Table of Contents

Preface .. 7

Getting Started
Alcatel-Lucent 7210 SAS-Series Services Configuration Process ... 11

Mirror Services
Service Mirroring .. 14
Mirror Implementation .. 15
 Mirror Source and Destinations ... 16
 Mirroring Performance .. 18
 Mirroring Configuration .. 19
Configuration Process Overview .. 20
Configuration Notes .. 21
Configuring Service Mirroring with CLI
 Mirror Configuration Overview ... 24
 Defining Mirrored Traffic .. 24
 Basic Mirroring Configuration .. 25
 Mirror Classification Rules ... 26
Common Configuration Tasks
 Configuring a Local Mirror Service ... 29
Service Management Tasks
 Modifying a Local Mirrored Service ... 31
 Deleting a Local Mirrored Service .. 32
Mirror Service Command Reference .. 23
Configuration Commands .. 37

OAM and SAA
OAM Overview ... 52
LSP Diagnostics .. 52
SDP Diagnostics .. 53
 SDP Ping .. 53
 SDP MTU Path Discovery .. 53
Service Diagnostics .. 54
VPLS MAC Diagnostics .. 55
 MAC Ping ... 55
 MAC Trace ... 56
 CPE Ping .. 57
 MAC Populate .. 58
 MAC Purge ... 58
VLL Diagnostics ... 59
 VCCV Ping .. 59
Ethernet Connectivity Fault Management (ETH-CFM)
 MA, MEP, MIP and MD Levels .. 68
Loopback .. 71
Table of Contents

- Linktrace ... 72
- Continuity Check (CC) .. 74
- Alarm Indication Signal (ETH-AIS Y.1731) 76
- Test (ETH-TST Y.1731) .. 76
- One-Way Delay Measurement (ETH-1DM Y.1731) 76
- Two-Way Delay Measurement (ETH-DMM Y.1731) 77
- Service Assurance Agent Overview 78
- SAA Application ... 78
- Traceroute Implementation .. 78
- NTP .. 79
- Configuring SAA Test Parameters 80
- Diagnostics Command Reference 81
- Tools Command Reference .. 147

Common CLI Command Descriptions
- Common Service Commands .. 172

Standards and Protocol Support
- ... 177
List of Tables

Getting Started
Table 1: Configuration Process .. 11

Mirror Services
Table 2: Mirror Source Port Requirements .. 26

OAM and SAA
Table 3: ETH-CFM Support Matrix ... 68
List of Figures

Mirror Services
- Figure 1: Service Mirroring .. 14
- Figure 2: Local Mirroring Example .. 19
- Figure 3: Mirror Configuration and Implementation Flow 20
- Figure 4: Local Mirrored Service Tasks .. 28

OAM and SAA
- Figure 5: OAM Control Word Format ... 59
- Figure 6: VCCV TLV ... 60
- Figure 7: VCCV-Ping Application .. 61
- Figure 8: MEP and MIP ... 69
- Figure 9: MEP, MIP and MD Levels .. 70
- Figure 10: CFM Loopback ... 71
- Figure 11: CFM Linktrace ... 72
- Figure 12: CFM Continuity Check ... 74
- Figure 13: CFM CC Failure Scenario .. 74
Preface

About This Guide

This guide describes service mirroring and Operations, Administration and Management (OAM) and diagnostic tools provided by the 7210 SAS OS and presents examples to configure and implement various tests.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring the 7210 SAS routers. It is assumed that the network administrators have an understanding of networking principles and configurations. Protocols, standards, and services described in this manual include the following:

- CLI concepts
- Subscriber services
- Service mirroring
- Operation, Administration and Maintenance (OAM) operations
List of Technical Publications

The 7210-SAS M, X OS documentation set is composed of the following books:

- **7210-SAS M, X OS Basic System Configuration Guide**
 This guide describes basic system configurations and operations.

- **7210-SAS M, X OS System Management Guide**
 This guide describes system security and access configurations as well as event logging and accounting logs.

- **7210-SAS M, X OS Interface Configuration Guide**
 This guide describes card, Media Dependent Adapter (MDA), and port provisioning.

- **7210-SAS M, X OS Router Configuration Guide**
 This guide describes logical IP routing interfaces and associated attributes such as an IP address, port, link aggregation group (LAG) as well as IP and MAC-based filtering.

- **7210-SAS M, X OS Routing Protocols Guide**
 This guide provides an overview of routing concepts and provides configuration examples for protocols and route policies.

- **7210 SAS M OS Services Guide**
 This guide describes how to configure service parameters such as, customer information and user services.

- **7210-SAS M, X OS OAM and Diagnostic Guide**
 This guide describes how to configure features such as service mirroring and Operations, Administration and Management (OAM) tools.

- **7210 SAS M OS Quality of Service Guide**
 This guide describes how to configure Quality of Service (QoS) policy management.
Technical Support

If you purchased a service agreement for your 7210 SAS and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center.

Web: http://www1.alcatel-lucent.com/comps/pages/carrier_support.jhtml
In This Chapter

This book provides process flow information to configure service mirroring and Operations, Administration and Management (OAM) tools.

Alcatel-Lucent 7210 SAS-Series Services Configuration Process

Table 1 lists the tasks necessary to configure mirroring, and perform tools monitoring functions. This guide is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

Table 1: Configuration Process

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics/Service verification</td>
<td>Mirroring</td>
<td>Mirror Services on page 13</td>
</tr>
<tr>
<td>OAM</td>
<td></td>
<td>OAM and SAA on page 51</td>
</tr>
<tr>
<td>Reference</td>
<td>List of IEEE, IETF, and other proprietary entities.</td>
<td>Standards and Protocol Support on page 177</td>
</tr>
</tbody>
</table>
Mirror Services

In This Chapter

This chapter provides information to configure mirroring.

Topics in this chapter include:

- Service Mirroring on page 14
- Mirror Implementation on page 15
 - Mirror Source and Destinations on page 16
 - Local Mirroring on page 17
 - Mirroring Performance on page 18
 - Mirroring Configuration on page 19
- Configuration Process Overview on page 20
- Configuration Notes on page 21
- Configuring Service Mirroring with CLI on page 23
- Basic Mirroring Configuration on page 25
- Common Configuration Tasks on page 28
- Service Management Tasks on page 31
- Mirror Service Command Reference on page 35
- Configuration Commands on page 37
Service Mirroring

When troubleshooting complex operational problems, customer packets can be examined as they traverse the network. Alcatel-Lucent’s service mirroring provides the capability to mirror customer packets to allow for trouble shooting and offline analysis.

This capability also extends beyond troubleshooting services. Telephone companies have the ability to obtain itemized calling records and wire-taps where legally required by investigating authorities. The process can be very complex and costly to carry out on data networks. Service Mirroring greatly simplifies these tasks, as well as reduces costs through centralization of analysis tools and skilled technicians.

Original packets are forwarded while a copy is sent out the mirrored port to the mirroring (destination) port. Service mirroring allows an operator to see the actual traffic on a customer’s service with a sniffer sitting in a central location. In many cases, this reduces the need for a separate, costly overlay sniffer network.

The 7210 SAS M supports on local mirroring.

![Figure 1: Service Mirroring](image-url)
Mirror Implementation

Mirroring can be implemented on ingress service access points (SAPs) or ingress network interfaces.

Alcatel-Lucent’s implementation of packet mirroring is based on the following assumptions:

- Ingress and egress packets are mirrored as they appear on the wire. This is important for troubleshooting encapsulation and protocol issues.
 - When mirroring at ingress, an exact copy of the original ingress packet is sent to the mirror destination while normal forwarding proceeds on the original packet.
 - When mirroring is at egress, the system performs normal packet handling on the egress packet, encapsulating it for the destination interface. A copy of the forwarded packet (as seen on the wire) is forwarded to the mirror destination.
Mirror Source and Destinations

Mirror sources and destinations have the following characteristics:

- They can only be on the same 7210 SAS M router (local).
- Each mirror destination should terminate on a distinct port carrying only null encapsulation.
- Packets ingressing a port can have a mirror destination separate from packets egressing another or the same port (the ports must be on the same node).
- Multiple mirror destinations are supported (local only) on a single chassis.
Local Mirroring

Mirrored frames can be copied and sent to a specific local destination or mirror service on 7210 SAS M (local mirroring).

The 7210 SAS M allows multiple concurrent mirroring sessions so traffic from more than one ingress mirror source can be mirrored to the same or different mirror destinations.

Remote mirroring is not supported in 7210 SAS M.

Mirroring Performance

Replication of mirrored packets can, typically, affect performance and should be used carefully.

Mirroring can be performed based on the following criteria:

- Port (ingress and egress)
- SAP (ingress only)
- MAC filter (ingress only)
- IP filter (ingress only)
Mirroring Configuration

Configuring mirroring is similar to creating a uni-direction service. Mirroring requires the configuration of:

- Mirror source — The traffic on a specific point(s) to mirror.
- Mirror destination — The location to send the mirrored traffic, where the sniffer will be located.

Figure 2 depicts a local mirror service configured on ALA-A.

- Port 1/1/2 is specified as the source. Mirrored traffic ingressing and egressing this port will be sent to port 1/1/3.
- SAP 1/1/3 is specified as the destination. The sniffer is physically connected to this port. Mirrored traffic ingressing and egressing port 1/1/2 is sent here. SAP, encapsulation requirements, and mirror classification parameters are configured.

Figure 2: Local Mirroring Example
Figure 3 displays the process to provision basic mirroring parameters.

Figure 3: Mirror Configuration and Implementation Flow
Configuration Notes

This section describes mirroring configuration caveats.

- Multiple mirroring service IDs (mirror destinations) may be created within a single system.
- A mirrored source can only have one destination.
- The destination mirroring service IDs and service parameters are persistent between router (re)boots and are included in the configuration saves.

Mirror source criteria configuration (defined in `debug>mirror>mirror-source`) is not preserved in a configuration save (admin save). Debug mirror source configuration can be saved using `admin>debug-save`.

- Physical layer problems such as collisions, jabbers, etc., are not mirrored. Typically, only complete packets are mirrored.
- Starting and shutting down mirroring:

 Mirror destinations:
 - The default state for a mirror destination service ID is shutdown. You must issue a `no shutdown` command to enable the feature.
 - When a mirror destination service ID is shutdown, mirrored packets associated with the service ID are not accepted from its mirror source. The associated mirror source is put into an operationally down mode. Mirrored packets are not transmitted out the SAP. Each mirrored packet is silently discarded.
 - Issuing the `shutdown` command causes the mirror destination service or its mirror source to be put into an administratively down state. Mirror destination service IDs must be shut down first in order to delete a service ID or SAP association from the system.

 Mirror sources:
 - The default state for a mirror source for a given mirror-dest service ID is `no shutdown`. Enter a `shutdown` command to deactivate (disable) mirroring from that mirror-source.
 - Mirror sources do not need to be shutdown to remove them from the system. When a mirror source is shutdown, mirroring is terminated for all sources defined locally for the mirror destination service ID.
Configuring Service Mirroring with CLI

This section provides information about service mirroring.

Topics in this section include:

- Mirror Configuration Overview on page 24
- Basic Mirroring Configuration on page 25
 - Mirror Classification Rules on page 26
- Common Configuration Tasks on page 28
 - Configuring a Local Mirror Service on page 29
- Service Management Tasks on page 31
 - Modifying a Local Mirrored Service on page 32
 - Deleting a Local Mirrored Service on page 33
Mirror Configuration Overview

7210 SAS M mirroring can be organized in the following logical entities:

- The mirror source is defined as the location where ingress traffic specific to a port, SAP, MAC or IP filter, is to be mirrored (copied). The original frames are not altered or affected in any way. The egress traffic specific to a port can be mirrored.
- A SAP is defined in local mirror services as the mirror destination to where the mirrored packets are sent.

Defining Mirrored Traffic

In some scenarios, or when multiple services are configured on the same port, specifying the port does not provide sufficient resolution to separate traffic. In Alcatel-Lucent’s implementation of mirroring, multiple source mirroring parameters can be specified to further identify traffic.

Mirroring of packets matching specific filter entries in an IP or MAC filter can be applied to refine what traffic is mirrored to flows of traffic within a service. The IP criteria can be combinations of:

- Source IP address/mask
- Destination IP address/mask
- IP Protocol value
- Source port value (for example, UDP or TCP port)
- Destination port value (for example, UDP or TCP port)
- DiffServ Code Point (DSCP) value
- ICMP code
- ICMP type
- IP fragments
- TCP ACK set/reset
- TCP SYN set/reset

The MAC criteria can be combinations of:

- IEEE 802.1p value/mask
- Source MAC address/mask
- Destination MAC address/mask
- Ethernet Type II Ethernet type value
Basic Mirroring Configuration

Destination mirroring parameters must include at least:

- A mirror destination ID (same as the mirror source service ID).
- A mirror destination SAP.

Mirror source parameters must include at least:

- A mirror service ID (same as the mirror destination service ID).
- At least one source type (port, SAP, IP filter or MAC filter) specified.

The following example displays a sample configuration of a local mirrored service (ALA-A).

```
*A:ALA-A>config>mirror# info
----------------------------------------------
mirror-dest 103 create
  sap 1/1/1 create
  exit
  no shutdown
exit
----------------------------------------------
*A:ALA-A>config>mirror#
```

The following displays the mirror source configuration:

```
*A:ALA-A>debug>mirror-source# show debug mirror
debug
  mirror-source 103
    port 1/1/24 egress ingress
    no shutdown
    exit
exit
*A:ALA-A>debug>mirror-source# exit
```
Mirror Classification Rules

Alcatel-Lucent’s implementation of mirroring can be performed by configuring parameters to select network traffic according to any of the following entities:

- Port
- SAP
- MAC filter
- IP filter

Port

The `port` command associates a port to a mirror source. The port is identified by the port ID. The defined port can be Ethernet or a Link Aggregation Group (LAG) ID. When a LAG ID is given as the port ID, mirroring is enabled on all ports making up the LAG.

Mirror sources can be ports in either access or network mode. Port mirroring is supported in the following combinations:

Table 2: Mirror Source Port Requirements

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Port Mode</th>
<th>Port Encap Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>faste/gige</td>
<td>access</td>
<td>dot1q, null</td>
</tr>
<tr>
<td>faste/gige/network</td>
<td>dot1q/null</td>
<td></td>
</tr>
</tbody>
</table>

CLI Syntax: `debug>mirror-source# port {port-id|lag lag-id} {[egress][ingress]}`

Example:
```
*A:ALA-A>debug>mirror-source# port 1/1/2 ingress egress
```

SAP

More than one SAP can be associated within a single mirror-source. Each SAP has its own ingress parameter keyword to define which packets are mirrored to the mirror-dest service ID. A SAP that is defined within a mirror destination cannot be used in a mirror source.

CLI Syntax: `debug>mirror-source# sap sap-id {[ingress]}`

Example:
```
*A:ALA-A>debug>mirror-source# sap 1/1/4:100 ingress
```
MAC filter

MAC filters are configured in the `config>filter>mac-filter` context. The `mac-filter` command causes all the packets matching the explicitly defined list of entry IDs to be mirrored to the mirror destination specified by the service-id of the mirror source.

CLI Syntax:
```
debug>mirror-source# mac-filter mac-filter-id entry entry-id [entry-id ...]
```

Example:
```
*A:ALA-2>debug>mirror-source# mac-filter 12 entry 15 20 25
```

IP filter

IP filters are configured in the `config>filter>ip-filter` context. The `ip-filter` command causes all the packets matching the explicitly defined list of entry IDs to be mirrored to the mirror destination specified by the service-id of the mirror source.

Ingress mirrored packets are mirrored to the mirror destination prior to any ingress packet modifications.

CLI Syntax:
```
debug>mirror-source# ip-filter ip-filter-id entry entry-id [entry-id ...]
```

Example:
```
*A:ALA-A>debug>mirror-source# ip-filter 1 entry 20
```

NOTE: An IP filter cannot be applied to a mirror destination SAP.
This section provides a brief overview of the tasks that must be performed to configure local mirror services and provides CLI command syntax. Note that the local mirror source and mirror destination components must be configured under the same service ID context.

Each local mirrored service (Figure 4) (within the same router) requires the following configurations:

1. Specify mirror destination (SAP).
2. Specify mirror source (port, SAP, IP filter, MAC filter).

Figure 4: Local Mirrored Service Tasks
Configuring a Local Mirror Service

To configure a local mirror service, the source and destinations must be located on the same router. Note that local mirror source and mirror destination components must be configured under the same service ID context.

The **mirror-source** commands are used as traffic selection criteria to identify traffic to be mirrored at the source. Each of these criteria are independent. For example, use the

```
debug>mirror-source>port {port-id | lag lag-id} {{egress} [ingress]} command and
debug>mirror-source ip-filter ip-filter-id entry entry-id [entry-id...] command to capture (mirror) traffic that matches a specific IP filter entry and traffic ingressing and egressing a specific port. A filter must be applied to the SAP or interface if only specific packets are to be mirrored.
```

Use the CLI syntax to configure one or more mirror source parameters:

The **mirror-dest** commands are used to specify where the mirrored traffic is to be sent. Use the following CLI syntax to configure mirror destination parameters:

```
CLI Syntax:  config>mirror mirror-dest service-id [type {ether}] [create]
             description string
             sap sap-id [create]
             no shutdown

CLI Syntax:  debug# mirror-source service-id
             ip-filter ip-filter-id entry entry-id [entry-id ...]
             mac-filter mac-filter-id entry entry-id [entry-id ...]
             port {port-id | lag lag-id} {{egress} [ingress]}
             sap sap-id [ingress]
             no shutdown
```

The following output displays an example of a local mirrored service. On ALA-A, mirror service 103 is mirroring traffic matching IP filter 2, entry 1 as well as egress and ingress traffic on port 1/1/23 and sending the mirrored packets to SAP 1/1/24

```
*A:ALA-A>config>mirror# info
---------------------------------------------
mirror-dest 103 create
             sap 1/1/24 create
             exit
             no shutdown
             exit
---------------------------------------------
*A:ALA-A>config>mirror#
```

The following displays the debug mirroring information:

```
*A:ALA-A>debug>mirror-source# show debug mirror
default
mirror-source 103
```
no shutdown
port 1/1/23 ingress
ip-filter 2 entry 1
exit
exit
*A:ALA-A>debug>mirror-source# exit
Service Management Tasks

This section discusses the following service management tasks:

- Modifying a Local Mirrored Service on page 32
- Deleting a Local Mirrored Service on page 33

Use the following command syntax to modify an existing mirrored service:

CLI Syntax:

```
config>mirror#
mirror-dest service-id [type {ether}]
description description-string
no description
sap sap-id
no sap
[no] shutdown
```

```
debug
[no] mirror-source service-id
ip-filter ip-filter-id entry entry-id [entry-id...]
no ip-filter ip-filter-id
no ip-filter entry entry-id [entry-id...]
mac-filter mac-filter-id entry entry-id [entry-id...]  
no mac-filter mac-filter-id
no mac-filter mac-filter-id entry entry-id [entry-id...]
[no] port {port-id|lag lag-id} {[egress][ingress]}
[no] sap sap-id {[ingress]}
[no] shutdown
```
Modifying a Local Mirrored Service

Existing mirroring parameters can be modified in the CLI. The changes are applied immediately. The service must be shut down if changes to the SAP are made.

The following example displays commands to modify parameters for a basic local mirroring service.

Example:
```
config>mirror# mirror-dest 103
config>mirror>mirror-dest# shutdown
config>mirror>mirror-dest# no sap
config>mirror>mirror-dest# sap 1/1/5 create
config>mirror>mirror-dest>.sap$ exit
config>mirror>mirror-dest# no shutdown
ddebug# mirror-source 103
ddebug>mirror-source# no port 1/1/23
ddebug>mirror-source# port 1/1/7 ingress egress
```

The following displays the local mirrored service modifications:

```
*A:ALA-A>config>mirror# info
-----------------------------------------------
mirror-dest 103 create
    no shutdown
    sap 1/1/5 create
    exit
d*A:ALA-A>debug>mirror-source# show debug mirror
ddebug
mirror-source 103
    no shutdown
    port 1/1/7 egress ingress
    exit
*A:ALA-A>debug>mirror-source#
```
Deleting a Local Mirrored Service

Existing mirroring parameters can be deleted in the CLI. A shutdown must be issued on a service level in order to delete the service. It is not necessary to shut down or remove SAP or port references to delete a local mirrored service.

The following example displays commands to delete a local mirrored service.

Example:
```
ALA-A>config>mirror# mirror-dest 103
    config>mirror>mirror-dest# shutdown
    config>mirror>mirror-dest# exit
    config>mirror# no mirror-dest 103
    config>mirror# exit
```
Mirror Service Command Reference

Command Hierarchies

- Mirror Configuration Commands on page 35
- Debug Commands on page 35
- Show Commands on page 36

Mirror Configuration Commands

```plaintext
config
  -- mirror
    -- mirror-dest service-id [type encap-type]
    -- no mirror-dest service-id
      -- description description-string
      -- no description
      -- sap sap-id [create]
      -- no sap
      -- [no] shutdown
      -- [no] shutdown
```

Debug Commands

```plaintext
debug
  [no] mirror-source mirror-dest-service-id
  -- ip-filter ip-filter-id entry entry-id [entry-id ...]
  -- no ip-filter ip-filter-id [entry entry-id [entry-id ...]
  -- mac-filter mac-filter-id entry entry-id [entry-id ...]
  -- no mac-filter mac-filter-id [entry entry-id...]...
  -- port {port-id | lag lag-id} {[egress] [ingress]}
  -- no port {port-id | lag lag-id} [egress] [ingress]
  -- sap sap-id {[ingress]}
  -- no sap sap-id [ingress]
  -- [no] shutdown
```
Show Commands

```
show
  — debug [application]
  — mirror mirror-dest [service-id]
  — service
    — service-using mirror
```
Configuration Commands

Generic Commands

description

Syntax

```
description description-string
no description
```

Context

`config>mirror>mirror-dest`

Description

This command creates a text description stored in the configuration file for a configuration context to help the administrator identify the content of the file.

The `no` form of the command removes the description string.

Default

There is no default description associated with the configuration context.

Parameters

`description-string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

shutdown

Syntax

```
[no] shutdown
```

Context

`config>mirror>mirror-dest`
`debug>mirror-source`

Description

The `shutdown` command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the `no shutdown` command.

The `shutdown` command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Unlike other commands and parameters where the default state is not indicated in the configuration file, `shutdown` and `no shutdown` are always indicated in system generated configuration files.

The `no` form of the command puts an entity into the administratively enabled state.

Default

See Special Cases below.

Special Cases

`Mirror Destination` — When a mirror destination service ID is shutdown, mirrored packets associated with the service ID are not accepted from the mirror source device. The associated mirror source is put into an operationally down mode. Mirrored packets are not transmitted out of the SAP. Each
mirrored packet is silently discarded. If the mirror destination is a SAP, the SAP’s discard counters are incremented.

The `shutdown` command places the mirror destination service or mirror source into an administratively down state. The `mirror-dest` service ID must be shut down in order to delete the service ID, SAP association from the system.

The default state for a mirror destination service ID is `shutdown`. A `no shutdown` command is required to enable the service.

Mirror Source — Mirror sources do not need to be shutdown in order to remove them from the system.

When a mirror source is `shutdown`, mirroring is terminated for all sources defined locally for the `mirror-dest` service ID.

The default state for a mirror source for a given `mirror-dest` service ID is `no shutdown`. A `shutdown` command is required to disable mirroring from that mirror-source.
Mirror Destination Configuration Commands

mirror-dest

Syntax

```
mirror-dest service-id [type encap-type]
no mirror-dest
```

Context

```
config>mirror
```

Description

This command creates a context to set up a service that is intended for packet mirroring. It is configured as a service to allow mirrored packets to be directed locally (within the same device), over the core of the network and have a far end device decode the mirror encapsulation.

The `mirror-dest` service is comprised of destination parameters that define where the mirrored packets are to be sent. It also specifies whether the defined `service-id` will receive mirrored packets from far end devices over the network core.

The `mirror-dest` service IDs are persistent between boots of the router and are included in the configuration saves. The local sources of mirrored packets for the service ID are defined within the `debug mirror mirror-source` command that references the same `service-id`. Up to 4 `mirror-dest` service IDs can be created within a single system.

The `mirror-dest` command is used to create or edit a service ID for mirroring purposes. If the `service-id` does not exist within the context of all defined services, the `mirror-dest` service is created and the context of the CLI is changed to that service ID. If the `service-id` exists within the context of defined `mirror-dest` services, the CLI context is changed for editing parameters on that service ID. If the `service-id` exists within the context of another service type, an error message is returned and CLI context is not changed from the current context.

The `no` form of the command removes a mirror destination from the system. The `mirror-source` or `li-source` associations with the `mirror-dest service-id` do not need to be removed or shutdown first. The `mirror-dest` service ID must be shutdown before the service ID can be removed. When the service ID is removed, all `mirror-source` or `li-source` commands that have the service ID defined will also be removed from the system.

Default

No packet mirroring services are defined.

Parameters

```
service-id — The service identification identifies the service in the service domain. This ID is unique to this service and cannot be used by any other service, regardless of service type. The same service ID must be configured on every device that this particular service is defined on.

If particular a service ID already exists for a service, then the same value cannot be used to create a mirror destination service ID with the same value. For example:

If an Epipe service-ID 11 exists, then a mirror destination service-ID 11 cannot be created. If a VPLS service-ID 12 exists, then a mirror destination service-ID 12 cannot be created. If an IES service-ID 13 exists, then a mirror destination service-ID 13 cannot be created.
```

Values

```
service-id: 1 — 2147483647
```
type \textit{encap-type} — The type describes the encapsulation supported by the mirror service.

Values

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap</td>
<td>This command creates a service access point (SAP) within a mirror destination service. It also associates a predefined SAP within another service ID to a mirror source. The SAP is defined with port and encapsulation parameters to uniquely identify the (mirror) SAP on the interface and within the box. The specified SAP must define a FastE, GigE access port with only a null encapsulation type. The SAP is owned by the mirror destination service ID. If the interface is administratively down, all SAPs on that interface are also operationally down. A SAP can only be defined on a port configured as an access port with the \texttt{mode} command at the interface level. Only one SAP can be created within a \texttt{mirror-dest} service ID. If the defined SAP has not been created on any service within the system, the SAP is created and the context of the CLI will change to the newly created SAP. In addition, the port cannot be a member of a multi-link bundle, LAG, APS group or IMA bundle. If the defined SAP exists in the context of the service ID of the \texttt{mirror-dest} service, the CLI context is changed to the predefined SAP. If the defined SAP exists in the context of another service ID, \texttt{mirror-dest} or any other type, an error is generated and the CLI context is not changed from the current context. Mirror destination SAPs can be created on Ethernet interfaces that have been defined as an access interface. If the interface is defined as network, the SAP creation returns an error and the current CLI context is not changed. When the \texttt{no} form of this command is used on a SAP created by a mirror destination service ID, the SAP with the specified port and encapsulation parameters is deleted.</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap sap-id [create] no sap</td>
<td>This command creates a service access point (SAP) within a mirror destination service. It also associates a predefined SAP within another service ID to a mirror source.</td>
</tr>
</tbody>
</table>

Context

<table>
<thead>
<tr>
<th>CLI Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config>mirror>mirror-dest</td>
<td>This command creates a service access point (SAP) within a mirror destination service. It also associates a predefined SAP within another service ID to a mirror source.</td>
</tr>
</tbody>
</table>

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No default SAP for the mirror destination service defined.</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Param</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap-id</td>
<td>Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 171 for command syntax.</td>
</tr>
</tbody>
</table>
Mirror Source Configuration Commands

mirror-source

Syntax

[no] mirror-source service-id

Context
debug

Description

This command configures mirror source parameters for a mirrored service.

