DDM-2000 FiberReach Multiplexer
Wideband/Narrowband Shelf
TARP Release 3.0 and Later
User/Service Manual
Volume I
Notice
Every effort was made to ensure that the information in this document was complete and accurate at the time of printing. However, information is subject to change.

Mandatory Customer Information

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Security Statement
In rare instances, unauthorized individuals make connections to the telecommunications network through the use of remote access features. In such event, applicable tariffs require that the customer pay all network charges for traffic. Lucent Technologies cannot be responsible for such charges and will not make any allowance or give any credit for charges that result from unauthorized access.
Trademarks
5ESS, DACScan, LGX, Safari, SLC, ST, SPQ, and Western Electric are registered trademarks of Lucent Technologies.
LineReach is a trademark of Lucent Technologies.
ANSI is a registered trademark of American National Standards Institute, Inc.
Common Language is a registered trademark and CLEI, CLLI, CLCI, and CLFI are trademarks of Bell Communications Research, Inc.
Gateway 2000 is a registered trademark of Gateway 2000, Inc.
Hayes is a registered trademark, and V-Series is a trademark of Hayes Microcomputer Products, Inc.
HP is a registered trademark of Hewlett-Packard Company
Microsoft, MS-DOS and Windows NT are registered trademarks of Microsoft Corporation.
National Electrical Code is a registered trademark of the National Fire Protection Association, Inc.
NEC is a registered trademark of Nippon Denki Kabushiki Kaisha
NFPA is a registered trademark of National Fire Protection Association, Inc.
PairGain is a registered trademark of PairGain Technologies, Inc.
Paradyne and Safari are registered trademarks of AT&T.
Penril is a registered trademark of Penril Corporation.
PROCOMM is a registered trademark of Datastorm Technologies, Inc.
Raynet is a registered trademark of Raychem Corporation.
Rides is a registered trademark of Ericsson Raynet.
SUN is a registered trademark of SUN Microsystems, Inc. in the United States and other countries.
SPARC is a registered trademark of SPARC International, Inc. licensed exclusively to SUN Microsystems, Inc.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
SPOTS CU is a registered trademark of AT&T.
Styrofoam is a registered trademark of The Dow Chemical Company
TITAN is a trademark of Tellabs, Inc.
Toshiba is a registered trademark of Kabushiki Kaisha Toshiba.
UL is a registered trademark of Underwriter's Laboratories.
UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.
Warranty
Lucent Technologies provides a 5-year limited warranty for this product. For more information, consult your local Account Executive.

Document Ordering Information
The ordering number for this document is 363-206-305. To order this document, call 1-888-582-3688. For more ordering information, refer to "How to Order Documents" in the Section "About this Document."

Customer Assistance and Technical Support
The Lucent Technologies Regional Technical Assistance Center (RTAC) provides a technical assistance telephone number which is monitored 24 hours a day. To receive technical assistance, simply call 1-800-225-RTAC.

Documentation Support Telephone Number
Lucent Technologies provides a telephone number for customers to report errors or to ask questions about the information in this document. The support telephone number is 1-800-645-6759 or 1-910-727-6681. To order documents, see "Document Ordering Information Products."

Developed by Lucent Technologies Network Systems Customer Training and Information Products.
How Are We Doing?

Title: DDM-2000 FiberReach Multiplexer Wideband/Narrowband Shelf TARP Release 3 and Later User Service Manual - Volume I

Identification No.: 363-206-305 Issue No.: 3 Date: June 2000

Lucent Technologies welcomes your feedback on this Customer Information Product (CIP). Your comments can be of great value in helping us improve our CIPs.

1. Please rate the effectiveness of this CIP in the following areas:

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completeness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Satisfaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Please check the ways you feel we could improve this CIP.

- [] Improve the overview/introduction
- [] Make it more concise/brief
- [] Improve the table of contents
- [] Add more step-by-step procedures/tutorials
- [] Improve the organization
- [] Add more troubleshooting information
- [] Include more figures
- [] Make it less technical
- [] Add more examples
- [] Add more/better quick reference aids
- [] Add more detail
- [] Improve the index

Please provide details for the suggested improvement.

3. What did you like most about this CIP?

4. Feel free to write any comments below or on an attached sheet.

If we may contact you concerning your comments, please complete the following:

Name: __________________________ Telephone Number: __________________________

Company/Organization: __________________________ Date: __________________________

Address: __________________________

When you have completed this form, please fold, tape and return to address on back or Fax to: 910 727-3043.
Lucent Technologies welcomes your feedback on this Customer Information Product (CIP). Your comments can be of great value in helping us improve our CIPs.

1. Please rate the effectiveness of this CIP in the following areas:

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completeness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Satisfaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please provide details for the suggested improvement.

2. Please check the ways you feel we could improve this CIP.

- [] Improve the overview/introduction
- [] Improve the table of contents
- [] Improve the organization
- [] Include more figures
- [] Add more examples
- [] Add more detail
- [] Make it more concise/brief
- [] Add more step-by-step procedures/tutorials
- [] Add more troubleshooting information
- [] Make it less technical
- [] Add more/better quick reference aids
- [] Improve the index

3. What did you like most about this CIP?

__
__
__

4. Feel free to write any comments below or on an attached sheet.

__
__
__

If we may contact you concerning your comments, please complete the following:

Name: __ Telephone Number: __________

Company/Organization: __________________________ Date: ______________

Address: __

When you have completed this form, please fold, tape and return to address on back or Fax to: 910 727-3043.
Contents

About This Document xli

- Purpose xli
- Intended Audiences xli
- Reason For Issue xlii
- Multi-Vendor OI xlii
- How to Use This Manual xliv
- Safety Instructions xlvi
 - Product Safety Labels xlvi
 - Lightwave Safety Guidelines xlvi
 - General Laser Information xlvi
 - Lasers and Eye Damage xlvi
 - Classification of Lasers xlvi
 - Lightwave Safety Precautions xlviii
 - Safety Precautions for Enclosed Systems xlvii
 - Safety Precautions for Unenclosed Systems xlviii
 - DDM-2000 FiberReach T1EXT Lightning and Surge Protection Shelf, Model ED8C783-30 li
 - Important Safety Instructions li
 - Electrostatic Discharge (ESD) Considerations li
- Related Documentation lv
- Customer Technical Support (CTS) lxvi
- Engineering and Installation Services lxviii
 - Customer Technical Support Enhanced Services lxix
- Documentation Support lxix
- How to Order Documents lxx
 - Standing Orders lxxi
 - How to Comment on This Document lxxi
- Electronic Documentation lxxii
Contents

1 System Introduction
- Overview 1-1
- Lucent 2000 Product Family 1-1
- Basic Description of the SLC-2000 Access System 1-2
- Basic Description of the DDM-2000 FiberReach Multiplexer 1-3
- DDM-2000 FiberReach Releases 1-7
 - Release Descriptions 1-7

2 Applications
- Overview 2-1
- DDM-2000 FiberReach Applications Summary 2-1
 - Ring Topologies 2-3
 - OC-3 Path Switched Ring 2-5
 - OC-12 Path Switched Ring 2-7
- DDM-2000 FiberReach Network Topologies (OC-1) 2-9
- Basic Wideband Shelf Configurations 2-9
 - DS1 and T1 Services 2-9
 - Single-Homed Access via Backbone Ring 2-10
 - Dual-Homed Access via a Backbone Ring 2-13
 - Integration with Dual Wire Center Applications 2-14
 - Single Homing to Linear DDM-2000 OC-3 Networks 2-16
 - Stand-Alone OC-1 Ring/Hub Networks 2-17
- Enhanced Routing 2-20
 - OC-1 Ring Pass-Through 2-21
 - OC-1 Ring Hairpin Routing, Single-Homed 2-22
 - OC-1 Ring Hairpin Routing, Dual-Homed 2-23
 - Hairpin Local Drop Routing 2-24
- DDM-2000 FiberReach Network Topologies (OC-3 and OC-12) 2-25
 - 28-Type Optical Line Interface (28G-U/28G2-U) 2-25
Contents

Circuit Pack Overview 2-25
29-Type Optical Line Interface (29G-U/29H-U) 2-26
Circuit Pack Overview 2-26
DDM-2000 FiberReach Service Applications 2-28
LAN/WAN Data Networking: DS3 Data Services 2-28
High Data-rate Subscriber Line (HDSL) Application 2-32
DDM-2000 FiberReach Service Applications
Using the 28G-Type OLIU (Release 2.2 — Non-TARP Release) 2-34
DDM-2000 FiberReach Service Applications
Using the 28G-Type OLIU (Release 3.1, TARP) 2-39
Basic DS3 Cross-Connects 2-40
DDM-2000 FiberReach Service Applications
Using the 29-Type OLIU (Release 4.0, TARP) 2-43
STS-3c 0X1 Optical Interface 2-45
■ Basic Narrowband Shelf Configurations 2-48
■ Integrated DS1, T1, and DS0 Services 2-54
 Integrated Narrowband Business Carrier Access 2-54
 Integrated DS1 Transport Configuration with SLC LineReach Access System 2-60
 SONET Transport 2-60
■ Intelligent Vehicle Highway System (IVHS) 2-62
■ Teleprotection and Supervisory Control and Data Acquisition (SCADA) Communications for Electric Utilities 2-64

3 Shelf Descriptions and Configurations 3-1
■ Overview 3-1
■ DDM-2000 FiberReach Wideband Shelf 3-1
 DDM-2000 FiberReach Multiplexer Carrier Assembly 3-9
 DDM-2000 FiberReach Wall-Mount Distant Terminal 3-10
 Wideband Shelf Plug-Ins 3-14
Lightning and Surge Secondary Protection Assembly for T1 Extensions and HDSL 3-15
Contents

- Shelf Configuration 3-16
 - DS1 Services Only 3-17
 - T1 Extensions Only 3-19
 - T1 Extensions and DS1 Service 3-22
 - HDSL Services 3-25
 - DS3 and DS1 Services 3-26
 - DS3 Interface (BBG4/BBG4B) 3-26
- Data Services Interface 3-28
 - STS-3c 0 X1 Application 3-30
- DDM-2000 FiberReach Narrowband Shelf 3-31
- Secured-Area Telecommunication Applications Cabinet (STAC) System 3-37
 - Construction 3-38
 - Reliability 3-38

4 Power 4-1
- Overview 4-1
- Introduction 4-1
- Wideband Shelf -48 V Battery Powering 4-1
 - Power Distribution 4-3
 - Wall Distant Terminal Powering for WBS and NBS 4-4
 - Wideband Shelf Transmission Circuit Packs 4-6
 - OLIU Circuit Packs 4-6
 - DS1/DS1PM Circuit Packs 4-6
 - Control Circuit Packs 4-6
- Narrowband Shelf -48 V Battery Powering 4-6
 - Other Power Options 4-8
 - Wall Distant Terminal Powering 4-9
 - Narrowband Shelf Transmission Circuit Packs 4-10
 - FHB2 Digital Signal Cross-Connect Backplane Interface Unit (DSXBIU) 4-10
 - AUA432 Power Converter Unit (PCU), BGW1 Power Supply Unit (PSU) 4-10
Contents

Ringing Generator Units (RGU) 4-11
AUA421 Channel and Drop Test Unit (CDTU) 4-12
LEDs 4-12
Power Minor Alarm 4-13
Power Distribution 4-14

5 Transmission and Synchronization 5-1
■ Overview 5-1
■ Transmission Interfaces 5-1
 DS1 Transmission Interface 5-1
 OC-1/OC-3/OC-12 Transmission Interface 5-1
 T1 Transmission Interface 5-2
■ Transmission and Architecture 5-2
 Wideband Shelf Interfaces and Multiplexing 5-2
 Wideband Shelf Protection Architectures 5-4
 Narrowband Shelf Interfaces and Multiplexing 5-4
 Wideband and Narrowband Shelf Integration 5-6
■ Synchronization 5-7
 Manual Timing Pack Switch 5-7
 Subnetwork Configurations 5-7
 Free Running/Line Timing 5-7
 External Timing/Line Timing Configuration 5-9
 Line Timing/Line Timing Configuration 5-11
 Timing Distribution 5-12
■ Synchronization Messaging 5-14
 Applications 5-14
 Automatic Synchronization Reconfiguration 5-14
 Synchronization Provisioning Integrity 5-15
 Feature Details and Options 5-15
 Examples 5-17
 Synchronization Reconfiguration in an Access Ring 5-17
Contents

6 Operations Interfaces

- Overview
- Craft Interface Terminals (CIT)
 - CIT Access
 - Using a PC as a CIT
 - Remote Access Using the DCC
 - CPro Graphical User Interface and Provisioning Tool
- User Panel
 - User Panel LEDs
 - FE SEL Pushbutton
 - ACO/TST Pushbutton
 - UPD/INIT Pushbutton
 - Pushbutton Combinations
- Equipment Indicators
 - FAULT Indicators
 - ACTIVE Indicators
- Office Alarms
- TL1/X.25 Interface
 - ITM SNC
- User-Definable Miscellaneous Discretes—Environmental Alarms and Controls

7 Circuit Pack Descriptions

- Overview
- Wideband Shelf - Introduction
- Control Circuit Packs
 - BBG8/BBG8B SYSCTL Circuit Pack Description
 - Purpose of Circuit
 - BBG8/BBG8B SYSCTL Faceplate Controls and Indicators
 - General Description of Operation
Contents

- Detailed Description of Operation 7-5
- BBG8/BBG8B SYSCTL Hardware Setting 7-8
- BBG8/BBG8B SYSCTL Quick Reference Summary 7-9
- ECC2 User Panel Circuit Pack Description 7-11
 - Purpose of Circuit 7-11
 - Faceplate Controls and Indicators 7-11
 - Detailed Description of Operation 7-13
- Wideband Shelf - Transmission Circuit Packs 7-15
 - BBF1B DS1 Circuit Pack Description 7-15
 - Purpose of Circuit 7-15
 - DS1 Faceplate Indicator 7-15
 - General Description of Operation 7-16
 - Detailed Description of Operation 7-16
 - DS1 Hardware Settings 7-18
 - DS1 Quick Reference Summary 7-20
 - BBF3/BBF3B DS1PM Circuit Pack Description 7-22
 - Purpose of Circuit 7-22
 - DS1PM Faceplate Indicator 7-22
 - General Description of Operation 7-23
 - Detailed Description of Operation 7-23
 - DS1PM Hardware Settings 7-26
 - DS1PM Quick Reference Summary 7-28
 - 177A Retainer Card Description 7-29
 - Purpose of Card 7-29
 - BBG4/BBG4B DS3 Circuit Pack Description 7-30
 - Purpose of Circuit 7-30
 - BBG4/BBG4B DS3 Faceplate Indicators 7-30
 - General Description of Operation 7-31
 - Detailed Description of Operation 7-31
 - BBG4/BBG4B DS3 Hardware Settings 7-35
 - BBG4/BBG4B DS3 Quick Reference Summary 7-36
 - BBF6 T1 EXT Circuit Pack Description 7-38
 - Purpose of Circuit 7-38
 - T1EXT Faceplate Indicator 7-38
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Description of Operation</td>
<td>7-39</td>
</tr>
<tr>
<td>Detailed Description of Operation</td>
<td>7-39</td>
</tr>
<tr>
<td>T1EXT Hardware Settings</td>
<td>7-43</td>
</tr>
<tr>
<td>T1EXT Quick Reference Summary</td>
<td>7-45</td>
</tr>
<tr>
<td>BBG19 DS3 Data Services Interface Circuit Pack Description</td>
<td>7-46</td>
</tr>
<tr>
<td>Purpose of Circuit</td>
<td>7-46</td>
</tr>
<tr>
<td>BBG19 DS3 Faceplate Indicators</td>
<td>7-46</td>
</tr>
<tr>
<td>General Description of Operation</td>
<td>7-47</td>
</tr>
<tr>
<td>Detailed Description of Operation</td>
<td>7-48</td>
</tr>
<tr>
<td>BBG19 DS3 Hardware Settings</td>
<td>7-51</td>
</tr>
<tr>
<td>BBG19 DS3 Quick Reference Summary</td>
<td>7-52</td>
</tr>
<tr>
<td>BBF8 High Data-Rate Digital Subscriber Line (HDSL)</td>
<td>7-54</td>
</tr>
<tr>
<td>Purpose of Circuit</td>
<td>7-54</td>
</tr>
<tr>
<td>HDSL Faceplate Indicator</td>
<td>7-54</td>
</tr>
<tr>
<td>General Description of Operation</td>
<td>7-55</td>
</tr>
<tr>
<td>Detailed Description of Operation</td>
<td>7-56</td>
</tr>
<tr>
<td>HDSL Quick Reference Summary</td>
<td>7-61</td>
</tr>
<tr>
<td>Transmission - Optical Interface</td>
<td>7-62</td>
</tr>
<tr>
<td>Universal Optical Connectors</td>
<td>7-62</td>
</tr>
<tr>
<td>Optical Interface Circuit Packs</td>
<td>7-64</td>
</tr>
<tr>
<td>22-Type OLIU Circuit Pack Descriptions</td>
<td>7-66</td>
</tr>
<tr>
<td>Purpose of Circuits</td>
<td>7-66</td>
</tr>
<tr>
<td>22-Type Faceplate Indicators</td>
<td>7-66</td>
</tr>
<tr>
<td>General Description of Operation</td>
<td>7-70</td>
</tr>
<tr>
<td>Detailed Description of Operation</td>
<td>7-70</td>
</tr>
<tr>
<td>22-Type OLIU Quick Reference Summary</td>
<td>7-73</td>
</tr>
<tr>
<td>26G2-U OLIU Circuit Pack Description</td>
<td>7-75</td>
</tr>
<tr>
<td>Purpose of Circuit</td>
<td>7-75</td>
</tr>
<tr>
<td>26G2-U OLIU Faceplate Indicators</td>
<td>7-75</td>
</tr>
<tr>
<td>General Description of Operation</td>
<td>7-77</td>
</tr>
<tr>
<td>Detailed Description of Operation</td>
<td>7-78</td>
</tr>
<tr>
<td>26G2-U OLIU Quick Reference Summary</td>
<td>7-81</td>
</tr>
<tr>
<td>28G-U/28G2-U OLIU Circuit Pack Description</td>
<td>7-82</td>
</tr>
</tbody>
</table>
Contents

Purpose of Circuit 7-82
28G-U/28G2-U OLIU Faceplate Indicators 7-82
General Description of Operation 7-84
Detailed Description of Operation 7-85
28G-U/28G2-U OLIU Quick Reference Summary 7-88
29G-U/29H-U OLIU Circuit Pack Description
(Long Reach OC-12 Interface) 7-89

Narrowband Shelf - Introduction 7-91
Circuit Packs in the Narrowband Shelf 7-91
RGU Circuit Pack Description 7-92
RGU Faceplate Controls and Indicators 7-92
PCU Circuit Pack Description 7-92
PCU Faceplate Controls and Indicators 7-93
CDTU Circuit Pack Description 7-93
CDTU Faceplate Controls and Indicators 7-94
DSXBIU Circuit Pack Description 7-94
DSXBIU Faceplate Controls and Indicators 7-94
Channel Units in the Narrowband Shelves 7-96
Channel Unit Circuit Pack Descriptions 7-96

8 Administration and Provisioning 8-1

Overview 8-1
Wideband Shelf Administration 8-1
Version Recognition 8-1
Software Upgrades 8-2
Remote Software Download and Copy 8-2
Data Base Backup and Restoral 8-3
ITM SNC 8-4
Security 8-4
Enhanced Security Features 8-6
Software Compatibility 8-6
Controller Maintenance and Memory Administration 8-7
Controller Maintenance 8-7
Contents

Memory Administration 8-7
Service Affecting Actions 8-8
 ■ DS-1/T1 Multiplexing and Mapping 8-9
 ■ Wideband Shelf Provisioning 8-9
 Default Provisioning 8-9
 Remote Provisioning 8-10
 Automatic Provisioning on Circuit Pack Replacement 8-10
 Feature Packaging Provisioning 8-10
 Open Systems Interconnection (OSI) Provisioning 8-10
 Port State Provisioning 8-11
 Channel State Provisioning 8-11
 Line State Provisioning 8-12
 AIS or Unequipped Provisioning 8-12
 Data Communications Channel (DCC) Provisioning 8-12
 Operations Interworking (OI) Provisioning 8-12
 ■ Software Compatibility 8-14
 NSAP Provisioning 8-16
 TARP Provisioning 8-16
 ■ Selectable Parameters 8-17
 Switch Selectable Parameters 8-17
 CIT Selectable Parameters 8-18
 Performance Monitoring (PM) Parameters Provisionable via the CIT 8-22
 ■ Cross-Connection Provisioning 8-22
 Cross-Connection Types 8-23
 Termination/Drop Cross-Connection 8-23
 Add Drop Cross-Connection for DS3 8-27
 Pass-Through Cross-Connection 8-28
 Locked Cross-Connection 8-30
 Manual Cross-Connection Procedure 8-35
 OC-1 Path Protected Ring Application Example 8-35
 Single-Homed Path-Switched Ring Example 8-38
 Dual-Homed Path-Switched Ring Example 8-42
Contents

OC-1 Ring Pass-Through Example 8-44
Example Cross-Connections 8-45
OC-1 Ring Hairpin Routing, Single-Homed Example 8-46
Example Cross-Connections 8-47
OC-1 Ring Hairpin Routing, Dual-Homed Example 8-48
Example Cross-Connections 8-49
Hairpin Local Drop Routing Example 8-50
Example Cross-Connections 8-51
Cross-Connects for Release 3.1 and Later 8-52
Basic DS3 Cross-Connects 8-53
DS3 Locked Cross-Connects 8-54
STS-3c Cross-Connects 8-55
 ■ Narrowband Administration and Provisioning 8-58
 ■ Narrowband Shelf Administration 8-58
 Software Downloads and Upgrades 8-58
 Security 8-58
 ■ Narrowband Shelf Provisioning 8-61
 Channel Unit Provisioning 8-61

9 Maintenance Description 9-1
 ■ Overview 9-1
 Wideband Shelf Maintenance 9-1
 Single-Ended Maintenance Philosophy 9-1
 Three-Tiered Operations 9-3
 User Panel and Faceplate LEDs (Operations Tier 1) 9-4
 Craft Interface Terminal (CIT) (Operations Tier 2) 9-5
 Operations System (OS) Interface (Operations Tier 3) 9-6
 Miscellaneous Discretes 9-6
 TL1/X.25 9-6
Contents

- Multi-Vendor OI 9-7
- Inservice Upgrades 9-10
- Maintenance Signaling 9-10
- Fault Detection, Isolation, and Reporting 9-13
 - Detection 9-13
 - Isolation 9-13
 - Reporting 9-13
- Protection Switching 9-14
 - Path Protection Switching (Path Switched Rings) 9-14
 - OC-3/OC-1 Ring Interworking 9-17
 - OC-3/OC-1 Path Switched Ring (0x1) 9-17
 - Single-Homed Interworking Application 9-18
 - Dual-Homed Ring Interworking Application 9-19
 - Status of ACTIVE LED on Rings 9-21
 - Low-Speed Equipment Protection 9-21
 - Synchronization Reference Protection 9-21
- Loopbacks 9-22
- Tests 9-23
 - Transmission Tests 9-23
 - Operations Interface Tests 9-23
- Performance Monitoring 9-23
 - VT Performance Monitoring 9-25
 - DS1 Performance Monitoring 9-25
 - DS3 Performance Monitoring 9-27
 - DS3 Path PM 9-27
 - DS3 Line 9-28
 - Performance Parameters 9-28
 - OC-1/OC-3/OC-12 Section Parameters 9-28
 - Performance Monitoring Enabling 9-28
 - Severely Errored Frame Seconds (SEFS) 9-29
 - OC-1/OC-3/OC-12 Line Parameters 9-29
 - Performance Monitoring Enabling 9-29
 - Line Coding Violations (B2 Parity) 9-29
 - Errored Seconds (ES) 9-29
Contents

Severely Errored Seconds (SES) 9-30
Unavailable Seconds (UAS) 9-30
Line Protection Switch Counts 9-30
STS Pointer Justification Count (PJC) 9-30

STS-1 Path Parameters 9-31
Performance Monitoring Enabling 9-31
STS-1 Path Coding Violations (B3 Parity) 9-31
Errored Seconds (ES) 9-31
Severely Errored Seconds (SES) 9-31
Unavailable Seconds (UAS) 9-31

VT1.5 Path Parameters 9-32
Performance Monitoring Enabling 9-32
Errored Seconds (ES) 9-32
Severely Errored Seconds (SES) 9-32
Unavailable Seconds (UAS) 9-33

DS1 Path Parameters 9-33
Performance Monitoring Enabling 9-33
Errored Seconds (ES) 9-33
CV-P Coding Violations 9-33
CV-PFE Coding Violations 9-33
Severely Errored Second (SES) 9-34
Unavailable Seconds (UAS) 9-34

DS3 Parameters 9-34
Performance Monitoring Enabling 9-34
DS3 Performance Monitoring (PM) 9-34
DS3 Path 9-35
DS3 Line 9-36

DS1 Line Parameters 9-37
ES-L Errored Seconds 9-37
Performance Monitoring Data Storage and Reports 9-37
Performance Monitoring During Failed Conditions 9-37
Performance Parameter Thresholds 9-37
Threshold Crossings Reported to OS 9-38

Reports 9-38
Contents

Alarms and Status Report 9-38
Provisioning Reports 9-38
Database Change Transmission to OS 9-39
Performance Monitoring Reports 9-39
 TCA Summary Report 9-39
 Performance Status Reports 9-39
Maintenance History Report 9-39
State Report 9-39
Path State Report 9-40
Equipment Report 9-40
Network Map Reports 9-40

10 Technical Specifications

- Overview 10-1
- DDM-2000 FiberReach Multiplexer Wideband Shelf Specifications 10-1
 - External Transmission Interfaces 10-1
 - Electrical Interfaces 10-2
 - DS1 Low-Speed (BBF1B) 10-2
 - DS1PM Low-Speed (BBF3/BBF3B) 10-3
 - DS3 Low-Speed (BBG4/BBG4B) 10-5
 - DS3 Data Services Interface (BBG19) 10-7
 - T1 Carrier Low-Speed (BBF6 T1EXT) 10-8
 - HDSL Interface (BBF8) 10-11
 - Optical Interfaces 10-12
 - Lightguide Jumpers 10-12
 - Intra-office (IS-3) OC-3 Rate Interface (22D-U OLIUs) 10-13
 - Intermediate Reach OC-3 Interface (22F/22F-U/22F2-U OLIU) 10-17
 - Long Reach OC-3 Interface (22G-U/22G2-U/22G3-U/22G4-U OLIU) 10-18
 - Long Reach OC-1 Interface (26G2-U OLIU) 10-22
Contents

Long Reach OC-3 Interface (28G-U/28G2-U OLIU) 10-27
Long Reach OC-12 Interface (29G-U OLIU) 10-31
Long Reach OC-12 Interface (29H-U OLIU) 10-32
OC-3 Optical Interface Mixing 10-36
Plug-In Maintenance Sparing Guidelines 10-39
Universal Optical Connectors 10-42
SONET Overhead Bytes 10-44
Performance 10-44
 Wander/Jitter 10-44
 Signal Performance 10-44
 Protection Switching 10-45
 Transient Performance 10-46
 Delay 10-46
 Performance Monitoring 10-47
Signaling Mode 10-49
Digital Data Performance 10-49
Operations Interfaces 10-49
 Craft Interface Terminal 10-49
Personal Computer Specifications for Software Download 10-50
Compatible Modems 10-51
CPro-2000 Graphical User Interface and Provisioning Tool 10-51
User Panel 10-52
Equipment Indicators 10-52
Office Alarms 10-53
User-Definable Miscellaneous Discrete Environmental Alarms and Controls 10-53
TL1/X.25 Interface 10-53
Lucent 2000 Product Family OI Specifications 10-53
Physical Specifications 10-54
 Wideband Shelf Physical Characteristics 10-54
 Network Bay and Cabinet Mounting 10-54
Environmental Specifications 10-55
Contents

Temperature and Humidity 10-55
EMC Requirements 10-55
Earthquake Requirements 10-55
Fire Resistance 10-55
Underwriters Laboratories (UL) 10-56
Canadian Standards Association 10-56
Power Requirements 10-56
Shelf Fuses 10-56
Power Dissipation 10-56
DDM-2000 FiberReach Multiplexer Reliability 10-59
Summary 10-59
Transmission Availability 10-59
Operation System Interface Availability 10-60
Optical Module Maintenance Objective 10-60
Infant Mortality 10-60
DDM-2000 FiberReach System Reliability Predictions 10-61

- DDM-2000 Narrowband Shelf Specifications 10-64
 Physical Specifications 10-64
 Narrowband Shelf Physical Characteristics 10-64
Power Requirements 10-64
Shelf Fuses 10-64
Power Dissipation 10-64
Terminal-to-Terminal Voice-Frequency Transmission 10-65

11 Commands and Reports 11-1

- Overview 11-1
- Command Page Format 11-1
- Addresses 11-3
- Special Control Characters 11-8
- DDM-2000 FiberReach Command Menu 11-11
- CPro-2000 11-16
Contents

- Commands 11-17
- RTRV-ALM Reports 11-394
- RTRV-HSTY Reports 11-415

A A SONET Overview A-1
- Overview A-1
- History A-1
- Basic Purpose A-2
- Technical Overview A-2
 - SONET Signal Hierarchy A-2
 - SONET Layers A-4
 - SONET Frame Structure A-6
 - Section Overhead A-6
 - Line Overhead A-7
 - Path Overhead A-8
 - STS-1 Path Overhead A-8
 - VT Path Overhead A-9
 - SONET Multiplexing Procedure A-10
 - SONET Demultiplexing Procedure A-12
 - SONET Digital Multiplexing Schemes A-14
 - Asynchronous Multiplexing A-14
 - Synchronous Multiplexing A-15
 - Virtual Tributary Signals A-15
 - Concatenated Mode A-16
- SONET Interface A-18
 - SONET Payloads A-18
 - Higher Rate Transport A-20
- Conclusion A-20

Glossary GL-1
Figures

About This Document

1 Safety Label Position on FiberReach Shelf xlix
2 Static Control Wrist Strap lii
3 Product Support lxvii

1 System Introduction

1-1 Example of DDM-2000 FiberReach
Multiplexer in the Network 1-6

2 Applications

2-1 Path Switched Ring 2-4
2-2 OC-3 Path Switched Ring Using OC-3
Multiplexer and FiberReach Multiplexer
With OC-3 Optics 2-6
2-3 OC-12 Path Switched Ring Using DDM-2000
OC-12, OC-3, and FiberReach
Multiplexers With OC-12 Optics 2-8
2-4 DDM-2000 FiberReach Rings Single Homing to a
DDM-2000 OC-3 Ring 2-11
2-5 DDM-2000 FiberReach Rings Single Homing to a
DDM-2000 OC-12 Ring 2-12
2-6 DDM-2000 FiberReach Dual Homing to a
DDM-2000 OC-3/OC-12 Ring 2-13
2-7 DDM-2000 FiberReach Ring Dual Homing to a
DDM-2000 OC-3 Ring in a Dual Wire
Center Application 2-14
2-8 DDM-2000 FiberReach Ring Dual Homing to a
DDM-2000 OC-12 Ring in a Dual Wire
Center Application 2-15
2-9 Single-Homed OC-1 Ring to a DDM-2000
OC-3 Linear Application 2-16
2-10 DDM-2000 FiberReach Stand-Alone OC-1 Ring 2-17
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-11</td>
<td>DDM-2000 FiberReach Single Homing to a Stand-Alone OC-1 Hub Host</td>
</tr>
<tr>
<td>2-12</td>
<td>Triple OC-1 Multiplexer Application</td>
</tr>
<tr>
<td>2-13</td>
<td>OC-1 Ring Pass-Through in a Function Unit</td>
</tr>
<tr>
<td>2-14</td>
<td>Single-Homed Hairpin Routing</td>
</tr>
<tr>
<td>2-15</td>
<td>Dual-Homed Hairpin Routing</td>
</tr>
<tr>
<td>2-16</td>
<td>Hairpin Local Drop Routing</td>
</tr>
<tr>
<td>2-17</td>
<td>OC-3 Ring Mixed Application</td>
</tr>
<tr>
<td>2-18</td>
<td>OC-12 Ring Mixed Application</td>
</tr>
<tr>
<td>2-19</td>
<td>LAN/WAN Data Networking Using Locked DS3 Cross-Connections</td>
</tr>
<tr>
<td>2-20</td>
<td>Unprotected DS3 Data Services using BBG19 Circuit Packs</td>
</tr>
<tr>
<td>2-21</td>
<td>Protected DS3 Data Services using BBG4B Circuit Packs</td>
</tr>
<tr>
<td>2-22</td>
<td>LAN/WAN Data Networking</td>
</tr>
<tr>
<td>2-23</td>
<td>HDSL Application</td>
</tr>
<tr>
<td>2-24</td>
<td>OC-3 Ring Mixed Application</td>
</tr>
<tr>
<td>2-25</td>
<td>OC-3 FiberReach Extension (Single-Homed) on OC-12 Ring Application</td>
</tr>
<tr>
<td>2-26</td>
<td>FiberReach Extension (Dual-Homed) on OC-12 Ring Application</td>
</tr>
<tr>
<td>2-27</td>
<td>OC-3 FiberReach Extension (Single-Homed) on OC-48 Ring Application</td>
</tr>
<tr>
<td>2-28</td>
<td>OC-3 FiberReach Extension (Dual-Homed) on OC-48 Ring Application</td>
</tr>
<tr>
<td>2-29</td>
<td>OC-3 Ring Mixed Application (Release 3.1 or Later)</td>
</tr>
<tr>
<td>2-30</td>
<td>OC-3 FiberReach Extension (Single-Homed) on OC-12 Ring Application (Release 3.1 or Later)</td>
</tr>
<tr>
<td>2-31</td>
<td>FiberReach Extension (Dual-Homed) on OC-12 Ring Application (Release 3.1 or Later)</td>
</tr>
<tr>
<td>2-32</td>
<td>OC-3 FiberReach Extension (Dual-Homed) on OC-48 Ring Application (Release 3.1 or Later)</td>
</tr>
<tr>
<td>2-33</td>
<td>OC-12 Ring Mixed Application</td>
</tr>
<tr>
<td>2-34</td>
<td>OC-3 FiberReach Extension (Dual-Homed) on OC-48 Ring Application (Release 4.0)</td>
</tr>
</tbody>
</table>
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-35</td>
<td>FiberReach OC-3c Extension on OC-12 Ring Application (Release 3.1 or Later)</td>
</tr>
<tr>
<td>2-36</td>
<td>STS-3c Dual 0X1 Application (Release 3.1 or Later)</td>
</tr>
<tr>
<td>2-37</td>
<td>SLC-2000 System Hosting a FiberReach NBS Through a Collocated WBS</td>
</tr>
<tr>
<td>2-38</td>
<td>SLC-2000 System Hosting a FiberReach NBS using 26G2-U OLIUs and a J1C265AA-1, L4 ARM Shelf</td>
</tr>
<tr>
<td>2-39</td>
<td>SLC-2000 System Hosting a FiberReach NBS using 26G2-U OLIUs and a J1C265AA-1, L4 ARM Shelf Provisioning DS1 Pipes Through a WBS</td>
</tr>
<tr>
<td>2-40</td>
<td>SLC-2000 ARM Shelf Hosting DDM-2000 FiberReach WBSs</td>
</tr>
<tr>
<td>2-41</td>
<td>DDM-2000 FiberReach Multiplexer Business Narrowband Application</td>
</tr>
<tr>
<td>2-42</td>
<td>DDM-2000 FiberReach Multiplexer Business Narrowband Application with a Remote SLC-2000</td>
</tr>
<tr>
<td>2-43</td>
<td>DDM-2000 FiberReach Multiplexer Dual-Homed Integrated Application</td>
</tr>
<tr>
<td>2-44</td>
<td>DDM-2000 FiberReach Multiplexer Stand-Alone Integrated Application</td>
</tr>
<tr>
<td>2-45</td>
<td>DDM-2000 FiberReach Multiplexer Low-Speed Traffic Application</td>
</tr>
<tr>
<td>2-46</td>
<td>DSX-1 Electrical Interface — SONET Transport (Integrated Configuration)</td>
</tr>
<tr>
<td>2-47</td>
<td>Intelligent Vehicle Highway System (IVHS) Application</td>
</tr>
<tr>
<td>2-48</td>
<td>DDM-2000 FiberReach Teleprotection and SCADA Communications</td>
</tr>
</tbody>
</table>

3 Shelf Descriptions and Configurations

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf — Front View</td>
</tr>
<tr>
<td>3-2</td>
<td>OC-1 Optics with BBG4B</td>
</tr>
</tbody>
</table>

Issue 3 June 2000 xxix
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3</td>
<td>OC-1 Optics with BBG19</td>
</tr>
<tr>
<td>3-4</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf — with BBG4B</td>
</tr>
<tr>
<td>3-5</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf — with BBG19</td>
</tr>
<tr>
<td>3-6</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf — with 22-Type</td>
</tr>
<tr>
<td>3-7</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf — with OC-12 Optics</td>
</tr>
<tr>
<td>3-8</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf — Rear View</td>
</tr>
<tr>
<td>3-9</td>
<td>DDM-2000 FiberReach Multiplexer Wideband Shelf Front Panel</td>
</tr>
<tr>
<td>3-10</td>
<td>DDM-2000 FiberReach Multiplexer Carrier Assembly</td>
</tr>
<tr>
<td>3-11</td>
<td>DDM-2000 FiberReach Multiplexer Carrier Assembly Group Configurations</td>
</tr>
<tr>
<td>3-12</td>
<td>DDM-2000 FiberReach Wall Mount Enclosure Options</td>
</tr>
<tr>
<td>3-13</td>
<td>DDM-2000 FiberReach Wall Mount Distant Terminal</td>
</tr>
<tr>
<td>3-14</td>
<td>Wall Mount Distant Terminal with SLC LineReach Shelf and DDM-2000 FiberReach Wideband Shelf</td>
</tr>
<tr>
<td>3-15</td>
<td>T1 Lightning and Surge Protection Assembly</td>
</tr>
<tr>
<td>3-16</td>
<td>DDM-2000 FiberReach 16 1x1 Protected DS1 Services Only</td>
</tr>
<tr>
<td>3-17</td>
<td>DDM-2000 FiberReach 1X7 Protected DS1 Services Only</td>
</tr>
<tr>
<td>3-18</td>
<td>DDM-2000 FiberReach Unprotected DS1 Services Only</td>
</tr>
<tr>
<td>3-19</td>
<td>DDM-2000 FiberReach with 1x1 Protected T1 Extension Services</td>
</tr>
<tr>
<td>3-20</td>
<td>DDM-2000 FiberReach with 1x7 Protected T1 Extension Services</td>
</tr>
<tr>
<td>3-21</td>
<td>DDM-2000 FiberReach with Unprotected T1 Extension Services</td>
</tr>
</tbody>
</table>

xxx Issue 3 June 2000
Figures

3-22 DDM-2000 FiberReach with Four 1x1 Protected T1 Extensions and Eight 1x1 Protected DS1 Services 3-23
3-23 DDM-2000 FiberReach with Unprotected T1 Extensions and 1x7 Protected DS1 Services 3-24
3-24 DDM-2000 FiberReach — 6 Unprotected HDSL Circuits (Unprotected) 3-25
3-25 DDM-2000 FiberReach — 1x2 Protected HDSL Services (1X2 Protection Mode) 3-26
3-26 DDM-2000 FiberReach with OC-12 Optics in Main Slot Providing DS1 and DS3 Services 3-27
3-27 DDM-2000 FiberReach with OC-1 Optics in Main Slot Providing DS3 Services 3-27
3-28 DDM-2000 FiberReach DS3 Data Services Application 3-28
3-29 DDM-2000 FiberReach with OC-1 Optics in Main Slot Providing Data Services 3-29
3-30 STS-3c 0 x 1 Application 3-30
3-31 DDM-2000 FiberReach Multiplexer Narrowband Shelf — Front View 3-32
3-32 DDM-2000 FiberReach Multiplexer Narrowband Shelf — Rear View 3-33
3-33 STAC System, FRC-2000 Module with Pedestal Battery Base 3-39
3-34 STAC System, FRC 2000 Module Wall Mount Option with Separate Pedestal Battery Module 3-40

4

Power

4-1 DDM-2000 FiberReach Multiplexer Wideband Shelf Power Architecture 4-2
4-2 Typical -48 Volt Power Supply for DDM-2000 FiberReach Multiplexer Single Shelf 4-3
4-3 Wall DT Powering (Power Supply for WBS/NBS) 4-4
4-4 Wall DT Powering (Single Power Supply for WBS/NBS) 4-5
4-5 DDM-2000 FiberReach Multiplexer Narrowband Shelf Power Architecture 4-7
Figures

4-6 DDM-2000 FiberReach Multiplexer — Other Power Options 4-8
4-7 Wall DT Powering (Power Supply for WB and Power Supply for NB) 4-9
4-8 AUA413 and AUA423 Ringing Generator Units 4-11
4-9 Circuit Pack Power and LED Control 4-13
4-10 Typical -48 Volt Power Supply for DDM-2000 FiberReach Multiplexer Single Shelf 4-14

5 Transmission and Synchronization
5-1 DDM-2000 FiberReach Wideband Shelf Block Diagram 5-3
5-2 DDM-2000 FiberReach Multiplexer Narrowband Architecture (Octet Mode Shown) 5-5
5-3 Free Running/Line Timing Synchronization in a Ring Configuration 5-8
5-4 External Timing in a Ring Configuration 5-10
5-5 Line Timing in a Ring Configuration 5-11
5-6 Timing from a Multiplexed DS1 5-13
5-7 Synchronization Failure and Reconfiguration 5-15
5-8 Synchronization Reconfiguration — Access Ring (Sheet 1 of 3) 5-18

6 Operations Interfaces
6-1 CIT Connectors (Direct Interface to CIT) 6-3
6-2 CIT Connectors (Modem Interface to CIT) 6-4
6-3 CIT Login Sessions 6-5
6-4 FiberReach Multiplexer User Panel 6-9
6-5 Miscellaneous Discretes 6-17
Figures

7 Circuit Pack Descriptions

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>BBG8 SYSCTL Circuit Pack</td>
<td>7-4</td>
</tr>
<tr>
<td>7-2</td>
<td>BBG8 SYSCTL Circuit Pack Block Diagram</td>
<td>7-6</td>
</tr>
<tr>
<td>7-3</td>
<td>BBG8/BBG8B SYSCTL Option Switches</td>
<td>7-8</td>
</tr>
<tr>
<td>7-4</td>
<td>DDM-2000 FiberReach Multiplexer ECC2 User Panel</td>
<td>7-12</td>
</tr>
<tr>
<td>7-5</td>
<td>ECC2 User Panel Block Diagram</td>
<td>7-14</td>
</tr>
<tr>
<td>7-6</td>
<td>BBF1B DS1 Circuit Pack</td>
<td>7-15</td>
</tr>
<tr>
<td>7-7</td>
<td>BBF1B DS1 Circuit Pack Block Diagram</td>
<td>7-17</td>
</tr>
<tr>
<td>7-8</td>
<td>BBF1B DS1 Option Switches</td>
<td>7-19</td>
</tr>
<tr>
<td>7-9</td>
<td>BBF3 DS1PM Circuit Pack</td>
<td>7-22</td>
</tr>
<tr>
<td>7-10</td>
<td>DS1PM Circuit Pack Block Diagram</td>
<td>7-24</td>
</tr>
<tr>
<td>7-11</td>
<td>BBF3 DS1PM Option Switches</td>
<td>7-26</td>
</tr>
<tr>
<td>7-12</td>
<td>177A Retainer Card</td>
<td>7-29</td>
</tr>
<tr>
<td>7-13</td>
<td>BBG4B DS3 Circuit Pack</td>
<td>7-30</td>
</tr>
<tr>
<td>7-14</td>
<td>BBG4/BBG4B DS3 Circuit Pack Block Diagram</td>
<td>7-32</td>
</tr>
<tr>
<td>7-15</td>
<td>BBG4/BBG4B DS3 Line Build-Out (LBO) Jumpers</td>
<td>7-35</td>
</tr>
<tr>
<td>7-16</td>
<td>BBF6 T1EXT Circuit Pack</td>
<td>7-38</td>
</tr>
<tr>
<td>7-17</td>
<td>T1EXT Circuit Pack Block Diagram</td>
<td>7-40</td>
</tr>
<tr>
<td>7-18</td>
<td>BBF6 T1EXT Option Switches</td>
<td>7-43</td>
</tr>
<tr>
<td>7-19</td>
<td>BBG19 DS3 Circuit Pack</td>
<td>7-46</td>
</tr>
<tr>
<td>7-20</td>
<td>BBG19 DS3 Circuit Pack Block Diagram</td>
<td>7-49</td>
</tr>
<tr>
<td>7-21</td>
<td>BBG19 DS3 Line Build-Out (LBO) Jumpers</td>
<td>7-51</td>
</tr>
<tr>
<td>7-22</td>
<td>BBF8 HDSL Circuit Pack</td>
<td>7-55</td>
</tr>
<tr>
<td>7-23</td>
<td>HDSL Circuit Pack Block Diagram</td>
<td>7-56</td>
</tr>
<tr>
<td>7-24</td>
<td>HDSL DIP Switch Settings</td>
<td>7-60</td>
</tr>
<tr>
<td>7-25</td>
<td>Universal Optical Connector</td>
<td>7-63</td>
</tr>
<tr>
<td>7-26</td>
<td>22D-U OLIU Circuit Pack</td>
<td>7-67</td>
</tr>
<tr>
<td>7-27</td>
<td>22F-U OLIU Circuit Pack</td>
<td>7-68</td>
</tr>
<tr>
<td>7-28</td>
<td>22G-U OLIU Circuit Pack</td>
<td>7-69</td>
</tr>
<tr>
<td>7-29</td>
<td>22-Type OLIU Circuit Pack Block Diagram</td>
<td>7-71</td>
</tr>
<tr>
<td>7-30</td>
<td>26G2-U OLIU Circuit Pack</td>
<td>7-76</td>
</tr>
<tr>
<td>7-31</td>
<td>26G2-U OLIU Circuit Pack Block Diagram</td>
<td>7-78</td>
</tr>
</tbody>
</table>
Figures

7-32 28G-U/28G2-U OLIU Circuit Pack — 28-Type Pair with Interconnect Cable Assembly [7-83]
7-33 28G-U/28G2-U OLIU Circuit Pack Block Diagram [7-85]
7-34 Optical System Interfaces (Points S and R) [7-90]
7-35 Narrowband Shelf [7-91]
7-36 AUA413 RGU Circuit Pack [7-92]
7-37 AUA432 PCU Circuit Pack [7-93]
7-38 AUA421 CDTU Circuit Pack [7-94]
7-39 FHB2 DSXBIU Circuit Pack [7-95]

8 Administration and Provisioning

8-1 Example OC-1 Ring Configuration Cross-Connections [8-36]
8-2 Example Single-Homed Path-Switched Ring Configuration Cross-Connections [8-39]
8-3 Example Dual-Homed Path-Switched Ring Configuration Cross-Connections [8-42]
8-4 Example of OC-1 Ring Pass-Through Using Function Unit Slots of the OC-3 Shelf [8-44]
8-5 Example of an OC-1 Ring Hairpin Routing, Single-Homed Configuration [8-46]
8-6 Example of OC-1 Ring Hairpin Routing, Dual-Homed Configuration [8-48]
8-7 Example of Hairpin Local Drop Routing Configuration [8-50]
8-8 Protected DS3 Services [8-53]
8-9 Unprotected (Locked) DS3 Data Services [8-54]
8-10 STS-3c Cross-Connects [8-55]
8-11 Locked (0x1) STS-3c - Broadband Services Using DDM-2000 OC-12 Multiplexer and FiberReach Equipped with 29G-Type OLIUs [8-57]
8-12 Basic Octet Mode Configuration [8-62]
8-13 Building an ISDN 2B+D Line from a DSX-1 Signal in the NBS (Octet Mode) [8-64]
8-14 Actual NBS V-DT Configuration (Octet Mode) [8-65]
Figures

8-15 Virtual Slot Concept (Octet Mode) 8-67

9 Maintenance Description

9-1 DDM-2000 FiberReach Wideband Shelf
9-2 Three-Tiered Operations 9-3
9-3 Example of Maintenance Signals as a Result of
 Unprotected Incoming OC-1 Failure for VT1.5
 Ring Applications 9-11
9-4 Maintenance Signaling — VT Ring Application 9-12
9-5 Two-Fiber Unidirectional Ring 9-15
9-6 Path Protection Switching 9-16
9-7 Single-Homed Ring Interworking Application 9-18
9-8 Dual-Homed Ring Interworking Application 9-20
9-9 DS1/DS3 Line and Path and DS3 Path
 Performance Monitoring (PM) 9-24
9-10 DDM-2000 Multiplexer DS1 Path Performance
 Monitoring 9-26

10 Technical Specifications

10-1 T1EXT Span Powering 10-9
10-2 Optical System Interfaces (Points S and R) 10-23
10-3 Universal Optical Connector 10-43

11 Commands and Reports

11-1 DDM-2000 FiberReach Shelf with
 VT1.5 Signals 11-51
11-2 DS-1 Loopback 11-90
11-3 DS-3 Loopback 11-95
Figures

11-4 Automated Transmission Test of DS1 Signal in MUX Direction 11-377
11-5 Automated Transmission Test of DS1 Signal in DEMUX Direction 11-378
11-6 Automated Transmission Test of DS3 Signal in MUX Direction 11-383
11-7 Automated Transmission Test of DS3 Signal in DEMUX Direction 11-383

A A SONET Overview
A-1 SONET STS-1 Frame — Simplified Version A-3
A-2 Section, Line, and Path Definitions A-4
A-3 SONET Frame Format A-5
A-4 VT Path Overhead Byte A-9
A-5 SONET Multiplexing Procedure A-11
A-6 SONET Demultiplexing Procedure A-12
A-7 STS-1 Synchronous Payload Envelope in Interior of STS-1 Frame A-13
A-8 Asynchronous Multiplexing A-14
A-9 Synchronous Multiplexing A-15
A-10 STS-3c Concatenated Payload A-17
A-11 SONET Interface A-18
Tables

3 Shelf Descriptions and Configurations

3-1 DDM-2000 FiberReach Wideband Shelf Plug-Ins 3-14
3-2 DDM-2000 FiberReach Narrowband Shelf Channel Unit 3-34

5 Transmission and Synchronization

5-1 Synchronization Messages Using K2 Byte 5-16
5-2 Synchronization Messages using S1 Byte 5-17

6 Operations Interfaces

6-1 DDM-2000 FiberReach Pushbutton Combinations 6-12

7 Circuit Pack Descriptions

7-1 DS1 Cable LBO Settings 7-19
7-2 DS1 Line Code Settings 7-20
7-3 DS1PM Cable LBO Settings 7-27
7-4 DS1PM Line Code Settings 7-27
7-5 T1EXT Cable LBO Settings 7-43
7-6 T1EXT Line Code Settings 7-44
7-7 HDSL Line Specifications 7-57
7-8 FiberReach OLIU Feature Summary 7-64
7-9 DDM-2000 FiberReach Narrowband Shelf Channel Unit Plug-Ins 7-96

8 Administration and Provisioning

8-1 OI Software Compatibility 8-13
Tables

8-2 Software Compatibility
8-3 Software and Circuit Pack Compatibility Matrix
8-4 Parameters Provisionable via Hardware Switches
8-5 DDM-2000 FiberReach Parameters Provisionable via the CIT
8-6 DDM-2000 FiberReach Manual VT1.5 Cross Connections (Termination/Drop) in a 1 x 1 Configuration
8-7 DDM-2000 FiberReach Manual VT1.5 Cross Connections (Termination/Drop) in a 1 x 7 Configuration
8-8 DDM-2000 FiberReach Manual STS-1 Cross Connections (Termination Drop Cross-Connections)
8-9 DDM-2000 FiberReach Manual VT1.5 Cross Connections (Pass-Through) 1 X 1 and 1 X 7 Configurations
8-10 DDM-2000 FiberReach Manual STS-1 Cross Connections (Pass-Through)
8-11 DDM-2000 FiberReach STS-3c 0 X 1 Cross-Connections
8-12 DDM-2000 FiberReach Manual VT1.5 Cross Connections (Locked) in a 1 x 1 Configuration
8-13 DDM-2000 FiberReach Manual VT1.5 Cross Connections (Locked) in a 1 x 7 Configuration
8-14 Channel Unit Slot Restriction When Using an SPQ494 in a Three-Slot V-DT

9 Maintenance Description

9-1 DS3 Performance Monitoring Enabling
9-2 DS3 Performance Monitoring (PM) Modes

10 Technical Specifications

10-1 Transmission Interface Standards
Tables

<table>
<thead>
<tr>
<th>10-2</th>
<th>DS3 Interface Modes</th>
<th>10-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-3</td>
<td>Enhanced DS3 Performance Monitoring Modes</td>
<td>10-6</td>
</tr>
<tr>
<td>10-4</td>
<td>22D-U OLIU Specifications</td>
<td>10-14</td>
</tr>
<tr>
<td>10-5</td>
<td>22D-U OLIU Link Budgets (Note 1)</td>
<td>10-15</td>
</tr>
<tr>
<td>10-6</td>
<td>22F-Type and 22G-Type OLIU Specifications</td>
<td>10-19</td>
</tr>
<tr>
<td>10-7</td>
<td>22F-Type and 22G-Type OLIU Link Budgets</td>
<td>10-20</td>
</tr>
<tr>
<td>10-8</td>
<td>OC-3 OLIU Link Budget - Multimode Operation</td>
<td>10-21</td>
</tr>
<tr>
<td>10-9</td>
<td>26-Type OLIU Specifications</td>
<td>10-24</td>
</tr>
<tr>
<td>10-10</td>
<td>26-Type OLIU Link Budgets</td>
<td>10-25</td>
</tr>
<tr>
<td>10-11</td>
<td>26-Type OLIU Link Budgets - Multimode Operation</td>
<td>10-26</td>
</tr>
<tr>
<td>10-12</td>
<td>28-Type OLIU Specifications</td>
<td>10-28</td>
</tr>
<tr>
<td>10-13</td>
<td>28-Type OLIU Link Budgets</td>
<td>10-29</td>
</tr>
<tr>
<td>10-14</td>
<td>OC-3 OLIU Link Budget - Multimode Operation</td>
<td>10-30</td>
</tr>
<tr>
<td>10-15</td>
<td>29G-U/29H-U OLIU Specifications</td>
<td>10-33</td>
</tr>
<tr>
<td>10-16</td>
<td>29G-U/29H-U OLIU Link Budgets (Notes)</td>
<td>10-34</td>
</tr>
<tr>
<td>10-17</td>
<td>OC-3 Rate OLIU Mixes - Minimum Link Budgets (dB)</td>
<td>10-36</td>
</tr>
<tr>
<td>10-18</td>
<td>OC-3 Rate OLIU Mixes - Maximum Link Budgets for SM Fiber (dB)</td>
<td>10-37</td>
</tr>
<tr>
<td>10-19</td>
<td>OC-3 Rate OLIU Mixes - Maximum Link Budgets for MM Fiber (dB)</td>
<td>10-38</td>
</tr>
<tr>
<td>10-20</td>
<td>Sparing Guidelines</td>
<td>10-39</td>
</tr>
<tr>
<td>10-21</td>
<td>Universal Buildout Attenuators</td>
<td>10-42</td>
</tr>
<tr>
<td>10-22</td>
<td>DDM-2000 OC-1 Transmission Delay in Microseconds</td>
<td>10-46</td>
</tr>
<tr>
<td>10-23</td>
<td>Performance Monitoring Parameters Provisionable via the CIT</td>
<td>10-47</td>
</tr>
<tr>
<td>10-24</td>
<td>CIT Interface Pin Connections</td>
<td>10-50</td>
</tr>
<tr>
<td>10-25</td>
<td>Power Dissipation - Wideband Shelf</td>
<td>10-57</td>
</tr>
<tr>
<td>10-26</td>
<td>DDM-2000 FiberReach System Reliability Prediction</td>
<td>10-61</td>
</tr>
<tr>
<td>10-27</td>
<td>DDM-2000 FiberReach Circuit Pack Reliability</td>
<td>10-62</td>
</tr>
<tr>
<td>10-28</td>
<td>Power Dissipation - Narrowband Shelf</td>
<td>10-64</td>
</tr>
<tr>
<td>10-29</td>
<td>Transmission Specifications - VF Channel Units with Fixed Settings</td>
<td>10-66</td>
</tr>
</tbody>
</table>
Tables

10-30 Transmission Specifications — Multiparty and FSR Channel Units 10-68
10-31 Transmission Specifications — AUA45 Dual Ringing Repeater Channel Unit 10-70
10-32 Transmission Specifications — VF Channel Units with Adjustable Settings 10-72
10-33 SPQ®400 Electrical and Transmission Specifications 10-74
10-34 SPQ®400 Environmental Specifications 10-76
10-35 SPQ®440 Electrical and Transmission Specifications 10-76
10-36 SPQ®440 Environmental Specifications 10-78
10-37 SPQ®909 Electrical and Transmission Specifications 10-79
10-38 SPQ®909 Environmental Specifications 10-81

11 Commands and Reports

11-1 DDM-2000 FiberReach Address Table 11-4
11-2 DDM-2000 FiberReach Command Menu 11-11
11-3 RTRV-ALM Descriptions 11-397
11-4 RTRV-HSTY Descriptions 11-417

A A SONET Overview

A-1 SONET Payloads A-19
A-2 SONET Transport Rates A-20
About This Document

Purpose

This *DDM-2000 FiberReach Multiplexer Wideband/Narrowband Shelf TARP Release 3.0 and Later User/Service Manual* covers Releases 3.0 and later and provides the following:

- Information concerning SLC Release 4.4 and later
- Detailed descriptive information to circuit pack level
- Description of application arrangements possible using the DDM-2000 FiberReach multiplexer with other members of the 2000 Product Family
- Technical specifications
- Commands and reports descriptions
- Operation and maintenance (O&M) task oriented practice (TOP) supporting acceptance, turnup, and maintenance tasks.

Intended Audiences

This manual is primarily intended for use by training and by the end users responsible for installing, operating, and maintaining the DDM-2000 FiberReach Multiplexer. It may be used by anyone desiring specific information about the DDM-2000 FiberReach Multiplexer operation and maintenance.
Reason For Issue

This document replaces the *DDM-2000 FiberReach Multiplexer Wideband/Narrowband Shelf TARP Release 3.0 User/Service Manual, Volume I and Volume II, Issue 2*. Description, application, and engineering information has been updated/added to include FiberReach Multiplexer Release 4.0. Release descriptions are listed in Chapter 1, “System Introduction”.

Major changes in this issue are noted by bars (|) in the outermost margins. Major changes include adding information for the following:

- STS-3c 0X1 when shelf is equipped with 29G-U/29H-U OLIUs in Main slots and 22-type OLIUs in Function Unit slots
- DCC provisioning on Main slots for FiberReach to allow a remote shelf to interconnect through its Main ring interfaces with a 1+1 linear extension on a host OC-3, OC-12, or OC-48 shelf
- Provisioning of asynchronous CIT port to run TL1
- Remote alarm status using AGNE and Alarm Group concept
- 29G-U OLIU 1310 nm long reach OC-12 circuit packs
- 29H-U OLIU 1550 nm long reach OC-12 circuit packs
- 22G4-U OLIU 1310 nm long reach OC-3 circuit packs
- BBF6 T1EXT circuit pack with individual T1 facility loopback capabilities.

NOTE:
This manual covers software releases up to and including TARP Release 3.0 and later. The impact of introducing TARP affects many areas of the document. Be aware that both TARP and the Lucent Directory Services (LDS) protocol operations are discussed and that some operations and features available in pre-TARP releases will no longer be applicable in FiberReach Multiplexer Release 3.0 and later.

Multi-Vendor OI

To support multi-vendor OI, DDM-2000 FiberReach Release 3.0 and later supports Target ID Address Resolution Protocol (TARP) instead of Lucent Directory Service (LDS). DDM-2000 OC-3 R13.0 and later, OC-12 R7.0, and FT-2000 OC-48 R8.0 and later also support TARP; thus Lucent 2000 Product Family OI compatibility is still supported but not OI compatibility with previous releases of DDM-2000 and FT-2000. TARP is the established multi-vendor standard for SONET NEs that support TL1 OS interfaces.
DDM-2000 FiberReach Release 3.0 and later is developed to be compatible with any other-vendor NEs that also support TARP, OSI, and TL1/X.25 as specified in Telcordia Technologies GR-253. In addition, DDM-2000’s TARP Manual Adjacency feature enables DDM-2000 to operate in networks that include CMISE-based NEs which may not support TARP propagation.

DDM-2000’s compatibility with Tellabs’ TITAN* 5500/S R5.0 DCS, including TL1/X.25 OS access with TITAN 5500/S DCS serving as the TL1/X.25 GNE, has been confirmed through cooperative joint testing. DDM-2000’s compatibility with some other-vendor NEs has also been tested by independent third-parties such as Telcordia Technologies.

Because DDM-2000 FiberReach 3.0/3.1 releases are intended to facilitate OS-based centralized operations, and because TL1/X.25 OS access is the key standardized multi-vendor OI application, the following Remote NE Status features are not supported in DDM-2000 FiberReach Releases 3.0/3.1:

- Remote office alarms
- Remote CIT alarm reports
- Remote user panel indications
- TBOS
- Parallel telemetry.

All of the above features depend on the proprietary exchange of information among Lucent NEs in a subnetwork, specifically the communication of each remote NE’s alarm status to other NEs. Although the Remote NE Status features were supported in previous releases of DDM-2000, such Lucent-only operations features in multi-vendor subnetworks would not include other-vendor NEs, due to the lack of applicable standards, and thus would be incomplete.

DDM-2000 FiberReach Release 4.0 supports the following Remote NE Status features:

- Remote office alarms
- Remote CIT alarm reports.

* TITAN is a trademark of Tellabs, Inc.
How to Use This Manual

This user/service manual is organized as follows:

- **About This Document**
 This chapter defines the purpose, scope, and intended audience for this document, provides introductory and support information on this document, lists related documentation and training courses, and tells how to obtain technical support on the system.

- **Chapter 1, System Introduction**
 This chapter introduces and provides a brief description of the DDM-2000 FiberReach Multiplexer.

- **Chapter 2, Applications**
 This chapter describes the network arrangement possibilities available when the DDM-2000 FiberReach Multiplexer is combined with other members of the Lucent 2000 Product Family.

- **Chapter 3, Shelf Descriptions and Configurations**
 This chapter contains a physical description of the DDM-2000 FiberReach Multiplexer shelf components and illustrates typical shelf configurations.

- **Chapter 4, Power**
 This chapter describes power distribution in the DDM-2000 FiberReach Multiplexer shelf.

- **Chapter 5, Transmission and Synchronization**
 This chapter describes the low-speed and high-speed transmission interfaces along with the various synchronization timing options.

- **Chapter 6, Operations Interfaces**
 This chapter describes the operations interfaces that support technician and provisioning access and alarm/status reporting.

- **Chapter 7, Circuit Pack Descriptions**
 This chapter provides a detailed functional description of the DDM-2000 FiberReach Multiplexer circuit packs.

- **Chapter 8, Administration and Provisioning**
 This chapter describes the administration and provisioning features of the DDM-2000 FiberReach Multiplexer.

- **Chapter 9, Maintenance Description**
 This chapter defines the maintenance philosophy that outlines the features available to monitor and maintain the DDM-2000 FiberReach Multiplexer.
Chapter 10, Technical Specifications
This chapter contains the technical specifications for the DDM-2000 FiberReach Multiplexer.

Chapter 11, Commands and Reports
This chapter provides a detailed description of the commands and reports that can be entered and received, respectively, at the ASCII terminal interface of the DDM-2000 FiberReach Multiplexer.

Chapter 12, Operation and Maintenance TOP
This chapter provides detailed procedures to support acceptance, turnup, operation, and maintenance of the DDM-2000 FiberReach Multiplexer. This chapter is divided into two sections - Wideband Shelf procedures and Narrowband Shelf procedures.

Appendix A, SONET Overview
This appendix provides a brief description of the Synchronous Optical Network (SONET).

Glossary
The glossary provides a brief definition of the abbreviations, acronyms, and certain terms found in this manual.

Index
The index provides an alphabetical listing of selected items and their corresponding page numbers.
Safety Instructions

Product Safety Labels

Important safety instructions are included in various sections of this manual. In addition to these instructions, there are other general safety instructions you must follow. These instructions involve lasers, lightwave optical cable and connectors, and precautions when handling circuit packs to prevent damage from electrostatic discharge. This manual also contains admonishments in the form of \textit{DANGERS}, \textit{WARNINGS}, and \textit{CAUTIONS} which must be followed at all times.

These admonishments have the following definitions:

- \textbf{DANGER} indicates the presence of a hazard that \textit{will} cause death or severe personal injury if the hazard is not avoided.
- \textbf{WARNING} indicates the presence of a hazard that \textit{can} cause death or severe personal injury if the hazard is not avoided.
- \textbf{CAUTION} indicates the presence of a hazard that \textit{will} or \textit{can} cause minor personal injury or property damage if the hazard is not avoided. The caution is also used for property-damage-only accidents. This includes equipment damage, loss of software, or service interruption.

Other important safety instructions that you should read are in the "Operation and Maintenance TOP" section of this manual. Only trained personnel should perform the procedures in that section.

The alert symbol • appears throughout this product and in this manual to alert the user to the presence of important operating and maintenance (servicing) instructions for the DDM-2000 FiberReach Multiplexer.

Lightwave Safety Guidelines

General Laser Information

Lightwave/lightguide systems, their associated test sets, and similar operating systems use semiconductor laser transmitters that emit light at wavelengths between approximately 800 nanometers and 1600 nanometers. The emitted light is above the red end of the visible spectrum, which is normally not visible to the human eye. Although radiant energy at near-infrared wavelengths is officially designated invisible, some people can see the shorter wavelength energy even at power levels several orders of magnitude below any that have been shown to cause injury to the eye.
Conventional lasers can produce an intense beam of monochromatic light. The term monochromaticity means a single wavelength output of pure color that may be visible or invisible to the eye. A conventional laser produces a small-size beam of light, and because the beam size is small the power density (also called irradiance) is very high. Consequently, lasers and laser products are subject to federal and applicable state regulations as well as international standards for their safe operation.

A conventional laser beam expands very little over distance, or is said to be very well collimated. Thus, conventional laser irradiance remains relatively constant over distance. However, lasers used in lightwave systems have a large beam divergence, typically 10 to 20 degrees. Here, irradiance obeys the inverse square law (doubling the distance reduces the irradiance by a factor of 4) and rapidly decreases over distance.

Lasers and Eye Damage

Light energy emitted by laser and high-radiance LEDs in the 400-1400nm range my cause eye damage if absorbed by the retina. When a beam of light enters the eye, the eye magnifies and focuses the energy, magnifying the irradiance. The irradiance of energy that reaches the retina is approximately 10^5 or 100,000 times that at the cornea, and if sufficiently intense, may cause a retinal burn.

The damage mechanism at the wavelengths used in telecommunications is thermal in origin (that is, damage caused by heating). Therefore, a specific amount of energy is required for a definite time to heat an area of retinal tissue. Damage is not instantaneous. It occurs only when one looks at the light sufficiently long that the product of the retinal irradiance and the viewing time exceeds the damage threshold. Light energies above 1400 nm would cause surface and skin burns and do not affect the retinal area.

Classification of Lasers

Manufacturers of lasers and laser products in the U.S. are regulated by the Food and Drug Administration's Center for Devices and Radiological Health (FDA/CDRH) under 21 CFR 1040. These regulations require manufacturers to certify each laser or laser product as belonging to one of four major Classes — Class I, II, IIa, IIIa, IIIb, or IV. Lasers are classified according to the accessibly emission limits and their potential for causing injury. Lightwave systems are generally classified as Class I, because, under normal operation conditions, all energized laser transmitting circuit packs are terminated on optical fibers which enclose the laser energy with fiber sheath, forming a protective housing. Also, covers are in place over the circuit pack shelves.
Lightwave Safety Precautions

In its normal operating mode, a lightwave system is totally enclosed and presents no risk of eye injury. It is a Class I system under the FDA/CDRH scheme.

The lightguide cables that interconnect various components of a lightwave system can disconnect or break, and may expose people to lightwave emission. Also, certain measures and maintenance procedures may expose the technician to emission from the semiconductor laser during installation and servicing. Unlike more familiar laser devices, such as solid-state and gas lasers, the emission pattern of a semiconductor laser results in a highly divergent beam. In a divergent beam, the irradiance (power intensity) decreases rapidly with distance. The greater the distance, the less energy will enter the eye, and the less potential risk for eye injury.

Inadvertently viewing an unterminated fiber or damaged fiber with the unaided eye at distances greater than 5 to 6 inches normally will not cause eye injury provided the power in the fiber is less than a few mW at the shorter wavelengths and higher at the longer wavelengths. However, damage may occur if an optical instrument such as a microscope, magnifying glass, or eye loupe is used to stare at the energized fiber end.

⚠️ **CAUTION:** Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous laser radiation exposure.

Safety Precautions for Enclosed Systems

Under normal operating conditions, lightwave transmission systems are completely enclosed; nonetheless, the following precautions should be observed:

1. Because of the potential for eye damage, technicians should neither disconnect any lightwave cable nor splice and stare into the optical connectors terminating the cables.

2. Under no circumstances shall lightwave/lightguide operations be performed by a technician before satisfactorily completing an approved training course.

3. Since viewing lightwave emission directly with an optical instrument such as an eye loupe greatly increases the risk of eye damage, an appropriate safety label (Figure 1) must appear in plain view on the front of the main frame or lightguide termination/interconnection equipment. The label shall read as follows:

 NOTICE: UNTERMINATED OPTICAL CONNECTORS MAY EMIT LASER RADIATION. AVOID DIRECT EXPOSURE TO THE BEAM. DO NOT VIEW THIS BEAM WITH OPTICAL INSTRUMENTS.
Figure 1. Safety Label Position on FiberReach Shelf

- NOTICE -
Unterminated optical connectors may emit laser radiation, do not view beam with optical instruments

- DANGER -
Invisible laser radiation when open, avoid direct exposure to beam.
Safety Precautions for Unenclosed Systems

During service, maintenance, or restoration, a lightwave transmission system is considered unenclosed. Under these conditions, follow these practices:

1. Only authorized, trained personnel shall be permitted to do service, maintenance, and restoration. Avoid exposing the eye to emissions from unterminated, energized optical connectors at close distances. Connectors associated with lightwave regenerators are recessed, which limits exposure distance. However, technicians removing or replacing regenerators should not stare or look directly into the vacant regenerator slot with optical instruments or magnifying lenses. (Normal eye wear or indirect viewing instruments such as a FIND-R-SCOPE® are not considered magnifying lenses or optical instruments.)

2. Only authorized, trained personnel shall use the lightwave test equipment during installation or servicing since this equipment contains semiconductor lasers. (Some examples of lightguide test equipment are OTDR's, Hand-Held Loss Test Sets, and Feature Finders.)

3. Under no circumstances shall any personnel scan a fiber with an optical test set without verifying that all lightwave sources on the fiber are turned off.

4. All unauthorized personnel shall be excluded from the immediate area of lightwave transmission systems during installation and service.

Consult ANSI† Z136.1 American National Standard for Safe Use of Lasers for guidance on the safe use of lasers in the workplace.

DDM-2000 FiberReach T1EXT Lightning and Surge Protection Shelf, Model ED8C783-30

Important Safety Instructions

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the product.

* Registered trademark of F. J. W. Industries, Inc.
† Registered trademark of American Standards Institute, Inc.
When using your telecommunications equipment, basic safety precautions should always be followed to reduce the risk of fire, electric shock, and injury to people, including the following:

1. Read and understand all instructions.
2. Follow all warnings and instructions marked on the product.
3. This product must be installed and serviced only by qualified service technicians.
4. CAUTION: This equipment is for installation with the DDM-2000 FiberReach Wideband Shelf only.
5. CAUTION: For continued protection against risk of fire, all fuses used in this product must be replaced with the same type and rating.
6. WARNING: Installation must include an independent frame ground drop to building ground.

SAVE THESE INSTRUCTIONS

Electrostatic Discharge (ESD) Considerations

⚠️ CAUTION:
Industry experience has shown that all integrated circuit packs can be damaged by static electricity that builds up on work surfaces and personnel. The static charges are produced by various charging effects of movement and contact with other objects. Dry air allows greater static charges to accumulate. Higher potentials are measured in areas with low relative humidity, but potentials high enough to cause damage can occur anywhere.

The following precautions should be observed when handling circuit packs in order to prevent damage by electrostatic discharge:

- Assume all circuit packs contain solid state electronic components that can be damaged by ESD. Use only Lucent manufactured UL* recognized circuit packs in this system.
- When handling circuit packs (storing, inserting, removing, etc.) or when working on the backplane, always wear a grounded wrist strap or wear a heel strap and stand on a grounded, static-dissipating floor mat. If a static-dissipating floor mat is used, be sure that it is clean.

* Registered trademark of Underwriters Laboratories, Inc.
■ Handle all circuit packs by the faceplate or latch and by the top and bottom outermost edges. Never touch the components, conductors, or connector pins.

■ Observe warning labels on bags and cartons. Whenever possible, do not remove circuit packs from antistatic packaging until ready to insert them into slots.

■ If possible, open all circuit packs at a static-safe work position, using properly grounded wrist straps and static-dissipating table mats. If a static-dissipating table mat is used, be sure that it is clean.

■ Always store and transport circuit packs in static-safe packaging. Shielding is not required unless specified.

■ Keep all static-generating materials such as food wrappers, plastics, and Styrofoam* containers away from all circuit packs. Upon removal from the bay, immediately put circuit packs into static-safe packages.

■ Whenever possible, maintain relative humidity above 20 percent.

To reduce the possibility of ESD damage, shelves are equipped with grounding jacks to enable personnel to ground themselves using wrist straps (Figure 2) while handling circuit packs or working on a shelf(s). The jacks for connection of wrist straps are located at the lower right-hand corner of each shelf and are labeled. When grounding jacks are not provided, an alligator clip adapter enables connection to bay frame ground.

![Static Control Wrist Strap](image)

Figure 2. Static Control Wrist Strap

* Registered trademark of The Dow Chemical Company.
IMPORTANT SAFETY INSTRUCTIONS

1. Read and understand all instructions.

2. Follow all warnings and instructions marked on the product.

3. Do not place this product on an unstable cart, stand, or table. The product may fall, causing serious damage to the product.

4. Slots and openings in this product's back or bottom are provided for ventilation. To protect it from overheating, these openings must not be blocked or covered. This product should not be placed in a built-in installation unless proper ventilation is provided.

5. This product should be operated only from the type of power source indicated on the marking label. For information on proper electrical distribution and power requirements, refer to the "Power" and "Technical Specifications" sections of this user/service manual.

6. Never push objects of any kind into this product through cabinet slots as they may touch dangerous voltage points or short out parts that could result in a risk of fire or electrical shock. Never spill liquid of any kind on the product.

7. To reduce the risk of electrical shock, do not disassemble this product. Service should be performed by trained personnel only. Opening or removing covers and/or circuit packs may expose you to dangerous voltages or other risks. Incorrect reassembly can cause electrical shock when the unit is subsequently used.

8. **Caution: Disconnect three (3) power connections when removing power from the system.**

9. Use only Lucent manufactured UL recognized circuit packs in this system. Recognized circuit packs are listed in this user/service manual.

SAVE THESE INSTRUCTIONS.
IMPORTANT INSTALLATION SAFETY INSTRUCTIONS

1. Read and understand all instructions.

2. Installation and maintenance procedures must be followed and performed by trained personnel only.

3. All DS1 and T1 extension interfaces should not leave the building premises unless connected to telecommunication devices providing primary or secondary protection, as applicable.

5. Never install telecommunication wiring during a lightning storm.

7. Never touch uninsulated telecommunication wires or terminals unless the telecommunication line has been disconnected at the DS1 interface.

8. Use caution when installing or modifying telecommunication lines.

SAVE THESE INSTRUCTIONS.
Related Documentation

The following documents provide additional information about the DDM-2000 Multiplexers:

- **Number:** 363-206-200
 Title: *DDM-2000 Multiplexer Applications, Planning, and Ordering Guide*
 Audience: Network planners, equipment engineers, and sales teams
 Content: Features, applications, high-level description, operations, administration, maintenance, planning, ordering, product support, reliability information, technical specifications, and a synchronous optical network (SONET) overview.

- **Number:** 363-206-201
 Title: *DDM-2000 OC-3 Multiplexer, System Commands Quick Reference*
 Audience: Maintenance personnel
 Content: Abbreviated list of system commands and parameters

- **Number:** 363-206-202
 Title: *DDM-2000 OC-3 Multiplexer User/Service Manual, Volumes I and II*
 Audience: Maintenance personnel
 Content: Detailed description, technical specifications, commands and reports (Volume I); operations and maintenance procedures (Volume II). This manual covers information on Software Releases 2 through 7.2.

- **Number:** 363-206-204
 Title: *DDM-2000 OC-3 Multiplexer Installation Manual*
 Audience: Customers planning to install the equipment
 Content: Customer installation instructions

- **Number:** 363-206-206
 Title: *DDM-2000 OC-12 Multiplexer — System Commands Quick Reference*
 Audience: Maintenance personnel
 Content: Abbreviated list of system commands and parameters

- **Number:** 363-206-207
 Title: *DDM-2000 OC-12 Multiplexer User/Service Manual*
 Audience: Maintenance personnel
 Content: Detailed description, technical specifications, commands and reports, and operations and maintenance procedures. This manual covers information pertaining to OC-12 Software Releases 1.0 through 3.2.
- Number: 363-206-208
 Title: *DDM-2000 OC-12 Multiplexer Installation Manual*
 Audience: Customers planning to install the equipment
 Content: Customer installation instructions

- Number: 363-206-220
 Title: *DDM-2000 OC-3/OC-12 Multiplexer Circuit Pack Options Job Aid*
 Audience: Maintenance personnel
 Content: List of circuit pack options

- Number: 363-206-222
 Title: *DDM-2000 OC-3/OC-12 Multiplexer Acceptance Task List Job Aid*
 Audience: Maintenance personnel
 Content: Check list of acceptance and turnup procedures

- Number: 363-206-285
 Title: *DDM-2000 OC-3 Multiplexer User/Service Manual, Volumes I and II*
 Audience: Maintenance personnel
 Content: Detailed description, technical specifications, commands and reports (Volume I); operations and maintenance procedures (Volume II). This manual covers information pertaining to OC-3 Software Releases 13.0 and later.

- Number: 363-206-290
 Title: *DDM-2000 OC-12 Multiplexer User/Service Manual, Volumes I and II*
 Audience: Maintenance personnel
 Content: Detailed description, technical specifications, commands and reports (Volume I); operations and maintenance procedures (Volume II). This manual covers information pertaining to OC-12 Software Releases 5.0 and later.

