]

Context show>log

Description This command displays SNMP trap group configuration information.

Parameters log-id — Displays only SNMP trap group information for the specified trap group log ID.

Values 1 — 99

Output SNMP Trap Group Output — The following table describes SNMP trap group output fields.

Table 40: SNMP Trap Group Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-ID</td>
<td>The log destination ID for an event stream.</td>
</tr>
<tr>
<td>Address</td>
<td>The IP address of the trap receiver,</td>
</tr>
<tr>
<td>Port</td>
<td>The destination UDP port used for sending traps to the destination,</td>
</tr>
<tr>
<td></td>
<td>expressed as a decimal integer.</td>
</tr>
<tr>
<td>Version</td>
<td>Specifies the SNMP version format to use for traps sent to the trap</td>
</tr>
<tr>
<td></td>
<td>receiver. Valid values are snmpv1, snmpv2c, snmpv3.</td>
</tr>
</tbody>
</table>
Sample SNMP Trap Group Output

```bash
A:SetupCLI>config>log>snmp-trap-group# show log snmp-trap-group 44
SNMP Trap Group 44
Description : none
Name : ntt-test
Address : 10.10.10.3
Port : 162
Version : v2c
Community : ntttesting
Sec. Level : none
Replay : disabled
Replay from : n/a
Last replay : never
Name : test2
Address : 20.20.20.5
Port : 162
Version : v2c
Community : ntttesting
Sec. Level : none
Replay : disabled
Replay from : n/a
Last replay : never
A:SetupCLI>config>log>snmp-trap-group#
```

Table 40: SNMP Trap Group Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>The community string required by snmpv1 or snmpv2c trap receivers.</td>
</tr>
<tr>
<td>Security-Level</td>
<td>The required authentication and privacy levels required to access the views on this node.</td>
</tr>
<tr>
<td>Replay</td>
<td>Indicates whether or not the replay parameter has been configured, enabled or disabled, for the trap-target address.</td>
</tr>
<tr>
<td>Replay from</td>
<td>Indicates the sequence ID of the first missed notification that will be replayed when a route is added to the routing table by which trap-target address can be reached. If no notifications are waiting to be replayed this field shows n/a.</td>
</tr>
<tr>
<td>Last Replay</td>
<td>Indicates the last time missed events were replayed to the trap-target address. If no events have ever been replayed this field shows never.</td>
</tr>
</tbody>
</table>
syslog

Syntax
```
syslog [syslog-id]
```

Context
```
show>log
```

Description
This command displays syslog event log destination summary information or detailed information on a specific syslog destination.

Parameters
`syslog-id` — Displays detailed information on the specified syslog event log destination.

Values
1 — 10

Output

Syslog Event Log Destination Summary Output — The following table describes the syslog output fields.

<table>
<thead>
<tr>
<th>Table 41: Show Log Syslog Output Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
</tr>
<tr>
<td>Syslog ID</td>
</tr>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>Facility</td>
</tr>
<tr>
<td>Severity Level</td>
</tr>
<tr>
<td>Below Level Dropped</td>
</tr>
<tr>
<td>Prefix Present</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>LogPrefix</td>
</tr>
<tr>
<td>Log-id</td>
</tr>
</tbody>
</table>

Sample Syslog Event Log Destination Summary Output

```
*A:ALA-48>config>log# show log syslog
===============================================================================
Syslog Target Hosts
===============================================================================
<table>
<thead>
<tr>
<th>Id</th>
<th>Ip Address</th>
<th>Port</th>
<th>Sev Level</th>
<th>Below Level Drop</th>
<th>Facility</th>
<th>Pfx Level</th>
</tr>
</thead>
</table>
```

7750 SR OS System Management Guide
2 unknown 514 info
 0 local7 yes
3 unknown 514 info
 0 local7 yes
5 unknown 514 info
 0 local7 yes
10 unknown 514 info
 0 local7 yes

*A:AL-A-48>config>log#

*A:MV-SR>config>log# show log syslog 1

Syslog Target 1

IP Address : 192.168.15.22
Port : 514
Log-ids : none
Prefix : Sr12
Facility : local1
Severity Level : info
Prefix Level : yes
Below Level Drop : 0
Description : Linux Station Springsteen

*A:MV-SR>config>log#
Clear Commands

log

Syntax
log *log-id*

Context
clear

Description
Reinitializes/rolls over the specified memory/file event log ID. Memory logs are reinitialized and cleared of contents. File logs are manually rolled over by this command.