The `mirror-source` command is used to enable mirroring of packets specified by the association of the `mirror-source` to sources of packets defined within the context of the `mirror-dest-service-id`. The mirror destination service must already exist within the system.

A mirrored packet cannot be mirrored to multiple destinations. If a mirrored packet is properly referenced by multiple mirror sources (for example, a SAP on one `mirror-source` and a port on another `mirror-source`), then the packet is mirrored to a single `mirror-dest-service-id` based on the following hierarchy:

1. Filter entry
2. Service access port (SAP)
3. Physical port

The hierarchy is structured so the most specific match criteria has precedence over a less specific match. For example, if a `mirror-source` defines a port and a SAP on that port, then the SAP mirror-source is accepted and the mirror-source for the port is ignored because of the hierarchical order of precedence.

The `mirror-source` configuration is not saved when a configuration is saved. A `mirror-source` manually configured within an ASCII configuration file will not be preserved if that file is overwritten by a `save` command. Define the `mirror-source` within a file associated with a `config exec` command to make a `mirror-source` persistent between system reboots.

By default, all `mirror-dest` service IDs have a `mirror-source` associated with them. The `mirror-source` is not technically created with this command. Instead the service ID provides a contextual node for storing the current mirroring sources for the associated `mirror-dest` service ID. The `mirror-source` is created for the mirror service when the operator enters the `debug>mirror-source svcId` for the first time. The `mirror-source` is also automatically removed when the `mirror-dest` service ID is deleted from the system.

The `no` form of the command deletes all related source commands within the context of the `mirror-source service-id`. The command does not remove the service ID from the system.

Default

No mirror source match criteria is defined for the mirror destination service.

Parameters

- `service-id` — The mirror destination service ID for which match criteria will be defined. The `service-id` must already exist within the system.

Values

- `service-id`: 1 — 2147483647
ip-filter

Syntax
```
ip-filter ip-filter-id entry entry-id [entry-id …]
no ip-filter ip-filter-id
no ip-filter ip-filter-id entry entry-id [entry-id …]
```

Context
```
debug>mirror-source
```

Description
This command enables mirroring of packets that match specific entries in an existing IP filter.

The `ip-filter` command directs packets which match the defined list of entry IDs to be mirrored to the mirror destination referenced by the `mirror-dest-service-id` of the `mirror-source`.

The IP filter must already exist in order for the command to execute. Filters are configured in the `config>filter` context. If the IP filter does not exist, an error will occur. If the filter exists but has not been associated with a SAP or IP interface, an error is not generated but mirroring will not be enabled (there are no packets to mirror). Once the IP filter is defined to a SAP or IP interface, mirroring is enabled.

If the IP filter is defined as ingress, only ingress packets are mirrored. Ingress mirrored packets are mirrored to the mirror destination prior to any ingress packet modifications.

If the IP filter is defined as egress, only egress packets are mirrored. Egress mirrored packets are mirrored to the mirror destination after all egress packet modifications.

An `entry-id` within an IP filter can only be mirrored to a single mirror destination. If the same `entry-id` is defined multiple times, an error occurs and only the first `mirror-source` definition is in effect.

By default, no packets matching any IP filters are mirrored. Mirroring of IP filter entries must be explicitly defined.

The `no ip-filter` command, without the `entry` keyword, removes mirroring on all `entry-id`’s within the `ip-filter-id`.

When the `no` command is executed with the `entry` keyword and one or more `entry-id`’s, mirroring of that list of `entry-id`’s is terminated within the `ip-filter-id`. If an `entry-id` is listed that does not exist, an error will occur and the command will not execute. If an `entry-id` is listed that is not currently being mirrored, no error will occur for that `entry-id` and the command will execute normally.

Default
IP filter mirroring is not defined.

Parameters
- `ip-filter-id` — The IP filter ID whose entries are mirrored. If the `ip-filter-id` does not exist, an error will occur and the command will not execute. Mirroring of packets will commence once the `ip-filter-id` is defined on a SAP or IP interface.

- `entry entry-id [entry-id …]` — The IP filter entries to use as match criteria for packet mirroring. The `entry` keyword begins a list of `entry-id`’s for mirroring. Multiple `entry-id` entries may be specified with a single command. Each `entry-id` must be separated by a space.

 If an `entry-id` does not exist within the IP filter, an error occurs and the command will not execute.

 If the filter’s `entry-id` is renumbered within the IP filter definition, the old `entry-id` is removed but the new `entry-id` must be manually added to the configuration to include the new (renumbered) entry’s criteria.
mac-filter

Syntax

mac-filter mac-filter-id entry entry-id [entry-id …]
no mac-filter mac-filter-id
no mac-filter mac-filter-id entry entry-id [entry-id …]

Context
debug>mirror-source

Description
This command enables mirroring of packets that match specific entries in an existing MAC filter.

The **mac-filter** command directs packets which match the defined list of entry IDs to be mirrored to the mirror destination referenced by the **mirror-dest-service-id** of the **mirror-source**.

The MAC filter must already exist in order for the command to execute. Filters are configured in the config>filter context. If the MAC filter does not exist, an error will occur. If the filter exists but has not been associated with a SAP or IP interface, an error is not be generated but mirroring will not be enabled (there are no packets to mirror). Once the filter is defined to a SAP or MAC interface, mirroring is enabled.

If the MAC filter is defined as ingress, only ingress packets are mirrored. Ingress mirrored packets are mirrored to the mirror destination prior to any ingress packet modifications.

The **no mac-filter** command, without the **entry** keyword, removes mirroring on all **entry-id**’s within the **mac-filter-id**.

When the **no** command is executed with the **entry** keyword and one or more **entry-id**’s, mirroring of that list of **entry-id**’s is terminated within the **mac-filter-id**. If an **entry-id** is listed that does not exist, an error will occur and the command will not execute. If an **entry-id** is listed that is not currently being mirrored, no error will occur for that **entry-id** and the command will execute normally.

Default
No MAC filter mirroring defined.

Parameters

mac-filter-id — The MAC filter ID whose entries are mirrored. If the **mac-filter-id** does not exist, an error will occur and the command will not execute. Mirroring of packets will commence once the **mac-filter-id** is defined on a SAP.

entry entry-id [entry-id …] — The MAC filter entries to use as match criteria for packet mirroring.

The **entry** keyword begins a list of **entry-id**’s for mirroring. Multiple **entry-id** entries may be specified with a single command. Each **entry-id** must be separated by a space. Up to 8 **entry-id** entries may be specified in a single command.

Each **entry-id** must exist within the **mac-filter-id**. If the **entry-id** is renumbered within the MAC filter definition, the old **entry-id** is removed from the list and the new **entry-id** will need to be manually added to the list if mirroring is still desired.

If no **entry-id** entries are specified in the command, mirroring will not occur for that MAC filter ID. The command will have no effect.
Configuration Commands

port

Syntax

```
port {port-id | lag lag-id} {{egress} [ingress]}
no port {port-id | lag lag-id} [egress] [ingress]
```

Context

```
debug>mirror-source
```

Description

This command enables mirroring of traffic ingressing or egressing a port (Ethernet port, or Link Aggregation Group (LAG)).

The `port` command associates a port or LAG to a mirror source. The port is identified by the `port-id`. The defined port may be Ethernet, access or access uplink. access. A port may be a single port or a Link Aggregation Group (LAG) ID. When a LAG ID is given as the `port-id`, mirroring is enabled on all ports making up the LAG. Either a LAG port member or the LAG port can be mirrored.

The port is only referenced in the mirror source for mirroring purposes. If the port is removed from the system, the mirroring association will be removed from the mirror source.

The same port may not be associated with multiple mirror source definitions with the `ingress` parameter defined. The same port may not be associated with multiple mirror source definitions with the `egress` parameter defined.

If a SAP is mirrored on an access port, the SAP mirroring will have precedence over the access port mirroring when a packet matches the SAP mirroring criteria. Filter and label mirroring destinations will also precedence over a port-mirroring destination.

If the port is not associated with a `mirror-source`, packets on that port will not be mirrored. Mirroring may still be defined for a SAP or filter entry, which will mirror based on a more specific criteria.

The `no port` command disables port mirroring for the specified port. Mirroring of packets on the port may continue due to more specific mirror criteria. If the `egress` or `ingress` parameter keywords are specified in the `no` command, only the ingress or egress mirroring condition will be removed.

Default

No ports are defined.

Parameters

- `port-id` — Specifies the port ID.

- `lag-id` — The LAG identifier, expressed as a decimal integer.

- `egress` — Specifies that packets egressing the port should be mirrored. Egress packets are mirrored to the mirror destination after egress packet modification.

- `ingress` — Specifies that packets ingressing the port should be mirrored. Ingress packets are mirrored to the mirror destination prior to ingress packet modification.

sap

Syntax

```
sap sap-id [ {ingress} ]
no sap sap-id [ingress]
```

Context

```
debug>mirror-source
```

Description

This command enables mirroring of traffic ingressing or egressing a service access port (SAP). A SAP that is defined within a mirror destination cannot be used in a mirror source. The mirror source
SAP referenced by the `sap-id` is owned by the service ID of the service in which it was created. The SAP is only referenced in the mirror source name for mirroring purposes. The mirror source association does not need to be removed before deleting the SAP from its service ID. If the SAP is deleted from its service ID, the mirror association is removed from the mirror source.

More than one SAP can be associated within a single mirror-source. Each SAP has its own ingress parameter keywords to define which packets are mirrored to the mirror destination.

The SAP must be valid and properly configured. If the associated SAP does not exist, an error occurs and the command will not execute.

The same SAP cannot be associated with multiple mirror source definitions for ingress packets. The same SAP cannot be associated with multiple mirror source definitions for egress packets.

If a particular SAP is not associated with a mirror source name, then that SAP will not have mirroring enabled for that mirror source.

The no form of the command disables mirroring for the specified SAP. All mirroring for that SAP on ingress and egress is terminated. Mirroring of packets on the SAP can continue if more specific mirror criteria is configured. If the egress or ingress parameter keywords are specified in the no command, only the ingress or egress mirroring condition is removed.

Default

No SAPs are defined by default.

Parameters

- `sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 171 for command syntax.

- `ingress` — Specifies that packets ingressing the SAP should be mirrored. Ingress packets are mirrored to the mirror destination prior to ingress packet modification.
Show Commands

debug

Syntax debug [application]
Context show
Description This command displays set debug points.
Parameters application — Display which debug points have been set.

Values: service, ip, ospf, ospf3, bgp, mtrace, rip, isis, mpls, rsvp, ldp, mirror, vrrp, system, filter, subscriber-mgmt, radius, lag, oam, frame-relay, local-dhcp-server, _mld, pim

Output

```
*A:alu1# show debug
debug
  mirror-source 101
    port 1/1/1 ingress
    no shutdown
  exit
  mirror-source 102
    port 1/1/3 egress
    no shutdown
  exit
exit
*A:alu1#
```

service-using

Syntax service-using [mirror]
Context show>service
Description Displays mirror services.
 If no optional parameters are specified, all services defined on the system are displayed.
Parameters mirror — Displays mirror services.

Output Show Service-Using Mirror — The following table describes service-using mirror output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the service type configured for the service ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the service.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-48# show service service-using mirror

```
Services [mirror]

<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td>Mirror</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>04/08/2007 13:49:57</td>
</tr>
<tr>
<td>318</td>
<td>Mirror</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>04/08/2007 13:49:57</td>
</tr>
<tr>
<td>320</td>
<td>Mirror</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>04/08/2007 13:49:57</td>
</tr>
<tr>
<td>1000</td>
<td>Mirror</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>04/08/2007 13:49:57</td>
</tr>
<tr>
<td>1216</td>
<td>Mirror</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>04/08/2007 13:49:57</td>
</tr>
<tr>
<td>1412412</td>
<td>Mirror</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>04/08/2007 13:49:57</td>
</tr>
</tbody>
</table>
```

Matching Services : 7

A:ALA-48#
mirror mirror-dest

Syntax mirror mirror-dest service-id

Context show

Description This command displays mirror configuration and operation information.

Parameters service-id — Specify the mirror service ID.

Output Mirroring Output — The following table describes the mirroring output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service ID associated with this mirror destination.</td>
</tr>
<tr>
<td>Type</td>
<td>Entries in this table have an implied storage type of “volatile”. The configured mirror source information is not persistent.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up — The mirror destination is administratively enabled.</td>
</tr>
<tr>
<td></td>
<td>Down — The mirror destination is administratively disabled.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up — The mirror destination is operationally enabled.</td>
</tr>
<tr>
<td></td>
<td>Down — The mirror destination is operationally disabled.</td>
</tr>
<tr>
<td>Destination SAP</td>
<td>The ID of the access port where the Service Access Point (SAP) associated with this mirror destination service is defined.</td>
</tr>
</tbody>
</table>

Sample Output

A:SR7# show mirror mirror-dest 1000
*A:alu1# show mirror mirror-dest 101

===
Mirror Service
===
Service Id : 101 Type : Ether
Admin State : Up Oper State : Up
Destination SAP : 1/1/6

Local Sources

Admin State : Up
- Port 1/1/1 Egress Ingress

*A:alu1#

*A:alu1# show mirror mirror-dest 102

===
Mirror Service
===
Service Id : 102 Type : Ether
Admin State : Up Oper State : Up
Destination SAP : lag-2

7210 SAS M, X OS OAM and Diagnostics Guide Page 49
Local Sources

Admin State : Up
No Mirror Sources configured

*A:alul#
In This Chapter

This chapter provides information about the Operations, Administration and Management (OAM) and Service Assurance Agent (SAA) commands available in the CLI for troubleshooting services.

Topics in this chapter include:

- OAM Overview on page 52
 → LSP Diagnostics on page 52
 → SDP Diagnostics on page 53
 → Service Diagnostics on page 54
 → VPLS MAC Diagnostics on page 55
 → VLL Diagnostics on page 59
- Ethernet Connectivity Fault Management (ETH-CFM) on page 64
- Service Assurance Agent Overview on page 78
- Service Assurance Agent Overview on page 78
 → SAA Application on page 78
OAM Overview

Delivery of services requires a number of operations occur properly and at different levels in the service delivery model. For example, operations such as the association of packets to a service, must be performed properly in the forwarding plane for the service to function properly. In order to verify that a service is operational, a set of in-band, packet-based Operation, Administration, and Maintenance (OAM) tools is required, with the ability to test each of the individual packet operations.

For in-band testing, the OAM packets closely resemble customer packets to effectively test the customer's forwarding path, but they are distinguishable from customer packets so they are kept within the service provider's network and not forwarded to the customer.

The suite of OAM diagnostics supplement the basic IP ping and traceroute operations with diagnostics specialized for the different levels in the service delivery model. There are diagnostics for services.

LSP Diagnostics

The 7210 SAS M LSP diagnostics are implementations of LSP ping and LSP traceroute based on RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures. LSP ping and LSP traceroute are modeled after the ICMP echo request/reply used by ping and traceroute to detect and localize faults in IP networks.

For a given FEC, LSP ping verifies whether the packet reaches the egress label edge router (LER), while in LSP traceroute mode, the packet is sent to the control plane of each transit label switched router (LSR) which performs various checks to see if it is actually a transit LSR for the path.
SDP Diagnostics

The 7210 SAS M OS SDP diagnostics are SDP ping and SDP MTU path discovery.

SDP Ping

SDP ping performs in-band uni-directional or round-trip connectivity tests on SDPs. The SDP ping OAM packets are sent in-band, in the tunnel encapsulation, so it will follow the same path as traffic within the service. The SDP ping response can be received out-of-band in the control plane, or in-band using the data plane for a round-trip test.

For a uni-directional test, SDP ping tests:

- Egress SDP ID encapsulation
- Ability to reach the far-end IP address of the SDP ID within the SDP encapsulation
- Path MTU to the far-end IP address over the SDP ID
- Forwarding class mapping between the near-end SDP ID encapsulation and the far-end tunnel termination

For a round-trip test, SDP ping uses a local egress SDP ID and an expected remote SDP ID. Since SDPs are uni-directional tunnels, the remote SDP ID must be specified and must exist as a configured SDP ID on the far-end 7210 SAS M.7750 SR OS MG SDP round trip testing is an extension of SDP connectivity testing with the additional ability to test:

- Remote SDP ID encapsulation
- Potential service round trip time
- Round trip path MTU
- Round trip forwarding class mapping

SDP MTU Path Discovery

In a large network, network devices can support a variety of packet sizes that are transmitted across its interfaces. This capability is referred to as the Maximum Transmission Unit (MTU) of network interfaces. It is important to understand the MTU of the entire path end-to-end when provisioning services, especially for virtual leased line (VLL) services where the service must support the ability to transmit the largest customer packet.

The Path MTU discovery tool provides a powerful tool that enables service provider to get the exact MTU supported by the network's physical links between the service ingress and service termination points (accurate to one byte).
Service Diagnostics

Alcatel-Lucent’s Service ping feature provides end-to-end connectivity testing for an individual service. Service ping operates at a higher level than the SDP diagnostics in that it verifies an individual service and not the collection of services carried within an SDP.

Service ping is initiated from a 7210 SAS M router to verify round-trip connectivity and delay to the far-end of the service. Alcatel-Lucent’s implementation functions for MPLS tunnels and tests the following from edge-to-edge:

- Tunnel connectivity
- VC label mapping verification
- Service existence
- Service provisioned parameter verification
- Round trip path verification
- Service dynamic configuration verification
VPLS MAC Diagnostics

While the LSP ping, SDP ping and service ping tools enable transport tunnel testing and verify whether the correct transport tunnel is used, they do not provide the means to test the learning and forwarding functions on a per-VPLS-service basis.

It is conceivable, that while tunnels are operational and correctly bound to a service, an incorrect Forwarding Information Base (FIB) table for a service could cause connectivity issues in the service and not be detected by the ping tools. Alcatel-Lucent has developed VPLS OAM functionality to specifically test all the critical functions on a per-service basis. These tools are based primarily on the IETF document draft-stokes-vkompella-ppvnp-hvpls-oam-xx.txt, Testing Hierarchical Virtual Private LAN Services.

The VPLS OAM tools are:

- **MAC Ping** — Provides an end-to-end test to identify the egress customer-facing port where a customer MAC was learned. MAC ping can also be used with a broadcast MAC address to identify all egress points of a service for the specified broadcast MAC.
- **MAC Trace** — Provides the ability to trace a specified MAC address hop-by-hop until the last node in the service domain. An SAA test with MAC trace is considered successful when there is a reply from a far-end node indicating that they have the destination MAC address on an egress SAP or the CPM.
- **CPE Ping** — Provides the ability to check network connectivity to the specified client device within the VPLS. CPE ping will return the MAC address of the client, as well as the SAP and PE at which it was learned.
- **MAC Populate** — Allows specified MAC addresses to be injected in the VPLS service domain. This triggers learning of the injected MAC address by all participating nodes in the service. This tool is generally followed by MAC ping or MAC trace to verify if correct learning occurred.
- **MAC Purge** — Allows MAC addresses to be flushed from all nodes in a service domain.

MAC Ping

For a MAC ping test, the destination MAC address (unicast or multicast) to be tested must be specified. A MAC ping packet can be sent through the control plane or the data plane. When sent by the control plane, the ping packet goes directly to the destination IP in a UDP/IP OAM packet. If it is sent by the data plane, the ping packet goes out with the data plane format.

In the control plane, a MAC ping is forwarded along the flooding domain if no MAC address bindings exist. If MAC address bindings exist, then the packet is forwarded along those paths (if they are active). Finally, a response is generated only when there is an egress SAP binding to that MAC address. A control plane request is responded to via a control reply only.
In the data plane, a MAC ping is sent with a VC label TTL of 255. This packet traverses each hop using forwarding plane information for next hop, VC label, etc. The VC label is swapped at each service-aware hop, and the VC TTL is decremented. If the VC TTL is decremented to 0, the packet is passed up to the management plane for processing. If the packet reaches an egress node, and would be forwarded out a customer facing port, it is identified by the OAM label below the VC label and passed to the management plane.

MAC pings are flooded when they are unknown at an intermediate node. They are responded to only by the egress nodes that have mappings for that MAC address.

MAC Trace

A MAC trace functions like an LSP trace with some variations. Operations in a MAC trace are triggered when the VC TTL is decremented to 0.

Like a MAC ping, a MAC trace can be sent either by the control plane or the data plane.

For MAC trace requests sent by the control plane, the destination IP address is determined from the control plane mapping for the destination MAC. If the destination MAC is known to be at a specific remote site, then the far-end IP address of that SDP is used. If the destination MAC is not known, then the packet is sent unicast, to all SDPs in the service with the appropriate squelching.

A control plane MAC traceroute request is sent via UDP/IP. The destination UDP port is the LSP ping port. The source UDP port is whatever the system gives (note that this source UDP port is really the demultiplexer that identifies the particular instance that sent the request, when correlating the reply). The source IP address is the system IP of the sender.

When a traceroute request is sent via the data plane, the data plane format is used. The reply can be via the data plane or the control plane.

A data plane MAC traceroute request includes the tunnel encapsulation, the VC label, and the OAM, followed by an Ethernet DLC, a UDP and IP header. If the mapping for the MAC address is known at the sender, then the data plane request is sent down the known SDP with the appropriate tunnel encapsulation and VC label. If it is not known, then it is sent down every SDP (with the appropriate tunnel encapsulation per SDP and appropriate egress VC label per SDP binding).

The tunnel encapsulation TTL is set to 255. The VC label TTL is initially set to the min-ttl (default is 1). The OAM label TTL is set to 2. The destination IP address is the all-routers multicast address. The source IP address is the system IP of the sender.

The destination UDP port is the LSP ping port. The source UDP port is whatever the system gives (note that this source UDP port is really the demultiplexer that identifies the particular instance that sent the request, when correlating the reply).
The Reply Mode is either 3 (i.e., reply via the control plane) or 4 (i.e., reply through the data plane), depending on the reply-control option. By default, the data plane request is sent with Reply Mode 4 (data plane reply).

The Ethernet DLC header source MAC address is set to either the system MAC address (if no source MAC is specified) or to the specified source MAC. The destination MAC address is set to the specified destination MAC. The EtherType is set to IP.

CPE Ping

The MAC ping OAM tool makes it possible to detect whether a particular MAC address has been learned in a VPLS.

The **cpe-ping** command extends this capability to detecting end-station IP addresses inside a VPLS. A CPE ping for a specific destination IP address within a VPLS will be translated to a MAC-ping towards a broadcast MAC address. Upon receiving such a MAC ping, each peer PE within the VPLS context will trigger an ARP request for the specific IP address. The PE receiving a response to this ARP request will report back to the requesting 7210 SAS M. It is encouraged to use the source IP address of 0.0.0.0 to prevent the provider’s IP address of being learned by the CE.
MAC Populate

MAC populate is used to send a message through the flooding domain to learn a MAC address as if a customer packet with that source MAC address had flooded the domain from that ingress point in the service. This allows the provider to craft a learning history and engineer packets in a particular way to test forwarding plane correctness.

The MAC populate request is sent with a VC TTL of 1, which means that it is received at the forwarding plane at the first hop and passed directly up to the management plane. The packet is then responded to by populating the MAC address in the forwarding plane, like a conventional learn although the MAC will be an OAM-type MAC in the FIB to distinguish it from customer MAC addresses.

This packet is then taken by the control plane and flooded out the flooding domain (squelching appropriately, the sender and other paths that would be squelched in a typical flood).

This controlled population of the FIB is very important to manage the expected results of an OAM test. The same functions are available by sending the OAM packet as a UDP/IP OAM packet. It is then forwarded to each hop and the management plane has to do the flooding.

Options for MAC populate are to force the MAC in the table to type OAM (in case it already existed as dynamic or static or an OAM induced learning with some other binding), to prevent new dynamic learning to over-write the existing OAM MAC entry, to allow customer packets with this MAC to either ingress or egress the network, while still using the OAM MAC entry.

Finally, an option to flood the MAC populate request causes each upstream node to learn the MAC, for example, populate the local FIB with an OAM MAC entry, and to flood the request along the data plane using the flooding domain.

An age can be provided to age a particular OAM MAC after a different interval than other MACs in a FIB.

MAC Purge

MAC purge is used to clear the FIBs of any learned information for a particular MAC address. This allows one to do a controlled OAM test without learning induced by customer packets. In addition to clearing the FIB of a particular MAC address, the purge can also indicate to the control plane not to allow further learning from customer packets. This allows the FIB to be clean, and be populated only via a MAC Populate.

MAC purge follows the same flooding mechanism as the MAC populate.

A UDP/IP version of this command is also available that does not follow the forwarding notion of the flooding domain, but the control plane notion of it.
VLL Diagnostics

VCCV Ping

VCCV ping is used to check connectivity of a VLL in-band. It checks that the destination (target) PE is the egress for the Layer 2 FEC. It provides a cross-check between the data plane and the control plane. It is in-band, meaning that the VCCV ping message is sent using the same encapsulation and along the same path as user packets in that VLL. This is equivalent to the LSP ping for a VLL service. VCCV ping reuses an LSP ping message format and can be used to test a VLL configured over an MPLS SDP.

VCCV-Ping Application

VCCV effectively creates an IP control channel within the pseudowire between PE1 and PE2. PE2 should be able to distinguish on the receive side VCCV control messages from user packets on that VLL. There are three possible methods of encapsulating a VCCV message in a VLL which translates into three types of control channels:

1. Use of a Router Alert Label immediately above the VC label. This method has the drawback that if ECMP is applied to the outer LSP label (for example, transport label), the VCCV message will not follow the same path as the user packets. This effectively means it will not troubleshoot the appropriate path. This method is supported by the 7210 SAS M.

2. Use of the OAM control word as illustrated in Figure 5.

```
+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| 0 0 0 1 | FmtID | Reserved | Channel Type |
| +---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
```

Figure 5: OAM Control Word Format

The first nibble is set to 0x1. The Format ID and the reserved fields are set to 0 and the channel type is the code point associated with the VCCV IP control channel as specified in the PWE3 IANA registry (RFC 4446). The channel type value of 0x21 indicates that the Associated Channel carries an IPv4 packet.

The use of the OAM control word assumes that the draft-martini control word is also used on the user packets. This means that if the control word is optional for a VLL and is not configured, the 7210 SAS M PE node will only advertise the router alert label as the CC capability in the Label Mapping message. This method is supported by the 7210 SAS M.
3. Set the TTL in the VC label to 1 to force PE2 control plane to process the VCCV message. This method is not guaranteed to work under all circumstances. For instance, the draft mentions some implementations of penultimate hop popping overwrite the TTL field. This method is not supported by the 7210 SAS M.

When sending the label mapping message for the VLL, PE1 and PE2 must indicate which of the above OAM packet encapsulation methods (for example, which control channel type) they support. This is accomplished by including an optional VCCV TLV in the pseudowire FEC Interface Parameter field. The format of the VCCV TLV is shown in Figure 6.

![Figure 6: VCCV TLV](image)

Note that the absence of the optional VCCV TLV in the Interface parameters field of the pseudowire FEC indicates the PE has no VCCV capability.

The Control Channel (CC) Type field is a bitmask used to indicate if the PE supports none, one, or many control channel types.

- 0x00 None of the following VCCV control channel types are supported
- 0x01 PWE3 OAM control word (see Figure 5)
- 0x02 MPLS Router Alert Label
- 0x04 MPLS inner label TTL = 1

If both PE nodes support more than one of the CC types, then a 7210 SAS M PE will make use of the one with the lowest type value. For instance, OAM control word will be used in preference to the MPLS router alert label.