- Number: 363-206-295
 Title: *DDM-2000 OC-12 Multiplexer User/Service Manual, Volumes I and II*
 Audience: Maintenance personnel
 Content: Detailed description, technical specifications, commands and reports (Volume I); operations and maintenance procedures (Volume II). This manual covers information pertaining to OC-12 Software Releases 7.0 and later.
Number: 363-206-300
Title: DDM-2000 FiberReach Multiplexer Applications, Planning, and Ordering Guide
Audience: Network planners, equipment engineers, and sales teams
Content: Features, applications, high-level description, operations, administration, maintenance, and provisioning (OAM&P), system planning, ordering, product support, reliability information, technical specifications, and a synchronous optical network (SONET) overview

Number: 363-206-310
Title: DDM-2000 FiberReach Multiplexer Installation Manual
Audience: Installation and maintenance personnel
Content: Customer installation instructions

Number: 824-102-151
Title: DDM-2000 Multiplexers Operations Systems Engineering Guide
Audience: Engineers
Content: Operations systems engineering information for the DDM-2000 OC-3, OC-12, and FiberReach Multiplexers

The following documents provide information about CPro-2000:

Number: 365-523-110 (Manual only)
Number: 365-523-111 (Manual and Software)
Title: CPro-2000 User Manual, Release 5.0
Audience: Customers, engineers, maintenance personnel
Content: Operations information for CPro-2000 software tool to provision and maintain networks

Number: 365-523-120 (Manual only)
Number: 365-523-121 (Manual and Software)
Title: CPro-2000 User Manual, Release 6.0
Audience: Customers, engineers, maintenance personnel
Content: Operations information for the CPro-2000 software tool to provision and maintain networks

Number: 365-576-140 (User Manual only) Release 8.0
Number: 365-576-141 (User Manual and Software) Release 8.0
Title: CPro-2000 User Manual
Audience: Maintenance personnel
Content: Using the tool to provision and maintain ring networks
| Number: 365-576-150 (User Manual only) Release 9.0
| Number: 365-576-151 (User Manual and Software) Release 9.0
| Title: CPro-2000 User Manual
| Audience: Maintenance personnel
| Content: Using the tool to provision and maintain ring networks

| Number: 365-576-160 (User Manual only) Release 10.0
| Number: 365-576-161 (User Manual and Software) Release 10.0
| Title: CPro-2000 User Manual
| Audience: Maintenance personnel
| Content: Using the tool to provision and maintain ring networks

The following documents provide information about ITM SNC:

| Number: 107-564-270
| Title: ITM SNC Users Guide
| Audience: Operations personnel
| Content: Integrated Transport Management Subnetwork Controller information (Release 6.0 and earlier)

| Number: 190-223-100
| Title: ITM SNC Users Guide
| Audience: Operations personnel
| Content: Integrated Transport Management Subnetwork Controller information (Release 8.0 and later)

The following documents provide information about Operations Interworking:

| Number: 824-102-144
| Title: Lucent Technologies 2000 Product Family Multi-Vendor Operations Interworking Guide
| Audience: System Planners and Engineers
Number: 824-102-147
Title: *Lucent Technologies 2000 Product Family Operations Interworking Guide*
Audience: System Planners and Engineers

The following documents provide information about the SLC®-2000 Access System:

- **Number:** 363-205-004
 Title: *SLC-2000 Multi-Services Distant Terminal (MSDT) Feature, User/Service and Ordering Manual*
 Audience: Engineers, installers, administrators, operation and maintenance personnel, and technical support
 Content: Applications, physical and functional description, administration, powering, technical specifications, construction and installation, and operation and maintenance [in task-oriented practice (TOP format)]. This document also contains ordering information for the MSDT.

- **Number:** 363-208-000
 Title: *SLC-2000 Access System, Applications, Planning, and Ordering Guide*
 Audience: Network planners, equipment engineers, and sales teams
 Content: Features, applications, high-level description, operations, administration, maintenance, planning, ordering, product support, reliability information, technical specifications, and a synchronous optical network (SONET) overview

- **Number:** 363-208-001
 Title: *SLC-2000 Access System, User/Service Manual*
 Audience: Installers, technicians, engineers, and troubleshooters
 Content: System overview, system description, introduction to system interface, administration and provisioning, operations and maintenance, and maintenance support procedures (in TOP format), and maintenance support information (alarm tables, etc.)
Number: 363-208-003

Audience: Installers, technicians, engineers, and troubleshooters

Content: A tutorial on system commands and messages, as well as detailed information about system commands in manual-page format. The document pages are organized by user interface panel (UIP) commands and craft interface terminal (CIT) commands.

Number: 363-208-010

Title: SLC-2000 Access System, Customer Assembly Manual for RT Frames

Audience: Customers that plan to install the equipment

Content: Configuration drawings and detailed instructions for ordering, installing, assembling, and connecting the equipment in a remote terminal (RT) frame arrangement. This document also includes installation procedures, cabling and wiring diagrams, application schematic diagrams (SDs), parts lists, and supporting information. Shelf assembly, cable routing, and frame installation are provided.

Number: 363-208-011

Audience: Customers that plan to install the equipment

Content: Configuration drawings and detailed instructions for ordering, installing, assembling, and connecting the equipment in a Central Office Terminal (COT) frame arrangement. This document also includes installation procedures, cabling and wiring diagrams, the application schematic diagrams (SDs), a parts list, and supporting information. Shelf assembly, cable routing, and frame installation are provided.

Number: 363-208-029

Title: SLC-2000 Access System, Software Release Description - Release 4.07.00: Issue 1

Audience: Installers, technicians, engineers, and troubleshooters

Content: Provides information about the software release and procedures for implementation. Describes the features and capabilities provided in the release. Lists operating issues from the previous release that have been resolved, the operating issues in this release, and work-arounds.
The following documents provide information about the SLC LineReach Access System:

- **Number**: 363-208-400
 Title: *SLC LineReach Access System Applications, Planning, and Ordering Guide*
 Audience: Network planners, equipment engineers, and sales teams
 Content: Features, applications, high-level description, operations, administration, maintenance, planning, ordering, product support, reliability information, and technical specifications

- **Number**: 363-208-401
 Title: *SLC LineReach Access System User/Service Manual*
 Audience: Installers, technicians, engineers, and troubleshooters
 Content: System overview, system description, administration and provisioning, operations and maintenance, and maintenance support procedures (in TOP format), and turnup and test procedures

- **Number**: 363-208-402
 Title: *SLC LineReach Access System Installation Manual*
 Audience: Installation and maintenance personnel
 Content: Customer installation instructions
DDM-2000 FiberReach Drawings

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED-8C762-20</td>
<td>DDM-2000 FiberReach Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C762-30</td>
<td>DDM-2000 FiberReach Wideband Shelf</td>
</tr>
<tr>
<td>ED-8C843-30</td>
<td>DDM-2000 FiberReach Shelf Carrier Assembly</td>
</tr>
<tr>
<td>ED-8C785-20</td>
<td>DDM-2000 FiberReach Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C785-30</td>
<td>DDM-2000 FiberReach Narrowband Shelf</td>
</tr>
<tr>
<td>ED-8C843-31</td>
<td>DDM-2000 FiberReach Wall DT Unit</td>
</tr>
<tr>
<td>ED-8C843-32</td>
<td>DDM-2000 FiberReach LGX Panel</td>
</tr>
<tr>
<td>ED-8C843-34</td>
<td>DDM-2000 FiberReach Release 2.0 Software</td>
</tr>
<tr>
<td>ED-8C843-35</td>
<td>DDM-2000 FiberReach Release 3.0 Software</td>
</tr>
<tr>
<td>108680224</td>
<td>DDM-2000 FiberReach Release 4.0 Software</td>
</tr>
<tr>
<td>ED-8C852-30</td>
<td>DDM-2000 DS1 Interconnect Panel</td>
</tr>
<tr>
<td>SD-7C516-01</td>
<td>Application Schematic</td>
</tr>
</tbody>
</table>
DDM-2000 OC-3 Drawings

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED-8C724-10</td>
<td>OC-3 and OC-3/OC-12 Combined Bay Arrangements</td>
</tr>
<tr>
<td>ED-8C724-15</td>
<td>Cabling Plan (Rear Access)</td>
</tr>
<tr>
<td>ED-8C724-16</td>
<td>Cabling Plan (Front Access)</td>
</tr>
<tr>
<td>ED-8C724-20</td>
<td>Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C724-21</td>
<td>Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C724-22</td>
<td>Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C724-30</td>
<td>DDM-2000 Shelf Assembly</td>
</tr>
<tr>
<td>ED-8C724-31</td>
<td>User Panel Assembly</td>
</tr>
<tr>
<td>ED-8C724-34</td>
<td>OC-3 Releases 2 and 3 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-36</td>
<td>OC-3 Release 5 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-37</td>
<td>OC-3 Release 6 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-38</td>
<td>OC-3 Release 7 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-39</td>
<td>OC-3 Release 8 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-41</td>
<td>OC-3 Release 11 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-42</td>
<td>OC-3 Release 13 Software Ordering</td>
</tr>
<tr>
<td>ED-8C724-43</td>
<td>OC-3 Release 15 Software Ordering</td>
</tr>
<tr>
<td>T08680133</td>
<td>OC-3 Release 15 Initial Diskette plus SWRD</td>
</tr>
<tr>
<td>ED-8C733-30</td>
<td>Fan, Filter, and Baffle Assemblies</td>
</tr>
<tr>
<td>SD-7C510-01</td>
<td>Application Schematic</td>
</tr>
<tr>
<td>T7C510-31</td>
<td>Interconnect Wiring (Rear Access)</td>
</tr>
<tr>
<td>T7C510-32</td>
<td>Interconnect Wiring (Front Access)</td>
</tr>
<tr>
<td>801-525-168</td>
<td>Floor Plan Data Sheets</td>
</tr>
</tbody>
</table>
DDM-2000 OC-12 Drawings

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED-8C724-10</td>
<td>OC-3 and OC-3/OC-12 Combined Bay Arrangements</td>
</tr>
<tr>
<td>ED-8C727-10</td>
<td>Typical Bay Arrangements</td>
</tr>
<tr>
<td>ED-8C727-15</td>
<td>Cabling Plan (Rear Access)</td>
</tr>
<tr>
<td>ED-8C727-16</td>
<td>Cabling Plan (Front Access)</td>
</tr>
<tr>
<td>ED-8C727-20</td>
<td>Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C727-21</td>
<td>Cable Assemblies</td>
</tr>
<tr>
<td>ED-8C727-30</td>
<td>DDM-2000 Shelf Assembly</td>
</tr>
<tr>
<td>ED-8C727-31</td>
<td>User Panel Assembly</td>
</tr>
<tr>
<td>ED-8C727-37</td>
<td>OC-12 Release 7 Software Ordering</td>
</tr>
<tr>
<td>SD-7C513-01</td>
<td>Application Schematic</td>
</tr>
<tr>
<td>T7C513-31</td>
<td>Interconnect Wiring Diagram (Rear Access)</td>
</tr>
<tr>
<td>T7C513-32</td>
<td>Interconnect Wiring Diagram (Front Access)</td>
</tr>
<tr>
<td>801-525-168</td>
<td>Floor Plan Data Sheets</td>
</tr>
</tbody>
</table>

DDM-2000 equipment is also available in traditional loop enclosure arrangements, descriptions of which may be found in the following Lucent Technologies practices:

- Number: 363-205-000
 Title: *SLC Series 5 Carrier System Ordering Guide — Loop Transmission Systems* (to be replaced by 363-205-010)

- Number: 363-205-010
 Title: *SLC Series 5 System Applications and Planning Guide*

- Number: 626-500-128
 Title: *51A-type Cabinets Ordering Information and Lettering Guide* — for DDM-2000 FiberReach Wideband Shelves and *SLC Series 5 Carrier Systems*

- Number: 640-250-289
 Title: *51A-type Cabinets Ordering Information and Lettering Guide* — for DDM-2000 FiberReach Wideband Shelves and DDM Plus

- Number: 640-030-205
 Title: *61B-type Cabinets Ordering Information and Lettering Guide* — for DDM-2000 FiberReach Wideband and Narrowband Shelves
The following documents provide additional information about related equipment:

- Number: 626-500-105
 Title: 80-type Cabinets Ordering Information and Lettering Guide

- Number: 626-500-115
 Title: 90-type Cabinets Coding and Ordering Information

- Number: 365-303-102
 Title: DSX-3 Cross-Connect Bay, Description, Operation, and Maintenance Manual

- Number: 365-301-130
 Title: System III DSX-3/4, Planning, Engineering, Installation, and Operation - System Reference Guide

- Number: 365-331-000
 Title: DACS III-2000 Release 2.0 Applications, Planning, and Ordering Guide

- Number: 365-340-800
 Title: DACS IV-2000 Release 5.0 Reference Manual

- Number: 365-575-100
 Title: FT-2000 OC-48 Lightwave System Application, Planning, and Ordering Guide

- Number: 636-299-120
 Title: LGX® Distribution System, Planning, Engineering, Installation, and Operation System Reference Guide.

- Title: MegaStar® 2000 Documents
 Comcode 107585648 - Installation Manual
 Comcode 407397512 - Schematic Package
 Comcode 107585655 - Reference Manual
 Comcode 107585671 - System Application Manual

* Registered trademark of Harris Corporation.
Customer Technical Support (CTS)

CTS is available through a toll-free technical assistance number. Lucent maintains a highly-skilled, multi-tier support structure consisting of regional engineers, product specialists, and system designers to support your network equipment. All levels of technical expertise may be called upon to solve the customer problem (refer to Figure 3).

The CTS organization provides remote, diagnostic support. On-site assistance is available on a billable contract or time and material basis. Support services may include the following activities:

- Responding to all requests for assistance
- Tracking and maintaining visible ownership of all reported problems, from inception through resolution
- Analyzing and diagnosing reported problems
- Providing restoration and recovery service
- Providing preventive and/or circumvention measures
- Communicating the actions, plans, and problem status to the reporting customer
- Initiating action to establish Modification Requests (MRs) for design issues
- Writing and distributing technical bulletins (Urgent Problem Notification).

CTS services are available on a contract basis in three levels to meet varying customer needs: Preferred, Standard, and Basic Agreements. The Preferred level of support guarantees 24 x 7 (24 hour, 7 day-a-week) coverage of the customer’s network. Guaranteed performance commitments for response, service restoration, and problem resolution times are validated by published Service Performance Reports. The Standard level of support guarantees 8 x 5 (8 hour, 5 day-a-week) coverage. Performance commitments are also validated by Service Performance Reports. Out-of-hours support is available for an additional fee. The Basic level of support guarantees 8 x 5 coverage with hourly billing for each support call. Out-of-hours coverage is available with additional fees.

When the customer experiences a problem, the initial point of contact within Lucent is the Regional Technical Assistance Center (RTAC). RTAC is divided into three regions covering North America: region East (includes Canada), region South, and region West. They can be reached by calling 1-800-CAL-RTAC (1-800-225-7822). Lucent works with the customer to define the problem and determine its severity. Problems are worked during the customer’s contracted coverage period. By prior agreement, service-affecting problems are worked immediately regardless of contracted coverage with billing reconciliation if required. Acting as a single point of contact with the customer, the RTAC engineer will involve all necessary tiers of support to solve the customer problem.
Figure 3. Product Support
Engineering and Installation Services

The Lucent Technologies Customer Support and Operations (CS&O) organization provides customers with quality product support services. Whether you need assistance in engineering, installation, normal system maintenance, or disaster recovery, the support staff provides you with the quality technical support you need to get your job done. Each segment of the CS&O organization regards the customer as its highest priority and understands your obligation to maintain quality service for your customer.

Within the CS&O organization, the Engineering and Installation Services group provides a highly skilled force of support personnel to provide customers with quality engineering and installation services. These engineering and installation specialists use state-of-the-art technology, equipment, and procedures to provide customers with highly competent, rapid response services. These services include analyzing your equipment request, preparing a detailed specification for manufacturing and installation, creating and maintaining job records, installing the equipment, and testing and turning over a working system.

When the CS&O organization provides job records and installs the equipment, operationally affective changes to the system are automatically identified and applied to the system at no additional cost.

The Engineering and Installation Services group provides the customer with an individually tailored, quality-tested job that meets our published high standards and the customer's operational requirements. The group ensures that the customer's system order is integrated into a complete working system tailored to office conditions and preferences. This process provides for the customer's complete needs. It includes provisions for cabling, lighting, power equipment, and ancillary connections to local and/or remote alarm systems. The group will also respond to any customer changes that occur during installation.

All equipment engineered and installed by Lucent Technologies is thoroughly tested and integrated into a reliable system at cutover. Once approved by Lucent's Quality Assurance Test group, the system is turned over to the customer.

The group also provides any specialized engineering and installation services required for unusual or highly individualized applications. These services may include engineering consultations and database preparation. Your local Account Executive can provide more information about these services.
Customer Technical Support Enhanced Services

The goal of Lucent Technologies' Customer Technical Support Enhanced Services is to keep Lucent Transmission Systems products operating at maximum performance and to prevent problems from interrupting service to customers.

Typical Enhanced Services include:

- Network design, growth planning, and performance analysis
- Multivendor troubleshooting
- Network integration
- Preventive and remedial maintenance
- Hardware and software upgrade services
- On-site maintenance programs
- Customized MOP (Method of Procedure) development.

For more information on Lucent's Customer Technical Support Services, contact your Lucent Technologies' Account Executive.

Documentation Support

The Lucent Technologies Customer Training and Information Products organization provides a contact to report errors or to ask questions about information in this document. The document support telephone number is **1-800-645-6759** (Monday through Friday, 8:00 a.m. to 4:00 p.m. EST).
How to Order Documents

To order additional copies of this document and/or request placement on the standing order list, send or call in an order as follows:

<table>
<thead>
<tr>
<th>Customer</th>
<th>Mail Order</th>
<th>Telephone Order (Monday through Friday)</th>
</tr>
</thead>
</table>
| Commercial Customers* | Lucent Technologies
Customer Information Center
Attention: Order Entry Section
2855 N. Franklin Road
P.O Box 19901
Indianapolis, IN 46219 | Within USA:
1-888-582-3688 or 1-888-LUCENT-8
7:30 a.m. to 6:30 p.m. EST
FAX: 1-800-566-9568
From Europe, The Middle East & Africa
Toll 1-317-322-6416
From Canada, the Caribbean & Latin America
Toll 1-317-322-6646
From Asia, the Pacific Region & China:
Toll 1-317-322-6411
Worldwide:
FAX: 1-317-322-6699 |
| RBOC/BOC | Process through your Company Documentation Coordinator | |

* For commercial customers, a check, money order, purchase order number, or charge card number is required with all orders. Make checks payable to Lucent Technologies. Lucent Technologies entities should use Form IND 1-80.80 FA, available through the Customer Information Center.
Standing Orders

One-time orders include a binder (if applicable) and the document contents for the current issue in effect at the time of order. Also, you may request placement on the standing order list for all later reissues of the document. The standing order list for each document provides automatic distribution for all reissues of the document. RBOC/BOC customers should process document orders or standing order requests through their Company Documentation Coordinator. For questions regarding standing orders or to be placed on a standing order list, call the applicable Lucent Technologies Customer Information Center number listed previously.

How to Comment on This Document

Feedback forms are located immediately after the title page of this document. Please fill out a form and return it to the address stamped on the front of the form or fax it to the number provided on the form.

If the feedback forms are missing, send comments on this document to:

Lucent Technologies
Customer Training and Information Products
2400 Reynolda Road
Winston-Salem, NC 27106

You may also report errors or request changes to this document by calling the toll free number, 1-800-645-6759 and giving the 9-digit document number.
Electronic Documentation

Documentation for the DDM-2000 FiberReach Multiplexer is now available in electronic form, on compact disk, read-only memory (CD-ROM). CD-ROM has many advantages over traditional paper documentation, including cost savings, search and retrieve capability, and the assurance of the most current documentation.

CD-ROM is available by annual subscription (on standing order).

- To order, call your Technical Information Resource Manager, your Lucent Technologies Account Executive, or the Lucent Technologies Customer Information Center at 1-888-LUCENT8 (1-888-582-3688).
- For pricing information, contact your Lucent Technologies Network Systems Account Executive or the Lucent Technologies Customer Information Center 1-888-LUCENT8 (1-888-582-3688)
- For technical information, call Lucent Technologies Documentation Support 1-800-645-6759.
System Introduction

Contents

- Overview
 - 1-1
- Lucent 2000 Product Family
 - 1-1
- Basic Description of the SLC-2000 Access System
 - 1-2
- Basic Description of the DDM-2000 FiberReach Multiplexer
 - 1-3
- DDM-2000 FiberReach Releases
 - 1-7
 - Release Descriptions
 - 1-7
System Introduction

Overview

This chapter introduces the Lucent 2000 Product Family and briefly describes the DDM-2000 FiberReach product.

Lucent 2000 Product Family

Lucent is focused on a carefully planned and growing product family designed to provide total network solutions. The 2000 Product Family complies with the synchronous optical network (SONET) standard and builds on features and capabilities that customers have found to be useful and successful in networks such as single-ended maintenance features and product upgrade capabilities. These upgrade capabilities allow a graceful evolution from today's asynchronous networks to the world-class intelligent networks of the future. The 2000 Product Family provides the significant elements of the Lucent Service Net-2000 Architecture.

Lucent's Service Net-2000 Architecture starts with the network as it exists today and provides real-world solutions to build upon your existing base. It also allows a graceful evolution from rigid wire centers to a network of flexible nodes. This network distributes intelligence to where it functions best.

The Service Net-2000 Architecture offers access bandwidth, service on demand, and self-healing network applications. Access bandwidth offers increased capacity, giving end users the ability to access any desired service. This increased
access bandwidth, provided over fiber, offers superior network reliability while opening up new revenue opportunities.

Service on demand offers high-capacity services implemented in short intervals. This application gives local exchange carriers the opportunity to generate new revenue faster by provisioning new services at a competitive "fast start" pace. At the same time, they help maintain the existing revenue base by increasing customer satisfaction. Service on demand also reduces start-up costs, thereby improving capital management.

The self-healing network application involves careful planning and provisioning of cross-product capabilities with the 2000 Product Family. At the core of this network is DACS III-2000 and DACS IV-2000 Cross-Connect Systems, the nerve center of interoffice transmission. The intelligent DACS III-2000 and DACS IV-2000 Cross-Connect Systems, working with the ITM SNC Controller, can identify failed connections and reroute signals according to a preestablished recovery plan. The DDM-2000 Multiplexers offer self-healing networks based on highly reliable path-switched rings.

The Lucent 2000 Product Family includes the:
- DDM-2000 FiberReach Multiplexer
- DDM-2000 OC-3 Multiplexer
- DDM-2000 OC-12 Multiplexer
- FT-2000 OC-48 Lightwave System
- DACS III-2000 Cross-Connect System
- DACS IV-2000 Cross-Connect System
- ITM SNC Controller
- SLC®-2000 Access System
- ITM SNC Subnetwork Controller
- CPro-2000 System.

Basic Description of the SLC-2000 Access System

The SLC-2000 Access System is the Lucent Technologies real-world digital loop carrier (DLC) solution that builds upon our proven digital loop carrier system experience. It is based on standard interfaces, network element commonality, and operational ease. This service-ready platform provides cost-effective deployment options and full-service capabilities that dramatically enhance the revenue generating capability and competitive positioning of your company.
The SLC-2000 Access System builds upon many of the administrative and operational features of the industry standard SLC Series 5 Carrier System and the SLC 96 Carrier System. The SLC-2000 Access System offers better ways of providing services and supports the standard digital interfaces for universal and integrated systems. It provides a synchronous optical network (SONET) OC-3 feeder interface, a DSX-1 metallic feeder interface, and enhanced operations, administration, maintenance, and provisioning (OAM&P) capabilities. The SLC-2000 Access System offers increased system flexibility to serve a wide variety of network applications.

The SLC-2000 Access System is a software-driven DLC system with a built-in SONET multiplexer. The system provides up to 768 subscriber lines and 28 subscriber DS1s, and has an option to equip a built-in loop test system test head [the integral test head (ITH)]. The system supports the following:

- Basic telephone service
- A full complement of special services Integrated Services Digital Network (ISDN)
- ONU's using both Fiber in the Loop (FITL) and DSX-1 metallic distribution
- Metallic distribution
- TR-08 standard interface
- TR-303 interface.

Basic Description of the DDM-2000 FiberReach Multiplexer

The DDM-2000 FiberReach Multiplexer is a full-service access product designed to support business carrier access, fiber-in-the-loop, and private network applications. DDM-2000 FiberReach has been designed to serve a multitude of services through a very modular architecture based on extensive reuse. The architecture consists of two types of shelves:

- Wideband Shelf
 - Provides the optics for the narrowband shelf, as well as a complete DS1 to OC-1/OC-3/OC-12 solution. Eight low-speed slots are available, optionally provisioned for up to sixteen 1x1 protected or unprotected DS1s, or up to twenty-eight 1x7 protected or unprotected DS1s. These low-speed slots may also be used to house T1 extension or HDSL circuit packs. Two function slots are also available, offering shelf space for 1x1 protected DS3, DS3/OC-3c data interfaces.
 - As part of the 2000 Family of Products, the DDM-2000 FiberReach Multiplexer supplies complete operations, administration, maintenance, and provisioning (OAM&P) features with a look and
feel that matches the DDM-2000 OC-3 and OC-12 Multiplexers. The DDM-2000 FiberReach Multiplexer fits into the already existing SONET networks and interworks with the existing OSs. Remote operations are via the International Standards Organization (ISO) standard 7-layer open systems interconnection (OSI) protocol, while a user panel and craft interface terminal (CIT) port support local operations needs. Complete performance-monitoring features, including DS1 path performance monitoring, permit the service provider to verify the quality of service based on key tariffs.

— The HDSL circuit pack (BBF8) provides HDSL interface capability on the DDM-2000 OC-3 shelf to compatible PairGain equipment at the customer premises. It allows the transport of DS1 rate payloads, for up to 12,000 feet, over two metallic 24 AWG twisted-pair lines. Application for business customers, the private network, cell sites, PBXs, customer premises equipment (CPE), and other applications are supported. The DDM-2000 FiberReach wideband shelf supports DS1, HDSL (with 28-type OLIUs) and T1 carrier extension interfaces. The DS1 interface accepts any DSX-1 compatible signal (clear channel interfaces). When equipped with 28-type OLIUs, the shelf supports 1 protected or 2 unprotected DS3 interfaces, or a single OC-3c interface.

■ Narrowband Shelf

— Which can be used together or separately in a variety of configurations. The narrowband shelf supports all of the services that are currently supported by Lucent's SLC-2000 Multi-Services Distant Terminal (MSDT) product but has two times the capacity to serve customers by requiring a concentration of special services at a single site. The channel units housed in the narrowband module are the SLC-2000 channel units.

— Which can be used for telephony applications, complete remote operations, such as channel unit provisioning and integrated testing, are available through the SLC-2000 host. The SLC-2000 host also creates the link into the 5ESS® electronic switch for TR08 or TR303 communications.

Together, the wideband and narrowband shelves can be deployed in outside plant or customer premises enclosures (including wall mounted) or can be rack-mounted.

The DDM-2000 FiberReach Multiplexer has a phased release plan. This manual covers Releases 3.0 and later of the DDM-2000 FiberReach Multiplexer. The manual will be updated to cover additional releases as they become available.

* PairGain is a registered trademark of PairGain Technologies, Inc.
SLC LineReach Access System

- The SLC LineReach Access System is a small digital loop carrier (DLC) remote terminal (RT) that provides up to 48 lines of POTS-type services, special services, or other DS0 services. Feature package 1.1 (FP1.1) supports up to two DS1-type interfaces and can be deployed in either a universal or integrated DLC configuration. Some of the basic features that make the SLC LineReach system an attractive, cost-effective DLC system include:

 - **Small Size.** The small system size means that you can easily mount it to meet your customer’s specifications. The system is approximately the same size as the narrowband shelf.

 - **TR-08, INA, and TR-303 Interfaces.** FP1.1 provides for a TR-08 interface to the switch, SLC2000, or SLC96 COT. If interfacing with a SLC Series 5 COT, it provides an “FPC-type” interface that uses extended SuperFrame (ESF) framing format. In addition, FP1.1 provides for an INA interface. Future economical upgrades will also allow for a TR-303 interface to a switch.

 - **Full Range of Services.** The system offers a full range of services including POTS (plain old telephone service), locally switched special services, integrated services digital network (ISDN), and non-locally switched special services.

 - **High Bit Rate Digital Subscriber Line (HDSL) and Other Interface Capability.** In addition to providing a T1 carrier interface and a DSX-1 feeder interface, the SLC LineReach system can also provide HDSL feeder interface. HDSL feeders allow the system to operate without repeaters over existing copper facilities that meet carrier serving area (CSA) guidelines.

 - **Central Office Terminal (COT) Compatibility.** For universal applications, the SLC LineReach system can interface with the switch through standard SLC 96, SLC Series 5, or SLC-2000 COTs, D4, and DACS.

 - **Drop Testing** (non-INA systems only). The system supports a standard drop testing operations system allowing you to test and maintain the customer’s drop.

- These features allow you to deploy and maintain the SLC LineReach system easily, quickly and flexibly. The system consists of a shelf assembly with 10 inch by 11 inch dimensions. It is populated with common circuit packs and channel units.

- The SLC LineReach Access System now supports an integrated configuration with DDM-2000 FiberReach Wideband Shelf which provides new interface applications.
For more information regarding the *SLC LineReach* Access System, as well as these new applications, refer to the *SLC LineReach Access System Applications, Planning, and Ordering Guide*, 363-208-400.

The wideband shelf and narrowband shelf communicate with each other via standard DS1 interfaces.

Figure 1-1 shows an example of how the DDM-2000 FiberReach Multiplexer fits into existing networks. Other examples are shown in the *FiberReach Multiplexer Applications, Planning, and Ordering Guide*, 363-206-300.

Figure 1-1. Example of DDM-2000 FiberReach Multiplexer in the Network
DDM-2000 FiberReach Releases

NOTE:
DDM-2000 FiberReach Release 3.0, 3.1, and 4.0 are NOT compatible with previous releases of DDM-2000 FiberReach, OC-3, OC-12 and FT-2000 that do not support TARP, thus care should be taken to avoid isolating NEs that have not yet been upgraded to Release 3.0 or later when upgrading a subnetwork.

Release Descriptions

The following paragraphs provide a brief description of available DDM-2000 FiberReach Multiplexer releases.

Release 2.2 provides the following:

- New OC-3 OLIU (28G-U/28G2-U) for OC-1 Shelf. The new 28G-U/28G2-U OLIU provides OC-3 optics directly from the DDM-2000 OC-1 Shelf. This allows the FiberReach shelf to support an OC-3 ring, with the low-speed input capacity of the 28 VT1.5 shelf. The 28G-U/28G2-U OLIU provides visibility to the full STS-3 bandwidth and allows for selection of any 28 VT1.5s within the 3 STS-1s on the OC-3 ring for drop at the FiberReach shelf. Remaining traffic can be passed-through on the OC-3 ring.

- New Secured-Area Telecommunications Applications Cabinet (STAC) System — FRC 2000. This small, integrated modular indoor cabinet offering enables the provisioning of electronic controls, terminals, and instruments quickly at the point of need with minimal investment and real estate. The enclosure optimizes equipment density, heat transfer, environmental protection, and ease of installation and maintenance. It is designed to maximize public and installation safety.

- The HDSL circuit pack (BBF8) provides for HDSL interface capability on the DDM-2000 FiberReach shelf. It allows the transport of DS1 rate payloads, for up to 12,000 feet, over two metallic 24 AWG twisted-pair lines. Data is transported over each pair bidirectionally using echo cancellation techniques.
Release 3.0 (TARP Release) supports the following features:

- **Pointer Justification Count (PJC).** This performance monitoring parameter indicates a frequency error in the network or other potential synchronization problems. It provides a threshold crossing alert (TCA) when the STS-1 pointer justification count in a performance bin exceeds a user provisioned threshold value.

- The BBF3B DS1 PM Circuit Pack low-speed interface can be provisioned for the following DS1 formats: clear channel (default), superframe (SF) as specified in ANSI/T1.403-1989, or extended superframe (ESF) as specified in ANSI/T1.403-1989. In the case of SF or ESF format selections, DS1 performance information is collected by monitoring the associated DS1 framing format.

- Single DS1 facility loopback using the BBF3B circuit pack.

- Manual timing pack switch for the wideband shelf: This capacity adds the ability to manually switch which main OLIU is supplying timing to the shelf. In this way, the switch can be effected remotely. An additional use of this capacity is to switch timing functionality off of a main OLIU prior to removing it for maintenance. This feature also causes an “active-fn” OLIU pack equipment switch which will be reflected in the “rtrv-state-eqpt report”.

- Multi-Vendor Operations Interworking (OI) compatibility.
 - DDM-2000 FiberReach is compatible with any other-vendor NEs that support Target ID Address Resolution (TARP) protocol, OSI, and TL1/X.25 as specified in Telcordia Technologies TR-253.
 - Compatible with Tellabs TITAN 5500/S Release 5.0 Digital Cross-Connect System, including TL1 OS access with TITAN 5500/s DCS serving as the TL1/X.25 GNE.

- Lucent 2000 Product Family OI compatibility.
 - Compatible with DDM-2000 OC-3 Release 13.0 and OC-12 Release 7.0 and FT-2000 R8.0 (but not with earlier releases due to multi-vendor OI support).

- Large subnetworks.
 - Supports large subnetworks of up to 256 NEs by partitioning the subnetwork into multiple areas connected via Level 2 Intermediate Systems (IS).

- CPro-2000, ITM SNC support. FiberReach Release 3.0 is supported by:
 - CPro-2000 Release 7.0; ITM SNC Release 5.0.
ITM SNC Release 5.0 enhancements for FiberReach Release 3.0:
- ITM SNC software download to FiberReach*
- ITM SNC as the TL1 GNE
- ITN SNC backup and restore enhancements.

Default TID. The default Target Identifier (TID) for R 3.0 is LT-DDM-2000, instead of the previous default of Site#NE#.

TL1 commands:
- RTRV-CID-SECU (also new CIT command RTRV-SECU) to report the active user logins.
- RTRV-LOG to report the 500 most recent events in the history log (equivalent to existing CIT command RTRV-HSTY).
- ENT-FECOM to provision DCC user-side/network-side settings and to enable or disable remote access via each DCC (equivalent to existing CIT command SET-FECOM which is now supported via CIT remote login and OS).
- RTRV-FECOM to report the provisioned state of each DCC (equivalent to existing CIT command RTRV-FECOM).

Release 3.1 (TARP Release) supports the following features:
- Supports the OC-3 optics through the 28G-U/28G2-U OLIU circuit packs in the Main Unit slots and therefore supports all the related features that were added to Release 2.2. The related OC-3 features are as follows:
 - STS-1 pass-through cross-connections on the 28G-U/28G2-U equipped FiberReach shelves
 - Full OC-3 VT cross-connections to Main slots equipped with the 28G-U/28G2-U OLIU
 - Provisionable S1 byte option, if the FiberReach shelf is equipped with the OC-3 interfaces in both Main Unit slots
 - Provisionable Synch Autoconfiguration.
- Supports the STS-3c 0X1 application using the OC-3 interface (22-type) in the Function Unit slots of the FiberReach NEs.
- Supports the DS3 (BBG4B Circuit Pack) in the Function Unit slots of the FiberReach shelf. This provides the ability of transporting STS-1 services using the DS-3 circuit packs in the Function Unit slots.

* This feature will be useful when upgrading from FiberReach Release 3.0 to later releases.
Multi-media Data Services: A new DS3 (BBG19) interface provides the flexibility to offer a full range of multi-media data services via embedded and new DDM-2000 networks. This full-solution offering is made possible by interfacing DDM-2000 to any of the numerous commercially available data edge devices which provide the various data services interfaces.

The HDSL circuit pack (BBF8) provides for HDSL interface capability on the DDM-2000 FiberReach shelf. It allows the transport of DS1 rate payloads, for up to 12,000 feet, over two metallic 24 AWG twisted-pair lines. Data is transported over each pair bidirectionally using echo cancellation techniques.

Release 4.0 supports the following applications and features:

- OC-12 optics through the 29G-U/29H-U OLIU circuit packs in the Main Unit slots. The related features are as follows.
 - STS-1/STS-3c/VT1.5 pass-through cross-connections on the 29G-U/29H-U OC-3 equipped shelves
 - STS-3c cross-connections to Function Unit
 - In-service upgrades only from 28G-types to the new 29-type OLIUs.

- DCC provisioning on Main (identical/distinct) for OC-3/OC-12 ring interface. Identical DCC mode allows a remote shelf to interconnect through its Main ring interfaces with a 1+1 linear extension on a host OC-3, OC-12, or OC-48 shelf using ring software.

- Provisioning of asynchronous CIT port to run TL1.

- Remote alarm status (using the AGNE and the Alarm Group concept).

- CPro-2000, ITM SNC support: Release 4.0 is supported by:

 CPro-2000 Release 10.0; ITM SNC Release 10.0

- DS3 using BBG4/BBG4B while using the OC-1 optics in the Main.

- Multimedia Data Services using DS3 BBG19 for Lucent DDM-2000 FiberReach NE (used for DS3 locked cross-connects, to support data services), while using the OC-1 (26-type) OLIUs in Main. (The BBG19 in the Function Unit slots is currently supported with the 28-type OLIUs in Main to provide this type of service.)
Applications

Contents

Overview 2-1

DDM-2000 FiberReach Applications Summary 2-1

- Ring Topologies
 OC-3 Path Switched Ring 2-3
 OC-12 Path Switched Ring 2-5

DDM-2000 FiberReach Network Topologies (OC-1) 2-9

Basic Wideband Shelf Configurations 2-9

- DS1 and T1 Services
 Single-Homed Access via Backbone Ring 2-10
 Dual-Homed Access via a Backbone Ring 2-13
 Integration with Dual Wire Center Applications 2-14
 Single Homing to Linear DDM-2000 OC-3 Networks 2-16
 Stand-Alone OC-1 Ring/Hub Networks 2-17

Enhanced Routing 2-20

- OC-1 Ring Pass-Through 2-21
- OC-1 Ring Hairpin Routing, Single-Homed 2-22
- OC-1 Ring Hairpin Routing, Dual-Homed 2-23
- Hairpin Local Drop Routing 2-24

DDM-2000 FiberReach Network Topologies (OC-3 and OC-12) 2-25

- 28-Type Optical Line Interface (28G-U/28G2-U) 2-25
 Circuit Pack Overview 2-25
- 29-Type Optical Line Interface (29G-U/29H-U) 2-26
Contents

Circuit Pack Overview 2-26

- DDM-2000 FiberReach Service Applications 2-28
- LAN/WAN Data Networking: DS3 Data Services 2-28
- High Data-rate Subscriber Line (HDSL) Application 2-32
 - DDM-2000 FiberReach Service Applications Using the 28G-Type OLIU (Release 2.2 — Non-TARP Release) 2-34
 - DDM-2000 FiberReach Service Applications Using the 28G-Type OLIU (Release 3.1, TARP) 2-39
- Basic DS3 Cross-Connects 2-40
 - DDM-2000 FiberReach Service Applications Using the 29-Type OLIU (Release 4.0, TARP) 2-43
 - STS-3c 0X1 Optical Interface 2-45

Basic Narrowband Shelf Configurations 2-48

Integrated DS1, T1, and DS0 Services 2-54

- Integrated Narrowband Business Carrier Access 2-54
- Integrated DS1 Transport Configuration with SLC LineReach Access System 2-60
 - SONET Transport 2-60

Intelligent Vehicle Highway System (IVHS) 2-62

Teleprotection and Supervisory Control and Data Acquisition (SCADA) Communications for Electric Utilities 2-64
Applications

Overview

The DDM-2000 FiberReach Multiplexer can support a range of applications with maximum economy and efficiency. This chapter highlights the ways the DDM-2000 FiberReach Multiplexer, along with other members of the 2000 Product Family, meets these diverse network needs.

DDM-2000 FiberReach Applications Summary

Lucent Technologies’ 2000 Product Family has set the standard for networking flexibility. The newest member of this family, the DDM-2000 FiberReach Multiplexer, extends the benefits of the DDM-2000 Multiplexer and SLC®-2000 Access System to end users whose capacity needs may be small but still demand the cutting edge services and support of the larger customers. Targeting the diverse needs of business carrier access, residential fiber-in-the-loop, and private network applications, DDM-2000 FiberReach will deliver a full range of services using the wideband and narrowband shelf as follows:
Wideband Shelf
- DS1 Services (via DSX-1 or T1 carrier access)
- Video Transport.

Narrowband Shelf
- Telephony
- DS0 Specials
- Integrated Services Digital Network (ISDN).

DDM-2000 FiberReach interworks with DDM-2000 OC-3/OC-12 and SLC-2000 Access System hosts via an exceptional variety of networking options, including single-homed OC-1 path-switched ring extensions and fully survivable dual-homing topologies. In every application, DDM-2000 FiberReach offers a thorough set of operations features with a look and feel that matches the other acclaimed DDM-2000 Multiplexer systems. Remote operation is via the data communications channel (DCC), while a user panel and craft interface terminal port support local operations needs. Complete performance-monitoring (PM) features, including DS1 path PM, permit the service provider to verify the quality-of-service terms of key tariffs.

DDM-2000 FiberReach will extend the service provider’s investment in SONET networks by supporting broadband capabilities such as two-way moving picture experts group (MPEG 2) videoconferencing transport within standard synchronous optical network (SONET) signal formats. Thus, new broadband services can be created by pairing the bandwidth of DDM-2000 FiberReach with the network survivability and resultant revenue-generating potential of path protection switching and dual wire center architectures.

Three types of DDM-2000 FiberReach applications are offered:

- **Business Carrier Access**: Premium-tariffed telecommunications services (via DS1 or T1 carrier extensions) supplied by public network providers to business customers
- **Fiber in the Loop**: Cost-effective basic telephony, as well as emerging video and data services
- **Private Networks**: Privately held networks that supply the internal communication needs of large corporations, organizations, and institutions.

While DDM-2000 FiberReach applications are quite flexible and easy to use, aspects like bandwidth, facility management, and operations subnetwork design require some more detailed consideration.
Ring Topologies

The need to prevent service outage caused by network failure has created a new class of applications. The 2000 Product Family offers a wide range of self-healing network features that automatically protect against service outage caused by cable cuts and equipment failures, which in turn protect customers and generate increased revenue. These self-healing features include flexible DACS-based restoration with the ITM XM controller, SLC®-2000 2- and 4-fiber rings, DDM-2000 OC-3 and OC-12 virtual tributary 1.5 (VT1.5) and STS-1 path switched rings, SLC-2000 Access System path switched rings, and DDM-2000 FiberReach VT1.5 path-switched rings.

DDM-2000 FiberReach, DDM-2000 OC-3, DDM-2000 OC-12, and SLC-2000 Access System self-healing rings offer the performance and administrative benefits demonstrated by the successful Lucent FT Series G Ring Diversity Switch. Since the DDM-2000 FiberReach, OC-3, OC-12, and FT-2000 path switched rings operate in an integrated, single-ended fashion, complex network-level coordination is not necessary to restore traffic. This means restoration is faster and more reliable. Furthermore, bandwidth administration and network reconfigurations (for example, adding or deleting nodes) can be easier.

The DDM-2000 FiberReach, OC-3, and OC-12, and SLC-2000 path-switched rings operate as shown in Figure 2-1(a). Traffic entering a path switched ring node is sent onto both rotations of the ring. At the receiving node, the signal having the highest integrity (based on SONET path information) is selected and dropped as outgoing traffic. At intermediate nodes, the traffic is "passed-through" without changing the SONET path information. The DDM-2000 time slot interchange (TSI) capabilities make the provisioning of add/drop and pass-through traffic quick and easy.

The self-healing nature of the path switched ring is shown in Figure 2-1(b). In this case, the fiber failure between nodes B and C causes node B to switch from the counterclockwise ring to the clockwise ring, thus maintaining service between node A and C.
A network which requires the bulk of its traffic to be dropped at a single node is an ideal application for path switched rings. A typical loop feeder network, where most traffic is between the subscriber loop to a central office, fits this mold. Such an application calls for the delivery of protected DS1 and DS3 service to customer locations. In many cases, where the network serves only voice traffic and DS1s, a DDM-2000 FiberReach/OC-3/SLC-2000 path switched ring is a perfect fit. If DS3 service or a mixture of DS1 and DS3 service is needed, one or more OC-3 rings may be necessary. Cost, fiber availability, and bandwidth flexibility all play a part in determining whether a single OC-1 or OC-3 ring, multiple OC-1 or OC-3 rings, or an OC-12 ring will be the best network solution.

Figure 2-1. Path Switched Ring

(a.) Normal Operation

(b.) Path Failure
OC-3 Path Switched Ring

A DDM-2000 FiberReach can be equipped with OC-3 optics. This option offers a cost effective solution at locations where the dropped traffic is primarily VT1.5 based and is accessed from any one of the 3 STS-1s. DDM-2000 OC-3 multiplexers can be mixed in the same OC-3 ring. The OC-3 multiplexers can be used at sites requiring DS3 and other higher bandwidth STS path-switched traffic, while the FiberReach multiplexer is used at sites requiring VT path access for DS1, T1, etc. Figure 2-2 shows an OC-3 ring that includes both OC-3 and FiberReach multiplexers.

Starting with FiberReach Release 3.1, FiberReach shelves can be used at sites requiring DS3 services (STS-1 path access for DS3).
Figure 2-2. OC-3 Path Switched Ring Using OC-3 Multiplexer and FiberReach Multiplexer With OC-3 Optics
OC-12 Path Switched Ring

A DDM-2000 FiberReach can be equipped with OC-12 optics. This option offers a cost effective solution at locations where the dropped traffic is primarily VT1.5 based and is accessed from any one of the 12 STS-1s. FiberReach multiplexers equipped with OC-12 optics in Release 4.0 and later can be mixed in the same OC-12 ring. The OC-12 multiplexers can be used at sites requiring DS3 and other higher bandwidth STS path-switched traffic, while the FiberReach multiplexer is used at sites requiring VT path access for DS1, T1, etc. Figure 2-3 shows an OC-12 ring that includes both OC-3, OC-12, and FiberReach multiplexers.
Figure 2-3. OC-12 Path Switched Ring Using DDM-2000 OC-12, OC-3, and FiberReach Multiplexers With OC-12 Optics
DDM-2000 FiberReach Network
Topologies (OC-1)

Business Carrier Access is one of today’s fastest growing network applications. To supply the advanced communications services demanded by many business customers, local exchange carriers and competitive access providers are dedicating access networks between these customers and their wire centers. Long-distance voice and data services (for example, 1-800 reservations and customer support lines) are delivered from interexchange carrier (IXC) points of presence (POP) to the access networks along with any intra-LATA services needed by the customer. Network survivability, leading edge services, and quick response to changing end user demands are cornerstones of this market.

Small businesses and branch offices are increasingly sophisticated telecommunications users, demanding the advanced services, survivability, and network performance traditionally afforded only the large business locations. While many locations may get by today with a DS1 and a few voice lines, fast emerging LAN interworking, video conferencing, and other data and image applications require an access network of great flexibility. With the DDM-2000 FiberReach system, network providers have an unsurpassed opportunity to expand and compete in this critical market.

Where services are at the DS1 rate and above, DDM-2000 networks supply all the host functions a DDM-2000 FiberReach needs. However, switched service network providers require a forward-looking access network that handles DS0, specials, ISDN, and telephony with DS1 high capacity services in an integrated offering. Where telephony, DS0, and ISDN services are needed, the SLC-2000 Access System host supplies powerful bandwidth management and operations for DS0 level channel units, testing, and TR08/TR303 integrated switch interfaces.

DDM-2000 FiberReach is typically placed at customer locations, in telecommunications equipment rooms and closets, and often connects to an OC-3 or OC-12 backbone feeder ring at a nearby cabinet, controlled environment vault (CEV), or other remote terminal location. Alternatively, customer sites near a wire center can be served by OC-1 facilities directly from the wire center, bypassing the backbone feeder ring.

Basic Wideband Shelf Configurations

DS1 and T1 Services

The examples in this section provide DS1/T1 services only. If the NBS and DS0 level services are needed, a FiberReach Wideband Shelf must be co-located with SLC-2000 systems on the OC-3/OC-12 rings to provide DS1 connections from the SLC-2000 MDS shelves to the FiberReach OC-1 ring.
Single-Homed Access via Backbone Ring

Figure 2-4 and Figure 2-5 illustrate how single-homed OC-1 extensions can satisfy a growing access network. Single-homing applications connect both rotations of the OC-1 extension to a single DDM-2000 OC-3 Multiplexer or SLC-2000 Access System host. The DDM-2000 FiberReach is placed at the customer's location, such as in a telecommunications equipment closet on each floor of a high-rise office complex, and delivers protected DS1 channels to the business customer.

The OC-1 ring capability allows multiple DDM-2000 FiberReach systems to be connected to the backbone network via a single facility. Compared to other optical extension products that are limited to a single remote node per extension, the ring-based DDM-2000 FiberReach solution uses far less fiber and host optics for typical serving areas with multiple business locations. Network growth is as easy as adding another DDM-2000 FiberReach node on the ring; no additional fiber or host circuit packs are required.

With the dual OC-1 capability of the 27G-U optical line interface unit (OLIU), a DDM-2000 OC-3 ring node supports up to six single-homed OC-1 extensions; a SLC-2000 Access System access resource module (ARM) shelf can supply up to two single-homed OC-1 extensions. Thus, competing businesses in the same serving area can receive a dedicated access facility into the backbone ring, alleviating any privacy concerns.

The DDM-2000 FiberReach remote system employs standard path protection switching for a highly reliable network that guarantees 60 millisecond recovery from any single facility or equipment failure. Path protection switching occurs at a node in which the channel is dropped from the ring to a low-speed interface. For example, in Figure 2-4 the remote DDM-2000 FiberReach nodes and the DDM-2000 OC-3 in the wire center supply the path switching function for a survivable end-to-end transport between the customer and wire center. Channels pass between the OC-1 and OC-3 rings at the host DDM-2000 OC-3 and SLC-2000 systems with a ring (0x1) low-speed interface. This arrangement supports full TSI assignment between low-speed and high-speed time slots while preserving independent service and protection paths between the host and extension rings.
Figure 2-4. DDM-2000 FiberReach Rings Single Homing to a DDM-2000 OC-3 Ring

DDM-2000 FiberReach Wideband Shelf

RT Sites

SLC®-2000
Access System

DDM-2000
OC-3

Host Systems

OC-3

Up to six separate OC-1 extensions per DDM-2000 OC-3

DDM-2000
OC-3

DS1/EC-1/IS3

Multiple nodes on a High-Rise "Fiber in the Riser" ring

DDM-2000 FiberReach Wideband Shelf

DS1/T1

DDM-2000 FiberReach Wideband Shelf

DS1/T1

DDM-2000 FiberReach Wideband Shelf

DS1/T1

host

systems

DS1/T1

DS1/T1

DS1/T1

DS1/T1

DS1/T1

DS1/T1

DS1/T1
DDM-2000 FiberReach can also be extended from an OC-12/virtual tributary (VT) path-switched ring as shown in Figure 2-5. The DDM-2000 OC-3 system at the host node grooms and packs VT1.5 channels from the OC-1 extension rings for maximum utilization of the OC-12 backbone ring. Both the host OC-3 and OC-12 systems use the ring (0x1) low-speed interfaces, with 60 millisecond path protection switching performed, at the remote DDM-2000 FiberReach and wire center DDM-2000 OC-3 endpoints.

Figure 2-5. DDM-2000 FiberReach Rings Single Homing to a DDM-2000 OC-12 Ring
Dual-Homed Access via a Backbone Ring

Dual homing offers even more survivability than a single-homed network. Even the catastrophic failure of a host node can be protected. Figure 2-6 illustrates dual-homed OC-1 extensions from four remote nodes to an OC-3 access ring. The host nodes can be two DDM-2000 OC-3 Multiplexers, two SLC-2000 Access Systems, or one DDM-2000 OC-3 Multiplexer and one SLC-2000 Access System.

Path protection switching is employed for dual-homed applications, just like in single-homed applications. That is, 60 millisecond path switching is supplied by the remote DDM-2000 FiberReach nodes and the DDM-2000 OC-3 or OC-12 systems in the wire center. The OC-3 host node configuration differs from that used for single-homing because each host node terminates only one leg of the OC-1 extension. At each host node, a connection is made from the single OC-1 extension to just one rotation of the OC-3/OC-12 host ring. Dual- and single-homed extensions can also be mixed at a host node, allowing the access network to be tailored efficiently to different groups of customers.

Figure 2-6. DDM-2000 FiberReach Dual Homing to a DDM-2000 OC-3/OC-12 Ring
Integration with Dual Wire Center Applications

The survivability and networking benefits of Lucent's dual ring interworking solution are cost-effectively extended to smaller locations via DDM-2000 FiberReach dual-homing capabilities. Figure 2-7 shows an OC-3 feeder ring from duplicated wire centers, with dual-homed DDM-2000 FiberReach extensions from selected feeder ring remote sites.

The host nodes and remote DDM-2000 FiberReach systems are configured just like the previously described dual-homing configuration with single 0x1 cross-connections (ring 0x1 low-speed interface) employed by the host. In the dual wire center architecture, the access network is also protected from a catastrophic failure of one wire center, because the access and interoffice networks have duplicate points of interworking. The DDM-2000 OC-3 systems in the two wire centers employ the drop and continue cross-connection. (For more details on the dual wire center application, see LTP 363-206-200, DDM-2000 Multiplexer Application, Planning, and Ordering Guide.)

Figure 2-7. DDM-2000 FiberReach Ring Dual Homing to a DDM-2000 OC-3 Ring in a Dual Wire Center Application
Dual-homing applications can also be upgraded to an OC-12 backbone ring as shown in Figure 2-8. As with the single-homing application, the DDM-2000 OC-3 host system supplies the VT1.5 grooming necessary for optimum backbone utilization.

![Figure 2-8. DDM-2000 FiberReach Ring Dual Homing to a DDM-2000 OC-12 Ring in a Dual Wire Center Application](image-url)
Single Homing to Linear DDM-2000 OC-3 Networks

In business applications where the DDM-2000 OC-3 host is a node on a linear topology, two single-homed OC-1 ring extensions can be provided to multiple DDM-2000 FiberReach Multiplexers (see Figure 2-9). In this tapered linear application configuration, function slot "C" of the DDM-2000 OC-3 host is used for incoming traffic, and the "A" and "B" slots are used for downstream traffic or local terminations. The host DDM-2000 OC-3 Multiplexer must be using software Release 9.0 or later. The other DDM-2000 OC-3 Multiplexers in the linear application must be using Release 8.0 software.

Figure 2-9. Single-Homed OC-1 Ring to a DDM-2000 OC-3 Linear Application
Stand-Alone OC-1 Ring/Hub Networks

In applications such as campus or other self-contained environments where an OC-3 or OC-12 backbone ring is not needed or practical, DDM-2000 FiberReach can be deployed in a stand-alone OC-1 ring. This OC-1 ring extension can be configured directly from a DDM-2000/SLC-2000 shelf with 27-type circuit packs in the Main slots. A mix of DS1 and T1 carrier traffic from remote DDM-2000 FiberReach nodes can be flexibly groomed and dropped at the host to a mix of DS1, EC-1, and OC-3 interfaces, as shown in Figure 2-10. Channels can be established directly between two DDM-2000 FiberReach remote nodes on the same OC-1 ring. This configuration would be very effective for customers within a short radius of the wire center or for isolated demand at a distant location where there is no appropriate access network yet in place.

Figure 2-10. DDM-2000 FiberReach Stand-Alone OC-1 Ring
This application can be further expanded to hub up to two OC-1 rings from a stand-alone DDM-2000/SLC-2000 host system, as shown in Figure 2-11. In a future release, up to six OC-1 rings can be supported by equipping the function slots of the DDM-2000/SLC-2000 shelf with 27G2-U OLIU circuit packs.

Figure 2-11. DDM-2000 FiberReach Single Homing to a Stand-Alone OC-1 Hub Host
Another configuration of the OC-1 hub network uses the full capacity of the OC-3 shelf by dropping up to 28 VT1.5 channels to the low-speed DS1 slots for each of the 3 OC-1 ring extensions. The total capacity is 84 DS1 signals. This triple OC-1 Multiplexer configuration, shown in Figure 2-12, supports three independent OC-1/DS1 ring networks with a consolidated host node for operations access, network synchronization, and efficient physical packaging.

Figure 2-12. Triple OC-1 Multiplexer Application
Enhanced Routing

The DDM-2000 hosts can support a collection of enhanced routing features, as shown in Figure 2-13, Figure 2-14, Figure 2-15, and Figure 2-16. These features support cross-connections within and across Function Units without using bandwidth on the main OC-3 or OC-12 rings. This allows even greater networking flexibility and efficiency. While the high-speed OC-3 interface can carry up to 84 VT1.5 channels, each of the three Function Units has a two-OC1 capacity, or up to an additional 168 VT1.5 channels. For example, a DDM-2000 OC-3 system with 22-type OLIUs in the Main slots and 27G2-U dual OC-1 OLIUs in each Function Unit supports up to 168 VT1.5 channels: 84 between high-speed OC-3 and low-speed OC-1, and another 84 channels that pass directly between this host's remote FiberReach system.

NOTE:
SLC-2000 has only two function groups (A and C) rather than three in DDM-2000.

The OC-1 ring interconnection enhanced routing options utilize 0x1 or pass-through cross-connections at the DDM-2000 host. Path protection switching is performed at the DDM-2000 FiberReach system at the path midpoints. The local drop enhanced routing option employs path protection switching in the OC-3 host's Function Unit in order to drop to local EC-1, DS1, or OC-3 ports. This local drop option requires the use of OC-3 Release 11.0 and later software at the DDM-2000 host.
OC-1 Ring Pass-Through

This enhanced routing option establishes pass-through cross-connections for channels on an OC-1 ring terminating on a pair of 27G2-U OLIUs in the Function Units of a DDM OC-3. This application must use a pair of 27G2-U OLIUs in the function units slots. (See Figure 2-13.) These cross-connections are just like the pass-through cross-connections that can be provisioned for rings terminating on Main slots. This allows traffic to be routed from one FiberReach node to another FiberReach node on the same OC-1 ring without using bandwidth on the OC-3/OC-12 ring.

NOTE:
For a step-by-step provisioning example, refer to the “OC-1 Ring Pass-Through Example” section in Chapter 8.

Figure 2-13. OC-1 Ring Pass-Through in a Function Unit
OC-1 Ring Hairpin Routing, Single-Homed

This routing option establishes cross-connections between channels on two separate OC-1 facilities that terminate on 27G2-U OLIU circuit packs in either the same or different Function Units (see Figure 2-14). In the single-homed configuration, both rotations of each of the two OC-1 rings terminate on a pair of 27G2-U OLIUs. There may be a pair of 27G2-U OLIUs that terminate both rings, or one pair of 27G2-U OLIUs in each of two Function Units that terminate the rings. Each rotation of one ring is cross-connected to the corresponding rotation of the other ring. This allows traffic to be routed from one FiberReach node on one OC-1 ring to any other FiberReach node on another OC-1 ring without using bandwidth on the OC-3/OC-12 ring.

NOTE:
For a step-by-step provisioning example, refer to the “OC-1 Ring Hairpin Routing, Single-Homed Example” section in Chapter 8.
OC-1 Ring Hairpin Routing, Dual-Homed

This routing option establishes cross-connections between channels on two separate OC-1 facilities that terminate on 27G2-U OLIU circuit packs in either the same or different Function Units. (See Figure 2-15.) In the dual-homed arrangement, only one rotation of each of the two OC-1 rings terminates on a single OC-3 shelf. At the OC-3 shelf, there may be a single 27G2-U OLIU that terminates both rings or a 27G2-U OLIU in each of two Function Units that terminates the rings. The other rotation of each ring terminates on a different OC-3 shelf. This allows traffic to be routed from one FiberReach node on one OC-1 ring to any other FiberReach node on another OC-1 ring without using bandwidth on the OC-3/OC-12 ring.

NOTE:
For a step-by-step provisioning example, refer to the “OC-1 Ring Hairpin Routing, Dual-Homed Example” section in Chapter 8.

Figure 2-15. Dual-Homed Hairpin Routing
Hairpin Local Drop Routing

Figure 2-16 shows a hairpin local drop routing. This routing option establishes path-protection switched drop cross-connections between channels on an OC-1 ring and ports/channels on DS1/EC1/OC-3 circuit packs. (See Figure 2-16.) The OC-1 facility terminates on a pair of 27G2-U OLIU circuit packs in the Function Unit slots. These connections are just like the drop cross-connections that can be established between channels on a ring terminating on the Main slots and port or channels in a Function Unit. This allows traffic to be routed from a FiberReach node on an OC-1 ring to a local drop without using bandwidth on the OC-3/OC-12 ring.

NOTE:
For a step-by-step provisioning example, refer to the “Hairpin Local Drop Routing Example” section in Chapter 8.

Figure 2-16. Hairpin Local Drop Routing
A mix of the enhanced routing services shown in Figure 2-14, Figure 2-15, and Figure 2-16 can be created in a single DDM-2000 FiberReach host. OC-3 Release 9.1 and later software and 27G2-U OLIUs are needed for these services.

DDM-2000 FiberReach Network Topologies (OC-3 and OC-12)

28-Type Optical Line Interface (28G-U/28G2-U)

This section describes applications in which the FiberReach multiplexer is equipped with the 28-type OC-3 OLIUs in the Main slots.

Circuit Pack Overview

The 28-type is used in the Main slots of the DDM-2000 FiberReach shelf in a unidirectional path protection switched OC-3 ring configuration.

The primary functions of the 28-type OLIU are to multiplex up to 7 VT-G signals and 3 STS-1 signals, or 3 STS-1 signals into a single OC-3 optical signal in the transmit direction; to demultiplex an OC-3 signal into 3 STS-1 signals or 2 STS-1 signals and up to 7 VT-G signals in the receive direction; to provide for cross-connections among the 3 STS-1s and all VT1.5 signals that may be embedded within any of the STS-1s and provide system clock and frame.

The 28-type provides timing for the entire wideband shelf. Two modes will be provided: line-timed and holdover. Figure 2-17 displays OC-3 Ring Mixed Application with DDM-2000 FiberReach. DDM-2000 OC-3 and SLC-2000 ARM shelves on the same OC-3 ring.
This section describes applications in which the FiberReach multiplexer is equipped with the 29-type OC-12 OLIUs in the Main slots.

Circuit Pack Overview

The 29-type OLIU is used in the Main slots of the DDM-2000 FiberReach Shelf in a unidirectional path protection switched OC-12 ring configuration.

The primary functions of the 29-type OLIU are to multiplex up to 7 VT-G signals and 3 STS-1 signals in the transmit direction; to demultiplex an OC-12 signal into 3 STS-1 signals and up to 7 VT-G signals in the receive direction; to provide for cross-connections among the 3 STS-1s and all VT1.5 signals that may be embedded within any of the STS-1s and provide system clock and frame.
The 29-type provides timing for the entire wideband shelf. Two modes will be provided: line-timed and holdover. Figure 2-18 displays OC-12 Ring Mixed Application with DDM-2000 FiberReach. DDM-2000 OC-12 and SLC-2000 ARM shelves are on the same ring.

Figure 2-18. OC-12 Ring Mixed Application
DDM-2000 FiberReach Service Applications

This section describes specific service applications. In addition to traditional telephony, DS1, and T1 extension services, the following are examples of specific service applications utilizing DDM-2000 FiberReach Multiplexers.

LAN/WAN Data Networking: DS3 Data Services

FiberReach Release 3.1 introduced a new DS3 Data Services Interface circuit pack (BBG19) for use with data edge devices.

Increasing demands for data and multimedia applications have led to a significant growth in LAN service needs among business customers. These service needs have been focused on providing interconnection of business customer LANs over a wide area network (WAN). To transport these LAN interconnect data services over the public network, LAN routers and concentrators collect the data at a LAN location and map it into traditional telephone network transmission signals (for example, DS1 or DS3). These telephony signals can then be transmitted to wide area locations where the data can be mapped onto the LAN at that location.

DDM-2000 FiberReach Multiplexers are ideally suited to serving the growing demands for such WAN services. DDM-2000 FiberReach multiplexers can interface to an external LAN/ATM switch via DS3 interfaces (see Figure 2-19 and Figure 2-22). Using such an external LAN/ATM switch approach, DDM-2000 FiberReach Multiplexers can provide the necessary transport capabilities to meet the business customer LAN interconnect service needs. Delivering LAN interconnect services using DDM-2000 provides the same high level of reliability and availability for these services as is supported for all other premium business services — this includes full STS-1 path-switching in ring configurations.
Figure 2-19. LAN/WAN Data Networking Using Locked DS3 Cross-Connections
Figure 2-20 shows an application in which access for two unprotected DS3 data service channels is provided using BBG19 front access DS3 data services circuit packs. In the unprotected mode a single FiberReach shelf equipped with BBG19s provides drop capacity for two DS3s and up to 28 DS1s.
Figure 2-21 shows an application which provides access for a single DS3 using BBG4B DS3 circuit packs. In the protected mode a single FiberReach shelf equipped with BBG4Bs provides drop capacity for a single DS3 and up to 28 DS1s.

Figure 2-21. Protected DS3 Data Services using BBG4B Circuit Packs
High Data-rate Subscriber Line (HDSL) Application

The HDSL circuit pack (BBF8) provides HDSL interface capability on the DDM-2000 OC-3 shelf to compatible PairGain equipment at the customer premises. It allows the transport of DS1 rate payloads, for up to 12,000 feet, over two metallic 24 AWG twisted-pair lines. Figure 2-23 shows examples of HDSL circuit packs providing this capability in both the DDM-2000 OC-3 and the DDM-2000

* PairGain is a registered trademark of PairGain Technologies, Inc.
FiberReach shelves. Application for business customers, the private network, cell sites, PBXs, customer premises equipment (CPE), and other applications are supported.

The BBF8 circuit pack fits into the low-speed slots and provides two, four-wire HDSL interfaces. Each interface provides a full DS1 rate payload capacity mapped to a SONET VT1.5 and then VT cross-connected into an STS-1. Once in SONET, DS1 rate payload is treated as a normal DS1.

Figure 2-23. HDSL Application
DDM-2000 FiberReach Service Applications
Using the 28G-Type OLIU (Release 2.2 — Non-TARP Release)

The following figures show service applications of the DDM-2000 FiberReach Multiplexer using the 28G-type OLIU.

Figure 2-24. OC-3 Ring Mixed Application
Figure 2-25. OC-3 FiberReach Extension (Single-Homed) on OC-12 Ring Application
Figure 2-26. FiberReach Extension (Dual-Homed) on OC-12 Ring Application
Figure 2-27. OC-3 FiberReach Extension (Single-Homed) on OC-48 Ring Application
Figure 2-28. OC-3 FiberReach Extension (Dual-Homed) on OC-48 Ring Application
DDM-2000 FiberReach Service Applications Using the 28G-Type OLIU (Release 3.1, TARP)

The following figures show service applications of the DDM-2000 FiberReach Multiplexer using the 28G-type OLIU. In Figure 2-29, the FiberReach multiplexer is a network element on an OC-3 path switched ring with a DDM-2000 OC-3 host shelf in the Central Office. The host shelf provides timing to other NEs on the ring and serves as a gateway NE to a TL1 based operation support system. Fiber connections are between main OLIUs. The FiberReach shelf provides a DS3 interface and up to 28 DS1 service interfaces, or a mix of DS1, T1, and HDSL. Figure 2-30, Figure 2-31 and Figure 2-32 are example applications in which the FiberReach Multiplexer is a node in an OC-3 ring carried on an OC-12 or OC-48 ring.

Figure 2-29. OC-3 Ring Mixed Application (Release 3.1 or Later)
Basic DS3 Cross-Connects

Figure 2-30, Figure 2-31, and Figure 2-32 show the basic DS3 cross-connect used in several types of rings. The FiberReach cross-connections in all three of these figures are the same basic DS3.

Figure 2-30. OC-3 FiberReach Extension (Single-Homed) on OC-12 Ring Application (Release 3.1 or Later)
Figure 2-31. FiberReach Extension (Dual-Homed) on OC-12 Ring Application (Release 3.1 or Later)
Figure 2-32. OC-3 FiberReach Extension (Dual-Homed) on OC-48 Ring Application (Release 3.1 or Later)
DDM-2000 FiberReach Service Applications
Using the 29-Type OLIU (Release 4.0, TARP)

The following figures show service applications of the DDM-2000 FiberReach Multiplexer using the 29-type OLIU. In Figure 2-33, the FiberReach multiplexer is a network element on an OC-12 path switched ring with a DDM-2000 OC-3 host shelf in the Central Office. The host shelf provides timing to other NEs on the ring and serves as a gateway NE to a TL1 based operation support system. Fiber connections are between main OLIUs. The FiberReach shelf provides a DS3 interface and up to 28 DS1 service interfaces, or a mix of DS1, T1, and HDSL. Figure 2-34 is an example application in which the FiberReach Multiplexer is a node in an OC-3 ring carried on an OC-12 or OC-48 ring.

Figure 2-33. OC-12 Ring Mixed Application
Figure 2-34. OC-3 FiberReach Extension (Dual-Homed) on OC-48 Ring Application (Release 4.0)
STS-3c 0X1 Optical Interface

This new interface provides the ability of transporting STS-3c services on an OC-3c low-speed Function Unit optical interface that has been provisioned for 0X1 applications.

Ring path switching is not done on the DDM-2000 FiberReach ring; rather STS-3c level path switching is done elsewhere in the network (for instance, when the FiberReach ring is used to transport ATM STS-3c traffic, path switching (rerouting) is normally executed through the external ATM switch/routers).

With 0X1 application, the FiberReach ring passes the content of the STS-3c time slots between the low-speed OC-3 lines and the OC-3 high-speed lines without terminating them or performing any path protection switching on them. Figure 2-35 and Figure 2-36 are example applications in which the FiberReach Multiplexer is equipped with 22-type OLIUs in the function unit slots providing OC-3c access.
Figure 2-35. FiberReach OC-3c Extension on OC-12 Ring Application (Release 3.1 or Later)
Figure 2-36. STS-3c Dual 0X1 Application (Release 3.1 or Later)
Basic Narrowband Shelf Configurations

The SLC-2000 system can host a DDM-2000 FiberReach Narrowband shelf (NBS) optical network unit (ONU) through an OC-1 ring using DDM-2000 FiberReach Wideband shelves (WBSs). Figure 2-37 and Figure 2-38 show the following typical applications:

- **WBS Collocated with the SLC-2000 system (Figure 2-37):** In this configuration, the collocated WBS is part of an OC-1 ring. This configuration requires a DDM-2000 OC-3 shelf or a SLC-2000 ARM shelf to be part of the ring and host the WBSs.

- **SLC-2000 J1C265AA-1, L4 ARM Shelf with 26G2-U OLIUs (Figure 2-38):** In this configuration, the J1C265AA-1, L4 ARM shelf contains 26G2-U OLIUs in Function Group C as part of the OC-1 ring. The SLC-2000 system must contain SONET Subsystem Software Release R13 or later and the WBSs in the ring must contain FiberReach Software R3.0 or later. This configuration eliminates the need for a collocated WBS and a DDM-2000 OC-3 shelf to host the WBSs in the OC-1 ring. In this configuration, the 28 DS1 pipes are not accessible from the DS1 low-speed slots in Function Group C of the ARM shelf. However, as shown in Figure 2-39, DS1 pipes are accessible from any of the WBSs on the ring if the bandwidth to support them is available on the OC-1 ring.
Figure 2-37. SLC-2000 System Hosting a FiberReach NBS Through a Collocated WBS

* The DDM-2000 OC-3 shelf is necessary to provide single ended operations for alarms on the equipment in OC-1 ring.
Figure 2-38. **SLC-2000 System Hosting a FiberReach NBS using 26G2-U OLIUs and a J1C265AA-1, L4 ARM Shelf**
Figure 2-39. *SLC*-2000 System Hosting a FiberReach NBS using 26G2-U OLIUs and a J1C265AA-1, L4 ARM Shelf Provisioning DS1 Pipes Through a WBS

* The ARM shelf must be a J1C265AA-1, L4 with Software Release R4.4 or later and SONET Subsystem Software Release R13 or later.

† The WBSs in the ring must be running software release R3.0 or later.
As stated earlier, the WBSs on the OC-1 ring must be hosted by either a DDM-2000 OC-3 shelf or the ARM shelf of a SLC-2000 system. Figure 2-40 shows the configuration of a collocated WBS hosted by a SLC-2000 ARM shelf. This configuration eliminates the need for a separate DDM-2000 OC-3 shelf. However, the 28 DS1 pipes are not accessible from the DS1 low-speed slots in Function Group C of the ARM shelf.

Figure 2-40. SLC-2000 ARM Shelf Hosting DDM-2000 FiberReach WBSs
Integrated DS1, T1, and DS0 Services

Integrated Narrowband Business Carrier Access

Figure 2-41 shows a business narrowband application using the DDM-2000 FiberReach Multiplexer on an OC-1 path-switched ring. This application provides protected POTS, ISDN, and special services, as well as DS1 services on a protected OC-1 fiber. This ring host is an OC-3/OC-12 path-switched ring via a SLC-2000 ARM or a DDM-2000 Multiplexer. The FiberReach product in this application contains both the wideband and narrowband shelves. The narrowband shelf has the capacity to provide telephony services such as POTS and POTS-like special services or basic rate ISDN service, while the wideband shelf provides DS1 rate services. The narrowband shelf contains 12 slots for service cards that provide up to 48 lines of POTS service.

At the wire center, the DS0 services are groomed by the SLC-2000 remote terminal and sent either to the 5ESS® switch for locally switched traffic or to the DACS II Cross-Connect System for non-locally switched traffic. The DS1 traffic goes directly to a DACS-IV 2000 Cross-Connect System.
Figure 2-41. DDM-2000 FiberReach Multiplexer Business Narrowband Application
Figure 2-42 shows a configuration similar to Figure 2-41; however the SLC-2000 RT host is at a remote site, not in the wire center. TR08/TR303 grooming is done by the SLC-2000 at the remote location.

Figure 2-42. DDM-2000 FiberReach Multiplexer Business Narrowband Application with a Remote SLC-2000
Figure 2-43 shows a dual-homed integrated application. Figure 2-44 shows three types of stand-alone applications.

Figure 2-43. DDM-2000 FiberReach Multiplexer Dual-Homed Integrated Application
Figure 2-44. DDM-2000 FiberReach Multiplexer Stand-Alone Integrated Application
Another integrated narrowband business carrier access application option for the DDM-2000 FiberReach narrowband shelf is to collocate it with the DDM-2000 OC-3/OC-12 shelf. Since the narrowband shelf's high-speed interface is a DS1, a DDM-2000 OC-3/OC-12 multiplexer can serve as the ring vehicle for carrying the DS0 traffic. This application is shown in Figure 2-45.

Figure 2-45. DDM-2000 FiberReach Multiplexer Low-Speed Traffic Application
Integrated DS1 Transport Configuration with SLC LineReach Access System

The SLC LineReach Access System supports DSX-1 electrical interface options by using the AUA61E LIU. The DSX-1 LIU meets all requirements in the digital cross-connect specification. The LIU has equalizer switches that provide equalization to the DSX cross-connect. The maximum separation between the SLC LineReach system and DSX cross-connect is 655 feet of 22 gauge cable (see 915-710-115, Series 5 Applications Engineering).

SONET Transport

An OC-1 optical ring can serve as a DS1 transport between the switch, INA, or COT interface and the SLC LineReach system. An example of this type of transport uses the DDM-2000 FiberReach Multiplexer wideband shelves. The wideband shelves must be hosted by either a DDM-2000 Multiplexer OC-3 shelf or the SONET subsystem of a SLC-2000 Access System to provide single-end operation of the SONET system (allows for an interface to provide OAM&P functions).

In this application, an optical multiplexer (either a DDM-2000 OC-3 shelf or a wideband shelf) accepts DS1 feeders from an integrated LDS or a COT and multiplexes them onto an OC-1 ring. If using a SLC-2000 COT, the COT can multiplex the analog lines directly onto an OC-1 ring. At the SLC LineReach remote terminal location, the wideband shelf demultiplexes the DS1 feeders from the OC-1 ring and sends them to the SLC LineReach system. For this application, the SLC LineReach system must contain AUA61E LIUs.

A single OC-1 ring can support up to 14 Mode 1 (48 lines, 2 DS1s), 28 Mode 1 (24 lines, 1 DS1), or 28 Mode 2 (48 lines, 1DS1) SLC LineReach systems. If you need to support more SLC LineReach systems, you can upgrade the OC-1 ring to an OC-3 ring by changing hardware and, if necessary, software in the SONET equipment. A single OC-3 ring can support up to 42 Mode1 or 84 Mode 2 SLC LineReach systems.

Figure 2-46 shows an integrated application using a SONET OC-1 ring. In this example, a DDM-2000 Multiplexer OC-3 shelf is collocated with the LDS. The OC-3 shelf not only multiplexes the DS1 signals (from the DS1 feeders) onto an OC-1 ring, but also hosts the wideband shelves in the ring.
Figure 2-46. DSX-1 Electrical Interface — SONET Transport (Integrated Configuration)
Intelligent Vehicle Highway System (IVHS)

The IVHS is beginning and will grow to play a major role in the roadway systems of the future. The primary use in the near-term is to reduce congestion. This is done in several ways:

- The IVHS provides more efficient and optimal traffic management, which attempts to avoid congestion in the first place.
- The IVHS provides better management of congestion caused by random occurrences, such as accidents or breakdowns.
- The IVHS eliminates many of the foreseeable causes of congestion, such as toll-taking, by automating these functions.

In the future, the IVHS system will also help travelers plan their routes by providing up-to-the-minute traffic and highway information. The DDM-2000 FiberReach, OC-3, and OC-12 Multiplexers are a perfect match for the networking needs of these systems.

Figure 2-47 shows a typical IVHS application. An IVHS network carries data between roadside equipment, such as traffic counters, speed sensors, variable messaging signs, video cameras, toll-gathering equipment, pay phones and call boxes, and a traffic operations center, where incoming data is processed and responses are generated. The DDM-2000 FiberReach, OC-3, and OC-12 Multiplexers provide a perfect backbone for carrying this information. The DDM-2000 SONET ring capability, when coupled with diverse fiber routing on opposite sides of the roadway, makes the backbone completely self-healing in the face of failures. Such reliability is absolutely essential, especially as travelers come to depend more and more on IVHS networks.

DDM-2000 FiberReach supplies a single system solution for the small access cabinets, each of which requires a few voice-frequency (VF) and DS0 data channels, as well as DS1-based services. The bandwidth management capabilities of the DDM-2000 FiberReach, OC-3, and OC-12 Multiplexers allow flexible allocation of bandwidth to match the dynamics of a roadway system which is undergoing unpredictable changes in traffic patterns, breakdowns, accidents, and repairs. Such bandwidth management provides a system which meets the IVHS network needs in a cost-effective manner.
Figure 2-47. Intelligent Vehicle Highway System (IVHS) Application
Teleprotection and Supervisory Control and Data Acquisition (SCADA) Communications for Electric Utilities

Electric utilities are facing an unprecedented demand for increased communications bandwidth to support modern operations and business applications such as substation automation, computer networking, and video teleconferencing. Many electric utilities are installing SONET fiber optic backbones to meet these needs. SONET fiber optic backbones are a valuable communications resource that can also be used for real time protective relay and SCADA applications.

DDM-2000 OC-3, OC-12, and FiberReach systems can be used in a flexible backbone network among electrical substations and other important sites. These systems provide an innovative locked cross-connection feature that enhances the ability of SONET rings to transport protective relay and SCADA communications. The locked cross-connection feature meets the teleprotection requirements for minimum and stable transmission delay, minimum system outage during a protection switch, and DS0 level bandwidth management at all ring nodes.

The locked cross-connection feature allows a DS1 to be removed from the TR-496 compliant virtual tributary (VT) path protection switching algorithm and is provisioned as an unswitched path between any two nodes on the ring. Figure 2-48 shows that locked DS1s can be used to interconnect adjacent nodes all the way around SONET rings, thereby permitting access to the DS1 at each SONET node.

Figure 2-48 shows a single DS1 locked between ring nodes, but this can be extended to an arbitrary number of DS1s within the available SONET bandwidth. This locked cross-connection feature fixes the ring rotation (and delay) of the DS1 paths on the ring and also permits DS0 grooming of the DS1s at each DDM-2000 or FiberReach node using an external drop/insert multiplexer, such as the RFL 9001 Intelligent Multiplexer. Figure 2-48 also shows the DDM-2000 interconnecting at the DS1 level with an adjacent RFL 9001 Intelligent Multiplexer, which in turn connects on the low-speed side to protective relay and SCADA equipment. Specially designed channel units in the RFL 9001 Intelligent Multiplexer detect when a fault occurs on the power line or substation and communicates at the DS0 level with other substation nodes to isolate the power grid fault.