This command is only applicable to event logs that are directed to file destinations and memory destinations.

SNMP, syslog and console/session logs are not affected by this command.

Parameters
log-id. The event log ID to be initialized/rolled over.

Values
1 — 100
Standards and Protocol Support

Standards Compliance
- IEEE 802.1ab-REV/D3 Station and Media Access Control Connectivity Discovery
- IEEE 802.1d Bridging
- IEEE 802.1p/Q VLAN Tagging
- IEEE 802.1s Multiple Spanning Tree
- IEEE 802.1w Rapid Spanning Tree Protocol
- IEEE 802.1x Port Based Network Access Control
- IEEE 802.1ad Provider Bridges
- IEEE 802.1ah Provider Backbone Bridges
- IEEE 802.1ag Service Layer OAM
- IEEE 802.3ah Ethernet in the First Mile
- IEEE 802.1ak Multiple MAC Registration Protocol
- IEEE 802.3 10BaseT
- IEEE 802.3ad Link Aggregation
- IEEE 802.3ae 10Gbps Ethernet
- IEEE 802.3af Ethernet Power over Ethernet (PoE)
- IEEE 802.3ah Ethernet OAM
- IEEE 802.3u 100BaseTX
- ITU-T G.8031 OAM functions and mechanisms for Ethernet based networks
- ITU-T G.8032 OAM functions and mechanisms for Ethernet based networks
- ITU-T G.8033 OAM functions and mechanisms for Ethernet based networks
- ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks

Protocol Support

OSPF
- RFC 1765 OSPF Database Overflow
- RFC 2328 OSPF Version 2
- RFC 2370 Opaque LSA Support
- RFC 2444 OSPF for IPv6 (OSPFv3)
- RFC 2501 OSPFv2 Security
- RFC 3101 OSPF NSSA Option
- RFC 3129 OSPF Stub Router Advertisement
- RFC 3163 Graceful OSPF Restart — GR helper
- RFC 3630 Traffic Engineering (TE) Extensions to OSPF Version 2
- RFC 4203 for Shared Risk Link Group (SRLG) sub-TLV

BGP
- RFC 1397 BGP Default Route Advertisement
- RFC 1772 Application of BGP in the Internet
- RFC 1965 Confederations for BGP
- RFC 1997 BGP Communities Attribute
- RFC 2385 Protection of BGP Sessions via MD5
- RFC 2439 BGP Route Flap Dampening
- RFC 2547bis BGP/MPLS VPNs
- RFC 2918 Route Refresh Capability for BGP-4
- RFC 3107 Carrying Label Information in BGP-4
- RFC 3392 Capabilities Advertisement with BGP4
- RFC 4271 BGP-4 (previously RFC 1771)
- RFC 4360 BGP Extended Communities Attribute
- RFC 4364 BGP/MPLS IP Virtual Private Networks (VPNs) (previously RFC 2547bis BGP/MPLS VPNs)
- RFC 4456 BGP Route Reflection: Alternative to Full-mesh IBGP (previously RFC 1966 & 2796)
- RFC 4724 Graceful Restart Mechanism for BGP — GR helper
- RFC 4760 Multi-protocol Extensions for BGP
- RFC 4893 BGP Support for Four-octet AS Number Space
- RFC 5065 Confederations for BGP (obsoletes 3065)
- RFC 5283 LDP extension for Inter-Area LSP
draft-jork-ldp-igp-sync-03