The Connectivity Verification (CV) bitmask field is used to indicate the specific type of VCCV packets to be sent over the VCCV control channel. The valid values are:

- 0x00 None of the below VCCV packet type are supported
- 0x01 ICMP ping. Not applicable to a VLL over a MPLSSDP and as such is not supported by the 7210 SAS M.
- 0x02 LSP ping. This is used in VCCV-Ping application and applies to a VLL over an MPLS or a GRE SDP. This is supported by the 7210 SAS M.

A VCCV ping is an LSP echo request message as defined in RFC 4379. It contains an L2 FEC stack TLV which must include within the sub-TLV type 10 “FEC 128 Pseudowire”. It also
contains a field which indicates to the destination PE which reply mode to use. There are four reply modes defined in RFC 4379:

Reply mode, meaning:

1. Do not reply. This mode is supported by the 7210 SAS M.
2. Reply via an IPv4/IPv6 UDP packet. This mode is supported by the 7210 SAS M.
3. Reply with an IPv4/IPv6 UDP packet with a router alert. This mode sets the router alert bit in the IP header and is not be confused with the CC type which makes use of the router alert label. This mode is not supported by the 7210 SAS M.
4. Reply via application level control channel. This mode sends the reply message inband over the pseudowire from PE2 to PE1. PE2 will encapsulate the Echo Reply message using the CC type negotiated with PE1. This mode is supported by the 7210 SAS M.

The reply is an LSP echo reply message as defined in RFC 4379. The message is sent as per the reply mode requested by PE1. The return codes supported are the same as those supported in the 7210 SAS M LSP ping capability.

The VCCV ping feature is in addition to the service ping OAM feature which can be used to test a service between 7210 SAS M nodes. The VCCV ping feature can test connectivity of a VLL with any third party node which is compliant to RFC 5085.

![Figure 7: VCCV-Ping Application](image-url)
VCCV-Ping in a Multi-Segment Pseudowire

Pseudowire switching is a method for scaling a large network of VLL or VPLS services by removing the need for a full mesh of T-LDP sessions between the PE nodes as the number of these nodes grow over time. Pseudowire switching is also used whenever there is a need to deploy a VLL service across two separate routing domains.

In the network, a Termination PE (T-PE) is where the pseudowire originates and terminates. The 7210 SAS M supports only T-PE. It does not support S-PE functionality.

VCCV ping is extended to be able to perform the following OAM functions:

1. VCCV ping to a destination PE. A VLL FEC Ping is a message sent by T-PE1 to test the FEC at T-PE2. The operation at T-PE1 and T-PE2 is the same as in the case of a single-segment pseudowire. The pseudowire switching node, S-PE1, pops the outer label, swaps the inner (VC) label, decrements the TTL of the VC label, and pushes a new outer label. The 7210 SAS M PE1 node does not process the VCCV OAM Control Word unless the VC label TTL expires. In that case, the message is sent to the CPM for further validation and processing. This is the method described in draft-hart-pwe3-segmented-pw-vccv.
Control Plane Processing of a VCCV Echo Message in a MS-Pseudowire

Sending a VCCV Echo Request

When in the ping mode of operation, the sender of the echo request message requires the FEC of the last segment to the target S-PE/T-PE node. This information can either be configured manually or be obtained by inspecting the corresponding sub-TLV's of the pseudowire switching point TLV. However, the pseudowire switching point TLV is optional and there is no guarantee that all S-PE nodes will populate it with their system address and the pseudowire-id of the last pseudowire segment traversed by the label mapping message. Thus the 7210 SAS M implementation will always make use of the user configuration for these parameters.

Receiving an VCCV Echo Request

Upon receiving a VCCV echo request the control plane on S-PEs (or the target node of each segment of the MS pseudowire) validates the request and responds to the request with an echo reply consisting of the FEC 128 of the next downstream segment and a return code of 8 (label switched at stack-depth) indicating that it is an S-PE and not the egress router for the MS-pseudowire.

If the node is the T-PE or the egress node of the MS-pseudowire, it responds to the echo request with an echo reply with a return code of 3 (egress router) and no FEC 128 is included.

Receiving an VCCV Echo Reply

The operation to be taken by the node that receives the echo reply in response to its echo request depends on its current mode of operation such as ping or trace.

In ping mode, the node may choose to ignore the target FEC 128 in the echo reply and report only the return code to the operator.
The IEEE and the ITU-T have cooperated to define the protocols, procedures and managed objects to support service based fault management. Both IEEE 802.1ag standard and the ITU-T Y.1731 recommendation support a common set of tools that allow operators to deploy the necessary administrative constructs, management entities and functionality, Ethernet Connectivity Fault Management (ETH-CFM). The ITU-T has also implemented a set of advanced ETH-CFM and performance management functions and features that build on the proactive and on demand troubleshooting tools.

CFM uses Ethernet frames and is distinguishable by ether-type 0x8902. In certain cases the different functions will use a reserved multicast address that could also be used to identify specific functions at the MAC layer. However, the multicast MAC addressing is not used for every function or in every case. The Operational Code (OpCode) in the common CFM header is used to identify the type of function carried in the CFM packet. CFM frames are only processed by IEEE MAC bridges. With CFM, interoperability can be achieved between different vendor equipment in the service provider network up to and including customer premises bridges. The following table lists CFM-related acronyms used in this section.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Callout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1DM</td>
<td>One way Delay Measurement (Y.1731)</td>
</tr>
<tr>
<td>AIS</td>
<td>Alarm Indication Signal</td>
</tr>
<tr>
<td>CCM</td>
<td>Continuity check message</td>
</tr>
<tr>
<td>CFM</td>
<td>Connectivity fault management</td>
</tr>
<tr>
<td>DMM</td>
<td>Delay Measurement Message (Y.1731)</td>
</tr>
<tr>
<td>DMR</td>
<td>Delay Measurement Reply (Y.1731)</td>
</tr>
<tr>
<td>LBM</td>
<td>Loopback message</td>
</tr>
<tr>
<td>LBR</td>
<td>Loopback reply</td>
</tr>
<tr>
<td>LTM</td>
<td>Linktrace message</td>
</tr>
<tr>
<td>LTR</td>
<td>Linktrace reply</td>
</tr>
<tr>
<td>ME</td>
<td>Maintenance entity</td>
</tr>
<tr>
<td>MA</td>
<td>Maintenance association</td>
</tr>
<tr>
<td>MA-ID</td>
<td>Maintenance association identifier</td>
</tr>
<tr>
<td>MEP</td>
<td>Maintenance association end point</td>
</tr>
<tr>
<td>Acronym</td>
<td>Callout (Continued)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>MEP-ID</td>
<td>Maintenance association end point identifier</td>
</tr>
<tr>
<td>MHF</td>
<td>MIP half function</td>
</tr>
<tr>
<td>OpCode</td>
<td>Operational Code</td>
</tr>
<tr>
<td>RDI</td>
<td>Remote Defect Indication</td>
</tr>
<tr>
<td>TST</td>
<td>Ethernet Test (Y.1731)</td>
</tr>
</tbody>
</table>
ETH-CFM Building Blocks

The IEEE and the ITU-T use their own nomenclature when describing administrative contexts and functions. This introduces a level of complexity to configuration, discussion and different vendors naming conventions. The SR and ESS OS CLI has chosen to standardize on the IEEE 802.1ag naming where overlap exists. ITU-T naming is used, thus, no equivalent is available in the IEEE standard. In the following definitions, both the IEEE name and ITU-T names are provided for completeness, using the format IEEE Name/ITU-T Name.

Maintenance Domain (MD)/Maintenance Entity (ME) is the administrative container that defines the scope, reach and boundary for faults. It is typically the area of ownership and management responsibility. The IEEE allows for various formats to name the domain, allowing up to 45 characters, depending on the format selected. ITU-T supports only a format of “none” and does not accept the IEEE naming conventions.

0 — Undefined and reserved by the IEEE.
1 — No domain name. It is the only format supported by Y.1731 as the ITU-T specification does not use the domain name. This is supported in the IEEE 802.1ag standard but not in currently implemented for 802.1ag defined contexts.
2,3,4 — Provides the ability to input various different textual formats, up to 45 characters. The string format (2) is the default and therefore the keyword is not shown when looking at the configuration.

Maintenance Association (MA)/Maintenance Entity Group (MEG) is the construct where the different management entities will be contained. Each MA is uniquely identified by its MA-ID. The MA-ID is comprised of the by the MD level and MA name and associated format. This is another administrative context where the linkage is made between the domain and the service using the bridging-identifier configuration option. The IEEE and the ITU-T use their own specific formats. The MA short name formats (0-255) have been divided between the IEEE (0-31, 64-255) and the ITU-T (32-63), with five currently defined (1-4, 32). Even though the different standards bodies do not have specific support for the others formats a Y.1731 context can be configured using the IEEE format options.

1 (Primary VID) — Values 0 — 4094

2 (String) — Raw ASCII, excluding 0-31 decimal/0-1F hex (which are control characters) form the ASCII table

3 (2-octet integer) — 0 — 65535

4 (VPN ID) — Hex value as described in RFC 2685, Virtual Private Networks Identifier

32 (icc-format) — Exactly 13 characters from the ITU-T recommendation T.50.
Note: When a VID is used as the short MA name, 802.1ag will not support VLAN translation because the MA-ID must match all the MEPs. The default format for a short MA name is an integer. Integer value 0 means the MA is not attached to a VID. This is useful for VPLS services on 7210 platforms because the VID is locally significant.

Maintenance Domain Level (MD Level)/Maintenance Entity Group Level (MEG Level) is the numerical value (0-7) representing the width of the domain. The wider the domain, higher the numerical value, the farther the ETH-CFM packets can travel. It is important to understand that the level establishes the processing boundary for the packets. Strict rules control the flow of ETH-CFM packets and are used to ensure proper handling, forwarding, processing and dropping of these packets. To keep it simple ETH-CFM packets with higher numerical level values will flow through MEPs on MIPs on SAPs configured with lower level values. This allows the operator to implement different areas of responsibility and nest domains within each other. Maintenance association (MA) includes a set of MEPs, each configured with the same MA-ID and MD level used to verify the integrity of a single service instance.

Maintenance Endpoint (MEP)/MEG Endpoint (MEP) are the workhorses of ETH-CFM. A MEP is the unique identification within the association (0-8191). Each MEP is uniquely identified by the MA-ID, MEPID tuple. This management entity is responsible for initiating, processing and terminating ETH-CFM functions, following the nesting rules. MEPs form the boundaries which prevent the ETH-CFM packets from flowing beyond the specific scope of responsibility. A MEP has direction, **up** or **down**. Each indicates the directions packets will be generated; UP toward the switch fabric, **down** toward the SAP away from the fabric. Each MEP has an active and passive side. Packets that enter the active point of the MEP will be compared to the existing level and processed accordingly. Packets that enter the passive side of the MEP are passed transparently through the MEP. Each MEP contained within the same maintenance association and with the same level (MA-ID) represents points within a single service. MEP creation on a SAP is allowed only for Ethernet ports with NULL, q-tags, q-in-q encapsulations. MEPs may also be created on SDP bindings.

Maintenance Intermediate Point (MIP)/MEG Intermediate Point (MIP) are management entities between the terminating MEPs along the service path. These provide insight into the service path connecting the MEPs. MIPs only respond to Loopback Messages (LBM) and Linktrace Messages (LTM). All other CFM functions are transparent to these entities. Only one MIP is allowed per SAP or SDP. The creation of the MIPs can be done when the lower level domain is created (explicit) or manually (default). This is controlled by the use of the mhf-creation mode within the association under the bridge-identifier. MIP creation is supported on a SAP and SDP, not including Mesh SDP bindings. By default, no MIPs are created.

There are two locations in the configuration where ETH-CFM is defined. The domains, associations (including linkage to the service id), MIP creation method, common ETH-CFM functions and remote MEPs are defined under the top level `eth-cfm` command. It is important to note, when Y.1731 functions are required the context under which the MEPs are configured must follow the Y.1731 specific formats (domain format of none, MA format icc-format). Once these parameters have been entered, the MEP and possibly the MIP can be defined within the service under the SAP or SDP.
This is a general table that indicates the ETH-CFM support for the different services and endpoints. It is not meant to indicate the services that are supported or the requirements for those services on the individual platforms.

Table 3: ETH-CFM Support Matrix

Note1: Ethernet-Tunnels and Ethernet-Rings are not configurable under all service types. Any service restrictions for MEP direction or MIP support will override the generic capability of the ethernet-Tunnel or Ethernet-Ring MPs. Please check the applicable user guide for applicability.

MA, MEP, MIP and MD Levels

Maintenance Domain (MD) levels are used to define CFM maintenance domains. Maintenance association End Points (MEPs) and Maintenance association Intermediate Points (MIPs) only communicate within the same level. It is carried in the CFM PDU to inform management entities where maintenance association (MA) the CFM PDU belongs. There are 8 levels defined. 0 is the lowest level, 7 is the highest level. The levels are nested, not overlapping. Overlapping is not allowed.

In IEEE 802.1ag, the MD is the part of the network where services are monitored (the administrative boundaries).

The first step to configure a maintenance domain:

CLI Syntax:

```
config>eth-cfm
  domain md-index [format {dns|mac|string}] name md-name level
  domain md-index
  association ma-index [format {integer|string|vid|vpn-id}]
  name ma-name
  association ma-index
```

CFM levels include:

- MEP is an actively managed functional component, which implements CFM functionalities. Together, MEPs form the maintenance association.
- MIP is the intermediate point between MEPs.
- MEP and MIP perform different CFM functionalities.

Maintenance association (MA) includes a set of MEPs, each configured with the same MA-ID and MD level, verify the integrity of a single service instance.

The follow depicts a high-level view of MEPs and MIPs in a CFM-enabled network. Two MAs are displayed.
Figure 8: MEP and MIP
Figure 9 shows the detailed IEEE representation of MEPs, MIPs, levels and associations, using the standards defined icons.

Figure 9: MEP, MIP and MD Levels
Loopback

A loopback message is generated by an MEP to its peer MEP (Figure 10). The functions are similar to an IP ping to verify Ethernet connectivity between the nodes.

Figure 10: CFM Loopback

The following loopback-related functions are supported:

- Loopback message functionality on an MEP or MIP can be enabled or disabled.
- MEP — Supports generating loopback messages and responding to loopback messages with loopback reply messages.
- Displays the loopback test results on the originating MEP. There is a limit of ten outstanding tests per node.
Linktrace

A linktrace message is originated by an MEP and targeted to a peer MEP in the same MA and within the same MD level (Figure 11). Its function is similar to IP traceroute. Traces a specific MAC address through the service. The peer MEP responds with a linktrace reply message after successful inspection of the linktrace message. The MIPs along the path also process the linktrace message and respond with linktrace replies to the originating MEP if the received linktrace message has a TTL greater than 1 and forward the linktrace message if a look up of the target MAC address in the Layer 2 FIB is successful. The originating MEP shall expect to receive multiple linktrace replies and from processing the linktrace replies, it can put together the route to the target bridge.

A traced MAC address is carried in the payload of the linktrace message. Each MIP and MEP receiving the linktrace message checks whether it has learned the target MAC address. In order to use linktrace the target MAC address must have been learned by the nodes in the network. If so, a linktrace message is sent back to the originating MEP. Also, a MIP forwards the linktrace message out of the port where the target MAC address was learned.

The linktrace message itself has a multicast destination address. On a broadcast LAN, it can be received by multiple nodes connected to that LAN. But, at most, one node will send a reply.

![Figure 11: CFM Linktrace](image-url)
The following linktrace related functions are supported:

- Enable or disables linktrace functions on an MEP.
- MEP — Supports generating linktrace messages and responding with linktrace reply messages.
- MIP — Supports responding to linktrace messages with linktrace reply messages when encoded TTL is greater than 1, and forward the linktrace messages accordingly if a lookup of the target MAC address in the Layer 2 FIB is successful.
- Displays linktrace test results on the originating MEP. There is a limit of ten outstanding tests per node. Storage is provided for up to ten MEPs and for the last ten responses. If more than ten responses are received older entries will be overwritten.
Continuity Check (CC)

A Continuity Check Message (CCM) is a multicast frame that is generated by a MEP and multicast to all other MEPs in the same MA. The CCM does not require a reply message. To identify faults, the receiving MEP maintains an internal list of remote MEPs it should be receiving CCM messages from.

This list is based off of the remote-mepid configuration on the association that the MEP is created on. When the local MEP does not receive a CCM from one of the configured remote MEPs within a pre-configured period, the local MEP raises an alarm.

![Figure 12: CFM Continuity Check](image1)

![Figure 13: CFM CC Failure Scenario](image2)
The following functions are supported:

- Enable and disable CC for an MEP
- Configure and delete the MEP entries in the CC MEP monitoring database manually. It is only required to provision remote MEPs. Local MEPs shall be automatically put into the database when they are created.
- CCM transmit interval: 10ms, 100ms, 1s, 10s 60s, 600s. Default: 10s. Sub-second or fast CC requires a ESS-7/ESS-12 and SR-7/SR-12 with a minimum SF/CPM-3, with only a limited number supported on SF/CPM-1 & SF/CPM-2. When configuring MEPs with sub-second CCM intervals bandwidth consumption must be taken into consideration. Each CCM PDU is 100 bytes (800 bits). Taken individually this is a small value. However, the bandwidth consumption increases rapidly as multiple MEPs are configured with 10ms timers, 100 packets per second. Sub-second enabled MEPs are supported on the following:
 - Down MEPs configured on Ethernet SAPs.
 - Lowest MD-level, when multiple MEPs exist on same Ethernet SAP.
 - Individual Ethernet tunnel paths requiring EAPs but not on the Ethernet tunnel itself. This requires a the MEPs to be part of the Y.1731 context because of the EAPS.
- CCM will declare a fault, when:
 - The CCM stops hearing from one of the remote MEPs for 3.5 times CC interval
 - Hears from a MEP with a LOWER MD level
 - Hears from a MEP that is not in our MA
 - Hears from a MEP that is in the same MA but not in the configured MEP list
 - Hears from a MEP in the same MA with the same MEP id as the receiving MEP
 - The CC interval of the remote MEP does not match the local configured CC interval
 - The remote MEP is declaring a fault
- An alarm is raised and a trap is sent if the defect is greater than or equal to the configured low-priority-defect value.
- Remote Defect Indication (RDI) is supported but by default is not recognized as a defect condition because the low-priority-defect setting default does not include RDI.
Alarm Indication Signal (ETH-AIS Y.1731)

Alarm Indication Signal (AIS) provides an Y.1731 capable MEP the ability to signal a fault condition in the reverse direction of the MEP, out the passive side. When a fault condition is detected the MEP will generate AIS packets at the configured client levels and at the specified AIS interval until the condition is cleared. Currently a MEP configured to generate AIS must do so at a level higher than its own. The MEP configured on the service receiving the AIS packets is required to have the active side facing the receipt of the AIS packet and must be at the same level the AIS, The absence of an AIS packet for 3.5 times the AIS interval set by the sending node will clear the condition on the receiving MEP.

It is important to note that AIS generation is not supported to an explicitly configured endpoint. An explicitly configured endpoint is an object that contains multiple individual endpoints, as in PW redundancy.

Test (ETH-TST Y.1731)

Ethernet test affords operators an Y.1731 capable MEP the ability to send an in service on demand function to test connectivity between two MEPs. The test is generated on the local MEP and the results are verified on the destination MEP. Any ETH-TST packet generated that exceeds the MTU will be silently dropped by the lower level processing of the node.

One-Way Delay Measurement (ETH-1DM Y.1731)

One-way delay measurement allows the operator the ability to check unidirectional delay between MEPs. An ETH-TST packet is time stamped by the generating MEP and sent to the remote node. The remote node time stamps the packet on receipt and generates the results. The results, available from the receiving MEP, will indicate the delay and jitter. Jitter, or delay variation, is the difference in delay between tests. This means the delay variation on the first test will not be valid. It is important to ensure that the clocks are synchronized on both nodes to ensure the results are accurate. NTP can be used to achieve a level of wall clock synchronization between the nodes. Note: accuracy relies on the nodes ability to timestamp the packet in hardware. Network elements that do not support this hardware time stamping, like the ESS-1 and SR-1, will display different results than hardware time stamp capable devices, like the SR-7/SR-12 and ESS-7/ESS-12.
Two-Way Delay Measurement (ETH-DMM Y.1731)

Two-way delay measurement is similar to one way delay measurement except it measures the round trip delay from the generating MEP. In this case wall clock synchronization issues will not influence the test results because four timestamps are used. This allows the remote nodes time to be removed from the calculation and as a result clock variances are not included in the results. The same consideration for first test and hardware based time stamping stated for one way delay measurement are applicable to two-way delay measurement.
Service Assurance Agent Overview

In the last few years, service delivery to customers has drastically changed. Services such as VPLS are offered. The introduction of Broadband Service Termination Architecture (BSTA) applications such as Voice over IP (VoIP), TV delivery, video and high speed Internet services force carriers to produce services where the health and quality of Service Level Agreement (SLA) commitments are verifiable to the customer and internally within the carrier.

SAA is a feature that monitors network operations using statistics such as jitter, latency, response time, and packet loss. The information can be used to troubleshoot network problems, problem prevention, and network topology planning.

The results are saved in SNMP tables are queried by either the CLI or a management system. Threshold monitors allow for both rising and falling threshold events to alert the provider if SLA performance statistics deviate from the required parameters.

SAA Application

SAA allows two-way timing for several applications. This provides the carrier and their customers with data to verify that the SLA agreements are being properly enforced.

Two-way time measures requests from this node to the specified DNS server. This is done by performing an address request followed by an immediate release of the acquired address once the time measurement has been performed.

Traceroute Implementation

The 7210 SAS M inserts the timestamp in software (by control CPU).

When interpreting these timestamps care must be taken that some nodes are not capable of providing timestamps, as such timestamps must be associated with the same IP-address that is being returned to the originator to indicate what hop is being measured.
NTP

Because NTP precision can vary (+/- 1.5ms between nodes even under best case conditions), SAA one-way latency measurements might display negative values, especially when testing network segments with very low latencies. The one-way time measurement relies on the accuracy of NTP between the sending and responding nodes.
Configuring SAA Test Parameters

The following example displays an SAA configuration:

*A:Dut-A>config>saa# info

--
...
 test "Dut-A:1413:1501" owner "TiMOS"
 description "Dut-A:1413:1501"
 type
 vccv-ping 1413:1501 fc "nc" timeout 10 size 200 count 2
 exit
 loss-event rising-threshold 2
 latency-event rising-threshold 100
 no jitter-event
 no shutdown
 exit
...
--
*A:Dut-A#
Diagnostics Command Reference

- OAM Commands on page 81
- SAA Commands on page 83

OAM Commands

Base Operational Commands

GLOBAL

- ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern] [source ip-address | dns-name] [interval seconds] [next-hop ip-address] [interface interface-name] [bypass-routing] [count requests] [do-not-fragment] [router router-instance] [timeout timeout]

- traceroute [ip-address | dns-name] [ttl ttl] [wait milli-seconds] [no-dns] [source src-ip-address] [tos type-of-service] [router router-instance]

- oam
 - dns target-addr dns-name name-server ip-address [source ip-address] [count send-count] [timeout timeout] [interval interval] [record-type]
 - saa test-name [owner test-owner] {start | stop} [no-accounting]

SDP Diagnostics

GLOBAL

- oam
 - sdp-mtu orig-sdp-id size-inc start-octets end-octets [step step-size] [timeout seconds] [interval seconds]
 - sdp-ping orig-sdp-id [resp-sdp resp-sdp-id] [fc fc-name] [timeout seconds] [interval seconds] [size octets] [count send-count]
Common Service Diagnostics

GLOBAL
— oam
 — svc-ping {ip-addr | dns-name} service service-id [local-sdp] [remote-sdp]
 — dns target-addr dns-name name-server ip-address [source ip-address] [count send-count]
 [timeout timeout] [interval interval]

VLL Diagnostics

GLOBAL
— oam
 — vccv-ping sd-id:vc-id [src-ip-address ip-addr dst-ip-address ip-addr pw-id pw-id]
 [reply-mode {ip-routed | control-channel}] [fc fc-name] [size octets] [count send-count]
 [timeout timeout] [interval interval] [ttl vc-label-ttl]

VPLS MAC Diagnostics

GLOBAL
— oam
 — cpe-ping service service-id destination dst-ieee-address source ip-address [source-mac ieee-address]
 [ttl vc-label-ttl] [count send-count] [send-control] [return-control] [interval interval]
 — mac-ping service service-id destination dst-ieee-address [source src-ieee-address] [fc fc-name]
 [size octets] [ttl vc-label-ttl] [count send-count] [send-control] [return-control]
 [interval interval] [timeout timeout]
 — mac-populate service-id mac ieee-address [flood] [age seconds] [force] [target-sap sap-id]
 [send-control]
 — mac-purge service-id target ieee-address [flood] [send-control] [register]
 — mac-trace service-id destination ieee-address [source ieee-address] [fc fc-name]
 [size octets] [min-ttl vc-label-ttl] [max-ttl vc-label-ttl] [probe-count send-count]
 [send-control] [return-control] [interval interval] [timeout timeout]

Ethernet in the First Mile (EFM) Commands

GLOBAL
— oam
 — efm port-id local-loopback {start | stop}
 — efm port-id remote-loopback {start | stop}

ETH-CFM OAM Commands

oam
 — eth-cfm eth-test mac-address mep mep-id domain md-index association ma-index [priority priority]
 [data-length data-length]
 — eth-cfm linktrace mac-address mep mep-id domain md-index association ma-index [ttl ttl-value]
 — eth-cfm loopback mac-address mep mep-id domain md-index association ma-index [send-count send-count]
 [size data-size] [priority priority]
 — eth-cfm one-way-delay-test mac-address mep mep-id domain md-index association ma-index [priority priority]
 — eth-cfm two-way-delay-test mac-address mep mep-id domain md-index association ma-index [priority priority]
SAA Commands

```
config
  — saa
    — [no] test test-name [owner test-owner]
    — accounting-policy acct-policy-id
    — description description-string
    — no description
    — [no] jitter-event rising-threshold threshold [falling-threshold threshold] [direction]
    — [no] latency-event rising-threshold threshold [falling-threshold threshold] [direction]
    — [no] loss-event rising-threshold threshold [falling-threshold threshold] [direction]
    — [no] shutdown
    — [no] type
      — cpe-ping service service-id destination ip-address source ip-address
        [source-mac ieee-address] [fc fc-name] [tvl vc-label-ttl] [count send-count] [send-control] [return-control] [interval interval]
      — lisp-ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern pattern] [source ip-address | dns-name] [interval seconds] [next-hop ip-address] [interface interface-name] [bypass-routing] [count requests] [do-not-fragment] [router router-instance] [timeout timeout]
      — lisp-trace [ip-address | dns-name] [ttl time-to-live] [wait milli-seconds] [tos type-of-service] [source ip-address] [tos type-of-service] [router router-instance]
      — mac-ping service service-id destination ieeee-address [source src-ieee-address] [fc fc-name] [tvl vc-label-ttl] [count send-count] [send-control] [return-control] [interval interval]
      — mac-trace service service-id destination ieeee-address [source src-ieee-address] [fc fc-name] [size octets] [min-ttl min-label-ttl] [max-ttl max-label-ttl] [probe-count send-count] [send-control] [return-control] [interval interval] [timeout timeout]
      — sdp-ping orig-sdp-id [resp-sdp resp-sdp-id] [fc fc-name] [profile [in | out]] [size octets] [count send-count] [timeout seconds] [interval seconds]
      — vccv-ping sdp-id:vc-id [src-ip-address ip-addr dst-ip-address ip-addr] [pw-id pw-id][reply-mode [ip-routed | control-channel]] [fc fc-name]
```
[profile {in | out}]] [size octets] [count send-count][timeout timeout]
[interval interval][ttl vc-label-ttl]
Show Commands

show
 — eth-cfm
 — association [ma-index] [detail]
 — cfm-stack-table [port [port-id [vlan vlan-id]]] [sdp sd-p-id[:vc-id]] [level 0..7] [direction up | down]
 — domain [md-index] [association ma-index | all-associations] [detail]
 — mep mep-id domain md-index association ma-index [loopback] [linktrace]
 — mep mep-id domain md-index association ma-index [remote-mepid mep-id | all-remote-mepids]
 — mep mep-id domain md-index association ma-index eth-test-results [remote-peer mac-address]
 — mep mep-id domain md-index association ma-index one-way-delay-test [remote-peer mac-address]
 — mep mep-id domain md-index association ma-index two-way-delay-test [remote-peer mac-address]
 — mip
 — saa [test-name [owner test-owner]]

Clear Commands

clear
 — saa [test-name [owner test-owner]]
OAM and SAA Commands

Command Hierarchies

Operational Commands

shutdown

Syntax

[no] shutdown

Context

config>saa>test

Description

In order to modify an existing test it must first be shut down. When a test is created it will be in shut-

down mode until a no shutdown command is executed.