In addition to the efficient DS0 grooming capability, the RFL 9001 Intelligent Multiplexer implements its own protection algorithm that can restore the DS0 level circuits within the locked cross-connection should the ring be cut. This algorithm operates much faster than the SONET TR-496 algorithm, thereby minimizing system outage during a protection switch.
Figure 2-48 also shows an optical drop/insert DS1 extension from the SONET rings implemented with RFL 9001 Intelligent Multiplexers. This extension is useful for serving low bandwidth sites remote from the SONET backbone. The figure shows a single host DDM-2000 interconnecting the rings, but a dual ring interworking (DRI) could be used to provide node survivability.

Figure 2-48. DDM-2000 FiberReach Teleprotection and SCADA Communications
Shelf Descriptions and Configurations

Contents

Overview

- DDM-2000 FiberReach Wideband Shelf 3-1
 - DDM-2000 FiberReach Multiplexer Carrier Assembly 3-9
 - DDM-2000 FiberReach Wall-Mount Distant Terminal 3-10
 - Wideband Shelf Plug-Ins 3-14
 - Lightning and Surge Secondary Protection Assembly for T1 Extensions and HDSL 3-15

Shelf Configuration

- DS1 Services Only 3-17
- T1 Extensions Only 3-19
- T1 Extensions and DS1 Service 3-22
- HDSL Services 3-25
- DS3 and DS1 Services 3-26
- DS3 Interface (BBG4/BBG4B) 3-26

Data Services Interface

- STS-3c 0 X1 Application 3-30

DDM-2000 FiberReach Narrowband Shelf

Secured-Area Telecommunication Applications Cabinet (STAC) System

- Construction 3-38
- Reliability 3-38
Shelf Descriptions and Configurations

Overview

This chapter provides the physical description of the DDM-2000 FiberReach Multiplexer shelf and equipage for the Wideband and Narrowband shelves.

DDM-2000 FiberReach Wideband Shelf

The DDM-2000 FiberReach Multiplexer wideband shelf is shown in Figure 3-1 through Figure 3-9. Figure 3-1 through Figure 3-7 show various shelf configurations. The shelf measures approximately 9.65 inches high by 9.17 inches wide by 13.11 inches deep. Each wideband shelf is a stand-alone entity with its own fiber cabling and interfaces to the DSX-1, office power, and operations interfaces. The default configuration provides rear access cabling. Front access is also an option. Front-access optical connectors interconnect to optical fiber facilities and facilitate shelf loopback. The optical connectors are mounted on the optical line interface unit (OLIU) circuit pack faceplate. A DDM-2000 FiberReach Multiplexer wideband shelf consists of the following:

- Fourteen circuit pack slots
 - Eight 4-inch slots
 - Six 8-inch slots, including a user panel
- Fully connectorized backplane
- Front cover
Figure 3-1. DDM-2000 FiberReach Multiplexer Wideband Shelf — Front View

Figure 3-2. OC-1 Optics with BBG4B
Figure 3-3. OC-1 Optics with BBG19

Figure 3-4. DDM-2000 FiberReach Multiplexer Wideband Shelf — with BBG4B
Figure 3-5. DDM-2000 FiberReach Multiplexer Wideband Shelf — with BBG19

Figure 3-6. DDM-2000 FiberReach Multiplexer Wideband Shelf — with 22-Type
Figure 3-7. DDM-2000 FiberReach Multiplexer Wideband Shelf — with OC-12 Optics
As shown in Figure 3-1, starting at the far left, eight 4-inch slots are reserved for service and protection low-speed interfaces. The DS1, DS1 PM, T1EXT, and low speed interface circuit packs can be configured as 1x1, 1x7, and unprotected. HDSL circuit packs can be configured as 1X2 or unprotected. Each circuit pack is equipped with a fault Light Emitting Diode (LED) indicator.

The next two 8-inch slots are reserved for service and protection main OC-1, OC-3, or OC-12 OLIU circuit packs. Each OLIU is equipped with both a fault and active LED indicator. The OLIUs are located in the slots labeled Main-1 and Main-2.

The next two 8-inch slots are for the Function Unit. The Function Unit became active with FiberReach Release 3.1 using the 28-type OLIUs. With FiberReach Release 4.0, the Function Unit slots will be active with any valid optics in the Main. The Function Unit slots can be equipped as 0x1 or 1x1 protected. These slots are reserved for broadband services such as OC-3, or for DS3 Services.

The next section of the shelf consists of two 8-inch slot reserved for control circuit packs. The system controller (SYSCTL) slot is reserved for the SYSCTL circuit.
pack. The auxiliary controller (AUXCTL) slot is reserved for the user panel (USPNL) circuit packs.

The user panel (USPNL) is located at the far right side of the wideband shelf and is equipped with the following:

- Two −48 volt fuses (labeled FA and FB)
- Four alarm LEDs
- ACO/TEST pushbutton control
- Five status LEDs
- Craft interface terminal (CIT) port.

NOTE:

Damage that may occur to the shelf due to accidental insertion of same-size circuit packs in incorrect slots is prevented through circuit pack keying. Three keying combinations are provided. The key mechanism is located on the faceplate latch with an interference mechanism on the shelf.

The front of the wideband shelf is covered with an electromagnetic compatibility (EMC) cover, as shown in Figure 3-9. If the shelf needs to be accessed for maintenance activities, the cover is hinged to drop down 180 degrees. The cover can also be removed by tapping the door in when it is open and held horizontally outward, until the hinge pops out of the hinge plate. The hinge pin can then be lifted up and the door removed.

The back of the wideband shelf is covered by an cover over the circuit pack slots on the backplane and a cover over the protection bus. All covers are necessary to meet the EMC guidelines set by the Federal Communications Commission (FCC).
Figure 3-9. DDM-2000 FiberReach Multiplexer Wideband Shelf Front Panel
DDM-2000 FiberReach Multiplexer Carrier Assembly

For rack-mounted applications, the DDM-2000 FiberReach Multiplexer is available in a carrier assembly, as shown in Figure 3-10. This carrier assembly provides space for up to two wideband shelves, or one wideband and one narrowband shelf, or two narrowband shelves. Two electrostatic discharge (ESD) jacks are mounted on the carrier frame.

Table 3-11 shows FiberReach carrier assembly group configurations.

![Figure 3-10. DDM-2000 FiberReach Multiplexer Carrier Assembly](image-url)
The DDM-2000 FiberReach Multiplexer is available in a wall-mount enclosure. This enclosure is approximately 23 inches wide by 11 inches high and will accommodate the following:

- A single DDM-2000 FiberReach wideband shelf
- A wideband and a narrowband shelf
- Two narrowband shelves
- A SLC LineReach Access System shelf
- A wideband shelf and a SLC LineReach Access System shelf.
Figure 3-12 shows some of the different configurations available for this enclosure. Each DSX panel supports up to 16 DS1 circuit packs, so two DSX panels are needed for 1x7 protection. The LGX® panel is for lightguide cross-connections.

Figure 3-12. DDM-2000 FiberReach Wall Mount Enclosure Options
Figure 3-13 shows a Wall Distant Terminal equipped with one wideband and one narrowband shelf, two DSX panels, and an LGX panel. The enclosure is approximately 23 inches wide by 11 inches high by 13.4 inches deep.

Figure 3-13. DDM-2000 FiberReach Wall Mount Distant Terminal

The Wall Mount Distant Terminal can also accommodate a single LineReach shelf and one DDM-2000 FiberReach wideband shelf. The SLC LineReach Access System comes in three preassembled configurations for the Wall Mount DT:

- **SLC LineReach Access System in Wall DT (no DSX cross-connect)**
 (ED8C843-31 G50, Comcode 601923634)
- WBS and *SLC LineReach* Access System in Wall DT (with dual DSX cross-connect) (ED8C843-31, G53, Comcode 601925969)
- WBS and *SLC LineReach* Access System in Wall DT (no DSX cross-connect) (ED8C843-31, G53, Comcode 601925969)

Figure 3-14 shows the configuration for a Wall Mount DT containing a *SLC LineReach* Access System and DDM-2000 FiberReach wideband shelf. The Wall Mount DT also comes with a dual DSX cross-connect. Each DSX panel supports up to 16 DS1 circuit packs, so two DSX panels are needed to support 28 DS1s. One DSX panel (DS1-1) receives 16 DS1s from the WBS while the other DSX panel (DS1-2) receives 12 DS1s.

![Wall Mount Distant Terminal with SLC LineReach Shelf and DDM-2000 FiberReach Wideband Shelf](image-url)
Wideband Shelf Plug-Ins

Table 3-1 lists the DDM-2000 FiberReach Multiplexer wideband shelf plug-ins.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Functional Name</th>
<th>Functional Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBF1B</td>
<td>DS1 Low-Speed Interface</td>
<td>DS1</td>
</tr>
<tr>
<td>BBF3/BBF3B</td>
<td>DS1 Performance Monitoring</td>
<td>DS1PM</td>
</tr>
<tr>
<td>BBF6</td>
<td>T1 Extensions</td>
<td>T1EXT</td>
</tr>
<tr>
<td>BBF8 (See Note)</td>
<td>HDSL Interface</td>
<td>HDSL</td>
</tr>
<tr>
<td>BBG4</td>
<td>DS3 low-speed interface</td>
<td>DS3</td>
</tr>
<tr>
<td>BBG4B</td>
<td>DS3 low-speed interface</td>
<td>DS3</td>
</tr>
<tr>
<td>BBG8/BBG8B</td>
<td>System Controller</td>
<td>SYSCTL</td>
</tr>
<tr>
<td>BBG19</td>
<td>DS3 Interface</td>
<td>DS3</td>
</tr>
<tr>
<td>22D-U</td>
<td>OC-3 IS-3 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>22F/22F-U/22F2-U</td>
<td>OC-3 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>22G-U/22G2-U/22G3-U/22G4-U</td>
<td>OC-3 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>26G2-U OLIU</td>
<td>OC-1 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>28G-U*</td>
<td>OC-3 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>28G2-U*</td>
<td>OC-3 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>29G-U*</td>
<td>OC-12 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>29H-U*</td>
<td>OC-12 OLIU with TSI</td>
<td>OLIU</td>
</tr>
<tr>
<td>177A</td>
<td>Retainer</td>
<td></td>
</tr>
<tr>
<td>ECC2†</td>
<td>User Panel</td>
<td>USPNL</td>
</tr>
</tbody>
</table>

* Requires Interconnect Cable Assembly (847721271)
† The user panel is part of the wideband shelf assembly but may also be ordered separately.

NOTE:
28-type or 29-type is required. A maximum of 3 HDSL cards per shelf is allowed and cannot be mixed with other low-speed packs.

CAUTION:
In addition to primary lightning protection, an external Lighting and Surge Secondary Protection Assembly (ED-8C783-30 or equivalent) is required for circuit packs used in outside plant applications.
Lightning and Surge Secondary Protection Assembly for T1 Extensions and HDSL

T1EXT/HDSL Digital lines in the outside plant environments may be exposed to high voltages due to lightning surges and power crosses due to fallen power lines. In order to protect a DDM-2000 shelf with T1EXT/HDSL circuit packs from such occurrences, an external assembly that houses a secondary surge protection is required.

The lightning and surge protection assembly, shown in Figure 3-15, is approximately 17.5 inches wide, 3.45 inches high, and 5.65 inches deep and can be installed in 23-inch racks. It can be equipped with one or two small backplanes. Each backplane has seven edge connectors and can support up to seven T1 extension channels. The two backplanes together have enough capacity to support 14 T1 extension or 6 HDSL extension channels in a FiberReach shelf (the maximum capacity). A small circuit board with fuses, current limiting resistors, and thermal cutoff devices for both the tip and ring conductors is installed in the edge connector whenever the DDM-2000 FiberReach shelf is equipped with a T1EXT circuit pack. The small circuit board provides for secondary surge and power cross protection.

The lightning and surge protection assembly does not include any primary surge protectors. The tip and ring conductors must have gas tubes (Lucent protector unit 4B3EW or equivalent) installed at the point of entry into a cabinet or building.

The lightning and surge protection assembly meets the requirements specified in Section 4 of the Telcordia Technologies GR-1089-CORE, Issue 1, November 94, as well as UL 1459.

Figure 3-15. T1 Lightning and Surge Protection Assembly
This section summarizes descriptive information used with applications information to plan procurement and deployment of the DDM-2000 FiberReach Multiplexers. There are several considerations that should be remembered when planning the DDM-2000 FiberReach Multiplexers’ role in the network. Projected customer requirements will determine the initial capacity needed, as well as evolution to higher capacities. The advanced networking capabilities of the DDM-2000 FiberReach Multiplexers offer many economic and planning benefits, and certain guidelines should be followed to maximize these benefits. Physical installation considerations will be guided by the installation location (central office, uncontrolled, or customer locations). Initial network configuration will determine synchronization requirements. Synchronization should be planned on a network basis, considering items like topology, reliability, internetwork connectivity, and service evolution.

The DDM-2000 FiberReach Multiplexer provides multiplexing and transport for one STS-1 signal optic signal when equipped with OC-1 optics or for up to 3 STS-1s when equipped with OC-3 optics or multiplex 4 STS-1s and transport up to 12 STS-1s when equipped with OC-12 optics in the Main slots in a ring configuration. This capacity may be utilized in many combinations of low-speed inputs. The following shelf configurations represent some examples of the low-speed input combinations.
DS1 Services Only

Figure 3-16, Figure 3-17, and Figure 3-18 show examples of the DDM-2000 FiberReach in a wideband application providing DS1 services only. The wideband shelf is a complete DS1 to OC-1 or OC-3 or OC-12 solution. The wideband shelf uses the two main optical line interface unit (OLIU) slots to interface an OC-1 or OC-3 or OC-12 line to the low-speed group(s). The OLIU circuit packs are equipped in pairs. Low-speed interface growth proceeds in four DS1 increments by equipping the low-speed slots with DS1 or DS1PM circuit packs. The system controller (SYSCTL) is always required in this application.

Figure 3-16 shows a 1x1 low-speed protection configuration with four low-speed groups (A, B, C, D) for a maximum of four service and four protection units per multiplexer and equipped to interface an OC-1 line.

Figure 3-16 shows a 1x1 low-speed protection configuration with four low-speed groups (A, B, C, D) for a maximum of four service and four protection units per multiplexer and equipped to interface an OC-1 line.

A 1x7 protection architecture is shown in Figure 3-17, allowing up to seven service and one protection unit per multiplexer. Any unequipped slots require a 177A apparatus blank.
This same configuration would also be used for unprotected DS1s, as shown in Figure 3-18. The low-speed interface growth proceeds in four DS1 increments by equipping the low-speed slots with DS1 or DS1PM circuit packs for a maximum of seven service units per multiplexer.
Figure 3-18. DDM-2000 FiberReach Unprotected DS1 Services Only

T1 Extensions Only

Figure 3-19, Figure 3-20, and Figure 3-21 show examples of the DDM-2000 FiberReach in a T1 extension configuration. The wideband shelf is a complete DS1 to OC-1 solution; therefore, the narrowband shelf is not used for this application. The wideband shelf uses the two main OLIU slots to interface an OC-1 or OC-3 or OC-12 line to the low-speed group(s). The OLIU circuit packs are equipped in pairs, one service and one protection [denoted (P)]. Low-speed interface growth proceeds in two DS1 increments by equipping the low-speed slots with dual T1 extension circuit packs. The SYSCTL is always required for these applications. Primary lightning protection (Lucent Technologies' protector unit 4B3EW or equivalent) and the secondary lightning and surge protection assembly (mounted externally to the DDM-2000 FiberReach shelf) are required for outside plant applications.

Figure 3-19 shows a 1x1 low-speed protection configuration with four low-speed groups (A, B, C, D) for a maximum of four service and four protection units per multiplexer. Primary (Lucent's protector unit 4B3EW or equivalent) and secondary lightning protection assemblies are required for each tip/ring pair of a T1 extension.
A 1x7 protection architecture, shown in Figure 3-20, allows up to seven service and one protection unit per multiplexer. A 177A apparatus blank is required in any unused slots.
This same configuration would also be used for unprotected T1 service, as shown in Figure 3-21, for a maximum of seven service units per multiplexer.
Figure 3-21. DDM-2000 FiberReach with Unprotected T1 Extension Services

T1 Extensions and DS1 Service

Figure 3-22 shows an example of the DDM-2000 FiberReach in a combination configuration of T1 extensions and DS1 service. The low-speed slots would be equipped based on the service needs in either two DS1 increments for T1 extensions, protected or unprotected, or four DS1 increments for DS1 service, protected or unprotected. The combination shown here is four protected T1 extensions with eight protected DS1 services. Primary lightning protection (WE4B tubes or equivalent) and the secondary lightning and surge protection assembly (mounted externally to the DDM-2000 FiberReach shelf) are required for outside plant applications.
Figure 3-22. DDM-2000 FiberReach with Four 1x1 Protected T1 Extensions and Eight 1x1 Protected DS1 Services
A configuration with unprotected T1 extension service and protected DS1 services is shown in Figure 3-23.

Figure 3-23. DDM-2000 FiberReach with Unprotected T1 Extensions and 1x7 Protected DS1 Services
HDSL Services

Figure 3-24 and Figure 3-25 show examples of the DDM-2000 FiberReach in a wideband application providing HDSL interface capability. The wideband shelf uses the two main optical line interface unit (OLIU) slots to interface an OC-3 or OC-12 line to the low-speed group(s). The OLIU circuit packs are equipped in pairs. Low-speed interface growth proceeds in two HDSL circuit packs increments by equipping the low-speed slots with a HDSL circuit pack. The SYSCTL and user panel are always required in this application.

Figure 3-24 shows an unprotected low-speed configuration with the maximum of three HDSL packs (six HDSL circuits). The Main slots are equipped with OC-3 OLIUs in this example.

Figure 3-25 shows examples of the DDM-2000 FiberReach in a wideband application providing protected HDSL services. The wideband shelf uses the two Main optical line interface unit (OLIU) slots to interface an OC-3 line to the low-speed group(s). The OLIU circuit packs are equipped in pairs. Low-speed interface growth proceeds in four DS1 increments by equipping the low-speed slots with HDSL circuit packs. The SYSCTL and user panel are always required in this application.

Figure 3-25 shows a 1x2 low-speed protection configuration with a maximum of 3 HDSL packs (six HDSL circuits).
When equipped with OC-1 OLIUs, the DS3 uses all of the capacity of the line. Hence, there is no capacity for DS1 service. See Figure 3-26 and Figure 3-27.

DS3 Interface (BBG4/BBG4B)

Protected DS3 access is available by using the BBG4(B) in the Function Unit slots of Figure 3-28. DS3 access is through BNC connectors on the rear of the FiberReach shelf.
Shelf Descriptions and Configurations

Figure 3-26. DDM-2000 FiberReach with OC-12 Optics in Main Slot Providing DS1 and DS3 Services

Figure 3-27. DDM-2000 FiberReach with OC-1 Optics in Main Slot Providing DS3 Services
Data Services Interface

Figure 3-28 shows an example of BBG19 (DS3) Data Services Interface application. Figure 3-29 shows an example with OC-1 optics in the Main providing Data Services.

A BBG19 is installed in each Function Unit slot. These circuit packs provide a clear channel DS3 interface to external data communications equipment like LAN routers/ATM switches. Such products support data services interfaces like NMLI, FDDI, and ATM DS3 rate. DS3 access is through BNC connectors on the circuit pack faceplate. Protection switching is performed external to the FiberReach shelf. When the main slots are equipped with 26-type (OC-1) OLIUs, there is no capacity for mixing DS3 and DS1.

![Figure 3-28. DDM-2000 FiberReach DS3 Data Services Application](image)

* For 29-Type for OC-12
Figure 3-29. DDM-2000 FiberReach with OC-1 Optics in Main Slot Providing Data Services
STS-3c 0 X1 Application

Figure 3-30 shows a FiberReach shelf configured to provide an OC-3c customer interface. Both Main slots must be equipped with 28-type OC-3 OLIUs or 29-type OC-12 OLIUs and Function Unit slots with one or two 22-type OLIUs.

NOTE:
The features described above also apply to 28-type and 29-type OLIU circuit packs.
DDM-2000 FiberReach Narrowband Shelf

The DDM-2000 FiberReach Narrowband Shelf (NBS) is similar to the DDM-2000 FiberReach Wideband Shelf (WBS). Both are approximately 9.5 inches high by 8 inches wide. Either shelf may be mounted in the DDM-2000 FiberReach Multiplex Carrier Assembly, the Wall DT Assembly, and the 61B cabinet. The carrier assembly provides space for up to two wideband shelves, two narrowband shelves, or one wideband shelf and one narrowband shelf plus up to two DS1 jack panel assemblies and one LGX panel assembly. The 61B cabinet provides space for up to two wideband shelves, two narrowband shelves, or one wideband shelf and one narrowband shelf.

The operation of the narrowband shelf requires DLC Release 4.4 in the SLC®-2000 Host Digital Terminal (HDT) and Release 3.0 or later in the DDM-2000 FiberReach Wideband shelf.

There can be up to sixteen circuit packs installed in the NBS. The four common units are always required and they are:

<table>
<thead>
<tr>
<th>FHB2</th>
<th>DSXBIU</th>
<th>Provides the electrical connection to the Wideband Shelf</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUA413</td>
<td>RGU</td>
<td>Provides ringing voltage</td>
</tr>
<tr>
<td>AUA421</td>
<td>CDTU</td>
<td>Provides channel drop test capability</td>
</tr>
<tr>
<td>AUA432</td>
<td>PCU</td>
<td>Provides DC voltages from 48 volt battery voltage</td>
</tr>
</tbody>
</table>

There are twelve channel unit positions that can be used for up to 24 voice frequency (VF) lines with Release 4.3 and for up to 48 VF lines with Release 4.4. Refer to Table 3-2 for the channel units that are supported by FiberReach Release 3.0 and later (SLC-2000, Release 4.3 and 4.4).

The SLC-2000 HDT has a SPQ809 MSDT Server in the metallic distribution shelf (MDS) that sends a DSX-1 signal to the collocated WBS. The WBS multiplexes the DSX-1 electrical signals into an OC-1 optical signal and transmits it to the optical network unit (ONU). Another WBS in the ONU demultiplexes the OC-1 optical signal back into the DSX-1 electrical signals and sends them to the DSXBIU in the NBS. In SLC-2000 Release 4.3 the DSXBIU conditions the signals so that one DSX-1 signal is sent to the first six channel unit slots. A second server is required in the HDT to provide the second DSX-1 signal for VF circuits 13 through 24.

DLC Release 4.4 introduces the octet mode which allows up to four DSX-1 signals to be sent to the ONU which the DSXBIU will condition and send to four sets of three channel unit slots. Each set may be used for up to 24 VF circuits or 10 ISDN
lines for a total capacity of 48 VF circuits or 40 ISDN lines. Four servers are required in the HDT to provide the four DSX-1 signals for VF circuits 1 through 48.

A T1 metallic facility can also be used to connect the HDT server to the DSXBIU. The number of T1 lines and the release of the HDT DLC software will determine the capacity of the NBS.

The DDM-2000 FiberReach narrowband shelf is shown in Figure 3-31 and Figure 3-32.
Table 3-2 lists the circuit packs that can be housed in the 12-channel unit slots of the narrowband shelf. All circuit packs within the DDM-2000 FiberReach narrowband shelf are unprotected. These channel units are the same as those used in the SLC®-2000 Access System Multi-Services Distant Terminal (MSDT). Table 3-2 also indicates which circuit packs are available with each SLC-2000 software release.
<table>
<thead>
<tr>
<th>Product Code</th>
<th>Functional Name</th>
<th>Available With SLC-2000 Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUA25B*</td>
<td>POTS/M SPOTS CU CF (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA27*</td>
<td>POTS CF + OHT (Versus feature not available)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA39</td>
<td>POTS/SPOTS CU CS + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA41</td>
<td>4W VF CF (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA41B</td>
<td>4-Wire CF, (FXS/ETO/DX)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA42*</td>
<td>E SPOTS CU at COT (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA42B</td>
<td>E SPOTS CU at COT</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA43B</td>
<td>E SPOTS CU CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA44*</td>
<td>4-Wire VF CS (Includes TDM Signaling) (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA44B</td>
<td>4W VF CS I (Includes TDM Signaling)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA45B</td>
<td>Dual Ringing Repeater (Manual Ring)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA52</td>
<td>OCU Dataport (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA52B</td>
<td>OCU Dataport, All-rate</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA53</td>
<td>Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA53B</td>
<td>Single Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA54</td>
<td>4W VF Types I and II E&M (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA54B</td>
<td>4W VF Types I and II E+M/PLR</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA55</td>
<td>Multiparty CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA55B</td>
<td>Multiparty CF (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA56</td>
<td>DID/DPT (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA56B</td>
<td>Dual DID/DPT</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA57</td>
<td>FSR CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA59</td>
<td>SPOTS CU CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA75*</td>
<td>Private Line Automatic Ring (PLAR)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA93</td>
<td>ISDN BRITE II, ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA94</td>
<td>ISDN Dual ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA150*</td>
<td>POTS/SPOTS CU CF + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA150C</td>
<td>Dual POTS/SPOTS CF + OHT/CLASS + ALC</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA152*‡</td>
<td>OCU dataport (TR-08/INA VRTs) (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA158B</td>
<td>ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA158C</td>
<td>ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA158D</td>
<td>Dual POTS (ALC+ CF + OHT/CLASS + Adaptive Balance)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA159B</td>
<td>ALC POTS/SPOTS CF + OHT/CLASS (modified OHT loss)</td>
<td>4.4</td>
</tr>
<tr>
<td>Product Code</td>
<td>Functional Name</td>
<td>Available With SLC-2000 Release</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>AUA159C</td>
<td>ALC POTS/SPOTS CU + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA178</td>
<td>ALC C-POTS CF OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA178B</td>
<td>C-POTS (ALC + Adaptive Balance + Extended Range to 1400 OHMS + OHT + CLASS)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA179</td>
<td>ALC POTS/SPOTS CU + ALIC5 + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA200</td>
<td>2-wire switched 56-kb/s DPX</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA232</td>
<td>RS-232 DSU Dataport</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA252</td>
<td>OCU Dataport with SW56 (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA252B</td>
<td>OCU Dataport with SW56 (2.4, 4.8, 9.6, 19.2, 38.4, 56, and 64 kilobits data rates)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA293</td>
<td>ISDN BRITE III, ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>MCU§5205</td>
<td>Metallic Channel Unit (Tollgate)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ®300</td>
<td>POTS CS + OHT/CLASS + LSAS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ340</td>
<td>SLC-2000 ALC POTS/SPOTS® CU CS + OHT/CLASS + LSAS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ400*</td>
<td>SLC-2000 ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>xSPQ400*</td>
<td>SLC-2000 ALC POTS CF + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ400*B</td>
<td>ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ400C</td>
<td>Quad POTS (CF + OHT/CLASS)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ401*</td>
<td>SLC-2000 ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ401B</td>
<td>SLC-2000 POTS/SPOTS CU CS + DHT/CLSS + LSAS VFDE (Discontinued Availability)</td>
<td>4.6</td>
</tr>
<tr>
<td>SPQ402</td>
<td>Quad POTS (CF + OHT/CLASS + ALC + VFDE + Adaptive Balance, 1400 OHMS)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ419</td>
<td>Quad Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ429</td>
<td>Quad EBS P-Phone (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440</td>
<td>Quad SLC-2000 ALC POTS/SPOTS CU CF + OHT + CLASS + CLSS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440B</td>
<td>Quad POTS/SPOTS ALC CF + OHT + CLASS + CLSS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440C*</td>
<td>Quad Extended Range SPOTS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440D*</td>
<td>Extended Range SPOTS; VFDE</td>
<td>4.6</td>
</tr>
<tr>
<td>SPQ442</td>
<td>SLC-2000 E SPOTS CU CS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ443*</td>
<td>SLC-2000 E SPOTS CU CF</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ450</td>
<td>ALC POTS/SPOTS CU CF + OHT/CLASS ALIC5 + LSAS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ452</td>
<td>SLC-2000 OCU Dataport</td>
<td>4.4</td>
</tr>
<tr>
<td>Product Code</td>
<td>Functional Name</td>
<td>Available With SLC-2000 Release</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>SPQ453</td>
<td>Dual Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ456</td>
<td>Quad DID</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ460</td>
<td>Quad POTS/SPOTS (ALC, CF + Extended Range + VFDE)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ478</td>
<td>SLC-2000 ALC C- POTS CF OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ494</td>
<td>Quad ISDN ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ909</td>
<td>Lower-power POTS CF + OHT/CLASS</td>
<td>4.4</td>
</tr>
</tbody>
</table>

* Some engineering restrictions (for example, power limitations) must be considered when using this channel unit.
† Registered trademark of American National Standards Institute, Inc.
‡ GTE only.
§ Trademark of Tollgate Communications, Inc.
Secured-Area Telecommunication Applications Cabinet (STAC) System

The DDM-2000 FiberReach Narrowband and Wideband Multiplexers are available in the new modular indoor cabinet. The STAC System targets the needs of the local access market with a flexible and affordable configuration.

Each cabinet is assembled and can be completely wired and system tested at the factory to assure the highest standard of quality and quick trouble free installation.

There are two modules available:

- FRC-2000 module (26” W x 15” D x 12” H)
- Pedestal battery module (26” W x 15” D x 24” H).

Features of the 12” module include:

- Wall mountable
- Floor mountable with spacer
- Spacer that allows the user to stack modules on top of each other
- Holds a combination of two FiberReach shelves
 - 1 wideband shelf and 1 narrowband shelf
 - 2 narrowband shelves
- Holds up to two rectifiers
 - Lucent Technologies RSO 400 Series
 - 400 watts each
- Fiber administration shelf
- Tilts down for easy access to back of equipment
- Allows access to rear of module to facilitate cable administration.

Features of the pedestal battery module include:

- Floor mountable
- Front door removable and provisioned for padlock
- Spacer that allows electronic module to be stacked on top
- Holds up to 2 string of batteries
 - Lucent Technologies’ HR Series Battery
- Provides up to 8 hours of battery backup
- Includes low voltage disconnect and fusing unit.
Figure 3-33 and Figure 3-34 illustrate two possible mounting configurations. Refer to Cabinet Practice 640-030-206 for more information.

Construction

This space efficient modular cabinet is manufactured with corrosion resistant materials. Aluminum is used for the cabinet body and the majority of the cabinet components. The electronics modules are equipped with power and battery alarms which can be connected to a monitoring system at a central location to notify the user in the event of equipment trouble.

Reliability

The cabinet has undergone extensive system testing and qualification by Bell Laboratories based on expected worst case conditions to ensure high reliability and trouble free field performance. These test results are correlated with actual field data to validate cabinet performance. This extensive testing provides assurance that Lucent Technologies cabinet solutions meet specific application and performance needs of the customer.
Figure 3-33. STAC System, FRC-2000 Module with Pedestal Battery Base
Figure 3-34. STAC System, FRC 2000 Module Wall Mount Option with Separate Pedestal Battery Module
Power

Contents

Overview 4-1

Introduction 4-1

Wideband Shelf –48 V Battery Powering 4-1
- Power Distribution 4-3
- Wall Distant Terminal Powering for WBS and NBS 4-4
- Wideband Shelf Transmission Circuit Packs 4-6
 OLIU Circuit Packs 4-6
 DS1/DS1PM Circuit Packs 4-6
 Control Circuit Packs 4-6

Narrowband Shelf –48 V Battery Powering 4-6
- Other Power Options 4-8
- Wall Distant Terminal Powering 4-9
- Narrowband Shelf Transmission Circuit Packs 4-10
 FHB2 Digital Signal Cross-Connect Backplane Interface Unit (DSXBIU) 4-10
 AUA432 Power Converter Unit (PCU), BGW1 Power Supply Unit (PSU) 4-10
 Ringing Generator Units (RGU) 4-11
 AUA421 Channel and Drop Test Unit (CDTU) 4-12
- LEDs 4-12
- Power Minor Alarm 4-13
- Power Distribution 4-14
Power

Overview

This chapter describes the powering options for the DDM-2000 FiberReach Multiplexer. Power options information is provided first for the wideband shelf and then the narrowband shelf.

Introduction

The DDM-2000 FiberReach Multiplexer can be powered from a variety of power sources. The most common powering method is the nominal \(-48\) V DC power available in telecommunication facilities.

Using commercially available 60 V AC or 120 V AC power converters, \(-48\) V DC for FiberReach can be provided.

Wideband Shelf \(-48\) V Battery Powering

The DDM-2000 FiberReach Multiplexer wideband shelf uses on-board power conversion, eliminating the need for slots for bulk power converters. Two independent \(-48\) volt office power feeders (A and B) enter the shelf through dangler cables (cables that come from the rear of the cabinet and “dangle” to provide front access to rear connectors), fused at the user panel, and distributed to the circuit packs. Power conversion is performed through modular power
converters located on the circuit packs. In each circuit pack, the two feeders are diode ORed, fused, filtered, and regulated by the board-mounted power modules. This provides the required redundancy in case of the loss of one feeder or one fuse. Figure 4-1 shows the distribution schematic. The power converter located on the OLIU circuit pack provides power to the DS1 and HDSL circuit packs. T1EXT circuit packs use -48 volts from the backplane to provide line powering with 60mA constant current source. Total power requirements for the wideband shelf are 40 watts for a typical configuration with a 1x7 protected DS1 interface. Total power requirements for the wideband shelf are 65 watts for a typical configuration with a 1x7 protected T1EXT circuit packs.

Figure 4-1. DDM-2000 FiberReach Multiplexer Wideband Shelf Power Architecture

Diode OR of redundant power feeds is provided on each circuit pack.

* An unfused -48V power feed directly to backplane power bus is provided to allow in-service upgrade/replacement of circuit pack in AUXCTL slot.
Power Distribution

See "Power Requirements" in Chapter 10, "Technical Specifications", for power dissipation values.

Figure 4-2 shows a typical battery feeder interface for a single shelf.

⚠️ CAUTION:
This information is for a typical application only. Consult 801-525-168, DDM-2000 Floor Plan Data Sheets, and T-82046-30, Power Systems DC Distribution Circuit for Digital Transmission System, for proper engineering of battery plant and feeders.

Figure 4-2. Typical –48 Volt Power Supply for DDM-2000 FiberReach Multiplexer Single Shelf

NOTE: Feeder size is selected per T82046-30 and EIM 90MV001, Issue 5.
Wall Distant Terminal Powering for WBS and NBS

The DDM-2000 FiberReach Multiplexer Wall Distant Terminal (Wall DT) uses bulk power converters to support powering from 120 V AC. This converter supplies –48 V to the FiberReach shelf. Customer premise locations usually have 60 V AC or 120 V AC commercial power from utilities. These powering options provide battery backup for up to 8 hours. Figure 4-3 illustrates an example of powering with a power supply for the wideband shelf and another power supply for the narrowband shelf. Figure 4-4 illustrates an example of powering with a single power supply for both the wideband shelf and the narrowband shelf.

* ALARM CABLE CAN DIRECTLY ATTACH TO THE MISC DISCRETE CONNECTOR ON WBS. OPTIONALLY IT CAN BE CONNECTED TO A "Y" CABLE THAT INTERFACES WITH THE MISC DISCR CONNECTOR ON THE WBS AND HAS A BRANCH THAT FACILITATES PICK-UP OF ADDITIONAL DISCRETE ALARM INPUTS.

Figure 4-3. Wall DT Powering (Power Supply for WBS/NBS)
NOTE: Alarming for this arrangement can be from the wideband shelf (cable ED8C852-20 G7) or from the narrowband shelf (cable ED8C785-20 G9). Optionally it can be connected to a “Y” cable (ED8C852-20 G12) that interfaces with the MISC DISCR connector on the wideband shelf only and has a branch that facilitates pick-up of additional discrete alarm inputs.
Wideband Shelf Transmission Circuit Packs

OLIU Circuit Packs

The OLIU circuit packs are powered by two DC-to-DC converters located on the circuit packs. The backplane power feeders supply A and B –48 volts to these converters via diode ORed circuits and are fuse-mounted on each of the circuit packs. One converter supplies +5 volts and the other supplies −5.2 volts.

DS1/DS1PM Circuit Packs

The DS1/DS1PM circuit packs receive +5 volt power via backplane connections from the both OLIU 26G2-U circuit packs in the Main slots. Power selector circuits (diode ORed) and fuses for the +5 volts are located on the DS1/DS1PM circuit packs. The fuses on the DS1/DS1PM circuit packs protect the backplane and prevent DS1/DS1PM unit failures from affecting service in the other DS1 units.

Control Circuit Packs

The SYSCTL circuit pack is powered by a −48 volt to +5 volt DC-to-DC converter located on the pack. The backplane power feeders supply A and B −48 volts to these converters via diode ORed circuits and fuses mounted on the circuit packs.

Narrowband Shelf −48 V Battery Powering

The PCU in the DDM-2000 FiberReach narrowband shelf provides fusing and converts a −48 V DC input power feed to voltages required for the other circuit packs in the narrowband shelf. Figure 4-5 shows the power distribution. The narrowband shelf can draw up to 84 watts of power and meets all performance requirements when the DC input voltage varies between −42.5 V and −56.5 V, as specified in TR-499.
Figure 4-5. DDM-2000 FiberReach Multiplexer Narrowband Shelf Power Architecture
Other Power Options

The DDM-2000 FiberReach Multiplexer uses miscellaneously mounted power converters to support powering from 60 V AC or 120 V AC sources. These converters supply \(-48\) V to the FiberReach shelf. Customer premise locations usually have 120 V AC commercial power from utilities. The 60 V AC is widely used in Cable TV applications. The converters are equipped with necessary lightning protection for outside plant applications. See Figure 4-6.

Figure 4-6. DDM-2000 FiberReach Multiplexer — Other Power Options

Narrowband shelf services are supported by SLC-2000 Releases 4.3 and 4.4. For Release 4.4, the SLC-2000 host must be equipped with the SPQ810 MSDT server unit circuit pack to support both quad and octet mode services. See LTP 363-030-000, *SLC-2000 Access System Application, Planning, and Ordering Guide* for additional information.
Wall Distant Terminal Powering

The DDM-2000 FiberReach Multiplexer Wall Distant Terminal (Wall DT) uses bulk power converters to support powering from 120 V AC. This converter supplies –48 V to the FiberReach shelf. Customer premise locations usually have 60 V AC or 120 V AC commercial power from utilities. These powering options provide battery backup for up to 8 hours. Figure 4-7 illustrates an example of powering with a power supply for the wideband shelf and another power supply for the narrowband shelf. Figure 4-4 illustrates an example of powering with a single power supply for both the wideband shelf and the narrowband shelf.

*ALARM CABLE CAN DIRECTLY ATTACH TO THE MISC DISCRETE CONNECTOR ON WBS. Optionally it can be connected to a "Y" cable that interfaces with the MISC DISCR CONNECTOR ON THE WBS AND HAS A BRANCH THAT FACILITATES PICK-UP OF ADDITIONAL DISCRETE ALARM INPUTS.

Figure 4-7. Wall DT Powering (Power Supply for WB and Power Supply for NB)
Narrowband Shelf Transmission Circuit Packs

FHB2 Digital Signal Cross-Connect Backplane Interface Unit (DSXBIU)

The DSXBIU is a narrowband shelf circuit pack that operates as the local controller for the narrowband shelf and multiplexes the DS0 signals from the channel units to DS1 interfaces. The DS1 interface is fed from the DSXBIU to a DS1 circuit pack on the wideband shelf. Software for the DSXBIU is automatically downloaded from the SLC-2000 host digital terminal.

The DSXBIU interfaces to the 12 channel units on the narrowband shelf, providing provisioning and inventory information, as well as clock generation and synchronization. The DSXBIU communicates with the common units via a serial protocol microwire link. A separate microwire RS-422 interface connects with the power supply unit. A bank control link on the DSXBIU is used to communicate with the channel units.

The CDTU also contains a drop test circuit to determine the health of the metallic drop beyond the local DDM-2000 FiberReach shelf. The CDTU can detect the following:

- Hazardous voltage
- Foreign voltage
- Metallic leakage
- Receiver off-hook
- Lack of continuity to the station set.

The circuit pack contains a red fail LED to indicate an internal failure in the CDTU circuit pack and a green busy LED to indicate that a test session is active.

AUA432 Power Converter Unit (PCU), BGW1 Power Supply Unit (PSU)

The AUA432 PCU is located in the narrowband shelf and accepts −48 V DC power. The PCU converts incoming −48 V DC to +5 and −5 V DC, as well as −25.5 V DC for use by various channel units that may be in the narrowband service card slots. The PCU provides power to all the circuit packs on the narrowband shelf by converting incoming −48 V DC power to voltages required for the various circuit packs.

The BGW1 PSU, miscellaneous mounted with the DDM-2000 FiberReach shelf, terminates a 60 V AC from a network-provided source (for example, centralized power). The PSU converts incoming 60 V AC to −48 V DC for use by the wideband and narrowband shelves. In applications where −48 V DC is readily available, the PSU is not required. Other powering options will be available with future releases of the PSU.
Ringing Generator Units (RGU)

The AUA413 and AUA423 RGUs are used in the SLC-2000 MSDT as well as the DDM-2000 FiberReach narrowband shelf. The AUA413 provides 20-Hz negative-superimposed ringing current to satisfy loop applications for 0 to 132 ohms and AUA423 should be placed in an NBS where any channel units are used whose range exceeds 132 ohms. (See Figure 4-8.) The AUA413 and AUA423 RGUs receive an input voltage in the -42 to -60 V DC range from the power converter unit (PCU) and supply a ringing voltage of 20 Hz, 80 or 100 V rms sine wave, respectively, superimposed on the negative input voltage. Both can ring up to three lines simultaneously. Each line may have a maximum load of the five ringer equivalent numbers (RENs). The AUA423 RGU satisfies the ringing requirements for the longer loop applications where the loop impedance exceeds 130 ohms. Each of the faceplates contains an LED indicator (FAIL) and three test points (-20HZ, -48V, and GND).

An output alarm monitor circuit on the RGU monitors the output ringing voltage for an over- or under-voltage condition and activates a red fail LED when either condition occurs. This circuit pack is protected from lightning and power surges by the output surge protection circuit.

![AUA413 and AUA423 Ringing Generator Units](image-url)
AUA421 Channel and Drop Test Unit (CDTU)

The CDTU circuit pack is used in the SLC-2000 MSDT as well as the DDM-2000 FiberReach narrowband shelf. This circuit pack provides the remote end terminations and detectors required to support end-to-end channel testing of two-wire locally-switched services, such as POTS, coin, and multiparty services. When a channel test request is received on the narrowband shelf, the DSXBIU instructs the channel unit associated with the channel under test to operate its test relay. The DSXBIU then informs the CDTU that a test is occurring, and the CDTU then performs a drop test and reports the results back to the DSXBIU. The CDTU provides channel test terminations in sequence based on results from the channel test detectors and instructions from the DSXBIU. This circuit pack is optional.

LEDs

Two green power on (PWR ON) indicators on the user panel show that the shelf is receiving fused –48 volt power from each of two services. The indicator remains illuminated as long as the associated –48 volt feeder is supplying power to the shelf.

Normally the FAULT LED on the circuit pack faceplates is operated via the controller which provides a ground return for current generated by the on-board converter. In the event of a DC-to-DC converter failure, the LED will be operated via the –48 volt power leads. The –48 volt power leads are supplied through an electronic gate or relay contact normally held open by the converter. The power, fusing, and LED circuits shown in Figure 4-9, are used on all circuit packs with on-board DC-to-DC converters.
A yellow power minor (PMN) alarm LED is provided on the user panel to indicate an AC power failure at the remote terminal. The power minor alarm can be provisioned at the central office (CO) to be either an office minor (MN) or office major (MJ) alarm.
Power Distribution

See "Power Requirements" in Chapter 10, "Technical Specifications," for power dissipation values.

Figure 4-10 shows a typical battery feeder interface for a single shelf.

⚠️ CAUTION:
This information is for a typical application only. Consult 801-525-168, DDM-2000 Floor Plan Data Sheets, and T-82046-30, Power Systems DC Distribution Circuit for Digital Transmission System, for proper engineering of battery plant and feeders.

Figure 4-10. Typical -48 Volt Power Supply for DDM-2000 FiberReach Multiplexer Single Shelf
Transmission and Synchronization

Contents

Overview

Transmission Interfaces
- DS1 Transmission Interface
- OC-1/OC-3/OC-12 Transmission Interface
- T1 Transmission Interface

Transmission and Architecture
- Wideband Shelf Interfaces and Multiplexing
- Wideband Shelf Protection Architectures
- Narrowband Shelf Interfaces and Multiplexing
- Wideband and Narrowband Shelf Integration

Synchronization
- Manual Timing Pack Switch
- Subnetwork Configurations
 - Free Running/Line Timing
- External Timing/Line Timing Configuration
- Line Timing/Line Timing Configuration
- Timing Distribution

Synchronization Messaging
- Applications
 - Automatic Synchronization Reconfiguration
- Synchronization Provisioning Integrity
- Feature Details and Options
- Examples

Issue 3 June 2000 5-i
Contents

- Synchronization Reconfiguration in an Access Ring

5-17
Transmission and Synchronization

Overview

This chapter describes the transmission and synchronization interfaces for the DDM-2000 FiberReach Multiplexer.

Transmission Interfaces

DS1 Transmission Interface

The DDM-2000 FiberReach wideband shelf supports DS1 interfaces. The DS1 interface accepts any DSX-1 compatible signal (clear channel interfaces).

OC-1/OC-3/OC-12 Transmission Interface

T1 Transmission Interface

The DDM-2000 FiberReach wideband shelf supports a T1 interface. The interface accepts two T1 signals. The two signals are mapped into a standard VT1.5 signal, and then multiplexed into one VT-G signal.

Transmission and Architecture

Wideband Shelf Interfaces and Multiplexing

The DDM-2000 FiberReach wideband shelf supports DS1, HDSL (with 28G-U/28G2-U [Release 3.1] and 29-type [Release 4.0] OLIUs) and T1 carrier extension interfaces. The DS1 interface accepts any DSX-1 compatible signal (clear channel interfaces). When equipped with 28-type or 29-type OLIUs, the shelf supports 1 protected or 2 unprotected DS3 interfaces, or a single OC-3c interface. When equipped with 26G2-U OLIUs and with Release 4.0, the shelf supports 1 protected or 2 unprotected DS3 interfaces.

Figure 5-1 is an overall block diagram of the DDM-2000 FiberReach Multiplexer. Internally, the Multiplexer uses synchronous optical network (SONET) standard multiplexing. (Refer to Appendix A.) On the low-speed side, asynchronous DS1 signals map into floating mode VT1.5 signals. The VT1.5 signals are combined into virtual tributary groups (VTGs) and then multiplexed to one STS-1 signal. This VT structured STS-1 signal can be combined with an STS-1 signal from the function unit slots along with a pass through STS-1 to form an OC-3 signal.

In the opposite direction, a received OC-N signal is converted back to “N” electrical STS-1 signals. A DS1-formatted STS-1 signal is demultiplexed to VT groups and then to VT1.5 signals. The VT1.5 signals are then converted to DS-1 signals prior to connecting to the DS1 interface.
Refer to Chapter 9, "Maintenance Description," for additional details on equipment and path protection switching.
Wideband Shelf Protection Architectures

The eight low-speed interface slots of the DDM-2000 FiberReach wideband shelf can be configured in two protection architectures: 1x1 protected or 1x7 protected. (See Note.) In a 1x1 protection configuration, the eight slots are divided into four low-speed groups — A, B, C, and D. The bottom four slots are the service A, B, C, and D slots and the top four slots are the associated protection A, B, C, and D slots. This configuration is most appropriate for applications with a mixture of low-speed service needs (for example, DS1 and T1 carrier extensions).

NOTE:
A wideband shelf comes with a 1x1 and a 1x7 protection bus module that goes on the backplane. However to change the protection scheme, it must be done out of service.

In a 1x7 protection configuration, the eight slots are provisioned as a single low-speed group with seven service slots and one protection slot. This arrangement is intended for applications where only one type of low-speed service is needed. Multiple types of low-speed services (T1 or DS1 only) can be supported at one time; however only one type will be protected, determined by the type of circuit pack in the protection slot. In both 1x1 and 1x7 protection architectures, the protection slot(s) can be left unequipped, leaving the low-speed service unprotected. The protection architecture can be changed between 1x1 and 1x7 but must be done out of service by installing the appropriate protection module bus on the rear of the shelf as shown in Figure 3-8 (DDM-2000 FiberReach Multiplexer Wideband Shelf — Rear View).

Narrowband Shelf Interfaces and Multiplexing

The DDM-2000 FiberReach narrowband shelf shares the same channel units as the SLC-2000 MSDT. However, the narrowband shelf can offer up to 12 slots with a two-DS1 capacity for DS0 services and twice the ISDN services, versus only 6 slots and single DS1 capacity in the MSDT. This provides more flexibility for special services, such as integrated services digital network (ISDN).

The main controller and interface for the narrowband shelf is the digital signal cross-connect backplane interface unit (DSXBIU), which interfaces to the 12 channel units via TCPM and RCPM lines for pulse code modulation and the bank control link (BCL) for provisioning and inventory. See Figure 5-2. Clock generation and synchronization are controlled by the DSXBIU. A ringing generator unit (RGU) sends the ringing signal to all of the channel unit slots. A channel and drop test unit (CDTU) provides the channel and drop testing capability for the narrowband shelf. The power converter unit (PCU) delivers power to the narrowband shelf. The DSXBIU communicates with the common units via a serial protocol link called the microwire link. This link is a serial three-wire clock, transmit, and receive protocol.
For the PSU, the DSXBIU has an additional microwire interface operating at RS-422 levels.

The backplane for the narrowband shelf can be configured in either quad or octet modes. In the quad mode, the 6 channel units in the upper subshelf and the 6 channel units in the lower subshelf provide up to 24 DS0s of service each on a 1-DS1 capacity per subshelf (2 DS1s total). Four DS0 time slots are provided to each physical channel unit slot. In the octet mode, two DS1 links are provided to the 6 channel unit slots in the upper subshelf and two DS1 links are provided to the 6 channel unit slots in the lower subshelf for a total capacity of 96 DS0 or 4 DS1 lines. Eight DS0 time slots are provided to each physical channel unit slot. One DS1 link is provided for each group of three channel unit slots.

Narrowband shelf services are supported by SLC-2000 Releases 4.3 and 4.4, or later. For Release 4.4, the SLC-2000 host must be equipped with the SPQ810 DT server to support both quad and octet mode services. See LTP 363-208-000, SLC-2000 Access System Application, Planning, and Ordering Guide for additional information.
Wideband and Narrowband Shelf Integration

The wideband and narrowband shelves communicate with each other via a standard DS1 transmission interface. The electrical interface is compatible with DSX-1 requirements. No control communication exists between the wideband and narrowband shelves.
Synchronization

Each DDM-2000 FiberReach wideband shelf is provisioned to be line-timed from an incoming high-speed interface. In line timing mode, the OLIU circuit pack derives local shelf timing from the incoming OC-1/OC-3/OC-12 high-speed signal in the Main slot. The OLIU digital phase-locked loop (DPLL) also serves to remove any timing transients for improved network jitter performance. If one of the OC-N references is corrupted or unavailable, the OLIU will make a nonrevertive protection switch to the other reference without causing timing degradations. If both OC-N signals are lost (for example, due to a cable cut), the OLIU circuit pack will switch to holdover mode. The OLIU will normally switch back to the line timing mode when a reference is no longer corrupted, but it can be provisioned to require a manual switch.

Manual Timing Pack Switch

This capability adds the ability to manually switch which Main OLIU is supplying timing to the shelf. In this way, the switch can be effected remotely. In addition, timing may be switched off of a Main OLIU prior to removing it for maintenance. Using this software switch creates a slightly smaller transmission hit. This feature also causes an “active-fn” OLIU pack equipment switch which will be reflected in the `rtrv-state-eqpt` report.

Subnetwork Configurations

Free Running/Line Timing

For initial SONET deployment with a DS1 low-speed interface, minimum first cost may be a primary concern. The free-running/line timing network can operate without an external clock source, so the expense of connecting to one is eliminated. This configuration may be useful for initial loop feeder and customer location applications, and it also meets the needs of an end-office trunk facility. This configuration should not be used to provide OC-N timing distribution or where SONET interconnections to other SONET subnetworks are needed. The local DDM-2000 host times its transmitted signals at the low- and high-speed interfaces from the internal ±15 ppm oscillator. The DDM-2000 FiberReach Multiplexer connected to the host recovers timing from the incoming OC-N signal and uses this timing for its transmitted signals.

Because the free-running/line timed DDM-2000 network is asynchronous to the DS1 services carried over it, additional jitter will be experienced on the demultiplexed DS1s. Certain interconnected equipment may be sensitive to such jitter, and this configuration should not be used in cases where it would cause a problem for that equipment. In particular, downstream equipment containing Stratum 3 or better clocks could be sensitive to this jitter.
Figure 5-3 shows a DDM-2000 FiberReach Multiplexer ring application. The intermediate nodes in this subnetwork perform line timing, whereby both transmitted OC-N lines are timed from an incoming OC-N. In the ring topology, synchronization messaging allows automatic synchronization reconfiguration in the event of a fiber or equipment failure. In this figure, the host DDM-2000 OC-3 Multiplexer or SLC-2000 ARM shelf is free-running, and the DDM-2000 FiberReach wideband shelves are line-timed.

Figure 5-3. Free Running/Line Timing Synchronization in a Ring Configuration
External Timing/Line Timing Configuration

The external timing/line timing configuration (shown in Figure 5-4) integrates loop feeder and customer location networks into the digital synchronization network as required by the SONET standard. This application is ideal for networks where only one location has a building integrated timing supply (BITS); for example, a loop feeder. The network is synchronized to a local central office clock via DS1 references. The local office clock should be Stratum 3 or better, with timing traceable to a primary reference source. The local DDM-2000 multiplexer times its transmitted signals at the low- and high-speed interfaces from the internal oscillator that is locked on the external reference. The remote DDM-2000 FiberReach Multiplexer recovers timing from the incoming OC-N signal and unidirectional timing path and uses this timing for its transmitted signals.

External timing is required when EC-1 low-speed interfaces are used to interconnect the local DDM-2000 with other SONET equipment. Thus, the external timing/line timing configuration should be the long-term goal for all loop feeder and customer applications.

This timing configuration is also recommended for multispan topologies. Line timing can be extended to many DDM-2000 sites without any degradation of timing quality. In the ring topology, synchronization messaging allows automatic synchronization reconfiguration in the event of a fiber or equipment failure.
Figure 5-4. External Timing in a Ring Configuration
Line Timing/Line Timing Configuration

The line timing/line timing configuration (shown in Figure 5-5) provides an alternate timing arrangement that integrates loop feeder and customer location networks into the digital synchronization network as required by the SONET standard. This application is used when a synchronization source is not available locally to the DDM-2000 host. The network is synchronized to a remote clock via the SONET connection. The remote clock source should be traceable to a primary reference source that is Stratum 3 or better. The local DDM-2000 multiplexer times its transmitted signals at the low- and high-speed interfaces from the internal oscillator that is locked on the SONET connection. The remote DDM-2000 FiberReach Multiplexer recovers timing from the incoming OC-1 signal and unidirectional timing path and uses this timing for its transmitted signals.

Figure 5-5. Line Timing in a Ring Configuration
Timing Distribution

In many applications, all elements in a SONET network are directly traceable to a single master clock via line-timing (for example, loop access networks, outside trunks, private networks). In this environment, the high-performance desynchronizer design of the DDM-2000 FiberReach Multiplexer allows a DS1 timing reference to be carried as a multiplexed DS1 payload to a customer premises. It is recommended that, where possible, the DS1 sources (switch, PBX, or other equipment) be traceable to the same timing source used to time the DDM-2000 SONET network. Multiplexed DS1 reference transport is also consistent with current planning and administration methods. Applications include passing synchronization from the public switched network to a PBX-based private network (Figure 5-6). Network timing failures are identified by a DS1 alarm indication signal (AIS) and will cause selection of an alternate timing source.

* Synchronous operation via line timing eliminates the generation of VT pointer adjustments, thus maintaining the phase stability needed for a high-quality DS1 timing reference. Cross-connecting at the STS-1 level also eliminates the VT pointer adjustments. While the design of the DDM-2000 OC-3 Multiplexer maintains jitter/wander within standard DS1 interface requirements, even in the presence of VT pointer adjustments, and while the DS1 is likely to be stable enough for most equipment to use as a timing reference, some equipment may have more stringent stability requirements for its timing references.
Figure 5-6. Timing from a Multiplexed DS1
Synchronization Messaging

The DDM-2000 FiberReach Multiplexers provide a synchronization messaging feature to ensure the integrity of network synchronization during both normal and abnormal conditions. With synchronization messaging, the current quality of the timing source can be conveyed from one DDM-2000 FiberReach Multiplexer to the next. This capability allows the DDM-2000 FiberReach Multiplexers to automatically change their timing reference in order to always maintain the highest quality timing available.

Applications

The applications that are currently supported with the synchronization messaging feature can be divided into two categories:

1. Automatic synchronization reconfiguration
2. Synchronization provisioning integrity.

Automatic Synchronization Reconfiguration

SONET was designed to operate optimally in a synchronous environment. Although plesiosynchronous and asynchronous operation can be supported by pointer adjustments, transmission quality is affected by the generation of additional jitter and wander due to pointer adjustments. Because of this, it is desirable to maintain synchronous operation whenever possible. With synchronization messages, the quality of the different timing references can be made available at each DDM-2000 FiberReach Multiplexer. The DDM-2000 FiberReach Multiplexer shelf can always determine the best timing reference available to it and switch to that reference. Through this mechanism, the synchronous operation of the subnetwork can be maintained. The switching of timing references is hitless, and the synchronization messages also allow it to be done without creating timing loops in the process.

Consider the access ring network in Figure 5-7. Under normal operation, the ring has one DDM-2000 Multiplexer externally timed and the other FiberReach Multiplexers line-timed in the counterclockwise direction. If a fiber failure occurs between the host DDM-2000 and the DDM-2000 FiberReach Multiplexers, the synchronization auto-reconfiguration feature will cause the DDM-2000 FiberReach Multiplexers to change their line timing directions to clockwise. The result is that the ring is again operating synchronously. The ring already provides self-healing of the traffic; so it is especially important to maintain synchronous operation during this type of failure to prevent service degradation due to increased jitter and wander.
Figure 5-7. Synchronization Failure and Reconfiguration

Synchronization Provisioning Integrity

A welcome byproduct of synchronization messaging is the prevention of provisioning errors. Provisioned timing loops on the DDM-2000 FiberReach Multiplexers will be quickly detected through the synchronization messaging algorithm and prevented by forcing a shelf into holdover. The system can then be reprovisioned correctly.

Feature Details and Options

As mentioned previously, SONET synchronization messaging is used to communicate the quality of the subnetwork timing throughout the subnetwork. This is done using bits 1 through 3 of the K2 byte found in the SONET overhead. If a DDM-2000 FiberReach system is deriving timing from a given OC-N interface and synchronization messaging is enabled on that interface (Kbyte messages are enabled using the `set-ocn` user interface command or `ent-rr` TL1 command), the system interprets the received message to determine its internal timing status. The DDM-2000 FiberReach system also transmits over the particular OC-N
interface, and all other OC-N interfaces that are enabled for synchronization messaging, the appropriate message indicating the quality of its timing and its active timing mode. Table 5-1 lists the associated internal timing status that is associated with synchronization messages received from the OC-N interface when synchronization messaging is enabled. The table lists the messages from low to high quality.

Table 5-1. Synchronization Messages Using K2 Byte

<table>
<thead>
<tr>
<th>Received Message</th>
<th>Active Timing Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don't Use</td>
<td>Holdover</td>
</tr>
<tr>
<td>Timing Looped Back (TLB)</td>
<td>Holdover</td>
</tr>
<tr>
<td>Stratum 4</td>
<td>Holdover</td>
</tr>
<tr>
<td>Internal Clock (IC)</td>
<td>OK to use</td>
</tr>
<tr>
<td>Stratum 3*</td>
<td>OK to use</td>
</tr>
<tr>
<td>Stratum 2*</td>
<td>OK to use</td>
</tr>
<tr>
<td>Sync Quality Unknown (SQU)</td>
<td>OK to use</td>
</tr>
<tr>
<td>Stratum 1*</td>
<td>OK to use</td>
</tr>
</tbody>
</table>

* Presently, DDM Multiplexers cannot generate these messages, but they could be transmitted and supported for auto-reconfiguration if any of these are received by DDM-2000 Multiplexer.

The "Don't Use" message is sent when the system determines that its timing is not suitable for synchronization, for example, due to failure.

When the DDM-2000 FiberReach system is in holdover mode, the Internal Clock message will be sent on all OC-N interfaces.

When the DDM-2000 FiberReach system is configured for line timing, the Timing Looped Back message will be sent on the OC-N interfaces toward the network element from which the timing is being derived. The message received on the OC-N interface will be sent on all other OC-N interfaces where synchronization messaging is enabled.

With automatic synchronization reconfiguration, the DDM-2000 FiberReach Multiplexer systems use and compare the incoming synchronization messages on the OC-1 interfaces available for line timing to select the highest quality synchronization reference available. If the received quality levels are the same on the references available for timing, the existing line timing reference takes precedence. This feature guarantees the nonrevertive operation of reconfiguration. The line timing reference is provisioned by the `set-sync` command.
The existence of automatic synchronization reconfiguration does not change the system's behavior on traditional line failures; for example, loss of frame (LOF), loss of pointer (LOP), loss of signal (LOS), and others.

Examples

In this section, some detailed examples are given to show specifically how the synchronization messages propagate through the DDM-2000 FiberReach network and assist in the recovery from a fiber failure. Through these examples, one can extend the same concept to any other network that may include different topologies, number of sites, failure locations, and number of BITS clocks.

Table 5-2. Synchronization Messages using S1 Byte

<table>
<thead>
<tr>
<th>Received Message</th>
<th>Active Timing Mode†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don't Use</td>
<td>Holdover</td>
</tr>
<tr>
<td>Traceable SONET Clock</td>
<td>OK to use</td>
</tr>
<tr>
<td>Traceable Stratum 3‡</td>
<td>OK to use</td>
</tr>
<tr>
<td>Traceable Stratum 2‡</td>
<td>OK to use</td>
</tr>
<tr>
<td>Sync Trace Unknown</td>
<td>OK to use</td>
</tr>
<tr>
<td>PRS Traceable‡</td>
<td>OK to use</td>
</tr>
</tbody>
</table>

* This table is applicable when a 28-type or 29-type OLIU is in the Main slot.
† This column applies only when provisioned for line timing mode.
‡ Presently, DDM-2000 FiberReach Multiplexers cannot generate these messages, but they could be transmitted and supported for auto-reconfiguration if any of these are received by DDM-2000 FiberReach Multiplexer.

Synchronization messaging using the SONET K2 byte and S1 byte can be disabled on a per OC-N interface using the set-ocn command. (See Table 5-2.) Zeros will be transmitted on bits 1-3 of the K2 byte if this is done; all ones will be transmitted on bits 5-8 of the S1 byte if this is done. The timing and synchronization status of a shelf can be determined using the rtrv-sync command.

Synchronization Reconfiguration in an Access Ring

Figure 5-8a shows the access ring operating in its normal configuration. The DDM-2000 Multiplexer at the central office (CO) is externally timed, and each of
the other DDM-2000 FiberReach Multiplexers are line-timed in a counterclockwise direction. The sync quality unknown (SQU) message is sent to indicate where timing is traceable to an external BITS and where it is valid to be used. The timing looped back (TLB) message is sent on the interface that is being used as the line timing reference and, thus, where using that timing would create a timing loop. Synchronization messaging and automatic synchronization have both been enabled for this network.

In Figure 5-8b, a fiber has been cut between sites A and B. Immediately, the DDM-2000 FiberReach Multiplexer at site B enters holdover and sends out the internal clock (IC) message to site C. The DDM-2000 FiberReach Multiplexer at site B cannot switch to line time from site C because it is receiving the TLB message on that interface.

Figure 5-8. Synchronization Reconfiguration — Access Ring (Sheet 1 of 3)
In Figure 5-8c, the DDM-2000 FiberReach Multiplexer at site C detects the incoming IC message and sends out the IC message to site D. The DDM-2000 FiberReach Multiplexer at site C cannot switch to line time from the other rotation because it is receiving the TLB message on that interface.

In Figure 5-8d, the DDM-2000 FiberReach Multiplexer at site D detects the incoming IC message. Because this DDM-2000 FiberReach Multiplexer is receiving the SQU message from site A, it will switch to line time from site A because SQU is higher quality than IC. After the switch occurs, the TLB message is sent back to site A and the SQU message is retransmitted to site C.

Figure 5-8. Synchronization Reconfiguration — Access Ring (Sheet 2 of 3)
In Figure 5-8e, the DDM-2000 FiberReach Multiplexer at site C detects the incoming SQU message from site D. The SQU message is a better quality message than the IC message being received from site B, so the DDM-2000 FiberReach Multiplexer at site C switches to line time from site D. After the switch occurs, the TLB message is sent back to site D, and the SQU message is retransmitted to site B.

In Figure 5-8f, the DDM-2000 FiberReach Multiplexer at site B detects the incoming SQU message from site C. The SQU message is a better quality message than the internal holdover capability, so the DDM-2000 FiberReach Multiplexer at site B switches to line time from site C. After the switch occurs, the TLB message is sent back to site C, and the SQU message is forwarded to site A. When the failure clears, the synchronization remains in the new configuration unless it is manually switched back.

Figure 5-8. Synchronization Reconfiguration — Access Ring (Sheet 3 of 3)
Operations Interfaces

Contents

Overview 6-1
Craft Interface Terminals (CIT) 6-2
- CIT Access 6-2
- Using a PC as a CIT 6-6
- Remote Access Using the DCC 6-6
- CPro Graphical User Interface and Provisioning Tool 6-7
User Panel 6-8
- User Panel LEDs 6-10
- FE SEL Pushbutton 6-10
- ACO/TST Pushbutton 6-11
- UPD/INIT Pushbutton 6-11
- Pushbutton Combinations 6-12
Equipment Indicators 6-12
- FAULT Indicators 6-12
- ACTIVE Indicators 6-13
Office Alarms 6-13
TL1/X.25 Interface 6-14
- ITM SNC 6-15
User-Definable Miscellaneous Discretes—Environmental Alarms and Controls 6-16
Operations Interfaces

Overview

This chapter presents the operations interfaces that enable local and remote access to the DDM-2000 FiberReach Multiplexer Wideband shelf for its management.

NOTE:
For the DDM-2000 FiberReach Multiplexer Narrowband shelf, all operations are through the SLC-2000.

Operations interfaces include:

- EIA-232-D craft interface terminal (CIT) interface
- User panel controls and indicators
- Equipment status indicators
- Office alarms
- TL1/X.25 interface (via the host system) to an alarm surveillance OS such as Telcordia Technologies’ Network Monitoring and Analysis (NMA) and Operations Systems/Intelligent Network Elements (OPS/INE), and Lucent Technologies ITM SNC (Integrated Transport Management SubNetwork Controller)
- User definable miscellaneous discrete environmental alarms and controls.
Complete detailed information on the OS interfaces is provided in 824-102-151, Lucent Technologies *DDM-2000 Multiplexers Operations Systems Engineering Guide*.

Additional information about the OI features in multi-vendor subnetworks is provided in 824-102-144, Lucent Technologies *2000 Product Family Multi-Vendor Operations Interworking Guide*.

Craft Interface Terminals (CIT)

The DDM-2000 FiberReach Multiplexer supports a user friendly text-based interface called the craft interface. A simple industry standard VT-100 computer terminal or a personal computer (PC) or a computer emulating a VT-100 computer terminal is all that is needed for the craft interface. The computer terminal or the PC may be connected to the DDM-2000 FiberReach Multiplexer either via the front CIT port or to the front or rear CIT of another DDM-2000 in the same subnetwork. In the latter case, the SONET data communications channel (DCC) will also serve as the connection between the computer terminal and the target DDM-2000 FiberReach Multiplexer. These access mechanisms are explained further in the following sections.

CIT Access

Figure 6-1 shows the system has one EIA-232-D compatible interface for a CIT. The front access interface is configured as data communications equipment (DCE) for direct CIT access (CIT 1). The front access port is configured as a data circuit terminating equipment (DCE) for direct terminal access. The front CIT port provides data rates of 300, 1200, 2400, 4800, 9600, and 19200 baud. Figure 6-2 shows how a null modem and a modem can be connected to the CIT interface. The data rate of the DDM-2000 FiberReach Multiplexer is automatically set to match the data rate of the terminal (autobaud).

For the Wall DT, the front cover must be open to connect the modem.
Figure 6-1. CIT Connectors (Direct Interface to CIT)
Figure 6-2. CIT Connectors (Modem Interface to CIT)
The terminal sessions over the CIT port and over the DCC are independent of one another. Two simultaneous login sessions (one CIT and one DCC) can be supported at any given time. See Figure 6-3.

Figure 6-3. CIT Login Sessions

The DDM-2000 FiberReach CIT interface is based on the Telcordia Technologies TL1 language and provides prompt and command modes of operation. On-line context sensitive help is always available to help the technician through command execution. The output messages and reports are presented in easy-to-read sentences and tables. The following functions are provided via the CIT interfaces for the local and remote DDM-2000 FiberReach Multiplexer shelves:

- Loopbacks and testing
- Protection switching
- Performance monitoring
- Provisioning
- Fault management
- Software downloading
- Security management.

Detailed specifications of the CIT interface are provided in Chapter 10, "Technical Specifications."
Using a PC as a CIT

In addition to CIT functions, a PC is required for software downloads and facilitates software program updates. Any MS-DOS PC can be used to emulate a traditional CIT through a variety of low-cost terminal emulator software packages; thus, an MS-DOS PC can serve DDM-2000 FiberReach Multiplexer needs very efficiently. In addition, the DDM-2000 FiberReach Multiplexer user interface can be accessed from within MS-Windows* (Version 3.0 or later) on an MS-DOS PC.

The DDM-2000 FiberReach Multiplexer uses flash erasable program memory (EPROM) devices that can be upgraded through direct download from an MS-DOS PC. Upgrades are made available through the distribution of floppy disks compatible with the recommended PCs.

NOTE:
The DDM-2000 FiberReach Multiplexer CIT interface supports data rates up to 19,200 baud but does not provide flow control. Some terminals and PCs when set for higher data rates will not work properly at these rates with equipment like the DDM-2000 FiberReach Multiplexer that does not provide flow control. The system may appear to stop working when reports or long prompts are displayed. If this happens, try setting the terminal to a lower data rate. The data rate of the DDM-2000 FiberReach Multiplexer is automatically set to match the data rate of the terminal (autobaud).

Remote Access Using the DCC

The DDM-2000 FiberReach supports CIT remote access from the local terminal to a remote DDM-2000 using the DCC. The DDM-2000 FiberReach supports one incoming remote login session and one outgoing login session over the DCC at a time. For example, a local user can gain remote access to a remote system in their same subnetwork at the same time as a remote user at another DDM-2000 in the subnetwork can gain remote access to the local system.

* MS-DOS is a registered trademark and Windows is a trademark of Microsoft Corporation.
CPro Graphical User Interface and Provisioning Tool

The CPro Graphical User Interface and Provisioning Tool is a Microsoft® Windows based user interface that can optionally be used with the DDM-2000 FiberReach Multiplexer. The tool simplifies and mechanizes administration, maintenance, and provisioning operations. With the tool a user can:

- Display and control cross-connections at each NE in a ring and the entire ring
- Obtain and display graphical images of the ring configuration, equipment, and cross-connections
- Perform an analysis of the ring to detect provisioning errors
- Retrieve and store data about a selected NE
- Back up and restore all provisioning information.

In response to a user, the tool automatically compiles and sends all the necessary commands to perform a task. If the user is provisioning cross-connections, for example, the tool automatically prevents provisioning errors by comparing the new provisioning information with the ring inventory. For more information, see the online documentation provided with the tool or 365-576-160 (CPro-2000 User Manual, Release 10.0.) See Chapter 10, "Technical Specifications," for PC requirements to use the tool.

* Microsoft is a registered trademark of Microsoft Corporation.
User Panel

The user panel, shown in Figure 6-4, provides system-level information and control functions, while the ACTIVE and FAULT LED on each faceplate provide circuit pack level information. These features allow many operations tasks (for example, fault isolation or circuit pack replacement) to be performed when a CIT or external test equipment is not available.

The user panel is a circuit pack mounted on the right side of the shelf. Additional LEDs and controls are mounted on the SYSCTL faceplate to support basic operations, administration, and maintenance functions without a CIT.
Figure 6-4. FiberReach Multiplexer User Panel
User Panel LEDs

The user panel LEDs show a composite of all alarms and status conditions in the local shelf. The composite is defined as follows:

- The highest level alarm LED (CR, MJ, PMN, or MN) of all alarms at the local shelf is lit. (At most, one alarm LED will be lit at any time.)
- The ABN LED is lit if an abnormal condition exists on this shelf.
- The ACO LED is lit if the alarm cutoff function is active on this shelf.
- Each PWR ON LED is lit if the local shelf is receiving −48 V power from its power feeders.
- The NE ACTY LED is lit if any alarm, ABN, or "activity" condition exists on this shelf.

When this composite information is being displayed on the user panel, the 7-segment FE ID is blank.

FE SEL Pushbutton

In previous DDM-2000 FiberReach releases the FE SEL pushbutton allowed technicians to see far-end DDM-2000 conditions from the local shelf. Starting with FiberReach Release 3.0 and all later FiberReach TARP releases, when the FE SEL pushbutton is pushed for the first time, the FE ID display shows "L" and the user panel LEDs show the conditions of the local shelf only.

Each time the FE SEL pushbutton is pushed again within 15 seconds, the FE ID display will show the local shelf address (with the decimal point), and the user panel LEDs will show a composite of the alarm and status condition of that same shelf.
ACO/TST Pushbutton

The ACO/TST pushbutton tests all the LEDs on the shelf. All LEDs on the shelf will be lit while the pushbutton is pressed. If the ACO pushbutton is pressed and held for more than 2 seconds, the three digits of the software release number are displayed in the 7-segment FE ID display. If there are any active alarms when the ACO pushbutton is pressed, the audible office alarms will be silenced and the ACO LED (part of the pushbutton) on the user panel will be lit.

UPD/INIT Pushbutton

This pushbutton, located on the SYSCTL, is used to initialize a controller when it is first installed in a shelf, to update the system's internal equipment inventory when signals or equipment are removed from the shelf and when circuit pack options are changed. The system automatically detects new equipment or signals added to the shelf. In these cases, it is not necessary to push the UPD/INIT pushbutton.

The user panel LEDs default to show local system information. The highest active alarm level is shown by the red LEDs for CR and MJ alarms; yellow LEDs are shown for MN and power minor (PMN) alarms. A green ACO button/LED is used to activate the alarm cutoff function. When activated, the LED is on. The green ACO button also initiates an LED test when the button is depressed and held. A green PWR ON (PWR ON A and PWR ON B for G4 shelf user panels) LED shows that the power is on and the terminal is receiving a −48 V source. Two yellow status LEDs show abnormal (ABN) conditions and near-end activity. The yellow ABN LED is lighted when a temporary condition, potentially affecting transmission, exists; for example, a manual protection switch or lockout, loopback, or system test in progress.

The UPDATE/INITIALIZE button addresses the local system and is located on the SYSCTL circuit pack. The recessed UPDATE/INITIALIZE button serves several functions during installation and circuit pack replacement. During the first 10 seconds after powering up the SYSCTL circuit pack, depressing this button initializes the nonvolatile memory with provisioning and state information. Secondly, after removing a circuit pack or low-speed input, depressing this button updates the system equipment list to show the slot or signal is now unequipped. Finally, a series of automatic turnup tests are initiated when the UPDATE/INITIALIZE and ACO buttons are depressed in a specific sequence.
Pushbutton Combinations

The three pushbuttons described previously are used in combinations to perform seven functions. Figure 6-1 lists the functions. These functions are used as part of the procedures described in the TOP section of this manual.

Table 6-1. DDM-2000 FiberReach Pushbutton Combinations

<table>
<thead>
<tr>
<th>Function</th>
<th>Pushbutton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACO/TST</td>
</tr>
<tr>
<td>1. Update</td>
<td>Press</td>
</tr>
<tr>
<td>2. SYSCTL Initialization *</td>
<td>Press</td>
</tr>
<tr>
<td>3. Remove SYSCTL †</td>
<td>Press</td>
</tr>
<tr>
<td>4. Software version</td>
<td>Hold</td>
</tr>
<tr>
<td>5. LED test</td>
<td>Hold</td>
</tr>
<tr>
<td>6. Alarm cutoff</td>
<td>Press</td>
</tr>
<tr>
<td>7. Software download †</td>
<td>Hold</td>
</tr>
</tbody>
</table>

* Used after a SYSCTL is replaced. Press pushbutton during the 10-second interval that the CR LED on the user panel is flashing.

† See TOP section of this manual (Volume II) for detailed procedures.

Equipment Indicators

FAULT Indicators

Red FAULT indicators are provided on all circuit packs. The circuit pack FAULT indicator is illuminated whenever a failure has been isolated to that pack.

Common failures (for example, power, synchronization, control, etc.) do not cause the FAULT indicators on all circuit packs affected by the failure to be illuminated; only the FAULT indicator on the failed pack is illuminated.

FAULT indicators on high- and low-speed transmission interface packs are flashed when a failure of the incoming signal is detected. For example, loss of signal, loss of frame, loss of pointer, or crossing of the signal fail or signal degrade threshold.

The FAULT LED on the SYSCTL flashes when a failure of the DCC from a far-end shelf is detected.
ACTIVE Indicators

A green ACTIVE indicator is provided on each OLIU circuit pack. It indicates which circuit packs are active (carrying service) at any given time. Since both OLIUs are active in a ring configuration, both ACTIVE indicators will always be illuminated.

Although there is no ACTIVE LED on each low-speed circuit pack to indicate it is carrying service, the status of the circuit packs can normally be deduced without the CIT. If a service DS1 circuit pack FAULT LED is illuminated and the DS1 protection circuit pack FAULT LED is not illuminated, then the protection circuit pack is carrying service and the failed circuit pack can be removed. The exception to this rule is if a manual protection switch has been executed. In this case, the ABN LED on the user panel will be illuminated and the user will have to use a CIT to check the status of the system.

Office Alarms

The DDM-2000 FiberReach Multiplexer provides relay contacts for wiring to the office audible and visual alarms. The following contacts are provided for each alarm condition:

- CR (critical)
- MJ (major)
- MN (minor).

The MJ and CR contact closures are designed to allow these office alarms to be ORed together and reported as an office MJ alarm.

The CR alarms are fail-safed against power failures. They are activated even if the shelf loses both power feeders.

The audible office alarms for a given site are silenced through activation of the ACO function. Visual alarms are not extinguished by the ACO function.

An alarm hold-off delay is provided, to prevent transient failures from causing unnecessary maintenance activity. The office alarms will not be activated unless a condition of greater duration than the alarm hold-off delay occurs. When a failure clears, an alarm clear delay prevents premature clearing of the alarm.

As with the user panel indicators, when multiple alarms are active, the highest level office alarm (audible and visual) is activated. When the highest level alarm clears, the office alarm "bumps down" to the next highest level active alarm.
If the ACO function has been activated to silence all active audible alarms, then when a "bump down" occurs the audible alarms remain silent. (That is, the lower level visual alarm is activated, but the corresponding audible alarm is not re-activated.) If another alarm occurs while the ACO is active, the highest level audible alarm is activated even if the new alarm is a lower level condition. (For example, if a MJ and MN alarm were active and silenced via the ACO and another MN alarm occurred, the MJ audible alarm would sound.)

TL1/X.25 Interface

NOTE:
The FiberReach wideband shelf does not provide a direct X.25 interface. Access to the X.25 port on a gateway NE is via the DCC.

The DDM-2000 FiberReach Multiplexer supports a TL1 interface via its host DDM-2000 over the DCC on the OC-1 interface to control and report alarm and status conditions and PM data to an alarm surveillance OS such as Telcordia Technologies' NMA operations or Lucent Technologies ITM SNC. The TL1 interface of the DDM-2000 FiberReach Multiplexer provides detailed information such as identifying specific circuit packs and facilities.

The DDM-2000 FiberReach Multiplexer supports remote and automated provisioning from a provisioning OS such as Telcordia Technologies' OPS/INE or Lucent Technologies ITN SNC. (FiberReach Release 4.0 is supported by TEMS.) The DDM-2000 FiberReach Multiplexer also provides enhanced security.