IS-IS
- RFC 1142 OSI IS-IS Intra-domain Routing Protocol (ISO 10589)
- RFC 1195 Use of OSI IS-IS for routing in TCP/IP & dual environments
- RFC 2763 Dynamic Hostname Exchange for IS-IS
- RFC 2966 Domain-wide Prefix Distribution with Two-Level IS-IS
- RFC 2973 IS-IS Mesh Groups
- RFC 3373 Three-Way Handshake for Intermediate System to Intermediate System (IS-IS) Point-to-Point Adjacencies
- RFC 3567 Intermediate System to Intermediate System (ISIS) Cryptographic Authentication
- RFC 3719 Recommendations for Interoperable Networks using IS-IS
- RFC 3787 Recommendations for Interoperable IP Networks
- RFC 4205 for Shared Risk Link Group (SRLG) TLV
draft-ietf-isis-igp-p2p-over-lan-05.txt

LDP
- RFC 3036 LDP Specification
- RFC 3037 LDP Applicability
- RFC 3478 Graceful Restart Mechanism for LDP — GR helper
- RFC 5283 LDP extension for Inter-Area LSP
draft-jork-ldp-igp-sync-03

IPSec
- RFC 2401 Security Architecture for the Internet Protocol
- RFC 2409 The Internet Key Exchange (IKE)
- RFC 3706 IKE Dead Peer Detection
- RFC 3947 Negotiation of NAT-Traversal in the IKE
- RFC 3948 UDP Encapsulation of IPsec ESP Packets

draft-ietf-isis-igp-p2p-over-lan-05.txt
Standards and Protocols

draft-ietf-ipsec-isakmp-xauth-06.txt — Extended Authentication within ISAKMP/Oakley (XAUTH)
draft-ietf-ipsec-isakmp-modecfg-05.txt — The ISAKMP Configuration Method

IPv6
RFC 1981 Path MTU Discovery for IPv6
RFC 2375 IPv6 Multicast Address Assignments
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
RFC 2461 Neighbor Discovery for IPv6
RFC 2462 IPv6 Stateless Address Auto configuration
RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 Specification
RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
RFC 2529 Transmission of IPv6 over IPv4 Domains without Explicit Tunnels
RFC 2545 Use of BGP-4 Multiprotocol Extension for IPv6 Inter-Domain Routing
RFC 2710 Multicast Listener Discovery (MLD) for IPv6
RFC 2740 OSPF for IPv6
RFC 3306 Unicast-Prefix-based IPv6 Multicast Addresses
RFC 3315 Dynamic Host Configuration Protocol for IPv6
RFC 3587 IPv6 Global Unicast Address Format
RFC 3590 Source Address Selection for the Multicast Listener Discovery (MLD) Protocol
RFC 3810 Multicast Listener Discovery Version 2 (MLDv2) for IPv6
RFC 4007 IPv6 Scoped Address Architecture
RFC 4193 Unique Local IPv6 Unicast Addresses
RFC 4291 IPv6 Addressing Architecture
RFC 4552 Authentication/Confidentiality for OSPFv3
RFC 4659 BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN
RFC 5072 IP Version 6 over PPP

Multicast
RFC 1112 Host Extensions for IP Multicasting (Snooping)
RFC 2236 Internet Group Management Protocol (Snooping)
RFC 3376 Internet Group Management Protocol, Version 3 (Snooping)
RFC 2362 Protocol Independent Multicast-Sparse Mode (PIMSM)
RFC 3618 Multicast Source Discovery Protocol (MSDP)
RFC 3446 Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)
RFC 4604 Using IGMPv3 and MLDv2 for Source-Specific Multicast
RFC 4607 Source-Specific Multicast for IP
RFC 4608 Source-Specific Protocol Independent Multicast in 232/8
RFC 4610 Anycast-RP Using Protocol Independent Multicast (PIM)
draft-ietf-pim-sm-bsr-06.txt
draft-rosen-xml-6draft-ietf-mlb-01.draft-ietf-mlb-01.txt
draft-ietf-l3vpn-2547bis-mcast-07: Multicast in MPLS/BGP IP VPNs
draft-ietf-l3vpn-2547bis-mcast-bgp-05: BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs
RFC 3956: Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address

MPLS
RFC 3031 MPLS Architecture
RFC 3032 MPLS Label Stack Encoding (REV3443)
RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
RFC 4182 Removing a Restriction on the use of MPLS Explicit NULL