A shutdown can only be performed if a test is not executing at the time the command is entered.

Use the no form of the command to set the state of the test to operational.

dns

Syntax

dns target-addr dns-name name-server ip-address [source ip-address] [count send-
count] [timeout timeout] [interval interval]

Context

oam

Description

This command performs DNS name resolution. If ipv4-a-record is specified, dns-names are queried

for A-records only.

Parameters

count send-count — The number of messages to send, expressed as a decimal integer. The send-
count parameter is used to override the default number of message requests sent. Each message
request must either timeout or receive a reply before the next message request is sent. The mes-
sage interval value must be expired before the next message request is sent.

Default 1

Values 1 — 100

ip-address — The IP address of the primary DNS server.

ipv4-address - a.b.c.d

timeout timeout — The timeout parameter in seconds, expressed as a decimal integer. This value is
used to override the default timeout value and is the amount of time that the router will wait for
a message reply after sending the message request. Upon the expiration of message timeout, the
requesting router assumes that the message response will not be received. Any response received
after the request times out will be silently discarded.
Default 5
Values 1 — 120

`interval` — The `interval` parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the `interval` is set to 1 second, and the `timeout` value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default 1
Values 1 — 10

ping

Syntax

```
ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern pattern] [source ip-address | dns-name] [interval seconds] [next-hop ip-address] [interface interface-name] [bypass-routing] [count requests] [do-not-fragment] [router router-instance] [timeout timeout]
```

Context <GLOBAL>

Description This command verifies the reachability of a remote host.

Parameters

`ip-address` — The far-end IP address to which to send the `svc-ping` request message in dotted decimal notation.

Values `ipv4-address: a.b.c.d`

`dns-name` — The DNS name of the far-end device to which to send the `svc-ping` request message, expressed as a character string.

`rapid` — Packets will be generated as fast as possible instead of the default 1 per second.

`detail` — Displays detailed information.

`tll time-to-live` — The TTL value for the MPLS label, expressed as a decimal integer.

Values 1 — 128

`tos type-of-service` — Specifies the service type.

Values 0 — 255

`size bytes` — The request packet size in bytes, expressed as a decimal integer.

Values 0 — 16384

`pattern pattern` — The date portion in a ping packet will be filled with the pattern value specified. If not specified, position info will be filled instead.

Values 0 — 65535
source ip-address — Specifies the IP address to be used.

Values ipv4-address: a.b.c.d

router router-instance — Specifies the router name or service ID.

Values router-name: Base, management service-id: 1 — 2147483647

Default Base

bypass-routing — Specifies whether to send the ping request to a host on a directly attached network bypassing the routing table.

interface interface-name — Specifies the name of an IP interface. The name must already exist in the config>router>interface context.

next-hop ip-address — Only displays static routes with the specified next hop IP address.

Values ipv4-address: a.b.c.d (host bits must be 0)

count requests — Specifies the number of times to perform an OAM ping probe operation. Each OAM echo message request must either timeout or receive a reply before the next message request is sent.

Values 1 — 100000

Default 5

do-not-fragment — Sets the DF (Do Not Fragment) bit in the ICMP ping packet.

timeout seconds — Overrides the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A ‘request timeout’ message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

Default 5

Values 1 — 10

traceroute

Syntax traceroute [ip-address | dns-name] [ttl ttl] [wait milli-seconds] [no-dns] [source ip-address] [tos type-of-service] [router router-instance]

Context oam

Description The TCP/IP traceroute utility determines the route to a destination address. DNS lookups of the responding hosts is enabled by default.

*A:ALA-1# traceroute 192.168.xx.xx4
traceroute to 192.168.xx.xx4, 30 hops max, 40 byte packets
 1 192.168.xx.xx4 0.000 ms 0.000 ms 0.000 ms
*A:ALA-1#
Parameters

- **ip-address** — The far-end IP address to which to send the traceroute request message in dotted decimal notation.

 Values

 ipv4-address: a.b.c.d

- **dns-name** — The DNS name of the far-end device to which to send the traceroute request message, expressed as a character string.

- **ttl** — The maximum Time-To-Live (TTL) value to include in the traceroute request, expressed as a decimal integer.

 Values

 1 — 255

- **wait milliseconds** — The time in milliseconds to wait for a response to a probe, expressed as a decimal integer.

 Default

 5000

 Values

 1 — 60000

- **no-dns** — When the **no-dns** keyword is specified, DNS lookups of the responding hosts will not be performed, only the IP addresses will be printed.

 Default

 DNS lookups are performed

- **source ip-address** — The source IP address to use as the source of the probe packets in dotted decimal notation. If the IP address is not one of the device’s interfaces, an error is returned.

- **tos type-of-service** — The type-of-service (TOS) bits in the IP header of the probe packets, expressed as a decimal integer.

 Values

 0 — 255

- **router router-name** — Specify the alphanumeric character string up to 32 characters.

 Default

 Base

 Values
Service Diagnostics

sdp-mtu

Syntax

```
sdp-mtu orig-sdp-id size-inc start-octets end-octets [step step-size] [timeout seconds] [interval seconds]
```

Context oam

Description

Performs MTU Path tests on an SDP to determine the largest path-mtu supported on an SDP. The size-inc parameter can be used to easily determine the path-mtu of a given SDP-ID. The forwarding class is assumed to be Best-Effort Out-of-Profile. The message reply is returned with IP/GRE encapsulation from the far-end 7210 SAS M. OAM request messages sent within an IP/GRE SDP must have the “DF” IP header bit set to 1 to prevent message fragmentation.

To terminate an sdp-mtu in progress, use the CLI break sequence <Ctrl-C>.

Special Cases

SDP Path MTU Tests — SDP Path MTU tests can be performed using the sdp-mtu size-inc keyword to easily determine the path-mtu of a given SDP-ID. The forwarding class is assumed to be Best-Effort Out-of-Profile. The message reply is returned with IP/GRE encapsulation from the far-end 7210 SAS M.

With each OAM Echo Request sent using the size-inc parameter, a response line is displayed as message output. The path MTU test displays incrementing packet sizes, the number sent at each size until a reply is received and the response message.

As the request message is sent, its size value is displayed followed by a period for each request sent of that size. Up to three requests will be sent unless a valid response is received for one of the requests at that size. Once a response is received, the next size message is sent.

The response message indicates the result of the message request.

After the last reply has been received or response timeout, the maximum size message replied to indicates the largest size OAM Request message that received a valid reply.

Parameters

orig-sdp-id — The sd-p-id to be used by sdp-ping, expressed as a decimal integer. The far-end address of the specified sd-p-id is the expected responder-id within each reply received. The specified sd-p-id defines the encapsulation of the SDP tunnel encapsulation used to reach the far end. This can be IP/MPLS. If orig-sdp-id is invalid or administratively down or unavailable for some reason, the SDP echo request message is not sent and an appropriate error message is displayed (once the interval timer expires, sdp-ping will attempt to send the next request if required).

Values

1 — 17407

size-inc start-octets end-octets — Indicates an incremental path MTU test will be performed with by sending a series of message requests with increasing MTU sizes. The start-octets and end-octets parameters are described below.

start-octets — The beginning size in octets of the first message sent for an incremental MTU test, expressed as a decimal integer.

Values

40 — 9198

end-octets — The ending size in octets of the last message sent for an incremental MTU test,
expressed as a decimal integer. The specified value must be greater than `start-octets`.

Values

40 — 9198

step `step-size` — The number of octets to increment the message `size` request for each message sent for an incremental MTU test, expressed as a decimal integer. The next size message will not be sent until a reply is received or three messages have timed out at the current size.

If the incremented size exceeds the `end-octets` value, no more messages will be sent.

Default

32

Values

1 — 512

timeout seconds — The `timeout` parameter in seconds, expressed as a decimal integer. This value is used to override the default `timeout` value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A ‘request timeout’ message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

Default

5

Values

1 — 10

interval seconds — The `interval` parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the `interval` is set to 1 second, and the `timeout` value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default

1

Values

1 — 10

Output
Sample SDP MTU Path Test Sample Output

```
*A:Dut-A# oam sdp-mtu 1201 size-inc 512 3072 step 256

Size   Sent    Response
----------------------------
512     .        Success
768     .        Success
1024    .        Success
1280    .        Success
1536    .        Success
1792    .        Success
2048    .        Success
2304    .        Success
2560    .        Success
2816    .        Success
3072    .        Success

Maximum Response Size: 3072
*A:Dut-A#
```
svc-ping

Syntax

svc-ping ip-address [service service-id] [local-sdp] [remote-sdp]

Context <GLOBAL>

Description

Tests a service ID for correct and consistent provisioning between two service end points.

The svc-ping command accepts a far-end IP address and a service-id for local and remote service testing. The following information can be determined from svc-ping:

1. Local and remote service existence
2. Local and remote service state
3. Local and remote service type correlation
4. Local and remote customer association
5. Local and remote service-to-SDP bindings and state
6. Local and remote ingress and egress service label association

Unlike sdp-ping, only a single message will be sent per command; no count nor interval parameter is supported and round trip time is not calculated. A timeout value of 10 seconds is used before failing the request. The forwarding class is assumed to be Best-Effort Out-of-Profile

If no request is sent or a reply is not received, all remote information will be shown as N/A.

To terminate a svc-ping in progress, use the CLI break sequence <Ctrl-C>.

Upon request timeout, message response, request termination, or request error the following local and remote information will be displayed. Local and remote information will be dependent upon service existence and reception of reply.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Result</td>
<td>The result of the svc-ping request message.</td>
<td>Sent - Request Timeout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sent - Request Terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sent - Request Received</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not Sent - Non-Existent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not Sent - SDP For Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td>Service-ID</td>
<td>The ID of the service being tested.</td>
<td>service-id</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Values (Continued)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Local Service Type</td>
<td>The type of service being tested. If service-id does not exist locally, N/A is displayed.</td>
<td>Epipe, TLS, IES, Mirror-Dest, N/A</td>
</tr>
<tr>
<td>Local Service Admin State</td>
<td>The local administrative state of service-id. If the service does not exist locally, the administrative state will be Non-Existent.</td>
<td>Admin-Up, Admin-Down, Non-Existent</td>
</tr>
<tr>
<td>Local Service Oper State</td>
<td>The local operational state of service-id. If the service does not exist locally, the state will be N/A.</td>
<td>Oper-Up, Oper-Down, N/A</td>
</tr>
<tr>
<td>Remote Service Type</td>
<td>The remote type of service being tested. If service-id does not exist remotely, N/A is displayed.</td>
<td>Epipe, Ipipe, TLS, IES, Mirror-Dest, N/A</td>
</tr>
<tr>
<td>Remote Service Admin State</td>
<td>The remote administrative state of service-id. If the service does not exist remotely, the administrative state is Non-Existent.</td>
<td>Up, Down, Non-Existent</td>
</tr>
<tr>
<td>Local Service MTU</td>
<td>The local service-mtu for service-id. If the service does not exist, N/A is displayed.</td>
<td>service-mtu, N/A</td>
</tr>
<tr>
<td>Remote Service MTU</td>
<td>The remote service-mtu for service-id. If the service does not exist remotely, N/A is displayed.</td>
<td>remote-service-mtu, N/A</td>
</tr>
<tr>
<td>Local Customer ID</td>
<td>The local customer-id associated with service-id. If the service does not exist locally, N/A is displayed.</td>
<td>customer-id, N/A</td>
</tr>
<tr>
<td>Remote Customer ID</td>
<td>The remote customer-id associated with service-id. If the service does not exist remotely, N/A is displayed.</td>
<td>customer-id, N/A</td>
</tr>
<tr>
<td>Local Service IP Address</td>
<td>The local system IP address used to terminate remotely configured SDP-ID (as the far-end address). If an IP interface has not been configured to be the system IP address, N/A is displayed.</td>
<td>system-ip-address, N/A</td>
</tr>
<tr>
<td>Local Service IP Interface Name</td>
<td>The name of the local system IP interface. If the local system IP interface has not been created, N/A is displayed.</td>
<td>system-interface-name, N/A</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Values (Continued)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Local Service IP Interface State</td>
<td>The state of the local system IP interface. If the local system IP interface has not been created, Non-Exist is displayed.</td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Existent</td>
</tr>
<tr>
<td>Expected Far-end Address</td>
<td>The expected IP address for the remote system IP interface. This must be the far-end address entered for the svc-ping command.</td>
<td>orig-sdp-far-end-addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dest-ip-addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Actual Far-end Address</td>
<td>The returned remote IP address. If a response is not received, the displayed value is N/A. If the far-end service IP interface is down or non-existent, a message reply is not expected. sd-ping should also fail.</td>
<td>resp-ip-addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Responders Expected Far-end Address</td>
<td>The expected source of the originator's sdp-id from the perspective of the remote router terminating the sdp-id. If the far-end cannot detect the expected source of the ingress sdp-id or the request is transmitted outside the sdp-id, N/A is displayed.</td>
<td>resp-rec-tunnel-far-end-address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Originating SDP-ID</td>
<td>The sdp-id used to reach the far-end IP address if sd-path is defined. The originating sdp-id must be bound to the service-id and terminate on the far-end IP address. If an appropriate originating sdp-id is not found, Non-Exist is displayed.</td>
<td>orig-sdp-id</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Existent</td>
</tr>
<tr>
<td>Originating SDP-ID Path Used</td>
<td>Whether the Originating router used the originating sdp-id to send the svc-ping request. If a valid originating sdp-id is found, operational and has a valid egress service label, the originating router should use the sdp-id as the requesting path if sd-path has been defined. If the originating router uses the originating sdp-id as the request path, Yes is displayed. If the originating router does not use the originating sdp-id as the request path, No is displayed. If the originating sdp-id is non-existent, N/A is displayed.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Originating SDP-ID Administrative State</td>
<td>The local administrative state of the originating sdp-id. If the sdp-id has been shutdown, Admin-Down is displayed. If the originating sdp-id is in the no shutdown state, Admin-Up is displayed. If an originating sdp-id is not found, N/A is displayed.</td>
<td>Admin-Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Originating SDP-ID Operating State</td>
<td>The local operational state of the originating sdp-id. If an originating sdp-id is not found, N/A is displayed.</td>
<td>Oper-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oper-Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Originating SDP-ID Binding Admin State</td>
<td>The local administrative state of the originating sdp-ids binding to service-id. If an sdp-id is not bound to the service, N/A is displayed.</td>
<td>Admin-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Originating SDP-ID Binding Oper State</td>
<td>The local operational state of the originating sdp-ids binding to service-id. If an sdp-id is not bound to the service, N/A is displayed.</td>
<td>Oper-Up</td>
</tr>
<tr>
<td>Responding SDP-ID</td>
<td>The sdp-id used by the far end to respond to the svc-ping request. If the request was received without the sdp-path parameter, the responding router will not use an sdp-id as the return path, but the appropriate responding sdp-id will be displayed. If a valid sdp-id return path is not found to the originating router that is bound to the service-id, Non-Existent is displayed.</td>
<td>resp-sdp-id</td>
</tr>
<tr>
<td>Responding SDP-ID Path Used</td>
<td>Whether the responding router used the responding sdp-id to respond to the svc-ping request. If the request was received via the originating sdp-id and a valid return sdp-id is found, operational and has a valid egress service label, the far-end router should use the sdp-id as the return sdp-id. If the far end uses the responding sdp-id as the return path, Yes is displayed. If the far end does not use the responding sdp-id as the return path, No is displayed. If the responding sdp-id is non-existent, N/A is displayed.</td>
<td>Yes</td>
</tr>
<tr>
<td>Responding SDP-ID Administrative State</td>
<td>The administrative state of the far-end sdp-id associated with the return path for service-id. When a return path is administratively down, Admin-Down is displayed. If the return sdp-id is administratively up, Admin-Up is displayed. If the responding sdp-id is non-existent, N/A is displayed.</td>
<td>Admin-Up</td>
</tr>
<tr>
<td>Responding SDP-ID Operational State</td>
<td>The operational state of the far-end sdp-id associated with the return path for service-id. When a return path is operationally down, Oper-Down is displayed. If the return sdp-id is operationally up, Oper-Up is displayed. If the responding sdp-id is non-existent, N/A is displayed.</td>
<td>Oper-Up</td>
</tr>
<tr>
<td>Responding SDP-ID Binding Admin State</td>
<td>The local administrative state of the responder’s sdp-id binding to service-id. If an sdp-id is not bound to the service, N/A is displayed.</td>
<td>Admin-Up</td>
</tr>
<tr>
<td>Responding SDP-ID Binding Oper State</td>
<td>The local operational state of the responder’s sdp-id binding to service-id. If an sdp-id is not bound to the service, N/A is displayed.</td>
<td>Oper-Up</td>
</tr>
<tr>
<td>Originating VC-ID</td>
<td>The originator’s VC-ID associated with the sdp-id to the far-end address that is bound to service-id. If the sdp-id signaling is off, originator-vc-id is 0. If the originator-vc-id does not exist, N/A is displayed.</td>
<td>originator-vc-id</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Values (Continued)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Responding VC-ID</td>
<td>The responder’s VC-ID associated with the sdp-id to originator-id that is bound to service-id. If the sdp-id signaling is off or the service binding to sdp-id does not exist, responder-vc-id is 0. If a response is not received, N/A is displayed.</td>
<td>responder-vc-id</td>
</tr>
<tr>
<td>Originating Egress Service Label</td>
<td>The originating service label (VC-Label) associated with the service-id for the originating sdp-id. If service-id does not exist locally, N/A is displayed. If service-id exists, but the egress service label has not been assigned, Non-Existent is displayed.</td>
<td>egress-vc-label</td>
</tr>
<tr>
<td>Originating Egress Service Label Source</td>
<td>The originating egress service label source. If the displayed egress service label is manually defined, Manual is displayed. If the egress service label is dynamically signaled, Signaled is displayed. If the service-id does not exist or the egress service label is non-existent, N/A is displayed.</td>
<td>Manual, Signaled</td>
</tr>
<tr>
<td>Originating Egress Service Label State</td>
<td>The originating egress service label state. If the originating router considers the displayed egress service label operational, Up is displayed. If the originating router considers the egress service label inoperative, Down is displayed. If the service-id does not exist or the egress service label is non-existent, N/A is displayed.</td>
<td>Up, Down, N/A</td>
</tr>
<tr>
<td>Responding Service Label</td>
<td>The actual responding service label in use by the far-end router for this service-id to the originating router. If service-id does not exist in the remote router, N/A is displayed. If service-id does exist remotely but the remote egress service label has not been assigned, Non-Existent is displayed.</td>
<td>rec-vc-label</td>
</tr>
<tr>
<td>Responding Egress Service Label Source</td>
<td>The responder’s egress service label source. If the responder’s egress service label is manually defined, Manual is displayed. If the responder’s egress service label is dynamically signaled, Signaled is displayed. If the service-id does not exist on the responder or the responder’s egress service label is non-existent, N/A is displayed.</td>
<td>Manual, Signaled</td>
</tr>
<tr>
<td>Responding Service Label State</td>
<td>The responding egress service label state. If the responding router considers its egress service label operational, Up is displayed. If the responding router considers its egress service label inoperative, Down is displayed. If the service-id does not exist or the responder’s egress service label is non-existent, N/A is displayed.</td>
<td>Up, Down, N/A</td>
</tr>
<tr>
<td>Expected Ingress Service Label</td>
<td>The locally assigned ingress service label. This is the service label that the far-end is expected to use for service-id when sending to the originating router. If service-id does not exist locally, N/A is displayed. If service-id exists but an ingress service label has not been assigned, Non-Existent is displayed.</td>
<td>ingress-vc-label</td>
</tr>
</tbody>
</table>

- **Values (Continued)**: N/A, Non-Existent
Field Description Values (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Ingress Label Source</td>
<td>The originator’s ingress service label source. If the originator’s ingress service label is manually defined, Manual is displayed. If the originator’s ingress service label is dynamically signaled, Signaled is displayed. If the service-id does not exist on the originator or the originators ingress service label has not been assigned, N/A is displayed.</td>
<td></td>
</tr>
<tr>
<td>Expected Ingress Service Label State</td>
<td>The originator’s ingress service label state. If the originating router considers its ingress service label operational, Up is displayed. If the originating router considers its ingress service label inoperative, Down is displayed. If the service-id does not exist locally, N/A is displayed.</td>
<td></td>
</tr>
<tr>
<td>Responders Ingress Service Label</td>
<td>The assigned ingress service label on the remote router. This is the service label that the far end is expecting to receive for service-id when sending to the originating router. If service-id does not exist in the remote router, N/A is displayed. If service-id exists, but an ingress service label has not been assigned in the remote router, Non-Existent is displayed.</td>
<td></td>
</tr>
<tr>
<td>Responders Ingress Label Source</td>
<td>The assigned ingress service label source on the remote router. If the ingress service label is manually defined on the remote router, Manual is displayed. If the ingress service label is dynamically signaled on the remote router, Signaled is displayed. If the service-id does not exist on the remote router, N/A is displayed.</td>
<td></td>
</tr>
<tr>
<td>Responders Ingress Service Label State</td>
<td>The assigned ingress service label state on the remote router. If the remote router considers its ingress service label operational, Up is displayed. If the remote router considers its ingress service label inoperative, Down is displayed. If the service-id does not exist on the remote router or the ingress service label has not been assigned on the remote router, N/A is displayed.</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

- **ip-address** — The far-end IP address to which to send the **svc-ping** request message in dotted decimal notation.

- **service** service-id — The service ID of the service being tested must be indicated with this parameter. The service ID need not exist on the local 7710 SR to receive a reply message.

Values

- 1 — 2147483647

- **local-sdp** — Specifies the **svc-ping** request message should be sent using the same service tunnel encapsulation labeling as service traffic. If **local-sdp** is specified, the command attempts to use an egress **sdp-id** bound to the service with the specified **far-end** IP address with the VC-Label for the service. The far-end address of the specified **sdp-id** is the expected **responder-id** within the reply received. The **sdp-id** defines the encapsulation of the SDP tunnel encapsulation used to reach the far end; this can be IP/GRE or MPLS. On originator egress, the service-ID must have an associated VC-Label to reach the far-end address of the **sdp-id** and the **sdp-id** must be operational for the message to be sent.
If `local-sdp` is not specified, the `svc-ping` request message is sent with GRE encapsulation with the OAM label.

The following table indicates whether a message is sent and how the message is encapsulated based on the state of the service ID.

<table>
<thead>
<tr>
<th>Local Service State</th>
<th>local-sdp Not Specified</th>
<th>local-sdp Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Message Sent</td>
<td>Message Encapsulation</td>
</tr>
<tr>
<td>Invalid Local Service</td>
<td>Yes</td>
<td>Generic IP/GRE OAM (PLP)</td>
</tr>
<tr>
<td>No Valid SDP-ID Bound</td>
<td>Yes</td>
<td>Generic IP/GRE OAM (PLP)</td>
</tr>
<tr>
<td>SDP-ID Valid But Down</td>
<td>Yes</td>
<td>Generic IP/GRE OAM (PLP)</td>
</tr>
<tr>
<td>SDP-ID Valid and Up, But No Service Label</td>
<td>Yes</td>
<td>Generic IP/GRE OAM (PLP)</td>
</tr>
</tbody>
</table>

`remote-sdp` — Specifies `svc-ping` reply message from the `far-end` should be sent using the same service tunnel encapsulation labeling as service traffic. If `remote-sdp` is specified, the `far-end` responder attempts to use an egress `sdp-id` bound to the service with the message originator as the destination IP address with the VC-Label for the service. The `sdp-id` defines the encapsulation of the SDP tunnel encapsulation used to reply to the originator; this can be MPLS. On responder egress, the service-ID must have an associated VC-Label to reach the originator address of the `sdp-id` and the `sdp-id` must be operational for the message to be sent. If `remote-sdp` is not specified, the `svc-ping` request message is sent with GRE encapsulation with the OAM label.

The following table indicates how the message response is encapsulated based on the state of the remote service ID.
Sample Output

```
A:ALU_G7x1>config# oam svc-ping 10.20.1.3 service 1
Service-ID: 1

Err Info         Local       Remote
-------------------------------
Type:            EPIPE       EPIPE
Admin State:     Up          Up
--- Oper State:   Down        Down
Service-MTU:     1514        1514
Customer ID:     1           1

IP Interface State: Up
Actual IP Addr:   10.20.1.1  10.20.1.3
Expected Peer IP: 10.20.1.3  10.20.1.1

SDP Path Used:   No          No
SDP-ID:          1           2
Admin State:     Up          Up
Operative State: Up          Up
Binding Admin State: Up
Binding Oper State: Up
Binding VC ID:    10          10
Binding Type:    Spoke       Spoke
Binding Vc-type: Ether       Ether
Binding Vlan-vc-tag:N/A     N/A

Egress Label:    131070      131068
Ingress Label:   131068      131070
Egress Label Type: Signaled Signaled
Ingress Label Type: Signaled Signaled

Request Result: Send - Reply Received: Responder Service ID Oper-Down

A:ALU_G7x1>config#
```
VPLS MAC Diagnostics

cpe-ping

Syntax

cpe-ping service service-id destination ip-address source ip-address [ttl vc-label-ttl] [return-control] [source-mac ieee-address] [fc fc-name] [interval interval] [count send-count] [send-control]

Context

config>saa>test>type

Description

This ping utility determines the IP connectivity to a CPE within a specified VPLS service.

Parameters

service service-id — The service ID of the service to diagnose or manage.

Values

service-id: 1 — 2147483647

destination ip-address — Specifies the IP address to be used as the destination for performing an OAM ping operations.

source ip-address — Specify an unused IP address in the same network that is associated with the VPLS.

ttl vc-label-ttl — The TTL value in the VC label for the OAM MAC request, expressed as a decimal integer.

Default 255

Values 1 — 255

return-control — Specifies the MAC OAM reply to a data plane MAC OAM request be sent using the control plane instead of the data plane.

Default MAC OAM reply sent using the data plane.

source-mac ieee-address — Specify the source MAC address that will be sent to the CPE. If not specified or set to 0, the MAC address configured for the CPM is used.

fc-name — The forwarding class of the MPLS echo request encapsulation.