The TL1 maintenance messages of the DDM-2000 FiberReach Multiplexer are based on Telcordia Technologies' TR-NWT-000833, Issue 3, Rev. 1, Issue 4, Supplement 1, and Issue 5, Rev. 1. The TL1 provisioning messages of the DDM-2000 FiberReach Multiplexer are based on Telcordia Technologies' TR-NWT-000199, Issue 2, and TA-NWT-000199, Issue 6, Supplement 1.

DDM-2000 or FT-2000 can serve as the TL1/X.25 GNE for DDM-2000 FiberReach TL1-RNE. ITM SNC or other-vendor NEs such as Tellabs TITAN may also be the TL1/X.25 GNE for DDM-2000 FiberReach TL1-RNE. DDM-2000 FiberReach cannot be a TL1/X.25 GNE itself.

The OS can use more than one NE as a GNE to provide redundancy and/or to distribute TL1 message volume across multiple X.25 links. The TL1/X.25 GNE serves as a single interface to the OS for the NEs in the same subnetwork. The TL1/X.25 GNE receives operations information from all the NEs through the DCC and reports this information, as well as its own information, to the OS. The operations information is in the form of TL1 messages. Through the GNE, the OS can send TL1 commands to any NE in the subnetwork. FT-2000 OC-48 Lightwave Systems can serve as the TL1/X.25 GNE for DDM-2000 NEs, but not vice versa.
until DDM-2000 OC-3 Release 13.0 and later, and OC-12 Release 7.0. For DDM-
2000 FiberReach 3.0 and later, Tellabs TITAN 5500/S R5.0 DCS, or other-vendor
NEs that adhere to Telcordia Technologies GR-253, can be the TL1/X.25 GNE.
DDM-2000 FiberReach can not be a TL1/X.25 GNE itself.

Autonomous and command/response messages are supported. Detailed
information about the DDM-2000 OC-3 or OC-12 X.25 interface and detailed
information about the input and output parameters for TL1 messages is provided

ITM SNC

ITM SNC is an element management system (EMS) that supports SONET NEs
such as the Lucent Technologies’ DDM-2000, FT-2000, SLC®-2000, and the
Fujitsu® Lightwave Multiplexer (FLM). ITM SNC provides fault, provisioning,
configuration, and security management functions via a Graphical User Interface
(GUI). Through these functions, ITM SNC is able to support TL1/X.25
communication multiplexing or concentration, to provide network security, and to
record all database changes. ITM SNC also provides a cut-through capability,
allowing the ITM SNC user to access an NE through its native (TL1) command
set.

ITM SNC operates as an enhanced graphical tool and as a general configuration
management aid. It provides NE, port, cross-connection, and path provisioning,
as well as flow through from provisioning OSs to NEs. ITM SNC also provides fault
management through subnetwork alarm and event pre-processing prior to
sending fault information to a network surveillance system such as Bellcore’s
Network Monitoring and Analysis-Facility (NMA-F).
User-Definable Miscellaneous Discretes—Environmental Alarms and Controls

To allow monitoring and control of equipment collocated with a DDM-2000 FiberReach Multiplexer in a remote site, a set of user-definable miscellaneous discrete environmental alarms and controls is provided.

Twenty-one miscellaneous discrete alarm/status points are provided to monitor environmental conditions at remote terminal sites (open door, high temperature, etc.). The first 14 points and points 16 through 21 are activated by contact closures. The fifteenth point (External Minor) is for monitoring of remote structure power and fan apparatus (for example, DC power shelf failure); this point is activated by a −48 volt input.

Four control points are provided to control equipment (pumps, generators, etc.) at remote terminal sites. When activated, the control points provide a contact closure between the control point output and ground.

Miscellaneous discrete alarms/statuses and controls are transmitted between the remote DDM-2000 FiberReach Multiplexers and the DDM-2000 OC-3 Multiplexer host via the SONET section DCC. OS access to all miscellaneous discretes alarm/status points (1 through 21) is provided via TL1.

Figure 6-5 shows OS access to miscellaneous discretes through the DDM-2000 Multiplexer at the CO. Access to all miscellaneous discrete alarm/status points is also provided through the CIT. The state of the control points can be reported but not controlled through the CIT. Control points are activated by the TL1 command OPR–EXT–CONT.

The names and alarm levels of the 21 alarm/status points and the names of the 4 control points can be provisioned through the CIT in remote systems. Refer to the set-attr-env, set-attr-cont, rtrv-attr-env, and rtrv-attr-cont commands in Chapter 11, “Commands and Reports.”
Figure 6-5. Miscellaneous Discretes
Circuit Pack Descriptions

Contents

Overview 7-1
Wideband Shelf - Introduction 7-1
Control Circuit Packs 7-2
- BBG8/BBG8B SYSCTL Circuit Pack Description 7-3
 Purpose of Circuit 7-3
 BBG8/BBG8B SYSCTL Faceplate Controls and Indicators 7-3
 General Description of Operation 7-5
 Detailed Description of Operation 7-5
 BBG8/BBG8B SYSCTL Hardware Setting 7-8
 BBG8/BBG8B SYSCTL Quick Reference Summary 7-9
- ECC2 User Panel Circuit Pack Description 7-11
 Purpose of Circuit 7-11
 Faceplate Controls and Indicators 7-11
 Detailed Description of Operation 7-13
Wideband Shelf - Transmission Circuit Packs 7-15
- BBF1B DS1 Circuit Pack Description 7-15
 Purpose of Circuit 7-15
 DS1 Faceplate Indicator 7-15
 General Description of Operation 7-16
 Detailed Description of Operation 7-16
 DS1 Hardware Settings 7-18
 DS1 Quick Reference Summary 7-20
- BBF3/BBF3B DS1PM Circuit Pack Description 7-22
Contents

<table>
<thead>
<tr>
<th>Purpose of Circuit</th>
<th>7-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1PM Faceplate Indicator</td>
<td>7-22</td>
</tr>
<tr>
<td>General Description of Operation</td>
<td>7-23</td>
</tr>
<tr>
<td>Detailed Description of Operation</td>
<td>7-23</td>
</tr>
<tr>
<td>DS1PM Hardware Settings</td>
<td>7-26</td>
</tr>
<tr>
<td>DS1PM Quick Reference Summary</td>
<td>7-28</td>
</tr>
</tbody>
</table>

- **177A Retainer Card Description**
 Purpose of Card
 7-29

- **BBG4/BBG4B DS3 Circuit Pack Description**
 Purpose of Circuit
 7-30
 BBG4/BBG4B DS3 Faceplate Indicators
 7-30
 General Description of Operation
 7-31
 Detailed Description of Operation
 7-31
 BBG4/BBG4B DS3 Hardware Settings
 7-35
 BBG4/BBG4B DS3 Quick Reference Summary
 7-36

- **BBF6 T1 EXT Circuit Pack Description**
 Purpose of Circuit
 7-38
 T1EXT Faceplate Indicator
 7-38
 General Description of Operation
 7-39
 Detailed Description of Operation
 7-39
 T1EXT Hardware Settings
 7-43
 T1EXT Quick Reference Summary
 7-45

- **BBG19 DS3 Data Services Interface Circuit Pack Description**
 Purpose of Circuit
 7-46
 BBG19 DS3 Faceplate Indicators
 7-46
 General Description of Operation
 7-47
 Detailed Description of Operation
 7-48
 BBG19 DS3 Hardware Settings
 7-51
 BBG19 DS3 Quick Reference Summary
 7-52

- **BBF8 High Data-Rate Digital Subscriber Line (HDSL)**
 Purpose of Circuit
 7-54
 HDSL Faceplate Indicator
 7-54
 General Description of Operation
 7-55
Contents

Detailed Description of Operation 7-56
HDSL Quick Reference Summary 7-61

Transmission - Optical Interface 7-62

- Universal Optical Connectors 7-62
 Optical Interface Circuit Packs 7-64
- 22-Type OLIU Circuit Pack Descriptions 7-66
 Purpose of Circuits 7-66
 22-Type Faceplate Indicators 7-66
 General Description of Operation 7-70
 Detailed Description of Operation 7-70
 22-Type OLIU Quick Reference Summary 7-73
- 26G2-U OLIU Circuit Pack Description 7-75
 Purpose of Circuit 7-75
 26G2-U OLIU Faceplate Indicators 7-75
 General Description of Operation 7-77
 Detailed Description of Operation 7-78
 26G2-U OLIU Quick Reference Summary 7-81
- 28G-U/28G2-U OLIU Circuit Pack Description 7-82
 Purpose of Circuit 7-82
 28G-U/28G2-U OLIU Faceplate Indicators 7-82
 General Description of Operation 7-84
 Detailed Description of Operation 7-85
 28G-U/28G2-U OLIU Quick Reference Summary 7-88
 29G-U/29H-U OLIU Circuit Pack Description (Long Reach OC-12 Interface) 7-89

Narrowband Shelf - Introduction 7-91

- Circuit Packs in the Narrowband Shelf 7-91
- RGU Circuit Pack Description 7-92
 RGU Faceplate Controls and Indicators 7-92
- PCU Circuit Pack Description 7-93
 PCU Faceplate Controls and Indicators 7-93
- CDTU Circuit Pack Description 7-93
Contents

CDTU Faceplate Controls and Indicators 7-94
- DSXBIU Circuit Pack Description 7-94
 DSXBIU Faceplate Controls and Indicators 7-94
- Channel Units in the Narrowband Shelves 7-96
 Channel Unit Circuit Pack Descriptions 7-96
Circuit Pack Descriptions

Overview

The first part of this chapter provides a detailed functional description of the DDM-2000 FiberReach Multiplexer circuit packs for the wideband shelf. The second part of this chapter provides a detailed functional description of the DDM-2000 FiberReach Multiplexer circuit packs for the narrowband shelf.

Wideband Shelf - Introduction

The circuit packs in the DDM-2000 FiberReach Multiplexer are divided into the following main categories:

- Control circuit packs
 - BBG8/BBG8B system controller (SYSCTL)
 - ECC2 user panel (USPNL)
- Transmission circuit packs
 - BBF1B DS1 low-speed interface (DS1)
 - BBF3/BBF3B DS1 performance monitoring (DS1PM)
 - BBG4/BBG4B DS3 low-speed interface (DS3)
 - BBF6 T1 extension
 - BBG19 DS3 data services interface
 - BBF8 high bit rate digital subscriber line (HDSL)
Optical Interfaces
- 22D-U OC-3 (IS-3) OLIU
- 22F/22F-U/22F2-U OC-3 (Intermediate Reach) OLIU
- 22G-U/22G2-U/22G3-U/22G4-U (OC-3 Long Reach) OLIU
- 26G2-U OC-1 optical line interface unit (OLIU)
- 28G-U/28G2-U OC-3 optical line interface unit (OLIU)
- 29G-U 1310 OC-12 (nm Long Reach) OLIU
- 29H-U 1550 OC-12 (nm Long Reach) OLIU

Control Circuit Packs

The DDM-2000 FiberReach Multiplexer uses one main control circuit pack for the SYSCTL. The user panel on DDM-2000 FiberReach provides the physical CIT interface and the alarm and status LEDs. The control system provides user interfaces to the system and controls, monitors, and reports the status of the signal transmission through the DDM-2000 FiberReach Multiplexer. All system features are implemented or supported through the control system. However, transmission is unaffected by control system failure. If a controller does fail, protection switches are not done. Therefore, if there is another circuit pack failure requiring a protection switch along with the controller failure, service may be affected depending on the function of the failed circuit pack. The control system continuously monitors the equipment to determine if a protection switch is necessary and to provide equipment performance information.

The control system in each DDM-2000 FiberReach in a subnetwork can communicate with the control system of other FiberReach NEs in that subnetwork via the SONET section data communications channel (DCC). This allows a user at one point in the subnetwork to control the shelves throughout the subnetwork.
BBG8/BBG8B SYSCTL Circuit Pack Description

Purpose of Circuit

The BBG8/BBG8B SYSCTL circuit pack is the system controller for the FiberReach Multiplexer. It has control over all shelf functions and provides all user interfaces into the system.

BBG8/BBG8B SYSCTL Faceplate Controls and Indicators

The BBG8 SYSCTL circuit pack faceplate controls and indicators are shown in Figure 7-1. The SYSCTL has a red FAULT LED and a 7-segment numeric LED display, as well as the FE SEL and UPD/INIT pushbuttons on its faceplate. The red FAULT LED lights on detection of a circuit pack failure. These controls and indicators are discussed in more detail under "User Panel" in Chapter 6, "Operations Interfaces."
Figure 7-1. BBG8 SYSCTL Circuit Pack
General Description of Operation

The SYSCTL circuit pack provides the majority of the control functions on the shelf. These include circuit pack monitoring, performance monitoring, protection switching, and user interfaces.

The SYSCTL, which contains a microprocessor, controls links to all other circuit packs in the system and links to user interfaces. The processor also provides link access procedure (LAPD) and link access procedure packet data processing to support SONET section DCC.

Detailed Description of Operation

Control Circuitry

Processor. Figure 7-2 provides an overall block diagram of the SYSCTL circuit pack. This processor is the highest level processor in the system.

Memory

Program Flash-EPROM. The main program is stored in the flash-EPROM, which combines the nonvolatility of EPROM with the in-circuit reprogramming ability of electrically erasable programmable read-only memory (EEPROM). Electrically erasable programmable read-only memory (EEPROM) allows in-service software upgrades to be performed locally or remotely without replacing the SYSCTL circuit pack. Program upgrades of remote systems can also be done via the DCC. Of course, software upgrades may also be accomplished by replacing circuit packs with packs that have already had software upgrades.

RAM. The main processor's random access memory (RAM) is used to store all volatile information such as system alarms, performance-monitoring information, and parameters for the main processor's operating system.

EEPROM. All nonvolatile parameters such as provisioning are stored in the EEPROM, which maintains its data indefinitely during a power loss.
Figure 7-2. BBG8 SYSCTL Circuit Pack Block Diagram
Transmission/Timing Circuit Pack Interfaces

The main processor can read and write parameters on the transmission circuit packs through a custom serial interface called the intrashelf control bus. These circuit packs have a built-in serial link receiver which provides an address map into the device. Through this interface, the processor accesses the custom devices and circuit pack parameters, as well as a small EEPROM which stores each circuit pack’s inventory information (CLEI code, date of manufacture, etc.). Through this link, the main processor can also light the faceplate LEDs on the circuit packs.

Redundancy has been built into this bus to allow a pack to be switched out of service in the event of a failure within a circuit pack.

Operation Interfaces

The SYSCTL supports all of the operations interfaces described in Chapter 6, "Operations Interfaces."

OC-1 Transport Overhead Channel

The SYSCTL terminates an overhead channel from each Main slot in the shelf. The overhead channel terminates the 192 kb/s section DCC.

Power Monitoring and Fan Control

The SYSCTL monitors the two −48 volt feeders and generates an alarm if one fails. It also monitors AC power in a remote terminal application via a power minor alarm input closure and can control the external fan, based on an on-board temperature sensor. The system also monitors the fan control relay for contact failure.

If the voltage to the shelf drops below the safe operating voltage, the system will suspend normal operations and wait for safe operating voltage to return. This is referred to as “brownout protection.” Assuming a sufficient voltage level, an "L" will be displayed on the SYSCTL. The BBG8/BBG8B operates in either integrated or isolated grounding (-48VRTN not connected to frame ground) architecture systems.

* COMMON LANGUAGE is a registered trademark and CLEI, CLLI, CLCI, and CLFI are trademarks of Telcordia Technologies.
Power Circuitry

The SYSCTL receives two sources of −48 volts which are diode ORed, fused, and filtered prior to conversion to a +5 volt source to power the rest of the circuit pack. A failure of the fuse or converter causes the red FAULT LED to light.

BBG8/BBG8B SYSCTL Hardware Setting

The BBG8/BBG8B circuit pack has two hardware switches. Switch 1 (S1) is for product identification and Switch 2 (S2) for the DDM-2000 FiberReach DCC channel. See Figure 7-3.

Note: The switch is set by moving the slide toward the desired position. For DDM-2000 FiberReach, all three S1 switches should be in the OFF position. All S2 switches should be ON, with the exception of Switch S2-2, which should be set to OFF.

Figure 7-3. BBG8/BBG8B SYSCTL Option Switches
Switch 1 (S1) Settings

<table>
<thead>
<tr>
<th>Product Identification</th>
<th>S1-1</th>
<th>S1-2</th>
<th>S1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDM-2000/SLC-2000/</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>DDM-2000 FiberReach</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BBG8/BBG8B SYSCTL Quick Reference

Summary

Interface Functions

Intrashelf interface functions performed by the SYSCTL are as follows:

a. Direct control of other circuit packs via a serial control link and intrashelf control bus
b. Control of circuit pack and user panel LEDs
c. Detecting the presence of, and identifying, circuit packs installed in the system
d. SONET DCC overhead channel interface to OLIU circuit packs.

Craft Interface:

a. A craft interface automatically provisioned to 300, 1200, 2400, 4800, 9600, or 19,200 baud
b. Provides interface for all advanced provisioning, performance monitoring, administration, and maintenance activities.

User Panel

a. Alarm and status indicators
b. ACO and LED Test Controls.

Miscellaneous Discrete Functions

Miscellaneous discrete functions provided by the SYSCTL are as follows:

a. Miscellaneous discrete environmental alarms and controls.
Maintenance Functions

Maintenance functions provided by the SYSCTL are as follows:

a. Automatic reset on power up
b. Fault detection, isolation, and reporting
c. Protection switching control of other circuit packs
d. Inventory information (*CLEI* code, date of manufacture, etc.).
ECC2 User Panel Circuit Pack Description

Purpose of Circuit

The ECC2 User Panel (USPNL) for the DDM-2000 FiberReach wideband shelf provides system-level information and control functions, as well as LEDs.

Faceplate Controls and Indicators

The ECC2 USPNL is shown in Figure 7-4. LEDs provide system-level information and control functions.
Figure 7-4. DDM-2000 FiberReach Multiplexer ECC2 User Panel
Detailed Description of Operation

The ECC2 USPNL provides the following interfaces for the DDM-2000 FiberReach wideband shelf:

- Alarm and Status LEDs:
 - Critical Alarm
 - Major Alarm
 - Minor Alarm
 - Power Minor Alarm
 - Alarm Cutoff
 - Abnormal
 - Power On - A
 - Power On - B
 - Near-End Activity
 - Far-End Activity.

Each Power On LED on the ECC2 user panel is driven directly by one of the −48 V power feeds. All other LEDs are controlled by the SYSCTL.

- ACO/LED Test Button:
 - The ACO/LED test button is monitored by the SYSCTL.

- Power Interfaces:
 - The ECC2 user panel contains filters and replaceable fuses for two −48 V power feeds.

- CIT Interface:
 - The ECC2 user panel has a CIT interface which provides a connection between the CIT and the SYSCTL.

Figure 7-5 provides an overall block diagram of the ECC2 user panel.
Figure 7-5. ECC2 User Panel Block Diagram
Wideband Shelf - Transmission Circuit Packs

BBF1B DS1 Circuit Pack Description

Purpose of Circuit

The DS1 circuit pack provides a low-speed interface between asynchronous DS1 rate signals and SONET virtual tributary group (VT-G) signals.

DS1 Faceplate Indicator

The DS1 circuit pack FAULT indicator is shown in Figure 7-6. This red FAULT LED is lighted by the SYSCTL on detection of a DS1 circuit pack failure. In the event of an incoming signal failure, this LED flashes on and off.

Figure 7-6. BBF1B DS1 Circuit Pack
General Description of Operation

The DS1 circuit pack terminates four bidirectional DS1 lines complying with standard DSX-1 signal specifications. The DS1 circuit pack interfaces to the OLIU circuit pack at the VT-G rate (6.912 MHz) and to the SYSCTL.

Detailed Description of Operation

Transmission Circuitry

Transmit Direction. Figure 7-7 provides an overall block diagram of the DS1 circuit pack. The transmit direction points toward the VT-G, and the receive direction points toward the DS1s. In the transmit direction, the DS1 receives four balanced DS1 bipolar signals. Each of these signals passes through a relay to a DS1 interface circuit that converts it to unipolar nonreturn to zero (NRZ) format, recovers its clock, and sends it to the multiplexer (MUX) circuit. The MUX circuit converts each DS1 rate input into a 1.728 Mb/s VT1.5 signal, and then byte interleaves the four VT1.5s to create a VT-G signal that it sends to the OLIU pack using the frame sync and clock received from the OLIU.

Receive Direction. The DS1 receives a VT-G with frame information from the OLIU and demultiplexes the VT-G into four unique VT1.5 signals. Each VT1.5 passes through circuitry that performs pointer interpretation, removes the VT path overhead bits, the fixed stuff bits, and the overhead communications channel bits, and desynchronizes the embedded DS1. The DS1 rate signal is AMI or B8ZS encoded, pre琶ualized with a selectable line build out (LBO). It is then sent as a balanced signal to a DSX-1 that may be located up to 655 feet from the system, or to a DS1 termination located up to 1310 feet from the system.

Control Circuitry

The DS1 circuit pack interfaces with the SYSCTL via the intrashelf control bus. Redundancy in the intrashelf control bus assures the level of control required to perform protection switching and alarming of a faulty circuit pack. The DS1 provides maintenance elements for reporting the status of the circuit pack and the incoming VT1.5 and DS1 signals, as well as the circuit pack inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. The DS1 responds to control signals from the SYSCTL for functions including protection switching and FAULT light-emitting diode (LED) control.
Protection Circuitry

Optional DS1 circuit pack protection is provided with on-board relays on the DSX-1 side and with logic selectors at the VT-G level on the OLIU circuit pack. The SYSCTL controls these relays through two serial interfaces so that a failure of one serial interface to the DS1 does not prevent control of the relays. If +5 V power on the DS1 fails, the relays default to the protection state. If the SYSCTL is removed, the relays remain in their current state.

When a DS1 circuit pack is inserted, the relays are in the protection state until the SYSCTL determines that the circuit pack is good. Shorting contacts are provided in the backplane connectors so that when the circuit pack is removed, the DSX-1 cable pairs short through to the protection bus.
The BBF3 DS1PM circuit pack can be mixed with the BBF1B. If mixed, the protection circuit pack must be a BBF3 DS1PM.

Fault Detection Circuitry

The DS1 circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous and errors are reported when they occur to the SYSCTL via the intrashelf control bus. An out-of-service test is performed whenever the DS1 circuit pack is inserted or recovers from a transient failure. The incoming DS1 signal is monitored for bipolar threshold crossings in excess of 10^{-3}, 10^{-6}, 10^{-7} or 10^{-8}. Incoming VT1.5 signals are monitored for VT AIS, VT LOP, and yellow.

Loopbacks

The DS1 circuit pack provides a terminal loopback for testing. The terminal loopback is provided on the DS1 circuit pack for each DS1 low-speed interface. The loopback is implemented inside the MUX/DEMUX/DESYNC device and bridges the desynchronizer output signal (transmitted toward the DSX-1) back into the DS1 synchronizer input. When the loopback is operated, the DS1 interface device forces AIS toward the DSX.

Performance Monitoring

The DS1 circuit pack monitors VT path parameters derived from the V5 coding violations.

Power Circuitry

The OLIU circuit packs supply +5 V power to the DS1 circuit packs. These two inputs are diode ORed and the output is fused and then filtered before it is used to power the rest of the circuit pack. A failure of the fuse causes the red FAULT LED to light.

DS1 Hardware Settings

The line coding and line build out (LBO) are switch settable. (Other parameters are provisioned through the software.) The locations of the DS1 circuit pack option switches are shown in Figure 7-8 and Table 7-1 and Table 7-2.
Note: The switches are set by moving the slide toward the desired position.

Table 7-1. DS1 Cable LBO Settings

<table>
<thead>
<tr>
<th>DS1 Cable LBO Settings (Note)</th>
<th>613C (608C) Cable Length to DSX-1 (feet)</th>
<th>1249C Cable Length to DSX-1 (feet)</th>
<th>Other Cable dB Loss to DSX-1 at 772 KHz</th>
<th>DIP Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1-1</td>
</tr>
<tr>
<td>0 to 133*</td>
<td>0 to 90*</td>
<td>0 to 0.6</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>>133 to 267</td>
<td>>90 to 180</td>
<td>>0.6 to 1.2</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>>267 to 400</td>
<td>>180 to 270</td>
<td>>1.2 to 1.8</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>>400 to 533</td>
<td>>270 to 360</td>
<td>>1.8 to 2.4</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>>533 to 655</td>
<td>>360 to 450</td>
<td>>2.4 to 2.8</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Note: Distances specified are to the DSX-1 interconnect only. For direct connection to DS1 terminating equipment, these distances can be doubled.

* Minimum of 30 feet required to meet EMI requirements. Unless specified, cables with filtered connectors are used.
Table 7-2. DS1 Line Code Settings

<table>
<thead>
<tr>
<th>DS1 Line Code Settings (Notes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Code Format</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B8Zs</td>
</tr>
<tr>
<td>AMI</td>
</tr>
</tbody>
</table>

Notes:
1. Switch section 8 (S1-8) is unused and ignored by the system.
2. Line code is software overrideable.

DS1 Quick Reference Summary

Transmit Functions

Major transmit functions of the DS1 circuit pack are as follows:

a. Receives four AMI or B8ZS encoded DS1 signals from a DSX-1
b. Receives DS1 and NRZ data from each DS1 signal
c. Synchronizes and maps each data signal to a VT1.5 synchronous payload envelope (SPE)
d. Inserts VT path overhead
e. Multiplexes four VT1.5 SPEs to a byte-interleaved VT-G signal
f. Provides the VT-G signal to an OLIU circuit pack.

Receive Functions

Major receive functions of the DS1 circuit pack are as follows:

a. Receives a SONET VT-G frame synchronizing signal from its associated OLIU
b. Demultiplexes the VT-G into four VT1.5 signals
c. Terminates VT path and the embedded DS1 signal from each VT1.5 SPE
d. Desynchronizes the DS1 signals
e. Encodes each DS1 signal into either AMI or B8ZS format
f. Preequalizes (with line build out) each DS1 and provides them to a DSX-1 as bipolar signals.
Control Functions
The major control functions of the DS1 circuit pack are as follows:
 a. Protection switching for OLIU circuit pack protection
 b. VT path overhead processing
 c. Internal fault detection
 d. Inventory information (CLEI code, date of manufacture, etc.).

Maintenance Signal Functions
The major maintenance signal functions are as follows:
 a. Detects VT path AIS
 b. Inserts DS1 AIS toward fiber and toward DSX-1
 c. Inserts and detects VT path yellow signal.
BBF3/BBF3B DS1PM Circuit Pack Description

Purpose of Circuit

The DS1PM circuit pack provides all of the functions of a BBF1B circuit pack and also provides performance monitoring (PM) of SF and ESF signals to allow for T1 tariff verification. For PM, the DS1 signals from the DSX are monitored. Performance monitoring data from the opposite direction is provided by accessing the ESF data link. The new BBF3B has the additional capability of allowing single DS1 facility loopbacks.

DS1PM Faceplate Indicator

The DS1PM circuit pack FAULT indicator is shown in Figure 7-9. This red FAULT LED is lighted by the SYSCTL on detection of a DS1PM circuit pack failure. In the event of an incoming signal failure, this LED flashes on and off.

Figure 7-9. BBF3 DS1PM Circuit Pack
General Description of Operation

The DS1PM circuit pack terminates four bidirectional DS1 lines complying with standard DSX-1 signal specifications. The DS1PM circuit pack interfaces to the OLIU circuit pack at the VT-G rate (6.912 MHz) and to the SYSCTL.

The DS1 and DS1PM circuit packs are, with respect to transmission, functionally equivalent. In addition to performing all of the functions of the DS1 circuit pack, the DS1PM circuit pack provides performance monitoring for the DS1 rate transmit signals.

Detailed Description of Operation

Transmission Circuitry

Transmit Direction. Figure 7-10 provides an overall block diagram of the DS1PM circuit pack. The transmit direction points toward the VT-G and the receive direction points toward the DS1s. In the transmit direction, the DS1PM receives four balanced DS1 bipolar signals. Each of these signals passes through a relay to a DS1 interface circuit that converts it to unipolar nonreturn to zero (NRZ) format and sends it to the multiplexer (MUX) and framing (framer) circuits. The MUX circuit converts each DS1 rate input into a 1.728 Mb/s VT1.5 signal and then byte-interleaves the four VT1.5s to create a VT-G signal that it sends to the OLIU circuit pack, using the frame sync received from the OLIU.

Receive Direction. The DS1PM receives a VT-G with frame information from the OLIU and demultiplexes the VT-G into four unique VT1.5 signals. Each VT1.5 passes through circuitry that performs pointer interpretation, removes the VT path overhead bits, the fixed stuff bits, and the overhead communications channel bits, and desynchronizes the embedded DS1. The DS1 rate signal is AMI or B8ZS encoded, preequalized with a selectable line build out (LBO), and then sent as a balanced signal to Alternate Mark Inversion a DSX-1 that may be located up to 655 feet from the system.
Figure 7-10. DS1PM Circuit Pack Block Diagram

Control Circuitry

The DS1PM circuit pack interfaces with the SYSCTL over the intrashelf control bus. Redundancy in the intrashelf control bus assures the level of control required to perform protection switching and alarming of a faulty circuit pack. The DS1PM provides maintenance elements for reporting the status of the circuit pack and the incoming VT1.5 and DS1 signals, as well as the circuit pack inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. The DS1PM responds to control signals from the SYSCTL for functions including protection switching. The framer circuit acquires frame information (either SF or ESF) from the DS1 signal and sends the information to the PM processor. The PM processor collects information from the framing circuitry and generates near-end and far-end (ESF only) DS1 PM parameters. When provisioned for DS1 clear channel, no PM path parameters are generated.
Protection Circuitry

Optional revertive DS1PM circuit pack protection is provided with on-board relays on the DSX-1 side and with logic selectors at the VT-G level on the OLIU circuit packs. The SYSCTL controls these relays through two serial interfaces so that a failure of one serial interface to the DS1PM does not prevent control of the relays. If +5 V power on the DS1PM fails, the relays default to the protection state. If the SYSCTL is removed, the relays remain in their current state.

Shorting contacts are provided in the backplane connectors so that when the circuit pack is removed, the DSX-1 cable pairs short through to the protection bus.

When a DS1PM circuit pack is inserted, the relays are in the protection state until the SYSCTL determines that the circuit pack is good.

The BBF3 DS1PM circuit pack can be mixed with the BBF1/1B. If mixed, the protection circuit pack must be a BBF3 DS1PM circuit pack.

Fault Detection Circuitry

The DS1PM circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous and errors are reported when they occur to the SYSCTL via the intrashelf control bus. An out-of-service test is performed whenever the DS1PM circuit pack is inserted or recovers from a transient failure. The incoming DS1 signal is monitored for bipolar threshold crossings in excess of 10^{-3}, 10^{-6}, 10^{-7}, or 10^{-8}. Incoming VT1.5 signals are monitored for VT AIS, VT LOP, and yellow.

Loopbacks

The DS1PM circuit pack provides a terminal loopback for testing. The terminal loopback is provided on the DS1PM circuit pack for each DS1 low-speed interface. The loopback is implemented inside the MUX/DEMUX/DESYNC device and bridges the desynchronizer output signal (transmitted toward the DSX-1) back into the DS1 synchronizer input. When the loopback is operated, the DS1 interface device forces AIS toward the DSX.

Performance Monitoring

The DS1PM circuit pack provides PM circuitry for the following performance parameters:

- VT path parameters derived from V5 coding violations
- DS1 PM derived from SF/ESF frame format depending on provisioning.
Power Circuitry

The OLIU circuit packs supply +5 V power to the DS1PM circuit packs. These inputs are diode ORed and the output is fused and then filtered before it is used to power the rest of the circuit pack. A failure of the fuse causes the red FAULT LED to light.

DS1PM Hardware Settings

The line coding and line build out (LBO) are switch settable. Other parameters are provisionable through the software. The locations of the DS1PM circuit pack option switches are shown in Figure 7-11 and Tables 7-3 and 7-4.

Note: The switches are set by moving the slide toward the desired position.

Figure 7-11. BBF3 DS1PM Option Switches
Table 7-3. DS1PM Cable LBO Settings

<table>
<thead>
<tr>
<th>DS1PM Cable LBO Settings (Note)</th>
<th>613C (608C) Cable Length to DSX-1 (feet)</th>
<th>1249C Cable Length to DSX-1 (feet)</th>
<th>Other Cable dB Loss to DSX-1 at 772 KHz</th>
<th>DIP Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1-1</td>
</tr>
<tr>
<td>0 to 133*</td>
<td>0 to 90*</td>
<td>0 to 0.6*</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>>133 to 267</td>
<td>>90 to 180</td>
<td>>0.6 to 1.2</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>>267 to 400</td>
<td>>180 to 270</td>
<td>>1.2 to 1.8</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>>400 to 533</td>
<td>>270 to 360</td>
<td>>1.8 to 2.4</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>>533 to 655</td>
<td>>360 to 450</td>
<td>>2.4 to 2.8</td>
<td></td>
<td>ON</td>
</tr>
</tbody>
</table>

Note: Distances specified are to the DSX-1 interconnect only. For direct connection to DS1 terminating equipment, these distances can be doubled.

* Minimum of 30 feet required to meet EMI requirements. Unless specified, cables with filtered connectors are used.

Table 7-4. DS1PM Line Code Settings

<table>
<thead>
<tr>
<th>DS1PM Line Code Settings (Notes)</th>
<th>DIP Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Code Format</td>
<td>S1-4 (Port 1)</td>
</tr>
<tr>
<td>B8ZS</td>
<td>OFF</td>
</tr>
<tr>
<td>AMI</td>
<td>ON</td>
</tr>
</tbody>
</table>

Notes:
1. Switch section 8 (S1-8) is unused and must be off.
2. Line code is software overrideable.
DS1PM Quick Reference Summary

Transmit Functions

Major transmit functions of the DS1PM circuit pack are as follows:

- Receives four AMI or B8ZS encoded DS1 signals from a DSX-1
- Recovers DS1 clock and NRZ data from each DS1 signal
- Synchronizes and maps each data signal to a VT1.5 synchronous payload envelope (SPE)
- Inserts VT path overhead
- Multiplexes four VT1.5 SPEs to a byte-interleaved VT-G signal
- Provides the VT-G signal to an OLIU circuit pack.

Receive Functions

Major receive functions of the DS1PM circuit pack are as follows:

- Receives a SONET VT-G clock and frame synchronizing signals from its associated OLIU
- Demultiplexes the VT-G into four VT1.5 signals
- Terminates VT path and the embedded DS1 signal from each VT1.5 SPE
- Desynchronizes the DS1 signals
- Encodes each DS1 signal into either AMI or B8ZS format
- Preequalizes (with line build out) each DS1 and provides them to a DSX-1 as bipolar signals.

Control Functions

The major control functions of the DS1PM circuit pack are as follows:

- Protection switching for OLIU circuit pack protection
- VT path overhead processing
- Internal fault detection
- Inventory information (CLEI code, date of manufacture, etc.)
- Monitors a DS1 signal with SF or ESF frame format and generates PM data.

Maintenance Signal Functions

The major maintenance signal functions are as follows:

- Monitors DS1 signal for near-end and far-end performance
- Detects VT path AIS
- Inserts DS1 AIS toward fiber and toward DSX-1
- Inserts and detects VT path yellow signal.
177A Retainer Card Description

Purpose of Card

To ensure proper operation of DS1/DS1PM circuit pack protection switching, the 177A Retainer card (Figure 7-12) must be installed in all unused slots within a low-speed group that is partially equipped with DS1/DS1PM circuit packs.

⚠️ CAUTION: Unused low-speed interface slots within a partially equipped group must be equipped with 177A Retainer cards if DS1 protection is used. Failure to do so may result in corrupted transmission.

Figure 7-12. 177A Retainer Card
BBG4/BBG4B DS3 Circuit Pack Description

Purpose of Circuit

The BBG4/BBG4B DS3 circuit pack provides a low-speed interface between asynchronous DS3-rate signals and SONET STS-1 signals. The BBG4B DS3 provides the same functions as the BBG4 DS3 and can be used in place of the BBG4 DS3 in all applications. In addition, the BBG4B DS3 has enhanced DS3 PM capabilities.

BBG4/BBG4B DS3 Faceplate Indicators

The BBG4/BBG4B DS3 circuit pack faceplate indicators are shown in Figure 7-13.

Figure 7-13. BBG4B DS3 Circuit Pack
The red FAULT LED lights by the SYSCTL on detection of BBG4/BBG4B DS3 circuit pack failure. In the event of an incoming DS3 signal failure, this LED will flash on and off. The green ACTIVE LED lights when the circuit pack is active (carrying service).

General Description of Operation

The BBG4/BBG4B DS3 circuit pack provides bidirectional transport of one DS3 signal through DDM-2000 OC-3 in either clear channel (CC) mode, violation monitor and removal (VMR) mode, or violation monitor (VM) mode, by mapping the DS3 into an STS-1 signal. The BBG4/BBG4B DS3 performs maintenance and provisioning functions associated with the STS-1 and DS3 signals and provides access to the STS-1 path overhead. It interfaces to the OLIU at the STS-1 rate, to the DSX-3, and to the SYSCTL. When provisioned for the CC mode, the DS3 can transport any DS3 rate signal that meets specified electrical interface requirements. When provisioned for the VMR or VM mode, the DS3 signal must meet both electrical and DS3 frame format requirements.

Detailed Description of Operation

Transmission Circuitry

Transmit Direction. Figure 7-14 provides an overall block diagram of the BBG4/BBG4B DS3 circuit pack. The transmit direction is the direction toward the STS-1 signal, and receive direction refers to the direction toward the DSX-3. In the transmit direction, the BBG4/BBG4B DS3 receives an incoming B3ZS encoded DS3 signal from the DSX-3. A closed protection relay contact routes the DS3 to a circuit that splits the signal and sends one output to the companion (standby) circuit pack and the other to its own receiver. The BBG4/BBG4B DS3 receiver performs equalization recovery. The MUX circuitry performs B3ZS decoding, optional automatic DS3 AIS insertion, and a provisionable VMR function, then synchronizes and maps the DS3 to the STS-1 rate. The DS3 signal is then synchronized to the STS-1 payload rate, STS-1 path overhead is inserted, and an STS-1 rate signal is transmitted to an OLIU pair.

Receive Direction. The BBG4/BBG4B DS3 receives STS-1 data from both the active and standby OLIUs, selects one STS-1, performs pointer interpretation, processes and removes the path overhead, desynchronizes the embedded DS3, provides a provisionable VMR function, and then B3ZS encodes the signal for transmission to the DSX-3. A jumper allows the user to insert or remove an LBO network (225 ft. of 734A-type cable equivalent) to provide the required signal level and shape at the DSX-3.
Before the DS3 signal is B3ZS-encoded (receive) or decoded (transmit), a VMR function can be provisioned via the control circuitry for one of three possible modes. These three modes are as follows:

- VMR with DS3 AIS insertion—default
- VM without removal of violations but with AIS insertion
- No violation monitoring CC mode with options for
 - AIS insertion
 - No AIS insertion.

Figure 7-14. BBG4/BBG4B DS3 Circuit Pack Block Diagram
Control Circuitry

The BBG4/BBG4B DS3 circuit pack interfaces with the SYSCTL via the intra-shelf control bus. Redundancy in the intra-shelf control bus assures the level of control required to perform protection switching and alarming of a faulty circuit pack. The BBG4/BBG4B DS3 provides maintenance elements for reporting the status of the circuit pack, status of the incoming STS-1 and DS3 signals, as well as the circuit pack inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. Conversely, the BBG4/BBG4B DS3 responds to control signals from the SYSCTL (such as active and fault LED controls).

Protection Circuitry

Optional 1x1 nonrevertive BBG4/BBG4B DS3 circuit pack protection is provided. Switch points for the STS-1 side of the DS3 are located on the OLIU circuit packs. Switch points for the DS3 side are implemented with relays on the BBG4/BBG4B DS3 circuit pack. To ensure that the relays can be operated when the circuit pack fails, the relay is controlled by the SYSCTL, via the control interfaces. Also, if power to the board is lost, the relay switches autonomously to the standby state. When a new board is inserted, it defaults to the standby state until provisioned active by the SYSCTL.

On the DS3 side, a single DS3 input from a DSX-3 is sent to both the active and standby BBG4/BBG4B DS3 circuit packs. Only the active unit selects the DS3 input. The SYSCTL supervises the state of the active and standby units so that the relay state of each is always the inverse of the other. The hybrid on the active unit splits the DS3 input signal and sends it to the standby unit and to its own receiver. To implement a protection switch on the DS3 side, the SYSCTL switches the relays on each unit to their opposite state.

When a BBG4/BBG4B DS3 is removed, shorting contacts on the backplane connector operate so that the DS3 input signal from its companion unit is returned for proper termination.

Fault Detection Circuitry

The BBG4/BBG4B DS3 circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous and errors are reported when they occur to the SYSCTL via the intra-shelf control bus. An out-of-service test is performed whenever the BBG4/BBG4B DS3 circuit pack is inserted or recovers from a transient failure.

The incoming DS3 signal is monitored for bipolar threshold crossings in excess of 10^{-3} or 10^{-6}, LOS, DS3 OOF, and DS3 AIS. Incoming STS-1 signals are monitored for STS AIS, STS LOP, and yellow and are also monitored for DS3 OOF and AIS.
Loopbacks

Two loopbacks are provided on the BBG4/BBG4B DS3. The terminal loopback bridges the DS3 desynchronizer output signal (transmitted toward the DSX-3) back into the DS3 synchronizer input. Operation of the loopback does not affect the signal transmitted to the DSX-3. The facility loopback bridges the STS-1 output signal to the OLIU back toward the DSX-3. Operation of this loopback does not affect the signal transmitted to the fiber. Both loopbacks are controlled by the SYSCTL through the intra-shelf control bus.

Performance Monitoring

The BBG4/BBG4B DS3 circuit pack provides PM circuitry for the following performance parameters:

- STS path parameters derived from B3 coding violations
- DS3 path parameters derived from P-bit coding violations
- DS3 path parameters derived from frame and multiframe (F&M) bit errors
- DS3 line errors based on B3ZS violations (BBG4B only)
- DS3 P-bit and F&M bit PM for both directions of transmission (BBG4B only)
- C-bit parity and FEBE performance monitoring for both directions of transmission (BBG4B only).
BBG4/BBG4B DS3 Hardware Settings

The location of the BBG4/BBG4B DS3 circuit pack LBO jumpers is shown in Figure 7-15. The BBG4/BBG4B DS3 LBO settings are shown in the table.

Figure 7-15. BBG4/BBG4B DS3 Line Build-Out (LBO) Jumpers

<table>
<thead>
<tr>
<th>Cable Length (Ft)</th>
<th>735A Cable</th>
<th>734D Cable</th>
<th>LBO Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 125</td>
<td>0 to 225</td>
<td>LBO IN</td>
<td></td>
</tr>
<tr>
<td>>125 to 250</td>
<td>>225 to 450</td>
<td>LBO OUT</td>
<td></td>
</tr>
</tbody>
</table>

Power Circuitry

The BBG4/BBG4B DS3 circuit pack receives two sources of −48 volts that are in turn diode ORed, fused, and filtered before conversion to +5 volts to power the rest of the circuit pack. A failure of the fuse or converter causes the red FAULT LED to light.

BBG4/BBG4B DS3 Quick Reference Summary

Transmit Functions

The BBG4/BBG4B DS3 transmit functions are as follows:

- Receives a B3ZS-encoded DS3 signal from a DSX-3
- Recovers DS3 and NRZ data
- Optionally checks and/or corrects P-bit parity errors
- Synchronizes the data signal to STS-1 signal rate
- Inserts STS-1 path overhead
- Provides the STS-1 signal to the OLIU circuit packs.

Receive Functions

The following receive functions are performed by the BBG4/BBG4B DS3 circuit pack:

- Desynchronizes the incoming STS-1 signal
- Terminates the STS-1 path
- Optionally checks and/or corrects P-bit parity errors
- B3ZS encodes the outgoing DS3 signal
- Pre-equalizes the DS3 signal (with LBO) and transmits it to a DSX-3.

Control Functions

The major control functions are as follows:

- Protection switching for BBG4/BBG4B DS3 circuit packs
- STS-1 path overhead processing
- Internal fault detection
- Inventory information (CLEI code, date of manufacture, etc.).
Maintenance Signal Functions

The major maintenance signal functions are as follows:

- Detects STS-1 path AIS coming from the fiber
- Detects STS-1 path unequipped signal coming from the fiber
- Inserts DS3 AIS toward the fiber and DSX-3
- Detects DS3 AIS coming from the fiber
- Inserts and detects STS-1 path yellow signal to/from the fiber
- Detects DS3 OOF from the fiber
- Detects DS3 B3ZS violation threshold crossings from the DSX-3
- Inserts and detects STS-1 path trace (BBG4B only).
BBF6 T1 EXT Circuit Pack Description

Purpose of Circuit

The T1EXT circuit pack provides all of the functions of a BBF3B circuit pack for two T1 carrier lines. The T1EXT circuit pack also provides 60mA simplex line powering and performance monitoring (PM) of SF and ESF signals to allow for T1 tariff verification. For PM, the T1 signals from the line are monitored. Performance monitoring data from the opposite direction is provided by accessing the ESF data link.

T1EXT Faceplate Indicator

The T1EXT circuit pack FAULT indicator is shown in Figure 7-16. This red FAULT LED is lighted by the SYSCTL on detection of a T1EXT circuit pack failure. In the event of an incoming signal failure, this LED flashes on and off.

Figure 7-16. BBF6 T1EXT Circuit Pack
General Description of Operation

The T1EXT circuit pack terminates two bidirectional T1 lines complying with standard T1 signal specifications. The T1EXT circuit pack interfaces to the OLIU circuit pack at the VT-G rate (6.912 MHz) and to the SYSCTL.

The DS1PM and T1EXT circuit packs are, with respect to transmission, functionally equivalent. In addition to performing all of the functions of the DS1 circuit pack, the T1EXT circuit pack provides performance monitoring for the DS1 rate transmit signals.

Detailed Description of Operation

Transmission Circuitry

Transmit Direction. Figure 7-17 provides an overall block diagram of the T1EXT circuit pack. The transmit direction points toward the VT-G and the receive direction points toward the DS1s. In the transmit direction, the T1EXT receives two balanced DS1 bipolar signals. Each of these signals passes through a relay to a DS1 interface circuit that converts it to unipolar nonreturn to zero (NRZ) format, recovers its clock, and sends it to the multiplexer (MUX) and framing (framer) circuits. The MUX circuit converts each DS1 rate input into a 1.728 Mb/s VT1.5 signal and then byte-interleaves the four VT1.5s to create a VT-G signal that it sends to the OLIU circuit pack, using the frame sync and clock received from the OLIU.

Receive Direction. The T1EXT receives a VT-G with frame information from the OLIU and demultiplexes the VT-G into two unique VT1.5 signals. Each VT1.5 passes through circuitry that performs pointer interpretation, removes the VT path overhead bits, the fixed stuff bits, and the overhead communications channel bits, and desynchronizes the embedded DS1. The DS1 rate signal is AMI or B8ZS encoded, preequalized with a selectable line build out (LBO), and then sent as a balanced signal to Alternate Mark Inversion a DSX-1 that may be located up to 655 feet from the system.
Figure 7-17. T1EXT Circuit Pack Block Diagram
Control Circuitry

The T1EXT circuit pack interfaces with the SYSCTL over the intrashelf control bus. Redundancy in the intrashelf control bus assures the level of control required to perform protection switching and alarming of a faulty circuit pack. The T1EXT provides maintenance elements for reporting the status of the circuit pack and the incoming VT1.5 and DS1 signals, as well as the circuit pack inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. The T1EXT responds to control signals from the SYSCTL for functions including protection switching. The framer circuit acquires frame information (either SF or ESF) from the DS1 signal and sends the information to the PM processor. The PM processor collects information from the framing circuitry and generates near-end and far-end (ESF only) DS1 PM parameters. When provisioned for DS1 clear channel, no PM path parameters are generated.

Protection Circuitry

Optional revertive T1EXT circuit pack protection is provided with on-board relays on the T1 line side and with logic selectors at the VT-G level on the OLIU circuit packs. The SYSCTL controls these relays through two serial interfaces so that a failure of one serial interface to the T1EXT does not prevent control of the relays. If +5 V power on the T1EXT fails, the relays default to the protection state. If the SYSCTL is removed, the relays remain in their current state.

For a mixed modem, 1X1 protection is required in a FiberReach shelf. Protection can only be 1X1. 1X7 protection is not permitted.

Shorting contacts are provided in the backplane connectors so that when the circuit pack is removed, the T1 line cable pairs short through to the protection bus.
When a T1EXT circuit pack is inserted, the relays are in the protection state until the SYSCTL determines that the circuit pack is good.

The BBF6 T1EXT circuit pack can be mixed with the BBF1/1B. If mixed, the protection circuit pack must be a BBF3 DS1PM circuit pack.

Fault Detection Circuitry

The T1EXT circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous and errors are reported when they occur to the SYSCTL via the intra-shelf control bus. An out-of-service test is performed whenever the T1EXT circuit pack is inserted or recovers from a transient failure. The incoming DS1 signal is monitored for bipolar threshold crossings in excess of 10^-3, 10^-6, 10^-7, or 10^-8. Incoming VT1.5 signals are monitored for VT AIS, VT LOP, and yellow.

Loopbacks

The T1EXT circuit pack provides a terminal loopback for testing. The terminal loopback is provided on the T1EXT circuit pack for each DS1 low-speed interface. The loopback is implemented inside the MUX/DEMUX/DESYNC device and bridges the desynchronizer output signal (transmitted toward the T1 line) back into the DS1 synchronizer input. When the loopback is operated, the DS1 interface device forces AIS toward the DSX.

Performance Monitoring

The T1EXT circuit pack provides PM circuitry for the following performance parameters:

- VT path parameters derived from V5 coding violations
- T1EXT PM derived from SF/ESF frame format depending on provisioning.

Power Circuitry

The OLIU circuit packs supply +5 V power to the T1EXT circuit packs. These inputs are diode ORed and the output is fused and then filtered before it is used to power the rest of the circuit pack. A failure of the fuse causes the red FAULT LED to light.

The T1EXT also simplexes 60mA constant current on the line for powering a CSU at the far end/or provides sealing current for the line.
T1EXT Hardware Settings

The line coding and line build out (LBO) are switch settable. Other parameters are provisionable through the software. The locations of the T1EXT circuit pack option switches are shown in Figure 7-18 and Table 7-5 and Table 7-6.

Note: The switches are set by moving the slide toward the desired position.

Figure 7-18. BBF6 T1EXT Option Switches

Table 7-5. T1EXT Cable LBO Settings

<table>
<thead>
<tr>
<th>T1EXT Cable LBO Settings (Note)</th>
<th>613C (608C) Cable Length to DSX-1 (feet)</th>
<th>1249C Cable Length to DSX-1 (feet)</th>
<th>Other Cable dB Loss to DSX-1 at 772 KHz</th>
<th>DIP Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1-1 S1-2 S1-3</td>
</tr>
<tr>
<td></td>
<td>0 to 133*</td>
<td>0 to 90*</td>
<td>0 to 0.6*</td>
<td>OFF OFF OFF</td>
</tr>
<tr>
<td></td>
<td>>133 to 267</td>
<td>>90 to 180</td>
<td>>0.6 to 1.2</td>
<td>OFF OFF ON</td>
</tr>
<tr>
<td></td>
<td>>267 to 400</td>
<td>>180 to 270</td>
<td>>1.2 to 1.8</td>
<td>OFF ON OFF</td>
</tr>
<tr>
<td></td>
<td>>400 to 533</td>
<td>>270 to 360</td>
<td>>1.8 to 2.4</td>
<td>OFF ON ON</td>
</tr>
<tr>
<td></td>
<td>>533 to 655</td>
<td>>360 to 450</td>
<td>>2.4 to 2.8</td>
<td>ON OFF OFF</td>
</tr>
</tbody>
</table>

Note: Distances specified are to the DSX-1 interconnect only. For direct connection to DS1 terminating equipment, these distances can be doubled.

* Minimum of 30 feet required to meet EMI requirements. Unless specified, cables with filtered connectors are used.
Table 7-6. T1EXT Line Code Settings

<table>
<thead>
<tr>
<th>Line Code Format</th>
<th>DIP Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1-4 (Port 1)</td>
</tr>
<tr>
<td>B8ZS</td>
<td>OFF</td>
</tr>
<tr>
<td>AMI</td>
<td>ON</td>
</tr>
</tbody>
</table>

Notes:
1. Switch section 8 (S1-8) is unused and must be off.
2. Line code is software overrideable.
T1EXT Quick Reference Summary

Transmit Functions

Major transmit functions of the T1EXT circuit pack are as follows:

a. Receives two AMI or B8ZS encoded DS1 signals from a T-line
b. Recovers DS1 and NRZ data from each DS1 signal
c. Synchronizes and maps each data signal to a VT1.5 synchronous payload envelope (SPE)
d. Inserts VT path overhead
e. Multiplexes two VT1.5 SPEs to a byte-interleaved VT-G signal
f. Provides the VT-G signal to an OLIU circuit pack.

Receive Functions

Major receive functions of the T1EXT circuit pack are as follows:

a. Receives a SONET VT-G frame synchronizing signals from its associated OLIU
b. Demultiplexes the VT-G into two VT1.5 signals
c. Terminates VT path and the embedded DS1 signal from each VT1.5 SPE
d. Desynchronizes the DS1 signals
e. Encodes each DS1 signal into either AMI or B8ZS format
f. Preequalizes (with line build out) each DS1 and provides them to a T-line as bipolar signals.

Control Functions

The major control functions of the T1EXT circuit pack are as follows:

a. Protection switching for OLIU circuit pack protection
b. VT path overhead processing
c. Internal fault detection
d. Inventory information (CLEI code, date of manufacture, etc.)
e. Monitors a DS1 signal with SF or ESF frame format and generates PM data.
f. Provides simplex 60mA line current.

Maintenance Signal Functions

The major maintenance signal functions are as follows:

a. Monitors DS1 signal for near-end and far-end performance
b. Detects VT path AIS
c. Inserts DS1 AIS toward fiber and toward T-line
d. Inserts and detects VT path yellow signal.
BBG19 DS3 Data Services Interface Circuit Pack Description

Purpose of Circuit

The BBG19 DS3 circuit pack provides an interface between asynchronous DS3-rate signals and SONET STS-1 signals. It provides front access to DS3 Data Services, such as Ethernet, Token Ring, ATM, FDDI, Frame Relay, and others, via BNC faceplate connectors.

BBG19 DS3 Faceplate Indicators

The BBG19 DS3 circuit pack faceplate indicators are shown in Figure 7-19.

Figure 7-19. BBG19 DS3 Circuit Pack
The red FAULT LED lights by the SYSCTL on detection of BBG19 DS3 circuit pack failure. In the event of an incoming DS3 signal failure, this LED will flash on and off. The green ACTIVE LED lights when the circuit pack is active (in-service).

General Description of Operation

NOTE:
DS3 access is through a BNC connector on the faceplate.

The DS3 Data Services Interface circuit pack (BBG19) provides a mapping between a DS3 low-speed signal from a DS3 Data Services Device and an internal STS-1 signal. The BBG19 provides the same functions as the BBG4B, but provides DS3 access through two BNC connectors on the faceplate. DS3 access to the BBG4B is through BNC connectors on the rear of the shelf.

In the transmit direction, the incoming DS3 signal can be either formatted or unformatted (clear channel). The BBG19 DS3 circuit pack accepts one 44.736 Mb/s bipolar 3-zero substitution (B3ZS) coded DS3 signal. The incoming DS3 signal is mapped into an STS-1 payload envelope using SONET asynchronous mapping. The STS-1 path overhead and pointer bytes are added and the resulting signal is sent to the high-speed OLIU circuit pack.

In the receive direction, the STS-1 signal from the OLIU circuit pack goes through STS-1 pointer interpretation, and path overhead is removed and processed.

After the DS3 signal is recovered from the STS-1 payload envelope, the DS3 performance bits (P-bits) may be monitored and corrected through a provisionable violation, monitor, and removal (VMR) function.

NOTE:
Protection switching must be done externally to the FiberReach multiplexer.

The BBG19 DS3 circuit pack provides enhanced DS3 performance monitoring capabilities with FiberReach software releases 3.1 and later.

The BBG19 DS3 circuit pack provides bidirectional transport of one DS3 signal through DDM-2000 OC-3 in either CC mode, VMR mode, or VM mode, by mapping the DS3 into an STS-1 signal. The BBG19 DS3 performs maintenance and provisioning functions associated with the STS-1 and DS3 signals and provides access to the STS-1 path overhead. It interfaces to the OLIU at the STS-1 rate, to the data services device, and to the SYSCTL. When provisioned for the CC mode, the DS3 can transport any DS3 rate signal that meets specified electrical interface requirements. When provisioned for the VMR or VM mode, the DS3 signal must meet both electrical and DS3 frame format requirements.
Detailed Description of Operation

Transmission Circuitry

Transmit Direction. Figure 7-20 provides an overall block diagram of the BBG19 DS3 circuit pack. The transmit direction is the direction toward the STS-1 signal, and receive direction refers to the direction toward the data services device. In the transmit direction, the BBG19 DS3 receives an incoming B3ZS encoded DS3 signal from the data services device. BNC connectors on the faceplate of the BBG19 provide input and output for the data services signal. The BBG19 DS3 receiver performs equalization recovery. The MUX circuitry performs B3ZS decoding, optional automatic DS3 AIS insertion, and a provisionable VMR function, then synchronizes and maps the DS3 to the STS-1 rate. The DS3 signal is then synchronized to the STS-1 payload rate, STS-1 path overhead is inserted, and an STS-1 rate signal is transmitted to an OLIU pair.

Receive Direction. The BBG19 DS3 receives STS-1 data from the OLIUs, selects one STS-1, performs pointer interpretation, processes and removes the path overhead, desynchronizes the embedded DS3, provides a provisionable VMR function, and then B3ZS encodes the signal for transmission to the data services device. A jumper allows the user to insert or remove an LBO network (225 ft. of 734A-type cable equivalent) to provide the required signal level and shape at the data services device.

VMR Function

Before the DS3 signal is B3ZS-encoded (receive) or decoded (transmit), a VMR function can be provisioned via the control circuitry for one of three possible modes. These three modes are as follows:

- VMR with DS3 AIS insertion—default
- VM without removal of violations but with AIS insertion
- No violation monitoring CC mode with options for
 - AIS insertion
 - No AIS insertion.
Figure 7-20. BBG19 DS3 Circuit Pack Block Diagram

Control Circuitry

The BBG19 DS3 circuit pack interfaces with the SYSCTL via the intra-shelf control bus. The BBG19 DS3 provides maintenance elements for reporting the status of the circuit pack, status of the incoming STS-1 and DS3 signals, as well as the circuit pack inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. Conversely, the BBG19 DS3 responds to control signals from the SYSCTL (such as active and fault LED controls).

Locked DS3 Circuitry

The DDM-2000 OC-3 accepts two BBG19s installed side-by-side in a dual 0x1 configuration. This configuration allows for efficient bandwidth utilization in the network for data services traffic. Each DS3 is assigned to both rotations of the ring.
using the same STS-1 time slot. This dual 0x1 interface also provides route
diversity for point to multi-point interconnectivity and route restoration to data
networking devices utilizing the BBG19s for access to the SONET network.

Fault Detection Circuitry

The BBG19 DS3 circuit pack has in-service and out-of-service built-in test
capability. In-service testing is continuous and errors are reported when they
occur to the SYSCTL via the intra-shelf control bus. An out-of-service test is
performed whenever the BBG19 DS3 circuit pack is inserted or recovers from a
transient failure.

The incoming DS3 signal is monitored for bipolar threshold crossings in excess of
10^{-3} or 10^{-6}, LOS, DS3 OOF, and DS3 AIS. Incoming STS-1 signals are monitored
for STS AIS, STS LOP, and yellow and are also monitored for DS3 OOF and AIS.

Loopbacks

Two loopbacks are provided on the BBG19 DS3. The terminal loopback bridges
the DS3 desynchronizer output signal (transmitted toward the data services
device) back into the DS3 synchronizer input. Operation of the loopback does not
affect the signal transmitted to the data services device. The facility loopback
bridges the STS-1 output signal to the OLIU back toward the data services device.
Operation of this loopback does not affect the signal transmitted to the fiber. Both
loopbacks are controlled by the SYSCTL through the intra-shelf control bus.

Performance Monitoring

The BBG19 DS3 circuit pack provides PM circuitry for the following performance
parameters:

- STS path parameters derived from B3 coding violations
- DS3 path parameters derived from P-bit coding violations
- DS3 path parameters derived from F&M bit errors
- DS3 line errors based on B3ZS violations
- DS3 P-bit and F&M bit PM for both directions of transmission
- C-bit parity and FEBE PM for both directions of transmission.
BBG19 DS3 Hardware Settings

The location of the BBG19 DS3 circuit pack LBO jumpers is shown in Figure 7-21. The BBG19 DS3 LBO settings are shown in the table.

BBG19 DS3 LBO Settings

<table>
<thead>
<tr>
<th>Cable Length (Ft)</th>
<th>LBO Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>735A Cable</td>
<td>734D Cable</td>
</tr>
<tr>
<td>0 to 125</td>
<td>0 to 225</td>
</tr>
<tr>
<td>>125 to 250</td>
<td>>225 to 450</td>
</tr>
<tr>
<td>LBO IN</td>
<td>LBO OUT</td>
</tr>
</tbody>
</table>

Figure 7-21. BBG19 DS3 Line Build-Out (LBO) Jumpers
Power Circuitry

The BBG19 DS3 circuit pack receives two sources of −48 volts that are in turn diode ORed, fused, and filtered before conversion to +5 volts to power the rest of the circuit pack. A failure of the fuse or converter causes the red FAULT LED to light.

BBG19 DS3 Quick Reference Summary

Transmit Functions

The BBG19 DS3 transmit functions are as follows:
- Receives a B3ZS-encoded DS3 signal from a data services device
- Recovers DS3 and NRZ data
- Optionally checks and/or corrects P-bit parity errors
- Synchronizes the data signal to STS-1 signal rate
- Inserts STS-1 path overhead
- Provides the STS-1 signal to the OLIU circuit packs.

Receive Functions

The following receive functions are performed by the BBG19 DS3 circuit pack:
- Desynchronizes the incoming STS-1 signal
- Terminates the STS-1 path
- Optionally checks and/or corrects P-bit parity errors
- B3ZS encodes the outgoing DS3 signal
- Preequalizes the DS3 signal (with LBO) and transmits it to a data services device.

Control Functions

The major control functions are as follows:
- STS-1 path overhead processing
- Internal fault detection
- Inventory information (CLEI code, date of manufacture, etc.).
Maintenance Signal Functions

The major maintenance signal functions are as follows:

- Detects STS-1 path AIS coming from the fiber
- Detects STS-1 path unequipped signal coming from the fiber
- Inserts DS3 AIS toward the fiber and data services device
- Detects DS3 AIS coming from the fiber
- Inserts and detects STS-1 path yellow signal to/from the fiber
- Detects DS3 OOF from the fiber
- Detects DS3 B3ZS violation threshold crossings from the data services device
- Inserts and detects STS-1 path trace.
BBF8 High Data-Rate Digital Subscriber Line (HDSL)

Purpose of Circuit

The HDSL circuit pack (BBF8) provides HDSL interface capability on the DDM-2000 FiberReach shelf to compatible PairGain equipment at the customer premises. It allows the transport of T1 payloads, for up to 12,000 feet, over two metallic 24 AWG twisted-pair lines.

NOTE: This capability is provided when the FiberReach shelf is equipped with a 28-type OLIU in the Main slots.

The BBF8 circuit pack fits into the low-speed slots and provides two, four-wire HDSL interfaces. Each interface provides a full DS1 payload capacity mapped to a SONET VT1.5 and then VT cross-connected into an STS-1. Once in SONET, the DS1 payload is treated as a normal DS1.

NOTE: A maximum of three BBF8 HDSL circuit packs, including a protection circuit pack, can be installed in one FiberReach shelf if 28-type OLIUs are used.

HDSL Faceplate Indicator

The HDSL circuit pack FAULT indicator is shown in Figure 7-22. This red FAULT LED is lit by the SYSCTL on detection of an HDSL circuit pack failure. In the event of an incoming signal failure, this LED flashes on and off.

* PairGain is a registered trademark of PairGain Technologies, Inc.
Figure 7-22. BBF8 HDSL Circuit Pack

General Description of Operation

Figure 7-23 provides an overall block diagram of the HDSL circuit pack. The BBF8 circuit pack provides an HDSL interface capability on the DDM-2000 FiberReach Multiplexer. HDSL is an access technology that allows the transport of DS1 payloads over metallic twisted pairs. This technology performs an inverse multiplexing function which splits the DS1 payload into two 784 Kb/s data streams. These two data streams are combined at the far-end to reconstruct the original DS1 payload. Both directions of transmission are carried on each twisted pair.

HDSL is a point-to-point transmission technology between two nodes. One of the nodes (master) is responsible for establishing communications over the PairGain proprietary embedded operations channel (EOC). The EOC is required for synchronizing the two HDSL data streams as well as providing OAM&P between the two nodes. The other node (slave) may only retrieve or view these parameters. In each pair of HDSL nodes there must be one master and one slave.

The HDSL signal format used by the BBF8 is compatible with PairGain HDSL equipment. Since the BBF8 circuit pack does not provide line powering, the far-end PairGain HDSL equipment must be externally powered.
Detailed Description of Operation

Transmission Circuitry

The BBF8 fits into a low-speed slot and provides two, four-wire (2 pair) HDSL interfaces. These interfaces are compatible with *PairGain* HDSL equipment which may be located up to 12,000 feet away. A 2B1Q line code is used on each transmission pair. Each interface provides a full DS1 payload capacity which is mapped to a SONET VT1.5. The HDSL overhead is in a *PairGain* proprietary format and can only be terminated by equipment capable of processing this information. As with the BBF1B (Quad DS1) circuit pack, a 28-type must be used in the DDM-2000 FiberReach shelf to perform a VT cross-connect function. Once in SONET, the DS1 payload is treated as a normal DS1.

Figure 7-23. HDSL Circuit Pack Block Diagram

The distance limitations for HDSL are based on a maximum signal attenuation of 35 dB. Since signal attenuation decreases as the cable gauge (number) decreases, the lower the gauge the greater the length the HDSL can be extended. Table 7-7 identifies and lists these distances, as well as indicates the loss on the line, in dB per feet, at 196 kHz.
Due to the increased power needs of the BBF8, only three BBF8 circuit packs (including protection) may be used in a function group. Powering for these packs is provided by the 28-type in the FiberReach shelf. Pack mixing with Quad DS1/T1 EXT circuit packs is not recommended. The HDSL interfaces do not support line powering. The BBF8 is compatible with DDM-2000 FiberReach Release 2.2 and later.

Table 7-7. HDSL Line Specifications

<table>
<thead>
<tr>
<th>Cable Gauge</th>
<th>Loss at 196 kHz dB/ft.</th>
<th>Ohms per kft</th>
<th>Maximum Loop for 35 dB Loss</th>
<th>Ohms at Maximum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/0.40 mm</td>
<td>3.880</td>
<td>83.3</td>
<td>9.0 kft/2.75 km/1.7 mi</td>
<td>750</td>
</tr>
<tr>
<td>24/0.51 mm</td>
<td>2.841</td>
<td>51.9</td>
<td>12.3 kft/3.75 km/2.3 mi</td>
<td>638</td>
</tr>
<tr>
<td>22/0.61 mm</td>
<td>2.177</td>
<td>32.4</td>
<td>16.1 kft/4.9 km/3.0 mi</td>
<td>520</td>
</tr>
<tr>
<td>19/0.91 mm</td>
<td>1.535</td>
<td>16.1</td>
<td>22.8 kft/6.95 km/4.3 mi</td>
<td>367</td>
</tr>
</tbody>
</table>

Control Circuitry

The HDSL circuit pack interfaces with the SYSCTL over the intra-shelf control bus. Redundancy in the intra-shelf control bus assures the level of control required to perform protection switching and alarming of a faulty circuit pack. The HDSL provides maintenance elements for reporting the status of the circuit pack and the incoming VT1.5 and HDSL signals, as well as the circuit pack inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. Conversely, the HDSL responds to control signals from the SYSCTL (such as FAULT LED control). The PM processor collects information from the framing circuitry and generates DS1 PM parameters which are stored in the HDSL pack. Access to the PM information is via a faceplate-mounted connector. Each connector supports two RS-232 interfaces (one for each HDSL port). The port is accessed by using a cable supplied with the circuit pack.

Protection Circuitry

Optional 1xN revertive HDSL circuit pack protection is provided, and this protection is independent of the 28-type circuit pack. The HDSL protection switch points are implemented with on-board relays on the HDSL side and with logic selectors at the VT-G level on the active and standby 28-type circuit packs. The SYSCTL controls these relays through two serial interfaces so that a failure of one serial interface to the HDSL does not prevent control of the relays. If +5V power on the HDSL fails, the relays default to the protection state.

Shorting contacts are provided in the HDSL backplane connector so that when the circuit pack is removed, the HDSL cable pairs short through to the protection bus.
CAUTION:
Unused low-speed interface slots within a partially equipped group must be equipped with 177A Retainer cards if HDSL protection is used. Failure to do so may result in corrupted transmission. The HDSL circuit pack is not recommended to be mixed with the BBF1B/3Bs.

When a HDSL circuit pack is inserted, the relays are in the protection state until the SYSCTL determines that the circuit pack is good.

Fault Detection Circuitry
The HDSL circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous and errors are reported when they occur to the SYSCTL via the intra-shelf control bus. An out-of-service test is performed whenever the HDSL circuit pack is inserted or recovers from a transient failure. The incoming HDSL signal is monitored for HDSL synchronization errors. Incoming VT1.5 signals are monitored for VT AIS, VT LOP, and yellow.

Loopbacks
The HDSL circuit pack has two types of loopback, terminal and facility. Both types are controlled by the SYSCTL via the intra-shelf control bus. The two loopbacks must be done independently.

The terminal loopback is provided on the HDSL circuit pack for each HDSL interface. The loopback is done inside the VT1.5 processor device and bridges the desynchronizer output signal (transmitted toward the far-end HDSL equipment) back to the DS1 synchronizer input. When the loopback is operated, the DS1 interface device forces AIS toward the far-end HDSL equipment.

The facility loopback is provided for both HDSL signals on the circuit pack. When this loopback is completed, all DS1 data signals received from the VT1.5 processor are simultaneously looped back toward the far-end HDSL equipment. The loopback is a bridge, so the transmitted DS1 signals (toward the high-speed interface) are not affected.

Optional HDSL Settings
All system settings are stored in NVRAM at the unit designated as the system Master. Access to these settings is through the RS-232 faceplate port only. These settings are downloaded to the slave unit at system synchronization and at regular intervals during operation to keep the slave unit updated. The NVRAM is guaranteed to have a capability of 1,000 write cycles. The current state of loopbacks is not considered a system setting, and an active loopback becomes inactive during system resynchronization. Provisioning is not available at either the slave unit or doubler units. The following system settings are available:

- Smartjack Loopback Code Detection: ENABLE or DISABLE
Errored Second Threshold: NONE, 17, or 170 per 24 hours
Loopback Time-out: NONE, 20, 60, 120 minutes
Alarm Notification: ENABLE or DISABLE
Allocation of DS0 time slots on HDSL loop: ALTERNATE or CONTIGUOUS
Margin Alarm Threshold: 0-15 dB, 1 dB increments
DS0 blocking: individually (T1, FT1)
Fast Loss of Sync Word (LOSW): ENABLE or DISABLE.

Performance Monitoring
From any unit in a system, HDSL performance data may be accessed for each HDSL span in the circuit, including up to two HDSL doublers (three total HDSL spans). Access to all PM data is through the faceplate RS-232 port only. Any unit provides access to the following:

- HDSL Span Current Status:
 - Alarms
 - Loopbacks
 - Margins
 - HDSL Pulse Attenuation
 - HDSL clock offset (PPM)
 - 24-hour HDSL Errored Seconds
 - 24-hour HDSL Unavailable Seconds.

- HDSL Span History:
 - 15-min, 24-hour, 7-day HDSL Errored Seconds
 - 15-min, 24-hour, 7-day HDSL Unavailable Seconds.

- HDSL Alarm History
 - LOSW, HDSL1 - Loss of Sync on Loop 1
 - LOSW, HDSL2 - Loss of Sync on Loop 2
 - ES, HDSL1 - Exceeded ES Threshold on Loop 1
 - ES, HDSL2 - Exceeded ES Threshold on Loop 2
 - Margin, HDSL1 - Exceeded Threshold on Loop 1
 - Margin, HDSL2 - Exceeded Threshold on Loop 2.
Power Circuitry

The 28-type circuit packs supply +5V power to the HDSL circuit packs in the corresponding DS1PM circuit pack groups. These inputs are diode ORed and the output is fused and then filtered before it is used to power the rest of the circuit pack. A failure of the fuse or converter causes the red FAULT LED to light.

⚠️ CAUTION:
For power reliability, when a muldem is equipped with HDSL circuit packs, the associated function unit must be equipped with two 28-type circuit packs.

Figure 7-24 and its associated table show HDSL options selectable via S1.

![Figure 7-24. HDSL DIP Switch Settings](image)

HDSL DIP Switch Settings

<table>
<thead>
<tr>
<th>HDSL Options</th>
<th>HDSL DIP Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDSL Port #1</td>
</tr>
<tr>
<td></td>
<td>S1-1</td>
</tr>
<tr>
<td>HDSL</td>
<td>Master</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td>START-UP</td>
<td>Slave</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td>HDSL</td>
<td>Local</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>MANAGEMENT</td>
<td>Through</td>
</tr>
<tr>
<td></td>
<td>ON</td>
</tr>
</tbody>
</table>
HDSL Quick Reference Summary

Communication Functions
Major transmit (Xmit) and receive (Rcv) functions of the HDSL circuit pack are as follows:

- Multiplexes four VT1.5 SPEs to a byte-interleaved VT-G signal (Xmit)
- Provides the VT-G signal to a 28-type circuit pack (Xmit)
- Inserts VT path overhead (Xmit)
- Receives up to two HDSL formatted signals (Xmit)
- Provides HDSL to VT1.5 mapping (Xmit)
- Recovers DS1 and NRZ data from each HDSL payload (Xmit)
- Synchronizes and maps each data signal to a VT1.5 SPE (Xmit)
- *PairGain* compatible, 4-wire HDSL
- Bi-directional transmission port of 1.544 Mb/s over twisted pair
- Loopback options
- Receives SONET VT-G frame synchronizing signals from its associated 28-type
- Demultiplexes the VT-G into four VT1.5 signals (Rcv)
- Terminates VT path and the embedded DS1 signal from each VT1.5 SPE (Rcv)
- Desynchronizes the DS1 signals and maps directly into *PairGain* HDSL (Rcv).

Control Functions
The major control functions of the HDSL circuit pack are as follows:

- Protection switching for 28-type circuit packs
- VT path overhead processing
- Internal fault detection
- Inventory information (*CLEI* code, date of manufacture, etc.).

Maintenance Signal Functions
The major maintenance signal functions are as follows:

- Monitors a DS1 signal with SF or ESF frame format and generates PM data
- Monitors DS1 signal for near-end and far-end performance
- Detects VT path AIS
- Inserts DS1 AIS toward fiber and far-end HDSL equipment
- Inserts and detects VT path yellow signal.
Universal Optical Connectors

Circuit packs having a "-U" after their designation indicate that these circuit packs have a universal optical connector.

The following circuit packs are available with the connector:

- 22D-U OLIU
- 22F/22F-U/22F2-U
- 22G-U/22G2-U/22G3-U/22G4-U* OLIU
- 26G2-U OLIU
- 28G-U/28G2-U OLIU
- 29G-U/29H-U* OLIU

*Ship with SC buildout and ST shipped loose with each pack except 22G-U. The only ST-type connector that applies and is shipped for 22G-U is for the faceplate.

This connector (Figure 7-25) is a two-part connector consisting of a faceplate-mounted block and an optical buildout. The faceplate block optionally supports an ST, SC, or FC-type optical buildout.

A 0 dB SC-type connector is shipped as standard with OLIU. Optional ST 0 dB buildouts are shipped loose with each OLIU except for 22G-U. Optional SC, ST, or FC-PC 0 dB or attenuated buildouts can be ordered separately. See Chapter 10, "Technical Specifications," for a list of universal buildout attenuators. All OLIUs will phase to SC buildout mounted and ST shipped loose.
Figure 7-25. Universal Optical Connector
Optical Interface Circuit Packs

Table 7-8 lists the FiberReach OLIU Feature Summary.

Table 7-8. FiberReach OLIU Feature Summary

<table>
<thead>
<tr>
<th>OLIU</th>
<th>Line Rate (Mb/s)</th>
<th>Span Length (Km)</th>
<th>VT/STS Sig. Degraded PS</th>
<th>TSI</th>
<th>Fiber Type</th>
<th>Ext. Atten.</th>
<th>System</th>
<th>See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>22D-U</td>
<td>155.52</td>
<td>< 3</td>
<td>Yes</td>
<td>STS-1</td>
<td>MM</td>
<td>No</td>
<td>OC-3</td>
<td></td>
</tr>
<tr>
<td>22F</td>
<td>155.52</td>
<td>33</td>
<td>No</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>No</td>
<td>OC-3</td>
<td>1,2,3</td>
</tr>
<tr>
<td>22F-U</td>
<td>155.52</td>
<td>33</td>
<td>No</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>No</td>
<td>OC-3</td>
<td>2</td>
</tr>
<tr>
<td>22F2-U</td>
<td>155.52</td>
<td>33</td>
<td>Yes</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>No</td>
<td>OC-3</td>
<td></td>
</tr>
<tr>
<td>22G-U</td>
<td>155.52</td>
<td>51</td>
<td>Yes</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>7.0 dB</td>
<td>OC-3</td>
<td>2,3</td>
</tr>
<tr>
<td>22G2-U</td>
<td>155.52</td>
<td>51</td>
<td>Yes</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>No</td>
<td>OC-3</td>
<td>2,3</td>
</tr>
<tr>
<td>22G3-U</td>
<td>155.52</td>
<td>55</td>
<td>Yes</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>No</td>
<td>OC-3</td>
<td></td>
</tr>
<tr>
<td>22G4-U</td>
<td>155.52</td>
<td>55</td>
<td>Yes</td>
<td>STS-1</td>
<td>SM/MM</td>
<td>No</td>
<td>OC-3</td>
<td></td>
</tr>
<tr>
<td>26G2-U</td>
<td>51.84</td>
<td>44</td>
<td>Yes</td>
<td>STS-1/VT1.5</td>
<td>SM/MM</td>
<td>13.8 dB</td>
<td>FiberReach/OC-1</td>
<td>3</td>
</tr>
<tr>
<td>28G-U</td>
<td>51.84</td>
<td>44</td>
<td>Yes</td>
<td>STS-1/VT1.5</td>
<td>SM/MM</td>
<td>13.8 dB</td>
<td>FiberReach/OC-1/OC-3</td>
<td>3</td>
</tr>
<tr>
<td>28G2-U</td>
<td>*</td>
<td>*</td>
<td>Yes</td>
<td>STS-1/VT1.5</td>
<td>SM/MM</td>
<td>*</td>
<td>FiberReach/OC-1,3</td>
<td></td>
</tr>
<tr>
<td>29G-U</td>
<td>622.08</td>
<td>51</td>
<td>Yes</td>
<td>STS-1/VT1.5</td>
<td>SM/MM</td>
<td>10 dB</td>
<td>OC-1,3</td>
<td></td>
</tr>
<tr>
<td>29H-U</td>
<td>622.08</td>
<td>94</td>
<td>Yes</td>
<td>STS-1/VT1.5</td>
<td>SM</td>
<td>10 dB</td>
<td>OC-1,3</td>
<td></td>
</tr>
</tbody>
</table>

See notes on following page.