RIP
RFC 1058 RIP Version 1
RFC 2082 RIP-2 MD5 Authentication
RFC 2453 RIP Version 2

RSVP-TE
RFC 2430 A Provider Architecture DiffServ & TE
RFC 2702 Requirements for Traffic Engineering over MPLS
RFC 2747 RSVP Cryptographic Authentication
RFC 3097 RSVP Cryptographic Authentication
RFC 3209 Extensions to RSVP for Tunnels
RFC 3564 Requirements for Diff-Serv-aware TE
RFC 4090 Fast reroute Extensions to RSVP-TE for LSP Tunnels
RFC 4124 Protocol Extensions for Support of DiffServ-aware MPLS Traffic Engineering
RFC 4125 Maximum Allocation Bandwidth Constraints Model for DiffServ-aware MPLS Traffic Engineering
RFC 4875 Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)
draft-ietf-mpls-soft-preemption-14 MPLS Traffic Engineering Soft Preemption
draft-ietf-ccamp-mpls-graceful-shutdown-06 Graceful Shutdown in GMPLS Traffic Engineering Networks
draft-ietf-mpls-p2mp-lsp-ping-06 Graceful Shutdown in GMPLS Traffic Engineering Networks

DIFFERENTIATED SERVICES
RFC 2474 Definition of the DS Field the IPv4 and IPv6 Headers (Rev)
RFC 2597 Assured Forwarding PHB Group (rev3260)
RFC 2598 An Expedited Forwarding PHB
RFC 3140 Per-Hop Behavior Identification Codes

TCP/IP
RFC 768 UDP
RFC 1350 The TFTP Protocol (Rev.
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 951 BootP (rev)
RFC 1519 CIRD
RFC 1542 Clarifications and Extensions for the Bootstrap Protocol
RFC 1812 Requirements for IPv4 Routers
RFC 2347 TFTP option Extension
RFC 2328 TFTP Blocksize Option
RFC 2349 TFTP Timeout Interval and Transfer Size option
RFC 2401 Security Architecture for Internet Protocol
draft-ietf-bfd-mib-00.txt Bidirectional Forwarding Detection Management Information Base
draft-ietf-bfd-base-05.txt Bidirectional Forwarding Detection
draft-ietf-bfd-v4v6-1hop-06.txt BFD IPv4 and IPv6 (Single Hop)
draft-ietf-bfd-multihop-06.txt BFD for Multihop Paths

VRP
RFC 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol
RFC 3768 Virtual Router Redundancy Protocol

PPP
RFC 1332 PPP IPCP
RFC 1377 PPP OSINLCP
RFC 1638/2878PPP BCP
RFC 1661 PPP (rev RFC2151)
RFC 1662 PPP in HDLC-like Framing
RFC 1877 PPP Internet Protocol Control Protocol Extensions for Name Server Addresses

RFC 1989 PPP Link Quality Monitoring
RFC 1990 The PPP Multilink Protocol (MP)
RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP)
RFC 2516 A Method for Transmitting PPP Over EthernetRFC 2615 PPP over SONET/SDH
RFC 2686 The Multi-Class Extension to Multi-Link PPP

Frame Relay
FRF.1.2 - PVC User-to-Network Interface (UNI) Implementation Agreement
FRF.5 - Frame Relay/ATM PVC Network Interworking Implementation
FRF2.2 - PVC Network-to- Network Interface (NNI) Implementation Agreement.
FRF.12 Frame Relay Fragmentation Implementation Agreement
FRF.16.1 Multilink Frame Relay UNI/NNI Implementation Agreement
ITU-T Q.933 Annex A-Additional procedures for Permanent Virtual Connection (PVC) status management