Default be

Values be, l2, af, l1, h2, ef, h1, nc

interval interval — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second where the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.
count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1
Values 1 — 10

send-control — Specifies the MAC OAM request be sent using the control plane instead of the data plane.

Default MAC OAM request sent using the data plane.

mac-populate

Syntax mac-populate service-id mac ieee-address [flood] [age seconds] [force]

Context oam

Description This command populates the FIB with an OAM-type MAC entry indicating the node is the egress node for the MAC address and optionally floods the OAM MAC association throughout the service. The mac-populate command installs an OAM MAC into the service FIB indicating the device is the egress node for a particular MAC address. The MAC address can be bound to a particular SAP (the target-sap) or can be associated with the control plane in that any data destined to the MAC address is forwarded to the control plane (cpm). As a result, if the service on the node has neither a FIB nor an egress SAP, then it is not allowed to initiate a mac-populate.

The MAC address that is populated in the FIBs in the provider network is given a type OAM, so that it can be treated distinctly from regular dynamically learned or statically configured MACs. Note that OAM MAC addresses are operational MAC addresses and are not saved in the device configuration. An exec file can be used to define OAM MACs after system initialization.

The force option in mac-populate forces the MAC in the table to be type OAM in the case it already exists as a dynamic, static or an OAM induced learned MAC with some other type binding.

An OAM-type MAC cannot be overwritten by dynamic learning and allows customer packets with the MAC to either ingress or egress the network while still using the OAM MAC entry.

The flood option causes each upstream node to learn the MAC (that is, populate the local FIB with an OAM MAC entry) and to flood the request along the data plane using the flooding domain. The flooded mac-populate request can be sent via the data plane or the control plane. The send-control option specifies the request be sent using the control plane. If send-control is not specified, the request is sent using the data plane.

An age can be provided to age a particular OAM MAC using a specific interval. By default, OAM MAC addresses are not aged and can be removed with a mac-purge or with an FDB clear operation.

When split horizon group (SHG) is configured, the flooding domain depends on which SHG the packet originates from. The target-sap sap-id value dictates the originating SHG information.
Parameters

- **service service-id** — The Service ID of the service to diagnose or manage.
 - **Values**
 - 1 — 2147483647

- **destination ieee-address** — The MAC address to be populated.

- **flood** — Sends the OAM MAC populate to all upstream nodes.
 - **Default**
 - MAC populate only the local FIB.

- **age seconds** — The age for the OAM MAC, expressed as a decimal integer.
 - **Default**
 - The OAM MAC does not age.
 - **Values**
 - 1 — 65535

- **force** — Converts the MAC to an OAM MAC even if it currently another type of MAC.
 - **Default**
 - Do not overwrite type.

- **target-sap sap-id** — The local target SAP bound to a service on which to associate the OAM MAC.
 - By default, the OAM MAC is associated with the control place, that is, it is associated with the CPU on the router.
 - When the **target-sap sap-id** value is not specified the MAC is bound to the CPM. The originating SHG is 0 (zero). When the **target-sap sap-id** value is specified, the originating SHG is the SHG of the target-sap.
 - **Default**
 - Associate OAM MAC with the control plane (CPU).

mac-purge

Syntax

mac-purge service-id target ieee-address [flood] [send-control] [register]

Context

oam

Description

This command removes an OAM-type MAC entry from the FIB and optionally floods the OAM MAC removal throughout the service. A **mac-purge** can be sent via the forwarding path or via the control plane. When sending the MAC purge using the data plane, the TTL in the VC label is set to 1. When sending the MAC purge using the control plane, the packet is sent directly to the system IP address of the next hop.

A MAC address is purged only if it is marked as OAM. A mac-purge request is an HVPLS OAM packet, with the following fields. The Reply Flags is set to 0 (since no reply is expected), the Reply Mode and Reserved fields are set to 0. The Ethernet header has source set to the (system) MAC address, the destination set to the broadcast MAC address. There is a VPN TLV in the FEC Stack TLV to identify the service domain.

If the register option is provided, the R bit in the Address Delete flags is turned on.

The **flood** option causes each upstream node to be sent the OAM MAC delete request and to flood the request along the data plane using the flooding domain. The flooded **mac-purge** request can be sent via the data plane or the control plane. The **send-control** option specifies the request be sent using the control plane. If **send-control** is not specified, the request is sent using the data plane.

The **register** option reserves the MAC for OAM testing where it is no longer an active MAC in the FIB for forwarding, but it is retained in the FIB as a registered OAM MAC. Registering an OAM
MAC prevents relearns for the MAC based on customer packets. Relearning a registered MAC can only be done through a `mac-populate` request. The originating SHG is always 0 (zero).

Parameters

- **service service-id** — The service ID of the service to diagnose or manage.

 Values

 1 — 2147483647

- **target ieee-address** — The MAC address to be purged.

- **flood** — Sends the OAM MAC purge to all upstream nodes.

 Default

 MAC purge only the local FIB.

- **send-control** — Send the mac-purge request using the control plane.

 Default

 Request is sent using the data plane.

- **register** — Reserve the MAC for OAM testing.

 Default

 Do not register OAM MAC.

mac-ping

Syntax

```
mac-ping service service-id destination dst-ieee-address [source src-ieee-address] [fc fc-name] [size octets] [ttl vc-label-ttl] [count send-count] [send-control] [return-control] [interval interval] [timeout timeout]
```

Context

```
oam
config>saa>test>type
```

Description

The `mac-ping` utility is used to determine the existence of an egress SAP binding of a given MAC within a VPLS service.

A `mac-ping` packet can be sent via the control plane or the data plane. The `send-control` option specifies the request be sent using the control plane. If `send-control` is not specified, the request is sent using the data plane.

A `mac-ping` is forwarded along the flooding domain if no MAC address bindings exist. If MAC address bindings exist, then the packet is forwarded along those paths, provided they are active. A response is generated only when there is an egress SAP binding for that MAC address or if the MAC address is a “local” OAM MAC address associated with the device’s control plan.

A `mac-ping` reply can be sent using the data plane or the control plane. The `return-control` option specifies the reply be sent using the control plane. If `return-control` is not specified, the request is sent using the data plane.

A `mac-ping` with data plane reply can only be initiated on nodes that can have an egress MAC address binding. A node without a FIB and without any SAPs cannot have an egress MAC address binding, so it is not a node where replies in the data plane will be trapped and sent up to the control plane.

A control plane request is responded to via a control plane reply only.

By default, MAC OAM requests are sent with the system or chassis MAC address as the source MAC. The `source` option allows overriding of the default source MAC for the request with a specific MAC address.
When a **source ieee-address** value is specified and the source MAC address is locally registered within a split horizon group (SHG), then this SHG membership will be used as if the packet originated from this SHG. In all other cases, SHG 0 (zero) will be used. Note that if the **mac-trace** is originated from a non-zero SHG, such packets will not go out to the same SHG.

If EMG is enabled, mac-ping will return only the first SAP in each chain.

Parameters

- **service service-id** — The service ID of the service to diagnose or manage.
 - **Values** 1 — 2147483647
- **destination ieee-address** — The destination MAC address for the OAM MAC request.
- **size octets** — The MAC OAM request packet size in octets, expressed as a decimal integer. The request payload is padded to the specified size with a 6 byte PAD header and a byte payload of 0xAA as necessary. If the octet size specified is less than the minimum packet, the minimum sized packet necessary to send the request is used.
 - **Default** No OAM packet padding.
 - **Values** 1 — 65535
- **ttl vc-label-ttl** — The TTL value in the VC label for the OAM MAC request, expressed as a decimal integer.
 - **Default** 255
 - **Values** 1 — 255
- **send-control** — Specifies the MAC OAM request be sent using the control plane instead of the data plane.
 - **Default** MAC OAM request sent using the data plane.
- **return-control** — Specifies the MAC OAM reply to a data plane MAC OAM request be sent using the control plane instead of the data plane.
 - **Default** MAC OAM reply sent using the data plane.
- **source src-ieee-address** — The source MAC address from which the OAM MAC request originates. By default, the system MAC address for the chassis is used.
 - **Default** The system MAC address.
 - **Values** Any unicast MAC value.
- **fc fc-name** — The **fc** parameter is used to test the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.
 - **Values** be, l2, af, l1, h2, ef, h1, nc
- **interval interval** — The **interval** parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.
 - If the **interval** is set to 1 second where the **timeout** value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.
Default: 1
Values: 1 — 10

count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default: 1
Values: 1 — 10

timeout timeout — The timeout parameter in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

Default: 5
Values: 1 — 10

mac-trace

Syntax:
mac-trace service service-id destination ieee-address [size octets] [min-ttl vc-label-ttl] [max-ttl vc-label-ttl] [send-control] [return-control] [source ieee-address] [z-count probes-per-hop] [interval interval] [timeout timeout]

Context:
oam
cfg>saa>test>type

Description:
This command displays the hop-by-hop path for a destination MAC address within a VPLS.

The MAC traceroute operation is modeled after the IP traceroute utility which uses ICMP echo request and reply packets with increasing TTL values to determine the hop-by-hop route to a destination IP. The MAC traceroute command uses Alcatel-Lucent OAM packets with increasing TTL values to determine the hop-by-hop route to a destination MAC.

In a MAC traceroute, the originating device creates a MAC ping echo request packet for the MAC to be tested with increasing values of the TTL. The echo request packet is sent through the control plane or data plane and awaits a TTL exceeded response or the echo reply packet from the device with the destination MAC. The devices that reply to the echo request packets with the TTL exceeded and the echo reply are displayed.

When a source ieee-address value is specified and the source MAC address is locally registered within a split horizon group (SHG), then this SHG membership will be used as if the packet originated from this SHG. In all other cases, SHG 0 (zero) will be used. Note that if the mac-ping is originated from a non-zero SHG, such packets will not go out to the same SHG.

If EMG is enabled, mac-trace will return only the first SAP in each chain.

Parameters:
service service-id — The Service ID of the service to diagnose or manage.

Values: 1 — 2147483647
destination ieee-address — The destination MAC address to be traced.

size octets — The MAC OAM request packet size in octets, expressed as a decimal integer. The request payload is padded to the specified size with a 6 byte PAD header and a byte payload of 0xAA as necessary. If the octet size specified is less than the minimum packet, the minimum sized packet necessary to send the request is used.

 Default No OAM packet padding.
 Values 1 — 65535

min-ttl vc-label-ttl — The minimum TTL value in the VC label for the MAC trace test, expressed as a decimal integer.

 Default 1
 Values 1 — 255

max-ttl vc-label-ttl — The maximum TTL value in the VC label for the MAC trace test, expressed as a decimal integer.

 Default 4
 Values 1 — 255

send-control — Specifies the MAC OAM request be sent using the control plane instead of the data plane.

 Default MAC OAM request sent using the data plane.

return-control — Specifies the MAC OAM reply to a data plane MAC OAM request be sent using the control plane instead of the data plane.

 Default MAC OAM reply sent using the data plane.

source ieee-address — The source MAC address from which the OAM MAC request originates. By default, the system MAC address for the chassis is used.

 Default The system MAC address.
 Values Any unicast MAC value.

send-count send-count — The number of MAC OAM requests sent for a particular TTL value, expressed as a decimal integer.

 Default 1
 Values 1 — 100

interval interval — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second, and the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

 Default 1
 Values 1 — 10
timeout — The timeout parameter in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

Default 5
Values 1 — 10
EFM Commands

efm

Syntax
port-id

Context oam>efm

Description This command enables Ethernet in the First Mile (EFM) OAM tests loopback tests on the specified port. The EFM OAM remote loopback OAMPDU will be sent to the peering device to trigger remote loopback.

Parameters
port-id — Specify the port ID in the slot/mda/port format.

local-loopback

Syntax
local-loopback {start | stop}

Context oam>efm

Description This command enables local loopback tests on the specified port.

remote-loopback

Syntax
remote-loopback {start | stop}

Context oam>efm

Description This command enables remote Ethernet in the First Mile (EFM) OAM loopback tests on the specified port. The EFM OAM remote loopback OAMPDU will be sent to the peering device to trigger remote loopback.
ETH-CFM OAM Commands

linktrace

<table>
<thead>
<tr>
<th>Syntax</th>
<th>linktrace mac-address mep mep-id domain md-index association ma-index [ttl ttl-value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>oam>eth-cfm</td>
</tr>
<tr>
<td>Default</td>
<td>The command specifies to initiate a linktrace test.</td>
</tr>
<tr>
<td>Parameters</td>
<td>mac-address — Specifies a unicast destination MAC address.</td>
</tr>
<tr>
<td></td>
<td>mep mep-id — Specifies the target MAC address.</td>
</tr>
<tr>
<td></td>
<td>domain md-index — Specifies the MD index.</td>
</tr>
<tr>
<td></td>
<td>association ma-index — Specifies the MA index.</td>
</tr>
<tr>
<td></td>
<td>ttl ttl-value — Specifies the TTL for a returned linktrace.</td>
</tr>
<tr>
<td></td>
<td>Values</td>
</tr>
<tr>
<td></td>
<td>1 — 8191</td>
</tr>
<tr>
<td></td>
<td>1 — 4294967295</td>
</tr>
<tr>
<td></td>
<td>1 — 4294967295</td>
</tr>
<tr>
<td></td>
<td>0 — 255</td>
</tr>
</tbody>
</table>

loopback

<table>
<thead>
<tr>
<th>Syntax</th>
<th>loopback mac-address mep mep-id domain md-index association ma-index [send-count send-count] [size data-size] [priority priority]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>oam>eth-cfm</td>
</tr>
<tr>
<td>Default</td>
<td>The command specifies to initiate a loopback test.</td>
</tr>
<tr>
<td>Parameters</td>
<td>mac-address — Specifies a unicast MAC address.</td>
</tr>
<tr>
<td></td>
<td>mep mep-id — Specifies target MAC address.</td>
</tr>
<tr>
<td></td>
<td>domain md-index — Specifies the MD index.</td>
</tr>
<tr>
<td></td>
<td>association ma-index — Specifies the MA index.</td>
</tr>
<tr>
<td></td>
<td>send-count send-count — Specifies the number of messages to send, expressed as a decimal integer.</td>
</tr>
<tr>
<td></td>
<td>Loopback messages are sent back to back, with no delay between the transmissions.</td>
</tr>
<tr>
<td></td>
<td>Values</td>
</tr>
<tr>
<td></td>
<td>1 — 8191</td>
</tr>
<tr>
<td></td>
<td>1 — 4294967295</td>
</tr>
<tr>
<td></td>
<td>1 — 4294967295</td>
</tr>
<tr>
<td></td>
<td>0 — 255</td>
</tr>
</tbody>
</table>
Default: 1

Values: 1 — 5

size data-size — The packet size in bytes, expressed as a decimal integer.

Values: 0 — 1500

priority priority — Specifies a 3-bit value to be used in the VLAN tag, if present, in the transmitted frame.

Values: 0 — 7

eth-test

Syntax

```
mac-address mep mep-id domain md-index association ma-index [priority priority] [data-length data-length]
```

Context: oam>eth-cfm

Description

This command issues an ETH-CFM test.

Parameters

- **mac-address** — Specifies a unicast MAC address.
- **mep mep-id** — Specifies target MAC address.

 Values: 1 — 8191

- **domain md-index** — Specifies the MD index.

 Values: 1 — 4294967295

- **association ma-index** — Specifies the MA index.

 Values: 1 — 4294967295

- **data-length data-length** — Indicates the UDP data length of the echo reply, the length starting after the IP header of the echo reply.

 Values: 64 — 1500

Default: 64

one-way-delay-test

Syntax

```
one-way-delay-test mac-address mep mep-id domain md-index association ma-index [priority priority]
```

Context: oam>eth-cfm

Description

This command issues an ETH-CFM one-way delay test.

Parameters

- **mac-address** — Specifies a unicast MAC address.
mep mep-id — Specifies target MAC address.
 Values 1 — 8191
domain md-index — Specifies the MD index.
 Values 1 — 4294967295
association ma-index — Specifies the MA index.
 Values 1 — 4294967295
priority priority — Specifies the priority.
 Values 0 — 7
 Default The CCM and LTM priority of the MEP.

two-way-delay-test

Syntax two-way-delay-test mac-address mep mep-id domain md-index association ma-index
 [priority priority]
Context oam>eth-cfm
Description This command issues an ETH-CFM two-way delay test.
Parameters mac-address — Specifies a unicast MAC address.
mep mep-id — Specifies target MAC address.
 Values 1 — 8191
domain md-index — Specifies the MD index.
 Values 1 — 4294967295
association ma-index — Specifies the MA index.
 Values 1 — 4294967295
priority priority — Specifies the priority.
 Values 0 — 7
 Default The CCM and LTM priority of the MEP.
Service Assurance Agent (SAA) Commands

saa

Syntax saa
Context config
Description This command creates the context to configure the Service Assurance Agent (SAA) tests.

test

Syntax test name [owner test-owner]
no test name
Context config>saa
Description This command identifies a test and create/modify the context to provide the test parameters for the named test. Subsequent to the creation of the test instance the test can be started in the OAM context. A test can only be modified while it is shut down.
The no form of this command removes the test from the configuration. In order to remove a test it can not be active at the time.

Parameters

name — Identify the saa test name to be created or edited.

owner test-owner — Specifies the owner of an SAA operation up to 32 characters in length.

Values If a test-owner value is not specified, tests created by the CLI have a default owner “TiMOS CLI”.

accounting-policy

Syntax accounting-policy acct-policy-id
no accounting-policy
Context config>saa>test
Description This command associates an accounting policy to the SAA test. The accounting policy must already be defined before it can be associated else an error message is generated.
A notification (trap) when a test is completed is issued whenever a test terminates.
The no form of this command removes the accounting policy association.

Default none
Parameters acct-policy-id — Enter the accounting policy-id as configured in the config>log>accounting-policy context.

Values 1 — 99

description

Syntax description description-string

no description

Context config>saa>test

Description This command creates a text description stored in the configuration file for a configuration context. The description command associates a text string with a configuration context to help identify the content in the configuration file.

The no form of this command removes the string from the configuration.

Default No description associated with the configuration context.

Parameters string — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

jitter-event

Syntax jitter-event rising-threshold threshold [falling-threshold threshold] [direction]

no jitter-event

Context config>saa>test

Description Specifies that at the termination of an SAA test probe, the calculated jitter value is evaluated against the configured rising and falling jitter thresholds. SAA threshold events are generated as required.

Once the threshold (rising/falling) is crossed, it is disabled from generating additional events until the opposite threshold is crossed. If a falling-threshold is not supplied, the rising threshold will be re-enabled when it falls below the threshold after the initial crossing that generate the event.

The configuration of jitter event thresholds is optional.

Parameters rising-threshold threshold — Specifies a rising threshold jitter value. When the test run is completed, the calculated jitter value is compared to the configured jitter rising threshold. If the test run jitter value is greater than the configured rising threshold value then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

Default 0

Values 0 — 2147483 milliseconds

falling-threshold threshold — Specifies a falling threshold jitter value. When the test run is completed, the calculated jitter value is compared to the configured jitter falling threshold. If the test run
run jitter value is greater than the configured falling threshold value then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

Default 0

Values 0 — 2147483 milliseconds

direction — Specifies the direction for OAM ping responses received for an OAM ping test run.

Values inbound — Monitor the value of jitter calculated for the inbound, one-way, OAM ping responses received for an OAM ping test run.

Values outbound — Monitor the value of jitter calculated for the outbound, one-way, OAM ping requests sent for an OAM ping test run.

Values roundtrip — Monitor the value of jitter calculated for the round trip, two-way, OAM ping requests and replies for an OAM ping test run.

Default roundtrip

latency-event

Syntax latency-event rising-threshold threshold [falling-threshold threshold] [direction]

no latency-event

Context config>saa>test

Description Specifies that at the termination of an SAA test probe, the calculated latency event value is evaluated against the configured rising and falling latency event thresholds. SAA threshold events are generated as required.

Once the threshold (rising/falling) is crossed, it is disabled from generating additional events until the opposite threshold is crossed. If a falling-threshold is not supplied, the rising threshold will be re-enabled when it falls below the threshold after the initial crossing that generate the event.

The configuration of latency event thresholds is optional.

Parameters rising-threshold threshold — Specifies a rising threshold latency value. When the test run is completed, the calculated latency value is compared to the configured latency rising threshold. If the test run latency value is greater than the configured rising threshold value then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

Default 0

Values 0 — 2147483 milliseconds

falling-threshold threshold — Specifies a falling threshold latency value. When the test run is completed, the calculated latency value is compared to the configured latency falling threshold. If the test run latency value is greater than the configured falling threshold value then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

Default 0

Values 0 — 2147483 milliseconds
direction — Specifies the direction for OAM ping responses received for an OAM ping test run.

Values

- inbound — Monitor the value of jitter calculated for the inbound, one-way, OAM ping responses received for an OAM ping test run.
- outbound — Monitor the value of jitter calculated for the outbound, one-way, OAM ping requests sent for an OAM ping test run.
- roundtrip — Monitor the value of jitter calculated for the round trip, two-way, OAM ping requests and replies for an OAM ping test run.

Default roundtrip

loss-event

Syntax

loss-event rising-threshold threshold [falling-threshold threshold] [direction]
no loss-event

Context config>saa>test

Description Specifies that at the termination of an SAA testrun, the calculated loss event value is evaluated against the configured rising and falling loss event thresholds. SAA threshold events are generated as required.

The configuration of loss event thresholds is optional.

Parameters

- rising-threshold threshold — Specifies a rising threshold loss event value. When the test run is completed, the calculated loss event value is compared to the configured loss event rising threshold. If the test run loss event value is greater than the configured rising threshold value then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

 Default 0

 Values 0 — 2147483647 packets

- falling-threshold threshold — Specifies a falling threshold loss event value. When the test run is completed, the calculated loss event value is compared to the configured loss event falling threshold. If the test run loss event value is greater than the configured falling threshold value then an SAA threshold event is generated. The SAA threshold event is tmnxOamSaaThreshold, logger application OAM, event #2101.

 Default 0

 Values 0 — 2147483647 packets

direction — Specifies the direction for OAM ping responses received for an OAM ping test run.

Values

- inbound — Monitor the value of jitter calculated for the inbound, one-way, OAM ping responses received for an OAM ping test run.
- outbound — Monitor the value of jitter calculated for the outbound, one-way, OAM ping requests sent for an OAM ping test run.
- roundtrip — Monitor the value of jitter calculated for the round trip, two-way, OAM ping requests and replies for an OAM ping test run.

Default roundtrip
type

Syntax

- type
- no type

Context

config>saa>test

Description

This command creates the context to provide the test type for the named test. Only a single test type can be configured.

A test can only be modified while the test is in shut down mode.

Once a test type has been configured the command can be modified by re-entering the command, the test type must be the same as the previously entered test type.

To change the test type, the old command must be removed using the config>saa>test>no type command.

cpe-ping

Syntax

cpe-ping service service-id destination ip-address source ip-address [ttl vc-label-ttl] [return-control] [source-mac ieee-address] [fc fc-name] [interval interval] [count send-count] [send-control]

Context

oam
config>saa>test>type

Description

This ping utility determines the IP connectivity to a CPE within a specified VPLS service.

Parameters

- service service-id — The service ID of the service to diagnose or manage.

 Values
 - service-id: 1 — 2147483647
 - svc-name: 64 characters maximum

- destination ip-address — Specifies the IP address to be used as the destination for performing an OAM ping operations.

- source ip-address — Specify an unused IP address in the same network that is associated with the VPLS.

- ttl vc-label-ttl — The TTL value in the VC label for the OAM MAC request, expressed as a decimal integer.

 Default
 - 255

 Values
 - 1 — 255

- return-control — Specifies the MAC OAM reply to a data plane MAC OAM request be sent using the control plane instead of the data plane.

 Default
 - MAC OAM reply sent using the data plane.

- source-mac ieee-address — Specify the source MAC address that will be sent to the CPE. If not specified or set to 0, the MAC address configured for the CPMCFM is used.

- fc-name — The forwarding class of the MPLS echo request encapsulation.
Default be
Values be, l2, af, l1, h2, ef, h1, nc

interval — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second where the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default 1
Values 1 — 10

count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1
Values 1 — 255

send-control — Specifies the MAC OAM request be sent using the control plane instead of the data plane.

Default MAC OAM request sent using the data plane.

dns

Syntax

dns target-addr dns-name name-server ip-address [source ip-address] [count send-count] [timeout timeout] [interval interval]

Context <GLOBAL>

Description This command configures a DNS name resolution test.

Parameters

target-addr — The IP host address to be used as the destination for performing an OAM ping operation.

dns-name — The DNS name to be resolved to an IP address.

name-server ip-address — Specifies the server connected to a network that resolves network names into network addresses.

source ip-address — Specifies the IP address to be used as the source for performing an OAM ping operation.

count send-count — The number of messages to send, expressed as a decimal integer. The send-count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.
Default

Values 1 — 100

timeout timeout — The timeout parameter in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

Default

Values 1 — 120

interval interval — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second, and the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default

Values 1 — 10

icmp-ping

Syntax icmp-ping [ip-address | dns-name] [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern pattern] [source ip-address | dns-name] [interval seconds] [next-hop ip-address] [interface interface-name] | bypass-routing | [count requests] [do-not-fragment] [router router-instance | service-name service-name] [timeout timeout]

Context config>saa>test>type

Description This command configures an ICMP traceroute test.

Parameters ip-address — The far-end IP address to which to send the svc-ping request message in dotted decimal notation.

Values ipv4-address: a.b.c.d

dns-name — The DNS name of the far-end device to which to send the svc-ping request message, expressed as a character string up to 63 characters maximum.

rapid — Packets will be generated as fast as possible instead of the default 1 per second.

detail — Displays detailed information.

ttl time-to-live — The TTL value for the MPLS label, expressed as a decimal integer.

Values 1 — 128

tos type-of-service — Specifies the service type.

Values 0 — 255
size bytes — The request packet size in bytes, expressed as a decimal integer.

Values
0 — 16384

pattern pattern — The date portion in a ping packet will be filled with the pattern value specified. If not specified, position info will be filled instead.

Values
0 — 65535

source ip-address|dns-name — Specifies the IP address to be used.

Values
ipv4-address: a.b.c.d
dns-name: 128 characters max

interval seconds — This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second, and the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default
1

Values
1 — 10

next-hop ip-address — Only displays static routes with the specified next hop IP address.

Values
ipv4-address: a.b.c.d (host bits must be 0)

interface interface-name — The name used to refer to the interface. The name must already exist in the config>router>interface context.

bypass-routing — Specifies whether to send the ping request to a host on a directly attached network bypassing the routing table.

count requests — Specifies the number of times to perform an OAM ping probe operation. Each OAM echo message request must either timeout or receive a reply before the next message request is sent.

Values
1 — 100000

Default
5

do-not-fragment — Sets the DF (Do Not Fragment) bit in the ICMP ping packet.

router router-instance — Specifies the router name or service ID.

Values
router-name: Base, management
service-id: 1 — 2147483647

Default
Base

service-name service-name — Specifies the service name as an integer.

Values
service-id: 1 — 2147483647

timeout timeout — Overrides the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response
received after the request times out will be silently discarded.

Default 5
Values 1 — 10

icmp-trace

Syntax

```
icmp-trace [ip-address | dns-name] [ttl time-to-live] [wait milli-seconds] [tos type-of-service] [source ip-address] [tos type-of-service] [router router-instance | service-name service-name]
```

Context

```
config>saa>test>type
```

Description

This command configures an ICMP traceroute test.

Parameters

- `ip-address` — The far-end IP address to which to send the *svc-ping* request message in dotted decimal notation.