* Information not available at time of document release.
Notes:

1. OLIU has two sets of optical interfaces.
2. OLIU is discontinued. Functionally equivalent alternatives are available or planned.
3. OLIU has extended TSI capabilities to support pass-through and hairpin cross-connections for OC-1 rings terminated in function units of a DDM-2000 OC-3.

All OLIUs have universal optical connectors (compatible with ST, SC, and FC connectors) unless specified otherwise.

All OLIUs operate at 1310 nm (nominal), except 29H-U.

All OLIUs have one optical transmitter and one optical receiver unless specified otherwise.

The “Span Length” column shows maximum span length for single mode fiber in controlled environment, based on certain assumptions about loss budget. (See “Technical Specifications,” Chapter 10.)

The “VT/STS Sig. Degrade PS” column indicates which OLIUs support VT1.5 path protection switching based on signal degrade conditions on individual VT1.5 channels. These OLIUs also support path protection switching based on STS signal degrade and VT unequipped conditions.

The “TSI” column indicates what type of cross-connection (time slot interchange) capability is supported by each OLIU.

The “Fiber Type” column indicates whether the OLIU is compatible with single-mode fiber, multimode fiber, or both.

The “Ext. Atten.” column indicates whether an external attenuator is required for optical loopbacks and short span lengths. “No” indicates none required. A dB value indicates the minimum attenuation required.

The “System” column indicates whether the OLIU can be used in the DDM-2000 OC-3 system or FiberReach system.
22-Type OLIU Circuit Pack Descriptions

Purpose of Circuits

The 22-type OLIU circuit packs (22D-U, 22F/22F-U/22F2-U, and 22G-U/22G2-U/22G3-U/22G4-U) perform the optical/electrical conversion between optical carrier level 3 (OC-3) and STS-3 signals, multiplexing between STS-3 and three STS-1 signals and accessing SONET transport overhead. These circuit packs also provide routing of STS-1 signals between the OC-3 interface and main slots in the shelf.

The 22D-U OLIU offers short reach service over multimode fiber.

The 22F-type OLIUs offer intermediate reach service over multimode or single-mode fiber.

The 22G-type OLIUs offer higher power optics than the other 22-type OLIUs. The 22G2-U/22G3-U/22G4-U OLIUs offer improved receiver overload sensitivity, eliminating the need for an external attenuator. The 22G3-U and the 22G4-U use a SONET-compliant long-reach transmitter.

In the FiberReach shelf, these circuit packs are used in the function unit slots only, and may only be used when the main slots are equipped with OC-3 or OC-12 OLIUs.

22-Type Faceplate Indicators

Examples of the 22-type OLIU circuit pack faceplate indicators are shown in Figure 7-26 (22D-U), Figure 7-27 (22F-U), and Figure 7-28 (22G-U).

The red FAULT LED lights on detection of circuit pack hardware failure. In the event of an incoming signal failure, this LED will flash on and off. The green ACTIVE LED lights when the circuit pack is active (carrying service).

A faceplate-mounted universal optical connector allows the 22D-U OLIU to accept fiber terminated with ST, SC, or FC connectors. The 22D-U and the 22G2-U/22G3-U/22G4-U OLIUs come with a 0 dB ST buildout. For the 22D-U and the 22G-U OLIUs, a 10 dB attenuator is required for loopback testing. The 22G2-U/22G3-U/22G4-U OLIUs do not need an external attenuator for loopback testing.

The 22D-U OLIU circuit pack provides cost effective interconnect for intra-office applications and is used only for DDM-2000 OC-3 and OC-12 or SLC-2000 interworking over multimode fiber.

Various combinations of buildouts and connectors are also available. See Chapter 10, "Technical Specifications," for a list of universal buildout attenuators.
Figure 7-26. 22D-U OLIU Circuit Pack
Figure 7-27. 22F-U OLIU Circuit Pack
Figure 7-28. 22G-U OLIU Circuit Pack
General Description of Operation

The 22-type OLIUs multiplex three STS-1 signals to an STS-3, insert the SONET transport overhead bytes (line and section), and scramble the resulting signal. For the 22D-type OLIU, this STS-3 signal drives the LED transmitter to create an IS-3 output. For the 22F-type and the 22G-type OLIUs, this STS-3 signal drives the laser transmitter to create the OC-3 output.

The received IS-3 or OC-3 signal is converted back to an electrical STS-3. This STS-3 is descrambled and demultiplexed into three STS-1 signals, and transport/path overhead is accessed. Some of the overhead (for example, section datacom channel) is passed via serial data links to the control packs, while other bytes (for example framing, parity check) are processed on-board. The STS-1 signals go through a pointer processor to guarantee STS-1 frame alignment before being routed to the main slots.

For 22D-type OLIUs, the output must interface with multimode fiber.

For 22F-type OLIUs, fiber access is via a pair of ST lightguide cable connectors from the OLIU faceplate. The 22F-type OLIU photonics comply with SONET intermediate-reach specifications.

Detailed Description of Operation

Figure 7-29 is a block diagram of the 22-type OLIU circuit pack.

Transmission Circuitry

STS-1 Cross Connect. The STS-1 cross connect is used to select STS-1s for both the transmit and receive directions.

Transmit Direction. The STS-1 cross connect connects three of the STS-1 signals from the main slots. The multiplexer takes the three STS-1 signals, adds SONET transport overhead, then byte-interleaves and scrambles the signal with a frame synchronous scrambler. The output from the multiplexer is in the SONET STS-3 format and is used to amplitude modulate the LED transmitter, converting the electrical signal to an NRZ-encoded SONET compatible IS-3 optical signal for 22D-U and an OC-3 optical signal for 22F-types and 22G-types.

Receive Direction. For all 22-type OLIUs, in the receive direction the optical receiver converts the light pulses from an NRZ-encoded OC-3 or IS-3 signal to equivalent electrical pulses. The demultiplexer circuit accepts the STS-3 bit stream, frames on the incoming signal, descrambles it, demultiplexes it into three STS-1 signals, and processes OC-3 or IS-3 transport overhead. The overhead information is sent to the SYSCTL circuit pack via the intra-shelf control bus.
The STS-1 outputs from the demultiplexer are sent to the STS-1 pointer processor which performs pointer interpretation and generation on each received STS-1. The output of the STS-1 pointer processor is three STS-1 signals, frame synchronous to each other. STS-1s are passed through without STS-1 path overhead termination. The cross connect sends each of the three STS-1 signals to the function unit slots.

Figure 7-29. 22-Type OLIU Circuit Pack Block Diagram
Control Circuitry

The 22-type OLIU circuit packs interface with the BBG8/BBG8B SYSCTL circuit pack in the FiberReach shelf.

The 22-type OLIU circuit packs provide maintenance elements for reporting the status of the circuit pack, status of the incoming optical and electrical signals, as well as inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. Conversely, the 22-type OLIU circuit packs respond to control signals from the SYSCTL, such as STS-1 routing, protection switching, and LED control commands.

The 22D-U OLIU circuit pack accesses the SONET transport overhead and routes it via the transport overhead channel interface to the SYSCTL.

Protection Circuitry

The 22-type OLIU circuit packs operate in the unprotected (0x1) configuration only in the FiberReach shelf.

Fault Detection Circuitry

The 22-type OLIU circuit packs have in-service and out-of-service built-in test capability. In-service testing is continuous and errors are reported when they occur to the SYSCTL via the intra-shelf control bus. An out-of-service test is performed whenever the OLIU circuit pack is inserted or recovers from a transient failure.

Performance Monitoring

The 22-type OLIUs provide PM circuitry for OC-3 and IS-3 performance parameters.

Power Circuitry

Power for the 22D-U OLIU circuit pack is provided by a DC-to-DC converter located on the circuit pack. The converter supplies +5 volts and −5.2 volts.

Power for the 22F-type OLIU circuit packs is provided by two DC-to-DC converters located on the circuit pack. One converter supplies +5 volts and the other supplies −5.2 volts.

Power for the 22G-type OLIU circuit packs is provided by two DC-to-DC converters located on the circuit pack. The converters supply +5 volts.
For all 22-type OLIUs, both A and B –48 volt backplane busses supply power to the converter through diode ORed circuit pack-mounted power select circuits and a circuit pack-mounted fuse. Failure of the fuse or converter causes the red FAULT LED to light.

22-Type OLIU Quick Reference Summary

Transmit Functions

Major transmit functions of the 22-type OLIU circuit packs in the FiberReach application are as follows:

- Select STS-1 inputs from main OLIU circuit packs
- Provide STS-1 signal cross-connections
- Add SONET transport overhead
- Byte-interleave and scramble the three selected STS-1 signals to produce an STS-3 signal
- For 22D-U, convert the STS-3 electrical signal to an IS-3 optical signal and transmit it over the fiber
- For 22F-type and 22G-type, use a laser transmitter to produce a SONET standard OC-3 optical signal from an STS-3 electrical signal.

Receive Functions

The following are major receive functions of the 22-type OLIU circuit packs:

- For 22D-U, receive an IS-3 optical signal and convert it to an electrical STS-3 signal
- For 22F-type and 22G-type, receive a SONET standard OC-3 optical signal and convert it to an electrical STS-3 signal
- Extract STS-3 clock and retime the received data
- Demultiplex the STS-3 signal into three STS-1 signals
- Extract transport overhead
- Process the STS-1 pointer and frame-synchronize the STS-1 signals
- Provide STS-1 signal cross-connections.
Control Functions

The major control functions of the 22-type circuit packs are as follows:

- Process transport overhead
- Store inventory information (CLEI code, date of manufacture, etc.)

Maintenance Signal Functions

The major maintenance signal functions of the 22-type circuit packs are as follows:

- Insert STS-1 path AIS
- For 22-type, insert and detect OC-3/IS-3 line AIS
- Insert path unequipped signal
- Insert and detect line FERF
- For 22-type, detect OC-3/IS-3 line failures (LOS, LOF, AIS, and BER)
- For 22-type, detect OC-3/IS-3 line signal degrade BER.
26G2-U OLIU Circuit Pack Description

Purpose of Circuit

The 26G2-U OLIU circuit pack interfaces with a 1310 nm optical line in the transmit and receive directions. It provides an interface between the OC-1 optical line and the electrical STS-1 and VT-G signals. The fiber is accessed via a pair of universal optical connectors on the 26G2-U faceplate that supports ST, SC, and FC type optical connectors. Both single mode and multi-mode facilities are supported.

The 26G2-U OLIU circuit pack also has the following functions:

- Active VT timeslot interchanging in the function slot
- Access to low speed slots and main slots from the function slot.

The 26G2-U OLIU may be used in the main slots of the DDM-2000 FiberReach wideband shelf or the function unit slots of the DDM-2000 OC-3 shelf (Group 4 or later).

26G2-U OLIU Faceplate Indicators

The 26G2-U OLIU circuit pack faceplate indicators are shown in Figure 7-30. The red FAULT LED lights on detection of circuit pack hardware failure. In the event of an incoming OC-1 signal failure, this LED will flash on and off. The green ACTIVE LED lights when the circuit pack is active (carrying service).
Figure 7-30. 26G2-U OLIU Circuit Pack
A faceplate-mounted universal optical connector allows the 26G2-U OLIU to accept fiber terminated with ST, SC, or FC connectors. A 10 dB attenuator is required for loopback testing. The 26G2-U OLIU operates over single mode fiber. Various combinations of buildout attenuators and connectors are also available. See Chapter 10, "Technical Specifications," for a list of universal buildout attenuators.

General Description of Operation

The 26G2-U circuit pack accepts eight VT-G signals from the DS1 circuit packs, performs protection switch selections, combines the selected signals to form an STS-1 signal, inserts STS-1 path overhead, inserts SONET transport overhead bytes (line and section) and STS path overhead bytes, and scrambles the resulting signal which drives a separate laser transmitter to create an OC-1 output.

The 26G2-U circuit pack converts a received OC-1 signal back to an electrical STS-1, descrambles and demultiplexes it, and processes the transport overhead. It sends some of the overhead (for example, section data communications channel) via serial data links to the control packs, and processes other bytes (for example framing, parity check) on board. It performs STS-1 pointer processing to guarantee STS-1 frame alignment and STS-1 path overhead and VT1.5 pointer processing. The 26G2-U then performs VT1.5 TSI, multiplexes four VT1.5 signals to VT-Gs, and sends the VT-Gs to the low-speed slots.

On the wideband shelf, the 26G2-U OLIU provides an interface of eight VT-G signals in the OC-3 shelf. These groups are multiplexed into an STS-1 signal. A VT1.5 cross-connect allows VT1.5 switching as required.
Detailed Description of Operation

Figure 7-31 is a block diagram of the 26G2-U OLIU circuit pack.

Figure 7-31. 26G2-U OLIU Circuit Pack Block Diagram

Transmission Circuitry

STS-1 Router and VT1.5 Cross-Connect. The STS-1 router is used to select STS-1s for both the transmit and receive directions. All incoming STS-1s are fed to the VT1.5 cross-connect. The outgoing STS-1 may be sourced by this VT1.5 cross-connect or sourced directly by an STS-1 input.

Transmit Direction. In the transmit direction (from the low-speed slots toward the optical interface), the VT-G signals from the low-speed slots are combined into an STS-1 signal. SONET path overhead is then added to STS-1 sourced by the VT1.5 cross-connect before the signals are sent to the transport overhead processor. The transport overhead processor takes the STS-1 signal, adds SONET transport overhead, then scrambles the signal with a frame synchronous scrambler. The output from the transport overhead processor is in the SONET STS-1 format and is used to modulate the amplitude of the laser transmitter, converting the electrical signal to an NRZ-encoded SONET compatible OC-1 optical signal.

In the OC-3 shelf, the 26G2-U OLIU provides an interface between the STS-1 optical signal and electrical VT-G signals. Three STS-1 paths will be brought out to
the backplane for STS-1 routing throughout the OC-3 shelf. The 26G2-U also provides an STS-1 electrical interface to a companion 26G2-U OLIU which allows the two OLIUs to be cross coupled.

Receive Direction. In the receive direction, the optical receiver converts the light pulses from an NRZ-encoded OC-1 signal to equivalent electrical pulses. The output from the optical receiver goes into a recovery device. The transport overhead processor circuit accepts the STS-1 bit stream, frames on the incoming signal, descrambles it, and processes OC-1 transport overhead. The overhead information is sent to the SYSCTL circuit pack.

The STS-1 output from the transport overhead processor is sent to the STS-1 pointer processor which performs pointer interpretation and generation. The output of the STS-1 pointer processor is sent to the VT1.5 pointer processor. STS-1 path overhead and VT1.5 pointer processing is performed. STS-1s that do not require VT1.5 cross-connections are passed through without VT1.5 pointer processing or STS-1 path overhead termination. The output from the VT1.5 pointer processor is sent to the STS-1/VT1.5 router. The router cross-connects the appropriate VT1.5 tributaries and sends two STS-1 signals to the appropriate Main or Function Unit (MFU) slots and up to 8 VT-Gs to the low-speed slots.

The 26G2-U terminates an STS-1 optical signal, converts it to an electrical signal, frames on and descrambles the signal, and processes the Transport Overhead (TO).

Control Circuitry

The 26G2-U OLIU circuit pack interfaces with the BBG8/BBG8B system controller (SYSCTL) via the intershelf control interface. The 26G2-U OLIU provides maintenance elements for reporting the status of the circuit pack, status of the incoming optical and electrical signals, as well as inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. Conversely, the 26G2-U OLIU responds to control signals from the SYSCTL such as STS-1 routing, VT1.5 routing, protection switching, and LED control commands.

The 26G2-U OLIU accesses the SONET transport overhead and routes it to and from the SYSCTL circuit pack.

Protection Circuitry

STS-1 and VT1.5 path protection switching, compliant with SONET specifications, is provided. The 26G2-U OLIU is protection switched by the SYSCTL in response to an external command, incoming optical signal failure, or internal equipment fault. The 26G2-U OLIU circuit pack is protection switched by the SYSCTL when the SYSCTL detects a fault on the active 26G2-U OLIU, and the companion 26G2-U OLIU is good.
The 26G2-U OLIU interfaces via VT-G signals with circuit packs in the low-speed slots and via STS-1 signals with the circuit packs in the main and function unit slots. It selects the signals from the service or protection slot of each pair as directed by the SYSCTL.

Fault Detection Circuitry

The 26G2-U OLIU circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous, and errors are reported when they occur to the SYSCTL via the intrashelf control bus. An out-of-service test is performed whenever the OLIU circuit pack is inserted or recovers from a transient failure.

The 26G2-U OLIU has STS-1 and VT1.5 signal degrade protection switching and STS signal degrade protection switching capabilities.

Performance Monitoring

The 26G2-U OLIU provides PM circuitry for the following performance parameters:

- STS-1 section severely errored frame seconds (B1 SEFS) count
- Line coding violation counts (B2 parity)
- Line errored seconds
- STS-1 path coding violation counts (B3 parity)
- STS-1 path errored seconds
- VT path coding violation counts (V5 parity)
- VT path errored seconds.

Power Circuitry

Power for the 26G2-U OLIU circuit pack is provided by two DC-to-DC converters located on the 26G2-U OLIU circuit pack. The converters supply +5 volts. Both A and B –48 volt backplane busses supply power to the converters through diode ORed circuit pack-mounted power select circuits and a circuit pack-mounted fuse. The 26G2-U provides +5V power to the low-speed slots. Failure of the fuse or converters causes the red FAULT LED to light.
26G2-U OLIU Quick Reference Summary

Transmit Functions
Major transmit functions of the 26G2-U OLIU circuit pack are as follows:
 a. Selects and multiplexes VT-Gs into one STS-1 synchronous payload envelope (SPE)
 b. Adds SONET and STS-1 path transport overhead
 c. Scrambles the STS-1 signal to prepare for optical conversion
 d. Uses a laser transmitter to produce a SONET standard OC-1 optical signal.

Receive Functions
The following are major receive functions of the 26G2-U OLIU circuit pack:
 a. Receives one SONET standard OC-1 optical signal and converts it to an electrical STS-1 signal
 b. Extracts transport and STS-1 path overhead
 c. Processes the STS-1 pointer and frame-synchronizes the STS-1 signals
 d. Processes the VT1.5 pointers and frame-synchronizes the VT1.5 signal
 e. Provides path protection switching
 f. Provides VT1.5/STS-1 signal cross-connections
 g. Sends VT-Gs to the DS1 circuit packs

Control Functions
The major control functions are as follows:
 a. Processes transport and path overhead
 b. Stores inventory information (CLEI code, date of manufacture, etc.)
 c. Supports VT and OC-1 signal degrade protection switching
 d. Supports protection switching of circuit packs in the low-speed slots.

Maintenance Signal Functions
The major maintenance signal functions are as follows:
 a. Inserts and detects OC-1 line and STS-1 and VT1.5 path AIS
 b. Inserts STS-1 and VT1.5 path unequipped signal
 c. Inserts and detects line far-end-receive
 d. Inserts and detects STS-1 path yellow.
28G-U/28G2-U OLIU Circuit Pack Description

Purpose of Circuit

The 28G-U/28G2-U OLIU circuit pack interfaces with a 1310 nm optical line in the transmit and receive directions. It provides an interface between the OC-3 optical line and the electrical STS-1 and VT-G signals. The fiber is accessed via a pair of universal optical connectors on the 28G-U/28G2-U faceplate that supports ST, SC, and FC type optical connectors. Both single mode and multi mode facilities are supported.

The 28G-U/28G2-U OLIU circuit pack also has the following functions:

- Active VT timeslot interchanging in the function slot
- Access to low speed slots and main slots from the function slot

The 28G-U/28G2-U OLIU must be used in the main slots of the DDM-2000 FiberReach wideband shelf.

28G-U/28G2-U OLIU Faceplate Indicators

The 28G-U/28G2-U circuit pack faceplate indicators are shown in Figure 7-32. The red FAULT LED lights on detection of circuit pack hardware failure. In the event of an incoming OC-3 signal failure, this LED will flash on and off. The green ACTIVE LED lights when the circuit pack is active (carrying service).
Figure 7-32. 28G-U/28G2-U OLIU Circuit Pack — 28-Type Pair with Interconnect Cable Assembly
A faceplate-mounted universal optical connector allows the 28G-U/28G2-U OLIU to accept fiber terminated with ST, SC, or FC connectors. The 28G-U/28G2-U OLIU operates over single mode fiber. Various combinations of buildout attenuators and connectors are also available. See Chapter 10, “Technical Specifications,” for a list of universal buildout attenuators.

General Description of Operation

The 28G-U/28G2-U circuit pack accepts eight VT-G signals from the DS1 circuit packs, performs protection switch selections, combines the selected signals to form an STS-1 signal, inserts STS-1 path overhead, inserts SONET transport overhead bytes (line and section) and STS path overhead bytes, and scrambles the resulting signal which drives a separate laser transmitter to create an OC-3 output.

The 28G-U/28G2-U circuit pack converts a received OC-3 signal back to an electrical STS-3, descrambles and demultiplexes it, and processes the transport overhead. It sends some of the overhead (for example, section data communications channel) via serial data links to the control packs, and processes other bytes (for example framing, parity check) on board. It performs STS-1 pointer processing to guarantee STS-1 frame alignment and STS-1 path overhead and VT1.5 pointer processing. The 28G-U/28G2-U then performs VT1.5 TSI, multiplexes four VT1.5 signals to VT-Gs, and sends the VT-Gs to the low-speed slots or sends up to 3 STS-1s to the function unit slots.

On the FiberReach wideband shelf, the 28G-U/28G2-U OLIU provides an interface of eight VT-G signals. These groups are multiplexed into an STS-1 signal. A VT1.5 cross-connect allows VT1.5 switching as required.
Detailed Description of Operation

Figure 7-33 is a block diagram of the 28G-U/28G2-U OLIU circuit pack.

Transmission Circuitry

STS-1 Router and VT1.5 Cross-Connect. The STS-1 router is used to select STS-1s for both the transmit and receive directions. All incoming STS-1s are fed to the VT1.5 cross-connect. The outgoing STS-1 may be sourced by this VT1.5 cross-connect or sourced directly by an STS-1 input.

Transmit Direction. In the transmit direction (from the low-speed slots toward the optical interface), the VT-G signals from the low-speed slots are combined into an STS-1 signal. SONET path overhead is then added to STS-1 sourced by the VT1.5 cross-connect before the signals are sent to the transport overhead processor. The transport overhead processor takes the STS-1 signal, adds SONET transport overhead, then scrambles the signal with a frame synchronous scrambler. The output from the transport overhead processor is in the SONET STS-3 format and is used to modulate the amplitude of the laser transmitter, converting the electrical signal to an NRZ-encoded SONET compatible OC-3 optical signal.
The 28G-U/28G2-U provides an STS-1 electrical interface to a companion 28G-U/28G2-U OLIU which allows the two OLIUs to be cross coupled.

Receive Direction. In the receive direction, the optical receiver converts the light pulses from an NRZ-encoded OC-3 signal to equivalent electrical pulses. The output from the optical receiver goes into a recovery device. The transport overhead processor circuit accepts the STS-3 bit stream, frames on the incoming signal, descrambles it, and processes OC-3 transport overhead. The overhead information is sent to the SYSCTL circuit pack.

The STS-1 output from the transport overhead processor is sent to the STS-1 pointer processor which performs pointer interpretation and generation. The output of the STS-1 pointer processor is sent to the VT1.5 pointer processor. STS-1 path overhead and VT1.5 pointer processing is performed. STS-1s that do not require VT1.5 cross-connections are passed through without VT1.5 pointer processing or STS-1 path overhead termination. The output from the VT1.5 pointer processor is sent to the STS-1/VT1.5 router. The router cross-connects the appropriate VT1.5 tributaries and sends two STS-1 signals to the appropriate Main or Function Unit (MFU) slots and up to 8 VT-Gs to the low-speed slots.

The 28G-U/28G2-U terminates an OC-3 optical signal, converts it to an electrical signal, frames on and descrambles the signal, and processes the Transport Overhead (TO).

Control Circuitry

The 28G-U/28G2-U OLIU circuit pack interfaces with the BBG8 system controller (SYSCTL) via the intershelf control interface. The 28G-U/28G2-U OLIU provides maintenance elements for reporting the status of the circuit pack, status of the incoming optical and electrical signals, as well as inventory information (CLEI code, date of manufacture, etc.). These maintenance elements are used by the SYSCTL for fault detection and isolation. Conversely, the 28G-U/28G2-U OLIU responds to control signals from the SYSCTL such as STS-1 routing, VT1.5 routing, protection switching, and LED control commands.

The 28G-U/28G2-U OLIU accesses the SONET transport overhead and routes it to and from the SYSCTL circuit pack.

Protection Circuitry

STS-1 and VT1.5 path protection switching, compliant with SONET specifications, is provided. The 28G-U/28G2-U OLIU is protection switched by the SYSCTL in response to an external command, incoming optical signal failure, or internal equipment fault. The 28G-U/28G2-U OLIU circuit pack is protection switched by the SYSCTL when the SYSCTL detects a fault on the active 28G-U/28G2-U OLIU, and the companion 28G-U/28G2-U OLIU is good.
The 28G-U/28G2-U OLIU interfaces via VT-G signals with circuit packs in the low-speed slots and via STS-1 signals with the circuit packs in the main and function unit slots. It selects the signals from the service or protection slot of each pair as directed by the SYSCTL.

Fault Detection Circuitry

The 28G-U/28G2-U OLIU circuit pack has in-service and out-of-service built-in test capability. In-service testing is continuous, and errors are reported when they occur to the SYSCTL via the intrashelf control bus. An out-of-service test is performed whenever the OLIU circuit pack is inserted or recovers from a transient failure.

The 28G-U/28G2-U OLIU has STS-1 and VT1.5 signal degrade protection switching and STS signal degrade protection switching capabilities.

Performance Monitoring

The 28G-U/28G2-U OLIU provides PM circuitry for the following performance parameters:
- STS-1 section severely errored frame seconds (B1 SEFS) count
- Line coding violation counts (B2 parity)
- Line errored seconds
- STS-1 path coding violation counts (B3 parity)
- STS-1 path errored seconds
- VT path coding violation counts (V5 parity)
- VT path errored seconds.

Power Circuitry

Power for the 28G-U/28G2-U OLIU circuit pack is provided by three DC-to-DC converters located on the 28G-U/28G2-U OLIU circuit pack. The converters supply 5.5, 5, and 3.3 volts. Both A and B −48 volt backplane busses supply power to the converters through diode ORed circuit pack-mounted power select circuits and a circuit pack-mounted fuse. The 28G-U/28G2-U provides +5V power to the low-speed slots. Failure of the fuse or converters causes the red FAULT LED to light.
28G-U/28G2-U OLIU Quick Reference Summary

Transmit Functions

Major transmit functions of the 28G-U/28G2-U OLIU circuit pack are as follows:

- Selects and multiplexes VT-Gs into one STS-1 synchronous payload envelope (SPE)
- Receives up to 3 STS-1s from function slots
- Adds SONET and STS-1 path transport overhead
- Combines 3 STS-1s into STS-3
- Scrambles the STS-3 signal to prepare for optical conversion
- Uses a laser transmitter to produce a SONET standard OC-3 optical signal.

Receive Functions

The following are major receive functions of the 28G-U/28G2-U OLIU circuit pack:

- Receives one SONET standard OC-3 optical signal and converts it to an electrical STS-3 signal
- Extracts transport and STS-3 path overhead
- Creates 3 STS-1s from an STS-3 signal
- Processes the STS-1 pointer and frame-synchronizes the STS-1 signals
- Processes the VT1.5 pointers and frame-synchronizes the VT1.5 signal
- Provides path protection switching
- Provides VT1.5/STS-1 signal cross-connections
- Sends VT-Gs to the DS1 circuit packs.

Control Functions

The major control functions are as follows:

- Processes transport and path overhead
- Stores inventory information (CLEI code, date of manufacture, etc.)
- Supports VT and OC-3 signal degrade protection switching
- Supports protection switching of circuit packs in the low-speed slots.

Maintenance Signal Functions

The major maintenance signal functions are as follows:

- Inserts and detects OC-3 line and STS-1 and VT1.5 path AIS
- Inserts STS-1 and VT1.5 path unequipped signal
- Inserts and detects line far-end-receive.
29G-U/29H-U OLIU Circuit Pack Description (Long Reach OC-12 Interface)

- Optical/Copper Specifications
 For direct optical loopbacks, at least 10 dB of optical attenuation is needed for the 29G-U optical line. The distributed feedback laser supplies an NRZ-coded signal. The 29G-U OLIU long reach OC-12 interface supports span lengths up to 51 km, assuming 0.45 dB/km single-mode fiber (including splices) and span engineering rules. Transmit and receive powers are referenced to points S and R as shown in Figure 7-34. Detailed specifications and link budget information for the 29G-U OLIU is included in Chapter 10, Technical Specifications. Note that the 29G-U OLIU is not specified to operate over multimode fiber.

 For direct optical loopbacks, at least 10 dB of optical attenuation is needed for the 29H-U line. The distributed feedback laser supplies an NRZ-coded signal. The 29H-U OLIU long reach OC-12 interface supports span lengths up to 96 km, assuming 0.25 dB/km single-mode fiber (including splices) and span engineering rules. Transmit and receive powers are referenced to points S and R as shown in Figure 7-34. Detailed specifications and link budget information for the 29H-U OLIU is included in Chapter 10, Technical Specifications. Note that the 29H-U OLIU is not specified to operate over multimode fiber.

- Alarm Thresholding
 The following parameters are monitored at the OC-12 interface.
 - Loss of signal (LOS)
 - Loss of frame (LOF)
 - Loss of pointer (LOP)
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- Performance Monitoring (see Table 10-22)
 - Section SEFS
 - Line parameter B2
 - STS pointer justifications (OC-3 Release 15.0).
Figure 7-34. Optical System Interfaces (Points S and R)
Narrowband Shelf - Introduction

The DDM-2000 FiberReach narrowband shelf is used in conjunction with the wideband shelf to provide sub-DS1 rate services with protected or unprotected DS1 or higher rate services. The narrowband shelf has its own power conversion.

An arrangement of the narrowband shelf is shown in Figure 7-35.

Figure 7-35. Narrowband Shelf

Circuit Packs in the Narrowband Shelf

The circuit packs in the narrowband shelf are as follows:

- AUA413 ringing generator unit (RGU)
- AUA432 power conversion unit (PCU)
- AUA421 channel and drop test unit (CDTU)
- FHB2 digital signal cross-connect backplane interface unit (DSXBIU).
RGU Circuit Pack Description

This circuit pack provides 20 Hz negative superimposed ringing voltage to satisfy loop applications up to 132 ohms. The RGU receives an input voltage from the power converter unit (PCS) and supplies ringing voltage to three lines simultaneously. Each line may have a maximum load of five ringer equivalent numbers (RENs). An output alarm monitor circuit on the RGU monitors the output ringing for an over- or under-voltage condition and activates a red fail LED when either condition occurs. The circuit pack is protected from lightning and power surges by the output surge protection circuit.

NOTE:
The AUA423 is available to be placed in a Narrowband shelf where any channel units are used whose range exceeds 132 ohms.

RGU Faceplate Controls and Indicators

The RGU circuit pack faceplate controls and indicators are shown in Figure 7-36.

![RGU Faceplate Controls and Indicators](image)

Figure 7-36. AUA413 RGU Circuit Pack

PCU Circuit Pack Description

This circuit pack is located on the Narrowband shelf and accepts -48V DC power. It converts -48V DC to +5 and -5V DC, as well as -25.5V DC for use by various channel units that may be in the Narrowband service card slots. The PCU provides power to all the circuit packs on the Narrowband shelf by converting incoming -48V DC power to voltages required for the various circuit packs.

The BGW1 PSU, miscellaneous mounted with the DDM-2000 FiberReach shelf, terminates a 60V AC from a network-provided source (for example, centralized...
power). The PSU converts incoming 60V AC to -48V DC for use by the Wideband and Narrowband shelves. In applications where -48V DC is readily available, the PSU is not required.

PCU Faceplate Controls and Indicators

The PCU circuit pack faceplate controls and indicators are shown in Figure 7-37.

Figure 7-37. AUA432 PCU Circuit Pack

CDTU Circuit Pack Description

The Channel and Drop Test Unit (CDTU) circuit pack provides the remote end terminations and detectors required to support end-to-end channel testing of two-wire locally-switched services, such as POTS, coin, and multiparty services. When a channel unit test request is received on the Narrowband shelf, the DSXBIU instructs the channel unit associated with the channel under test to operate its test relay. The DSXBIU then instructs the CDTU that a test is occurring, and the CDTU then performs a drop test and reports the results back to the DSXBIU. The CDTU provides channel test terminations in sequence based on results from the channel test detectors and instructions from the DSXBIU.

- Hazardous voltage
- Foreign voltage
- Metallic leakage
- Receiver off-hook
- Lack of continuity to the station set.

The circuit pack contains a red fail LED to indicate an internal failure in the CDTU circuit pack and a green busy LED to indicate that a test session is active.
CDTU Faceplate Controls and Indicators

The CDTU circuit pack faceplate controls and indicators are shown in Figure 7-38.

![CDTU Faceplate Controls and Indicators](image)

Figure 7-38. AUA421 CDTU Circuit Pack

DSXBIU Circuit Pack Description

The Digital Signal Cross-Connect Backplane Interface Unit (DSXBIU) is a Narrowband shelf circuit pack that operates as the local controller for the Narrowband shelf and multiplexes the DS0 signals from the channel units to DS1 interfaces. The DS1 interface is fed from the DSXBIU to a DS1 circuit pack on the Wideband shelf. Software for the DSXBIU may be downloaded from the SLC-2000 host digital terminal.

The DSXBIU interfaces to the 12 channel units on the Narrowband shelf, providing provisioning and inventory information, as well as clock generation and synchronization. The DSXBIU communicates with the common units via a serial protocol microwire link. A separate microwire RS-422 interface connects with the power supply unit. A bank control link on the DSXBIU is used to communicate with the channel units.

DSXBIU Faceplate Controls and Indicators

The DSXBIU circuit pack faceplate controls and indicators are shown in Figure 7-39.
Figure 7-39. FHB2 DSXBIU Circuit Pack
Channel Units in the Narrowband Shelves

Channel Unit Circuit Pack Descriptions

Table 7-9 lists the circuit packs that can be housed in the 12-channel unit slots of the narrowband shelf. All circuit packs within the DDM-2000 FiberReach narrowband shelf are unprotected. These channel units are the same as those used in the SLC®-2000 Access System Multi-Services Distant Terminal (MSDT). Table 7-9 also indicates which circuit packs are available with each SLC®-2000 software release.

Table 7-9. DDM-2000 FiberReach Narrowband Shelf Channel Unit Plug-Ins

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Functional Name</th>
<th>Available With SLC-2000 Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUA25B*</td>
<td>POTS/M SPOTS CU CF (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA27*</td>
<td>POTS CF + OHT (Versus feature not available)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA39</td>
<td>POTS/SPOTS CU CS + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA41</td>
<td>4W VF CF (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA41B</td>
<td>4-Wire CF, (FXS/ETO/DX)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA42*</td>
<td>E SPOTS CU at COT (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA42B</td>
<td>E SPOTS CU at COT</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA43B</td>
<td>E SPOTS CU CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA44*</td>
<td>4-Wire VF CS (Includes TDM Signaling) (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA44B</td>
<td>4W VF CS I (Includes TDM Signaling)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA45B</td>
<td>Dual Ringing Repeater (Manual Ring)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA52</td>
<td>OCU Dataport (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA52B</td>
<td>OCU Dataport, All-rate</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA53</td>
<td>Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA53B</td>
<td>Single Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA54</td>
<td>4W VF Types I and II E&M (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA54B</td>
<td>4W VF Types I and II E+M/PLR</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA55</td>
<td>Multiparty CF</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA55B</td>
<td>Multiparty CF (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA56</td>
<td>DID/DPT (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA56B</td>
<td>Dual DID/DPT</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA57</td>
<td>FSR CF</td>
<td>4.4</td>
</tr>
<tr>
<td>Product Code</td>
<td>Functional Name</td>
<td>Available With SLC-2000 Release</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>AUA59</td>
<td>SPOTS CU CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA75*</td>
<td>Private Line Automatic Ring (PLAR)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA93</td>
<td>ISDN BRITE II, ANSI-U†</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA94</td>
<td>ISDN Dual ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA150*</td>
<td>POTS/SPOTS CU CF + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA150C</td>
<td>Dual POTS/SPOTS CF + OHT/CLASS + ALC</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA152†</td>
<td>OCU dataport (TR-08/INA VRTs) (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA158B</td>
<td>ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA158C</td>
<td>ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA158D</td>
<td>Dual POTS (ALC+ CF + OHT/CLASS + Adaptive Balance)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA159B</td>
<td>ALC POTS/SPOTS CF + OHT/CLASS (modified OHT loss)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA159C</td>
<td>ALC POTS/SPOTS CU + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA178</td>
<td>ALC C-POTS CF OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA178B</td>
<td>C-POTS (ALC + Adaptive Balance + Extended Range to 1400 OHMS + OHT + CLASS)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA179</td>
<td>ALC POTS/SPOTS CU + ALIC5 + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA200</td>
<td>2-wire switched 56-kb/s DPX</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA232</td>
<td>RS-232 DSU Dataport</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA252</td>
<td>OCU Dataport with SW56 (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA252B</td>
<td>OCU Dataport with SW56 (2.4, 4.8, 9.6, 19.2, 38.4, 56, and 64 kilobits data rates)</td>
<td>4.4</td>
</tr>
<tr>
<td>AUA293</td>
<td>ISDN BRITE III, ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>MCU5205</td>
<td>Metallic Channel Unit (Tollgate)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ0300</td>
<td>POTS CS + OHT/CLASS + LSAS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ340</td>
<td>SLC-2000 ALC POTS/SPOTS® CU CS + OHT/CLASS + LSAS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ400*</td>
<td>SLC-2000 ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>xSPQ400*</td>
<td>SLC-2000 ALC POTS CF + OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ400*B</td>
<td>ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ400C</td>
<td>Quad POTS (CF + OHT/CLASS)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ401*</td>
<td>SLC-2000 ALC POTS CF + OHT/CLASS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ401B</td>
<td>SLC-2000 POTS/SPOTS CU CS + DHT/CLSS + LSAS VFDE (Discontinued Availability)</td>
<td>4.6</td>
</tr>
<tr>
<td>SPQ402</td>
<td>Quad POTS (CF + OHT/CLASS + ALC + VFDE + Adaptive Balance, 1400 OHMS)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ419</td>
<td>Quad Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>Product Code</td>
<td>Functional Name</td>
<td>Available With SLC-2000 Release</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>SPQ429</td>
<td>Quad EBS P-Phone (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440</td>
<td>Quad SLC-2000 ALC POTS/SPOTS CU CF + OHT + CLASS + CLSS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440B</td>
<td>Quad POTS/SPOTS ALC CF + OHT + CLASS + CLSS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440C*</td>
<td>Quad Extended Range SPOTS (Discontinued Availability)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ440D*</td>
<td>Extended Range SPOTS; VFDE</td>
<td>4.6</td>
</tr>
<tr>
<td>SPQ442</td>
<td>SLC-2000 E SPOTS CU CS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ443*</td>
<td>SLC-2000 E SPOTS CU CF</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ450</td>
<td>ALC POTS/SPOTS CU CF + OHT/CLASS ALIC5 + LSAS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ452</td>
<td>SLC-2000 OCU Dataport</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ453</td>
<td>Dual Coin CF</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ456</td>
<td>Quad DID</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ460</td>
<td>Quad POTS/SPOTS (ALC, CF + Extended Range + VFDE)</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ478</td>
<td>SLC-2000 ALC C- POTS CF OHT/CLASS</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ494</td>
<td>Quad ISDN ANSI-U</td>
<td>4.4</td>
</tr>
<tr>
<td>SPQ909</td>
<td>Lower-power POTS CF + OHT/CLASS</td>
<td>4.4</td>
</tr>
</tbody>
</table>

* Some engineering restrictions (for example, power limitations) must be considered when using this channel unit. Refer to Section 6, "System Planning and Engineering," for more information.
† Registered trademark of American National Standards Institute, Inc.
‡ GTE only.
§ Trademark of Tollgate Communications, Inc.
Administration and Provisioning

Contents

Overview

Wideband Shelf Administration

Version Recognition

Software Upgrades

Remote Software Download and Copy

Data Base Backup and Restoral

ITM SNC

Security

Enhanced Security Features

Software Compatibility

Controller Maintenance and Memory Administration

Controller Maintenance

Memory Administration

Service Affecting Actions

DS-1/T1 Multiplexing and Mapping

Wideband Shelf Provisioning

Default Provisioning

Remote Provisioning

Automatic Provisioning on Circuit Pack Replacement

Feature Packaging Provisioning

Open Systems Interconnection (OSI) Provisioning

Port State Provisioning

Channel State Provisioning
Contents

Line State Provisioning 8-12
AIS or Unequipped Provisioning 8-12
 ■ Data Communications Channel (DCC) Provisioning 8-12
 ■ Operations Interworking (OI) Provisioning 8-12

Software Compatibility 8-14
 ■ NSAP Provisioning 8-16
 ■ TARP Provisioning 8-16

Selectable Parameters 8-17
 ■ Switch Selectable Parameters 8-17
 ■ CIT Selectable Parameters 8-18
 Performance Monitoring (PM) Parameters Provisionable via the CIT 8-22

Cross-Connection Provisioning 8-22
 ■ Cross-Connection Types 8-23
 Termination/Drop Cross-Connection 8-23
 Add Drop Cross-Connection for DS3 8-27
 Pass-Through Cross-Connection 8-28
 Locked Cross-Connection 8-30
 Manual Cross-Connection Procedure 8-35
 OC-1 Path Protected Ring Application Example 8-35
 Single-Homed Path-Switched Ring Example 8-38
 Dual-Homed Path-Switched Ring Example 8-42
 OC-1 Ring Pass-Through Example 8-44
 Example Cross-Connections 8-45
 OC-1 Ring Hairpin Routing, Single-Homed Example 8-46
 Example Cross-Connections 8-47
 OC-1 Ring Hairpin Routing, Dual-Homed Example 8-48
 Example Cross-Connections 8-49
 Hairpin Local Drop Routing Example 8-50
 Example Cross-Connections 8-51
 Cross-Connects for Release 3.1 and Later 8-52
 Basic DS3 Cross-Connects 8-53
Contents

DS3 Locked Cross-Connects 8-54
STS-3c Cross-Connects 8-55
Narrowband Administration and Provisioning 8-58
Narrowband Shelf Administration 8-58
 Software Downloads and Upgrades 8-58
 Security 8-58
Narrowband Shelf Provisioning 8-61
 Channel Unit Provisioning 8-61
Administration and Provisioning

Overview

This chapter describes the administration and provisioning features of the DDM-2000 FiberReach Multiplexer narrowband shelf and wideband shelves. The following topics are described in addition to the administration and provisioning features:

- Multiplexing and mapping
- Cross-connection provisioning for linear and ring networks
- Listing of provisionable parameters with their ranges and default values.

Wideband Shelf Administration

Version Recognition

The DDM-2000 FiberReach Multiplexer provides automatic version recognition of all hardware, firmware, and software installed in the system. Each circuit pack CLEI code, equipment catalog item (ECI) code, apparatus code and series number, and serial number is stored on the circuit pack and is accessible by the system controller (SYSCTL) via the craft interface terminal (CIT). Circuit packs with socketed devices also report those devices and program identification (PID)

* COMMON LANGUAGE is a registered trademark and CLEI, CLLI, CLCI, and CLFI are trademarks of Telcordia Technologies.
codes. The system controller also reports the software version for the system. Refer to the `rtrv-eqpt` command in Chapter 11, "Commands and Reports."

Software Upgrades

The DDM-2000 FiberReach wideband shelf provides an in-service software installation capability to update the generic program in local and remote systems. In-service software installation is done via the CIT port on local systems and via the host on remote systems. Upgrades are distributed on MS-DOS formatted diskettes, containing the new software and an installation program. These software upgrades are the primary mechanism to add new feature enhancements to the in-service DDM-2000 FiberReach network. All software upgrades are in-service and do not affect any provisionable parameters. For example, cross-connections are left unchanged by the software upgrade.

The software upgrade can be performed locally via the CIT port on the local FiberReach wideband shelf or remotely via the SONET DCC. In either case, the procedure is straightforward. The technician connects an MS-DOS personal computer serial port to the CIT port on the DDM-2000 Fiber Reach (for local upgrades) or to the CIT port of another DDM-2000 in the subnetwork (for remote upgrades), starts the installation program, and is prompted with a few safety questions before the upgrade installation actually begins. After the technician confirms to proceed, the PC takes over the process and completes the installation. When finished, the DDM-2000 FiberReach shelf automatically restarts with the new software.

On command, the new software may be copied from the upgraded system to other systems over the DCC, allowing software version changes without having to dispatch technicians to any remote site. Because FiberReach Release 3.0 and later is not OI-compatible with earlier releases of FiberReach, FiberReach Release 3.0 and later software cannot be copied (NE-NE) to a FiberReach Release 2.2 or earlier NE. Remote PC-NE software downloads are recommended for FiberReach Release 3.0 and later. Refer to the Lucent Technologies 2000 Product Family Multi-Vendor Operations Interworking Guide, 824-102-144.

Remote Software Download and Copy

System software can be downloaded using a PC through the EIA-232-D interface on the user panel to another system connected to the local system via the SONET DCC. The DDM-2000 FiberReach Multiplexer can upgrade the system software while in-service. DDM-2000 FiberReach Multiplexers use flash erasable programmable read-only memory (flash EPROM) chips to provide this capability. Software can be downloaded from a PC to a remote NE even when the local shelf is a different member of the DDM-2000 product family or SLC-2000 from the remote shelf (for example, a DDM-2000 OC-12 at the CO and a DDM-2000 FiberReach at the RT site.) Remote software download and copy is also
supported in multi-vendor subnetworks, but only between DDM-2000 Multiplexers. The remote software download and copy capabilities enable the network service providers to avoid costly craft dispatches for software upgrade.

DDM-2000 FiberReach can also accept software downloads from Lucent’s ITM SNC 5.0 when upgrading from DDM-2000 FiberReach R3.0 or later to subsequent releases.

Data Base Backup and Restoral

The DDM-2000 FiberReach data bases can be backed up and restored from a file using CPro-2000 to protect valuable system information after a catastrophic failure. Catastrophic failures may include:

- Shelf destruction by fire, hurricane, flood, or other natural event or intentional damage
- Cabinet housing the shelf damaged by a vehicle
- Manual errors during provisioning or maintenance.

The backup can be done using CPro-2000 through the CIT port on any shelf in the subnetwork to all DDM-2000 FiberReach shelves in the same subnetwork or from the host. The information that can be backed up and restored includes:

- Major NE provisionable parameters on the circuit packs and line ports
- Cross-connections
- Performance monitoring (PM) threshold parameters.

In addition, the following information is backed up for reference only, and will not be restored by CPro-2000:

- Target identifier (TID)
- Software version
- System equipage
- Software readable hardware switch settings
- User names.

These parameters are either not settable or should be set manually before or after restoration by CPro-2000.

The data base backup and restoral capability of CPro-2000 can be used to significantly simplify the installation of several shelves having similar or identical configurations. See 365-576-130, CPro-2000 User Manual for more information.
ITM SNC

All of the backup and restore features are also available with the Integrated Transport Management Subnetwork Controller (ITM SNC). Refer to OI Software Compatibility table later in the chapter for release compatibilities. Refer to 107-564-270, Integrated Transport Management (ITM) SubNetwork Controller (SNC), User Guide, for additional information.

Security

DDM-2000 FiberReach Multiplexers provide security capabilities to protect against unauthorized access to the system through the CIT and data communications channel (DCC). In addition, the DCC can be disabled, thus securely isolating that DDM-2000 FiberReach Multiplexer from possible remote intrusion. When security is enabled (default is disabled for the CIT and DCC, and always enabled for the TL1 user), four types of users are allowed access to the DDM-2000 FiberReach wideband shelf with a valid login and password:

- Privileged Users: These users have access to all commands, including restricted commands. Privileged users may set system security and assign login and password pairs to general and reports-only users. A maximum of three privileged user logins are allowed.

- General Users: These users have access to all commands, except restricted commands.

- Maintenance-Only Users: These users (available in Release 2.2 and later) have access to basic commands and maintenance commands only (for example, loopbacks and forced switches) but cannot execute any provisioning commands or restricted commands.

- Reports-Only Users: These users may only obtain reports and execute several basic commands.

A provisionable inactive timeout is available for each CIT and DCC access port. This enables automatic termination of inactive or unattended sessions. An additional lockout feature is available that prohibits access to all users except privileged users.

On wall distant terminal enclosures, a security lock is provided to restrict access to circuit packs.

Authorized privileged users can establish general user and reports-only user logins using the set-lgn command. Authorized privileged users can also "lockout" access by general and reports-only users without deleting the login and password file.
The following commands are restricted to privileged users over the CIT and DCC interfaces.

- `init-sys` — Initialize System
- `rstr-passwd` — Restore login and password file
- `rtrv-lgn` — Retrieve Login
- `rtrv-passwd` — Retrieve login and password file
- `set-feat` — Set Features
- `set-fecom` — Set Far-End Communications
- `set-lgn` — Set Login
- `set-secu` — Set Security
- `set-sync` — Set Synchronization characteristics.

When security is enabled (default is "disable"), the following additional commands become restricted to privileged users only:

- `apply` — Locally Overwrite Executing Software
- `cpy-prog` — Copy Program
- `dlt-osacmap` — Delete OS application context ID map
- `ent-osacmap` — Enter OS application context ID map
- `ent-t11msgmap` — Enter TL1 message map for OS
- `ent-ulsdcc-l3` — Enter Upper Layer Section DCC - Layer 3
- `ent-ulsdcc-l4` — Enter Upper Layer Section DCC - Layer 4
- `dlt-ulsdcc-l4` — Delete Upper Layer Section DCC - Layer 4
- `init-pm` — Initialize Performance Monitoring
- `ins-prog` — Install Program
- `reset` — System Reset
- `set-date` — Set network element (NE) Date and time
- `set-ne` — Set NE name.
- `set-x25` — Set X.25 baud rate for OS.

Reports-only users can execute the following commands: `? (help)`, `logout`, `rlgn`, `set-passwd` (their own), `toggle`, and all `rtrv` commands except `rtrv-lgn`, and `rtrv-passwd`.

For details on these and other commands, see Chapter 11, "Commands and Reports."
Enhanced Security Features

In DDM-2000 FiberReach Release 4.0, security feature enhancements include:

- User Provisionable Banner - a “Welcome Banner” that appears when a user signs on to the system
- 30-Day Aging on Passwords for Privileged Accounts
- Individual Accountability
 - Allowable number of Privileged Users has increased.
 - Allowable number of General Users, Maintenance-Only Users, and Reports-Only Users has increased.

Software Compatibility

All DDM-2000 FiberReach Multiplexers connected in the same maintenance subnetwork must be running compatible software. For more information on software compatibility, refer to the “OI Software Compatibility” table in this chapter.

NOTE:
FiberReach Release 3.0 and later is NOT compatible with previous releases of DDM-2000 OC-3, OC-12, and FT-2000. Therefore, when upgrading a network, care should be taken to avoid isolating NEs that have not yet been upgraded to Release 3.0 and later.
Controller Maintenance and Memory Administration

Controller Maintenance

The system controller (SYSCTL) provides control functions for the DDM-2000 FiberReach Multiplexer. The SYSCTL circuit pack provides CIT interfaces and coordinates protection switching, as well as all shelf maintenance and provisioning activities. The SYSCTL also provides a communications channel to remote shelves via the DCC bytes in the OC-1/OC-3/OC-12 section overhead. The SYSCTL has a processor with volatile random access memory (RAM), and nonvolatile memory.

The DDM-2000 FiberReach Multiplexer is designed so that SYSCTL failures do not affect transmission. That is, no hits or errors will occur on any traffic as a result of a SYSCTL circuit pack failure. A SYSCTL failure does result in the loss of automatic protection switching. However, if a transmission circuit pack fails before a SYSCTL failure, the protection switch will remain effective during the SYSCTL failure and service is preserved. This means that if an active transmission circuit pack should fail while the SYSCTL is failed, a protection switch cannot be done and service carried by the failed circuit pack will be affected.

Memory Administration

All transmission affecting parameters that are set by software, such as bipolar 8-zero substitution/alternate mark inversion (B8ZS/AMI) encoding on DS1 interfaces and cross-connect assignments, are stored in nonvolatile memory on the SYSCTL circuit pack and on the appropriate transmission circuit packs. When the shelf is powered up or the SYSCTL circuit pack is replaced, the shelf's transmission values are automatically uploaded to the SYSCTL. When a transmission circuit pack is replaced, provisioning data stored on the SYSCTL is automatically downloaded to the replacement circuit pack. Manual action is not required to maintain system provisioning after a circuit pack is replaced.

Certain non-service-affecting provisioned data, such as alarm delay, is stored only on the SYSCTL circuit pack. This means that when a SYSCTL circuit pack is replaced, the new SYSTCL circuit pack should be initialized by pressing the INIT button during the 10-second interval while the CR alarm LED is flashing after the SYSCTL circuit pack is inserted. This action is the same as entering the init-sys:sysctl command which sets the SYSCTL circuit pack parameters to their default values. Refer to the init-sys command in Chapter 11, "Commands and Reports" and to "Install or Replace SYSCTL" in the TOP section of this manual. If parameters other than the default values are needed, the values must be entered using the CIT. If the INIT function is not performed, whatever values that are stored in nonvolatile memory on the new SYSCTL circuit pack are used. Failure to follow the proper procedure may not cause transmission errors or loss of
service but could affect maintenance. For example, an incorrect TID could produce confusing TL1 reports to the operations system (OS).

Service Affecting Actions

Although the DDM-2000 FiberReach Multiplexer is designed to minimize loss of service due to equipment failure or human action, there are certain controller related actions that can cause a loss of provisioning data and possibly loss of service. These actions include:

- Replacing a transmission circuit pack when the SYSCTL is failed or removed can result in a loss of provisioning data and loss of service.
- Replacing a transmission circuit pack in a shelf without power can result in a loss of provisioning data. Loss of service may continue on channels associated with the replaced circuit pack after the shelf is powered up.
- Executing the command `init-sys:all` sets all provisioning data, including cross-connect provisioning to default values. This causes loss of service on any channel connected with non-default cross-connections.
- Failing to disable the SYSCTL circuit pack before it is removed in accordance with TOP procedures could result in unexpected events; however, no loss of service occurs. Refer to the "Install BBG8/BBG8B SYSCTL New Shelf" and "Replace Circuit Pack" procedures in the TOP section of this manual.
- Provisioning data is maintained through a software download to the SYSCTL. Replacing the SYSCTL circuit pack with incompatible software and intentionally overriding the software check could result in a loss of data.
DS-1/T1 Multiplexing and Mapping

The DDM-2000 FiberReach Multiplexer uses the floating virtual tributary (VT) mode, asynchronous mapping for clear channel DS1 transport. Each DS1 signal is mapped to a VT1.5 signal; four VT1.5s are byte-interleaved to form a VT-G signal; and seven VT-Gs are multiplexed to a VT-structured STS-1 signal. The STS-1 signals are byte-interleaved to create STS-3, OC-3/OC-12, and STS-12 signals respectively. The `ent-crs-vt1` command is used to enter cross-connections between VT1.5 channels in the OC-1 interface and DS1/T1 ports. There are no default cross-connections. See Chapter 11, "Commands and Reports," for more information on this command.

In the opposite direction, a received OC-1 signal is converted back to the electrical signal, and, for OC-3 and OC-12, demultiplexed to an STS-1 signal. The STS-1 is demultiplexed to seven VT-Gs; each VT-G is separated into four VT1.5s; and a DS1 signal is extracted from each VT1.5.

The mapping of a DS-1 to an OC-1 signal requires the port address being connected with a time slot in the optical line interface unit (OLIU) circuit pack. Optical time slots are identified in three parts: — STS-1 in the OC-1, VT-G in the STS-1, and VT1.5 in the VT-G.

Wideband Shelf Provisioning

The DDM-2000 FiberReach Multiplexer allows the user to customize many system characteristics through its provisioning features. Provisioning parameters are set by a combination of on-board switches and software control.

Only those system parameters fixed at installation time (for example, DS1 line buildouts) are set with on-board switches. Some parameters needed for typical installations, such as line coding, that may need to change later are settable by switches and overridable by software. This allows typical installations to be performed without a CIT. Other parameters that require a wide range of options or in-service changes must be set under software control. For example, PM thresholds and VT1.5 cross-connections can be customized for each installation using the CIT interface.

Default Provisioning

Installation provisioning is minimized with thoughtfully chosen default values set in the factory. Every parameter has a factory default value. These factory defaults for

* For the OC-1 interface, the STS-1 number is always 1.
Software parameters are maintained in the SYSCTL circuit pack, and a single CIT command is provided to restore all default values. All provisioning data is stored in nonvolatile memory to prevent data loss during power failures and maintenance operations.

Remote Provisioning

Software control allows remote provisioning of the DDM-2000 FiberReach Multiplexer. This feature is provided especially for parameters likely to change in service, in support of centralized operations practices.

Automatic Provisioning on Circuit Pack Replacement

Replacement of a failed circuit pack is simplified by automatic provisioning of the current circuit pack values. The SYSCTL circuit pack maintains a provisioning map of the entire shelf, so when a transmission or synchronization pack is replaced, the SYSCTL circuit pack automatically downloads values to the new circuit pack. If the SYSCTL circuit pack is ever replaced, provisioning data, except for the line buildout (LBO) settings, from every other circuit pack in the shelf is automatically uploaded to the nonvolatile memory of the new SYSCTL circuit pack.

Feature Packaging Provisioning

Certain software features are available only through a special licensing agreement with Lucent. Currently VT performance monitoring and DS1 performance monitoring are available for the DDM-2000 FiberReach Multiplexer. These features are enabled by privileged user logins according to the licensing agreement, using the `set-feat` command and can be reviewed using the `rtrv-feat` command. These features are optional and may not be active on all systems. For details on these and other commands, refer to Chapter 11, "Commands and Reports."

Open Systems Interconnection (OSI) Provisioning

DDM-2000 FiberReach supports OSI interworking between DDM-2000 FiberReach, OC-3, and OC-12 Multiplexers. In a given subnet, the network elements (NEs) on each side of an optical span must have their "userside/networkside" (OSI terminology) parameters provisioned to opposite values. These values are set using the `set-fecom` command on the DDM-2000 shelves. Local procedures should determine the "user" and "network" side of a span. For example, the CO terminal can be designated the network side and the...
RT site the user side. It does not matter as long as the two sides are opposite values. See the `set-fecom` command page in Chapter 11 for more details.

The network service access point (NSAP) is a multiple part address that uniquely identifies an NE for OSI interworking purposes. A unique NSAP is programmed into the FiberReach BBG8/BBG8B SYSCTL circuit pack at the factory. This default NSAP value is adequate to operate current networks. NSAP provisioning, using the `ent-ulsdcc` command, will be used as part of future upgrade procedures. See the `ent-ulsdcc` command in Chapter 11, “Commands and Reports,” for more information on NSAP provisioning.

Port State Provisioning

Port state provisioning is a feature provided on DDM-2000 Multiplexers that suppresses alarm reporting and performance monitoring by supporting multiple states [automatic (AUTO), in-service (IS), and not-monitored (NMON)] for low speed DS1 ports.

Ports without signals (undriven) are in the automatic (AUTO) state until changed to the in-service (IS) state when a signal is present. The `set-state-t1` command allows a user to change the state of a port to the not monitored (NMON) state or from the NMON state to the AUTO state. The `rtrv-state-eqpt` and `rtrv-t1` commands allow a user to retrieve current port states. The `upd` command allows a user to change the port state of all undriven ports from IS to AUTO.

Channel State Provisioning

Channel state provisioning is a feature provided on DDM-2000 FiberReach Multiplexers that suppresses reporting of alarms and events for VT1.5 and STS-1 channels during provisioning by supporting multiple states (automatic, in-service, and not-monitored) for VT1.5 and STS-1 channels. The `rtrv-state-vt1` and `rtrv-state-sts1` commands allow a user to retrieve current channel states.

While an end-to-end circuit is being set up, particularly during VT1.5 cross-connection provisioning, several transient maintenance signals may result. Without automatic channel state provisioning, these are reported as alarms or events. The technicians are expected to ignore these transient alarms and initiate corrective action only if the alarms persist after the provisioning is completed. To avoid the confusion created by this, DDM-2000 FiberReach Multiplexers provide automatic channel state provisioning.

A VT1.5 or STS-1 channel stays in the default automatic (AUTO) state until a valid signal (a framed non-AIS or non-LOP signal) is received on that channel. While in AUTO state, no alarms or events are reported on the channel by the DDM-2000 FiberReach Multiplexer. On receiving a valid signal, which occurs when the end-
to-end circuit is completely provisioned, the channel automatically changes to the IS state, and normal alarm and event reporting starts. An additional state, NMON, is also supported in which alarm and event reporting is suppressed regardless of the validity of the signal being received on the channel. Like the port state provisioning capability provided for DS1 ports, the user can use CIT commands to manually change a channel from IS or AUTO to NMON, and from NMON to AUTO. A direct change from NMON to IS is not allowed. See the set-state-sts1, set-state-vt1, rtrv-state-sts1, rtrv-state-vt1 and upd commands.

Line State Provisioning

For DDM-2000 FiberReach, OC-1 ring interfaces can be set manually to NMON or IS.

AIS or Unequipped Provisioning

In DDM-2000 FiberReach the shelf can be optioned to send an "STS/VT-path unequipped" signal instead of path AIS when a DS1 pack is removed or when a cross-connection is removed.

Data Communications Channel (DCC) Provisioning

The DCC is used for operations communications between NEs. The DCC is part of the SONET overhead on all optical transmission lines.

In a given subnetwork, the NEs on each side of an optical span must have their "userside/networkside" (OSI terminology) parameters provisioned to opposite values. Local procedures should determine the "user" and "network" side of a span. For example, the CO terminal can be designated the network side and the RT site the user side. It does not matter as long as the two sides are opposite values. See the TOP section of this manual for provisioning procedures.

In ring systems, there is one DCC assigned for the "m1" ring and another DCC for the "m2" ring.

Operations Interworking (OI) Provisioning

OI provides the capability to access, operate, administer, maintain, and provision remote Lucent NEs from other NEs in a subnetwork or from a centralized OS.

OI is supported among systems that are connected through the DCC. Table 8-1 lists the SONET software compatibility within a subnetwork for the Lucent 2000
Product Family systems. All configurations listed support OI. The table lists all possible software combinations. Combinations not listed are not supported.

Table 8-1. OI Software Compatibility

<table>
<thead>
<tr>
<th>Release</th>
<th>FiberReach 3.0</th>
<th>FiberReach 3.1</th>
<th>FiberReach 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3, R13.0 & R15.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OC-12, R7.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLC-2000, R3.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLC-2000, R4.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FT-2000, R8.1, R9.0/9.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TITAN 5500/S, R5.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ITM SNC, 5.0</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ITM SNC, 6.0</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CPro-2000, R8.0</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>CPro-2000, R9.0</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>CPro-2000, R10.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

OI features include the following:

- Remote OS access via the TL1/X.25 GNE
- Remote CIT login (remote technician access)
- Remote software download and copy.

Software Compatibility

Table 8-2 lists the SONET software compatibility within a subnetwork for the Lucent 2000 Product Family systems. All configurations listed support Operations Interworking (OI). The table lists all possible software combinations. Combinations not listed are not supported.

Table 8-2. Software Compatibility

<table>
<thead>
<tr>
<th>Release</th>
<th>Fiber Reach R2.2 with 26G2-U</th>
<th>Fiber Reach R3.0 with 26G2-U</th>
<th>Fiber Reach R3.1 with 26G2-U</th>
<th>Fiber Reach R4.0 with 28-Type</th>
<th>Fiber Reach R2.2 with 28-Type</th>
<th>Fiber Reach R3.1 with 28-Type</th>
<th>Fiber Reach R4.0 with 29-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3, R7.2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OC-3, R8.0</td>
<td>X*</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC-3, R8.1</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC-3, R9.1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OC-3, R11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OC-3, R11.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OC-3, R13.0</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OC-3, R15.0</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OC-12, R5.1</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OC-12, R5.2</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC-12, R7.0</td>
<td>X*</td>
<td>X*</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fiber Reach, R3.0</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fiber Reach, R3.1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fiber Reach, R4.0</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLC-2000, R3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC-2000, R4.4†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC-2000, R4.6†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT-2000, R7.2</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FT-2000, OC-48 R8.0</td>
<td>X*</td>
<td>X*</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FT-2000, OC-48 R8.1</td>
<td>X*</td>
<td>X*</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FT-2000, R9.0</td>
<td>X*</td>
<td>X*</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* FiberReach shelf is not directly connected.
† SLC-2000 R4.4 through 4.6 can be used for NBS FITL applications. Contact Technical Support, Access Products for compatibility details.

Table 8-3 lists the software and circuit pack compatibility matrix for FiberReach Releases 2.2 through 4.0.
Table 8-3. Software and Circuit Pack Compatibility Matrix

<table>
<thead>
<tr>
<th>FiberReach Product/Release</th>
<th>MAIN</th>
<th>FN</th>
<th>Low-Speed Groups</th>
<th>SYSCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26G-U</td>
<td>—</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>26G2-U</td>
<td></td>
<td>177A*</td>
<td>BBG8B</td>
</tr>
<tr>
<td></td>
<td>28G-U</td>
<td>—</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>28G2-U</td>
<td></td>
<td>BBF8* 177A*</td>
<td>BBG8B</td>
</tr>
<tr>
<td>Release 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26G-U</td>
<td>—</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>26G2-U</td>
<td></td>
<td>177A*</td>
<td>BBG8B</td>
</tr>
<tr>
<td>Release 3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26G-U</td>
<td>—</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>26G2-U</td>
<td></td>
<td>177A*</td>
<td>BBG8B</td>
</tr>
<tr>
<td></td>
<td>28G-U</td>
<td>—</td>
<td>BBG19 BBG4 BBG4B</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>28G2-U</td>
<td></td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8B</td>
</tr>
<tr>
<td>Release 4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26G-U</td>
<td>BBG19 BBG4 BBG4B</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>26G2-U</td>
<td></td>
<td>177A*</td>
<td>BBG8B</td>
</tr>
<tr>
<td></td>
<td>28G-U</td>
<td>BBG19 BBG4 BBG4B</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>28G2-U</td>
<td></td>
<td>BBF8* 177A*</td>
<td>BBG8B</td>
</tr>
<tr>
<td></td>
<td>29G-U</td>
<td>BBG19 BBG4 BBG4B</td>
<td>BBF1B BBF3B BBF6</td>
<td>BBG8/</td>
</tr>
<tr>
<td></td>
<td>29H-U</td>
<td></td>
<td>BBF8* 177A*</td>
<td>BBG8B</td>
</tr>
</tbody>
</table>

* The 177A retainer is required in any unused low-speed slots when partially equipped and 1X7 protected.

† The following rules and restrictions apply when mixing HDSL with Quad DS1 packs:
- In 1x1, up to 2 BBF1(B) or BBF3(B), 1 for service and 1 for protect, can be mixed with up to 2 BBF8s, one for service and one for protect.
- In 1x7, if 3 HDSL (BBF8) circuit packs are used in Low Speed (either 1 for protect and 2 for service, or 0 for protect and 3 for service), no mixing is allowed.
- Up to 2 BBF8s can be mixed with up to 3 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- Up to 1 BBF8 can be mixed with up to 5 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- If Low Speed is equipped with 8 BBF1(B)/BBF3(B), then no BBF8 is allowed.
- No T1EXT can be mixed with HDSL.
NSAP Provisioning

The network services access point (NSAP) is a multiple part address that uniquely identifies each NE for OI purposes. The NSAP is used for subnetwork DCC communications using the OSI protocol. A unique NSAP is programmed into the SYSCTL circuit pack at the factory and does not have to be modified by the user unless subnetwork partitioning is necessary. This default NSAP value is adequate to operate typical subnetworks. Subnetwork partitioning is accomplished by assigning NEs to different areas. An NE's area address is one of the subfields within its NSAP. The `ent-ulsdcc-13` command is used to modify an NE's NSAP. See the `ent-ulsdcc-13` commands in Chapter 11, “Commands and Reports,” for more information on NSAP provisioning.

TARP Provisioning

Although TARP functions automatically, using standard default values and without any user provisioning, DDM-2000 allows provisioning of the following TARP parameters. All TARP parameters are provisioned by the CIT and TL1 `ent-ulsdcc-14` command and include the following:

- Lifetime
- Manual Adjacency
- Timers
- Loop Detection Buffer (LDB) Flush Timer
- TDC Enable/Disable
- TDC TID-NSAP Entries.

It is recommended that TARP default values always be used, with the possible exception of Manual Adjacency and the TDC parameters. TARP Manual Adjacency may be used to propagate TARP messages beyond any non-TARP nodes in a subnetwork, if necessary. In the unlikely event the TDC contains inaccurate information, the TDC parameters may be used to update the TDC.

Eliminated Provisioning: Because DDM-2000 FiberReach Releases 3.0 and later do not support Lucent Directory Services (LDS) or Remote NE Status features, the following OI-related provisioning is no longer necessary:

- AGNE
- Alarm Group Number
- NE Number
- Site Number
- TBOS Number.
Selectable Parameters

Switch Selectable Parameters

Table 8-4 describes the parameters provisionable via hardware switches. Refer to the command pages in Chapter 11, "Commands and Reports," for a complete explanation of parameters.

Table 8-4. Parameters Provisionable via Hardware Switches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Pack</th>
<th>Command (Note)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
<td>MEGA STAR</td>
<td>SYSCTL</td>
<td>rtrv-ne</td>
</tr>
<tr>
<td>DCC connection</td>
<td>WBS, not WBS</td>
<td>SYSCTL</td>
<td></td>
</tr>
<tr>
<td>DS1 line coding *</td>
<td>AMI, B8ZS</td>
<td>DS1, DS1PM, T1EXT</td>
<td>rtrv-t1</td>
</tr>
<tr>
<td>DS1 LBO†</td>
<td>5 settings (cable dependent)</td>
<td>DS1, DS1PM</td>
<td></td>
</tr>
</tbody>
</table>

* CIT can override switch settings. (Factory default is noOverride.) Parameter can be set for each port.
† Parameter can be set for each circuit pack.
CIT Selectable Parameters

Table 8-5 describes the parameters provisionable via the CIT. Refer to the command pages in Chapter 11, “Commands and Reports,” for a complete explanation of parameters. Additional information on the ID parameters is provided in the “Identifiers” section immediately following Table 8-5.

Table 8-5. DDM-2000 FiberReach Parameters Provisionable via the CIT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default (Note 1)</th>
<th>Command (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>current value</td>
<td>70-01-01</td>
<td>set-date</td>
</tr>
<tr>
<td>Time</td>
<td>current value</td>
<td>00:00:00</td>
<td>set-date</td>
</tr>
<tr>
<td>Target ID (system name)</td>
<td>20 characters</td>
<td>LT-DDM-2000</td>
<td>set-ne</td>
</tr>
<tr>
<td>CO/RT select</td>
<td>CO, RT</td>
<td>RT</td>
<td>set-ne</td>
</tr>
<tr>
<td>RNE stat</td>
<td>enabled, disabled</td>
<td>disabled</td>
<td>set-ne</td>
</tr>
<tr>
<td>Alarm Group ID (almgrp)</td>
<td>1 - 255</td>
<td>255</td>
<td>set-ne</td>
</tr>
<tr>
<td>AGNE</td>
<td>yes, no</td>
<td>no</td>
<td>set-ne</td>
</tr>
<tr>
<td>VT Uneqpd./AIS insert</td>
<td>Uneqpd., AIS</td>
<td>AIS</td>
<td>set-ne</td>
</tr>
<tr>
<td>CIT page length</td>
<td>0 (pager off), 3-150 rows</td>
<td>24</td>
<td>set-link</td>
</tr>
<tr>
<td>PM thresholds</td>
<td>See PM Table</td>
<td>-</td>
<td>set-pmthres</td>
</tr>
<tr>
<td>Alarm holdoff delay</td>
<td>0-30 sec</td>
<td>2</td>
<td>set-attr-alm</td>
</tr>
<tr>
<td>Alarm clear delay</td>
<td>0-30 sec</td>
<td>10</td>
<td>set-attr-alm</td>
</tr>
<tr>
<td>Power minor alarm level</td>
<td>MN, MJ</td>
<td>MN</td>
<td>set-attr-alm</td>
</tr>
<tr>
<td>OC1 degrade threshold</td>
<td>10^{-5} to 10^{-9}</td>
<td>10^{-6}</td>
<td>set-o1</td>
</tr>
<tr>
<td>syncmsg</td>
<td>kbyte,sbyte,disabled</td>
<td>kbyte</td>
<td>set-o3</td>
</tr>
<tr>
<td>STS-1 path signal degrade threshold</td>
<td>10^{-5} to 10^{-9}</td>
<td>0 (disabled)</td>
<td>set-sts1</td>
</tr>
<tr>
<td>NSA STS-1 path AIS alarm level</td>
<td>MN, NR</td>
<td>MN</td>
<td>set-sts1</td>
</tr>
<tr>
<td>SA STS-1 path AIS alarm level</td>
<td>CR, NA</td>
<td>MN</td>
<td>set-sts1</td>
</tr>
<tr>
<td>STS-1 channel state</td>
<td>NMON, AUTO†</td>
<td>AUTO</td>
<td>set-state-sts1</td>
</tr>
<tr>
<td>VT1.5 path signal degrade threshold</td>
<td>10^{-5} to 10^{-6}</td>
<td>10^{-6} (disabled)</td>
<td>set-vt1</td>
</tr>
<tr>
<td>NSA VT path AIS</td>
<td>MN, NR</td>
<td>MN</td>
<td>set-vt1</td>
</tr>
<tr>
<td>SA VT path AIS</td>
<td>MJ, NR</td>
<td>MJ</td>
<td>set-vt1</td>
</tr>
<tr>
<td>VT channel state¶</td>
<td>NMON, AUTO†</td>
<td>AUTO</td>
<td>set-state-vt1</td>
</tr>
</tbody>
</table>

See notes and footnotes at end of table.
Table 8-5. DDM-2000 FiberReach Parameters Provisionable via the CIT (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default (Note 1)</th>
<th>Command (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1 line coding*</td>
<td>AMI,B8ZS,noOverride‡</td>
<td>noOverride</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 alarm level*</td>
<td>MJ, MN, NA</td>
<td>NA</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 AIS insertion*</td>
<td>yes, no</td>
<td>yes</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 failure threshold*</td>
<td>10^{-3}, 10^{-6}</td>
<td>10^{-3}</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 BPV to LOS*</td>
<td>yes, no</td>
<td>no</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 PM Mode*</td>
<td>off,on</td>
<td>off</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 PM Format*</td>
<td>sf, esf, esfn</td>
<td>esf</td>
<td>set-tl*</td>
</tr>
<tr>
<td>DS1 primary port state*</td>
<td>NMON, AUTO‡</td>
<td>AUTO</td>
<td>set-state-tl*</td>
</tr>
<tr>
<td>Environmental alarm level</td>
<td>CR, MJ, MN, NA</td>
<td>MN</td>
<td>set-atrr-env</td>
</tr>
<tr>
<td>Environmental alarm type</td>
<td>10 characters</td>
<td>10 characters</td>
<td>set-atrr-env</td>
</tr>
<tr>
<td>Environmental alarm description</td>
<td>26 characters</td>
<td>26 characters</td>
<td>set-atrr-cont</td>
</tr>
<tr>
<td>Control point description</td>
<td>26 characters</td>
<td>enabled</td>
<td>set-fecom</td>
</tr>
<tr>
<td>Far end communication over DCC §</td>
<td>enabled, disabled</td>
<td>enabled</td>
<td>set-fecom</td>
</tr>
<tr>
<td>Far end communication over DCC identity for OSI subnets</td>
<td>userside, networkside</td>
<td>see command page</td>
<td></td>
</tr>
<tr>
<td>Set security §</td>
<td>enabled,disabled,lockout</td>
<td>disabled</td>
<td>set-secu</td>
</tr>
<tr>
<td>CIT security §</td>
<td>enabled,disabled,lockout</td>
<td>disabled</td>
<td>set-secu</td>
</tr>
<tr>
<td>CIT timeout (minutes) §</td>
<td>0-120</td>
<td>15</td>
<td>set-secu</td>
</tr>
<tr>
<td>DCC security §</td>
<td>enabled,disabled,lockout</td>
<td>15</td>
<td>set-secu</td>
</tr>
<tr>
<td>DCC timeout (minutes) §</td>
<td>0-120</td>
<td>CIT</td>
<td>set-secu</td>
</tr>
<tr>
<td>DCC §</td>
<td>enabled,disabled,lockout</td>
<td>9600</td>
<td>set-secu</td>
</tr>
<tr>
<td>CIT port type §</td>
<td>1200, 2400, 4800, 9600, 19200</td>
<td>enabled, disabled</td>
<td>set-secu</td>
</tr>
<tr>
<td>CIT TL1 baudrate §</td>
<td>1200, 2400, 4800, 9600, 19200</td>
<td>26-type OLIU enables</td>
<td>set-sync</td>
</tr>
<tr>
<td>CIT TL1 echo §</td>
<td>enabled,disabled,lockout</td>
<td>28-type OLIU disabled</td>
<td>set-sync</td>
</tr>
<tr>
<td>X25 async baudrate §</td>
<td>1200, 2400, 4800, 9600, 19200</td>
<td>enabled</td>
<td>set-sync</td>
</tr>
<tr>
<td>X25 async echo §</td>
<td>enabled,disabled,lockout</td>
<td>28-type OLIU disabled</td>
<td>set-sync</td>
</tr>
<tr>
<td>Sync Timing Source</td>
<td>main-1, main-2</td>
<td>main-1</td>
<td>set-sync</td>
</tr>
<tr>
<td>SYNC mode switching</td>
<td>revertive, nonrevertive</td>
<td>revertive</td>
<td>set-sync</td>
</tr>
<tr>
<td>SYNC Autoreconfiguration§</td>
<td>enabled, disabled</td>
<td>26-type OLIU enables</td>
<td>set-sync</td>
</tr>
<tr>
<td>Feature Packaging §</td>
<td>enabled, disabled</td>
<td>disabled</td>
<td>set-feat</td>
</tr>
<tr>
<td>VT PM or DS1 PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSAP (Layer 3 provisioning)**</td>
<td>6 hex digits</td>
<td>000000</td>
<td>ent-ulsdcc-13</td>
</tr>
<tr>
<td>L3org (Organization ID)</td>
<td>4 hex digits</td>
<td>0000</td>
<td>ent-ulsdcc-13</td>
</tr>
<tr>
<td>L3res(Reserved)</td>
<td>4 hex digits</td>
<td>0000</td>
<td>ent-ulsdcc-13</td>
</tr>
<tr>
<td>L3rd (Routing Domain)</td>
<td>4 hex digits</td>
<td>0000</td>
<td>ent-ulsdcc-13</td>
</tr>
<tr>
<td>L3area/Area</td>
<td>4 hex digits</td>
<td>0000</td>
<td>ent-ulsdcc-13</td>
</tr>
</tbody>
</table>

See notes and footnotes at end of table.
Table 8-5. DDM-2000 FiberReach Parameters Provisionable via the CIT (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default (Note 1)</th>
<th>Command (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARP (Layer 4 provisioning)**</td>
<td>1 to 65535</td>
<td>100</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tlf (lifetime parameter)</td>
<td>12 hex digits</td>
<td></td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ajsys (Manual adjacency parameters)</td>
<td>6 hex digits</td>
<td>NSAP Org. ID field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ajorg</td>
<td>4 hex digits</td>
<td>NSAP reserved field of the Local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ajres</td>
<td>4 hex digits</td>
<td>NSAP routing domain field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ajrd</td>
<td>4 hex digits</td>
<td>NSAP area field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ajarea</td>
<td>4 hex digits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4ttm (timer parameters)</td>
<td>1 to 3600 seconds</td>
<td>15 seconds</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ttm</td>
<td>1 to 3600 seconds</td>
<td>25 seconds</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ttm</td>
<td>1 to 3600 seconds</td>
<td>40 seconds</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ttm</td>
<td>1 to 3600 seconds</td>
<td>20 seconds</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4ttm (loop detection buffer flush timer)</td>
<td>1 to 1440 minutes</td>
<td>5 minutes</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdc (TARP data cache)</td>
<td>enabled, disabled</td>
<td>enabled</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdcsys (TARP data cache parameters)</td>
<td>12 hex digits</td>
<td>No default. See Note 3.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdcid</td>
<td>20 characters</td>
<td>No default. See Notes 4 and 5.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdcorg</td>
<td>6 hex digits</td>
<td>NSAP Org. ID field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdcres</td>
<td>4 hex digits</td>
<td>NSAP Reserved field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdcrd</td>
<td>4 hex digits</td>
<td>NSAP routing domain field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>L4tdcarea</td>
<td>4 hex digits</td>
<td>NSAP area field of the local NE.</td>
<td>ent-ulsdcc-14</td>
</tr>
<tr>
<td>ACID (OS type)**</td>
<td>See command pages.</td>
<td></td>
<td>ent-tllmsgmap</td>
</tr>
<tr>
<td>TL1 autonomous message type**</td>
<td>See command pages.</td>
<td></td>
<td>ent-tllmsgmap</td>
</tr>
<tr>
<td>Action to assoc. message type to OS**</td>
<td>enabled, disabled</td>
<td>enabled</td>
<td>ent-tllmsgmap</td>
</tr>
<tr>
<td>Cross-connection type</td>
<td>twoway, locked</td>
<td>twoway</td>
<td>ent-crsvtl</td>
</tr>
<tr>
<td>Ring ID for locked</td>
<td>m1,m2</td>
<td>See command pages</td>
<td>ent-crsvtl</td>
</tr>
</tbody>
</table>

See notes and footnotes on the next page.
Identifiers

The following identifiers (ID) are used for the TID and NSAP address. See also the *Lucent Technologies 2000 Product Family Multi-Vendor Operations Interworking Guide*, 824-102-144.