ATM
RFC 1626 Default IP MTU for use over ATM AAL5
RFC 2514 Definitions of Textual Conventions and OBJECT_IDENTITIES for ATM Management
RFC 2515 Definition of Managed Objects for ATM Management RFC 2684 Multiprotocol Encapsulation over ATM Adaptation Layer 5
AF-TM-0121.000 Traffic Management Specification Version 4.1
ITU-T Recommendation L610 - B-ISDN Operation and Maintenance Principles and Functions version 11/95
ITU-T Recommendation I.432.1 — BISDN user-network interface — Physical layer specification: General characteristics
GR-1248-CORE - Generic Requirements for Operations of ATM Network Elements (NEs). Issue 3
GR-1113-CORE - Bellcore, Asynchronous Transfer Mode (ATM) and ATM Adaptation Layer (AAL) Protocols Generic Requirements, Issue 1
AF-ILMI-0065.000 Integrated Local Management Interface (ILMI) Version 4.0
AF-TM-0150.00 Addendum to Traffic Management v4.1 optional minimum desired cell rate indication for UBR
AF-PHY-0086.001,Inverse Multiplexing for ATM (IMA) Specification Version 1.1

DHCP
RFC 2131 Dynamic Host Configuration Protocol (REV)
RFC 3046 DHCP Relay Agent Information Option (Option 82)
RFC 1534 Interoperation between DHCP and BOOTP

VPLS
RFC 4762 Virtual Private LAN Services Using LDP
draft-ietf-l2vpn-vpls-mcast-reqts-04
draft-ietf-l2vpn-signaling-08

PSEUDO-WIRE
RFC 3985 Pseudo Wire Emulation Edge-to-Edge (PWE3)
RFC 4385 Pseudo Wire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN
RFC 3916 Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)
RFC 4717 Encapsulation Methods for Transport ATM over MPLS Networks (draft-ietf-pwe3-atm-encap-10.txt)
RFC 4816 PWE3 ATM Transparent Cell Transport Service (draft-ietf-pwe3-cell-transport-04.txt)
RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks (draft-ietf-pwe3-ethernet-encap-11.txt)
Standards and Protocols

RFC 4619 Encapsulation Methods for Transport of Frame Relay over MPLS Networks (draft-ietf-pwe3-frame-relay-07.txt)
RFC 4446 IANA Allocations for PWE3
RFC 4447 Pseudowire Setup and Maintenance Using LDP (draft-ietf-pwe3-control-protocol-17.txt)
RFC 5085, Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires
draft-ietf-t2vpn-vpws-iw-oam-02.txt
draft-ietf-pwe3-oam-msg-map-05.txt
draft-ietf-l2vpn-arp-mediation-04.txt
draft-ietf-pwe3-ms-pw-arch-05.txt
draft-ietf-pwe3-segmented-pw-11.txt
draft-hart-pwe3-segmented-pw-vccv-02.txt
draft-muley-dutta-pwe3-redundancy-bit-02.txt
draft-muley-pwe3-redundancy-02.txt
MFA Forum 9.0.0 The Use of Virtual trunks for ATM/MPLS Control Plane Interworking
MFA Forum 12.0.0 Multiservice Interworking - Ethernet over MPLS
MFA Forum 13.0.0 - Fault Management for Multiservice Interworking v1.0
MFA Forum 16.0.0 — Multiservice Interworking - IP over MPLS

SONET/SDH
ITU-G841 Telecommunication Standardization Section of ITU, Types and Characteristics of SDH Networks Protection Architecture, issued in October 1998 and as augmented by Corrigendum 1 issued in July 2002
RADIUS
RFC 2865 Remote Authentication Dial In User Service
RFC 2866 RADIUS Accounting
SSH
draft-ietf-secssh-architecture.txt
SSH Protocol Architecture
draft-ietf-secssh-userauth.txt
SSH Authentication Protocol
draft-ietf-secssh-transport.txt
SSH Transport Layer Protocol
draft-ietf-secssh-connection.txt
SSH Connection Protocol
draft-ietf-secssh-newmodes.txt
SSH Transport Layer Encryption Modes

TACACS+
draft-grant-tacacs-02.txt

Timing
ITU-T G781 Telecommunication Standardization Section of ITU, Synchronization layer functions, issued 09/2008
ITU-T G813 Telecommunication Standardization Section of ITU, Timing characteristics of SDH equipment slave clocks (SEC), issued 03/2003.