 Values

 ipv4-address: a.b.c.d

- `dns-name` — The DNS name of the far-end device to which to send the *svc-ping* request message, expressed as a character string to 63 characters maximum.

 Values

 router-name: Base, management

- `ttl time-to-live` — The TTL value for the MPLS label, expressed as a decimal integer.

 Values

 1 — 255

- `wait milli-seconds` — The time in milliseconds to wait for a response to a probe, expressed as a decimal integer.

 Default

 5000

 Values

 1 — 60000

- `tos type-of-service` — Specifies the service type.

 Values

 0 — 255

- `source ip-address` — Specifies the IP address to be used.

 Values

 ipv4-address: a.b.c.d

- `router router-instance` — Specifies the router name or service ID.

 Values

 router-name: Base, management

 service-id: 1 — 2147483647

 Default

 Base
Lsp-ping

Syntax
```
lsp-ping {lsp-name [path path-name]} [fc fc-name] [size octets]
   [ttl label-ttl] [send-count send-count] [timeout timeout] [interval interval]
```

Context
```
oam
config>saa>test>type
```

Description
This command performs in-band LSP connectivity tests.

The **lsp-ping** command performs an LSP ping using the protocol and data structures defined in the RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures.

The LSP ping operation is modeled after the IP ping utility which uses ICMP echo request and reply packets to determine IP connectivity.

In an LSP ping, the originating device creates an MPLS echo request packet for the LSP and path to be tested. The MPLS echo request packet is sent through the data plane and awaits an MPLS echo reply packet from the device terminating the LSP. The status of the LSP is displayed when the MPLS echo reply packet is received.

The timestamp format to be sent, and to be expected when received in a PDU, is as configured by the `config>test-oam>mpls-time-stamp-format` command. If RFC 4379 is selected, then the timestamp is in seconds and microseconds since 1900, otherwise it is in seconds and microseconds since 1970.

Parameters

- **lsp-name** — Name that identifies an LSP to ping. The LSP name can be up to 32 characters long.
 - **Default** The active LSP path.
 - **Values** Any path name associated with the LSP.

- **path path-name** — The LSP path name along which to send the LSP ping request.
 - **Default** The active LSP path.
 - **Values** Any path name associated with the LSP.

- **fc fc-name** — The **fc** parameter is used to indicate the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.
 - **Default** be
 - **Values** be, l2, af, l1, h2, ef, h1, nc

- **size octets** — The MPLS echo request packet size in octets, expressed as a decimal integer. The request payload is padded with zeroes to the specified size.
 - **Default** 68 — The system sends the minimum packet size, depending on the type of LSP. No padding is added.
 - **Values** 84 — 65535
ttl label-ttl — The TTL value for the MPLS label, expressed as a decimal integer.

Default 255
Values 1 — 255

send-count send-count — The number of messages to send, expressed as a decimal integer. The send-count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1
Values 1 — 100

timeout timeout — The timeout parameter in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

Default 5
Values 1 — 10

interval interval — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second, and the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default 1
Values 1 — 10

lsp-trace

Syntax lsp-trace {lsp-name [path path-name]} [fc fc-name] [max-fail no-response-count] [probe-count probes-per-hop] [size octets] [min-ttl min-label-ttl] [max-ttl max-label-ttl] [timeout timeout] [interval interval]

Context oam
cfg>saa>test>type

Description This command displays the hop-by-hop path for an LSP.

The lsp-trace command performs an LSP traceroute using the protocol and data structures defined in the IETF draft (draft-ietf-mpls-lsp-ping-02.txt).

The LSP traceroute operation is modeled after the IP traceroute utility which uses ICMP echo request and reply packets with increasing TTL values to determine the hop-by-hop route to a destination IP.

In an LSP traceroute, the originating device creates an MPLS echo request packet for the LSP to be tested with increasing values of the TTL in the outermost label. The MPLS echo request packet is sent...
through the data plane and awaits a TTL exceeded response or the MPLS echo reply packet from the
device terminating the LSP. The devices that reply to the MPLS echo request packets with the TTL
exceeded and the MPLS echo reply are displayed.
The timestamp format to be sent, and to be expected when received in a PDU, is as configured by the
`config>test-oam>mpls-time-stamp-format` command. If RFC 4379 is selected, then the timestamp
is in seconds and microseconds since 1900, otherwise it is in seconds and microseconds since 1970.

Parameters

`lsp-name` — Name that identifies an LSP to ping. The LSP name can be up to 32 characters long.

`path path-name` — The LSP pathname along which to send the LSP trace request.

 Default The active LSP path.
 Values Any path name associated with the LSP.

`min-ttl min-label-ttl` — The minimum TTL value in the MPLS label for the LSP trace test, expressed
as a decimal integer.

 Default 1
 Values 1 — 255

`max-ttl max-label-ttl` — The maximum TTL value in the MPLS label for the LDP treertrace test,
expressed as a decimal integer.

 Default 30
 Values 1 — 255

`max-fail no-response-count` — The maximum number of consecutive MPLS echo requests,
expressed as a decimal integer that do not receive a reply before the trace operation fails for a
given TTL.

 Default 5
 Values 1 — 255

`timeout timeout` — The `timeout` parameter in seconds, expressed as a decimal integer. This value is
used to override the default `timeout` value and is the amount of time that the 7210 SAS M will
wait for a message reply after sending the message request. Upon the expiration of message time-
out, the requesting router assumes that the message response will not be received. A 'request
timeout' message is displayed by the CLI for each message request sent that expires. Any
response received after the request times out will be silently discarded.

 Default 3
 Values 1 — 10

`interval interval` — The `interval` parameter in seconds, expressed as a decimal integer. This param-
eter is used to override the default request message send interval and defines the minimum
amount of time that must expire before the next message request is sent.

If the `interval` is set to 1 second, and the `timeout` value is set to 10 seconds, then the maximum
time between message requests is 10 seconds and the minimum is 1 second. This depends upon
the receipt of a message reply corresponding to the outstanding message request.

 Default 1
 Values 1 — 10
fc fc-name — The fc parameter is used to indicate the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.

The LSP-EXP mappings on the receive network interface controls the mapping back to the internal forwarding class used by the far-end 7210 SAS M that receives the message request. The egress mappings of the egress network interface on the far-end 7210 SAS M controls the forwarding class markings on the return reply message.

The LSP-EXP mappings on the receive network interface controls the mapping of the message reply back at the originating 7210 SAS M.

Default: be

Values: be, l2, af, l1, h2, ef, h1, nc

mac-ping

Syntax: `mac-ping service service-id destination dst-ieee-address [source src-ieee-address] [fc fc-name] [size octets] [ttl vc-label-ttl] [count send-count] [send-control] [return-control] [interval interval] [timeout timeout]

Context: oam
cfg>saa>test>type

Description: The mac-ping utility is used to determine the existence of an egress SAP binding of a given MAC within a VPLS service.

A mac-ping packet can be sent via the control plane or the data plane. The send-control option specifies the request be sent using the control plane. If send-control is not specified, the request is sent using the data plane.

A mac-ping is forwarded along the flooding domain if no MAC address bindings exist. If MAC address bindings exist, then the packet is forwarded along those paths, provided they are active. A response is generated only when there is an egress SAP binding for that MAC address or if the MAC address is a “local” OAM MAC address associated with the device’s control plane.

A mac-ping reply can be sent using the data plane or the control plane. The return-control option specifies the reply be sent using the control plane. If return-control is not specified, the request is sent using the data plane.

A mac-ping with data plane reply can only be initiated on nodes that can have an egress MAC address binding. A node without a FIB and without any SAPs cannot have an egress MAC address binding, so it is not a node where replies in the data plane will be trapped and sent up to the control plane.

A control plane request is responded to via a control plane reply only.

By default, MAC OAM requests are sent with the system or chassis MAC address as the source MAC. The source option allows overriding of the default source MAC for the request with a specific MAC address.

When a source ieee-address value is specified and the source MAC address is locally registered within a split horizon group (SHG), then this SHG membership will be used as if the packet origi-
nated from this SHG. In all other cases, SHG 0 (zero) will be used. Note that if the mac-trace is origin-
ated from a non-zero SHG, such packets will not go out to the same SHG.

If EMG is enabled, mac-ping will return only the first SAP in each chain.

Parameters

service service-id — The service ID of the service to diagnose or manage.

Values

service-id: 1 — 2147483647

destination ieee-address — The destination MAC address for the OAM MAC request.

size octets — The MAC OAM request packet size in octets, expressed as a decimal integer. The
request payload is padded to the specified size with a 6 byte PAD header and a byte payload of 0xAA
as necessary. If the octet size specified is less than the minimum packet, the minimum sized packet
necessary to send the request is used.

Default No OAM packet padding.

Values 1 — 65535

ttl vc-label-ttl — The TTL value in the VC label for the OAM MAC request, expressed as a decimal
integer.

Default 255

Values 1 — 255

send-control — Specifies the MAC OAM request be sent using the control plane instead of the data
plane.

Default MAC OAM request sent using the data plane.

return-control — Specifies the MAC OAM reply to a data plane MAC OAM request be sent using
the control plane instead of the data plane.

Default MAC OAM reply sent using the data plane.

source src-ieee-address — The source MAC address from which the OAM MAC request originates.
By default, the system MAC address for the chassis is used.

Default The system MAC address.

Values Any unicast MAC value.

fc fc-name — The fc parameter is used to test the forwarding class of the MPLS echo request pack-
ets. The actual forwarding class encoding is controlled by the network egress LSP-EXP mappings.

Values be, l2, af, l1, h2, ef, h1, nc

interval interval — The interval parameter in seconds, expressed as a decimal integer. This param-
eter is used to override the default request message send interval and defines the minimum
amount of time that must expire before the next message request is sent.

If the interval is set to 1 second where the timeout value is set to 10 seconds, then the maximum
time between message requests is 10 seconds and the minimum is 1 second. This depends upon
the receipt of a message reply corresponding to the outstanding message request.

Default 1

Values 1 — 10
count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default
1

Values
1 — 100

timeout timeout — The timeout parameter in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. Any response received after the request times out will be silently discarded.

Default
5

Values
1 — 10

Sample Output

```
oam mac-ping service 1 destination 00:bb:bb:bb:bb:bb
Seq Node-id Path RTT
[Send request Seq. 1, Size 126]
1 2.2.2.2:sap1/1/1:1 In-Band 960ms
```

sdp-ping

Syntax
sdp-ping orig-sdp-id [resp-sdp resp-sdp-id] [fc fc-name] [timeout seconds] [interval seconds] [size octets] [count send-count]

Context
oam
config>saa>test>type

Description
This command tests SDPs for uni-directional or round trip connectivity and performs SDP MTU Path tests.

The sdp-ping command accepts an originating SDP-ID and an optional responding SDP-ID. The size, number of requests sent, message time-out and message send interval can be specified. All sdp-ping requests and replies are sent with PLP OAM-Label encapsulation, as a service-id is not specified.

For round trip connectivity testing, the resp-sdp keyword must be specified. If resp-sdp is not specified, a uni-directional SDP test is performed.

To terminate an sdp-ping in progress, use the CLI break sequence <Ctrl-C>.

An sdp-ping response message indicates the result of the sdp-ping message request. When multiple response messages apply to a single SDP echo request/reply sequence, the response message with the highest precedence will be displayed. The following table displays the response messages sorted by precedence.
Parameters

- **orig-sdp-id** — The SDP-ID to be used by `sdp-ping`, expressed as a decimal integer. The far-end address of the specified SDP-ID is the expected `responder-id` within each reply received. The specified SDP-ID defines the encapsulation of the SDP tunnel encapsulation used to reach the far end. This can be IP/GRE or MPLS. If `orig-sdp-id` is invalid or administratively down or unavailable for some reason, the SDP Echo Request message is not sent and an appropriate error message is displayed (once the `interval` timer expires, `sdp-ping` will attempt to send the next request if required).

Values

- 1 — 17407

- **resp-sdp-id** — Optional parameter is used to specify the return SDP-ID to be used by the far-end 7210 SAS M for the message reply for round trip SDP connectivity testing. If `resp-sdp-id` does not exist on the far-end 7210 SAS M, terminates on another 7210 SAS M different than the originating 7210 SAS M, or another issue prevents the far-end router from using `resp-sdp-id`, the SDP echo reply will be sent using generic IP/GRE OAM encapsulation. The received forwarding class (as mapped on the ingress network interface for the far end) defines the forwarding class encapsulation for the reply message.

Default

- null. Use the non-SDP return path for message reply.

Values

- 1 — 17407

- **fc fc-name** — The `fc` parameter is used to indicate the forwarding class of the SDP encapsulation. The actual forwarding class encoding is controlled by the network egress DSCP or LSP-EXP mappings.

 The DSCP or LSP-EXP mappings on the receive network interface controls the mapping back to the internal forwarding class used by the far-end 7210 SAS M that receives the message request. The egress mappings of the egress network interface on the far-end 7210 SAS M controls the

<table>
<thead>
<tr>
<th>Result of Request</th>
<th>Displayed Response Message</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request timeout without reply</td>
<td>Request Timeout</td>
<td>1</td>
</tr>
<tr>
<td>Request not sent due to non-existent <code>orig-sdp-id</code></td>
<td>Orig-SDP Non-Existent</td>
<td>2</td>
</tr>
<tr>
<td>Request not sent due to administratively down <code>orig-sdp-id</code></td>
<td>Orig-SDP Admin-Down</td>
<td>3</td>
</tr>
<tr>
<td>Request not sent due to operationally down <code>orig-sdp-id</code></td>
<td>Orig-SDP Oper-Down</td>
<td>4</td>
</tr>
<tr>
<td>Request terminated by user before reply or timeout</td>
<td>Request Terminated</td>
<td>5</td>
</tr>
<tr>
<td>Reply received, invalid <code>origination-id</code></td>
<td>Far End: Originator-ID Invalid</td>
<td>6</td>
</tr>
<tr>
<td>Reply received, invalid <code>responder-id</code></td>
<td>Far End: Responder-ID Error</td>
<td>7</td>
</tr>
<tr>
<td>Reply received, non-existent <code>resp-sdp-id</code></td>
<td>Far End: Resp-SDP Non-Existent</td>
<td>8</td>
</tr>
<tr>
<td>Reply received, invalid <code>resp-sdp-id</code></td>
<td>Far End: Resp-SDP Invalid</td>
<td>9</td>
</tr>
<tr>
<td>Reply received, <code>resp-sdp-id</code> down (admin or oper)</td>
<td>Far-end: Resp-SDP Down</td>
<td>10</td>
</tr>
<tr>
<td>Reply received, No Error</td>
<td>Success</td>
<td>11</td>
</tr>
</tbody>
</table>
forwarding class markings on the return reply message.

The DSCP or LSP-EXP mappings on the receive network interface controls the mapping of the message reply back at the originating 7210 SAS M. This is displayed in the response message output upon receipt of the message reply.

Default be

Values be, l2, af, l1, h2, ef, h1, nc

timeout seconds — The timeout parameter in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A ‘request timeout’ message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

Default 5

Values 1 — 10

interval seconds — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second, and the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default 1

Values 1 — 10

size octets — The size parameter in octets, expressed as a decimal integer. This parameter is used to override the default message size for the sdp-ping request. Changing the message size is a method of checking the ability of an SDP to support a path-mtu. The size of the message does not include the SDP encapsulation, VC-Label (if applied) or any DLC headers or trailers.

When the OAM message request is encapsulated in an IP/GRE SDP, the IP ‘DF’ (Do Not Fragment) bit is set. If any segment of the path between the sender and receiver cannot handle the message size, the message is discarded. MPLS LSPs are not expected to fragment the message either, as the message contained in the LSP is not an IP packet.

Default 40

Values 40 — 9198

count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1

Values 1 — 100

Special Cases Single Response Connectivity Tests — A single response sdp-ping test provides detailed test results.
Upon request timeout, message response, request termination, or request error the following local and remote information will be displayed. Local and remote information will be dependent upon SDP-ID existence and reception of reply.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Result</td>
<td>The result of the <code>sdp-ping</code> request message.</td>
<td>Sent - Request Timeout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sent - Request Terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sent - Reply Received</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not Sent - Non-Existentsite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local SDP-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not Sent - Local SDP-ID Down</td>
</tr>
<tr>
<td>Originating SDP-ID</td>
<td>The originating SDP-ID specified by <code>orig-sdp</code>.</td>
<td><code>orig-sdp-id</code></td>
</tr>
<tr>
<td>Administrative State</td>
<td>The local administrative state of the originating SDP-ID. If the SDP-ID has been shutdown, Admin-Down is displayed. If the originating SDP-ID is in the no shutdown state, Admin-Up is displayed. If the <code>orig-sdp-id</code> does not exist, Non-Existentsite is displayed.</td>
<td>Admin-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admin-Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Existentsite</td>
</tr>
<tr>
<td>Operating State</td>
<td>The local operational state of the originating SDP-ID. If <code>orig-sdp-id</code> does not exist, N/A will be displayed.</td>
<td>Oper-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oper-Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Path MTU</td>
<td>The local <code>path-mtu</code> for <code>orig-sdp-id</code>. If <code>orig-sdp-id</code> does not exist locally, N/A is displayed.</td>
<td><code>orig-path-mtu</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Responding SDP-ID</td>
<td>The SDP-ID requested as the far-end path to respond to the <code>sdp-ping</code> request. If <code>resp-sdp</code> is not specified, the responding router will not use an SDP-ID as the return path and N/A will be displayed.</td>
<td><code>resp-sdp-id</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Path Used</td>
<td>Displays whether the responding 7210 SAS M used the responding <code>sdp-id</code> to respond to the <code>sdp-ping</code> request. If <code>resp-sdp-id</code> is a valid, operational SDP-ID, it must be used for the SDP echo reply message. If the far-end uses the responding <code>sdp-id</code> as the return path, Yes will be displayed. If the far-end does not use the responding <code>sdp-id</code> as the return path, No will be displayed. If <code>resp-sdp</code> is not specified, N/A will be displayed.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Responding SDP-ID</td>
<td>The administrative state of the responding (sdp)-id. When (resp-sdp)-id is administratively down, Admin-Down will be displayed. When (resp-sdp)-id is administratively up, Admin-Up will be displayed. When (resp-sdp)-id exists on the far-end 7210 SAS M but is not valid for the originating router, Invalid is displayed. When (resp-sdp)-id does not exist on the far-end router, Non-Existent is displayed. When (resp-sdp) is not specified, N/A is displayed.</td>
<td>Admin-Down</td>
</tr>
<tr>
<td>Administrative State</td>
<td></td>
<td>Admin-Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Existent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>
Multiple Response Connectivity Tests — When the connectivity test count is greater than one (1), a single line is displayed per SDP echo request send attempt.

The request number is a sequential number starting with 1 and ending with the last request sent, incrementing by one (1) for each request. This should not be confused with the message-id contained in each request and reply message.

A response message indicates the result of the message request. Following the response message is the round trip time value. If any reply is received, the round trip time is displayed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responding SDP-ID</td>
<td>The operational state of the far-end sdp-id associated with the</td>
<td>Oper-Up</td>
</tr>
<tr>
<td>Operational State</td>
<td>return path for service-id. When a return path is operationally</td>
<td>Oper-Down</td>
</tr>
<tr>
<td></td>
<td>down, Oper-Down is displayed. If the return sdp-id is operationally</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>up, Oper-Up is displayed. If the responding sdp-id is non-existent, N/A is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>displayed.</td>
<td></td>
</tr>
<tr>
<td>Responding SDP-ID</td>
<td>The remote path-mtu for resp-sdp-id. If resp-sdp-id does not exist remotely,</td>
<td>resp-path-mtu</td>
</tr>
<tr>
<td>Path MTU</td>
<td>N/A is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The local system IP address used to terminate remotely configured sdp-ids</td>
<td>system-ip-addr</td>
</tr>
<tr>
<td></td>
<td>(as the sdp-id far-end address). If an IP address has not been configured</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to be the system IP address, N/A is displayed.</td>
<td>N/A</td>
</tr>
<tr>
<td>Local Service IP</td>
<td>The name of the local system IP interface. If the local system IP</td>
<td>system-interface-name</td>
</tr>
<tr>
<td>Address</td>
<td>interface has not been created, N/A is displayed.</td>
<td></td>
</tr>
<tr>
<td>Local Service IP</td>
<td>The state of the local system IP interface. If the local system IP</td>
<td>Up</td>
</tr>
<tr>
<td>Interface Name</td>
<td>interface has not been created, Non-Existent is displayed.</td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td>Non-Existent</td>
<td></td>
</tr>
<tr>
<td>Expected Far End</td>
<td>The expected IP address for the remote system IP interface. This must be the</td>
<td>orig-sdp-far-end-addr</td>
</tr>
<tr>
<td>Address</td>
<td>far-end address configured for the orig-sdp-id.</td>
<td>dest-ip-addr</td>
</tr>
<tr>
<td>Actual Far End Address</td>
<td>The returned remote IP address. If a response is not received, the</td>
<td>resp-ip-addr</td>
</tr>
<tr>
<td></td>
<td>displayed value is N/A. If the far-end service IP interface is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>down or non-existent, a message reply is not expected.</td>
<td>N/A</td>
</tr>
<tr>
<td>Responder's Expected</td>
<td>The expected source of the originators sdp-id from the perspective of the</td>
<td>resp-rec-tunnel-far-end-addr</td>
</tr>
<tr>
<td>Far End Address</td>
<td>remote terminating the sdp-id. If the far-end cannot detect the expected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source of the ingress sdp-id, N/A is displayed.</td>
<td>N/A</td>
</tr>
<tr>
<td>Round Trip Time</td>
<td>The round trip time between SDP echo request and the SDP echo reply. If</td>
<td>delta-request-reply</td>
</tr>
<tr>
<td></td>
<td>the request is not sent, times out or is terminated, N/A is displayed.</td>
<td></td>
</tr>
</tbody>
</table>

N/A
After the last reply has been received or response timed out, a total is displayed for all messages sent and all replies received. A maximum, minimum and average round trip time is also displayed. Error response and timed out requests do not apply towards the average round trip time.

Multiple Response Round Trip Connectivity Test Sample Output

A:DUT-A# oam sdp-ping 101 resp-sdp 102

<table>
<thead>
<tr>
<th>SDF-ID Info</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP-ID:</td>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td>Administrative State: Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Operative State: Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Path MTU:</td>
<td>9186</td>
<td>N/A</td>
</tr>
<tr>
<td>Response SDP Used:</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

| IP Interface State: Up |
| Actual IP Address: 10.20.1.1 | 10.20.1.2 |
| Expected Peer IP: 10.20.1.2 | 10.20.1.1 |

For Forwarding Class be be
Profile Out Out

Request Result: Sent - Reply Received
RTT: 10(ms)

A:DUT-A# oam sdp-ping 101 resp-sdp 102 count 10

<table>
<thead>
<tr>
<th>Request</th>
<th>Response</th>
<th>RTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Success</td>
<td>10ms</td>
</tr>
<tr>
<td>2</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>3</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>4</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>5</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>6</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>7</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>8</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>9</td>
<td>Success</td>
<td>0ms</td>
</tr>
<tr>
<td>10</td>
<td>Success</td>
<td>0ms</td>
</tr>
</tbody>
</table>

Sent: 10 Received: 10
Min: 0ms Max: 10ms Avg: 1ms

vccv-ping

Syntax

`vccv-ping sdp-id:vc-id [src-ip-address ip-addr dst-ip-address ip-addr pw-id pw-id][reply-mode {ip-routed|control-channel}] [fc fc-name]] [size octets] [count send-count] [timeout timeout] [interval interval] [ttl vc-label-ttl]`

Context

`oam
config>saa>test`

Description

This command configures a Virtual Circuit Connectivity Verification (VCCV) ping test. A vccv-ping test checks connectivity of a VLL inband. It checks to verify that the destination (target) PE is the
egress for the Layer 2 FEC. It provides for a cross-check between the dataplane and the control plane. It is inband which means that the vccv-ping message is sent using the same encapsulation and along the same path as user packets in that VLL. The vccv-ping test is the equivalent of the lsp-ping test for a VLL service. The vccv-ping reuses an lsp-ping message format and can be used to test a VLL configured over both an MPLS and a GRE SDP.

Note that VCCV ping can be initiated on TPE or SPE. If initiated on the SPE, the reply-mode parameter must be used with the ip-routed value. The ping from the TPE can have either values or can be omitted, in which case the default value is used.

If a VCCV ping is initiated from TPE to neighboring a SPE (one segment only) it is sufficient to only use the sdpid:vcid parameter. However, if the ping is across two or more segments, at least the sdpid:vcld, src-ip-address ip-addr, dst-ip-address ip-addr, ttl vc-label-ttl and pw-id pw-id parameters are used where:

- The src-ip-address is system IP address of the router preceding the destination router.
- The pwid is actually the VC ID of the last pseudowire segment.
- The vc-label-ttl must have a value equal or higher than the number of pseudowire segments.

Note that VCCV ping is a multi-segment pseudowire. For a single-hop pseudowire, only the peer VCCV CC bit of the control word is advertised when the control word is enabled on the pseudowire. VCCV ping on multi-segment pseudowires require that the control word be enabled in all segments of the VLL.

If the control word is not enabled on spoke SDP it will not be signaled peer VCCV CC bits to the far end, consequently VCCV ping cannot be successfully initiated on that specific spoke SDP.

The timestamp format to be sent, and to be expected when received in a PDU, is as configured by the config>test-oam>mpls-time-stamp-format command. If RFC 4379 is selected, then the timestamp is in seconds and microseconds since 1900, otherwise it is in seconds and microseconds since 1970.

Parameters

sdplid:vcid — The VC ID of the pseudowire being tested must be indicated with this parameter. The VC ID needs to exist on the local router and the far-end peer needs to indicate that it supports VCCV to allow the user to send vccv-ping message.

Values

1 — 17407:1 — 4294967295

src-ip-address ip-addr — Specifies the source IP address.

Values

ipv4-address: a.b.c.d

dst-ip-address ip-addr — Specifies the destination IP address.

Values

ipv4-address: a.b.c.d

pw-id pw-id — Specifies the pseudowire ID to be used for performing a vccv-ping operation. The pseudowire ID is a non-zero 32-bit connection ID required by the FEC 128, as defined in RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures.

reply-mode [ip-routed | control-channel] — The reply-mode parameter indicates to the far-end how to send the reply message. The option control-channel indicates a reply mode in-band using vccv control channel.

Default

control-channel

fc fc-name — The fc parameter is used to indicate the forwarding class of the MPLS echo request packets. The actual forwarding class encoding is controlled by the network egress LSP-EXP
mappings.

The LSP-EXP mappings on the receive network interface controls the mapping back to the internal forwarding class used by the far-end 7210 SAS M that receives the message request. The egress mappings of the egress network interface on the far-end router controls the forwarding class markings on the return reply message. The LSP-EXP mappings on the receive network interface controls the mapping of the message reply back at the originating SR.

Default be

Values be, l2, af, l1, h2, ef, h1, nc

timeout seconds — The timeout parameter, in seconds, expressed as a decimal integer. This value is used to override the default timeout value and is the amount of time that the router will wait for a message reply after sending the message request. Upon the expiration of message timeout, the requesting router assumes that the message response will not be received. A ‘request timeout’ message is displayed by the CLI for each message request sent that expires. Any response received after the request times out will be silently discarded.

Default 5

Values 1 — 10

interval seconds — The interval parameter in seconds, expressed as a decimal integer. This parameter is used to override the default request message send interval and defines the minimum amount of time that must expire before the next message request is sent.

If the interval is set to 1 second, and the timeout value is set to 10 seconds, then the maximum time between message requests is 10 seconds and the minimum is 1 second. This depends upon the receipt of a message reply corresponding to the outstanding message request.