- **TID**: The target identifier (TID) is a 20-character parameter that is set through the CIT using the `set-ne` command. The TID is used in the `rlgn` command to identify an NE to which a CIT remote login session is being established. The TID is also used by an OS to identify NEs using the TL1 message-based communications protocol.
After the `init-sys:all` or `init-sys:systcl` command is entered, the
system sets the TID to a default value of LT-DDM-2000. The TID must be
unique among all NEs. The default TID may be changed using the `set-ne`
command to a unique user-assigned value recognized by the OS.

- **NSAP**: The network services access point (NSAP) is a multiple part
 address that uniquely identifies the NE. The NSAP is used for subnetwork
 DCC communications using the OSI protocol. The NSAP is set to unique
 values assigned to control hardware at the factory and does not have to be
 modified by the user unless subnetwork partitioning is necessary.
 Subnetwork partitioning is accomplished by assigning NEs to different
 areas. An NE’s area address is one of the subfields within its NSAP.
 The `ent-ulsdcc-l3` command is used to modify an NE’s NSAP.

- **CO/RT**: The CO/RT parameter for CO or RT identifies the system as
 having the characteristics of a CO or RT. The default is RT. The parameter
 controls the operation of the miscellaneous discretes and the external fan
 control.

Performance Monitoring (PM) Parameters

Provisionable via the CIT

For a list of PM parameters provisionable via the CIT, see Table 10-23 in the
“Technical Specifications” chapter of this manual.

Cross-Connection Provisioning

Traffic is transported through the SONET network via dedicated, software-
provisioned, VT1.5 or STS-1 time slot transmission paths. For each transmission
path through a network ring, a cross-connection is needed in every NE (node) on
the ring. The time slot interchange (TSI) feature of DDM-2000 FiberReach
Multiplexers offers users flexibility in directing traffic in and out of these systems to
support a wide variety and range of customer applications.

In an hairpin application, no cross-connection using a high speed interfaces is
needed on the node in the hosting ring because no signal is transported through
the high-speed interfaces in the host ring.

For the DDM-2000 Multiplexers, cross-connections of both ring paths are entered
with a single command entry per shelf. This minimizes the possibility of
provisioning a circuit without a protection channel. The ring channels are always
carried within the OLIU circuit packs in the Main 1 and Main 2 slots. Cross-
connections in DDM-2000 Multipleplexers are made by specifying the SONET rate
(VT1.5 or STS-1), the end point addresses (access identifiers), the cross-
connection type (two way, locked, etc.) and, in some cases, the ring direction
(ring=m1, ring=m2, etc.). In DDM-2000 Multiplexers, each single cross-connection
command establishes a bidirectional cross-connection. There is no need to
identify ring channels in Main 1 as different from Main 2 because both rings are always provisioned with the same information.

Cross-Connection Types

There are three different VT1.5 cross-connection types for the DDM-2000 FiberReach Multiplexer: termination/drop, pass-through, and locked.

Termination/Drop Cross-Connection

The termination/drop cross-connection is used in all path-switched ring applications for DDM-2000 FiberReach, where DS1 low-speed signals are cross-connected to VT1.5 channels in both rotations of the rings terminating on the high-speed interfaces. With this cross-connection, all added signals are bridged on to both rotations of the ring; the better of the two signals received from the two rotations of the ring is dropped.

As shown in Table 8-6 and Table 8-7, at the entry and exit points, the VT channels are cross-connected to the low-speed ports (for example, \{ls group\}-\{slot\}-(port\ on\ slot), a-1-4). These are called “drop” connections. For example, the command ent-crs-vt1:m-1-3-4,b-1-4 connects the fourth low-speed port associated with slot 1 of low-speed group B to the fourth VT1.5 within the third VT group within the first STS-1 of both rings.

Table 8-6. DDM-2000 FiberReach Manual VT1.5 Cross Connections (Termination/Drop) in a 1 x 1 Configuration

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-1-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>a-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,a-1-1</td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>b-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-3-4,b-1-4</td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>c-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-3-3,c-1-3</td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>d-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-3-3,d-1-3</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>a-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,a-1-1</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>b-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,b-1-1</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>c-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,c-1-1</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>d-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,d-1-1</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>a-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,a-1-1</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>b-1-{1-4,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,b-1-1</td>
</tr>
<tr>
<td>From Address</td>
<td>OLIU</td>
<td>To Address</td>
<td>CP Type (Notes)</td>
<td>Example Commands</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td><---></td>
<td>c-1-{1-4,all} DS1</td>
<td>ent-crs-vt1:m-1-1-1,c-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td><---></td>
<td>d-1-{1-4,all} DS1</td>
<td>ent-crs-vt1:m-1-1-1,d-1-1</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all} OC-1</td>
<td><---></td>
<td>a-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all} OC-1</td>
<td><---></td>
<td>b-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,b-1-2</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all} OC-1</td>
<td><---></td>
<td>c-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-3-3,c-1-1</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7}-{1-4,all} OC-1</td>
<td><---></td>
<td>d-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-3-3,d-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}{1-7,all}-{1-4,all} OC-3</td>
<td><---></td>
<td>a-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-3-3,a-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}{1-7,all}-{1-4,all} OC-3</td>
<td><---></td>
<td>b-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-3-3,b-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}{1-7,all}-{1-4,all} OC-3</td>
<td><---></td>
<td>c-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-3-3,c-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}{1-7,all}-{1-4,all} OC-3</td>
<td><---></td>
<td>d-1-{1-2,all} T1EXT</td>
<td>ent-crs-vt1:m-1-1-3-3,d-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}{1-7,all}-{1-4,all} OC-12</td>
<td><---></td>
<td>a-1-{1-2,all} HDSL*</td>
<td>ent-crs-vt1:m-1-1-3-3,a-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}{1-7,all}-{1-4,all} OC-12</td>
<td><---></td>
<td>b-1-{1-2,all} HDSL*</td>
<td>ent-crs-vt1:m-1-1-3-3,b-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}{1-7,all}-{1-4,all} OC-12</td>
<td><---></td>
<td>c-1-{1-2,all} HDSL*</td>
<td>ent-crs-vt1:m-1-1-3-3,c-1-1</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}{1-7,all}-{1-4,all} OC-12</td>
<td><---></td>
<td>d-1-{1-2,all} HDSL*</td>
<td>ent-crs-vt1:m-1-1-3-3,d-1-1</td>
<td></td>
</tr>
</tbody>
</table>
Notes

1. **Locked Signals**: Cross-Connect type (CCT) must be “locked” (locked).

When using HDSL (BBF8) circuit pack in the Low Speed area, the 28G-U/28G2-U or the 29G-U OLIU must be used in the main unit slots of the FiberReach shelf and you are limited to three HDSL (BBF8) circuit packs including protection.

The following rules and restrictions apply when mixing HDSL with Quad DS1 packs:

- In 1x1, up to 2 BBF1(B) or BBF3(B), 1 for service and 1 for protect, can be mixed with up to 2 BBF8s, one for service and one for protect.
- In 1x7, if 3 HDSL (BBF8) circuit packs are used in Low Speed (either 1 for protect and 2 for service, or 0 for protect and 3 for service), no mixing is allowed.
- Up to 2 BBF8s can be mixed with up to 3 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- Up to 1 BBF8 can be mixed with up to 5 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- If Low Speed is equipped with 8 BBF1(B)/BBF3(B), then no BBF8 is allowed.
- No T1EXT can be mixed with HDSL.

Table 8-7. DDM-2000 FiberReach Manual VT1.5 Cross Connections (Termination/Drop) in a 1 x 7 Configuration

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>OLIU</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>a-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-1-1,a-2-1</td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>a-2-{1-4,all}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>b-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-3-4,b-2-4</td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>b-2-{1-4,all}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>c-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-3-3,c-2-3</td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>c-2-{1-4,all}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>d-1-{1-4}</td>
<td>ent-crs-vt1:m-1-3-3,d-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>a-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-3-3,a-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>a-2-{1-4,all}</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>b-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-3-3,b-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>b-2-{1-4,all}</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>c-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-3-3,c-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>c-2-{1-4,all}</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>d-1-{1-4,all}</td>
<td>ent-crs-vt1:m-1-3-3,d-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>a-1-{1-2,all}</td>
<td>ent-crs-vt1:m-1-3-3,a-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>a-2-{1-2,all}</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>b-1-{1-2,all}</td>
<td>ent-crs-vt1:m-1-3-3,b-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>b-2-{1-2,all}</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>c-1-{1-2,all}</td>
<td>ent-crs-vt1:m-1-3-3,c-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>c-2-{1-2,all}</td>
<td></td>
</tr>
</tbody>
</table>

HDSL
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>d-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>HDSL* ent-crs-vt1:m-1-3-3,d-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>a-1-{1-4,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>DS1 ent-crs-vt1:m-1-3-3,a-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>b-1-{1-4,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>DS1 ent-crs-vt1:m-1-3-3,b-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>c-1-{1-4,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>DS1 ent-crs-vt1:m-1-3-3,c-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>d-1-{1-4,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>DS1 ent-crs-vt1:m-1-3-3,d-2-3</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>a-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>HDSL* ent-crs-vt1:m-1-3-3,a-2-2</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>b-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>HDSL* ent-crs-vt1:m-1-3-3,b-2-2</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>c-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>HDSL* ent-crs-vt1:m-1-3-3,c-2-2</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>d-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>HDSL* ent-crs-vt1:m-1-3-3,d-2-2</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>a-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>T1EXT ent-crs-vt1:m-1-1-1,a-2-2</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>b-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>T1EXT ent-crs-vt1:m-1-3-3,b-2-2</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>c-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>T1EXT ent-crs-vt1:m-1-3-3,c-2-2</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>d-1-{1-2,all}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>T1EXT ent-crs-vt1:m-1-3-3,d-2-2</td>
</tr>
</tbody>
</table>
Add Drop Cross-Connection for DS3

Refer to Table 8-8 for the Manual STS-1 Cross Connections (Termination Drop Cross-Connections).

Table 8-8. DDM-2000 FiberReach Manual STS-1 Cross Connections (Termination Drop Cross-Connections)

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-{1-3}</td>
<td>OC-3 (28-type)</td>
<td>f</td>
<td>DS3 (BBG4B/BBG4B, and BBG19)</td>
<td>ent-crs-sts1:m-1,f</td>
</tr>
<tr>
<td>m-{1-12}</td>
<td>OC-12 (29-type)</td>
<td>f</td>
<td></td>
<td>cct=twoway,ring=(m1,m2)</td>
</tr>
</tbody>
</table>

Notes 1. Both main units must always be equipped with a OC-3 OLIUs or OC-12 OLIUs.
Pass-Through Cross-Connection

Another type of cross-connection allows a high-speed VT1.5 or STS-1 channel to be "passed-through" between two high-speed ring interfaces. This is used in all path-switched ring applications at nodes where traffic is not dropped. The high-speed time slot entering must be the same leaving in this type of cross-connection. In path switched rings, pass-through grooming (passing a signal on a ring time slot that is different from the ring time slot on which it was received) is not supported.

As shown in Table 8-9, pass through cross-connections are designated by using the same VT ring channel twice in the cross-connect address. For example, the single command `ent-crs-vt1:m-1-5-3:m-1-5-3` connects a pass through cross-connection both to and from the third VT1.5 within the fifth VT group within the first STS-1 of both the service and protection ring.

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-1-1-1-7,{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>m-1-1-1-7,{1-7,all}-{1-4,all}</td>
<td>OC-1</td>
<td>ent-crs-vt1:m-1-1-2,m-1-1-2; ent-crs-vt1:m-1-3-4,m-1-3-4</td>
</tr>
<tr>
<td>m-1-1-1-3,{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>m-1-1-1-3,{1-7,all}-{1-4,all}</td>
<td>OC-3</td>
<td>ent-crs-vt1:m-1-2-4,m-1-2-4</td>
</tr>
<tr>
<td>m-1-1-1-12,{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>m-1-1-1-12,{1-7,all}-{1-4,all}</td>
<td>OC-12</td>
<td>ent-crs-vt1:m-1-2-4,m-1-2-4</td>
</tr>
</tbody>
</table>

Notes 1. Pass Through Signals: Address on the left side must be identical to the address on the right side. There is no interchange function for "pass through" signals.

Depending on local practice, work orders will normally identify the low-speed port designations at the entry and exit points in the network and the target identifiers (TIDs) of the NEs at these points. The work order may also designate the VT1.5 ring channel which will be used for this service. If the work order does not designate a ring channel to use, use the command `rtrv-crs-vt1` to identify all the ring channels that are currently unassigned. The work order also may not designate all the other NEs on the ring that need to be provisioned with pass through cross-connections. In this case, use successive `rtrv-map-nei` commands to identify the TIDs for all the NEs in a ring.
Pass-Through Cross-Connection for STS-1

Refer to Table 8-10 for a Manual STS-1 Cross Connection (Pass-Through).

Table 8-10. DDM-2000 FiberReach Manual STS-1 Cross Connections (Pass-Through)

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU Address</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-{1-3}</td>
<td>OC-3 (28-type)</td>
<td>m-{1-3}</td>
<td>OC-3 OLIU (28-type)</td>
<td>ent-crs-sts1:m-1,m-1, cct=twoway, ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-12}</td>
<td>OC-12 (29-type)</td>
<td>m-{1-12}</td>
<td>OC-12 OLIU (29-type)</td>
<td>ent-crs-sts1:m-1,m-1, cct=twoway, ring={m1,m2}</td>
</tr>
</tbody>
</table>

Notes
1. Both main units must always be equipped with OC-3 OLIUs or OC-12 OLIUs.
2. Pass Through Signals: Address on the left side must be identical to the address on the right side. There is no interchange function for "pass through" signals.

Manual STS-3c Cross-Connections

The 0x1 OC-3c optical interface provides the ability of transporting STS-3c services on OC-3c low-speed function units optical interfaces that have been provisioned for 0X1 applications. The internal system's application default value for OC-3 OLIU (22-type) in the function unit is "0x1". The CIT `ent-crs-sts3c` command is used with a two-way cross-connect type option. Refer to Table 8-11 for FiberReach STS-3c 0 x 1 Cross-Connections.

Table 8-11. DDM-2000 FiberReach STS-3c 0 X 1 Cross-Connections

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU Address</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-1</td>
<td>OC-3 (28-type)</td>
<td>f-1</td>
<td>22-type OLIU</td>
<td>ent-crs-sts1:m-1,f-1, cct=two-way, cct=two-way</td>
</tr>
<tr>
<td>m-4</td>
<td>OC-12 (29-type)</td>
<td>m-1</td>
<td>22-type OLIU</td>
<td>ent-crs-sts1:m-1,m-1, cct=twoway, ring={m1,m2}</td>
</tr>
<tr>
<td>m-7</td>
<td></td>
<td>m-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Locked Cross-Connection

A variation of ring cross-connections, the locked cross-connection, is supported at the VT1.5 level to lock the path selector to a specified rotation of the ring where an external path selector is used. In this cross-connection, a DS1 or VT1.5 signal from the low-speed interface is cross-connected to the specified VT1.5 channel in the high-speed interface in the specified direction (Table 8-12 and Table 8-13). Any signal received in the VT1.5 channel from the other rotation of the ring is ignored.

Table 8-12. DDM-2000 FiberReach Manual VT1.5 Cross Connections (Locked) in a 1 x 1 Configuration

<table>
<thead>
<tr>
<th>From Address</th>
<th>To Address</th>
<th>OLIU</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all} OC-3</td>
<td>a-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.a-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all} OC-3</td>
<td>b-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.b-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all} OC-3</td>
<td>c-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.c-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all} OC-3</td>
<td>d-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.d-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>a-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.a-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>b-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.b-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>c-{1-1-1-1,all} DS1</td>
<td>ent-crs-vt1.m-1-1-1.c-1-1, cct=locked,ring=(m1,m2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Both main units must always be equipped with OC-3 or OC-12 OLIUs.
<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>d-{1-12,all}</td>
<td>DS1</td>
<td>ent-crs-vt1:m-1-1-1,d-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>a-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>b-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,b-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>c-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,c-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-7}-{1-4,all}</td>
<td>OC-1</td>
<td>d-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,d-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>a-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,a-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>b-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,b-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>c-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,c-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>d-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-3-3,d-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>a-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-3-3,a-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>b-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-3-3,b-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>c-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-3-3,c-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all}</td>
<td>OC-3</td>
<td>d-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-3-3,d-1-1,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>a-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>b-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,b-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>c-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,c-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>d-1-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,d-1-2,cct=locked,ring={m1,m2}</td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all}</td>
<td>OC-12</td>
<td>a-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2,cct=locked,ring={m1,m2}</td>
</tr>
</tbody>
</table>

Issue 3 June 2000 8-31
Table 8-13. DDM-2000 FiberReach Manual VT1.5 Cross Connections (Locked) in a 1 x 7 Configuration

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-1-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>b-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked,ring=(m1,m2)</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>c-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,c-1-2, cct=locked,ring=(m1,m2)</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>d-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,d-1-2, cct=locked,ring=(m1,m2)</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Locked Signals: Cross-Connect type (CCT) must be “locked” (locked).

*When using HDSL (BBF8) circuit pack in the Low Speed area, the 28G-U/28G2-U or the 29G-U OLIU must be used in the main unit slots of the FiberReach shelf and you are limited to three HDSL (BBF8) circuit packs including protection.

The following rules and restrictions apply when mixing HDSL with Quad DS1 packs:

- In 1x1, up to 2 BBF1(B) or BBF3(B), 1 for service and 1 for protect, can be mixed with up to 2 BBF8s, one for service and one for protect.
- In 1x7, if 3 HDSL (BBF8) circuit packs are used in Low Speed (either 1 for protect and 2 for service, or 0 for protect and 3 for service), no mixing is allowed.
- Upper 2 BBF8s can be mixed with up to 3 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- Up to 1 BBF8 can be mixed with up to 5 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- If Low Speed is equipped with 8 BBF1(B)/BBF3(B), then no BBF8 is allowed.
- No T1EXT can be mixed with HDSL.
<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-1</td>
<td>d-1-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,d-2-1, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>a-1-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>a-2-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>b-1-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>b-2-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>c-1-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,c-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>c-2-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,c-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>d-1-{1-4,all} DS1</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,d-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>a-1-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,a-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>a-2-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,a-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>b-1-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,b-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>b-2-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,b-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>c-1-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,c-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>c-2-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,c-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-12</td>
<td>d-1-{1-2,all} T1EXT</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,d-2-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>a-1-{1-2,all} HDSL*</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>a-2-{1-2,all} HDSL*</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>b-1-{1-2,all} HDSL*</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-1-{1-7,all}-{1-4,all} OC-3</td>
<td>b-2-{1-2,all} HDSL*</td>
<td></td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked, ring={m1,m2}</td>
<td></td>
</tr>
</tbody>
</table>
Administration and Provisioning

<table>
<thead>
<tr>
<th>From Address</th>
<th>OLIU</th>
<th>To Address</th>
<th>CP Type (Notes)</th>
<th>Example Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-{1-3}-{1-7,all}-{1-4,all} OC-3</td>
<td>c-1-{1-4,all} c-2-{1-4,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,c-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-3}-{1-7}-{1-4,all} OC-3</td>
<td>d-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1d1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>a-1-{1-2} a-2-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>b-1-{1-2} b-2-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>c-1-{1-2} c-2-{1-2,all}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,c-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>d-1-{1-2}</td>
<td>T1EXT</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>a-1-{1-2} a-2-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,a-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>b-1-{1-2} b-2-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,b-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7,all}-{1-4,all} OC-12</td>
<td>c-1-{1-4,all} c-2-{1-4,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1,c-1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
<tr>
<td>m-{1-12}-{1-7}-{1-4,all} OC-12</td>
<td>d-1-{1-2,all}</td>
<td>HDSL*</td>
<td>ent-crs-vt1:m-1-1-1d1-2, cct=locked,ring={m1,m2}</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. **Locked Signals:** Cross-Connect type (CCT) must be “locked” (locked).

*When using HDSL (BBF8) circuit pack in the Low Speed area, the 28G-U/28G2-U or the 29G-U OLIU must be used in the main unit slots of the FiberReach shelf and you are limited to three HDSL (BBF8) circuit packs including protection.

The following rules and restrictions apply when mixing HDSL with Quad DS1 packs:

- In 1x1, up to 2 BBF1(B) or BBF3(B), 1 for service and 1 for protect, can be mixed with up to 2 BBF8s, one for service and one for protect.
- In 1x7, if 3 HDSL (BBF8) circuit packs are used in Low Speed (either 1 for protect and 2 for service, or 0 for protect and 3 for service), no mixing is allowed.
- Up to 2 BBF8s can be mixed with up to 3 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- Up to 1 BBF8 can be mixed with up to 5 BBF1(B)/BBF3(B). No protect of either circuit pack type is allowed.
- If Low Speed is equipped with 8 BBF1(B)/BBF3(B), then no BBF8 is allowed.
- No T1EXT can be mixed with HDSL.

8-34 Issue 3 June 2000
Manual Cross-Connection Procedure

The following steps should be used to provision FiberReach systems for manual cross-connections:

a. All cross-connections entered by the user are "manual" connections and must be deleted by the user to change service.

b. All commands to change signal routings (enter or delete) may be service affecting. A warning and confirmation for the request is issued as explained in Chapter 11, "Commands and Reports," for the **ent-crs** and **dlt-crs** commands.

c. Manual routing requires that slots be equipped. The **ent-crs** routing command will check if the slot is equipped and display an error message denying illegal requests.

d. Manual routing requires that slots be equipped. Therefore, if the last circuit pack of a protected pair is removed from the slot even if there is no signal on the circuit pack, the action is alarmed. The "Update" command will be denied. The manual routing must be deleted before the circuit pack can be removed and the slot can become unequipped using the "Update" command.

e. The **rtrv-crs** command displays the cross-connect routing table.

The only restriction on manual cross-connections for FiberReach is that a cross-connection may not be made with any signal where a cross-connection already exists. The existing cross-connection must be deleted before a new cross-connection can be entered.

OC-1 Path Protected Ring Application Example

The following example is a path protected ring application with multiple NEs in a two-fiber ring. The main optical units of each FiberReach node in the ring are equipped with 26G2-U OLIU circuit packs to transport signals to the next NE as well as drop signals at the NE. The one or two host nodes are equipped with 27G-U OLIU circuit packs. Valid mapping is provided by termination and pass through cross-connections. The following paragraphs describe a ring network example configuration and describe how to create manual cross-connections to establish the ring network. Figure 8-1 shows the six nodes with dashed lines indicating the cross-connections.
Figure 8-1. Example OC-1 Ring Configuration Cross-Connections
In Figure 8-1, the example configuration is a ring network with two ring fibers and six nodes. Ring 1 carries ring traffic in the clockwise direction while Ring 2 carries ring traffic in the counterclockwise direction. In the example configuration, Node 1 is a DDM-2000 OC-3 shelf equipped with 27-type OLIU circuit packs in the Main slots, MXRVOs in Function Unit A, and DS1 or DS1PM circuit packs in the Low-Speed Group A slots. Nodes 2 through 6 are DDM-2000 FiberReach Multiplexer shelves with 26-type OLIU circuit packs in the Main slots and DS1 or DS1PM circuit packs in the Low-Speed Group A slots. All shelves are properly installed and provisioned. This example is for DS1 services. See “System Turnup/Circuit Order” in the TOP section of this manual for actual procedures.

Ring configurations support manual VT1.5 cross-connections. Manual cross-connections must be made at each node in the network for each circuit being established. Drop cross-connections are made at the drop nodes where service enters or exits the node (Nodes 1 and 5) and pass through cross-connections are made at each intermediate node (Nodes 2, 3, and 5).

It is recommended that pass-through cross-connections be entered first, as shown below, to avoid transient alarms during provisioning.

The following commands may be used to delete, enter, and retrieve cross-connections: \texttt{dlt-crs-vt1}, \texttt{ent-crs-vt1} and \texttt{rtrv-crs-vt1}. See Chapter 11, “Commands and Reports,” for a description of these commands.

To establish the end-to-end DS1 circuit from Node 1 to Node 5, as shown in Figure 8-1, enter a cross-connection at each node as follows:

1. Enter the following pass-through cross-connections at Nodes 2, 3, and 5:

 \texttt{ent-crs-vt1: m-1-2-3, m-1-2-3: cct=twoway;}

2. Enter the following cross-connection to drop the VT1.5 channel from the OC-1 ring to a DS1 interface at Node 1:

 \texttt{ent-crs-vt1: m-1-2-3, a-2-3: cct=twoway;}

3. Enter the following cross-connection to drop the VT1.5 channel from the OC-1 ring to a DS1 interface at Node 4, a DDM-2000 FiberReach Wideband shelf:

 \texttt{ent-crs-vt1: m-1-2-3, a-1-3: cct=twoway;}

4. Test both paths around the ring. Since DDM-2000 uses non-revertive path switching to minimize the number of hits on services, the initial path selection is arbitrary. Use \texttt{rtrv-state-path} and \texttt{sw-path-vt1} commands to test both ring paths around the ring network at the drop nodes of the new service. The \texttt{sw-path-vt1} command should be limited to the addresses that are being tested. For the example, the commands to be used at Node 1 and Node 4 are:

 \texttt{sw-path-vt1: m1-1-2-3} and \texttt{sw-path-vt1: m2-1-2-3}.
Note that this same configuration could be set up using the second OC-1 interface on the 27G-U OLIUs in the main slots of the DDM-2000 OC-3 shelf at Node 1. To do this using the same VT1.5 timeslot on the OC-1 ring, replace the VT1.5 address m–1–2–3 with m–2–2–3 in Step 2; all other cross-connections remain the same.

Single-Homed Path-Switched Ring Example

Figure 8-2 shows an example of an OC-1 VT1.5 single-homed path-switched ring application. The network elements on the OC-3 ring can be either DDM-2000 OC-3 Multiplexers or SLC-2000 Access Systems.
In Figure 8-2, the DDM-2000 OC-3 shelf at RT3 supports a single-homed OC-1 interface in function unit B. Signals are connected between the OC-3 interface in Main-1 and the OC-1 interface(s) in FN-B-1, and between the OC-3 interface in Main-2 and the OC-1 interface(s) in FN-B-2. Switching is not done on the DDM-2000 OC-3 Multiplexer on these interfaces; rather VT1.5 level path switching is done on the DDM-2000 FiberReach Multiplexer and on the DDM-2000 OC-3 shelf at the CO node. This allows DDM-2000 FiberReach nodes to interface with DDM-
2000 nodes of an OC-3 ring, providing "ring-on-ring" architecture. Each OC-1 ring so supported occupies up to 28 VT1.5 time slots on the OC-3 ring. When single-homing is used, the OC-3 system passes the VT1.5 time slots between the OC-1 interfaces and OC-3 interfaces without terminating them or performing any path protection switching on them. Up to six OC-1 rings can be supported by one DDM-2000 OC-3 shelf in this way. Since the signals from the OC-1 ring(s) are sent as two copies (one clockwise, the other counterclockwise) on the OC-3 ring, the OC-3 ring capacity is limited to the OC-3 line rate (84 VT1.5 signals). So, although one DDM-2000 OC-3 shelf can support up to six OC-1 rings, the full capacity of all six OC-1 rings cannot be carried on the OC-3 ring.

The OC-1 lines between an OC-3 node and an OC-1 node behave like the OC-1 lines between the nodes on an OC-1 ring and do not perform line level protection switching. Instead, the FiberReach shelves perform the normal path protection switching functions.

Some points to note for this application are:

- Single-homing can be thought of as a "ring on ring" with many of the characteristics of a single ring.
- Pass through cross-connections may be required at the VT level on both the OC-1 and OC-3 rings.
- The OC-1 ring can be composed of up to 28 VT1.5 signals from the OC-3 ring.
- More DDM-2000 FiberReach wideband shelves could be added to the OC-1 ring. A cross-connection from the OC-1 interface to a DS1 interface would be required at one of the FiberReach wideband shelves on the OC-1 ring, and pass-through cross-connections would be required at all other FiberReach wideband shelves on the OC-1 ring.
Example Cross-Connections

To establish the end-to-end DS1 circuit from the CO to the DDM-2000 FiberReach wideband shelf as shown in Figure 8-2, enter a cross-connection at each node as follows:

- At RT1, RT2, and RT4:
 \[\text{ent-crs-vt1:m-1-2-3,m-1-2-3:cct=twoway;} \]
 The VT signal passes through these sites on the OC-3 ring, so two-way cross-connections with identical addresses are provisioned here.

- At RT3: \[\text{ent-crs-vt1:m-1-2-3,b-1-5-4:cct=twoway;} \]
 This single command establishes the following signal paths through the DDM-2000 OC-3 shelf at RT3:
 - from Main-1, STS-1 #1, VTG #2, VT1.5 #3 to FN-B-1, STS-1 #1, VTG #5, VT1.5 #4
 - from FN-B-1, STS-1 #1, VTG #5, VT1.5 #4 to Main-1, STS-1 #1, VTG #2, VT1.5 #3
 - from Main-2, STS-1 #1, VTG #2, VT1.5 #3 to FN-B-2, STS-1 #1, VTG #5, VT1.5 #4
 - from FN-B-2, STS-1 #1, VTG #5, VT1.5 #4 to Main-2, STS-1 #1, VTG #2, VT1.5 #3

- At the CO: \[\text{ent-crs-vt1:m-1-2-3,b-7-4:cct=twoway;} \]
 This is a "drop" from the OC-3 ring to a DS1 interface.

- At FiberReach: \[\text{ent-crs-vt1:m-1-5-4,c-1-1:cct=twoway;} \]
 This is a "drop" from the OC-1 ring to a DS1 interface.

It is recommended that the pass-through cross-connections be entered first, as shown here, to avoid transit alarms during provisioning.
Dual-Homed Path-Switched Ring Example

Dual-homing offers even more survivability than a single-homed network, as even the catastrophic failure of a host node can be protected. Figure 8-3 shows an example of a dual-homed OC-1 extension from two remote nodes on an OC-3 access ring. The network elements on the OC-3 ring can be either DDM-2000 OC-3 Multiplexers or SLC-2000 Access Systems.

Figure 8-3. Example Dual-Homed Path-Switched Ring Configuration Cross-Connections
Path protection switching is employed for dual-homed applications, just like in single-homed applications. That is, path switching is supplied by the remote DDM-2000 FiberReach nodes and the DDM-2000 OC-3 systems in the wire center. However, the OC-3 host node configuration is different than single homing. Since an OC-3 host node terminates only one leg of the OC-1 extension, it employs a 0x1 low-speed interface to the OC-1 ring extension. The dual OC-1 circuit pack can be unprotected in a dual-homed application. Dual- and single-homed extensions can also be mixed at a host node, allowing the access network to be tailored efficiently to different groups of customers.

Example Cross-Connections

The cross-connect commands at each node in Figure 8-3 are as follows:

- At RT1 and RT2: ent-crs-vt1:m-1-2-3,m-1-2-3:cct=twoway;
 The VT signal in the ring is only passing through these sites, so two-way cross-connections with identical addresses are provisioned here.

- At RT3 and RT4: ent-crs-vt1:m-1-2-3,b-1-4-7:cct=twoway;
 At these sites, the VT1.5 signal is routed between a timeslot on the OC-3 ring and a timeslot on the OC-1 ring.

- At FiberReach: ent-crs-vt1:m-1-4-7,c-1-4:cct=twoway;
 At this site, the signal is routed from a DS1 interface to the same timeslot on both rotations of the OC-1 ring. In the other direction, the VT1.5 signals received from both rotations of the OC-1 ring are monitored, path protection switching is provided, and the selected signal is routed to the DS1 interface.

- At CO: ent-crs-vt1:m-1-2-3,b-1-1:cct=twoway;
 At this site, the signal is routed from a DS1 interface to the same timeslot on both rotations of the OC-3 ring. In the other direction, the VT1.5 signals received from both rotations of the OC-3 ring are monitored, path protection switching is provided, and the selected signal is routed to the DS1 interface.
OC-1 Ring Pass-Through Example

In Figure 8-4, the OC-3 Node Host is equipped with a 22-type OLIU in the Main OLIU circuit packs in Function Units B1 and B2. Both FiberReach nodes are equipped with 26G2-U OLIUs in Main and DS1 or DS1PM circuit packs in the low speed slots.

Figure 8-4. Example of OC-1 Ring Pass-Through Using Function Unit Slots of the OC-3 Shelf
Example Cross-Connections

For example, to establish the end-to-end DS1 circuit that is passed through the OC-3 subsystem Host without using bandwidth on the OC-3 ring, the following cross-connects need to be established:

- At the node Host, enter the following cross-connection:
 \[
 \text{ent-crs-vt1:b-1-2-4,b-1-2-4:cct=twoway;}
 \]
 The VT signal passes through from a FiberReach node to another FiberReach node on the OC-1 ring without using bandwidth on the OC-1 Host node.

- At the FiberReach nodes, enter the following cross-connection:
 \[
 \text{ent-crs-vt1:m-1-2-4,c-1-1:cct=twoway;}
 \]

> **NOTE:**
This is a drop from the OC-1 ring to a DS1 interface.
OC-1 Ring Hairpin Routing, Single-Homed Example

In Figure 8-5, Node Host is a DDM-2000 OC-3 shelf equipped with 27-type OLIU circuit packs in Function Unit A slots, and 22-type OLIU circuit packs in the Main slots. Node RT-B is a DDM-2000 FiberReach Multiplexer with 26G2-type OLIU circuit packs in Main and DS1 or DS1PM circuit packs in the Low-Speed Group A slots, and it is included in the inner OC-1 ring.

Figure 8-5. Example of an OC-1 Ring Hairpin Routing, Single-Homed Configuration

Node RT-A is a DDM-2000 FiberReach Multiplexer with 26G2-type OLIU circuit packs in Main and DS1 or DS1PM circuit packs in the Low-Speed Group B slots, and it is included in the outer OC-1 ring.
Both rotations of each of the two OC-1 rings terminate on a pair of 27G2-U OLIUs placed in the Function Unit A. More specifically, the inner OC-1 ring terminates on the OC-1 #1 ports of the 27G2-U OLIUs, and the outer OC-1 ring terminates on the OC-1 #2 ports of the 27G2-U OLIUs.

Example Cross-Connections

In order to cross-connect each rotation of one ring to the corresponding rotation of the other ring, Single-Homed OC-1 Ring Hairpin Routing would consist of the following cross-connections.

To establish the end-to-end DS1 circuit between Node RT-B and RT-A through the Host as shown in Figure 8-5, enter a cross-connection at each node as follows:

- **At Node Host**, enter the following cross-connection:

 `ent-crs-vt1:a-1-7-4,a-2-4-1:cct=twoway;`

 This single command establishes the following signal paths through the Function Unit A of the OC-3 shelf:

 - from FN-A-1, STS-1 #1, VTG #7, VT1.5 #4 to FN-A-1, STS-1 #2, VTG #4, VT1.5 #1
 - from FN-A-1, STS-1 #2, VTG #4, VT1.5 #1 to FN-A-1, STS-1 #1, VTG #7, VT1.5 #4
 - from FN-A-2, STS-1 #1, VTG #7, VT1.5 #4 to FN-A-2, STS-1 #2, VTG #4, VT1.5 #1
 - from FN-A-2, STS-1 #2, VTG #4, VT1.5 #1 to FN-A-2, STS-1 #1, VTG #7, VT1.5 #4

- **At Node RT-B**, enter the following cross-connect:

 `ent-crs-vt1:m-1-7-4,a-1-1:cct=twoway;`

- **At Node RT-A**, enter the following cross-connect:

 `ent-crs-vt1:m-1-4-1,b-1-3:cct=twoway;`
OC-1 Ring Hairpin Routing, Dual-Homed Example

In Figure 8-6, Node X is a DDM-2000 OC-3 shelf equipped with a 27-type OLIU circuit pack in Function Unit A slot 1, and 22-type OLIU circuit packs in the Main slots. Node Y is also a DDM-2000 OC-3 shelf equipped with a 27-type OLIU circuit pack in Function Unit A slot 2 and Function Unit C slot 2.

Figure 8-6. Example of OC-1 Ring Hairpin Routing, Dual-Homed Configuration

Node RT-B is a DDM-2000 FiberReach Multiplexer with 26G2-type OLIU circuit packs in Main and DS1 or DS1PM circuit packs in the Low-Speed Group C slots, and it is included in the inner OC-1 ring.

Node RT-A is a DDM-2000 FiberReach Multiplexer with 26-type OLIU circuit packs in Main and DS1 or DS1PM circuit packs in the Low-Speed Group A slots, and it is included in the outer OC-1 ring.
In this Dual Homed configuration, only one rotation of each of the two OC-1 rings terminates on a single OC-3 shelf. More specifically, one rotation of the inner OC-1 ring terminates on the OC-1 #1 port of the 27G2-U OLIU placed in Function Unit A-1 of OC-3 Node X, and the corresponding rotation of the outer OC-1 ring terminates on the OC-1 #2 port of the 27G2-U OLIU placed in Function Unit A-1 of OC-3 Node X as well.

The other rotation of the inner OC-1 ring terminates on the OC-1 #1 port of the 27G2-U OLIU placed in Function Unit A-2 of OC-3 Node Y, and the corresponding rotation of the outer OC-1 ring terminates on the OC-1 #1 port of the 27G2-U OLIU placed in Function Unit C-2 of the OC-3 Node Y as well.

Example Cross-Connections

In order to cross-connect each rotation of one ring to the corresponding rotation of the other ring as illustrated in Figure 8-6, Dual-Homed OC-1 Ring Hairpin Routing would consist of the following items.

To establish the end-to-end DS1 circuit between Node RT-B and RT-A through Node X and Node Y as shown in Figure 8-6, enter a cross-connection at each node as follows:

- **At Node X**, enter the following cross-connection:
  ```plaintext
  ent-crs-vt1:a-1-7-4,a-2-1-1:cct=twoway;
  ```
 This single command establishes the following signal paths through the Function Unit A of the OC-3 shelf:
 - from FN-A-1, STS-1 #1, VTG #7, VT1.5 #4 to FN-A-1, STS-1 #2, VTG #1, VT1.5 #1
 - from FN-A-1, STS-1 #2, VTG #1, VT1.5 #1 to FN-A-1, STS-1 #1, VTG #7, VT1.5 #4
 - from FN-A-2, STS-1 #1, VTG #7, VT1.5 #4 to FN-A-2, STS-1 #2, VTG #1, VT1.5 #1
 - from FN-A-2, STS-1 #2, VTG #1, VT1.5 #1 to FN-A-2, STS-1 #1, VTG #7, VT1.5 #4

- **At Node Y**, enter the following cross-connection:
  ```plaintext
  ent-crs-vt1:a-1-7-4,c-1-1-1:cct=twoway;
  ```
 This single command establishes the following signal paths through the Function Unit A of the OC-3 shelf and Function Unit C:
 - from FN-A-2, STS-1 #1, VTG #7, VT1.5 #4 to FN-C-2, STS-1 #1, VTG #1, VT1.5 #1
 - from FN-C-2, STS-1 #1, VTG #1, VT1.5 #1 to FN-A-2, STS-1 #1, VTG #7, VT1.5 #4

- **At Node RT-B**, enter the following cross-connect:
  ```plaintext
  ent-crs-vt1:m-1-7-4,c-1-1-1:cct=twoway;
  ```

- **At Node RT-A**, enter the following cross-connect:
  ```plaintext
  ent-crs-vt1:m-1-1-1,a-1-1-1:cct=twoway;
  ```
Hairpin Local Drop Routing Example

In Figure 8-7, Node Host is a DDM-2000 OC-3 shelf equipped with 27-type OLIU circuit packs in Function Unit A slots, 22-type OLIU circuit packs in the Main slots, and MXRVO circuit packs in Function Unit C along with the DS1 or DS1PM circuit packs in the corresponding Low Speed slots group C. This OC-3 shelf is part of an OC-3 ring.

Figure 8-7. Example of Hairpin Local Drop Routing Configuration

The OC-1 ring hosted by the OC-3 shelf contains two FiberReach nodes; RT-B and RT-A. Both DDM-2000 FiberReach Multiplexers are equipped with 26-type OLIU circuit packs in Main and DS1 or DS1PM circuit packs in
the Low-Speed slots. Both rotations of the OC-1 ring terminate on a pair of 27G2-U OLIUs placed in Function Unit A of the OC-3 (HOST) node. More specifically, the OC-1 ring terminates on the OC-1 # 2 ports of the 27G2-U OLIUs.

By establishing VT1.5 Hairpin local drop cross-connects between FN-A and FN-C of the OC-3 Host node, the user is allowing traffic to be routed from the FiberReach RT-A node in the OC-1 ring to a local drop on the OC-3 Host node without using bandwidth on the OC-3 ring.

Example Cross-Connections

To establish the end-to-end DS1 circuit between Node HOST and RT-A as shown in Figure 8-7, enter a cross-connection at each node as follows:

- At Node HOST, enter the following cross-connection:
 `ent-crs-vt1:a-1-2-4,c-2-4:cct=twoway;`

 This single command establishes the following signal paths through the OC-3 shelf:
 - from FN-A-1, STS-1 #1, VTG #2, VT1.5 #4 to FN-C, VTG #2, VT1.5 #4
 - from FN-A-2, STS-1 #1, VTG #2, VT1.5 #4 to FN-C, VTG #2, VT1.5 #4

- At Node RT-B, enter the following cross-connection:
 `ent-crs-vt1:m-1-2-4,m-1-2-4:cct=twoway;`

 It is recommended that the user enters the pass-through cross-connects first.

- At Node RT-A, enter the following cross-connection:
 `ent-crs-vt1:m-1-2-4,a-1-1:cct=twoway;`
Cross-Connects for Release 3.1 and Later

There are three new types of cross-connections for Release 3.1. The cross-connect types are as follows:

- Basic DS3 cross-connect
- DS3 locked cross-connect
- STS3c cross-connect.
Basic DS3 Cross-Connects

Beginning with Release 3.1, the Function Unit of the FiberReach Shelf will support the DS3 (BBG4B/BBG4B) circuit pack. This provides the ability of transporting STS-1 services, using the DS3 circuit packs in the Function Unit slots. The cross-connections are done at the STS-1 rate and they are the traditional two-way DS3 cross-connects.

Figure 8-8. Protected DS3 Services

Example Cross-Connections

The cross-connect commands at each node are shown in Figure 8-8.
DS3 Locked Cross-Connects

Beginning with Release 3.1, the Function Unit of the FiberReach Shelf will support the DS3 (BBG19) circuit pack.

Figure 8-9. Unprotected (Locked) DS3 Data Services

Example Cross-Connections

The cross-connect commands at each node are shown in Figure 8-9.
STS-3c Cross-Connects

The 0x1 OC-3c optical interface provides the ability of transporting STS-3c services on OC-3c low-speed function units optical interfaces that have been provisioned for 0X1 applications. The internal system’s application default value for OC-3 OLIU (22-type) in the function unit is “0x1”. The CIT ent-crs-sts3c command is used with a two-way cross-connect type option.

Figure 8-10. STS-3c Cross-Connects

Example Cross-Connections

The cross-connect commands at each node are shown in Figure 8-10.
Locked STS-3c (0x1) Broadband Services

Beginning with Release 3.1, a FiberReach with Main slots equipped with 28-type OC-3 OLIUs will transport STS-3c 0x1 service through 22-type OLIU OC-3 interfaces in its function group.

Beginning with Release 4.0, a FiberReach with Main slots equipped with 29-type OC-12 OLIUs will transport STS-3c 0x1 service through 22-type OLIU OC-3 interfaces in its function group.

STS-3c path switching does not take place on the DDM-2000 ring; it is executed elsewhere in the network (e.g., when the ring transports ATM STS-3c traffic path switching is performed through the external ATM-based router).

Figure 8-11 shows an STS-3c 0x1 application. Each OC-12 node provisions the same dropped STS-3c time slot as other nodes on the same ring. For different applications, an OC-12 node can assign the other STS-3cs to different time slots at different sites. With 0x1 applications the OC-12 ring passes the contents of these STS-3c time slots between the low-speed OC-3/IS-3 lines and the OC-12 high-speed lines without terminating them or performing path protection switching.

Since the STS-3c traffic is received by the low-speed interfaces and transmitted as two copies on the OC-12 ring (one clockwise, one counterclockwise), the ring capacity is limited to the OC-12 line rate.
Figure 8-11. Locked (0x1) STS-3c - Broadband Services Using DDM-2000 OC-12 Multiplexer and FiberReach Equipped with 29G-Type OLIUs
Narrowband Administration and Provisioning

Narrowband Shelf Administration

Software Downloads and Upgrades

Software is downloaded into the narrowband shelf DSXBIU from the SLC-2000 Host via the ESF datalink of the DS1 signals that carry the narrowband services. Upgrades to the software are distributed on MS-DOS formatted diskettes that contain the new software and an installation program for installing the software. These software upgrades are the mechanism to upgrade from one system software release to the next. All software upgrades maintain the provisionable parameters of the previous software generic. (For example, cross-connections are left unchanged by the software upgrade.)

The `ins-prog` command supports software installation from a personal computer and the `cpy-prog` command supports software installation from one FiberReach shelf to another FiberReach shelf.

Software can be downloaded locally or remotely from an MS-DOS PC using the CIT port on a SLC-2000 Access System or DDM-2000 Multiplexer. The software is first loaded into the SLC-2000 host which, in turn, downloads to the narrowband DSXBIU circuit pack. After the DSXBIU software is installed, the DSXBIU resets and all MSDT calls are dropped.

Security

The narrowband shelf OAM&P functions are provided by the SLC-2000 host, which are supported through several interfaces including the user interface panel, the CIT, and the TL1 interface to operations systems. In addition to these interfaces, remote access is available via the SONET DCC to provide control to the DDM-2000 OC-3 Multiplexer network, and an embedded operations channel (EOC) interface is available to provide control to the local digital switch for TR303 functions.

The SLC-2000 Access System offers security against unauthorized access via its CIT port or through a remote operations port. The use of security is provisionable via the front CIT port, the rear CIT (modem) port, and through the SONET DCC. Three user levels are supported:

- Privileged Users: These users have full read/write access to all information on the system, including passwords.
- Standard Users: These users have read/write access to system provisioning and maintenance information.
- Reports-Only Users: These users have read access to system information but no ability to change provisioning or maintenance parameters.

Each user has an individual login and password, and each user selects and maintains his/her own password.

The TL1 interfaces to operations systems provide a security option feature which allows the administrator to control access by general users (for provisioning and retrieval) and retrieve-only users.

When the system is first initialized, three default logins and passwords are provided which must be changed by a privileged user before security is enabled. At initialization, privileged users are those users who use the default logins and passwords. Replacement of the SYSCTL circuit pack causes the system to default back to the default logins and passwords. Up to 100 logins and passwords can be added, deleted, and changed by three authorized privileged users. Login and password security can be enabled or disabled. Timeouts can be provisioned independently for the CIT interface and the synchronous optical network (SONET) section DCC. For more information on provisioning, see System Turnup/Circuit Order in the TOP section of this manual.

Authorized privileged users can establish general user and reports-only user logins using the `set-lgn` command.

The following commands are restricted to privileged users over the CIT and DCC interfaces. See 824-102-148, 2000 Family of Products Operations Systems Engineering Guide for TL1/X.25 command access privileges.

- `init-sys`—Initialize System
- `rstr-passwd`—Restore login and password file
- `rtrv-lgn`—Retrieve Login
- `rtrv-passwd`—Retrieve login and password file
- `set-feat`—Set Features
- `set-fecom`—Set Far-End Communications
- `set-lgn`—Set Login

When security is enabled, the following commands become restricted to privileged users only:

- `cpy-prog`—Copy Program
- `ent-t11msgmap`—Enter TL1 Message Map
- `ent-ulsdcc13/14`—Enter Upper Layer Section DCC
- `init-pm`—Initialize Performance Monitoring
- `ins-prog`—Install Program
- `reset`—System Reset
- `set-date`—Set network element (NE) Date and time
- `set-ne`—Set NE name.

Reports-only users can execute the following commands: `? (help), logout, rlgn, set-passwd` (their own), `toggle`, and all `rtrv` commands except, `rtrv-lgn`, and `rtrv-passwd`.

For details on these and other commands, see Chapter 11, "Commands and Reports."
Narrowband Shelf Provisioning

NOTE:
The narrowband shelf’s common equipment and channel units are not protected.

Channel Unit Provisioning

The FiberReach narrowband shelf consists of upper and lower subshelves for channel units. Each subshelf can contain up to six channel units each, for a total of 12 channel units per narrowband shelf. Each channel unit in the Narrowband Shelf requires the following DS0 timeslots depending on the type of service provided by the channel units.

- POTS or Special Services: up to 4 DS0 time slots per channel unit
- ISDN services: (2B&D): up to 9 DS0 time slots per channel unit.

DDM-2000 FiberReach Narrowband Shelf ONU (Release 4.4 and Later)

Using the CIT, you can provision each DSX-1 signal feeding a V-DT in the NBS to any one of the following two modes:

- **Quad Mode:** In this state, the DSXBIU continuously attempts to find or frame-up on the DSX-1 input, establish the message link, alarm any DSX-1 faults, and provide service to a set of six channel unit slots in the NBS. This mode is similar to the service provided with Release 4.3 where a single server can feed a six-slot V-DT for 24-line service. You can also provision the quad mode for 12-line service.

- **Octet Mode:** In this state, the DSXBIU continuously attempts to find or frame-up on the DSX-1 input, establish the message link, alarm any DSX-1 faults, and provide service to a set of three channel unit slots in the NBS. In the octet mode, each channel unit slot can support eight DS0s instead of the four DS0s supported in the quad mode. The octet mode allows the use of the maximum number of ten ISDN lines in the NBS when using the SPQ494 quad ISDN channel units along with the AUA94 dual ISDN channel units. You can provision the octet mode for 24-line service only.

NOTE:
Figure 8-12 shows a basic configuration with the SLC-2000 HDT hosting an NBS in the octet mode.

* The DSX-1 connections interface through external cables and are not part of the SLC-2000 system.
When in the octet mode, each of the four three-slot V-DTs can contain SPQ494 quad ISDN channel units in the first two slots. The third slot can contain an AUA94 dual ISDN channel. This will allow the V-DT to support a total of ten ISDN lines with each line offering 2B+D service. The third slot can also contain any of the other channel units available for the NBS. This allows the V-DT to offer a combination of services, depending on the channel units installed. Therefore, an NBS with all quadrants in octet mode can provide 40 ISDN lines.

To provide ISDN 2B+D service in the octet mode, you must manually provision the cross-connections using the SLC-2000 HDT CIT. Figure 8-13 shows the following process of how the V-DT uses the 24 time slots of its DSX-1 feeder signal to support two SPQ494 quad ISDN channel units and an AUA94 dual ISDN channel unit. This combination can produce ten ISDN lines providing 2B+D service:

NOTE:
The time slot representation shown in Figure 8-13 is used to explain the concept of how the system uses the 24 time slots of a DSX-1 signal to build the 2B+D ISDN lines. The actual time slots are assigned by the system and vary according to system requirements. However, the concept for building the 2B+D ISDN lines is the same as described below.

- The ISDN lines providing 2B+D service are built as follows:
 - A “B” data channel equates to a 64-kb/s DS0 signal that can be used for voice connections or equipment connections such as a computer. As shown in Figure 8-13, each “B” channel uses 1 time slot of the 24 time slots in the DSX-1 signal (therefore, “2B” uses 2 time slots). In Figure 8-13, the first ISDN line uses time slots 1 and 2 for its “B” channels.
 - A “D” signaling channel equates to a 16-kb/s signal that is used to carry signaling and overhead data. As shown in Figure 8-13, each “D” channel uses one-fourth of a time slot. In Figure 8-13, the first ISDN line uses one-fourth of time slot 22 for its “D” channel.
 - Added together, each 2B+D ISDN line takes 2 ¼ time slots of the 24 time slots in the DSX-1 feeder signal.

- As shown in Figure 8-13, each SPQ494 quad ISDN channel unit provides four 2B+D ISDN lines. These four lines use a total of 9 time slots of the 24 time slots in the DSX-1 feeder signal (8 time slots for the 8 “B” channels and 1 time slot for the 4 “D” channels). This allows the V-DT to contain two SPQ494 channel units using 18 time slots.

- As shown in Figure 8-13, the V-DT can also contain an AUA94 dual ISDN channel unit. This unit provides two 2B+D ISDN lines using a total of 4 ½ time slots (four time slots for the four “B” channels and one-half time slot for the two “D” channels).
Therefore, a V-DT provisioned for the octet mode can provide ten ISDN lines with each line offering 2B+D service. These ten lines use a total of 22½ of the 24 time slots provided by the DSX-1 feeder.

Figure 8-13. Building an ISDN 2B+D Line from a DSX-1 Signal in the NBS (Octet Mode)
For these time slots to be correctly associated with the actual channel unit slots in the MDS assembly, the system uses a virtual channel unit slot concept. You must use the SLC-2000 host digital terminal CIT to cross-connect the real and virtual time slots to the appropriate VRTs. Figure 8-14 shows the actual NBS configuration with its four DSX-1 feeder signals.

Figure 8-14. Actual NBS V-DT Configuration (Octet Mode)

Using the virtual concept as shown in Figure 8-15, the SLC-2000 HDT software, when provisioning ISDN circuits, "thinks it sees" a six-slot V-DT instead of a three-slot V-DT. As Figure 8-15 shows, slots 4, 5, and 6 of the V-DT are not physically present. However, they are present in the software and are called virtual slots, actually representing the third and fourth lines on the SPQ494 ISDN channel units.

When installing and cross-connecting ISDN circuits in an NBS with DSX-1 feeders provisioned for the octet mode, you must understand the relationships between the NBS, octet mode, and actual or virtual slots. Refer to Figure 8-15 to understand these concepts.

- **Addressing the NBS Quadrant.** You must address each quadrant of the octet NBS using its DT Servers address in the MDS assembly at the SLC-2000 HDT (MDS shelf number, MDS shelf slot number).
Addressing the Slots in the NBS Quadrant. Each quadrant’s slots (both real and virtual) are numbered the same for provisioning (Figure 8-15). For example, the physical slots fed by DSX-1 signal D are numbered 10, 11, and 12 in the NBS. But when provisioning with the software from the SLC-2000 host digital terminal CIT, they are numbered 1, 2, and 3 (plus 4, 5, and 6 virtual slots).

> **NOTE:**
> Virtual slot 6 is never addressed for ISDN line provisioning.

SPQ494 Channel Unit Drop Identifications. The four ISDN 2B+D drops are identified in the software as follows:

- **SPQ494 channel unit in slot 1 of the quadrant:**
 - drop 1 = slot 1, line 1
 - drop 2 = slot 1, line 2
 - drop 3 = slot 4, line 1 (virtual slot 4)
 - drop 4 = slot 4, line 2 (virtual slot 4)

- **SPQ494 channel unit in slot 2 of the quadrant:**
 - drop 1 = slot 2, line 1
 - drop 2 = slot 2, line 2
 - drop 3 = slot 5, line 1 (virtual slot 5)
 - drop 4 = slot 5, line 2 (virtual slot 5)

AUA94 Channel Unit Drop Identifications. The drops for the AUA94 in slot 3 do not need virtual slots. The two ISDN 2B+D drops in slot 3 are identified in the software as follows:

- drop 1 = slot 3, line 1
- drop 2 = slot 3, line 2

POTS and Special Service Channel Units. Other channel units do not use virtual slots. For example, the four drops from a POTS quad channel unit in physical slot 8 of the NBS are identified in the software as follows:

- drop 1 = slot 2, line 1
- drop 2 = slot 2, line 2
- drop 3 = slot 2, line 3
- drop 4 = slot 2, line 4
Figure 8-15. Virtual Slot Concept (Octet Mode)

NOTE:
For the specific procedure and software commands to perform this function, see the following documents:

Table 8-14 shows the possible combinations of channel units for a three-slot octet V-DT.
Provisioning channel units other than the SPQ494 channel unit in the NBS is done the same way as provisioning channel units at the SLC-2000 RT/HDT. Once you provision the shelves in the HDT for fiber distribution (via the SLC-2000 CIT or UIP) and you set the number of lines hosted by each DT Server (via the CIT), provisioning of individual channels in the ONU follows the service order flows described for the RT/HDT.

Table 8-14. Channel Unit Slot Restriction When Using an SPQ494 in a Three-Slot V-DT

Slot 1 can contain...	Slot 2 can contain...	Slot 3 can contain...
• SPQ494 or	• SPQ494 or	• AUA94 or
or AUA94 or	or AUA94 or	or Any other channel unit
or Any other channel unit supported by the NBS	or Any other channel unit supported by the NBS	supported by the NBS (except the SPQ494 channel unit)

Provisioning channel units other than the SPQ494 channel unit in the NBS is done the same way as provisioning channel units at the SLC-2000 RT/HDT. Once you provision the shelves in the HDT for fiber distribution (via the SLC-2000 CIT or UIP) and you set the number of lines hosted by each DT Server (via the CIT), provisioning of individual channels in the ONU follows the service order flows described for the RT/HDT.

Through the OSMINE process, SLC-2000 AIDs are supported in FACS and OPS/INE. In addition, TIRKS OS and NMA OS organizations provide OSIA and methods to inventory and assign SLC-2000 FITL facilities and equipment.
Maintenance Description

Contents

Overview

- Wideband Shelf Maintenance
 - Single-Ended Maintenance Philosophy
 - Three-Tiered Operations
- User Panel and Faceplate LEDs
 (Operations Tier 1)
- Craft Interface Terminal (CIT)
 (Operations Tier 2)
- Operations System (OS) Interface
 (Operations Tier 3)
 - Miscellaneous Discretes
 - TL1/X.25

Multi-Vendor OI

Inservice Upgrades

Maintenance Signaling

Fault Detection, Isolation, and Reporting

- Detection
- Isolation
- Reporting

Protection Switching

- Path Protection Switching (Path Switched Rings)
- OC-3/OC-1 Ring Interworking
- OC-3/OC-1 Path Switched Ring (0x1)
 - Single-Homed Interworking Application
Contents

- Dual-Homed Ring Interworking Application 9-19
 - Status of ACTIVE LED on Rings 9-21
 - Low-Speed Equipment Protection 9-21
 - Synchronization Reference Protection 9-21

Loopbacks 9-22

Tests 9-23
- Transmission Tests 9-23
- Operations Interface Tests 9-23

Performance Monitoring 9-23
- VT Performance Monitoring 9-25
- DS1 Performance Monitoring 9-25
- DS3 Performance Monitoring 9-27
 - DS3 Path PM 9-27
 - DS3 Line 9-28
- Performance Parameters 9-28
- OC-1/OC-3/OC-12 Section Parameters 9-28
 - Performance Monitoring Enabling 9-28
 - Severely Errored Frame Seconds (SEFS) 9-29
- OC-1/OC-3/OC-12 Line Parameters 9-29
 - Performance Monitoring Enabling 9-29
 - Line Coding Violations (B2 Parity) 9-29
 - Errored Seconds (ES) 9-29
 - Severely Errored Seconds (SES) 9-30
 - Unavailable Seconds (UAS) 9-30
 - Line Protection Switch Counts 9-30
 - STS Pointer Justification Count (PJC) 9-30
- STS-1 Path Parameters 9-31
 - Performance Monitoring Enabling 9-31
 - STS-1 Path Coding Violations (B3 Parity) 9-31
 - Errored Seconds (ES) 9-31
 - Severely Errored Seconds (SES) 9-31
 - Unavailable Seconds (UAS) 9-31
Contents

- VT1.5 Path Parameters 9-32
 - Performance Monitoring Enabling 9-32
 - Errored Seconds (ES) 9-32
 - Severely Errored Seconds (SES) 9-32
 - Unavailable Seconds (UAS) 9-33

- DS1 Path Parameters 9-33
 - Performance Monitoring Enabling 9-33
 - Errored Seconds (ES) 9-33
 - CV-P Coding Violations 9-33
 - CV-PFE Coding Violations 9-33
 - Severely Errored Second (SES) 9-34
 - Unavailable Seconds (UAS) 9-34

- DS3 Parameters 9-34
 - Performance Monitoring Enabling 9-34
 - DS3 Performance Monitoring (PM) 9-34
 - DS3 Path 9-35
 - DS3 Line 9-36

- DS1 Line Parameters 9-37
 - ES-L Errored Seconds 9-37

- Performance Monitoring Data Storage and Reports 9-37
- Performance Monitoring During Failed Conditions 9-37
- Performance Parameter Thresholds 9-37
- Threshold Crossings Reported to OS 9-38

Reports

- Alarms and Status Report 9-38
- Provisioning Reports 9-38
- Database Change Transmission to OS 9-39
- Performance Monitoring Reports 9-39
 - TCA Summary Report 9-39
 - Performance Status Reports 9-39
- Maintenance History Report 9-39
- State Report 9-39
Contents

- Path State Report 9-40
- Equipment Report 9-40
- Network Map Reports 9-40
Overview

This chapter outlines the various features available to the user to maintain and monitor the DDM-2000 FiberReach Multiplexer. Specific trouble clearing and maintenance procedures are provided in the operation and maintenance (TOP) section of this manual.

Wideband Shelf Maintenance

Single-Ended Maintenance Philosophy

A single-ended maintenance philosophy was originally incorporated in the design of the DDM-2000 Multiplexers as part of their optimization for operation in the subscriber loop. The same philosophy is incorporated in the design of the DDM-2000 FiberReach Multiplexers. DDM-2000 FiberReach Multiplexers allow the operation of all FiberReach NEs in a subnetwork from a DDM-2000 in a central office. The DDM-2000 FiberReach Multiplexers use the synchronous optical network (SONET) data communications channel (DCC) to provide craft interface terminal (CIT), remote access. In addition, OSs are available to allow operation of the DDM-2000 Multiplexers from a centralized operations center.

Figure 9-1 shows the single-ended operations (SEO) capability that provides remote access to all DDM-2000 FiberReach systems in a subnetwork from a single DDM-2000 location. This minimizes technician travel because most maintenance, provisioning, and administration can be performed on all DDM-2000 Multiplexers in a subnetwork by accessing any one DDM-2000. This capability is
provided by the DDM-2000 Multiplexers in all subnetwork topologies as long as DCC connectivity is available. The SEO capability can be disabled between DDM-2000 shelves to create subnetwork maintenance boundaries (for example, interoffice applications) or for security reasons.

The terms single-ended maintenance and single-ended operations (SEO) are synonymous and have traditionally been used to refer to operations among DDM-2000 systems only. Now that SEO is supported among the 2000 Product Family NEs as well as in multi-vendor applications, the term operations interworking (OI) is more commonly used. OI among multi-vendor NEs is covered later in this chapter.

DDM-2000 FiberReach supports Lucent Technologies 2000 Product Family OI with DDM-2000 OC-3 and OC-12, SLC-2000 and FT-2000, and supports multi-vendor OI in subnetworks with other vendor NEs such as Tellabs TITAN 5500.

Figure 9-1. DDM-2000 FiberReach Wideband Shelf Single-Ended Operations Philosophy
Three-Tiered Operations

Figure 9-2 shows the three-tiered operation procedures for the DDM-2000 Multiplexers, including DDM-2000 FiberReach wideband shelves. The DDM-2000 FiberReach Multiplexer operation procedures are built on three levels of system information and control, spanning operations needs from summary-level status to detailed reporting.

Figure 9-2. Three-Tiered Operations
User Panel and Faceplate LEDs
(Operations Tier 1)

Office alarms are provided by a set of discrete relays that control office audible and visual alarms. Separate relays handle critical (CR), major (MJ), and minor (MN) alarms, although the CR and MJ alarms can be wire ORed to the office major, if desired. In DDM-2000 FiberReach Release 4.0, office alarms can be remotely activated through the DCC among some remote Lucent 2000 Product Family NEs. In DDM-2000 FiberReach Release 3 only local office alarms are displayed.

The first operations tier consists of light-emitting diodes (LEDs) and pushbuttons on the user panel and circuit pack faceplates. These allow routine tasks to be performed without a craft interface terminal (CIT) or any test equipment. The user panel provides system-level alarm and status information for local terminals only. The circuit pack faceplate FAULT LEDs allow fast and easy fault isolation to a particular circuit pack.

The user panel LEDs default to show local system information. The highest active alarm level is shown by the red LEDs for CR and MJ alarms; yellow LEDs are shown for MN and power minor (PMN) alarms. A green ACO button/LED is used to activate the alarm cutoff function. When activated, the LED is on. The green ACO button also initiates an LED test when the button is depressed and held. A green PWR ON (PWR ON A and PWR ON B for G4 shelf user panels) LED shows that the power is on and the terminal is receiving a −48 V source. Three yellow status LEDs show abnormal (ABN) conditions, near-end activity, and far-end activity; however, this is only active in R4.0 when remote NE status is enabled. The yellow ABN LED is lighted when a temporary condition, potentially affecting transmission, exists; for example, a manual protection switch or lockout, loopback, or system test in progress.

The UPDATE/INITIALIZE button addresses the local system and is located on the SYSCTL circuit pack. The recessed UPDATE/INITIALIZE button serves several functions during installation and circuit pack replacement. During the first 10 seconds after powering up the SYSCTL circuit pack, depressing this button initializes the nonvolatile memory with provisioning and state information. Secondly, after removing a circuit pack or low-speed input, depressing this button updates the system equipment list to show the slot or signal is now unequipped.

In FiberReach R4.0 (with the remote NE status feature enabled), when any alarm or status condition exists at a remote DDM-2000 Multiplexer, the FAR-END ACTIVITY LED on the user panel is lighted. The other user panel alarm and status LEDs display composite network conditions.

To supplement the user panel's system-level view, each circuit pack provides a red FAULT LED on its faceplate. A lighted FAULT LED shows that the DDM-2000 FiberReach Multiplexer has isolated a failure to that circuit pack. On transmission
and synchronization circuit packs, a flashing FAULT LED shows that an incoming signal to that circuit pack has failed. The green ACTIVE LED shows the current protection switching states of the 1x1 protected circuit packs.

Craft Interface Terminal (CIT)
(Operations Tier 2)

The second operations tier provides access to DDM-2000 operations from a CIT over an EIA-232-D interface. System details that can not be obtained from the first operations tier alone can be obtained over the CIT interface. A VT-100 compatible terminal or terminal emulator software running on a PC can be used as a CIT. The dialog is settable to be either CCITT/ANSI MML-compliant, which provides both prompt and command modes with extensive on-line help features for assistance in command execution, or to an asynchronous TL1 interface.

The CIT interface supports OAM&P activities such as loopbacks and testing, protection switching, provisioning, PM, retrieving reports, and security on any and all DDM-2000 Multiplexers in a subnetwork from a single DDM-2000 or FT-2000. The local DDM-2000 or FT-2000 CIT alarm reports may include far-end summary alarm information about other Lucent NEs in the same subnetwork. Access to remote DDM-2000 Multiplexers is supported via CIT remote login.

The DDM-2000 FiberReach Multiplexer has a front access CIT port compatible with the EIA-232-D standard. The front access port is configured as a data circuit terminating equipment (DCE) for direct terminal access. The front CIT port provides data rates of 300, 1200, 2400, 4800, 9600, and 19200 baud.

An optional graphical user interface (CPro-2000) software tool used with a PC is also available.

— CPro-2000 is a Windows-based graphical user interface that allows a user to obtain common graphical look-and-feel for DDM-2000, SLC-2000, and FT-2000 products while continuing to have full access to the ASCII CIT and/or TL1 interfaces of those SONET products. CPro-2000 also mechanizes several tasks such as end-to-end path provisioning in path and line switched rings and provides an NE database backup and restoral feature. The CIT ports of the previously mentioned SONET products can be accessed remotely over data networks and/or dial up modems. Consequently, a user can access all Tier 2 operations using just a terminal or CPro-2000 locally or remotely. See Chapter 10, "Technical Specifications," for hardware and software needed to use CPro-2000. See 190-523-101 and/or 365-576-140, CPro-2000 User Manual, for more information.

* This does not apply to Release 3.0/3.1 users. Refer to “Multi-Vendor OI” in this chapter.
Operations System (OS) Interface
(Operations Tier 3)

The third operations tier consists of the remote OS interfaces. These OS interfaces include miscellaneous discrete telemetry and a TL1/X.25 interface.

Miscellaneous Discretes

To allow monitoring and control of equipment collocated with a DDM-2000 FiberReach Multiplexer in a remote site, a set of user-definable miscellaneous discrete environmental alarms and controls is provided.

Twenty-one miscellaneous discrete alarm/status points are provided to monitor environmental conditions at remote terminal sites (open door, high temperature, etc.). The first 14 points and points 16 through 21 are activated by contact closures. The fifteenth point (External Minor) is for monitoring of remote structure power and fan apparatus (for example, DC power shelf failure); this point is activated by a -48 volt input.

Four control points are provided to control equipment (pumps, generators, etc.) at remote terminal sites. When activated, the control points provide a contact closure between the control point output and ground.

Miscellaneous discrete alarms/statuses and controls are transmitted between the remote DDM-2000 FiberReach Multiplexers and the DDM-2000 OC-3 Multiplexer host via the SONET section DCC. OS access to all miscellaneous discretes alarm/status points (1 through 21) is provided via TL1/X.25. Access to all miscellaneous discrete alarm/status points is also provided through the CIT. The state of the control points can be reported but not controlled through the CIT.

TL1/X.25

NOTE:

The FiberReach wideband shelf does not provide a direct X.25 interface.
Access to the X.25 port on a gateway NE is via the DCC.

DDM-2000’s TL1 message-based OS interface provides more detailed reporting and control capabilities than the parallel and serial telemetry interfaces. The interface uses the standard X.25 protocol and needs no mediation device; that is, the interface can be connected directly to an X.25 network. The virtual channels in the X.25 link can be used to provide remote access between users and DDM-2000 via a packet data network. The remote user could be an OS or a user at a terminal. Lucent Technologies is involved in an active OSMINE process to ensure compatibility of DDM-2000 FiberReach Multiplexers with Telcordia Technologies OSs. The DDM-2000 supports TL1 alarm surveillance and
performance monitoring with OSs such as Telcordia Technologies's Network Monitoring and Analysis (NMA). The DDM-2000 supports service provisioning with memory administration OSs such as Lucent's ITM SNC* or Telcordia Technologies's OPS/INE. (FiberReach 4.0 will be supported by TEMS.) The DDM-2000 also supports remote recovery and control functions, installation provisioning, and security over the TL1/X.25 link. The TL1 message set used has been updated to offer full remote reporting and control capabilities. This functional equivalency between the CIT and TL1 allows the option of using either the CIT or TL1 for provisioning tasks, whichever is more convenient. See 824-102-151, DDM-2000 Multiplexers Operations Systems Engineering Guide, for more information about OS interfaces.

The OS can use more than one NE as a GNE to provide redundancy and/or to distribute TL1 message volume across multiple X.25 links. The TL1/X.25 GNE serves as a single interface to the OS for the NEs in the same subnetwork. The TL1/X.25 GNE receives operations information from of all the NEs through the DCC and reports this information, as well as its own information, to the OS. The operations information is in the form of TL1 messages. Through the GNE, the OS can send TL1 commands to any NE in the subnetwork. FT-2000 OC-48 Lightwave Systems can serve as the TL1/X.25 GNE for DDM-2000 NEs. For DDM-2000 FiberReach 3.0 and later, OC-3 R13.0 and R15.0, and OC-12 R7.0, Tellabs TITAN 5500/S R5.0 DCS, or other-vendor NEs that adhere to Telcordia Technologies GR-253, can be the TL1/X.25 GNE. DDM-2000 FiberReach can not be a TL1/X.25 GNE itself.

Multi-Vendor OI

To support multi-vendor OI, DDM-2000 FiberReach Release 3.0 and later supports Target ID Address Resolution Protocol (TARP) instead of Lucent Directory Service (LDS). DDM-2000 OC-3 R13.0 or later, OC-12 R7.0, and FT-2000 OC-48 R8.0 also support TARP, thus Lucent 2000 Product Family OI compatibility is still supported but not OI compatibility with previous releases of DDM-2000 and FT-2000. (Refer to the OI Software Compatibility table in Chapter 8.) Both LDS and TARP are directory services that provide NSAP-TID translations. LDS supports additional Lucent-only features, but TARP is the established multi-vendor standard for SONET NEs that support TL1 OS interfaces. DDM-2000 supports the TARP Data Cache (TDC) function to reduce the frequency of TARP propagation throughout the subnetwork and to improve performance. No DSNE is required for TARP.

* The Integrated Transport Management SubNetwork Controller (ITM SNC) is an element management system that supports SONET NEs. ITM SNC provides fault, provisioning, configuration, and security management functions via a GUI.
DDM-2000 FiberReach is developed to be compatible with any other-vendor NEs that also support TARP, OSI, and TL1/X.25 as specified in Telcordia Technologies GR-253. In addition, DDM-2000’s TARP Manual Adjacency feature enables DDM-2000 to operate in networks that include CMISE-based NEs which may not support TARP propagation. DDM-2000 FiberReach supports user provisioning of several OSI parameters to allow users to adjust their operations subnetwork, if necessary. For example, to support subnetwork partitioning of large subnetworks, DDM-2000 FiberReach supports user provisioning of NSAP area addresses. DDM-2000 FiberReach does not support Level 2 Intermediate System (IS) functionality itself.

DDM-2000 FiberReach Release 3.0 and later offer compatibility with Tellabs TITAN 5500 DCS R5.0, including TL1/X.25 OS access with TITAN 5500 DCS serving as the TL1-GNE for DDM-2000 FiberReach TL1-RNEs, has been confirmed through cooperative joint testing between Lucent and Tellabs. DDM-2000’s compatibility with some other-vendor NEs has also been tested by independent third-parties such as Telcordia Technologies on behalf of the SONET Interoperability Forum (SIF).

DDM-2000 FiberReach Release 3.0 and later are intended to facilitate OS-based centralized operations, and TL1/X.25 OS access is the key standardized multi-vendor OI application.

DDM-2000 FiberReach Release 4.0 supports the following Remote NE Status features:

- Remote office alarms
- Remote CIT alarm reports.

The following Remote NE Status features are not supported in DDM-2000 FiberReach Release 4.0:

- Remote user panel indications
- TBOS
- Parallel telemetry
- Remote ACO Requests.

All of the above features depend on the proprietary exchange of information among Lucent NEs in a subnetwork, specifically the communication of each remote NE’s alarm status to other NEs. Although the Remote NE Status features were supported in previous releases of DDM-2000, such Lucent-only operations features in multi-vendor subnetworks would not include other-vendor NEs, due to the lack of applicable standards, and thus would be incomplete.

* TITAN is a trademark of Tellabs, Inc.
DDM-2000 FiberReach Release 3.0 and later still support the following Lucent proprietary OI applications between Lucent NEs in multi-vendor subnetworks:

- Remote Craft Interface Terminal (CIT) login
- Remote software download and copy
- Remote NE-to-NE automatic time/date synchronization at start-up.

Inservice Upgrades

All DDM-2000 FiberReach software releases support upgrades to future software releases.

Maintenance Signaling

The DDM-2000 FiberReach Multiplexer provides maintenance signaling compliant with the SONET standard (ANSI* T1.105). The DDM-2000 FiberReach Multiplexer generates and detects the following alarm indication signals (AISs), which notify downstream equipment that a failure has been detected and alarmed by some upstream equipment:

- SONET line AIS
- STS-1 path AIS
- Virtual tributary (VT) path AIS
- DS1 AIS (generated, not reported)
- DS3 AIS.

The DDM-2000 FiberReach Multiplexer also generates and detects the following signals, which notify upstream equipment of a failure detected downstream:

- Line far-end-receive failure (FERF)
- STS-1 path yellow and VT path yellow
- STS-1 and VT path unequipped detection
- An STS-1/VT AIS signal is inserted on paths that are not cross-connected. The user can also provision a shelf to insert STS/VT1.5 unequipped in place of AIS on a path that is not cross-connected.

Figure 9-3 is an example of the AIS, yellow, and FERF signals generated in response to an unprotected incoming OC-1 line failure. In this figure, the labels on the arrows pointing into the DDM-2000 FiberReach Multiplexer indicate the maintenance signals and failure conditions recognized by the DDM-2000 FiberReach Multiplexer. The labels on the arrows pointing out of the DDM-2000 FiberReach Multiplexer indicate the signals generated by the DDM-2000 FiberReach Multiplexer in response to the indicated incoming signals or failure conditions. The Xs indicate points of failure, either within the DDM-2000 OC-3 Multiplexer or in upstream equipment. Unlabeled arrows indicate normal.

* Registered trademark of American National Standards Institute.
transmission except for OC-1 line AIS; maintenance signaling is in response to unprotected failures.

Figure 9-3. Example of Maintenance Signals as a Result of Unprotected Incoming OC-1 Failure for VT1.5 Ring Applications
Figure 9-4 shows an example of the maintenance signals used by the DDM-2000 FiberReach Multiplexer in a VT path-switched ring application.

* VT-Path Yellow, DS1 AIS, and VT Path AIS are only sent on DS1/VT paths selected from the failed ring (Ring 1).
† VT-Path AIS is sent on pass-through or continue paths only.
‡ VT-Path Yellow on pass-through or continue paths only.
§ VT-Path AIS not sent for unequipped.

Figure 9-4. Maintenance Signaling — VT Ring Application
Fault Detection, Isolation, and Reporting

Detection

The DDM-2000 FiberReach Multiplexer continuously monitors all circuit packs and incoming signals for faults. Incoming SONET signals are monitored for loss of signal (LOS), loss of frame (LOF), loss of pointer (LOP), and bit error ratio (BER) thresholds, and for the maintenance signals described in the preceding pages. Incoming DS1 and DS3 signals are monitored for LOS and BER thresholds. The BER thresholds for DS1 are based on bipolar 8-zero substitution (B8ZS) or alternate mark inversion (AMI) violations depending on line coding. The BER thresholds for DS3 are based on bipolar 3-zero substitution (B3ZS) coding violations. The DS3 signals received from the fiber are monitored for AIS and out-of-frame (OOF) conditions, unless they are provisioned for clear channel mode. DS1 timing references are monitored for AIS, BER, excessive out-of-frame (EOOF), LOF, LOS, and out-of-lock (OOL) conditions.

Isolation

When a fault is detected, the DDM-2000 FiberReach Multiplexer uses automatic diagnostics to isolate the fault to a particular signal or circuit pack.