NETWORK MANAGEMENT
ITU-T X.721: Information technology- OSI-Structure of Management Information
ITU-T X.734: Information technology- OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1657 BGP4-MIB
RFC 1724 RIPv2-MIB
RFC 1850 OSPF-MIB
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2206 RSVP-MIB
RFC 2452 IPv6 Management Information Base for the Transmission Control Protocol
RFC 2454 IPv6 Management Information Base for the User Datagram Protocol
RFC 2465 Management Information Base for IPv6: Textual Conventions and General Group
RFC 2558 SONET-MIB
RFC 2571 SNMP-FRAMEWORKMIB
RFC 2572 SNMP-MDP-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASED-SMMIB
RFC 2575 SNMP-VIEW-BASEDACM-MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2665 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 2987 VRRP-MIB
RFC 3014 NOTIFICATION-LOGMIB
RFC 3019 IP Version 6 Management Information Base for The Multicast Listener Discovery Protocol
RFC 3164 Syslog
RFC 3273 HCRMON-MIB
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIB
draft-ietf-disman-alarm-mib-04.txt
draft-ietf-ospf-mib-update-04.txt
draft-ietf-mpls-lsr-mib-06.txt
draft-ietf-mpls-te-mib-04.txt
draft-ietf-mpls-ldp-mib-07.txt
draft-ietf-isis-wg-mib-05.txt
IANA-IFType-MIB
IEEE8023-LAG-MIB

Proprietary MIBs

TIMETRA-APS-MIB.mib
TIMETRA-ATM-MIB.mib
TIMETRA-BGP-MIB.mib
TIMETRA-BSX-NG-MIB.mib
TIMETRA-CAPABILITY-7750-V4v0.mib
TIMETRA-CFLOWD-MIB.mib
TIMETRA-CHASSIS-MIB.mib
TIMETRA-CLEAR-MIB.mib
TIMETRA-FILTER-MIB.mib
TIMETRA-GLOBAL-MIB.mib
TIMETRA-IGMP-MIB.mib
TIMETRA-ISIS-MIB.mib
TIMETRA-LAG-MIB.mib
TIMETRA-LDP-MIB.mib
TIMETRA-LOG-MIB.mib
Index

B
BOF
 overview
 compact flash
 storing log files 269
 synchronization
 VSA home directory 36

I
in-band port (no shutdown) 319
in-band port (shutdown) 317

L
Log
 overview 266
 accounting 284
 accounting design considerations 295
 accounting files 295
 accounting records 284
 default system log 283
 destinations 268
 event control 276
 event filter policies 279
 event log entries 280
 event logs 273
 event sources 274
 log files 269
 log manager 278
 SNMP trap groups 271
 syslog 271

 configuring
 accounting policy 309
 basic 305
 command reference
 file ID commands 343
 filter commands 343
 log ID commands 344
 syslog commands 345
 event control 310
 event log 306

file ID 308
log filter 312
log types 304
management tasks 323
overview 304
SNMP trap group 313
syslog target 321

R
replay parameter 315

S
Security
 overview
 AAA 20
 accounting 28
 RADIUS 28
 TACACS+ 28
 authentication 21
 RADIUS 22
 TACACS+ 25
 authorization 26
 26
 local 27
 RADIUS 27
 TACACS+ 27
 controls 30
 encryption 48
 SSH 41

 configuring
 accounting 57
 RADIUS 78
 TACACS+ 83
 authentication 54
 RADIUS 76
 TACACS+ 81
 authorization 55
 RADIUS 77
 TACACS+ 82
 basic 58
login controls 85
management access filters 61
password management 68
profiles 69
SSH 84
users 70
encryption 48
keychains 51
peer CPM queuing 43
SSH 41
VSAs 35
Alcatel-Lucent Dictionary 38

SNMP
overview
 access control 220
 access groups 221
 users 222
 USMs 221
 views 221
 architecture 218
 MIBs 218
 versions 219
configuring
 access options 233
 basic 229
 command reference
 security commands 237
 show commands 238
 system commands 237
 community strings 231
 SNMPv1 and SNMPv2 228
 SNMPv3 228
 USM community options 235
 view options 232
 command reference
 system commands 237
 user commands 238