Default 1

Values 1 — 10

size octets — The VCCV ping echo request packet size in octets, expressed as a decimal integer. The request payload is padded with zeroes to the specified size.

Default 88

Values 88 — 9198

count send-count — The number of messages to send, expressed as a decimal integer. The count parameter is used to override the default number of message requests sent. Each message request must either timeout or receive a reply before the next message request is sent. The message interval value must be expired before the next message request is sent.

Default 1

Values 1 — 100

ttl vc-label-ttl — Specifies the time-to-live value for the vc-label of the echo request message. The outer label TTL is still set to the default of 255 regardless of this value.
OAM SAA Commands

saa

Syntax

saa test-name [owner test-owner] {start | stop}

Context
oam

Description
Use this command to start or stop an SAA test.

test-name — Name of the SAA test. The test name must already be configured in the config>saa>test context.

owner test-owner — Specifies the owner of an SAA operation up to 32 characters in length.

Values
If a test-owner value is not specified, tests created by the CLI have a default owner “TiMOS CLI”.

start — This keyword starts the test. A test cannot be started if the same test is still running.

A test cannot be started if it is in a shut-down state. An error message and log event will be generated to indicate a failed attempt to start an SAA test run. A test cannot be started if it is in a continous state.

stop — This keyword stops a test in progress. A test cannot be stopped if it is not in progress. A log message will be generated to indicate that an SAA test run has been aborted. A test cannot be stopped if it is in a continous state.
Show Commands

saa

Syntax saa [test-name] [owner test-owner]

Context show>saa

Description Use this command to display information about the SAA test.

If no specific test is specified a summary of all configured tests is displayed.

If a specific test is specified then detailed test results for that test are displayed for the last three occurrences that this test has been executed, or since the last time the counters have been reset via a system reboot or clear command.

Parameters test-name — Enter the name of the SAA test for which the information needs to be displayed. The test name must already be configured in the config>saa>test context.

This is an optional parameter.

owner test-owner — Specifies the owner of an SAA operation up to 32 characters in length.

Values

Default If a test-owner value is not specified, tests created by the CLI have a default owner “TiMOS CLI”.

Output SAA Output — The following table provides SAA field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Name</td>
<td>Specifies the name of the test.</td>
</tr>
<tr>
<td>Owner Name</td>
<td>Specifies the owner of the test.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the description for the test type.</td>
</tr>
<tr>
<td>Accounting policy</td>
<td>Specifies the associated accounting policy ID.</td>
</tr>
<tr>
<td>Administrative status</td>
<td>Specifies whether the administrative status is enabled or disabled.</td>
</tr>
<tr>
<td>Test type</td>
<td>Specifies the type of test configured.</td>
</tr>
<tr>
<td>Trap generation</td>
<td>Specifies the trap generation for the SAA test.</td>
</tr>
<tr>
<td>Test runs since last clear</td>
<td>Specifies the total number of tests performed since the last time the tests were cleared.</td>
</tr>
<tr>
<td>Number of failed tests run</td>
<td>Specifies the total number of tests that failed.</td>
</tr>
</tbody>
</table>
Sample Output

*A:Dut-A# show saa "Dut-A:1413:1501" owner "TiMOS"

SAA Test Information

<table>
<thead>
<tr>
<th>Test name</th>
<th>Dut-A:1413:1501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner name</td>
<td>TiMOS</td>
</tr>
<tr>
<td>Administrative status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Test type</td>
<td>vccv-ping 1413:1501 fc "nc" timeout 10 size 200 count 2</td>
</tr>
<tr>
<td>Test runs since last clear</td>
<td>1</td>
</tr>
<tr>
<td>Number of failed test runs</td>
<td>0</td>
</tr>
<tr>
<td>Last test result</td>
<td>Success</td>
</tr>
</tbody>
</table>

Threshold

<table>
<thead>
<tr>
<th>Type</th>
<th>Direction</th>
<th>Threshold</th>
<th>Value</th>
<th>Last Event</th>
<th>Run #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitter-in</td>
<td>Rising</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td>Jitter-out</td>
<td>Rising</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td>Jitter-rt</td>
<td>Rising</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td>Latency-in</td>
<td>Rising</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td>Latency-out</td>
<td>Rising</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td>Latency-rt</td>
<td>Rising</td>
<td>100</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td>Loss-in</td>
<td>Rising</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Falling</td>
<td>None</td>
<td>None</td>
<td>Never</td>
<td>None</td>
</tr>
</tbody>
</table>
Loss-out Rising None None Never None
 Falling None None Never None
Loss-rt Rising 2 None Never None
 Falling None None Never None
===
Test Run: 144
Total number of attempts: 2
Number of requests that failed to be sent out: 0
Number of responses that were received: 2
Number of requests that did not receive any response: 0
Total number of failures: 0, Percentage: 0

(in ms) Min Max Average Jitter
Outbound : 0 0 0 0
Inbound : 10 20 15 0
Roundtrip : 10 20 15 0
Per test packet:
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Outbound</th>
<th>Inbound</th>
<th>RoundTrip</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>EgressRtr(10.20.1.4)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>EgressRtr(10.20.1.4)</td>
</tr>
</tbody>
</table>
===
*A:Dut-A#

eth-cfm

Syntax eth-cfm
Context show
Description This command enables the context to display CFM information.

association

Syntax association [ma-index] [detail]
Context show>eth-cfm
Description This command displays eth-cfm association information.
Parameters ma-index — Specifies the MA index.

Values

<table>
<thead>
<tr>
<th>ma-index</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—4294967295</td>
<td></td>
</tr>
</tbody>
</table>

detail — Displays detailed information for the eth-cfm association.

Sample Output

A:dut-b# show eth-cfm association

--
CFM Association Table
--
Md-index Ma-index Name CCM-interval Bridge-id
--
cfm-stack-table

Syntax
cfm-stack-table [{all-ports|all-sdps|all-virtuals}] [level <0..7>] [direction <up|down>]
cfm-stack-table port <port-id> [vlan <qtag|qtag>] [level <0..7>] [direction <up|down>]

cfm-stack-table port

Context
show>eth-cfm

Description
This command displays stack-table information.

Parameters
- **port port-id** — Displays the bridge port or aggregated port on which MEPs or MHFs are configured.
- **vlan vlan-id** — Displays the associated VLAN ID.
- **level** — Display the MD level of the maintenance point.
- **Values** 0 — 7
- **direction up | down** — Displays the direction in which the MP faces on the bridge port.
- **sdp [sdp-id[:vc-id]]** — Displays CFM stack table information for the specified SDP.

Sample Output
A:dut-b# show eth-cfm cfm-stack-table

<table>
<thead>
<tr>
<th>Sap</th>
<th>Level</th>
<th>Dir</th>
<th>Md-index</th>
<th>Ma-index</th>
<th>Mep-id</th>
<th>Mac-address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/9:1</td>
<td>6</td>
<td>Down</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>00:25:ba:01:c3:6a</td>
</tr>
<tr>
<td>1/1/9:1</td>
<td>7</td>
<td>Down</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>00:25:ba:01:c3:6a</td>
</tr>
<tr>
<td>1/1/9:2</td>
<td>6</td>
<td>Down</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>00:25:ba:01:c3:6a</td>
</tr>
<tr>
<td>1/1/9:2</td>
<td>7</td>
<td>Down</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>00:25:ba:01:c3:6a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eth-tunnel</th>
<th>Level</th>
<th>Dir</th>
<th>Md-index</th>
<th>Ma-index</th>
<th>Mep-id</th>
<th>Mac-address</th>
</tr>
</thead>
</table>

7210 SAS M, X OS OAM and Diagnostics Guide
domain

Syntax domain [md-index] [association ma-index | all-associations] [detail]

Context show>eth-cfm

Description This command displays domain information.

Parameters

- **md-index** — Displays the index of the MD to which the MP is associated, or 0, if none.
- **association ma-index** — Displays the index to which the MP is associated, or 0, if none.
- **all-associations** — Displays all associations to the MD.
- **detail** — Displays detailed domain information.

Sample Output

A:dut-b# show eth-cfm domain

CFM Domain Table

<table>
<thead>
<tr>
<th>Md-index</th>
<th>Level</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>d1</td>
<td>charString</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>d2</td>
<td>charString</td>
</tr>
</tbody>
</table>

A:dut-b#
Syntax

- `mep mep-id domain md-index association ma-index [loopback] [linktrace]`
- `mep mep-id domain md-index association ma-index [remote-mepid mep-id | all-remote-mepids]`
- `mep mep-id domain md-index association ma-index eth-test-results [remote-peer mac-address]`
- `mep mep-id domain md-index association ma-index one-way-delay-test [remote-peer mac-address]`
- `mep mep-id domain md-index association ma-index two-way-delay-test [remote-peer mac-address]`

Context

`show>eth-cfm`

Description

This command displays Maintenance Endpoint (MEP) information.

Parameters

- `domain md-index` — Displays the index of the MD to which the MP is associated, or 0, if none.
- `association ma-index` — Displays the index to which the MP is associated, or 0, if none.
- `loopback` — Displays loopback information for the specified MEP.
- `linktrace` — Displays linktrace information for the specified MEP.

Sample Output

```
A:dut-b# show eth-cfm mep 1 domain 1 association 1 linktrace
-------------------------------------------------------------------------------
Mep Information
-------------------------------------------------------------------------------
Md-index           : 1                        Direction         : Down
Ma-index           : 1                        Admin             : Enabled
MepId              : 1                        CCM-Enable        : Enabled
IfIndex            : 35946496                 PrimaryVid        : 1
FngState           : fngReset                 ControlMep        : False
LowestDefectPri    : macRemErrXcon            HighestDefect     : none
Defect Flags       : None
Mac Address        : 00:25:ba:01:c3:6a        CcmLtmPriority    : 7
CcmTx              : 0                        CcmSequenceErr    : 0
Eth-1Dm Threshold  : 3(sec)
Eth-Ais:           : Disabled
Eth-Tst:           : Disabled
CcmLastFailure Frame:
                     None
XconCcmFailure Frame:
                     None
-------------------------------------------------------------------------------
Mep Linktrace Message Information
-------------------------------------------------------------------------------
LtRxUnexplained    : 0                        LtNextSequence    : 2
LtStatus           : False                    LtResult          : False
TarIsMepId         : False                    TarMepId          : 0
TarMepMac          : 00:00:00:00:00:00:00:00 TTL : 64
EgressId           : 00:00:00:25:ba:01:c3:6a SequenceNum : 1
LtFlags            : useFDBonly
```

Context

`show>eth-cfm`
Mep Linktrace Replies
--
SequenceNum : 1 ReceiveOrder : 1
Ttl : 63 Forwarded : False
LastEgressId : 00:00:00:25:ba:01:c3:6a TerminalMep : True
NextEgressId : 00:00:00:25:ba:00:5e:bf Relay : rlyHit
ChassisIdSubType : unknown value (0)
ChassisId:
 None
ManAddressDomain:
 None
ManAddress:
 None
IngressMac : 00:25:ba:00:5e:bf Ingress Action : ingOk
IngrPortIdSubType : unknown value (0)
IngressPortId:
 None
EgressMac : 00:00:00:00:00:00 Egress Action : egrNoTlv
EgrPortIdSubType : unknown value (0)
EgressPortId:
 None
Org Specific TLV:
 None
A:dut-b#
A:dut-b#
A:dut-b# show eth-cfm mep 1 domain 1 association 1 loopback
--
Mep Information
--
Md-index : 1 Direction : Down
Ma-index : 1 Admin : Enabled
MepId : 1 CCM-Enable : Enabled
IfIndex : 3596496 PrimaryVid : 1
FngState : fngReset ControlMep : False
LowestDefectPri : macRemErrXcon HighestDefect : none
Defect Flags : None
Mac Address : 00:25:ba:01:c3:6a CcmLtmPriority : 7
CcmTx : 0 CcmSequenceErr : 0
Eth-1Dm Threshold : 00:25:ba:01:c3:6a
Eth-Ais: : Disabled
Eth-Tst: : Disabled
CcmLastFailure Frame:
 None
XconCcmFailure Frame:
 None
--
Mep Loopback Information
--
LbRxReply : 1 LbRxBadOrder : 0
LbRxBadMsdu : 0 LbTxReply : 0
LbSequence : 2 LbNextSequence : 2
LbStatus : False LbResultOk : True
DestIsMepId : False DestMepId : 0
DestMac : 00:00:00:00:00:00 SendCount : 0
VlanDropEnable : True VlanPriority : 7
Data TLV:
 None
A:dut-b#
*A:dut-b# show eth-cfm mep 1 domain 4 association 4 two-way-delay-test remote-peer
00:25:ba:00:5e:bf

Eth CFM Two-way Delay Test Result Table
Peer Mac Addr Delay (us) Delay Variation (us)
--
00:25:ba:00:5e:bf 507 507

A:dut-b#
*A:dut-b# show eth-cfm mep 1 domain 4 association 4 two-way-delay-test

Eth CFM Two-way Delay Test Result Table
Peer Mac Addr Delay (us) Delay Variation (us)
--
00:25:ba:00:5e:bf 507 507

A:dut-a#
*A:dut-a# show eth-cfm mep 2 domain 4 association 4 eth-test-results remote-peer
00:25:ba:01:c3:6a

Eth CFM ETH-Test Result Table
Current Accumulate
FrameCount ErrBits ErrBits
Peer Mac Addr ByteCount CrcErrs CrcErrs
--
00:25:ba:01:c3:6a 6 0 0
384 0 0

A:dut-a#
*A:dut-a# show eth-cfm mep 2 domain 4 association 4 eth-test-results

Eth CFM ETH-Test Result Table
Current Accumulate
FrameCount ErrBits ErrBits
Peer Mac Addr ByteCount CrcErrs CrcErrs
--
00:25:ba:01:c3:6a 6 0 0
384 0 0

*A:dut-a# show eth-cfm mep 2 domain 4 association 4 one-way-delay-test remote-peer
00:25:ba:01:c3:6a

Eth CFM One-way Delay Test Result Table
Peer Mac Addr Delay (us) Delay Variation (us)
--
00:25:ba:01:c3:6a 402 402

A:dut-a#
mip

Syntax mip
Context show>eth-cfm
Description This command displays SAPs/bindings provisioned for allowing the default MIP creation.

*A:dut-a# show eth-cfm mep 2 domain 4 association 4 one-way-delay-test

==
Eth CFM One-way Delay Test Result Table
==
Peer Mac Addr Delay (us) Delay Variation (us)
--
00:25:ba:01:c3:6a 402 402
--
*A:dut-a#
Clear Commands

saa

Syntax
```
saa-test [test-name [owner test-owner]]
```

Context
clear

Description
Clear the SAA results for the latest and the history for this test. If the test name is omitted, all the results for all tests are cleared.

Parameters
- `test-name` — Name of the SAA test. The test name must already be configured in the `config>saa>test` context.
- `owner test-owner` — Specifies the owner of an SAA operation up to 32 characters in length.

Default
If a `test-owner` value is not specified, tests created by the CLI have a default owner “TiMOS CLI”.
Tools Command Reference

Command Hierarchies

- Tools Dump Commands on page 147
- Tools Perform Commands on page 148

Configuration Commands

Tools Dump Commands

```
 tools
     — dump
         — lag lag-id lag-id
         — ldp-treerace [prefix ip-prefix/mask] [manual-prefix ip-prefix/mask] [path-destination ip-address] [trace-tree]
         — persistence
             — summary
         — router router-instance
         — service
             — base-stats [clear]
             — iom-stats [clear]
             — l2pt-diags
             — l2pt-diags clear
             — l2pt-diags detail
             — radius-discovery [svc-id service-id]
             — vpls-fdb-stats [clear]
         — system
             — cpu-pkt-stats
             — system-resources slot-number
```
Tools Perform Commands

- tools
 - perform
 - cron
 - action
 - stop [action-name] [owner action-owner] [all]
 - tod
 - re-evaluate
 - customer customer-id [site customer-site-name]
 - filter filter-type [filter-id]
 - service id service-id [sap sap-id]
 - tod-suite tod-suite-name
 - dintflag
 - clear-force lag-id lag-id [sub-group sub-group-id]
 - log
 - test-event
 - router [router-instance]
 - isis
 - mpls
 - adjust-autobandwidthcspf to ip-addr [from ip-addr] [bandwidth bandwidth] [include-bitmap bitmap] [exclude-bitmap bitmap] [hop-limit limit] [exclude-address excl-address [excl-address...(up to 8 max)]] [use-te-metric] [skip-interface interface-name] [ds-class-type class-type] [cspf-reqtype req-type]
 - ospf [ospf-instance]
 - security
 - authentication-server-check server-address ip-address [port port] user-name
 DHCP client user name password password secret key [source-address ip-address] [timeout seconds] [router router-instance]
Generic Commands

tools

<table>
<thead>
<tr>
<th>Syntax</th>
<th>tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>root</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables the context to enable useful tools for debugging purposes.</td>
</tr>
<tr>
<td>Default</td>
<td>none</td>
</tr>
</tbody>
</table>
| Parameters | dump — Enables dump tools for the various protocols.
perform — Enables tools to perform specific tasks. |
Dump Commands

dump

Syntax
dump router-name

Context
tools

Description
The context to display information for debugging purposes.

Default
one

Parameters
router-name — Specify a router name, up to 32 characters in length.

 Default
 Base

lag

Syntax
lag lag-id lag-id

Context
tools>dump

Description
This tool displays LAG information.

Parameters
lag-id — Specify an existing LAG id.

 Values
 1 — 6

*A:kiran3>tools>dump# lag lag-id 1
Port state : Up
Selected subgrp : 1
NumActivePorts : 2
ThresholdRising : 2
ThresholdFalling: 0
IOM bitmask : 2
Config MTU : 1522
Oper. MTU : 1522
Bandwidth : 200000
multi-chassis : NO

--
<table>
<thead>
<tr>
<th>Index</th>
<th>PortId</th>
<th>RX pkts</th>
<th>TX pkts</th>
<th>State</th>
<th>Active Port</th>
<th>Cfg Oper Speed</th>
<th>BW AP CS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pri</td>
<td>Mtu</td>
<td>Mtu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
--
| 0 | 1/1/1 | 1 | 1 | Up | yes | 32768 1522 1522 | 1000 100000 0 2 |
| 1 | 1/1/2 | 0 | 0 | Up | yes | 32768 1522 1522 | 1000 100000 0 2 |
--
ldp-treetrace

Syntax
ldp-treetrace {prefix ip-prefix/mask|manual-prefix ip-prefix/mask}|path-destination ip-address] [trace-tree]

Context
tools>dump

Description
This command displays TreeTrace information.

Parameters
prefix ip-prefix/mask — Specifies the IP prefix and host bits.

Values
 host bits: must be 0
 mask: 0 — 32

persistence

Syntax
persistence

Context
tools>dump

Description
This command enables the context to display persistence information for debugging purposes.

submgt

Syntax
submgt [record record-key]

Context
tools>dump>persistence

Description
This command displays subscriber management persistence information.

summary

Syntax
summary

Context
tools>dump>persistence

Description
The context to display persistence summary information for debugging purposes.

Sample Output

A:ALA-B# tools dump persistence summary
===
Persistence Summary on Slot A
===
<table>
<thead>
<tr>
<th>Client</th>
<th>Location</th>
<th>Entries in use</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxxxxx</td>
<td>cf1:\l2_dhcp.pst</td>
<td>200</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>
===
Persistence Summary on Slot B
===
system

Syntax
```plaintext
cpu-pkt-stats
```

Context
`tools>dump>system`

Description
This command dumps tools for system information.

cpu-pkt-stats

Syntax
```plaintext
cpu-pkt-stats
```

Context
`tools>dump>system`

Description
This command dumps statistics for CPU traffic.

system-resources

Syntax
```plaintext
system-resources slot-number
```

Context
`tools>dump`

Description
This command displays system resource information.

Default
none

Parameters
`slot-number` — Specify a specific slot to view system resources information.
Service Commands

service

Syntax service
Context tools>dump
Description Use this command to configure tools to display service dump information.

base-stats

Syntax base-stats [clear]
Context tools>dump>service
Description Use this command to display internal service statistics.
Default none
Parameters clear — Clears stats after reading.

iom-stats

Syntax iom-stats [clear]
Context tools>dump>service
Description Use this command to display IOM message statistics.
Default none
Parameters clear — Clears stats after reading.

l2pt-diags

Syntax l2pt-diags
l2pt-diags clear
l2pt-diags detail
Context tools>dump>service
Description Use this command to display L2pt diagnostics.
Default none
Parameters

clear — Clears the diags after reading.
detail — Displays detailed information.

Sample Output

A:ALA-48>tools>dump>service# l2pt-diags
[l2pt/bpdu error diagnostics]
Error Name | Occurence | Event log
---------------+-------------+-----------------------------
[l2pt/bpdu forwarding diagnostics]
Rx Frames | Tx Frames | Frame Type
---------------+-------------+-----------------------------
A:ALA-48>tools>dump>service#

A:ALA-48>tools>dump>service# l2pt-diags detail
[l2pt/bpdu error diagnostics]
Error Name | Occurence | Event log
---------------+-------------+-----------------------------
[l2pt/bpdu forwarding diagnostics]
Rx Frames | Tx Frames | Frame Type
---------------+-------------+-----------------------------
[l2pt/bpdu config diagnostics]
WARNING - service 700 has l2pt termination enabled on all access points: consider translating further down the chain or turning it off.
WARNING - service 800 has l2pt termination enabled on all access points: consider translating further down the chain or turning it off.
WARNING - service 9000 has l2pt termination enabled on all access points: consider translating further down the chain or turning it off.
WARNING - service 32806 has l2pt termination enabled on all access points: consider translating further down the chain or turning it off.
WARNING - service 90001 has l2pt termination enabled on all access points: consider translating further down the chain or turning it off.
A:ALA-48>tools>dump>service#

radius-discovery

Syntax radius-discovery [svc-id service-id]

Context tools>dump>service

Description Use this command to display RADIUS Discovery membership information.

Sample Output

A:ALA-48# tools dump service radius-discovery
--
Service Id 103 Vpn Id 103 UserName 901:103 (Vpn-Id) PolicyName RAD_Disc for Service 103
Waiting for Session Timeout (Polling 60), Seconds in State 17
--
SdpId Vcid Deliver Ip Addr VcType Mode Split Horizon

3 103 LDP 10. 20. 1. 3 Ether Spoke
4 103 LDP 10. 20. 1. 2 Ether Spoke
vpls-fdb-stats

Syntax vpls-fdb [clear]

Context tools>dump>service

Description Use this command to display VPLS FDB statistics.

Default none

Parameters clear — Clears stats after reading.
Router Commands

router

Syntax
router router-instance

Context
tools>dump
tools>perform

Description
This command enables tools for the router instance.

Default
none

Parameters
router router-instance — Specifies the router name or service ID.

Values
router-name: Base
service-id: 1 — 2147483647

Default
Base

dintflag

Syntax
lag

Context
tools>perform

Description
This command configures tools to control LAG.

clear-force

Syntax
clear-force lag-id lag-id [sub-group sub-group-id]

Context
tools>perform>lag

Description
This command clears a forced status.

Parameters
lag-id lag-id — Specify an existing LAG id.

Values
1 — 200

force

Syntax
force lag-id lag-id [sub-group sub-group-id] {active | standby}

Context
tools>perform>lag

Description
This command forces an active or standby status.
Parameters

lag-id

lag-id — Specify an existing LAG id.

Values

1 — 6

log

Syntax

`log`

Context

`tools>perform`

Description

Tools for event logging.

test-event

Syntax

`test-event`

Context

`tools>perform>log`

Description

This command causes a test event to be generated. The test event is LOGGER event #2011 and maps to the tmnxEventSNMP trap in the TIMETRA-LOG-MIB.

interface

Syntax

`interface [ip-int-name | ip-address]`

Context

`tools>dump>router>ldp`

Description

This command displays information for an LDP interface.

Default

none

Parameters

ip-int-name — Specifies the interface name.

ip-address — Specifies the IP address.

peer

Syntax

`peer ip-address`

Context

`tools>dump>router>ldp`

Description

This command displays information for an LDP peer.

Default

none

Parameters

ip-address — Specifies the IP address.

displays information for an LDP instance.
mpls

Syntax mpls
Context tools>dump>router
Description This command enables the context to display MPLS information.
Default none

ftn

Syntax ftn
Context tools>dump>router>mpls
Description This command displays FEC-to-NHLFE (FTN) dump information for MPLS. (NHLFE is the acronym for Next Hop Label Forwarding Entry.)
Default none

ilm

Syntax ilm
Context tools>dump>router>mpls
Description This command displays incoming label map (ILM) information for MPLS.
Default none

lspinfo

Syntax lspinfo [lsp-name] [detail]
Context tools>dump>router>mpls
Description This command displays label-switched path (LSP) information for MPLS.
Default none
Parameters lsp-name — Specifies the name that identifies the LSP. The LSP name can be up to 32 characters long and must be unique.
detail — Displays detailed information about the LSP.
memory-usage

Syntax memory-usage

Context tools>dump>router>mpls

Description This command displays memory usage information for MPLS.

Default none

ospf

Syntax ospf [ospf-instance]

Context tools>dump>router

Description This command enables the context to display tools information for OSPF.

Default none

Parameters

- **ospf-instance** — OSPF instance.

- **Values**
 - 1 — 4294967295

abr

Syntax abr [detail]

Context tools>dump>router>ospf

Description This command displays area border router (ABR) information for OSPF.

Default none

Parameters

- **detail** — Displays detailed information about the ABR.

asbr

Syntax asbr [detail]

Context tools>dump>router>ospf

Description This command displays autonomous system border router (ASBR) information for OSPF.

Default none

Parameters

- **detail** — Displays detailed information about the ASBR.
bad-packet

Syntax bad-packet [interface-name]
Context tools>dump>router>ospf
Description This command displays information about bad packets for OSPF.
Default none
Parameters interface-name — Display only the bad packets identified by this interface name.

leaked-routes

Syntax leaked-routes [summary | detail]
Context tools>dump>router>ospf
Description This command displays information about leaked routes for OSPF.
Default summary
Parameters summary — Display a summary of information about leaked routes for OSPF.
detail — Display detailed information about leaked routes for OSPF.

memory-usage

Syntax memory-usage [detail]
Context tools>dump>router>ospf
Description This command displays request list information for OSPF.
Default none
Parameters neighbor ip-address — Display neighbor information only for neighbor identified by the IP address.
detail — Displays detailed information about the neighbor.
virtual-neighbor ip-address — Displays information about the virtual neighbor identified by the IP address.
area-id area-id — The OSPF area ID expressed in dotted decimal notation or as a 32-bit decimal integer.
retransmission-list

Syntax
retransmission-list [neighbor ip-address] [detail]
retransmission-list virtual-neighbor ip-address area-id area-id [detail]

Context tools>dump>router>ospf

Description This command displays dump retransmission list information for OSPF.

Default none

Parameters
neighbor ip-address — Display neighbor information only for neighbor identified by the IP address.
detail — Displays detailed information about the neighbor.

virtual-neighbor ip-address — Displays information about the virtual neighbor identified by the IP address.

area-id area-id — The OSPF area ID expressed in dotted decimal notation or as a 32-bit decimal integer.

route-summary

Syntax route-summary

Context tools>dump>router>ospf

Description This command displays dump route summary information for OSPF.

Default none

route-table

Syntax route-table [type] [detail]

Context tools>dump>router>ospf

Description This command displays dump information about routes learned through OSPF.

Default none

Parameters type — Specify the type of route table to display information.