Reporting

The system automatically and autonomously reports all alarm and status conditions through the appropriate user panel and equipment indicators, office alarm relays, and through the TL1/X.25 interface. The system stores a record of all fault conditions and reports them on demand through the CIT and the TL1/X.25 interface. The DDM-2000 FiberReach Multiplexer also stores a history of the past 500 alarm and status conditions and CIT events and reports them on demand through the CIT or TL1 interface. Each event is real time and date stamped.

If the diagnostic determines that a circuit pack has failed, the red FAULT LED on that circuit pack is turned on. If an incoming electrical signal from the DSX fails, the red FAULT LED on the affected circuit pack flashes on and off in one-second intervals. A failed incoming optical signal has the same effect.

The DDM-2000 FiberReach Multiplexer provides alarm holdoff and clear delays. The alarm holdoff delays prevent transient failures from causing unnecessary maintenance activity. The office alarms are not activated and the OSs are not notified until a failure lasts at least as long as the alarm holdoff delay. Alarm clear delays prevent premature clearing of alarms. Alarm indications are not cleared
until a fault condition has been clear for at least as long as the alarm clear delay. Incoming signal failure conditions, AIS, and FERF signals are subject to the provisionable holdoff delay and a fixed 15-second clear delay. Yellow signals are not subject to holdoff or clear delays. Circuit pack failures (except control circuit pack failures) are subject to the provisionable holdoff and clear delays. Refer to the `set-attr-alm` and `rtrv-attr-alm` commands in Chapter 11, “Commands and Reports.”

Protection Switching

The DDM-2000 FiberReach Multiplexer provides equipment protection switching of all transmission and synchronization circuit packs, and SONET standard line protection switching for OC-1/OC-3/OC-12 lines. Installation of some protection equipment is optional. Protection switches are caused by automatically detected faults in the circuit packs or OC-1/OC-3/OC-12 lines and by external commands from a CIT or TL1/X.25 interface. Refer to the `switch-fn`, `switch-ls`, and `switch-sync` commands in Section 11, "Commands and Reports." For path switched rings, path protection switching is used. Refer to "Path Protection Switching (Path Switched Rings)" paragraphs in this section and the `switch-path-vtl` or `switch-path-sts1` commands in Section 11, "Commands and Reports."

Path Protection Switching (Path Switched Rings)

The path switched ring application is based on the Telcordia Technologies TR-TSY-000496/GR-1400 path protection switching scheme. The path protection switched ring has two single-fiber counter-rotating rings as shown in Figure 9-5. Each node on the ring terminates four fibers: a transmit and receive fiber in each direction. The architecture of the ring is designed to protect against any single point of failure, including a node failure, single fiber cut, or dual fiber cut. A node failure in a ring affects only traffic dropped at the failed node.
The signal that enters the ring is protected on a SONET path basis as switching is performed independently for each path. Because of the ring's unidirectional operation, time slots must be reserved all the way around the ring for all ring traffic, limiting the capacity of the ring to the OC-N line rate. DDM-2000 FiberReach provides VT1.5 path protection.

Path protection switched rings feed a SONET payload from the ring entry point, simultaneously in both rotations of the ring, to the signal's ring drop or exit point as shown by traffic AC and CA in Figure 9-6a. This duplication of the signal that enters the ring is called a "head-end bridge." The node that drops the signal from the ring monitors both ring rotations and is responsible for selecting the signal that has the highest quality based on LOS/LOF, path alarm indication signal (AIS), and path bit error rate (BER) performance. This function at the ring exit point is called a "tail-end switch." The system provides nonrevertive switching. All detected hard failures (LOS, LOF, LOP, line AIS, STS-1 or VT1.5 path AIS, or STS-1 path signal failure or signal degrade based on BER for path protected rings) result in AIS insertion in the outgoing signals. This allows the drop node to detect path failures and to select the good path.
The user can set STS-1 and VT1.5 signal degrade thresholds using the `set-sts1`, `set-vt1`, `rtrv-sts1`, and `rtrv-vt1` commands at a drop node on a protected ring. Under normal conditions, both incoming SONET path signals to the switch selection point are of high quality, and the signal can be selected from either ring. A failure or a transmission degradation on one of the rings requires that the other ring path be selected; path selection occurs within 60 milliseconds after a hard failure condition. Figure 9-6b shows how traffic is switched when a dual-fiber cut occurs. The system provides nonrevertive switching to minimize the impact on critical customer services by giving the service provider control when, and if, the critical service should revert to a particular ring. A manual path protection switching command allows switching back to the original path for ease of ring maintenance. Refer to the `switch-path-vt1` or `switch-path-sts1` command in Chapter 11, "Commands and Reports."
OC-3/OC-1 Ring Interworking

The DDM-2000 OC-3 Multiplexers support both dual-homed and single-homed FiberReach ring interworking applications to provide end-to-end protection from loss of service on traffic traveling over interconnected rings. The dual-homed configuration provides two points (nodes) of interconnection between the OC-3 Multiplexer ring and the FiberReach OC-1 ring to insure a continuation of service between rings, should one interconnecting node fail. The DDM-2000 OC-3 ring interconnects with the FiberReach ring through 0x1 interfaces. The 0x1 interface on the DDM-2000 OC-3 Multiplexer passes traffic from one direction of the OC-3/OC-1 ring to one direction of the FiberReach ring. There is no bridging of traffic onto both rings at the 0x1 interface as there is at a ring drop point. Also, no path protection switching or line protection switching is performed on the OC-3 for traffic connected to the 0x1 interface. Path protection switching is performed on the FiberReach nodes and on the DDM-2000 OC-3 nodes at the traffic exit (drop) points.

OC-3/OC-1 Path Switched Ring (0x1)

The OC-3/OC-1 path switched ring is similar to the OC-3/OC-12 ring-on-ring. A DDM-2000 FiberReach shelf interconnects with a DDM-2000 OC-3 ring host shelf through low-speed OC-1 interfaces on the OC-3 ring shelf. VT/STS path protection switching is done on the DDM-2000 FiberReach shelf.

In single homing, the DDM-2000 FiberReach ring interconnects through a pair of low-speed OC-1 0x1 interfaces on the OC-3 shelf.

In dual homing, the OC-1 ring interconnects through the low-speed OC-1 0x1 interfaces on two separate and normally non-collocated OC-3 shelves.
Single-Homed Interworking Application

Figure 9-7 shows a single-homed FiberReach configuration. A single DDM-2000 OC-3 shelf provides the point of interconnection between the two rings. On the OC-3 shelf, traffic from one ring is cross-connected through a 0x1 interface to one direction on the other ring. The OC-3 shelf requires two OC-1 OLIUs in a function unit to interface both sides of the FiberReach ring. No line or path protection switching is performed for the 0x1 interface. Path protection switching is performed at the exit points as in the simple ring application previously discussed.

Figure 9-7. Single-Homed Ring Interworking Application
Dual-Homed Ring Interworking Application

Figure 9-8 shows a dual-homed FiberReach configuration. This application requires two DDM-2000 OC-3 Multiplexers to provide redundant points of interconnection between the FiberReach and the DDM-2000 OC-3 ring. The same 0x1 interface is used as for the single-homed application. However, for the dual-homing application, only one 27-type OLIU is required in the DDM-2000 OC-3 function unit to interface one side of the FiberReach ring.

Another FiberReach extension can use the remaining -1 or -2 slots, as long as the bandwidth is not violated. For instance, assume you had a dual homed application where one OC-3 shelf is hosting and terminating one rotation of the subtending OC-1 ring through OC-1 port #1 on the dual OC-1 (27-type OLIU) in FN-A-1, and another OC-3 shelf is hosting and terminating the other rotation of the subtending OC-1 ring through the OC-1 port #1 on the dual OC-1 (27-type).

As a result, both 27-type OLIU circuit packs located in FN-A-1 of one OC-3 shelf and FN-A-2 of the other OC-3 shelf still have one OC-1 port available (OC-1 #2) to be used for another dual-homed application to host another OC-1 ring, or this OC-1 port can be used to host a single-homed application, which in this case requires the presence of another 27-type OLIU in FN-A-2.
Figure 9-8. Dual-Homed Ring Interworking Application
Status of ACTIVE LED on Rings

In all ring applications, ACTIVE LEDs on each Main OLIU are always lighted because it is not known if a signal on that OLIU is currently being selected by a far-end network element.

Low-Speed Equipment Protection

NOTE:
The protection module is determined by protection modules that are shipped with each wideband shelf. The module is plugged into P2, the protection bus connector located on the rear of the shelf. Along with the modules, labels are shipped for identifying the low-speed slots.

The DDM-2000 FiberReach Multiplexer offers 1x1 or 1x7 protection revertive switching. In a 1x1 protection configuration, the eight slots are divided into four low-speed groups — A, B, C, and D. The bottom four slots are the service A, B, C, and D slots and the top four slots are the associated protection A, B, C, and D slots. To prevent frequent protection switches caused by intermittent failures of a DS1 or T1EXT circuit pack, the system provides an "automatic lock" feature. If four automatic protection switches are done on the same DS1 or T1EXT circuit pack within a 10-minute interval, traffic is automatically locked onto the protection circuit pack and the automatic lock is reported as a minor alarm. The automatic lock can be reset manually using the switch-ls command. It resets automatically at midnight or if the affected DS1/T1EXT circuit pack is replaced. The DDM-2000 FiberReach Multiplexer also supports unprotected equipment configurations. DS1 and T1EXT circuit packs can be mixed in a 1x7 protection group but only one pack type can be protected.

The DDM-2000 FiberReach Multiplexer provides very flexible low speed equipment protection schemes to accommodate mixed services applications. The schemes include 1X1 protected or 1x7 protected configurations, provisionable by the user. Provisioning is done at installation using a low-speed protection assembly on the backplane. The protection scheme can be changed (for example, upgrading from 1x1 to 1x7) but must be done out-of-service.

Synchronization Reference Protection

For DDM-2000 FiberReach, the synchronization references are 1x1 protected. If neither reference is available, the system automatically switches to "holdover" timing mode. The system uses synchronization messaging to determine the quality of the loop timing references by reading the synchronization messages in
the OC-1/OC-3/OC-12 transport overhead bytes. If the quality is not adequate, the system will switch to holdover until manually switched to a good reference.

Automatic synchronization reconfiguration is always enabled; thus the system will automatically select the highest quality reference. See "Synchronization Messaging" in Chapter 5, "Transmission and Synchronization Interfaces" and the set-sync command in Chapter 11, "Commands and Reports."

The system can be provisioned to revertive or nonrevertive timing mode switching. The default is revertive. If provisioned for revertive mode switching, the system automatically switches out of holdover mode to line timing when an unprotected timing reference failure clears. If provisioned for nonrevertive mode switching, the system must be manually switched from holdover mode to line timing mode when an unprotected timing reference failure clears. Refer to the rtrv-sync, set-sync, and switch-sync commands in Chapter 11, "Commands and Reports."

Loopbacks

The DDM-2000 FiberReach Multiplexer allows technicians to set up loopbacks on all low- and high-speed interfaces. Low-speed DS1/DS3 electronic loopbacks, directed toward the high-speed OC-1/OC-3/OC-12, can be individually controlled from the CIT. DS1/DS3 facility loopbacks toward the DSX can also be set up for DS1/DS3 signals. Active electronic loopbacks are noted by the user panel's abnormal (ABN) indicator and in the alarm and status report. Refer to the opr-lpbk, opr-lpbk-t1 and rls-lpbk-t1 commands in Chapter 11, "Commands and Reports."

Beginning with Release 3.1 of FiberReach, the opr-lpbk-t3 and rls-lpbk-t3 commands are available when using the DS3 circuit packs in the Function Units slots. Refer to Chapter 11, "Commands and Reports," for explanations of these commands.

Front access to the OLIU optical connectors allows an easy manual OC-1, OC-3, or OC-12 optical loopback. This loopback is set up by connecting a fiber jumper from the OLIU output to its input. An optical attenuator is required for this loopback.
Tests

Transmission Tests

Technicians can use the DDM-2000 FiberReach Multiplexer internal testing capabilities for installation and manual troubleshooting. DS1 and DS3 test signal generators and detectors are integrated in the system, eliminating the need for external test equipment to do transmission testing.

The DDM-2000 FiberReach Multiplexer lets technicians test specific signals and system components. For example, technicians can manually enable the integrated test signal generators and detectors for a DS1/DS3 low-speed interface. Signal tests can be run selectively in the multiplex or demultiplex direction. Refer to the test-trmsn-t1 commands in Chapter 11, "Commands and Reports."

Beginning with FiberReach Release 3.1, the test-trmsn-t3 command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function Units slots. Beginning with FiberReach Release 4.0, the test-trmsn-t3 command is also allowed if the shelf is equipped with 29-type OLIUs in Main and DS3 circuit packs in the Function Units slots. Refer to the test-trmsn-t3 commands in Chapter 11, "Commands and Reports," for details.

Operations Interface Tests

The DDM-2000 FiberReach Multiplexer provides tests for LED indicators, office alarms, and the system controller. Refer to the test-led, test-alm, and test-sysctl commands in Chapter 11, "Commands and Reports."

Performance Monitoring

The DDM-2000 FiberReach Multiplexer uses performance monitoring (PM) to support proactive maintenance of the network and tariffed service performance verification. Proactive maintenance refers to the process of detecting degrading conditions not severe enough to initiate protection switching or alarming, but indicative of an impending hard or soft failure. Hard and soft failures result in reactive maintenance.

Proactive maintenance consists of monitoring performance parameters associated with the SONET sections, lines, and paths within the SONET network. Table 9-1 lists the SONET performance parameters monitored by DDM-2000 systems. These parameters are thresholded to indicate degraded performance. When a performance-monitoring threshold is crossed, it is reported to the OS as a threshold crossing alert (TCA). With TL1/X.25, all threshold crossings associated
with a particular path can be correlated, and the likely source of the degradation can be identified.

Figure 9-9 shows DS1/DS3 line and path performance monitoring.

Figure 9-9. DS1/DS3 Line and Path and DS3 Path Performance Monitoring (PM)

The following are definitions and explanations for the terms used in the figure:

- **Line** — A line is a physical transport vehicle that provides the means of moving digital information between two points in a network. The line is characterized by a metallic transmission medium and its specific coding type. A line is bounded by its two end points, known as line terminations. A line termination is the point where the electrical, bipolar line signal is generated and transmitted, or received and decoded.
 - DS1 — DS1 line for AMI or B8ZS coding is monitored and the errored second (ES-L) data is displayed for the incoming signal from the DSX-1.
 - DS3 — DS3 line for B3ZS coding is monitored and the data is displayed in CV-L, ES-L, and SES-L registers for the incoming signal from the DSX-3.

- **Path** — A path is a framed digital stream between two points in a network and represents digital signal transport at a specified rate, independent of the equipment and media providing the physical means of transporting the signal. A path is defined by its two end points, called path terminations, where its frame structure is generated and decoded. A path may be carried wholly within one transport segment (line), or it may span a sequential arrangement of two or more transport segments.

* OC-3 Shelves Only.
— **DS1** — DS1 near-end path is monitored for SF framing and both near-end and far-end paths are monitored for ESF framing. The data is displayed in ES-P, SES-P, and UAS-P categories. CV-P is also displayed.

— **DS3** — DS3 path incoming from the fiber (high-speed side) is monitored for P-bit and F&M bit and the data is displayed in CV-P, ES-P, SES-P, and UAS-P registers. In addition, severely errored frame second (SEFS) is also monitored and displayed.

DS3 path incoming from the DSX-3 (low-speed side) is also monitored, in addition to monitoring the path from the fiber, for P-bit and F&M bit. The same registers are also displayed for the data from the DSX-3. DS3 path from both the fiber and the DSX-3 are monitored for C-bit and are displayed in the same registers as above. The far-end data (FEBE bits) is monitored and displayed as well.

VT Performance Monitoring

VT performance monitoring provides performance monitoring of the V5 byte for errored seconds, severely errored seconds, and unavailable seconds. VT performance monitoring is a feature package option that requires feature package software licensed by Lucent and the use of the `set-feat` command to enable the feature.

The counts are retrieved using the `rtrv-pm-vt1` command to determine if the service is operating within tariffed limits.

DS1 Performance Monitoring

DS1 performance monitoring is a feature package option that requires feature package software licensed by Lucent and the use of the `set-feat` command to enable the feature. Refer to Figure 9-10. DS1 performance monitoring measures near-end performance and extended superframe format far-end performance report of the incoming DS1, allowing service providers to determine the end-to-end performance of a DS1 signal. Tariffed service verification consists of monitoring performance parameters that can be associated with the customer’s end-to-end service. The DDM-2000 OC-1 Multiplexer provides this capability for DS1 services with the DS1 performance monitoring feature. Based on the American National Standards Institute ANSI T1.403 extended superframe format (ESF), this capability retrieves performance report messages written into the ESF data link by the customer’s terminal equipment.
From these messages, the DDM-2000 Multiplexer can determine and report the end-to-end error performance of the entire DS1 link as seen by the customer. These parameters, listed in Table 9-1, are thresholded and reported to indicate degraded performance. The counts are retrieved using the `rtrv-pm-t1` command to determine if the service is operating within tariffed limits.

Application of the DS1 performance monitoring feature for tariffed service verification is shown in Figure 9-10. Here an ANSI T1.403 ESF format DS1 service carried between points A and Z, using a DDM-2000 system and terminated at the customer's premises with channel service units (CSUs). At the "A" end, the received error performance (Z - A) is detected and written by the customer's CSU onto the outgoing (A - Z) ESF data link, as shown by the dashed lines, as a performance report message (PRM). The DS1PM circuit pack interfacing the A end reads the incoming DS1 signal's PRM (received from the customer's premises) and reports the Z - A performance. Likewise, the OC-3 system interfacing the Z end reports the A - Z performance by reading the PRM from the customer's "Z" CSU. By reviewing the data from each OC-3 system, the service provider can determine the complete end-to-end performance (A - Z and Z - A) of the customer's service.

Figure 9-10. DDM-2000 Multiplexer DS1 Path Performance Monitoring
Additionally, each DS1PM circuit pack measures the near-end performance of the incoming DS1, allowing the service provider to determine if a good DS1 signal was received from the customer before transporting it through the network. This information can then aid in sectionalizing any reported performance problems. The DS1PM circuit pack can also provide this same near-end information for superframe (SF) formatted (sometimes known as "D4 framing") DS1 services, but complete end-to-end performance verification is limited due to the lack of the PRM in the SF format.

See the “Performance Monitoring Parameters Provisionable via the CIT” table for the DDM-2000 FiberReach Multiplexer in Chapter 10, “Technical Specifications.”

DS3 Performance Monitoring

DS3 Path PM

With BBG4B DS3 circuit packs, the DDM-2000 FiberReach Multiplexer provides three DS3 path PM options: P-bit (parity bit), adjusted F&M bit (frame and multiframe bit), and C-bit. The options are selected using a command that also sets the PM mode to “on” (default) or "off," which enables or disables the monitoring and reporting of DS3 path PM data (see Table 9-1).

P-Bit

When provisioned for P-bit, the system calculates and provides counts of DS3 CV-P, ES-P, SES-P, and UAS-P incoming from the fiber and DSX. Quarter-hour and current day registers are provided with provisionable TCAs on a per-shelf basis. SEFS are also monitored.

Because P-bits can be corrected at nodes provisioned for VMR along a DS3 path, the DS3 P-bit PM data may not provide a complete report of the end-to-end DS3 path errors.

Adjusted F&M Bit

Adjusted F&M bit PM provides an alternative method for determining and accumulating DS3 path performance data based on an error estimation technique using errors on the F&M framing bits to approximate the actual error counts in the DS3 path payload. F&M bits are not corrected at nodes provisioned for VMR along a DS3 path. When provisioned for adjusted F&M bit, the system calculates and provides estimated counts of DS3 adjusted F&M bit CVs, ESs, SESs, and UASs incoming from the fiber and DSX. Quarter-hour and current day registers are provided with provisionable TCAs on a per-shelf basis. SEFS are also monitored.
C-Bit

When the DS3 path PM C-bit option is selected, both near-end and far-end (far-end block errors — FEBE) PM data are monitored and displayed.

The system provides counts of DS3 C-bit parity coding violations (CV-P), ES-P, SES-P, and UAS-P incoming from both the DSX-3 and the fiber. The type of PM is provisioned per DS3 service by a CIT command.

For C-bit PM, the DS3 service can be provisioned in violation monitor (VM) or violation monitor and removal (VMR) modes. In VMR mode, the C-bit errors are not corrected as in the P-bit option.

Quarter-hour and day registers are provided with provisionable TCAs. The TCAs are provisionable on a per-shelf basis. SEFS counts are also provided.

DS3 Line

DS3 line parameters include line coding violations (CVL), errored seconds (ESL), and severely errored seconds (SESL). DS3 line PM provides provisionable bit error ratios (TCAs) for all DS3 line parameters. For CVL parameters, bit errors can also be provisioned in ratios such as 10^{-7}, 10^{-8} and 10^{-9}.

Performance Parameters

The “Performance Monitoring Parameters Provisionable via the CIT” table in Chapter 10, “Technical Specifications” lists the performance parameters monitored by the DDM-2000 FiberReach Multiplexer. The collection of performance parameters depends directly on slot state transitions, port states, and cross-connections.

OC-1/OC-3/OC-12 Section Parameters

Performance Monitoring Enabling

Collection of section parameters for OC-1/OC-3/OC-12 interfaces is initiated when a slot is equipped with an OLIU circuit pack. Parameters continue to be available in reports and generate appropriate threshold crossing alerts until the OLIU is removed and the update command or the UPD/INIT button is pressed.
Severely Errored Frame Seconds (SEFS)

This parameter counts the number of seconds during which an out-of-frame, loss-of-signal, or OLIU circuit pack failure occurred. SEFSs are counted and thresholded independently for each OC-1/OC-3/OC-12 interface.

OC-1/OC-3/OC-12 Line Parameters

Performance Monitoring Enabling

Collection of line parameters for OC-1/OC-3/OC-12 interfaces is initiated when a slot is equipped with an OLIU circuit pack. Parameters continue to be available in reports and generate appropriate threshold crossing alerts until the OLIU is removed and the update command or the UPD/INIT button is pressed.

Line Coding Violations (B2 Parity)

To monitor the performance of the OC-1/OC-3/OC-12 line, the line BIP-8 (B2 parity) is calculated, written, and checked for errors. The line B2 parity violation counter is incremented for each line BIP error detected. Each line BIP-8 can detect up to eight errors per STS-1 frame. The contents of the 3 or the 12 line B2 parity violation counters associated with the OC-3 or OC-12 line are added to form a composite B2 parity violation count. Coding violations are not counted during seconds that contain a line AIS, loss of signal, loss of frame, or during an unavailable second (UAS). The B2 parity violations are counted and thresholded independently for service and protection lines.

Errored Seconds (ES)

An "errored second" is a second in which one or more B2 parity violations are detected. An errored second "type A" is a second in which exactly one B2 parity violation is detected. An errored second "type B" is a second in which more than one and less than 12 for OC-1, or more than one and less than 32 for OC-3, or more than one and less than 124 for OC-12, B2 parity violations are detected. Seconds that are unavailable seconds are not counted as errored seconds. A second that contains a line AIS, loss of signal, loss of frame or is an unavailable second is not counted as a type A or type B errored second. All three of these parameters are counted and thresholded independently for service and protection lines.
Severely Errored Seconds (SES)

A severely errored second is a second in which 12 or more for OC-1, or 32 or more for OC-3, or 124 or more for OC-12, B2 parity violations are detected or one in which a loss of signal, loss of frame or line AIS occurs. An unavailable second is not counted as a severely errored second. Severely errored seconds are counted and thresholded independently for service and protection lines.

Unavailable Seconds (UAS)

An unavailable second is a second during which the OC-1/OC-3/OC-12 line is "unavailable." A line is considered "unavailable" from the beginning of X consecutive severely errored seconds until the beginning of Y consecutive seconds, none of which is severely errored. X is equal to 10 seconds or, in the case of a failure, the line signal failure. Y is equal to 10 seconds of no severely errored seconds or line signal failure. Unavailable seconds are counted and thresholded independently for OC-1/OC-3/OC-12 interface service and protection line.

Line Protection Switch Counts

Line protection switch counts is the count of the number of protection switches FROM the working OC-3/OC-12 interface line. The count is independently counted and thresholded for both the service and the protection line.

STS Pointer Justification Count (PJC)

This feature provides a TCA from a DDM-2000 shelf when the STS pointer justification count in a performance bin exceeds a user provisioned threshold value. STS PJC's for each SONET line interface are accumulated in 15 minute and 24 hour performance monitoring bins. The TCA is sent via a TL1 autonomous message to the OS and is available through CIT and TL1 PM reports. PJC's are not accumulated during one second intervals in which an STS-1 is in the LOP or AIS state.

For each SONET line interface the system accumulates counts from only one STS-1 tributary during a 1 second monitoring interval. Excessive pointer justifications indicate a frequency error in the network or other potential synchronization problem. For example, a frequency error could be caused by a shelf in holdover or by a frequency offset in an external timing reference in networks with more than one shelf externally timed. The TCA can be provisioned in the frequency offset range from approximately 0.01 ppm to 10 ppm by setting a threshold for the PJC equivalent to the frequency offset.
STS-1 Path Parameters

Performance Monitoring Enabling

STS-1 path performance monitoring is initiated only when the first VT1.5 cross-connection associated with that STS-1 signal is made and the VT channel is in the IS state. Parameters continue to be available in reports and generate appropriate threshold crossing alerts until the last VT1.5 cross-connection is deleted.

STS-1 Path Coding Violations (B3 Parity)

To monitor the performance of the STS-1 path, the "B3" byte in the STS-1 path overhead is written when the path is originated and checked for errors when the path is terminated. The B3 coding violation counter is incremented for each error detected. Up to eight errors per STS-1 frame can be detected in each STS-1 synchronous payload envelope (SPE). B3 coding violations are counted and thresholded separately for each STS-1 path terminated by the system. Coding violations are not counted during seconds that contain a line AIS, loss of signal, loss of frame, loss of pointer, STS path AIS, or during an unavailable second (UAS).

Errored Seconds (ES)

An "errored second" is a second in which one or more B3 parity violations are detected. Seconds that are unavailable seconds are not counted as errored seconds. An errored second "type A" is a second in which exactly one B3 parity violation is detected. An errored second "type B" is a second in which more than one and less than nine B3 parity violations are detected. All three of these parameters are counted and thresholded independently for each STS-1 path terminated by the system.

Severely Errored Seconds (SES)

A severely errored second is a second in which nine or more B3 parity violations are detected. Severely errored seconds are counted and thresholded separately for each STS-1 path terminated by the system. An unavailable second is not counted as a severely errored second.

Unavailable Seconds (UAS)

An STS-1 path is considered "unavailable" from the beginning of X consecutive severely errored seconds until the beginning of Y consecutive seconds, none of which is severely errored. X is equal to 10 seconds or, in the case of a failure, the STS signal failure. Y is equal to 10 seconds of no severely errored seconds or
STS signal failure. If there is an unprotected STS-1 path terminating equipment (OLIU) failure, unavailable seconds are counted from within 1 second of circuit pack failure to within 1 second of circuit pack recovery.

VT1.5 Path Parameters

Performance Monitoring Enabling

VT1.5 monitoring is initiated when the associated VT1.5 or STS-1 cross-connection is made to a DS1 or DS1PM circuit pack. Parameters continue to be available in reports and generate appropriate threshold crossing alerts until the VT1.5 or STS-1 cross-connection is deleted.

Errored Seconds (ES)

An "errored second" is a second that is not an "unavailable second" in which one or more V5 parity violations or an AIS or LOP is detected. This parameter is counted and thresholded independently for each VT1.5 path terminated by the system.

Severely Errored Seconds (SES)

A "severely errored" second is a second that is not an "unavailable second" in which four or more V5 violations or an AIS or LOP is detected. Severely errored seconds are counted and thresholded separately for each VT1.5 path terminated by the system.
Unavailable Seconds (UAS)

A VT1.5 path is considered "unavailable" from the beginning of X consecutive severely errored seconds until the beginning of Y consecutive seconds, none of which is severely errored. X is equal to 10 seconds or, in the case of a failure, the VT signal failure. Y is equal to 10 seconds of no severely errored seconds or VT signal failure. If there is an unprotected VT path terminating equipment failure, unavailable seconds are counted from within 1 second of circuit pack failure to within 1 second of circuit pack recovery.

DS1 Path Parameters

Performance Monitoring Enabling

Collection of DS1 path parameters is initiated only when a slot is equipped with a DS1PM circuit pack, the DS1 port is in the IS or NMON state, and the DS1 port is provisioned for performance monitoring. Parameters continue to be available in reports and generate appropriate threshold crossing alerts until the input signal to the DS1 interface is removed and the update command or the UPD/INIT button is pressed. Alternatively, the DS1 path parameter can be disabled by setting the DS1 port to turn off DS1PM by using the set-t1 command.

Errored Seconds (ES)

An "errored second" for a DS1 SF format is a second in which one or more FEs (frame errors), or a DS1 AIS, or a DS1 OOF is detected. A near-end "errored second" for a DS1 ESF path is a second in which one or more CRC-6 violations, or a DS1 AIS, or OOF is detected. Errored seconds are not counted during "unavailable seconds". For a DS1 path with the ESF format, the far-end "errored seconds" values are obtained from the performance report message (PRM) in the DS1 ESF data link.

CV-P Coding Violations

This indicates the number of DS1 near-end path coding violations during the data collection interval. For a DS1 in SF format, this is a count of framing bit errors. For a DS1 in ESF format, this is a count of CRC-6 bit errors.

CV-PFE Coding Violations

This indicates the number of DS1 far-end path coding violations during the data collection interval. This parameter is only applicable to a DS1 signal in ESF format. This is a count of CRC-6 bit errors as reported in the G bits of the PRM.
Severely Errored Second (SES)

For the DS1 SF format, a "severely errored second" is a second in which eight or more FEs are detected, or an OOF, or DS1 AIS is detected. For the DS1 ESF format, a near-end severely errored second is a second in which 320 or more CRC-6 violations, or a DS1 AIS, or DS1 OOF are detected. For a DS1 path with the ESF format, the far-end "severely errored seconds" values are obtained from the PRM in the DS1 ESF data link. Severely errored seconds are not counted during "unavailable seconds". For a DS1 path with ESF format, the far-end "severely errored seconds" values are obtained from the PRM.

Unavailable Seconds (UAS)

A DS1 path is considered "unavailable" from the beginning of 10 consecutive severely errored seconds until the beginning of 10 consecutive seconds, none of which is severely errored. If there is a DS1 pack failure, then unavailable seconds are counted from within 1 second of circuit pack failure to within 1 second of circuit pack recovery. Unavailable seconds are counted and thresholded separately for each DS1 path monitored by the system.

For a DS1 path with ESF format, the far-end "unavailable second" performance is obtained from the PRM.

DS3 Parameters

Performance Monitoring Enabling

Collection of DS3 path parameters are initiated only when a slot is equipped with a DS3 circuit pack, the port is in the IS or NMON state, the DS3 port is provisioned for P-Bit violation monitoring (VM mode) or P-Bit violation monitoring and removal (VMR mode), and a default or manual STS-1 cross-connection is present. Parameters continue to be available in reports and generate appropriate TCAs until the input signal to the DS3 interface is removed and the update command or the UPD/INIT button is pressed (transitioning to the AUTO state). Alternatively, the DS3 path parameter can be disabled by setting the DS3 port to the clear channel mode (CC) using the set-t3 command. The PM mode parameter should be set to "on" (default) using the set-t3 command to start PM data monitoring and reporting.

The set-state-t3 command is used to turn on and off the alarm due to signal failures from a specified T3 port.

DS3 Performance Monitoring (PM)

The DS3 PM is enabled as specified in Table 9-1.
Table 9-1. DS3 Performance Monitoring Enabling

<table>
<thead>
<tr>
<th>DS3 Port State</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VMR</td>
</tr>
<tr>
<td>IS (In Service)</td>
<td>Yes</td>
</tr>
<tr>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>NMON (Not Monitored)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

DS3 Path

CV-P Coding Violations

CV-P coding violations are a count of the number of P-bit, adjusted F&M bit, or near-end and far-end C-bit parity errors in the DS3 signal received from the fiber and the DSX-3. To detect degradation of the signal, these errors are counted and thresholded independently for all DS3 interfaces provisioned in VM or VMR mode. By provisioning all NEs in the DS3 path to the VM mode, CV-Ps can be used as a DS3 path performance parameter when the P-bit option is selected. When the F&M-bit or C-bit option is selected, NEs could be provisioned in VMR or VM mode (see Table 9-2).

Severely Errored Frame Seconds (SEFS)

SESF are a count of the number of seconds during which an OOF or AIS condition exists for a DS3 signal received from the fiber or the DSX-3, or during an unprotected DS3 circuit pack failure. SEFSs are counted and thresholded independently for all DS3 interfaces provisioned in VM or VMR mode.

Errored Seconds (ES-P)

An "errored second" is a second in which one or more DS3 P-bit, adjusted F&M-bit, or near-end and far-end C-bit coding violations are detected. ES are not counted during UAS. ES are counted and thresholded independently for each DS3 path terminated by the system.

Severely Errored Seconds (SES-P)

A "severely errored second" is a second in which 44 or more DS3 P-bit, adjusted F&M-bit, or near-end and far-end C-bit coding violations are detected. SES-P are not counted during UAS. SES are counted and thresholded independently for each DS3 path terminated by the system.

Unavailable Seconds (UAS-P)

An "unavailable second" is a second during which the DS3 path is "unavailable." A DS3 path is considered "unavailable" from the beginning of X consecutive SES
until the beginning of Y consecutive seconds, none of which is severely errored. X is equal to 10 seconds or, in the case of a failure, the DS3 signal failure. Y is equal to 10 seconds of no SES or DS3 signal failures. If there is an unprotected DS3 circuit pack failure, UAS are counted from within 1 second of circuit pack failure to within 1 second of circuit pack recovery. UAS are counted and thresholded independently for each DS3 path terminated by the system. This applies to P-bit, adjusted F&M bit, and near-end and far-end C-bit options.

C-Bit

When the DS3 path PM C-bit option is selected, both near-end and far-end (far-end block errors) PM data are monitored and displayed.

The system provides counts of DS3 C-bit CV-P, ES-P, SES-P, and UAS-P incoming from both the DSX-3 and the fiber. The type of PM is provisioned per DS3 service by a CIT command.

For C-bit PM, the DS3 service can be provisioned in VM or VMR modes. In VMR mode, the C-bit errors are not corrected as in the P-bit option.

Quarter-hour and day registers are provided with provisionable TCAs. The TCAs are provisionable on a per shelf basis. SEFS counts are also provided.

Table 9-2. DS3 Performance Monitoring (PM) Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>PM Option</th>
<th>Monitor P-Bits</th>
<th>Monitor F&M Bits</th>
<th>Monitor C-Bits</th>
<th>Correct P-Bits</th>
<th>Correct F&M Bits</th>
<th>Correct C-Bits</th>
<th>Monitor Line PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMR</td>
<td>P-Bit</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VMR</td>
<td>F&M-bit</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VMR</td>
<td>C-Bit</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VM</td>
<td>P-Bit</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VM</td>
<td>F&M-bit</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VM</td>
<td>C-Bit</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CC</td>
<td>P-Bit</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CC</td>
<td>F&M-bit</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>C-Bit</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

DS3 Line

CV-L Coding Violations

This parameter is a count of B3ZS bipolar violations (BPV) occurring over the accumulation period. BPVs that are part of the zero substitution code are excluded.
ES-L Errored Seconds

This parameter is a count of seconds containing one or more BPVs, or one or more LOS (from the DSX-3) defects.

SES-L Severely Errored Seconds

This parameter is a count of seconds during which BPVs exceed 44 or one or more LOS defects occur.

DS1 Line Parameters

ES-L Errored Seconds

This parameter is a count of seconds containing one or more bipolar violations (for both AMI and B8ZS types of coding), or one or more loss of signal defects from the DSX-1.

Performance Monitoring Data Storage and Reports

The DDM-2000 FiberReach Multiplexer can initialize the current registers through the CIT locally or remotely at any time, as well as report the contents of any register at any time. Refer to the init-pm, rtrv-pm-line, rtrv-pm-sect, rtrv-pm-sts1, rtrv-pm-t1, rtrv-pm-t3 and rtrv-pm-tca commands in Chapter 11, “Commands and Reports.”

Performance Monitoring During Failed Conditions

When the DDM-2000 FiberReach Multiplexer detects a trouble condition, the system stops accumulating affected performance parameters. Parameters that continue to provide useful information are accumulated during the trouble condition.

Performance Parameter Thresholds

The DDM-2000 FiberReach Multiplexer provides performance thresholds to alert maintenance staff of degraded transmission. Whenever the threshold for a parameter is exceeded, the DDM-2000 FiberReach Multiplexer generates a threshold-crossing alert (TCA) to alert the OS (via the TL1 interface) to the condition. A summary of all TCAs is available in the performance monitoring TCA summary report. Current quarter-hour and current day thresholds for each
parameter are provisionable, via the CIT, on a per shelf basis. Therefore, if values other than the defaults are to be used, only one value needs to be set for each parameter. Generation of TCAs can be disabled independently for each performance parameter. Performance data is still collected if thresholding is disabled. Refer to the \texttt{rtrv-pmthres-line, rtrv-pmthres-sect, rtrv-pmthres-sts1, set-pmthres-line, set-pmthres-sect, set-pmthres-sts1, rtrv-pm-tca, rtrv-pmthres-vt1, rtrv-pmthres-t1, rtrv-pmthres-t3, set-pmthres-vt1, set-pmthres-vt3} and \texttt{set-pmthres-t1} commands in Chapter 11, "Commands and Reports."

Threshold Crossings Reported to OS

To trigger proactive maintenance activity at the OS, threshold crossing alerts (TCAs) are reported via TL1 \texttt{REPT-EVT} autonomous messages.

Reports

This section provides information in reports available through the CIT. For reports available via the TL1 interface, refer to 824-102-151, DDM-2000 Multiplexers Operations Systems Engineering Guide.

Alarms and Status Report

The system provides a report that lists all active alarm and status conditions. The identity of the condition (circuit pack failure, incoming signal failure, etc.) is included in the report along with a time stamp indicating when the condition was detected.

See the \texttt{rtrv-alm} command in Chapter 11, "Commands and Reports," for a complete list of the alarm and status conditions that are reported by the system.

Provisioning Reports

Provisioning reports list the current state of all provisionable options in the system. See the \texttt{rtrv-attr-alm, rtrv-attr-cont, rtrv-attr-env, rtrv-crs-vt1, rtrv-crs-sts1, rtrv-crs-sts3c, rtrv-fecom, rtrv-lgn, rtrv-link, rtrv-ne, rtrv-ocl, rtrv-oc3, rtrv-pmthres-line, rtrv-pmthres-sect, rtrv-pmthres-sts1, rtrv-pmthres-t1, rtrv-pmthres-vt1, rtrv-secu, rtrv-state-equip, rtrv-state-path, rtrv-state-sts1, rtrv-sts1, rtrv-sync, rtrv-t1, rtrv-t3, rtrv-trace-sts1, rtrv-ulsdcc-l3, rtrv-ulsdcc-l4, rtrv-state-vt1} and \texttt{rtrv-vt1} commands in Chapter 11, "Commands and Reports."
Database Change Transmission to OS

All provisioning changes are automatically reported to the OS over the TL1 interface using REPT DBCHG autonomous messages.

Performance Monitoring Reports

TCA Summary Report

The TCA summary report lists the sum of the number of threshold crossings within the last 8 hours for quarter-hour thresholds and the number of threshold-crossings for the current day and current quarter hour. This snapshot provides an overall view of system performance. If there are TCAs identified, it identifies which performance status report to look at for a detailed view of those parameters. See the rtrv-pm-tca command in Chapter 11, "Commands and Reports."

Performance Status Reports

The system provides reports that contain a snapshot of all current and previous performance monitoring registers. The time at which registers were last reinitialized is included. The option to display a specified subset of parameters (for example, line parameters only, data for only one OC-1 line or DS1 port, etc.) is also provided. See the rtrv-pm-sect, rtrv-pm-line, rtrv-pm-sts1, rtrv-pm-vt1, rtrv-pm-tl, and rtrv-pm-t3 commands in Chapter 11, "Commands and Reports."

Maintenance History Report

A maintenance history report containing the past 500 alarm, status, and CIT (for example, provisioning, loopback request, manual protection, etc.) events is provided. This summary contains real time and date stamps indicating when each condition was detected and when it cleared; CIT events contain a time stamp indicating when the command was entered. Alarm and status entries in the retrieve history report are not subject to holdoff and clear delay. See the rtrv-hsty command in Chapter 11, "Commands and Reports."

State Report

The state report lists the state of all slots and low-speed ports on the system. DS1 ports can be in the AUTO (available for automatic provisioning), IS (in service), or NMON (not monitored) states. When a good signal from the DSX is detected, a port in the AUTO state automatically transitions to the IS state and is monitored for failures. When a port is in the NMON state, the signal coming from the DSX is not
monitored. This report also includes the protection switching state ("active" or "standby") and protection switching priority of all protected lines and equipment in the system. See the `rtrv-state-(t1, sts1, vt1)` command in Chapter 11, "Commands and Reports."

Path State Report

This report lists each VT1.5 active and standby path in a path switched ring configuration. The active paths are identified and the protection switching status of each path is provided. See the `rtrv-state-(t1, sts1, vt1)` command in Chapter 11, "Commands and Reports."

Equipment Report

This report displays the equipage and version information for one or more slots. Refer to the `rtrv-eqpt` command in Chapter 11, "Commands and Reports."

Network Map Reports

The network report lists the TIDs and NSAPs of all reachable NEs (including level 2 ISs) in the local area only, or all reachable level 2 IS NEs in the subnetwork (if the local NE is provisioned to be a level 2 IS). Refer to the `rtrv-map-network` command in Section 11, "Commands and Reports."
Technical Specifications

Contents

Overview 10-1

DDM-2000 FiberReach Multiplexer Wideband Shelf Specifications 10-1

- External Transmission Interfaces 10-1
- Electrical Interfaces 10-2
 - DS1 Low-Speed (BBF1B) 10-2
 - DS1PM Low-Speed (BBF3/BBF3B) 10-3
 - DS3 Low-Speed (BBG4/BBG4B) 10-5
 - DS3 Data Services Interface (BBG19) 10-7
 - T1 Carrier Low-Speed (BBF6 T1EXT) 10-8
 - HDSL Interface (BBF8) 10-11
- Optical Interfaces 10-12
 - Lightguide Jumpers 10-12
 - Intra-office (IS-3) OC-3 Rate Interface (22D-U OLIUs) 10-13
 - Intermediate Reach OC-3 Interface (22F/22F-U/22F2-U OLIU) 10-17
 - Long Reach OC-3 Interface (22G-U/22G2-U/22G3-U/22G4-U OLIU) 10-18
 - Long Reach OC-1 Interface (26G2-U OLIU) 10-22
 - Long Reach OC-3 Interface (28G-U/28G2-U OLIU) 10-27
 - Long Reach OC-12 Interface (29G-U OLIU) 10-31
 - Long Reach OC-12 Interface (29H-U OLIU) 10-32
 - OC-3 Optical Interface Mixing 10-36
- Plug-In Maintenance Sparing Guidelines 10-39
- Universal Optical Connectors 10-42
Contents

- SONET Overhead Bytes 10-44
- Performance 10-44
 - Wander/Jitter 10-44
 - Signal Performance 10-44
 - Protection Switching 10-45
 - Transient Performance 10-46
 - Delay 10-46
 - Performance Monitoring 10-47
- Signaling Mode 10-49
- Digital Data Performance 10-49
- Operations Interfaces 10-49
 - Craft Interface Terminal 10-49
 - Personal Computer Specifications for Software Download 10-50
 - Compatible Modems 10-51
 - CPro-2000 Graphical User Interface and Provisioning Tool 10-51
 - User Panel 10-52
 - Equipment Indicators 10-52
 - Office Alarms 10-53
 - User-Definable Miscellaneous Discrete Environmental Alarms and Controls 10-53
 - TL1/X.25 Interface 10-53
 - Lucent 2000 Product Family OI Specifications 10-53
- Physical Specifications 10-54
 - Wideband Shelf Physical Characteristics 10-54
 - Network Bay and Cabinet Mounting 10-54
- Environmental Specifications 10-55
 - Temperature and Humidity 10-55
 - EMC Requirements 10-55
 - Earthquake Requirements 10-55
 - Fire Resistance 10-55
 - Underwriters Laboratories (UL) 10-56
 - Canadian Standards Association 10-56
- Power Requirements 10-56
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf Fuses</td>
<td>10-56</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>10-56</td>
</tr>
<tr>
<td>DDM-2000 FiberReach Multiplexer Reliability</td>
<td>10-59</td>
</tr>
<tr>
<td>Summary</td>
<td>10-59</td>
</tr>
<tr>
<td>Transmission Availability</td>
<td>10-59</td>
</tr>
<tr>
<td>Operation System Interface Availability</td>
<td>10-60</td>
</tr>
<tr>
<td>Optical Module Maintenance Objective</td>
<td>10-60</td>
</tr>
<tr>
<td>Infant Mortality</td>
<td>10-60</td>
</tr>
<tr>
<td>DDM-2000 FiberReach System Reliability Predictions</td>
<td>10-61</td>
</tr>
<tr>
<td>DDM-2000 Narrowband Shelf Specifications</td>
<td>10-64</td>
</tr>
<tr>
<td>Physical Specifications</td>
<td>10-64</td>
</tr>
<tr>
<td>Narrowband Shelf Physical Characteristics</td>
<td>10-64</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>10-64</td>
</tr>
<tr>
<td>Shelf Fuses</td>
<td>10-64</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>10-64</td>
</tr>
<tr>
<td>Terminal-to-Terminal Voice-Frequency Transmission</td>
<td>10-65</td>
</tr>
</tbody>
</table>
Technical Specifications

Overview

This section contains the technical specifications for Releases 2.2, 3.0, 3.1, and 4.0 of the DDM-2000 FiberReach Multiplexer.

DDM-2000 FiberReach Multiplexer
Wideband Shelf Specifications

External Transmission Interfaces

The DDM-2000 FiberReach Multiplexer transmission interfaces adhere to industry standards as listed in Table 10-1.

Table 10-1. Transmission Interface Standards

<table>
<thead>
<tr>
<th>Interface</th>
<th>Standard</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1 low-speed</td>
<td>CB-119, ANSI/ T1.102-1993, TR-499, Iss. 5, ANSI/ T1.403-1989</td>
<td>B8ZS/AMI option SF, ESF</td>
</tr>
<tr>
<td>DS3 low-speed</td>
<td>CB-119, ANSI/ T1.102-1998, TR-499, Iss. 5</td>
<td>VMR, VM, or clear channel</td>
</tr>
<tr>
<td>OC-1/OC-3/OC-12</td>
<td>ANSI/ T1.106/88, ANSI/ T1.105/95, T1.105.03/94, & T1.105.02/95, GR-253, Iss. 2, GR-496, Iss. 2</td>
<td></td>
</tr>
</tbody>
</table>

* Registered trademark of American National Standards Institute, Inc.
Electrical Interfaces

The DDM-2000 OC-3 Multiplexer supports a DS1, DS1PM, DS3, and T1 Carrier low-speed interfaces, and DS3 Data Services and HDSL interfaces.

DS1 Low-Speed (BBF1B)

- Electrical Specification

 The DS1 low-speed interface transmits and receives a standard electrical DS1 signal as specified in ANSI/T1.102-1993, Section 2 (1.544 Mb/s nominal rate, DSX-1 interconnect specification). Line coding is provisionable to alternate mark inversion (AMI) with or without bipolar 8-zero substitution (B8ZS). Line buildout is provisionable as follows:
 - 613C (22 gauge): 30 to 655 ft.
 - 1249-C (26 gauge): 30 to 450 ft.

- Format Specification

 The DS1 low-speed interface provides clear channel transport of any DSX-1 compatible signal. There are no format constraints on this interface.

- Alarm Thresholding

 The following parameters are monitored at the DS1 interface:
 - Loss of signal (LOS)
 - Line coding violations (CV-L).

 The alarm level for each of the monitored parameters can be provisioned to critical (CR), major (MJ), minor (MN), or status. B8ZS and AMI coding violation failure thresholds are user settable to 10^{-3}, 10^{-6}, 10^{-7}, or 10^{-8} bit error ratio (BER).
DS1PM Low-Speed (BBF3/BBF3B)

- **Electrical Specification**
 The DS1PM low-speed interface transmits and receives a standard electrical DS1 signal as specified in ANSI T1.102-1993, Section 2 (1.544 Mb/s nominal rate, DSX-1 interconnect specification). Line coding is provisionable to AMI with or without B8ZS. Line buildout is provisionable as follows:
 - 613C (22 gauge): 30 to 655 ft.
 - 1249-C (26 gauge): 30 to 450 ft.

- **Format Specification**
 The DS1PM low-speed interface can be provisioned for the following DS1 formats: clear channel (default), superframe (SF) as specified in ANSI T1.403-1989, or extended superframe (ESF) as specified in ANSI T1.403-1989. In the case of SF or ESF format selections, DS1 performance information is collected by monitoring the associated DS1 framing format.

- **Alarm Thresholding**
 The following parameters are monitored at the DS1PM interface:
 - Loss of signal (LOS)
 - Line coding violations (CV-L).

 The alarm level for each of the monitored parameters can be provisioned to CR, MJ, MN, or status. B8ZS and AMI coding violation failure thresholds are user settable to 10^{-3}, 10^{-6}, 10^{-7}, or 10^{-8} BER.

- **Loopback**
 - Quad DS1 facility loopback (BBF3)
 - Single DS1 facility loopback (BBF3B) (Release 3.0 and later).

- **Performance Monitoring (See Table 10-3 and Table 10-23.)**

Near-End DS1 Path Parameters:
 - Errored Seconds (ES)
 - Severely Errored Second (SES)
 - Unavailable Seconds (UAS)
 - SF or ESF framed signals incoming to the DSX-1
 - CV-P Coding Violations (Release 3.0 and later)
 - CV-PFE Coding Violations (Release 3.0 and later).
Far-End DS1 Path Parameters:
 — SES, and UAS for ESF framed signals using performance reportant messages (PRM) incoming from the DSX-1.

DS1 Line Parameters:
 — ES-L Errored Seconds (Release 3.0 and later).
DS3 Low-Speed (BBG4/BBG4B)

- **Electrical Specification**

 The low-speed DS3 interface transmits/receives a standard electrical DS3 signal as specified in ANSI T1.102-1993, Section 5 (44.736 Mb/s rate, DSX-3 interconnect specification, B3ZS encoding). However, the signal does not have to contain a standard DS3 frame.

 LBO is provisionable as follows:
 - 734A/D: 0 to 450 ft.
 - Mini-coax (KS-19224, L2): 0 to 150 ft.
 - 735A: 0 to 250 ft.

- **Format Specification**

 The DS3 low-speed interface provides clear channel transport of any DSX-3 compatible signal (M13 mode, framed clear channel, unframed clear channel). Thus, there are no format requirements on this interface.

- **Alarm Thresholding**

 The following parameters are monitored at the DS3 interface to the DSX-3:
 - Loss of Signal (LOS)
 - Line coding violations (CV-L).

 The alarm level for each of the monitored parameters can be provisioned to CR, MJ, MN, or status. B3ZS coding violation failure threshold is user settable to 10^{-3} or 10^{-6} BER.

- **PM (see Table 10-3 and Table 10-23)**
 - DS3 parity errors (P-Bits)
 - Severely errored frame seconds (SEFS).

 If provisioned in the violation monitor and removal (VMR) or violation monitor (VM) modes (Table 10-2), DS3 P-bit violations and SESF are counted, and the counts are thresholded to flag detected performance degradation of the DS3 signal incoming from the fiber.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Monitor P-Bits</th>
<th>Correct P-Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMR mode</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VM mode</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CC mode</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Enhanced DS3 PM (See Table 10-3 and Table 10-23.)

- CV-P Coding Violations
 These errors are counted and thresholded independently for all DS3 interfaces provisioned in VM or VMR mode. When the F&M bit or C-bit option (C-bit is OC-3 Multiplexer Release 8.0 and later releases) is selected, NEs could be provisioned in VMR or VM mode. See Table 10-3.

- Errored Seconds (ES-P)
- Severely Errored Seconds (SES-P)
- Unavailable Seconds (UAS-P)
- Severely Errored Frame Seconds (SEFS)
- CV-L Coding Violations Line (Release 7.2 and later of OC-3)
- ES-L Errored Seconds (Release 7.2 and later of OC-3)
- SES-L Severely Errored Seconds Line (Release 7.2 and later of OC-3)

Table 10-3. Enhanced DS3 Performance Monitoring Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>PM Option</th>
<th>Monitor P-Bits</th>
<th>Monitor F&M Bits</th>
<th>Monitor C-Bits</th>
<th>Correct P-Bits</th>
<th>Correct F&M Bits</th>
<th>Correct C-Bits</th>
<th>Monitor Line PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMR</td>
<td>P-bit</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VMR</td>
<td>F&M-bit</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VMR</td>
<td>C-bit</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VM</td>
<td>P-bit</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VM</td>
<td>F&M-bit</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VM</td>
<td>C-bit</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CC</td>
<td>P-bit</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CC</td>
<td>F&M-bit</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CC</td>
<td>C-bit</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
DS3 Data Services Interface (BBG19)

- **Electrical Specification**
 The low-speed DS3 interface transmits and receives a standard electrical DS3 signal as specified in ANSI/T1.102-1993, Section 5 (44.736 Mb/s rate, DSX-3 interconnect specification, bipolar 3-zero substitution [B3ZS] encoding). However, the signal does not have to contain a standard DS3 frame.

 LBO is provisionable as follows:
 - 734A/D: 0 to 450 ft.
 - Mini-coax (KS-19224, L2): 0 to 150 ft.
 - 735A: 0 to 250 ft.

- **Format Specification**
 The DS3 low-speed interface provides clear channel transport of any DSX-3 compatible signal (M13 mode, framed clear channel, unframed clear channel). Thus, there are no format requirements on this interface.

- **Alarm Thresholding**
 The following parameters are monitored at the DS3 interface to the DSX-3:
 - LOS
 - CV-L.

 The alarm level for each of the monitored parameters can be provisioned to CR, MJ, MN, or status. B3ZS coding violation failure threshold is user settable to 10^{-3} or 10^{-6} BER.

- **Performance Monitoring (See Table 10-3 and Table 10-23.)**
 - DS3 parity errors (P-Bits)
 - SEFS.

 If provisioned in the VMR or VM modes (Table 10-2), DS3 P-bit violations and SESF are counted, and the counts are thresholded to flag detected performance degradation of the DS3 signal incoming from the fiber.

- **Enhanced DS3 Performance Monitoring (See Table 10-23 and Table 10-3.)**
 The Enhanced DS3 PM for the BBG19 is the same as for the BBG4/BBG4B. Refer to the DS3 Low-Speed (BBG4/4B) Enhanced DS3 Performance Monitoring section for a list of parameters.

 The DS3 interface is accessed through a BNC connector on the circuit pack faceplate.
T1 Carrier Low-Speed (BBF6 T1EXT)

Electrical Specification

The T1 carrier low-speed interface (T1EXT) transmits and receives a standard electrical T1 carrier signal as specified in CB No. 113, Issue 2, April 1978. The T1EXT supports two interfaces. Line coding is provisionable to AMI with or without B8ZS. The following are specifications for the driver/receiver:

- Driver Output: 3 V peak pulse
- Receiver Gain: 35 dB maximum at 772 KH
- Receiver Dynamic Range: 0 to 35 dB (no pad at input).

The driver/receiver does not require any special provisioning to support up to 6,000 feet of 22-gauge copper cable (at 22 degrees Celsius) used in a T-Carrier system.

The T1EXT will support a single span of the following distances:

- In a central office: up to 3000 feet (±1500 feet)
- In an outside plant cabinet or Wall DT: up to 6,000 feet.

The 60 mA constant current regulator will support a simplex loop resistance of 221 ohms.

- The T1EXT does not support fault locating using bipolar violations.
- The T1EXT can interface with "looping regulator" type repeaters only.
- The T1EXT does not have the capability to loop the simplex current back to a T1 line repeater.
- The T1EXT does not include any components for primary or secondary lightning protection/surge protection or power cross. Primary protection (Lucent Technologies' protector unit 4B3EW or equivalent) is always required for tip/ring lines exposed to lightning and surges either in cabinet or as lines enter a building. An external secondary lightning and surge protection assembly (ED-8C783) must be collocated with the FiberReach shelf for all outside plant applications. Refer to Figure 10-1 for T1EXT span powering.
Figure 10-1. T1EXT Span Powering

Notes:
1. The arrow indicates direction of simplex current flow when both loops are equipped with looping type repeater or CSU.
2. Each loop is powered with 14V, 60 MA source.
Format Specification

The T1EXT BBF6 low-speed interface can be provisioned for the following formats: clear channel (default), SF as specified in ANSI T1.403-1989, or ESF as specified in ANSI T1.403-1989. In the case of SF or ESF format selections, T1EXT performance information is collected by monitoring the associated T1EXT framing format.

Alarm Thresholding

The following parameters are monitored at the T1EXT interface:

- Loss of signal
- Line coding violations.

The alarm level for each of the monitored parameters can be provisioned to CR, MJ, MN, or status. B8ZS and AMI coding violation failure thresholds are user settable to 10^{-7} or 10^{-8} BER.

Performance Monitoring (PM) (See Table 10-3 and Table 10-23.)

- Near-end T1EXT path parameters (ES, SES, and UAS) for SF or ESF framed signals incoming to the DSX-1
- Far-end T1EXT path parameters (ES, SES, and UAS) for ESF framed signals using performance report messages (PRM) incoming from the DSX-1
- Coding violations (CV) for near-end and far-end
- T1EXT line PM monitoring and ES reporting

HDSL Interface (BBF8)

- **Electrical Specification**
 The High Bit-rate Digital Subscriber Line (HDSL) circuit pack transmits and receives a 2B1Q signal as specified in Telcordia Technologies TA-NWT-001210.
 - Data is scrambled/descrambled with a pseudo-random sequence.
 - Line buildout is automatically provisioned.
 - Compensated for data inversion caused by tip-ring reversals.

- **Format Specification**
 The HDSL allows for clear channel transport of a framed or unframed DS1. Its data stream consists of two 78 Kb/s signals transported on separate wire pairs. Together, the aggregate bi-directional bit rate is 1.554 MB/s. The remaining 24 Kb/s is used for training and diagnostic information.
 - Compatible with PairGain equipment.

- **Alarm reporting**
 - LOS.
 An LOS is reported if either HDSL line experiences a synchronization failure.

- **Loopback**
 DS1 facility loopback for each HDSL interface.

- **Performance Monitoring (PM)** — Available through the HDSL link management port only
 - User-configurable alarm thresholds
 - 15-minute, 24-hour, and 7-day performance histories
 - Asynchronous serial interface for provisioning and PM.

- **Management**
 - SONET Management.
 This link is accessible via the SONET DCC and DDM-2000 CIT. It allows the HDSL circuit pack to be provisioned for DS1 facility loopbacks.
 - HDSL Link Management.
 This link is accessible via a faceplate mounted RS-232 interface. It allows management of each HDSL port only. Management of the DDM-2000 is not accessible through this interface. This management port supports a menu driven interface for each HDSL port. Managed features include:

PairGain is a registered trademark of PairGain Technologies, Inc.
— PM features listed above
— Local and remote loopbacks
— Programmable loopback time-out
— Alarm status.

Described in PairGain Specifications, OEM-HMO-SW1-02

Optical Interfaces

The DDM-2000 FiberReach Multiplexer supports either an OC-1 or OC-3 high-speed interface that is synchronous optical network (SONET) compliant. When equipped with the 26G2-U OLIU, the companion OLIU at the host node is the 27G-U OLIU. The nominal OC-1 rate is 51.84 Mb/s for these OLIUs. When equipped with the 28-type OLIU, the OLIU on the neighboring DDM-2000 OC-3 shelf may be any 22-type OLIU, or 21-type on an OC-12 shelf.

Lightguide Jumpers

The DDM-2000 FiberReach Multiplexer provides Lucent's universal optical connector on the OLIU. The universal optical connectors are receptacles on the faceplate of the OLIU that allow a single OLIU to support either ST, FC-P, or SC connectors as needed. Both 0 dB and attenuating buildouts are supported.

The DDM-2000 OC-1/OC-3 lightguide interface uses single-mode and multimode jumpers for connecting to and from the outside plant LGX® panel and the DDM-2000 OC-3.

When the outside plant lightguide is single-mode, a single-mode jumper must be used for the transmit side and either single-mode or multimode jumpers can be used for the receive side of all OLIUs (except the 29-type which requires single-mode fiber on both the transmit and receive sides due to potential optical path degradations).

The 29-type OLIU must be used with single mode fiber.

Lightguide jumpers can be ordered from Lucent. See the appropriate "Miscellaneous Equipment and Tools" section for ordering information in the 363-206-300, DDM-2000 FiberReach Multiplexer Applications, Planning, and Ordering Guide.
Intra-office (IS-3) OC-3 Rate Interface
(22D-U OLIUs)

- **Optical Specification**
 The 22D-U OLIUs are short-reach optical interfaces used to interconnect between the DDM-2000 OC-3 and OC-12 Multiplexers. The nominal line rate is 155.520 Mb/s. The LED transmitter supplies an NRZ-coded signal. Table 10-4, Table 10-5, and Table 10-8 provide detailed specifications and link budget information for the 22D-U OLIUs.

- **Alarm Thresholding**
 The following parameters are monitored at the OC-3 interface:
 - LOS
 - LOF
 - LOP
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- **Line PM** (See Table 10-3 and Table 10-23.)
 - Section SEFS
 - B2 parameters
 - STS-1 Path PM. (See Table 10-3 and Table 10-23.)
Table 10-4 lists the 22D-U OLIU specifications.

Table 10-4. 22D-U OLIU Specifications

<table>
<thead>
<tr>
<th>System Information:</th>
<th>22D-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Equipment Identification</td>
<td>22D-U OLIU</td>
</tr>
<tr>
<td>Optical Line Rate (Mb/s)</td>
<td>155.520 Mb/s</td>
</tr>
<tr>
<td>Optical Line Coding</td>
<td>Scrambled NRZ</td>
</tr>
<tr>
<td>Optical Wavelength</td>
<td>1310 nm</td>
</tr>
<tr>
<td>Performance</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter Information:</th>
<th>22D-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>No TEC</td>
</tr>
<tr>
<td>FDA Classification</td>
<td>Class I</td>
</tr>
<tr>
<td>Optical Source</td>
<td>LED</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>Lucent ST</td>
</tr>
<tr>
<td></td>
<td>UOC buildout assembly *</td>
</tr>
<tr>
<td></td>
<td>Multimode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver Information:</th>
<th>22D-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
</tr>
<tr>
<td>Optical Detector</td>
<td>InGaAsP PIN</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC buildout assembly *</td>
</tr>
<tr>
<td></td>
<td>Multimode</td>
</tr>
</tbody>
</table>

* The universal optical connector (UOC) buildout assembly consists of a faceplate-mounted block assembly and either 0 dB, 5 dB, 10 dB, or 15 dB buildout in either ST, SC, or FC-type connectors.
Table 10-5. 22D-U OLIU Link Budgets (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>22D-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Wavelength ($\lambda_{T_{\text{min}}}$)</td>
<td>1270/1260* nm</td>
</tr>
<tr>
<td>Maximum Wavelength ($\lambda_{T_{\text{max}}}$)</td>
<td>1380 nm</td>
</tr>
<tr>
<td>Spectral Width ($\delta \lambda_{\text{rms}}$)</td>
<td>170 nm †</td>
</tr>
<tr>
<td>Maximum Transmitter Power ($P_{T_{\text{max}}}$)</td>
<td>-14.0 dBm</td>
</tr>
<tr>
<td>Minimum Transmitter Power ($P_{T_{\text{min}}}$)</td>
<td>-18.8/-21.8 dBm</td>
</tr>
<tr>
<td>Maximum Received Power ($P_{R_{\text{max}}}$)</td>
<td>-14.0 dBm</td>
</tr>
<tr>
<td>Minimum Received Power ($P_{R_{\text{min}}}$)</td>
<td>-33.8/-31.8* dBm</td>
</tr>
<tr>
<td>Minimum System Gain (S-R)‡</td>
<td>15/10.0* dB</td>
</tr>
<tr>
<td>Optical Path Penalty (P_{O}) ‡</td>
<td>1.6 dB</td>
</tr>
<tr>
<td>Connector Loss ¶</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Unallocated Margin **</td>
<td>2.0 dB</td>
</tr>
<tr>
<td>Minimum Loss Budget</td>
<td>0.0 dB</td>
</tr>
<tr>
<td>Maximum Loss Budget †</td>
<td>9.9/4.9* dB</td>
</tr>
<tr>
<td>Maximum Span Length †‡</td>
<td>(Note 2)</td>
</tr>
</tbody>
</table>

Notes:

1. All terminology is consistent with TR-253, Issue 2. All specifications for the 22D OLIU meet or exceed intermediate reach (IR) values described in GR-253, Iss. 2.
2. Multimode only (See Table 10-8.).

* When two numbers are given, the number before the slash is the specification for operating under controlled environmental conditions. The number following the slash is the specification for uncontrolled environmental conditions. If only one number is given, it applies to both controlled and uncontrolled environmental conditions.

† Full width at half maximum (FWHM) spectral width.

‡ The minimum system gain for the DDM-2000 already takes into account aging, temperature, and manufacturing tolerances as these figures are built into the minimum transmitter power. The DDM-2000 system gain can, thus, not be directly compared with the DDM-1000 system gain because the DDM-1000 system gain does not include all of these effects. A similar penalty, called eye margin, is subtracted from the DDM-1000 loss budget after the value of system gain is determined.
§ Optical path penalty includes effects of dispersion, reflection, and jitter that occur on the optical path.
¶ One connector (0.75 dB) on each end is assumed to connect station cable to outside plant.
∗∗ Unallocated margin, or safety margin, is typically specified from 0 dB to 3 dB.
†† Budget available for both station and transmission cable and splices.
‡‡ Attenuation and dispersion can be the limiting factors in span length. For OC-3 single-mode fiber systems, dispersion is not a factor and all applications are attenuation limited. The limits must be calculated based on both factors and the lesser of the two defines the actual maximum span length. A rough rule of thumb for attenuation-limited systems is 0.45 dB/km. This estimate includes typical cable loss (0.4 dB/km) and splice loss (0.2 dB per splice, 11 total splices) associated with single-mode fiber.

Maximum span length can be calculated more precisely based on particular fiber and splice characteristics and local engineering rules.
Intermediate Reach OC-3 Interface (22F/22F-U/22F2-U OLIU)

- **Optical Specification**

 The 22F/22F-U/22F2-U OLIU photonics meet or exceed SONET intermediate reach specifications (TR 253-IR-1 MLM category). The MLM laser transmitter supplies an NRZ-coded signal. The PINFET receiver allows direct optical loopback without the use of an external attenuator.

 The 22F/22F-U/22F2-U OLIU intermediate reach OC-3 interface supports span lengths up to 33 km, assuming 0.45 dB/km single-mode fiber and the span engineering rules outlined in Table 10-7. Transmit and receive powers are referenced to Points S and R as shown in Figure 10-2. Table 10-6, Table 10-7, and Table 10-8 provide detailed specifications and link budget information for the 22F-type OLIU.

- **Alarm Thresholding**

 The following parameters are monitored at the OC-3 interface.

 - LOS
 - LOF
 - LOP
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- **Line PM (See Table 10-3 and Table 10-23.)**

 - Section SEFS
 - Line parameter B2
 - STS pointer justification (OC-3 R11.0 and later)
 - STS-1 Path PM. (See Table 10-3 and Table 10-23.)

A higher quality SLM laser may be used instead of an MLM laser.
Long Reach OC-3 Interface (22G-U/22G2-U/22G3-U/22G4-U OLIU)

- Optical Specification

 The multilongitudinal mode (MLM') laser transmitter supplies an NRZ-coded signal. For direct optical loopbacks, at least 7.0 dB (use 10 dB attenuator, see Table 10-21) of attenuation is needed for the 22G-U. No attenuation is needed for the 22G2-U/22G3-U/22G4-U.

 The 22G-U/22G2-U OLIU long reach OC-3 interface supports span lengths up to 51 km, assuming 0.45 dB/km single-mode fiber and the span engineering rules outlined in Table 10-7. Transmit and receive powers are referenced to Points S and R (Figure 10-2). Table 10-6, Table 10-7, and Table 10-8 provide detailed specifications and link budget information for the 22G-U/22G2-U OLIU.

 The 22G3-U/22G4-U OLIU is a SONET compliant long reach OC-3 interface supporting span lengths up to 55 km, assuming 0.45 dB/km single-mode fiber and the span engineering rules outlined in Table 10-7. Transmit and receive powers are referenced to Points S and R (Figure 10-2). Table 10-6, Table 10-7, and Table 10-8 provide detailed specifications and link budget information for the 22G3-U/22G4-U OLIU.

- Alarm Thresholding

 The following parameters are monitored at the OC-3 interface.
 - Loss of signal (LOS)
 - Loss of frame (LOF)
 - Loss of pointer (LOP)
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- Line PM (See Table 10-3 and Table 10-23.)
 - Section SEFS
 - Line parameter B2
 - STS pointer justifications (OC-3 R11.0 and later)
 - STS-1 Path PM. (See Table 10-3 and Table 10-23.)

* A higher quality SLM laser may be used instead of an MLM laser.
Table 10-6 lists the 22F-type and 22G-type OLIU specifications.

Table 10-6. 22F-Type and 22G-Type OLIU Specifications

<table>
<thead>
<tr>
<th>System Information:</th>
<th>22F-Type</th>
<th>22G-U/22G2-U</th>
<th>22G3-U/22G4-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Equipment Identification</td>
<td>22F/22F-U/22F2-U OLIU</td>
<td>22G-U/22G2-U OLIU</td>
<td>22G3-U OLIU</td>
</tr>
<tr>
<td>Optical Line Rate (Mb/s)</td>
<td>155.520 Mb/s</td>
<td>155.520 Mb/s</td>
<td>155.520 Mb/s</td>
</tr>
<tr>
<td>Optical Line Coding</td>
<td>Scrambled NRZ</td>
<td>Scrambled NRZ</td>
<td>Scrambled NRZ</td>
</tr>
<tr>
<td>Optical Wavelength</td>
<td>1310 nm</td>
<td>1310 nm</td>
<td>1310 nm</td>
</tr>
<tr>
<td>Performance</td>
<td>SONET IR-1 MLM (Intermediate Reach)</td>
<td>Not applicable</td>
<td>SONET LR- (Long Reach)</td>
</tr>
</tbody>
</table>

Transmitter Information:

<table>
<thead>
<tr>
<th>System Information:</th>
<th>22F-Type</th>
<th>22G-U/22G2-U</th>
<th>22G3-U/22G4-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>No TEC</td>
<td>No TEC</td>
<td>No TEC</td>
</tr>
<tr>
<td>FDA Classification</td>
<td>Class I</td>
<td>Class I</td>
<td>Class I</td>
</tr>
<tr>
<td>Optical Source</td>
<td>InGaAsP Laser, MLM Structure *</td>
<td>InGaAsP Laser, MLM Structure *</td>
<td>InGaAsP Laser, MLM Structure *</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>Lucent C3000-A-2 (22F) UOC buildout assembly † (22F-U/22F2-U) Single Mode</td>
<td>UOC buildout assembly † Single Mode</td>
<td>UOC buildout assembly † Single Mode</td>
</tr>
</tbody>
</table>

Receiver Information:

<table>
<thead>
<tr>
<th>System Information:</th>
<th>22F-Type</th>
<th>22G-U/22G2-U</th>
<th>22G3-U/22G4-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Optical Detector</td>
<td>InGaAsP PIN</td>
<td>InGaAsP PIN (22G-U) InGaAs PIN (22G2-U)</td>
<td>InGaAs PIN</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>Lucent C2000-A-2 (22F) UOC buildout assembly † (22F-U/22F2-U) Multimode</td>
<td>UOC buildout assembly † Multimode</td>
<td>UOC buildout assembly † Multimode</td>
</tr>
</tbody>
</table>

Notes:

* A tighter specification DFB laser (part #1243TAFA) may be supplied instead of the MLM laser. The DFB laser meets all the requirements of the MLM laser and DFB requirements in GR-253-CORE, Issue 2, December 1995.

† The universal optical connector (UOC) buildout assembly consists of a faceplate-mounted block assembly and either 0 dB, 5 dB, 10 dB, or 15 dB buildout in either ST, SC, or FC-type connectors. ST universal buildout does not apply to 22G-U.
Table 10-7. 22F-Type and 22G-Type OLIU Link Budgets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>22F/22F-U/22F2-U</th>
<th>22G-U</th>
<th>22G2-U</th>
<th>22G3-U*</th>
<th>22G4-U***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Wavelength (λ (T_{\text{min}}))</td>
<td>1260 nm</td>
<td>1272 nm</td>
<td>1272 nm</td>
<td>1280 nm</td>
<td>1280 nm</td>
</tr>
<tr>
<td>Maximum Wavelength (λ (T_{\text{max}}))</td>
<td>1360 nm</td>
<td>1350 nm</td>
<td>1350 nm</td>
<td>1335 nm</td>
<td>1335 nm</td>
</tr>
<tr>
<td>Spectral Width (δ (\lambda_{\text{rms}}))</td>
<td>7.7 nm</td>
<td>3.0 nm</td>
<td>3.0 nm</td>
<td>4.0 nm</td>
<td>1.0 nm</td>
</tr>
<tr>
<td>Maximum Transmitter Power (T_{\text{max}})†</td>
<td>−8.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
</tr>
<tr>
<td>Minimum Transmitter Power (T_{\text{min}})</td>
<td>−15.0 dBm</td>
<td>−7.0 dBm</td>
<td>−7.0 dBm</td>
<td>−5.0 dBm</td>
<td>−5.0 dBm</td>
</tr>
<tr>
<td>Maximum Received Power (R_{\text{max}})†</td>
<td>−7.0 dBm</td>
<td>−7.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
</tr>
<tr>
<td>Minimum Received Power (R_{\text{min}})</td>
<td>−34.0 dBm</td>
<td>−34.0 dBm</td>
<td>−34.0 dBm</td>
<td>−34.0 dBm</td>
<td>−34.0 dBm</td>
</tr>
<tr>
<td>Minimum System Gain (S-R)‡</td>
<td>19.0 dB</td>
<td>27.0 dBm</td>
<td>27.0 dBm</td>
<td>29.0 dBm</td>
<td>29.0 dBm</td>
</tr>
<tr>
<td>Optical Path Penalty (O)§</td>
<td>1.0 dB</td>
<td>1.0 dBm</td>
<td>1.0 dBm</td>
<td>1.0 dBm</td>
<td>1.0 dBm</td>
</tr>
<tr>
<td>Connector Loss ¶</td>
<td>1.5 dB</td>
<td>1.5 dBm</td>
<td>1.5 dBm</td>
<td>1.5 dBm</td>
<td>1.5 dBm</td>
</tr>
<tr>
<td>Unallocated Margin **</td>
<td>1.5 dB</td>
<td>1.5 dBm</td>
<td>1.5 dBm</td>
<td>1.5 dBm</td>
<td>1.5 dBm</td>
</tr>
<tr>
<td>Minimum Loss Budget</td>
<td>0.0 dB</td>
<td>7.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
<td>0.0 dBm</td>
</tr>
<tr>
<td>Maximum Loss Budget ‡‡</td>
<td>15.0 dB</td>
<td>23.0 dBm</td>
<td>23.0 dBm</td>
<td>25.0 dBm</td>
<td>25.0 dBm</td>
</tr>
<tr>
<td>Maximum Span Length §§</td>
<td>33 km</td>
<td>51 km</td>
<td>51 km</td>
<td>55 km</td>
<td>55 km</td>
</tr>
</tbody>
</table>

Notes:

1. All terminology is consistent with GR-253, Issue 2. All specifications for the 22F OLIU meet or exceed intermediate reach (IR) values described in GR-253, Iss. 2.

* The 22G3-U OLIU is fully compliant with SONET long reach applications. It is fully compatible with the 22F-type, 22G-U, and 22G2-U OLIUs and will replace them. Also see footnote ***.

† Transmit and receive powers are referenced to points S and R.

d The minimum system gain for the DDM-2000 already takes into account aging, temperature, and manufacturing tolerances as these figures are built into the minimum transmitter power. The DDM-2000 system gain can, thus, not be directly compared with the DDM-1000 system gain because the DDM-1000 system gain does not include all of these effects. A similar penalty, called eye margin, is subtracted from the DDM-1000 loss budget after the value of system gain is determined.

§ Optical path penalty includes effects of dispersion, reflection and jitter that occur on the optical path.

¶ One connector (0.75 dB) on each end is assumed to connect station cable to outside plant.
** Unallocated margin, or safety margin, is typically specified from 0 dB to 3 dB.

‡‡ Budget available for both station and transmission cable and splices.

§§ Attenuation and dispersion can be the limiting factors in span length. For OC-3 single-mode fiber systems, dispersion is not a factor and all applications are attenuation limited. For OC-12 systems, the maximum distance could be either attenuation limited or dispersion limited. The limits must be calculated based on both factors and the lesser of the two defines the actual maximum span length. A rough rule of thumb for attenuation-limited systems is 0.45 dB/km. This estimate includes typical cable loss (0.4 dB/km) and splice loss (0.2 dB per splice, 11 total splices) associated with single-mode fiber.

Maximum span length can be calculated more precisely based on particular fiber and splice characteristics and local engineering rules.

*** The 22G4-U OLIU is fully compliant with SONET Long Reach applications. The 22G4-U will replace the 22F-type and the 22G-U/22G2-U/22G3-U OLIUs.

Table 10-8. OC-3 OLIU Link Budget - Multimode Operation

<table>
<thead>
<tr>
<th>Fiber Bandwidth</th>
<th>Maximum Span Length (km)</th>
<th>Maximum Span Length (km)</th>
<th>Maximum Span Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 MHz-km</td>
<td>3.6/3.4</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>800 MHz-km</td>
<td>3.4/3.3</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>500 MHz-km</td>
<td>2.7</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>300 MHz-km</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Notes:
1. When two numbers are given, the number before the slash is the specification for operating under controlled environmental conditions. The number following the slash is the specification for uncontrolled environmental conditions. If only one number is given, it applies to both controlled and uncontrolled environmental conditions.

2. Maximum 22F-type MM Link Budget (dB) for multimode operation is 12.0 dB.

3. The 22G4-U will replace the 22F-type and the 22G-U/22G2-U/22G3-U OLIUs.

The system is dispersion limited for all the fiber bandwidths listed in Table 10-8.

Multimode fiber operation on the DDM-2000 OC-3 Multiplexer requires a minimum exit bandwidth of 120 MHz to ensure that dispersion loss is kept below acceptable levels. If the fiber is already installed and the exit bandwidth is measured to be 120 MHz or greater, then the maximum link budget values (see Note 2) can be used to determine if the loss budget is sufficient for that fiber.
If planning a new fiber installation, the values at the end of the table, given for a number of commercially available fiber bandwidth-distance products, can be used. Fiber distances are calculated using the 120 MHz exit bandwidth limit; however, actual exit bandwidths may be higher for these distances due to the existence of splices. This may permit longer span lengths to be achieved, for the given fiber bandwidths, than those specified in the table. In this case, however, the span length can only be increased to the point where the system is loss limited as specified by the maximum multimode link budget given in the table (1 dB/km cable is assumed).

Long Reach OC-1 Interface (26G2-U OLIU)

- Optical Specification
 The multilongitudinal mode laser transmitter supplies a non-return to zero (NRZ)-coded signal. For direct optical loopbacks, at least 7.0 dB (use 10 dB of attenuation) is needed for the 26-type.

 The 26-type OLIU long reach OC-1 interfaces support span lengths up to 44 km, assuming 0.45 dB/km single-mode fiber and the span engineering rules outlined in Table 10-11. Transmit and receive powers are referenced to Points S and R as shown in Figure 10-2. Table 10-9 and Table 10-10 provide detailed specifications and link budget information for the 26-type OLIU.