Values intra-area, inter-area, external-1, external-2, nssa-1, nssa-2
detail — Displays detailed information about learned routes.
rsvp

Syntax rsvp
Context tools>dump>router
Description This command enables the context to display RSVP information.
Default none

rsb

Syntax rsb [endpoint endpoint-address] [sender sender-address] [tunnelid tunnel-id] [lspid lsp-id]
Context tools>dump>router>rsvp
Description This command displays RSVP Reservation State Block (RSB) information.
Default none
Parameters
 endpoint endpoint-address — Specifies the IP address of the last hop.
 sender sender-address — Specifies the IP address of the sender.
 tunnelid tunnel-id — Specifies the SDP ID.
 Values 0 — 4294967295
 lspid lsp-id — Specifies the label switched path that is signaled for this entry.
 Values 1 — 65535

tcsb

Syntax tcsb [endpoint endpoint-address] [sender sender-address] [tunnelid tunnel-id] [lspid lsp-id]
Context tools>dump>router>rsvp
Description This command displays RSVP traffic control state block (TCSB) information.
Default none
Parameters
 endpoint endpoint-address — Specifies the IP address of the egress node for the tunnel supporting this session.
 sender sender-address — Specifies the IP address of the sender node for the tunnel supporting this session. It is derived from the source address of the associated MPLS LSP definition.
 tunnelid tunnel-id — Specifies the IP address of the ingress node of the tunnel supporting this RSVP session.
 Values 0 — 4294967295
lspid lsp-id — Specifies the label switched path that is signaled for this entry.

Values 1 — 65535

static-route

Syntax static-route ldp-sync-status

Context tools>dump>router

Description This command displays the sync status of LDP interfaces that static-route keeps track of.

web-rd

Syntax web-rd

Context tools>dump>router

Description This command enables the context to display tools for web redirection.

http-client

Syntax http-client [ip-prefix/mask]

Context tools>dump>router>web-rd

Description This command displays the HTTP client hash table.

Parameters ip-prefix/mask — Specifies the IP prefix and host bits.

Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host bits:</td>
<td>must be 0</td>
</tr>
<tr>
<td>mask:</td>
<td>0 — 32</td>
</tr>
</tbody>
</table>
Performance Tools

perform

Syntax perform
Context tools
Description This command enables the context to enable tools to perform specific tasks.
Default none

cron

Syntax cron
Context tools>perform
Description This command enables the context to perform CRON (scheduling) control operations.
Default none

action

Syntax action
Context tools>perform>cron
Description This command enables the context to stop the execution of a script started by CRON action. See the stop command.

stop

Syntax stop [action-name] [owner action-owner] [all]
Context tools>perform>cron>action
Description This command stops execution of a script started by CRON action.
Parameters action-name — Specifies the action name.
 Values Maximum 32 characters.
owner action-owner — Specifies the owner name.
Default TiMOS CLI
all — Specifies to stop all CRON scripts.
tod

Syntax

tod

Context
tools>perform>cron

Description
This command enables the context for tools for controlling time-of-day actions.

Default
none

re-evaluate

Syntax
re-evaluate

Context
tools>perform>cron>tod

Description
This command enables the context to re-evaluate the time-of-day state.

Default
none

customer

Syntax
customer customer-id [site customer-site-name]

Context
tools>perform>cron>tod>re-eval

Description
This command re-evaluates the time-of-day state of a multi-service site.

Parameters
customer-id — Specify an existing customer ID.

Values
1 — 2147483647

site customer-site-name — Specify an existing customer site name.

filter

Syntax
filter filter-type [filter-id]

Context
tools>perform>cron>tod>re-eval

Description
This command re-evaluates the time-of-day state of a filter entry.

Parameters
filter-type — Specify the filter type.

Values
ip-filter, mac-filter

filter-id — Specify an existing filter ID.

Values
1 — 65535
service

Syntax service id service-id [sap sap-id]
Context tools>perform>cron>tod>re-eval
Description This command re-evaluates the time-of-day state of a SAP.
Parameters id service-id — Specify the an existing service ID.

Values 1 — 2147483647

sap sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 171 for CLI command syntax.

tod-suite

Syntax tod-suite tod-suite-name
Context tools>perform>cron>tod>re-eval
Description This command re-evaluates the time-of-day state for the objects referring to a tod-suite.
Parameters tod-suite-name — Specify an existing TOD name.

ldp-sync-exit

Syntax [no] ldp-sync-exit
Context tools>perform>router>isis
tools>perform>router>ospf
Description This command restores the actual cost of an interface at any time. When this command is executed, IGP immediately advertises the actual value of the link cost for all interfaces which have the IGP-LDP synchronization enabled if the currently advertised cost is different.

isis

Syntax isis
Context tools>perform>router
Description This command enables the context to configure tools to perform certain ISIS tasks.
mpls

Syntax mpls
Context tools>perform>router
Description This command enables the context to perform specific MPLS tasks.
Default none

adjust-autobandwidth

Syntax adjust-autobandwidth [lsp lsp-name [force [bandwidth mbps]]]
Context tools>perform>router>mpls
Description This command initiates an immediate auto-bandwidth adjustment attempt for either one specific LSP or all active LSPs. If an LSP is not specified then the system assumes the command applies to all LSPs.

The adjust-count, maximum average data rate and overflow count are not reset by the manual auto-bandwidth command, whether or not the bandwidth adjustment succeeds or fails.

Parameters

lsp lsp-name — Specifies the name that identifies the LSP. The LSP name can be up to 32 characters long and must be unique.

force — The optional force parameter, which is available only when an LSP is referenced, determines whether adjust-up and adjust-down threshold checks are applied. If force is not specified then the maximum average data rate must differ from the current reservation by more than the adjust-up or adjust-down thresholds, otherwise no bandwidth adjustment occurs. If the force option is specified then, bandwidth adjustment ignores the configured thresholds.

bandwidth mbps — If a bandwidth is specified as part of the force option then the bandwidth of the LSP is changed to this specific value, otherwise the bandwidth is changed to the maximum average data rate that has been measured by the system in the current adjust interval.

cspf to ip-addr [from ip-addr] [bandwidth bandwidth] [include-bitmap bitmap] [exclude-bitmap bitmap] [hop-limit limit] [exclude-address excl-addr [excl-addr...(up to 8 max)]] [use-te-metric] [skip-interface interface-name] [ds-class-type class-type] [cspf-reqtype req-type]

Context tools>perform>router>mpls
Description This command computes a CSPF path with specified user constraints.
Default none
Parameters

to ip-addr — Specify the destination IP address.

from ip-addr — Specify the originating IP address.

bandwidth bandwidth — Specifies the amount of bandwidth in mega-bits per second (Mbps) to be reserved.
include-bitmap bitmap — Specifies to include a bit-map that specifies a list of admin groups that should be included during setup.

exclude-bitmap bitmap — Specifies to exclude a bit-map that specifies a list of admin groups that should be included during setup.

hop-limit limit — Specifies the total number of hops a detour LSP can take before merging back onto the main LSP path.

exclude-address ip-addr — Specifies an IP address to exclude from the operation.

use-te-metric — Specifies whether the TE metric would be used for the purpose of the LSP path computation by CSPF.

skip-interface interface-name — Specifies a local interface name, instead of the interface address, to be excluded from the CSPF computation.

ds-class-type class-type — Specifies the class type.

 Values 0 — 7

cspf-reqtype req-typ — Specifies the CSPF request type.

 Values all — Specifies all ECMP paths.
 random — Specifies random ECMP paths.
 least-fill — Specifies minimum fill path.

resignal

Syntax resignal lsp lsp-name path path-name

tools>perform>router>mpls

Context

Description Use this command to resignal a specific LSP path.

Default none

Parameters lsp lsp-name — Specifies the name that identifies the LSP. The LSP name can be up to 32 characters long and must be unique.

path path-name — Specifies the name for the LSP path up, to 32 characters in length.

trap-suppress

Syntax trap-suppress [number-of-traps] [time-interval]

Context tools>perform>router>mpls

Description This command modifies thresholds for trap suppression.

Default none
Parameters

`number-of-traps` — Specify the number of traps in multiples of 100. An error message is generated if an invalid value is entered.

Values

100 to 1000

`time-interval` — Specify the timer interval in seconds.

Values

1 — 300

ospf

Syntax

`ospf`

Context

`tools>perform>router`

Description

This command enables the context to perform specific OSPF tasks.

Default

none

security

Syntax

`security`

Context

`tools>perform`

Description

This command provides tools for testing security.

authentication-server-check

Syntax

`authentication-server-check server-address ip-address [port port] user-name DHCP client user-name password password secret key [source-address ip-address] [timeout seconds] [router router-instance]`

Context

`tools>perform>security`

Description

This command checks connection to the RADIUS server.

Parameters

`router router-instance` — Specifies the router name or service ID.

service

Syntax

`services`

Context

`tools>perform`

Description

This command enables the context to configure tools for services.
id

Syntax

id service-id

Context

tools>perform>service

Description

This command enables the context to configure tools for a specific service.

Parameters

service-id — Specify an existing service ID.

Values

1 — 2147483647

Sample Output

```
A:Dut-B# tools perform service id 1 endpoint mcep-t1 force-switch 221:1
*A:Dut-B# show service id 1 endpoint
-----------------------------------------------------------------------------------------------
Service 1 endpoints
-----------------------------------------------------------------------------------------------
| Endpoint name | mcep-t1 |
| Description   | (Not Specified) |
| Revert time   | 0 |
| Act Hold Delay| 0 |
| Ignore Standby Signaling | false |
| Suppress Standby Signaling | false |
| Block On Mesh Fail | true |
| Multi-Chassis Endpoint | 1 |
| MC Endpoint Peer Addr | 3.1.1.3 |
| Psv Mode Active | No |
| Tx Active | 221:1(forced) |
| Tx Active Up Time | 0d 00:00:17 |
| Revert Time Count Down | N/A |
| Tx Active Change Count | 6 |
| Last Tx Active Change | 02/14/2009 00:17:32 |

Members
-----------------------------------------------------------------------------------------------
| Spoke-sdp: 221:1 Prec:1 | Oper Status: Up |
| Spoke-sdp: 231:1 Prec:2 | Oper Status: Up |
```

A:Dut-B#
Common CLI Command Descriptions

In This Chapter

This chapter provides CLI syntax and command descriptions for SAP and port commands.

Topics in this chapter include:

- SAP Syntax on page 172
- Port Syntax on page 176
Common Service Commands

sap

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap</td>
<td>This command specifies the physical port identifier portion of the SAP definition.</td>
</tr>
<tr>
<td>sap-id</td>
<td>Specifies the physical port identifier portion of the SAP definition.</td>
</tr>
</tbody>
</table>

The sap-id can be configured in one of the following formats:

<table>
<thead>
<tr>
<th>Type</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-id</td>
<td>slot/mda/port[,channel]</td>
<td>1/1/5</td>
</tr>
</tbody>
</table>
| null | [port-id | bundle-id| bpgrp-id | lag-id | aps-id] | port-id: 1/1/3
 | | | bundle-id: bundle-ppp-1/1.1
 | | | bpgrp-id: bpgrp-ima-1
 | | | lag-id: lag-3
 | | | aps-id: aps-1
| dot1q | [port-id | bundle-id| bpgrp-id | lag-id | aps-id]:qtag1 | port-id:qtag1: 1/1/3:100
 | | | bundle-id: bundle-ppp-1/1.1
 | | | bpgrp-id: bpgrp-ima-1
 | | | lag-id:qtag1:lag-3:102
 | | | aps-id:qtag1: aps-1:27
| qinq | [port-id | bpgrp-id | lag-id]:qtag1.qtag2 | port-id:qtag1.qtag2: 1/1/3:100.10
 | | | bpgrp-id: bpgrp-ima-1
 | | | lag-id:qtag1.qtag2: lag-10:
| atm | [port-id | aps-id | bundle-id| bpgrp-id][:vpi/vci |vpi |vpi1.vpi2] | port-id: 1/1/1
 | | | aps-id: aps-1
 | | | bundle-id: bundle-ima-1/1.1
 | | | bundle-ppp-1/1.1
 | | | bpgrp-id: bpgrp-ima-1
 | | | vpi/vci: 16/26
 | | | vpi: 16
 | | | vpi1.vpi2: 16.200
| frame-relay | [port-id | aps-id |]:dlci | port-id: 1/1/1:100
 | | | bundle-id: bundle-fr-3/1.1:100
 | | | aps-id: aps-1
 | | | dlci: 16
| cisco-hdlc | slot/mda/port.channel | port-id: 1/1/3.1 |
7750 SR:

Values: sap-id

<table>
<thead>
<tr>
<th>Null</th>
<th>Values: sap-idnull</th>
<th>[port-id</th>
<th>bundle-id</th>
<th>bpgrp-id</th>
<th>lag-id</th>
<th>aps-id]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot1q</td>
<td>Values: sap-idnull</td>
<td>[port-id</td>
<td>bundle-id</td>
<td>bpgrp-id</td>
<td>lag-id</td>
<td>aps-id]:qtag1</td>
</tr>
<tr>
<td>QinQ</td>
<td>Values: sap-idnull</td>
<td>[port-id</td>
<td>bundle-id</td>
<td>bpgrp-id</td>
<td>lag-id]:qtag1.qtag2</td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>Values: sap-idnull</td>
<td>[port-id</td>
<td>aps-id]:dlci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco-Hdlc</td>
<td>slot/mda/port.channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM</td>
<td>slot/mda/port.channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ima-grp</td>
<td>[bundle-id]:vpi[vpi</td>
<td>vpi1.vpi2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port-id</td>
<td>slot/mda/port.channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundle-id</td>
<td>bundle-type-slot/mda.bundle-num</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>bundle keyword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundle-num</td>
<td>1 — 336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bpgrp-id</td>
<td>bpgrp-type-bpgrp-num</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>bpgrp keyword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bpgrp-num</td>
<td>1 — 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApS-id</td>
<td>aps-group-id[.channel]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aps</td>
<td>aps keyword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-id</td>
<td>1 — 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ccag-id</td>
<td>ccag-id.path-id[.cc-type]:cc-id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ccag</td>
<td>ccag keyword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td>1 — 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path-id</td>
<td>a, b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cc-type</td>
<td>.sap-net, .net-sap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cc-id</td>
<td>0 — 4094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth-tunnel</td>
<td>eth-tunnel-id[.eth-tun-sap-id]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td>1 — 1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth-tun-sap-id</td>
<td>0 — 4094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag-id</td>
<td>lag-id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag</td>
<td>lag keyword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td>1 — 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qtag1</td>
<td>0 — 4094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qtag2</td>
<td>*, 0 — 4094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vpi</td>
<td>NNI: 0 — 4095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uni</td>
<td>0 — 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vci</td>
<td>1, 2, 5 — 65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dlci</td>
<td>16 — 1022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipsec-id</td>
<td>ipsec-id[.private</td>
<td>public]:tag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipsec</td>
<td>ipsec keyword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td>1 — 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td>0 — 4094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7710 SR:

Values: sap-id: null

<table>
<thead>
<tr>
<th>dot1q</th>
<th>Values: sap-id: null</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1q</td>
<td>[port-id</td>
</tr>
<tr>
<td>qinq</td>
<td>[port-id</td>
</tr>
<tr>
<td>atm</td>
<td>[port-id</td>
</tr>
<tr>
<td>frame</td>
<td>[port-id</td>
</tr>
<tr>
<td>cisco-hdlc</td>
<td>slot/mda/port.channel</td>
</tr>
<tr>
<td>cem</td>
<td>slot/mda/port.channel</td>
</tr>
<tr>
<td>ima-grp</td>
<td>[bundle-id[vpi/vci[vpi1.vpi2</td>
</tr>
<tr>
<td>port-id</td>
<td>slot/mda/port[.channel]</td>
</tr>
<tr>
<td>bundle-id</td>
<td>bundle-type-slot/mda.bundle-num</td>
</tr>
<tr>
<td>type</td>
<td>bundle keyword</td>
</tr>
<tr>
<td>bundle-num</td>
<td>1 — 256</td>
</tr>
<tr>
<td>bpgrp-id</td>
<td>bpgrp-type-bpgrp-num</td>
</tr>
<tr>
<td>type</td>
<td>bpgrp keyword</td>
</tr>
<tr>
<td>bpgrp-num</td>
<td>1 — 1280</td>
</tr>
<tr>
<td>aps-id</td>
<td>aps-group-id.channel</td>
</tr>
<tr>
<td>aps</td>
<td>aps keyword</td>
</tr>
<tr>
<td>group-id</td>
<td>1 — 16</td>
</tr>
<tr>
<td>lag-id</td>
<td>lag-id</td>
</tr>
<tr>
<td>lag</td>
<td>lag keyword</td>
</tr>
<tr>
<td>id</td>
<td>1 — 64</td>
</tr>
<tr>
<td>qtag1</td>
<td>0 — 4094</td>
</tr>
<tr>
<td>qtag2</td>
<td>*, 0 — 4094</td>
</tr>
<tr>
<td>vpi</td>
<td>NNI: 0 — 4095</td>
</tr>
<tr>
<td>vci</td>
<td>1, 2, 5 — 65535</td>
</tr>
<tr>
<td>dlc1</td>
<td>16 — 1022</td>
</tr>
</tbody>
</table>
7450 ESS:

Values: sap-id
- null
- dot1q: [port-id | bundle-id | bpgrp-id | lag-id | aps-id]
- qinq: [port-id | bundle-id | bpgrp-id | lag-id | aps-id]:qtag1
- atm: [port-id | aps-id]:[vpi|vci|vpi1.vpi2]
- frame: [port-id | aps-id]:dlci
- cisco-hdlc: slot/mda/port.channel
- ima-grp: [bundle-id]:vpi|vci|vpi1.vpi2
- port-id: slot/mda/port[.channel]
- bundle-id: bundle-type-slot/mda.bundle-num
 - bundle keyword
 - type: ima, fr, ppp
 - bundle-num: 1 — 336
- bpgrp-id: bpgrp-type-bpgrp-num
 - bpgrp keyword
 - type: ima, ppp
 - bpgrp-num: 1 — 2000
- aps-id: aps-group-id[.channel]
 - aps keyword
 - group-id: 1 — 64
- ccag-id: ccag-id:path-id[cc-type]:cc-id
 - ccag keyword
 - id: 1 — 8
 - path-id: a, b
 - cc-type: .sap-net, .net-sap
 - cc-id: 0 — 4094
- eth-tunnel: eth-tunnel-id[eth-tun-sap-id]
 - id: 1 — 1024
 - eth-tun-sap-id: 0 — 4094
- lag-id: lag-id
 - lag keyword
 - id: 1 — 200
- qtag1: 0 — 4094
- qtag2: *, 0 — 4094
- vpi: NNI: 0 — 4095
 - UNI: 0 — 255
- vci: 1, 2, 5 — 65535
- dlc1: 16 — 1022
port

Syntax
`port port-id`

Description
This command specifies a port identifier.

Parameters
`port-id` — The `port-id` can be configured in one of the following formats.

Values

<table>
<thead>
<tr>
<th>port-id</th>
<th>slot/mda/port[.channel]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lag-id</td>
</tr>
<tr>
<td></td>
<td>lag</td>
</tr>
<tr>
<td></td>
<td>keyword</td>
</tr>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td></td>
<td>1—200</td>
</tr>
</tbody>
</table>
Standards and Protocol Support

Standards Compliance
IEEE 802.1D Bridging
IEEE 802.1p/Q VLAN Tagging
IEEE 802.1w Rapid Spanning Tree Protocol
IEEE 802.1X Port Based Network Access Control
IEEE 802.3ad Provider Bridges
IEEE 802.3ah Ethernet in the First Mile
IEEE 802.3z 100BaseSX/LX
ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks
draft-ietf-disman-alarm-mib-04.txt
IANA-IFType-MIB
IEEE8023-LAG-MIB

Protocol Support

OSPF
RFC 1765 OSPF Database Overflow
RFC 2328 OSPF Version 2
RFC 2370 Opaque LSA Support
RFC 3101 OSPF NSSA Option
RFC 3137 OSPF Stub Router Advertisement
RFC 3623 Graceful OSPF Restart – GR helper
RFC 3630 Traffic Engineering (TE) Extensions to OSPF Version 2

IS-IS
RFC 1142 OSI IS-IS Intra-domain Routing Protocol (ISO 10589)
RFC 1195 Use of OSI IS-IS for routing in TCP/IP & dual environments
RFC 2763 Dynamic Hostname Exchange for IS-IS
RFC 2966 Domain-wide Prefix Distribution with Two-Level IS-IS
RFC 2973 IS-IS Mesh Groups
RFC 3373 Three-Way Handshake for System (IS-IS) Point-to-Point Adjacencies
RFC 3567 Intermediate System to Intermediate System (ISIS) Cryptographic Authentication
RFC 3719 Recommendations for Interoperable Networks using IS-IS
RFC 3784 Intermediate System to Intermediate System (IS-IS) Extensions for Traffic Engineering (TE)
RFC 3787 Recommendations for Interoperable IP Networks
RFC 3847 Restart Signaling for IS-IS – GR helper

MPLS
RFC 3031 MPLS Architecture
RFC 3032 MPLS Label Stack Encoding (REV3443))
RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
RFC 4182 Removing a Restriction on the use of MPLS Explicit NULL
draft-ietf-disman-alarm-mib-04.txt
draft-jork-ldp-igp-sync-03.txt

Multicast
RFC 1112 Host Extensions for IP Multicasting (Snooping)
RFC 2236 Internet Group Management Protocol, (Snooping)

RSVP-TE
RFC 2430 A Provider Architecture DiffServ & TE
RFC 2702 Requirements for Traffic Engineering over MPLS
RFC 3209 Extensions to RSVP for Tunnels
RFC 4090 Fast reroute Extensions to RSVP-TE for LSP Tunnels
draft-ietf-camp-mpls-gracefulshutdown-06 Graceful Shutdown in GMPLS Traffic Engineering Networks

DIFFERENTIATED SERVICES
RFC 2474 Definition of the DS Field the IPv4 and IPv6 Headers (Rev)
RFC 2597 Assured Forwarding PHB Group (rev3260)
RFC 2598 An Expedited Forwarding PHB
RFC 2697 A Single Rate Three Color Marker
RFC 2698 A Two Rate Three Color Marker

TCP/IP
RFC 768 UDP
RFC 1350 The TFTP Protocol (Rev.
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 1519 CIDR
RFC 1812 Requirements for IPv4 Routers
RFC 2347 TFTP option Extension
RFC 2328 TFTP Blocksize Option
RFC 2349 TFTP Timeout Interval and Transfer Size option

DHCP
RFC 2131 Dynamic Host Configuration Protocol (REV)

VPLS
RFC 4762 Virtual Private LAN Services Using LDP (previously draft-ietf-l2vpn-vpls-ldp-08.txt)

PSEUDO-WIRE
RFC 3985 Pseudo Wire Emulation Edge-to-Edge (PWE3)
Standards and Protocols

RFC 4385 Pseudo Wire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN
RFC 3916 Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)
RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks (draft-ietf-pwe3-ethernet-encap-11.txt)
RFC 4446 IANA Allocations for PWE3
RFC 4447 Pseudowire Setup and Maintenance Using LDP (draft-ietf-pwe3-control-protocol-17.txt)
RFC 5085, Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires
draft-ietf-l2vpn-vpws-1w-oam-02.txt
draft-ietf-pwe3-control-protocol-17.txt
draft-muley-dutta-pwe3-redundancy-bit-02.txt
draft-muley-pwe3-redundancy-02.txt

CIRCUIT EMULATION
RFC 4553 Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)
RFC 5287 Control Protocol Extensions for the Setup of Time-Division Multiplexing (TDM) Pseudowires in MPLS Networks

RADIUS
RFC 2865 Remote Authentication Dial In User Service
RFC 2866 RADIUS Accounting

SSH
draft-ietf-secsch-architecture.txt SSH Protocol Architecture
draft-ietf-secsch-userauth.txt SSH Authentication Protocol
draft-ietf-secsch-transport.txt SSH Transport Layer Protocol
draft-ietf-secsch-connection.txt SSH Connection Protocol
draft-ietf-secsch-newmodes.txt SSH Transport Layer Encryption Modes

TACACS+
draft-grant-tacacs-02.txt

Timing
ITU-T G.781 Telecommunication Standardization Section of ITU, Synchronization layer functions, issued 09/2008
ITU-T G.813 Telecommunication Standardization Section of ITU, Timing characteristics of SDH equipment slave clocks (SEC), issued 03/2003.
ITU-T G.8264 Telecommunication Standardization Section of ITU, Distribution of timing information through packet networks, issued 10/2008

NETWORK MANAGEMENT
ITU-T X.721: Information technology-OSI-Structure of Management Information
ITU-T X.734: Information technology-OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB

RFC 2138 RADIUS
RFC 2206 RSVP-MIB
RFC 2571 SNMP-FRAMEWORKMIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASEDSMIB
RFC 2575 SNMP-VIEW-BASEDACM-MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2665 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCRMON-MIB
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIBs

PROPRIETARY MIBs
ALCATEL-IGMP-SNOOPING-MIB.mib
TIMETRA-CAPABILITY-7210-SAS-V1v0.mib
TIMETRA-CHASSIS-MIB.mib
TIMETRA-CLEAR-MIB.mib
TIMETRA-DOT3-OAM-MIB.mib
TIMETRA-FILTER-MIB.mib
TIMETRA-GLOBAL-MIB.mib
TIMETRA-IEEE8021-CFM-MIB.mib
TIMETRA-LAG-MIB.mib
TIMETRA-LOG-MIB.mib
TIMETRA-MIRROR-MIB.mib
TIMETRA-NTP-MIB.mib
TIMETRA-OAM-TEST-MIB.mib
TIMETRA-PORT-MIB.mib
TIMETRA-QOS-MIB.mib
TIMETRA-SAS-ALARM-INPUT-MIB.mib
TIMETRA-SAS-IEEE8021-CFM-MIB.mib
TIMETRA-SAS-GLOBAL-MIB.mib
TIMETRA-SAS-PORT-MIB.mib
TIMETRA-SAS-QOS-MIB.mib
TIMETRA-SAS-SYSTEM-MIB.mib
TIMETRA-SAS-SERV-MIB.mib
TIMETRA-SAS-VRTR-MIB.mib
TIMETRA-SCHEDULER-MIB.mib
TIMETRA-SECURITY-MIB.mib
TIMETRA-SERV-MIB.mib
TIMETRA-SYSTEM-MIB.mib
TIMETRA-TC-MIB.mib
TIMETRA-ISIS-MIB.mib
TIMETRA-ROUTE-POLICY-MIB.mib
TIMETRA-MPLS-MIB.mib
TIMETRA-RSVP-MIB.mib
TIMETRA-LDP-MIB.mib
TIMETRA-VRTR-MIB.mib
Index

C
continuity check 74
CPE ping 57

E
Ethernet CFM 64

L
linktrace 72
loopback 71
LSP diagnostics 52

M
MAC ping 55
MAC populate 58
MAC purge 58
MAC trace 56
Mirror
overview 14
implementation 15
local and remote 17
source and destination 16
configuring
basic 25
classification rules 26
IP filter 27
MAC filter 27
port 26
SAP 26
command reference 35
local mirror service 29
management tasks 31
overview 24

O
OAM 52
overview 52
configuring
command reference 81

P
ping

VCCV 59
S
SAA test parameters 80
SDP diagnostics 53
SDP ping 53
service assurance agent 78
service diagnostics 54

T
Tools 147

V
VCCV ping 59
VLL diagnostics 59
VPLS MAC diagnostics 55

7210 SAS M, X OS OAM and Diagnostic Guide Page 181