- Alarm Thresholding
 The following parameters are monitored at the OC-1 interface:
 - Loss of signal
 - Loss of frame
 - Loss of pointer
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- Performance Monitoring (See Table 10-3 and Table 10-23.)
 - Section severely errored frame seconds (SEFS)
 - Line parameter B2
 - STS pointer justification (OC-3 R11.0 and later).
Figure 10-2. Optical System Interfaces (Points S and R)
Table 10-9 lists the 26G2-U OLIU specifications.

Table 10-9. 26-Type OLIU Specifications

<table>
<thead>
<tr>
<th>System Information:</th>
<th>26-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Equipment Identification</td>
<td>26-type OLIU</td>
</tr>
<tr>
<td>Optical Line Rate (Mb/s)</td>
<td>51.84 Mb/s</td>
</tr>
<tr>
<td>Optical Line Coding</td>
<td>Scrambled NRZ</td>
</tr>
<tr>
<td>Optical Wavelength</td>
<td>1310 nm</td>
</tr>
<tr>
<td>Performance</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>No TEC</td>
</tr>
<tr>
<td>FDA Classification</td>
<td>Class I</td>
</tr>
<tr>
<td>Optical Source</td>
<td>InGaAsP Laser, MLM(^{*}) Structure</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC buildout assembly(^{†}) Single Mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
</tr>
<tr>
<td>Optical Detector</td>
<td>InGaAsP PIN</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC buildout assembly(^{†}) Multi-Mode</td>
</tr>
</tbody>
</table>

\(^{*}\) A higher quality SLM laser may be used instead of the MLM laser.

\(^{†}\) The universal optical connector (UOC) buildout assembly consists of a faceplate-mounted block assembly and either 0 dB, 5 dB, 10 dB, or 15 dB buildout in either ST, SC, or FC-type connectors. FC-type connectors are not available for multimode cabling.
Table 10-10 and Table 10-11 list the link budgets for the 26-type OLIU circuit packs.

Table 10-10. 26-Type OLIU Link Budgets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>26-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Wavelength (\lambda_{\text{Tmin}})</td>
<td>1272 nm</td>
</tr>
<tr>
<td>Maximum Wavelength (\lambda_{\text{Tmax}})</td>
<td>1350 nm</td>
</tr>
<tr>
<td>Spectral Width (\delta \lambda_{\text{rms}})</td>
<td>3.0 nm</td>
</tr>
<tr>
<td>Maximum Transmitter Power (P_{\text{Tmax}})^*</td>
<td>-0.0 dBm</td>
</tr>
<tr>
<td>Minimum Transmitter Power (P_{\text{Tmin}})^*</td>
<td>-7.0 dBm</td>
</tr>
<tr>
<td>Maximum Received Power (P_{\text{Rmax}})</td>
<td>-13.8 dBm</td>
</tr>
<tr>
<td>Minimum Input Power (P_{\text{Rmin}})</td>
<td>-30.8 dBm</td>
</tr>
<tr>
<td>Minimum System Gain (S-R)(\ddagger)</td>
<td>23.8 dB</td>
</tr>
<tr>
<td>Optical Path Penalty (P_{\text{O}})(\dagger)</td>
<td>1.0 dB</td>
</tr>
<tr>
<td>Connector Loss (\ddagger)</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Unallocated Margin</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Minimum Loss Budget</td>
<td>13.8 dB</td>
</tr>
<tr>
<td>Maximum Loss Budget</td>
<td>19.8 dB</td>
</tr>
<tr>
<td>Maximum Span Length(\S)</td>
<td>44 km</td>
</tr>
</tbody>
</table>

Notes:

1. All values are for both controlled and uncontrolled environmental conditions.

* Transmit and receive powers are referenced to points S and R as shown in Figure 10-2.

† Optical path penalty includes effects of dispersion, reflection and jitter that occur on the optical path.

‡ One connector (0.75 dB) on each end is assumed to connect station cable to outside plant.

§ The 26-type OLIUs are dispersion limited at 44 km, due to the wider wavelength range. Assuming fiber with zero dispersion wavelength between 1300 and 1320 nm, the worst case dispersion over the transmitter wavelength range of 1272 to 1350 nm is 4.88 psec/nm km. This implies a 44 km span would have a total dispersion of about 215 psec/nm.
Table 10-11. 26-Type OLIU Link Budgets - Multimode Operation

<table>
<thead>
<tr>
<th>Fiber Bandwidth</th>
<th>Maximum Span Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 MHz-km</td>
<td>19.8</td>
</tr>
<tr>
<td>800 MHz-km</td>
<td>19.8</td>
</tr>
<tr>
<td>500 MHz-km</td>
<td>19.8</td>
</tr>
<tr>
<td>300 MHz-km</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Note: The maximum Link Budget loss is 19.8 dB.

Multimode fiber operation requires a minimum exit bandwidth of 44 MHz to ensure that dispersion loss is kept below acceptable levels. If the fiber is already installed and the exit bandwidth is measured to be 44 MHz or greater, then the maximum link budget values can be used to determine if the loss budget is sufficient for that fiber.

If planning a new fiber installation, the values given in the table (given for a number of commercially available fiber bandwidth-distance products) can be used. Fiber distances are calculated using the 44 MHz exit bandwidth limit; however, actual exit bandwidths may be higher for these distances due to the existence of splices. This may permit longer span lengths to be achieved for the given fiber bandwidths than those specified in the table. In this case, however, the span length can only be increased to the point where the system is loss limited as specified by the maximum multimode link budget given in the table (1 db/km cable is assumed).
Long Reach OC-3 Interface (28G-U/28G2-U OLIU)

- **Optical Specification**

 The multilongitudinal mode laser transmitter supplies a non-return to zero (NRZ)-coded signal. For direct optical loopbacks, no attenuations are needed for the 28-type.

 The 28-type OLIU long reach OC-3 interface supports span lengths up to 51 km, assuming 0.45 dB/km single-mode fiber and the span engineering rules outlined in Table 10-13. Transmit and receive powers are referenced to Points S and R as shown in Figure 10-2. Table 10-12 and Table 10-13 provide detailed specifications and link budget information for the 28-type OLIU.

- **Alarm Thresholding**

 The following parameters are monitored at the OC-3 interface:
 - Loss of signal
 - Loss of frame
 - Loss of pointer
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- **Performance Monitoring** (See Table 10-3 and Table 10-23.)
 - Section severely errored frame seconds (SEFS)
Table 10-12. 28-Type OLIU Specifications

<table>
<thead>
<tr>
<th>System Information:</th>
<th>28-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Equipment Identification</td>
<td>28-type OLIU</td>
</tr>
<tr>
<td>Optical Line Rate (Mb/s)</td>
<td>155.520 Mb/s</td>
</tr>
<tr>
<td>Optical Line Coding</td>
<td>Scrambled NRZ</td>
</tr>
<tr>
<td>Optical Wavelength</td>
<td>1280-1335 nm</td>
</tr>
<tr>
<td>Performance</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
</tr>
<tr>
<td>FDA Classification</td>
<td>Class I</td>
</tr>
<tr>
<td>Optical Source</td>
<td>InGaAsP Laser, MLM Structure*</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC buildout assembly* Single Mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
</tr>
<tr>
<td>Optical Detector</td>
<td>InGaAsP PIN</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC buildout assembly* Multi-Mode</td>
</tr>
</tbody>
</table>

* The universal optical connector (UOC) buildout assembly consists of a faceplate-mounted block assembly and either 0 dB, 5 dB, 10 dB, or 15 dB buildout in either ST, SC, or FC-type connectors. FC-type connectors are not available for multimode cabling.

+ A tighter specification DFB laser (part #1243TAFA) may be supplied instead of the MLM laser. The DFB laser meets all the requirements of the MLM laser and DFB requirements in TR-253-CORE, Issue 2, December 1995.
Table 10-13 lists the link budgets for the 28-type OLIU.

Table 10-13. 28-Type OLIU Link Budgets.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>28-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Wavelength ($\lambda_{T_{\text{min}}}$)</td>
<td>1280 nm</td>
</tr>
<tr>
<td>Maximum Wavelength ($\lambda_{T_{\text{max}}}$)</td>
<td>1335 nm</td>
</tr>
<tr>
<td>Spectral Width ($\delta \lambda_{rms}$)</td>
<td>4.0 nm</td>
</tr>
<tr>
<td>Maximum Transmitter Power ($P_{T_{\text{max}}}$)</td>
<td>0.0 dBm</td>
</tr>
<tr>
<td>Minimum Transmitter Power ($P_{T_{\text{min}}}$)</td>
<td>-5.0 dBm</td>
</tr>
<tr>
<td>Maximum Received Power ($P_{R_{\text{max}}}$)</td>
<td>0.0 dBm</td>
</tr>
<tr>
<td>Minimum Input Power ($P_{R_{\text{min}}}$)</td>
<td>-34.0 dBm</td>
</tr>
<tr>
<td>Minimum System Gain (S-R) ‡</td>
<td>29.0 dB</td>
</tr>
<tr>
<td>Optical Path Penalty (P_{O}) †</td>
<td>1.0 dB</td>
</tr>
<tr>
<td>Connector Loss *</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Unallocated Margin**</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Minimum Loss Budget</td>
<td>0.0 dBm</td>
</tr>
<tr>
<td>Maximum Loss Budget</td>
<td>25.0 dB</td>
</tr>
<tr>
<td>Maximum Span Length§</td>
<td>55 km</td>
</tr>
</tbody>
</table>

Notes:

1. All terminology is consistent with TR-253, Issue 2. All specifications for 28-type OLIU meets or exceeds long reach (LR) values described in TR-253, Iss. 2.

* One connector (0.75) on each end is assumed to connect station cable to outside plant.

† Optical path penalty includes effects of dispersion, reflection and jitter that occur on the optical path.

‡ The minimum system gain for the DDM-2000 already takes into account aging, temperature, and manufacturing tolerances as these figures are built into the minimum transmitter power. The DDM-2000 system gain can, thus, not be directly compared with the DDM-1000 system gain because the DDM-1000 system gain does not include all of these effects. A similar penalty, called eye margin, is subtracted from the DDM-1000 loss budget after the value of system gain is determined.
Attenuation and dispersion can be the limiting factors in span length. For OC-3 single-mode fiber systems, dispersion is not a factor and all applications are attenuation limited. The limits must be calculated based on both factors and the lesser of the two defines the actual maximum span length. A rough rule of thumb for attenuation-limited systems is 0.45 dB/km. This estimate includes typical value loss (0.4 dB/km) and splice loss (0.2 dB per splice, 11 total splices) associated with single-mode fiber.

Unallocated margin, or safety margin, is typically specified from 0 dB to 3dB.

Table 10-14. OC-3 OLIU Link Budget - Multimode Operation

<table>
<thead>
<tr>
<th>Fiber Bandwidth</th>
<th>Maximum Span Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 MHz-km</td>
<td>6.5</td>
</tr>
<tr>
<td>800 MHz-km</td>
<td>5.1</td>
</tr>
<tr>
<td>500 MHz-km</td>
<td>3.1</td>
</tr>
<tr>
<td>300 MHz-km</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Long Reach OC-12 Interface (29G-U OLIU)

- Optical Specification

The distributed feedback laser supplies an NRZ-coded signal. For direct optical loopbacks, at least 10 dB of optical attenuation is needed for the 29G-U.

 The 29G-U OLIU long reach OC-12 interface supports span lengths up to 51 km, assuming 0.45 dB/km single-mode fiber (including splices) and the span engineering rules outlined in Table 10-16. Transmit and receive powers are referenced to points S and R as shown in Figure 10-2. Table 10-15 and Table 10-16 provide detailed specifications and link budget information for the 29G-U OLIU. Note that the 29G-U OLIU is not specified to operate over multimode fiber.

- Alarm Thresholding

The following parameters are monitored at the OC-12 interface.

 - Loss of signal (LOS)
 - Loss of frame (LOF)
 - Loss of pointer (LOP)
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^-5 to 10^-9 BER.)

- Performance Monitoring. (See Table 10-3 and Table 10-23.)

 - Section SEFS
 - Line parameter B2
 - STS pointer justifications.
Long Reach OC-12 Interface (29H-U OLIU)

- **Optical Specification**

 The distributed feedback laser supplies a NRZ-coded signal. For direct optical loopbacks, at least 10 dB of optical attenuation is needed for the 29H-U.

 The 29H-U OLIU long reach OC-12 interface supports span lengths up to 96 km, assuming 0.25 dB/km single-mode fiber (including splices) and the span engineering rules outlined in Table 10-16. Transmit and receive powers are referenced to points S and R as shown in Figure 10-2.

 Table 10-15 and Table 10-16 provide detailed specifications and link budget information for the 29H-U OLIU. Note that the 29H-U OLIU is not specified to operate over multimode fiber.

- **Alarm Thresholding**

 The following parameters are monitored at the OC-12 interface.

 - Loss of signal (LOS)
 - Loss of frame (LOF)
 - Loss of pointer (LOP)
 - Line AIS
 - B2 thresholding signal fail
 - B2 thresholding signal degrade. (B2 signal degrade thresholds are user settable in the range from 10^{-5} to 10^{-9} BER.)

- **Performance Monitoring** (See Table 10-3 and Table 10-23.)

 - Section SEFS
 - Line parameter B2
 - STS pointer justifications.
Table 10-15. 29G-U/29H-U OLIU Specifications

<table>
<thead>
<tr>
<th>System Information:</th>
<th>29G-U OLIU</th>
<th>29H-U OLIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Equipment Identification</td>
<td>29G-U OLIU</td>
<td>29H-U OLIU</td>
</tr>
<tr>
<td>Optical Line Rate (Mb/s)</td>
<td>622.080 Mb/s</td>
<td>622.080 Mb/s</td>
</tr>
<tr>
<td>Optical Line Coding</td>
<td>Scrambled NRZ</td>
<td>Scrambled NRZ</td>
</tr>
<tr>
<td>Optical Wavelength (nm)</td>
<td>1310 nm</td>
<td>1550 nm</td>
</tr>
<tr>
<td>Performance</td>
<td>SONET LR-1 DFB (Long Reach)</td>
<td>SONET LR-1 DFB (Long Reach)</td>
</tr>
<tr>
<td>Transmitter Information:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>FDA Classification</td>
<td>Class I</td>
<td>Class I</td>
</tr>
<tr>
<td>Optical Source</td>
<td>InGaAsP Laser, SLM Structure</td>
<td>InGaAsP Laser, SLM Structure</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC Buildout Assembly (single-mode) *</td>
<td>UOC Buildout Assembly (single-mode) *</td>
</tr>
<tr>
<td>Receiver Information:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Device Temperature Controller</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Optical Detector</td>
<td>InGaAs PIN</td>
<td>InGaAs PIN</td>
</tr>
<tr>
<td>Faceplate Optical Connector</td>
<td>UOC Buildout Assembly (multi-mode) *</td>
<td>UOC Buildout Assembly (multi-mode) *</td>
</tr>
</tbody>
</table>

* The universal optical connector (UOC) buildout assembly consists of a faceplate-mounted block assembly and either 0 dB, 5 dB, 10 dB, or 15 dB buildout in either ST, SC, or FC-type connectors.
Table 10-16. 29G-U/29H-U OLIU Link Budgets (Notes)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>29G-U</th>
<th>29H-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Wavelength (λ_{min})</td>
<td>1280 nm</td>
<td>1530 nm</td>
</tr>
<tr>
<td>Maximum Wavelength (λ_{max})</td>
<td>1335 nm</td>
<td>1570 nm</td>
</tr>
<tr>
<td>Spectral Width ($\delta\lambda_{20}$)</td>
<td>1.0 nm</td>
<td>1.0 nm</td>
</tr>
<tr>
<td>Maximum Transmitter Power (P_{max})</td>
<td>+1.9 dBm</td>
<td>+2.0 dBm</td>
</tr>
<tr>
<td>Minimum Transmitter Power (P_{min})</td>
<td>−2.5 dBm</td>
<td>−2.5 dBm</td>
</tr>
<tr>
<td>Maximum Received Power (P_{max})</td>
<td>−8.0 dBm</td>
<td>−8.0 dBm</td>
</tr>
<tr>
<td>Minimum Received Power (P_{min})</td>
<td>−30.5 dBm</td>
<td>−31.0 dBm</td>
</tr>
<tr>
<td>Minimum System Gain (S-R) †</td>
<td>28.0 dB</td>
<td>28.5 dB</td>
</tr>
<tr>
<td>Optical Path Penalty (P_{O}) ‡</td>
<td>1.0 dB</td>
<td>1.0 dB</td>
</tr>
<tr>
<td>Connector Loss §</td>
<td>1.5 dB</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Unallocated Margin ¶</td>
<td>1.5 dB</td>
<td>2.0 dB</td>
</tr>
<tr>
<td>Minimum Loss Budget **</td>
<td>8.0 dB</td>
<td>10.0 dB</td>
</tr>
<tr>
<td>Maximum Loss Budget ††</td>
<td>24.0 dB</td>
<td>24.0 dB</td>
</tr>
<tr>
<td>Maximum Span Length ‡‡</td>
<td>51 km</td>
<td>96 km</td>
</tr>
</tbody>
</table>

Notes:

1. All terminology is consistent with TR-253, Iss. 2. All values are worst-case end of life.
2. All specifications for the 29G-U/29H-U meet or exceed long reach (LR) values described in TR-253, Iss. 2.
 * Transmit and receive powers are referenced to points S and R as shown in Figure 10-2.
 † The minimum system gain for the DDM-2000 already takes into account aging, temperature, and manufacturing tolerances as these figures are built into the minimum transmitter power. The DDM-2000 system gain can, thus, not be directly compared with the DDM-1000 system gain because the DDM-1000 system gain does not include all of these effects. A similar penalty, called eye margin, is subtracted from the DDM-1000 loss budget after the value of system gain is determined.
 ‡ Optical path penalty includes effects of dispersion, reflection and jitter that occur on the optical path. The 29G-U has 4.0 dB of total margin. Optical path penalty is normally 1.0 dB. The 29H-U has 4.5 dB of total margin. Optical path penalty is normally 1.0 dB, which implies 1800 psec/nm total dispersion. Typical nondispersion fiber has 10 psec/nm km dispersion in the 1550 nm wavelength range.
 § One connector (0.75 dB) on each end is assumed to connect station cable to outside plant.
 ¶ Unallocated margin, or safety margin, is typically specified from 0 dB to 3 dB.
The 29G-U/29H-U requires an external lightguide buildout as part of the connector assembly for loopbacks and for loss budgets less than 10 dB.

†† Budget available for both station and transmission cable and splices.

‡‡ Attenuation can be the limiting factors in span length. A rough rule of thumb for attenuation-limited systems operating in the 1310 nm wavelength range is 0.45 dB/km. This estimate includes typical cable loss (0.4 dB/km) and splice loss (0.2 dB per splice, 11 total splices) associated with single-mode fiber in the 1310 nm range.

For the 29G-U, the maximum distance is not dispersion limited because single longitudinal mode laser is used. Given the attenuation assumption, the maximum span length for the 29G-U is 51 km.

Attenuation can be the limiting factors in span length. A rough rule of thumb for attenuation-limited systems operating in the 1550 nm wavelength range is 0.25 dB/km, including cable and splice loss.

For the 29H-U, the maximum distance is not dispersion limited because single longitudinal mode laser is used. Given the attenuation assumption, the maximum span length for the 29H-U is 96 km.

Maximum span length can be calculated more precisely based on particular fiber and splice characteristics and local engineering rules.
OC-3 Optical Interface Mixing

Mixing different OC-3 rate OLIUs at opposite ends of an optical link is often necessary for technical reasons or for convenience. The following information will aid in planning and engineering optical links having different types of OC-3 rate OLIUs at each end of the fiber. Table 10-17 details the minimum link budget necessary for each pairing of OC-3 rate OLIUs.

To use Table 10-17, locate the number at the intersection of the transmitter/receiver pair of interest. This number is the minimum attenuation necessary for proper operation of that transmitter/receiver pair. The link must have at least this much attenuation either from fiber loss, splice loss, connector loss, external attenuators, or a combination of these, or the receiver will be overdriven and the link will not operate properly.

Table 10-17. OC-3 Rate OLIU Mixes - Minimum Link Budgets (dB)

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Receiver</th>
<th>22F</th>
<th>22F-U/22F2-U</th>
<th>22G-U</th>
<th>22G2-U/22G3-U/22G4-U</th>
<th>28G-U/28G2-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>22F</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22F-U/22F2-U</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22G-U</td>
<td>7.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22G2-U/22G3-U</td>
<td>7.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22G4-U</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28G-U/28G2-U</td>
<td>7.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note that the minimum link budget is not always symmetrical. A transmitter/receiver pair may have one minimum link budget in one direction and another in the opposite direction. Be careful of this asymmetry when planning and engineering a link having mixed OLIUs.

NOTE:
When using universal optical buildout attenuators for OLIUs equipped with Universal Optical Connectors (for example, 28G-U and 22D-U), the buildout must have the same type fiber on both sides, that is, single-mode to single-mode or multimode to multimode. The buildout must also match the mode of the fiber. Therefore, when a single-mode jumper is used, the buildout would be on the transmit side (OUT) of the OLIU and when a multimode jumper is used, the buildout would be on the receive side (IN) of the OLIU. When using in-line attenuators for non-U OLIUs, place the attenuator in the bay frame PANDUIT. Make sure that the mode type of the attenuator matches the mode of the fiber to ensure proper attenuation.
Table 10-18 details the maximum link budgets for each pairing of OC-3 rate OLIUs when operating on single-mode (SM) fiber. These numbers give the maximum attenuation acceptable for proper operation of each transmitter/receiver pair. The link must have no more than this much attenuation either from fiber loss, splice loss, connector loss, external attenuators or a combination of these or the link will not operate properly. The maximum link budgets for SM fiber were calculated using the following margins:

- Optical Path Penalty (dB) 1.0
- Connector Loss (dB) 1.5

Table 10-18. OC-3 Rate OLIU Mixes - Maximum Link Budgets for SM Fiber (dB)

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Receiver 22F-U</th>
<th>Receiver 22G2-U</th>
<th>Receiver 22G3-U</th>
<th>Receiver 28G-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>22F</td>
<td>15.0</td>
<td>23.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>22F-U/22F2-U</td>
<td>15.0</td>
<td>23.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>22G-U/22G2-U</td>
<td>23.0</td>
<td>23.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>22G3-U/22G4-U</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>28G-Type</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

NOTE:
The maximum link budget is not always symmetrical. A transmitter/receiver pair may have one maximum link budget in one direction and another in the opposite direction. For example, a 28G-U OLIU transmitting to a 22F OLIU has a maximum SM link budget of 25.0 dB. In the opposite direction, though, a 22F OLIU transmitting to a 28G-U OLIU has a maximum SM link budget of 15.0 dB. Be careful of this asymmetry when planning and engineering a link having mixed OLIUs. Note also that the 22D-U OLIUs will not operate when transmitting into single-mode fiber.
Table 10-19 details the maximum link budgets for each pairing of OC-3 rate OLIUs when operating on multimode (MM) fiber. These numbers give the maximum attenuation acceptable for proper operation of each transmitter/receiver pair. The link must have no more than this much attenuation either from fiber loss, splice loss, connector loss, external attenuators or a combination of these or the link will not operate properly. The maximum link budgets for MM fiber were calculated using the following margins. The first column of margins applies to any link where there is at least one OC-3 OLIU (28G-U/28G2-U, 22F-type or 22G-type). The second column of margins applies to links having two IS-3 (22D-U) OLIUs.

<table>
<thead>
<tr>
<th></th>
<th>At Least One OC-3 OLIU</th>
<th>IS-3 OLIUs Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM Optical Path Penalty (dB)</td>
<td>4.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Connector Loss (dB)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Unallocated Margin (dB)</td>
<td>1.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

NOTE:
The maximum link budget is not always symmetrical. A transmitter/receiver pair may have one maximum link budget in one direction and another in the opposite direction. For example, a 28G-U transmitting to a 22F has a maximum MM link budget of 22.0 dB. In the opposite direction, though, a 22F transmitting to a 28G-U has a maximum MM link budget of 12.0 dB. Be careful of this asymmetry when planning and engineering a link having mixed OLIUs.

Table 10-19. OC-3 Rate OLIU Mixes - Maximum Link Budgets for MM Fiber (dB)
Plug-In Maintenance Sparing Guidelines

Table 10-20 provides a guideline for determining the number of DDM-2000 FiberReach plug-in spares needed for a given number of plug-ins in the field. The sparing guide serves as an initial estimate and is calculated with the following assumptions:

- The method for calculating spares follows the procedure described in Telcordia Technologies SR-TSY-000385, Issue 1.
- The steady-state failure rate is assumed. Failure rates are based on the reliability prediction procedure (RPP) method described in TR-TSY-000332, Issue 4.
- The spare availability objective (SAO) is 99 percent. The SAO is the long-term probability that a spare plug-in is available when it is needed.
- A no-trouble-found (NTF) factor of 1.67 is multiplied to the failure rate. This accounts for replacements of plug-ins when actually no failure has occurred. The NTF factor is expected to approach 1.25 as the product matures. The likelihood of an NTF decreases as the product matures, and sparing needs will therefore diminish over time.
- Turnaround time of a returned plug-in is two weeks.

Table 10-20. Sparing Guidelines

<table>
<thead>
<tr>
<th>Plug-In Code (FIT)</th>
<th>Number of Spares</th>
<th>Revised Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS=1</td>
<td>NS=2</td>
</tr>
<tr>
<td>NRT</td>
<td>0.14</td>
<td>0.43</td>
</tr>
<tr>
<td>BBF1 (745)</td>
<td>335</td>
<td>1029</td>
</tr>
<tr>
<td>BBF1B (859)</td>
<td>290</td>
<td>892</td>
</tr>
<tr>
<td>BBF2 (2739)</td>
<td>91</td>
<td>280</td>
</tr>
<tr>
<td>BBF2B (2311)</td>
<td>108</td>
<td>332</td>
</tr>
<tr>
<td>BBF2C (2345)</td>
<td>106</td>
<td>327</td>
</tr>
<tr>
<td>BBF3 (1310)</td>
<td>190</td>
<td>585</td>
</tr>
<tr>
<td>BBF3B (1235)</td>
<td>202</td>
<td>621</td>
</tr>
<tr>
<td>BBF4 (2345)</td>
<td>106</td>
<td>327</td>
</tr>
</tbody>
</table>

SAO = 99%
DDM-2000 OC-3 and OC-12, FiberReach
NTF factor = 1.67
Turn around time (weeks) = 2
Turn around time (hours) = 336
<table>
<thead>
<tr>
<th>Plug-In Code (FIT)</th>
<th>Number of Spares</th>
<th>Revised Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS=1</td>
<td>NS=2</td>
</tr>
<tr>
<td>NRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>0.43</td>
<td>0.82</td>
</tr>
<tr>
<td>BBF6 (1427)</td>
<td>175</td>
<td>537</td>
</tr>
<tr>
<td>BBF8 (5216)</td>
<td>48</td>
<td>147</td>
</tr>
<tr>
<td>BBF9 (2037)</td>
<td>122</td>
<td>376</td>
</tr>
<tr>
<td>BBF10 (2277)</td>
<td>110</td>
<td>337</td>
</tr>
<tr>
<td>BBG1 (4917)</td>
<td>51</td>
<td>156</td>
</tr>
<tr>
<td>BBG2 (902)</td>
<td>277</td>
<td>850</td>
</tr>
<tr>
<td>BBG2B (820)</td>
<td>304</td>
<td>935</td>
</tr>
<tr>
<td>BBG3 (1088)</td>
<td>229</td>
<td>704</td>
</tr>
<tr>
<td>BBG4 (902)</td>
<td>277</td>
<td>850</td>
</tr>
<tr>
<td>BBG4B (1056)</td>
<td>236</td>
<td>726</td>
</tr>
<tr>
<td>BBG5 (5284)</td>
<td>47</td>
<td>145</td>
</tr>
<tr>
<td>BBG6 (2193)</td>
<td>114</td>
<td>349</td>
</tr>
<tr>
<td>BBG7 (3433)</td>
<td>73</td>
<td>223</td>
</tr>
<tr>
<td>BBG8 (4505)</td>
<td>55</td>
<td>170</td>
</tr>
<tr>
<td>BBG8B (4442)</td>
<td>56</td>
<td>173</td>
</tr>
<tr>
<td>BBG9 (4084)</td>
<td>61</td>
<td>188</td>
</tr>
<tr>
<td>BBG10 (4409)</td>
<td>57</td>
<td>174</td>
</tr>
<tr>
<td>BBG11 (3144)</td>
<td>79</td>
<td>244</td>
</tr>
<tr>
<td>BBG12 (2586)</td>
<td>96</td>
<td>296</td>
</tr>
<tr>
<td>BBG19 (729)</td>
<td>342</td>
<td>1051</td>
</tr>
<tr>
<td>BBG20 (6550)</td>
<td>38</td>
<td>117</td>
</tr>
<tr>
<td>BCP1 (5050)</td>
<td>49</td>
<td>152</td>
</tr>
<tr>
<td>BCP2 (2922)</td>
<td>85</td>
<td>262</td>
</tr>
<tr>
<td>BCP3 (2692)</td>
<td>93</td>
<td>285</td>
</tr>
<tr>
<td>BCP4 (10000)</td>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>21D (1959)</td>
<td>127</td>
<td>391</td>
</tr>
<tr>
<td>21D-U (1355)</td>
<td>184</td>
<td>566</td>
</tr>
<tr>
<td>21G (6348)</td>
<td>39</td>
<td>121</td>
</tr>
<tr>
<td>21G-U (3935)</td>
<td>63</td>
<td>195</td>
</tr>
<tr>
<td>21G2-U (4087)</td>
<td>61</td>
<td>188</td>
</tr>
</tbody>
</table>
Technical Specifications

Example:

For the 22F, if circuit pack population is between 76 and 231, number of recommended spares is 2.

Table of Data

<table>
<thead>
<tr>
<th>Plug-In Code (FIT)</th>
<th>Number of Spares</th>
<th>Revised Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS=1</td>
<td>NS=2</td>
</tr>
<tr>
<td>NRT</td>
<td>0.14</td>
<td>0.43</td>
</tr>
<tr>
<td>21G3-U (1768)</td>
<td>141</td>
<td>433</td>
</tr>
<tr>
<td>22D-U (1959)</td>
<td>127</td>
<td>391</td>
</tr>
<tr>
<td>22F (3317)</td>
<td>75</td>
<td>231</td>
</tr>
<tr>
<td>22F2-U (2033)</td>
<td>123</td>
<td>377</td>
</tr>
<tr>
<td>22G-U (2880)</td>
<td>87</td>
<td>266</td>
</tr>
<tr>
<td>22G2-U (2197)</td>
<td>114</td>
<td>349</td>
</tr>
<tr>
<td>22G3-U (4078)</td>
<td>61</td>
<td>188</td>
</tr>
<tr>
<td>22G4-U (1426)</td>
<td>175</td>
<td>537</td>
</tr>
<tr>
<td>23G (10029)</td>
<td>25</td>
<td>76</td>
</tr>
<tr>
<td>23G-U (9023)</td>
<td>28</td>
<td>85</td>
</tr>
<tr>
<td>23H (12836)</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>23H-U (11552)</td>
<td>22</td>
<td>66</td>
</tr>
<tr>
<td>23R (8364)</td>
<td>30</td>
<td>92</td>
</tr>
<tr>
<td>23R-U (9807)</td>
<td>25</td>
<td>78</td>
</tr>
<tr>
<td>23S (11470)</td>
<td>22</td>
<td>67</td>
</tr>
<tr>
<td>24G-U (2080)</td>
<td>120</td>
<td>368</td>
</tr>
<tr>
<td>24H-U (2388)</td>
<td>104</td>
<td>321</td>
</tr>
<tr>
<td>26G-U (2468)</td>
<td>101</td>
<td>311</td>
</tr>
<tr>
<td>26G2-U (2525)</td>
<td>99</td>
<td>303</td>
</tr>
<tr>
<td>27G-U (3176)</td>
<td>79</td>
<td>241</td>
</tr>
<tr>
<td>27G2-U (2823)</td>
<td>88</td>
<td>271</td>
</tr>
<tr>
<td>28G-U (3860)</td>
<td>65</td>
<td>199</td>
</tr>
<tr>
<td>28G2-U†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29G-U (3264)</td>
<td>76</td>
<td>235</td>
</tr>
<tr>
<td>29H-U (3049)</td>
<td>82</td>
<td>251</td>
</tr>
</tbody>
</table>

* These OLIU circuit packs are equipped with a factory installed, removable SC-type buildout lightguide connector. Two 0 dB ST connectors are shipped loose with the circuit pack except for 22G-U's.

† Information not available at time of document release.
Universal Optical Connectors

The DDM-2000 FiberReach Multiplexers provide Lucent's universal optical connector on the OLIUs. This connector is a 2-part connector consisting of a faceplate-mounted block and an optical buildout. The faceplate block optionally supports an ST, SC, or FC-type optical buildout.

A 0 dB ST-type connector is shipped as standard with each OLIU except for 22G-U. Optional SC or FC 0 dB, or attenuated buildouts can be ordered separately as listed in Table 10-21.

NOTE:
Two 0 dB SC-type removable connectors are installed on 22D-U, 22G4-U, 29G-U, and 29H-U OLIUs. Two 0 dB ST connectors are shipped loose with these packs.

Table 10-21. Universal Buildout Attenuators

<table>
<thead>
<tr>
<th>Description</th>
<th>Connection</th>
<th>Loss (dB)</th>
<th>Comcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3060 SC 0 dB buildout</td>
<td>SM-SM</td>
<td>0</td>
<td>106708951</td>
</tr>
<tr>
<td>A3060B1 SC 5 dB buildout</td>
<td>SM-SM</td>
<td>5</td>
<td>107406142</td>
</tr>
<tr>
<td>A3060D1 SC 10 dB buildout</td>
<td>SM-SM</td>
<td>10</td>
<td>107406159</td>
</tr>
<tr>
<td>A3060F1 SC 15 dB buildout</td>
<td>SM-SM</td>
<td>15</td>
<td>107406167</td>
</tr>
<tr>
<td>ASCM5 SC 5dB buildout</td>
<td>SM-MM</td>
<td>5</td>
<td>108440579</td>
</tr>
<tr>
<td>ASCM10 SC 10dB buildout</td>
<td>SM-MM</td>
<td>10</td>
<td>108440595</td>
</tr>
<tr>
<td>ASCM15 SC 15dB buildout</td>
<td>SM-MM</td>
<td>15</td>
<td>108440611</td>
</tr>
<tr>
<td>A3070 ST 0 dB buildout</td>
<td>SM-SM</td>
<td>0</td>
<td>106795354</td>
</tr>
<tr>
<td>A3070B1 ST 5 dB buildout</td>
<td>SM-SM</td>
<td>5</td>
<td>107406183</td>
</tr>
<tr>
<td>A3070D1 ST 10 dB buildout</td>
<td>SM-SM</td>
<td>10</td>
<td>107406191</td>
</tr>
<tr>
<td>A3070F1 ST 15 dB buildout</td>
<td>SM-SM</td>
<td>15</td>
<td>107406209</td>
</tr>
<tr>
<td>ASTM5 SC 5dB buildout</td>
<td>SM-MM</td>
<td>5</td>
<td>108052960</td>
</tr>
<tr>
<td>ASTM10 SC 10dB buildout</td>
<td>SM-MM</td>
<td>10</td>
<td>108052994</td>
</tr>
<tr>
<td>ASTM15 SC 15dB buildout</td>
<td>SM-MM</td>
<td>15</td>
<td>108053018</td>
</tr>
<tr>
<td>A3080 FC 0 dB buildout</td>
<td>SM-SM</td>
<td>0</td>
<td>106795404</td>
</tr>
<tr>
<td>A3080B1 FC 5 dB buildout</td>
<td>SM-SM</td>
<td>5</td>
<td>107406225</td>
</tr>
<tr>
<td>A3080D1 FC 10 dB buildout</td>
<td>SM-SM</td>
<td>10</td>
<td>107406233</td>
</tr>
<tr>
<td>A3080F1 FC 15 dB buildout</td>
<td>SM-SM</td>
<td>15</td>
<td>107406241</td>
</tr>
<tr>
<td>AFCM5 FC 5dB buildout</td>
<td>SM-MM</td>
<td>5</td>
<td>108107285</td>
</tr>
<tr>
<td>AFCM10 FC 10dB buildout</td>
<td>SM-MM</td>
<td>10</td>
<td>108107301</td>
</tr>
<tr>
<td>AFCM15 FC 15dB buildout</td>
<td>SM-MM</td>
<td>15</td>
<td>108107327</td>
</tr>
</tbody>
</table>
Table 10-21. Universal Buildout Attenuators

<table>
<thead>
<tr>
<th>Description</th>
<th>Connection</th>
<th>Loss (dB)</th>
<th>Comcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2060B SC 5 dB buildout</td>
<td>MM-MM</td>
<td>5</td>
<td>106795271</td>
</tr>
<tr>
<td>A2060D SC 10 dB buildout</td>
<td>MM-MM</td>
<td>10</td>
<td>106795289</td>
</tr>
<tr>
<td>A2060F SC 15 dB buildout</td>
<td>MM-MM</td>
<td>15</td>
<td>106795297</td>
</tr>
<tr>
<td>A2070B ST 5 dB buildout</td>
<td>MM-MM</td>
<td>5</td>
<td>106795313</td>
</tr>
<tr>
<td>A2070D ST 10 dB buildout</td>
<td>MM-MM</td>
<td>10</td>
<td>106795321</td>
</tr>
<tr>
<td>A2070F ST 15 dB buildout</td>
<td>MM-MM</td>
<td>15</td>
<td>106795339</td>
</tr>
</tbody>
</table>

Figure 10-3 shows the universal optical connector used on the OLIU circuit packs.

Figure 10-3. Universal Optical Connector
SONET Overhead Bytes

The DDM-2000 FiberReach Multiplexer currently uses the K2 byte in the SONET format for synchronization signaling. The reserved V4-byte in the VT1.5 superframe is used for internal fault detection in a DDM-2000 FiberReach Multiplexer. This internal usage of the V4-byte may cause the value of the transmitted V4-byte to vary.

The DDM-2000 FiberReach Multiplexer does not depend on, and always ignores, the value of the V4-byte received on its optical interface.

Performance

Wander/Jitter

- The OC-1 interface accommodates at least 10 microseconds of wander per 24-hour period without buffer overflow or depletion.
- For SONET optical interfaces, the maximum time interval error (MTIE) does not exceed 60 nanoseconds phase variation when timed with a wander-free reference.
- Jitter transfer, tolerance, and generation requirements are met as specified in TR-253 and TR-499.
- The SONET interfaces meet the T1.101 OC-N output short-term stability mask.

Signal Performance

The DDM-2000 FiberReach Multiplexer significantly exceeds the following specifications for the standard networks, as defined in TR-499, Issue 5.

- For systems interfacing at the DS1 rate, the number of errored seconds, during a two-hour, one-way loopback test, is less than ten.
- The bit error rate (BER) is less than 10^{-9} for both the DS1 and DS3 rates. Burst-errored seconds are excluded.
- The frequency of burst-errored seconds, other than those caused by protection switching induced by hard equipment failures, averages less than four per day.
Protection Switching

Ring Networks

Path protection rings feed a SONET payload (STS or VT) from the ring entry point, simultaneously in both rotations of the ring, to the signal's ring exit point. The node that terminates the signal from the ring monitors both ring rotations and is responsible for selecting the signal that has the highest quality based on loss of signal (LOS), path alarm indication signal (AIS), and path bit error rate (BER) performance. On pass-through paths, all detected hard failures (LOS, LOF, LOP, line AIS, STS-1 path AIS, or STS-1 path signal failure based on BER) result in VT AIS insertion in the outgoing signals. This allows the terminating node to be aware of the failure and to switch to protection. Protection switching is completed within 50 milliseconds of failure detection. Similarly, for dropped nonterminated paths, if both incoming STS-1s have any of the previous failures, VT AIS will be inserted in the dropped signal.

Under normal conditions, both incoming SONET path signals to the switch selection point are of high quality, and the signal can be selected from either ring. A failure or a transmission degradation on one of the rings requires that the other ring path be selected. DDM-2000 FiberReach provides nonrevertive switching to minimize the impact on critical customer services by giving the service provider control when, and if, the critical service should revert to a particular ring. A manual path protection switching command allows switching back to the original path for ease of ring maintenance, if desired.
Transient Performance

Power Loss Restart

After system shutdown due to power loss, the system will begin error free transmission within one minute of restoration of power.

Transmission Start-Up on Signal Application

The system, after having no signal applied for greater than one minute at the DSX-n interface, will begin error free transmission within five seconds of the reapplication of a signal.

Delay

Table 10-22 lists the worst-case measured 1-way transmission delay within a DDM-2000 FiberReach Multiplexer.

Table 10-22. DDM-2000 OC-1 Transmission Delay in Microseconds

<table>
<thead>
<tr>
<th>Mode (High-Speed)</th>
<th>DS1 Low-Speed Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring (OC-1)*</td>
<td>100</td>
</tr>
</tbody>
</table>

* Ring delay is based on an OC-1 to low-speed DS1.
Performance Monitoring

Table 10-23 shows the provisionable range of the thresholds for monitored parameters and, in brackets, the default thresholds. Thresholding of any parameter(s) can be disabled.

Table 10-23. Performance Monitoring Parameters Provisionable via the CIT

<table>
<thead>
<tr>
<th>Parameter Definition</th>
<th>Threshold Range [Default]</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td>Measure</td>
<td>Current Quarter Hour</td>
</tr>
<tr>
<td>OC-1 Line</td>
<td>B2 Coding Violations (CV)</td>
<td>1-4613[461]</td>
</tr>
<tr>
<td></td>
<td>B2 Errored Seconds (ES)</td>
<td>1-900[40]</td>
</tr>
<tr>
<td></td>
<td>STS Pointer Justification Counts (PJC)</td>
<td>(1-65535)[60]</td>
</tr>
<tr>
<td>OC-3 Line*</td>
<td>B2 Coding Violations (CV)</td>
<td>1-13841[1384]</td>
</tr>
<tr>
<td></td>
<td>B2 Errored Seconds (ES)</td>
<td>1-900[40]</td>
</tr>
<tr>
<td>OC-12 Line¶</td>
<td>B2 Coding Violations (CV)</td>
<td>1-55365 [5537]</td>
</tr>
<tr>
<td></td>
<td>B2 Errored Seconds (ES)</td>
<td>1-900 [40]</td>
</tr>
<tr>
<td></td>
<td>STS Pointer Justification Counts (PJC)</td>
<td>1-65535 [60]</td>
</tr>
<tr>
<td>STS-1 Path</td>
<td>B3 Coding Violations (CV)</td>
<td>1-4510 [451]</td>
</tr>
<tr>
<td></td>
<td>B3 Errored Seconds (ESA)</td>
<td>1-900 [40]</td>
</tr>
<tr>
<td></td>
<td>B3 Errored Seconds Type A (ESA)</td>
<td>1-900 [30]</td>
</tr>
<tr>
<td></td>
<td>B3 Errored Seconds Type B (ESB)</td>
<td>1-900 [30]</td>
</tr>
<tr>
<td></td>
<td>B3 Severely Errored Seconds (SES)</td>
<td>1-63 [20]</td>
</tr>
<tr>
<td></td>
<td>B3 Unavailable Seconds (UAS)</td>
<td>1-63 [30]</td>
</tr>
<tr>
<td>VT1.5 Path</td>
<td>V5 Coding Violations (CV)</td>
<td>1-900 [40]</td>
</tr>
<tr>
<td></td>
<td>V5 Errored Seconds (ES)</td>
<td>1-63 [20]</td>
</tr>
<tr>
<td></td>
<td>V5 Severely Errored Seconds (SES)</td>
<td>1-63 [20]</td>
</tr>
<tr>
<td></td>
<td>V5 Unavailable Seconds (UAS)</td>
<td>1-63 [30]</td>
</tr>
<tr>
<td>Parameter Definition</td>
<td>Threshold Range [Default]</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>set-</td>
</tr>
<tr>
<td>Facility</td>
<td>Measure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-</td>
</tr>
<tr>
<td>DS-1 Path</td>
<td>ES-P Errored Seconds</td>
<td>1-900[65]</td>
</tr>
<tr>
<td></td>
<td>SES-P Severely Errored Seconds</td>
<td>1-63[10]</td>
</tr>
<tr>
<td></td>
<td>UAS-P Unavailable Seconds</td>
<td>1-63[10]</td>
</tr>
<tr>
<td></td>
<td>ES-PFE Errored Seconds</td>
<td>1-900[65]</td>
</tr>
<tr>
<td></td>
<td>SES-PFE Severely Errored Seconds</td>
<td>1-63[10]</td>
</tr>
<tr>
<td></td>
<td>CV-P (SF) Coding Violations</td>
<td>1-16383[72]</td>
</tr>
<tr>
<td></td>
<td>CV-P (ESF) Coding Violations</td>
<td>1-16383[13296]</td>
</tr>
<tr>
<td></td>
<td>CV-PFE Coding Violations</td>
<td>1-16383[13296]</td>
</tr>
<tr>
<td>DS-1 Line</td>
<td>ES-L Line Errored Seconds</td>
<td>1-900[65]</td>
</tr>
<tr>
<td>DS3 Path</td>
<td>P-Bit Error Counts</td>
<td>1-4026 [403]</td>
</tr>
<tr>
<td>Enhanced DS3 Path for P-Bits, F&M Bits, and C-Bits from Fiber and DSX</td>
<td>CV-P Coding Violations</td>
<td>1-16383 [40]</td>
</tr>
<tr>
<td></td>
<td>SES-P Severely Errored Seconds</td>
<td>1-63 [4]</td>
</tr>
<tr>
<td></td>
<td>CV-PFE Coding Violations</td>
<td>1-16383[40]</td>
</tr>
</tbody>
</table>

* When equipped with a 28-type OLIU in the Main slots.
† Only applies to Release 3.0 and later.
‡ Only applies to Release 2.2.
§ When equipped with a 29-type OLIU in the Main slots.
¶ When equipped with a 29-type OLIU in the Main slots.
** Feature package option.
Signaling Mode

Loop start signaling with fast forward disconnect is provided with the channel units used in the *SLC* Series 5 and *SLC-2000* systems with the *SLC-2000 MSDT* feature.

Digital Data Performance

The AUA52B OCU (office channel unit) dataport is designed to provide end links in DDS. These end links have certain features as follows:

- One 4-wire circuit per plug-in pair.
- Data rate — 2.4, 4.8, 9.6, 19.2, 56, or 64 kb/s.
- Error correction. A digital line bit error rate of 10^{-3} is improved to 10^{-8} for any data rate without reducing the channel capacity of the bank.
- Zero Code Allowed option. Allows an all-zero byte to be transmitted toward the digital line (which must be optioned for B8ZS zero code suppression).
- Secondary channel. An option which permits a feature of DDS that provides the customer with a low-speed telemetry channel supplementing the primary data channel at any data rate. (See RL83-01-163.)

Operations Interfaces

This section presents the operation interfaces that are required to support technician access to the system and allow alarms and status information generated by the system to be reported. The local operations interfaces include the craft interface terminal (CIT) interface, the user panel, and the equipment indicators. The DDM-2000 FiberReach Multiplexer supports a direct serial TBOS interface and user-definable miscellaneous discretes. Remote office alarms*, parallel telemetry*, and TL1/X.25 interfaces are provided by the host multiplexer.

Craft Interface Terminal

The system provides an EIA-232-D compatible front access CIT interface configured as data communications equipment (DCE). The CIT interface provides data rates of 300, 1200, 2400, 4800, 9600, and 19,200 baud.

The CIT interface operates full duplex using one start bit, eight data bits, and one stop bit. Table 10-24 describes the pins supported on the CIT interfaces.

* This is not applicable for users of Release 3.0 and later due to the introduction of Target ID Address Resolution Protocol (TARP) for Operations Interworking (OI).
Table 10-24. CIT Interface Pin Connections

<table>
<thead>
<tr>
<th>EIA-232-D Pin</th>
<th>Front Access CIT (DCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 2 - Circuit BA Transmitted Data</td>
<td>Carries data from terminal to DDM-2000 FiberReach</td>
</tr>
<tr>
<td>Pin 3 - Circuit BB Received Data</td>
<td>Carries data from DDM-2000 FiberReach to terminal</td>
</tr>
<tr>
<td>Pin 7 - Circuit AB Signal Ground</td>
<td>Signal ground</td>
</tr>
<tr>
<td>Pin 8 - Circuit CF Received Line</td>
<td>Not used</td>
</tr>
<tr>
<td>Signal Detector</td>
<td></td>
</tr>
<tr>
<td>Pin 20 - Circuit CD DTE Ready</td>
<td>Indicates to DDM-2000 FiberReach that modem or terminal is connected</td>
</tr>
</tbody>
</table>

Although not required for routine installation and maintenance, a CIT is recommended for more sophisticated maintenance and administrative activities. A personal computer (PC) is required for software download and to run the CPro-2000 software. The DDM-2000 FiberReach Multiplexer CIT port (mounted on the user panel) is a standard EIA-232-D (supersedes RS-232C specification) interface configured as DCE for direct connection to a CIT. The CIT port is compatible with most ANSI 3.64 ASCII terminals; however, it is optimized for standard screens with display areas of 24 lines by 72 (or more) columns. A pager function is included in the DDM-2000 FiberReach Multiplexer to accommodate screen lengths from 3 lines to 150 lines.

Those CITs compatible with DDM-2000 OC-3 or OC-12 Multiplexers are directly compatible with the DDM-2000 FiberReach Multiplexer.

Personal Computer Specifications for Software Download

The personal computer (PC) used for software download should have:

- A minimum of 640K of random access memory (RAM)
- MS-DOS* version 2.0 or newer
- Hard disk
- At least one floppy disk drive of 360K or larger capacity. Although the disk drive may accommodate either floppy or hard disk, a hard disk is preferred for its better performance. The disk requirement is met with most portable MS-DOS PCs with a single 3.5-inch disk. An MS-DOS PC with a hard disk or a 3.5-inch 1.44M floppy disk may also be used.

* Registered trademark of Microsoft Corporation.
- Windows NT available to work with the OC-3 Releases 7.2 and earlier, and 13.0 and later, and OC-12 Releases 7.0 and later, and FiberReach 4.0.

Compatible Modems

A compatible modem must meet the following minimum requirements:

- 300, 1200, 2400, 4800, 9600, or 19,200 baud
- Full duplex
- 8 data bits
- No parity bits
- 1 start bit
- 1 stop bit
- No flow control.

The following stand-alone modems meet the modem requirements and can be used with the DDM-2000 System. Western Electric® 103-compatible and 212A-compatible modems are also suitable for use with the DDM-2000 system. This is not an exhaustive list of compatible modems:

- Lucent *Paradyne*® 2224-CEO modem (at 1200 and 2400 baud)
- Lucent *Paradyne* 2224 modem (at 1200 and 2400 baud)
- Lucent *Paradyne* 4024 modem (at 1200 and 2400 baud)
- Lucent *Paradyne* 2296 modem (at 4800 and 9600 baud)
- Hayes *V-series*® Smartmodems
- Penril™ Alliance V.32 modem.

The NCR 3170 computer and the AT&T Safari® computer have a built-in modem and meet the modem requirements.

CPro-2000 Graphical User Interface and Provisioning Tool

The CPro-2000 Graphical User Interface and Provisioning Tool is a *Microsoft Windows™* based user interface that can optionally be used with the DDM-2000 OC-3 Multiplexer. The tool simplifies and mechanizes administration, maintenance, and provisioning operations for ring networks. CPro-2000 supports DDM-2000 OC-3 Multiplexers, DDM-2000 OC-12 Multiplexers, and FT-2000 OC-48 Lightwave Systems. A minimum platform configuration is:

- 486 SX *IBM®*-compatible desktop or laptop PC

* Trademark of Hayes Microcomputer Products, Inc.
† Registered trademark of Penril Corporation, Inc.
‡ Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.
§ IBM is a registered trademark of International Business Machines Corporation.
3.5 inch Floppy Disk drive
8 Megabyte RAM required (12 Megabyte RAM preferred)
Hard disk with at least 40 Megabytes of available space
Serial port (EIA-232-D) — configured as COM1 or COM2
MS-DOS operating system version 5.0 or later
Windows NT or Windows 95
Mouse
VGA color monitor

CPro-2000 is a software environment based on Microsoft Windows 3.1. Windows NT may also be used, as well as Microsoft Windows 95. CPro-2000 has been tested with AT&T, NCR, IBM, NEC*, and Gateway-2000† personal computers. CPro-2000 has also been tested to work on a SUN‡ SPARC§ station 10 workstation that has a SUNPC3.1 software environment setup on a PC emulator hardware and running Windows in the enhanced mode.

User Panel

The user panel contains red light emitting diodes (LEDs) for CR and MJ alarms, yellow LEDs for MN and PMN alarms, and for abnormal (ABN), far-end activity (FE-ACTY)¶, and near end activity (NE-ACTY) status. These LEDs are used in conjunction with the far-end identification (FE-ID) seven-segment display on the front panel of the adjacent SYSCTL circuit pack to provide CIT-less single-ended operations.

Two green PWR ON LEDs are lighted when the shelf is receiving −48 V power for each of two independent −48 V DC power feeders. A green ACO LED is lighted when the ACO function is active.

The FE SEL test, ACO/TEST, and UPD/INIT pushbuttons are provided to control system operation.

Equipment Indicators

A red LED FAULT indicator is provided on each circuit pack. A green LED ACTIVE indicator is provided on all 1x1 protected circuit packs to indicate which circuit packs are actively carrying traffic.

* NEC is a registered trademark of NEC Corporation.
† Gateway 2000 is a trademark of Gateway 2000, Inc.
‡ SUN is a registered trademark of SUN Microsystems, Inc.
§ SPARC is a registered trademark of SPARC International, Inc., licensed exclusively to SUN Microsystems, Inc.
¶ This is not applicable for users of Release 3.0 or later due to the introduction of Target ID Address Resolution Protocol (TARP) for Operations Interworking (OI).
Office Alarms

The office alarms interface is a set of discrete relays that controls office audible and visual alarms. Separate relays handle critical, major, and minor alarms. Each contact closure is rated at 1 A, 60 V maximum. The CR and MJ alarms can be wire-ORed. The critical alarm relays are fail safe against unprotected power failures.

User-Definable Miscellaneous Discrete Environmental Alarms and Controls

The user-definable miscellaneous discrete environmental alarm and control interface allows the DDM-2000 FiberReach Multiplexer to monitor and control collocated equipment at the remote site. At the remote terminal (RT) site, 21 alarm or status environmental inputs can monitor environmental conditions (for example, open door, high temp); these inputs are activated by contact closures. The 15th environmental alarm or status input is provided to monitor the condition of the power shelf and fans at the RT site; this closure is activated by −48 V DC. Four environmental control outputs are provided to control external equipment (for example, pumps or generators). The miscellaneous discrete outputs (control outputs at an RT, alarm/status outputs at a CO) tolerate −60 V maximum open circuit voltage and 35 mA maximum current. Transient voltages up to −135 V are tolerated for up to 1 ms. The miscellaneous discrete inputs provide −48 V nominal (−60 V maximum) open circuit voltage and 2 mA maximum current.

The miscellaneous discrete output closures generated by the optoisolator require external voltage and ground to operate.

TL1/X.25 Interface

A TL1/X.25 interface to a DDM-2000 FiberReach Multiplexer is provided through a host system (for example, a DDM-2000 OC-3 Multiplexer). The DDM-2000 FiberReach Multiplexer host supports a TL1/X.25 interface for communication between local and remote DDM-2000s, and alarm surveillance and provisioning operations systems such as Telcordia Technologies's Network Monitoring and Analysis (NMA) and Operations Systems/Intelligent Network Element (OPS/INE) operations systems. The DDM-2000 OC-3 Multiplexer TL1/X.25 interface is based on Telcordia Technologies TR-TSY-000833, Issue 5.

Lucent 2000 Product Family OI Specifications

Applicable for Release 2.2 only:
- Maximum number of NEs per subnetwork 50
- Maximum number of alarm groups per subnetwork 255
- Maximum number of NEs per alarm group 25
- Maximum number of directory services NEs per subnetwork 1
Applicable for Release 4.0:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of alarm groups per subnetwork</td>
<td>255</td>
</tr>
<tr>
<td>Maximum number of NEs per alarm group</td>
<td>25</td>
</tr>
</tbody>
</table>

NOTE:
DDM-2000 FiberReach 3.0 or later supports large subnetworks of up to 256 NE. Refer to *Lucent Technologies 2000 Product Family Multi-Vendor Operations Interworking Guide*, 824-102-144, for additional information.

Physical Specifications

Wideband Shelf Physical Characteristics
- Weight (Max.): 20 lb. (9 kg)
- Appearance: Coordinated with other equipment in the Lucent 2000 Product Family.

Network Bay and Cabinet Mounting

The DDM-2000 FiberReach Multiplexer can be mounted in both ED-8C500 and ED-8C501 network bay frames and in 23-inch network bay frames. Up to two shelves (any combination of wideband and narrowband shelves) can be mounted side by side in a carrier assembly. In addition to bay mounting, the DDM-2000 FiberReach Multiplexer can be packaged with other equipment in 51A or 61A cabinets, wall mount enclosures, controlled environment vaults (CEVs), or huts.
Environmental Specifications

Temperature and Humidity

A DDM-2000 FiberReach Multiplexer shelf meets Telcordia Technologies Network Equipment Building System (NEBS) requirements* for use in central office environments without fans.

A heat baffle assembly is required for all applications in a bay frame and for cabinet configurations where thermal environments are specified. The baffle should be installed above and below any DDM-2000 FiberReach shelves. Refer to 363-206-300, *DDM-2000 FiberReach Multiplexer Applications, Planning, and Ordering Guide*, for detailed information on heat baffles in typical bay arrangements.

The DDM-2000 FiberReach Multiplexer operates in uncontrolled environments at temperatures of \(-40^\circ C\) to \(+75^\circ C\) and humidity of 5 to 95 percent (noncondensing). Forced convection cooling (fans) is required when the air inlet temperature is above \(50^\circ C\). The DDM-2000 FiberReach Multiplexer provides optional control and alarming of the 2-type fan units used in Lucent cabinets and alarming of the DDM-2000 fan shelf.

EMC Requirements

The DDM-2000 FiberReach Multiplexer has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residence is likely to cause harmful interference in which case the user will be required to correct the interference at the user's own expense.

Earthquake Requirements

The DDM-2000 FiberReach Multiplexer meets the earthquake requirements defined in Telcordia Technologies TR-NWT-000063, Issue 5 and Pacific Bell Standard PBS-000-102PT. Installations in Zone 4 regions require the ED-8C800-50 or ED-8C801-50 bay frame. Drawing ED-8C800-70 provides ordering and engineering application information for these frames.

Fire Resistance

The DDM-2000 FiberReach Multiplexer meets the ignitability requirements specified in T1Y1.4/88-014. In addition, the DDM-2000 FiberReach Multiplexer meets the fire resistance requirements of UL\(^\dagger\) 1459, 2nd Edition.

Underwriters Laboratories (UL)

The DDM-2000 FiberReach Multiplexer is UL listed for restricted access installations in business and customer premises applications installed in accordance with Articles 110-16 and 110-17 of the National Electric Code*, ANSI/NFPA Number 70-87. Other installations exempt from the requirements of the National Electric Code may be engineered according to the accepted practices of the local telecommunications utility.

Canadian Standards Association

The DDM-2000 FiberReach Multiplexer has been certified by the Canadian Standards Association per standard C22.2, Number 225-M90.

Power Requirements

Shelf Fuses

Up to four −48 V feeders (A and B) are required for each DDM-2000 FiberReach shelf. Each shelf power is protected by 3-amp fuses provided with the shelf.

Power Dissipation

Table 10-25 lists the power dissipation and current drains for the listed configurations for the wideband shelf. The maximum current drain can be calculated for any configuration by dividing the total power dissipation by 40 V (the minimum battery voltage).

When reviewing Table 10-25, the following items should be noted:

- The DDM-2000 FiberReach wideband shelf accommodates two −48 V power feeders (“A” and “B” office power feeders). The DDM-2000 FiberReach narrowband shelf has two −48 V power feeds.
- Loss of one power feeder does not cause a loss of service.
- All supply voltages other than −48 V required by the system are generated by DC-to-DC converters within the system.
- The system meets all performance requirements when the DC input voltage varies between −40.0 V and −60.0 V.
- The system tolerates DC input voltages between 0 V and −60 V without damage.
- The system complies with electrical noise tolerance requirements in Section 13.2 of TR-TSY-000499.

† Registered trademark of Underwriters Laboratories Inc.
* Registered trademark of the National Fire Protection Association, Inc.
Table 10-25. Power Dissipation - Wideband Shelf

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Power Dissipation with 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26G2-U</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF3 circuit packs (16 DS1s, 1x1 protected)</td>
<td>41 Watts</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF3 circuit packs (28 DS1s, 1x7 protected)</td>
<td>38 Watts</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (8 T1EXT, 1x1 protected)</td>
<td>66 Watts</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (14 T1EXT, 1x7 protected)</td>
<td>65 Watts</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 3* BBF8 circuit packs (6 HDSL, unprotected)</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF3 circuit packs (16 DS1s, 1x1 protected) and 2 BBG4B circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF3 circuit packs (28 DS1s, 1x7 protected) and 2 BBG4B circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (8 T1EXT, 1x1 protected) and 2 BBG4B circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (14 T1EXT, 1x7 protected) and 2 BBG4B circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (28 DS1s, 1x7 protected) and 2 BBG19 circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (16 DS1s, 1x1 protected) and 2 BBG19 circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 circuit packs (16 DS1s, 1x1 protected) and 2 BBG19 circuit packs</td>
<td>—</td>
</tr>
</tbody>
</table>

* Limited to 3 due to power limitations from a single 28-type.

CAUTION:
This information is for a typical application only. Consult 801-525-168, DDM-2000 Floor Plan Data Sheets, and T82046-30, Power Systems DC Distribution Circuit for Digital Transmission System, for proper engineering of battery plant and feeders.

Table continued on next page
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Power Dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with 2 26G2-U</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 8 BBF6 (T1EXT) circuit packs (14 T1EXT, 1x7 protected) and 2 BBG19 circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 3* BBF8 circuit packs (6 HDSL, unprotected) and 2 BBG19 circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 2 22D-U circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 2 BBG4B circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 2 BBG19 circuit packs</td>
<td>—</td>
</tr>
<tr>
<td>DDM-2000 FiberReach WBS with 2 22G4-U circuit packs</td>
<td>—</td>
</tr>
</tbody>
</table>

* Limited to 3 due to power limitations from a single 28-type.

CAUTION:
This information is for a typical application only. Consult 801-525-168, DDM-2000 Floor Plan Data Sheets, and T82046-30, Power Systems DC Distribution Circuit for Digital Transmission System, for proper engineering of battery plant and feeders.
DDM-2000 FiberReach Multiplexer Reliability

Summary

This section describes the Telcordia Technologies reliability requirements that apply to the DDM-2000 FiberReach Multiplexer and the calculations used to predict how the DDM-2000 FiberReach Multiplexer meets those standards.

The DDM-2000 FiberReach Multiplexer meets all the applicable Telcordia Technologies reliability requirements that cover transmission availability, operation system (OS) availability, optical module maintenance, and infant mortality. A summary of the reliability predictions and requirements is shown in Table 10-26 and Table 10-27. The applicable Telcordia Technologies requirements and objectives were clarified through interactions with Telcordia Technologies during their audit of the DDM-2000 OC-3 Multiplexer. The basis for these requirements comes from TA-TSY-000418, Generic Reliability Assurance Requirements for Fiber Optic Transport Systems. The method and assumptions used to calculate DDM-2000 FiberReach Multiplexer reliability predictions are described in the following paragraphs. Each paragraph is devoted to one of the reliability parameters which must meet a Telcordia Technologies requirement or objective.

Transmission Availability

Telcordia Technologies requirements state that the probability of a hardware caused outage on a two-way channel within a SONET multiplexer should be less than 1.75 minutes per year in a central office environment* and 5.25 minutes per year in a remote terminal environment†. Telcordia Technologies objectives for outages are 0.25 minutes per year for the central office‡ and 0.75 minutes per year for remote terminal environments.§

The outage requirements and objectives apply to any part of the product needed to process an incoming high-speed or low-speed signal (DS1 to OC-1 or OC-1 to DS1). An outage is defined, for this and all other outage requirements, as any 1-second interval with a bit error rate of 10⁻³ or worse.¶ The predicted hardware outages for various configurations of the system are given in Table 10-27.

A Markov model was used to calculate the predicted system outage. The model assumes a mean time to repair of 2 hours for the CO environment and 4 hours for

¶ TR-TSY-000009, Issue 1, May 1986, p. 4-11.
the RT environment. Individual circuit pack failure rates used in the model were calculated using the method described in TR-TSY-000332, Issue 4, *Reliability Prediction Procedure for Electronic Equipment (RPP)*. A summary of the circuit pack failure rates is shown in Table 10-27.

Operation System Interface Availability

The Telcordia Technologies objective states that the OS outage should be less than 28 minutes per year (50 percent hardware, 50 percent software). Therefore, the objective applies to the TBOS interface†. This objective applies to circuitry needed to maintain communication from the DDM-2000 Multiplexer to the central office's telemetry equipment for access by an OS. Since the OS interface is used in the central office, the reliability model assumes the mean time to repair is 2 hours and the environmental factor is 1.0. Table 10-26 lists the predicted outages for the TBOS interface.†

Optical Module Maintenance Objective

According to Telcordia Technologies, the objective for mean time between failure (MTBF) of a one-way regenerator is a minimum of four years‡. A regenerator is defined as any circuit pack that performs the electrical-to-optical and optical-to-electrical conversion. Table 10-27 lists the failure rate and MTBFs of the OLIU circuit packs. All OLIU circuit packs meet Telcordia Technologies objectives.

Infant Mortality

Telcordia Technologies requires that the number of circuit pack failures in the first year of operation should not exceed 2.5 times the number of failures per year beyond the first year. The ratio of first year failures to failures in subsequent years is known as the infant mortality factor (IMF). The requirement is to have an IMF of less than 2.5..§

DDM-2000 FiberReach Multiplexer circuit packs are subjected to an environmental stress-testing (EST) program. The purpose of the program is to eliminate early life failures, conduct failure mode analysis on defective circuit packs, and use corrective action to make the product more reliable. All new circuit pack codes in manufacturing are subjected to EST. However, based on field return data, when the early life failures for any circuit pack codes have been minimal and the IMF is below 2.5, these circuit pack codes may be subjected only to sampling EST.

† Not applicable for Release 3.0 and later.
DDM-2000 FiberReach System Reliability Predictions

Table 10-26 and Table 10-27 show the system reliability predictions for the DDM-2000 FiberReach Multiplexer.

Table 10-26. DDM-2000 FiberReach System Reliability Prediction.

<table>
<thead>
<tr>
<th>Application</th>
<th>Environment</th>
<th>Telcordia Technologies Criteria (Note 3)</th>
<th>Prediction (Note 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Requirement</td>
<td>Objective</td>
</tr>
<tr>
<td>Point-to-Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1 to OC-1</td>
<td>CO</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>DS1 to OC-1(*)</td>
<td>CO</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>DS1 to OC-1</td>
<td>RT</td>
<td>5.25</td>
<td>0.75</td>
</tr>
<tr>
<td>DS1 to OC-1(*)</td>
<td>RT</td>
<td>5.25</td>
<td>0.75</td>
</tr>
<tr>
<td>DS1 to OC-3</td>
<td>CO</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>DS1 to OC-3 (*)</td>
<td>CO</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>DS1 to OC-3</td>
<td>RT</td>
<td>5.25</td>
<td>0.75</td>
</tr>
<tr>
<td>DS1 to OC-3 (*)</td>
<td>RT</td>
<td>5.25</td>
<td>0.75</td>
</tr>
<tr>
<td>DS3 to OC-3</td>
<td>CO</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>DS3 to OC-3 (*)</td>
<td>CO</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>DS3 to OC-3</td>
<td>RT</td>
<td>5.25</td>
<td>0.75</td>
</tr>
<tr>
<td>DS3 to OC-3 (*)</td>
<td>RT</td>
<td>5.25</td>
<td>0.75</td>
</tr>
<tr>
<td>Ring Pass-Through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC-3c to OC-3c</td>
<td>CO</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>OC-3c to OC-3c</td>
<td>RT</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>OS Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBOS (Note 5)</td>
<td>CO</td>
<td>—</td>
<td>14.00</td>
</tr>
</tbody>
</table>

*Field replacement rate estimates, based on field CP returns and repairs, are used for the component whose failure is silent service affecting and/or not service affecting.

Notes:

1. Hardware failure rates are calculated per the RPP method, TR-NWT-000332, Issue 4, Reliability Prediction Procedure.
2. The environmental factor for the CO = 1.0 and for the RT = 1.5, per TR-NWT-000332, Issue 4, Reliability Prediction Procedure.

(Notes continued on next page)
3. Telcordia Technologies criteria (Outage Requirements and Objectives) is based on TA-TSY-000418, Issue 3, *Generic Reliability Assurance Requirements for Fiber Optic Transport Systems*. Outage is in minutes per year.

4. Mean time to repair is assumed to be two hours for the CO and four hours for RT environments.

5. Not applicable for Releases 3.0 and later.

Table 10-27. DDM-2000 FiberReach Circuit Pack Reliability

<table>
<thead>
<tr>
<th>Circuit Pack</th>
<th>Central Office</th>
<th>Remote Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FITS (Note 2)</td>
<td>MTBF (Years)</td>
</tr>
<tr>
<td>BBF1B (DS1)</td>
<td>859</td>
<td>132.8</td>
</tr>
<tr>
<td>BBF3 (DS1PM)</td>
<td>1310</td>
<td>87.1</td>
</tr>
<tr>
<td>BBF3B (DS1PM)</td>
<td>1235</td>
<td>92.4</td>
</tr>
<tr>
<td>BBG4 (DS3)</td>
<td>902</td>
<td>126.5</td>
</tr>
<tr>
<td>BBG4B (DS3)</td>
<td>1056</td>
<td>108.0</td>
</tr>
<tr>
<td>BBF6 (T1EXT)</td>
<td>1427</td>
<td>79.9</td>
</tr>
<tr>
<td>BBF8 (HDSL)</td>
<td>5216</td>
<td>21.9</td>
</tr>
<tr>
<td>BBG8B (SYSCTRL)</td>
<td>4442</td>
<td>25.7</td>
</tr>
<tr>
<td>BBG19 (DS3)</td>
<td>729</td>
<td>156.5</td>
</tr>
<tr>
<td>22D-U (IS-3 OLIU)</td>
<td>2388</td>
<td>47.80</td>
</tr>
<tr>
<td>22F (OC-3 OLIU)</td>
<td>2441</td>
<td>46.7</td>
</tr>
<tr>
<td>22F-U (OC-3 OLIU)</td>
<td>2519</td>
<td>45.3</td>
</tr>
<tr>
<td>22F2-U (OC-3 OLIU)</td>
<td>2033</td>
<td>56.1</td>
</tr>
<tr>
<td>22G-U (OLIU)</td>
<td>2880</td>
<td>39.64</td>
</tr>
<tr>
<td>22G2-U (OLIU)</td>
<td>2197</td>
<td>51.9</td>
</tr>
<tr>
<td>22G3-U (OLIU)</td>
<td>3533</td>
<td>32.3</td>
</tr>
<tr>
<td>22G4-U (OLIU)</td>
<td>1426</td>
<td>80.05</td>
</tr>
<tr>
<td>26G2-U (OLIU)</td>
<td>2575</td>
<td>44.3</td>
</tr>
<tr>
<td>28G-U (OLIU)</td>
<td>3860</td>
<td>29.6</td>
</tr>
<tr>
<td>28G2-U (OLIU)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>29G-U (OLIU)</td>
<td>3264</td>
<td>34.9</td>
</tr>
<tr>
<td>29H-U (OLIU)</td>
<td>3049</td>
<td>37.4</td>
</tr>
</tbody>
</table>

* Information not available at time of document release.
Notes:

1. Calculations are based on Telcordia Technologies RPP Issue 4 data. All KS and Lucent components considered as quality level III. All components evaluated at 40°C ambient and 50 percent electrical stress.

2. FITS is the number of failures per billion hours of operation (10⁹).
DDM-2000 Narrowband Shelf Specifications

Physical Specifications

Narrowband Shelf Physical Characteristics

- Dimensions: 9.65 in. H x 8.03 in. W x 11.93 in. D
- Weight (Max.): 20 lb. (9 kg)
- Appearance: Coordinated with other equipment in the Lucent 2000 Product Family

Power Requirements

Shelf Fuses

Up to four −48 V feeders (A and B) are required for each DDM-2000 FiberReach shelf. Each shelf power is protected by 3-amp fuses provided with the shelf.

Power Dissipation

Table 10-28 lists the power dissipation and current drains for the listed configurations for the narrowband shelf. The maximum current drain can be calculated for any configuration by dividing the total power dissipation by 40 V (the minimum battery voltage).

Table 10-28. Power Dissipation - Narrowband Shelf

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Power Dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDM-2000 FiberReach NBS with DSXBIU, CDTU, RGU, and PCU (No Channel Units)</td>
<td>14 Watts*</td>
</tr>
<tr>
<td>Maximum power available to CUs in narrowband shelf. This power is allocated among different CUs based on the following data for power requirement per channel unit.§</td>
<td>37 Watts†</td>
</tr>
<tr>
<td>SPQ909 - 4.0 Watts AUA159C - 3.2 Watts</td>
<td></td>
</tr>
<tr>
<td>AUA94 - 1.7 Watts AUA58C - 3.1 Watts</td>
<td></td>
</tr>
<tr>
<td>AUA53 - 1.9 Watts AUA150 - 3.3 Watts</td>
<td></td>
</tr>
<tr>
<td>SPQ400 -6.0 Watts SPQ440B - 6.1 Watts</td>
<td></td>
</tr>
<tr>
<td>SPQ443 - 6.5 Watts SPQ494 - 4.7 Watts§</td>
<td></td>
</tr>
<tr>
<td>See footnotes at end of table.</td>
<td></td>
</tr>
</tbody>
</table>

* Maximum power available to CUs in narrowband shelf.
† Maximum current drain for any configuration is calculated by dividing the total power dissipation by 40 V (the minimum battery voltage).
‡ Power requirement per channel unit for different CUs.
§ Total power dissipation for configurations.
Whether the DDM-2000 FiberReach is configured to include a wideband shelf and a narrowband shelf, this power requirement as well as the power requirement for specific channel units and the appropriate wideband shelf configuration should be added to get the total power requirement.

‡ This number must be added to the power requirement for the narrowband shelf without channel units to obtain the total power requirements for the narrowband shelf.

§ Other channel units can be used, but the total power requirements must not exceed 37 watts for an enclosed cabinet. However, 82 watts is allowed for a shelf with a heat baffle. These numbers assume all lines off hook simultaneously. A more typical power drain is about one third of the stated drain: equal to a traffic rate of 12.2.us.

§ The SPQ494 channel unit (Quad ISDN) consumes 4.2 watts of power. However, a maximum of eight SPQ494 channel units can be installed in specified physical slots of the narrowband shelf, due to the limit of DS0s carried by the four DS1 links to the host.

CAUTION:
This information is for a typical application only. Consult 801-525-168, DDM-2000 Floor Plan Data Sheets, and T82046-30, Power Systems DC Distribution Circuit for Digital Transmission System, for proper engineering of battery plant and feeders.

Terminal-to-Terminal Voice-Frequency Transmission

The CUs used in the central office terminal (COT) and MSDT determine the voice-frequency (VF) transmission characteristics. The specifications for POTS, SPOTS®, and coin CUs are given in Table 10-29. Table 10-30 lists the specifications for multiparty and frequency selective ringing (FSR) CUs. Specifications for the dual ringing repeater channel unit are listed in Table 10-31. Table 10-32 lists the specifications for 2- and 4-wire special services. Table 10-33, Table 10-34, Table 10-35, and Table 10-36 list the specifications for quad POTS/SPOTS CUs. Table 10-37 and Table 10-38 list the specifications for the SPQ909 LP-POTS channel units.
Table 10-29. Transmission Specifications - VF Channel Units with Fixed Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Measured at 25° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Resistance (Beyond the HDT excluding the set)</td>
<td>Parameter</td>
</tr>
<tr>
<td>POTS</td>
<td>0-1500 Ω</td>
</tr>
<tr>
<td>SPOTS® Unit</td>
<td>CSA Loops</td>
</tr>
<tr>
<td>Coin</td>
<td>0-1500 Ω</td>
</tr>
<tr>
<td>Loop Current</td>
<td>> 20 mA</td>
</tr>
<tr>
<td></td>
<td>> 23 mA</td>
</tr>
<tr>
<td>1,000-Hz Loss (±0.5dB typical, ±1.0dB max)</td>
<td>1 dB (R_{EXT} ≤ 1,100 ±100)</td>
</tr>
<tr>
<td></td>
<td>* 0 dB (R_{EXT} ≥ 1,100 ±100)</td>
</tr>
<tr>
<td></td>
<td>0 dB †</td>
</tr>
<tr>
<td>Bandwidth (Relative to the 1,000-Hz loss)</td>
<td>0 to −3.0 dB at 300 Hz and 3,000 Hz</td>
</tr>
<tr>
<td></td>
<td>0 to −1.5 dB at 400 Hz and 2,800 Hz</td>
</tr>
<tr>
<td>Return Loss at the COT ‡</td>
<td>ERL ≥ 18 dB, SRL ≥ 12 dB</td>
</tr>
<tr>
<td>Return Loss at the HDT §</td>
<td>ERL ≥ 18 dB, SRL ≥ 15 dB</td>
</tr>
<tr>
<td>Idle Channel Noise (at the HDT)</td>
<td>20 dBnC Maximum</td>
</tr>
<tr>
<td>Signal-to-Distortion Ratio (at −10 dBm)</td>
<td>> 33 dB</td>
</tr>
<tr>
<td>Dial Pulse Distortion [Peak to Average Ratio (PAR)]</td>
<td>> 90</td>
</tr>
<tr>
<td>Gain Tracking (1,004 Hz)</td>
<td>±0.5 dB Maximum (±0.25 dB Average)</td>
</tr>
<tr>
<td>−37 dBm0 to +3 dBm0</td>
<td>±1.0 dB Maximum (±0.5 dB Average)</td>
</tr>
<tr>
<td>−50 dBm0 to −37 dBm0</td>
<td></td>
</tr>
</tbody>
</table>

See footnotes at end of table. Continued on next page
Table 10-29. Transmission Specifications — VF Channel Units with Fixed Settings — Continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Measured at 25° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POTS</td>
</tr>
<tr>
<td>Intermodulation Distortion (-13 dBm0 Input)</td>
<td>A-B (R2) Product: > 43 dB</td>
</tr>
<tr>
<td></td>
<td>2A-B (R3) Product: > 44 dB</td>
</tr>
<tr>
<td>Single Frequency Distortion (0-12 kHz 0 dBm0)</td>
<td>< −28 dBm0</td>
</tr>
<tr>
<td>Impulse Noise ¶</td>
<td>≤ 15 Counts in 15 Minutes</td>
</tr>
<tr>
<td>Overload at COT and HDT</td>
<td>≥ + 3 dBm0</td>
</tr>
<tr>
<td>Longitudinal Balance at the HDT ** (Minimum)</td>
<td>200 Hz, 500 Hz, 1,000 Hz: ≥ 58 dB</td>
</tr>
<tr>
<td></td>
<td>3,000 Hz: ≥ 53 dB</td>
</tr>
</tbody>
</table>

* Measured as insertion loss between 900-ohm terminations. R_{EXT} includes both the loop resistance and the station set resistance. Actual threshold value for R_{EXT} is 1100 ohms ±100 ohms.

† Measured as the ICL with the HDT terminated in 600 ohms and with the COT terminated in 900 ohms.

‡ Measured with respect to 900 ohms and 2.16 μF with the 4-wire path broken or with the other end terminated in 1,100 ohms in parallel with 0.03 μF.

§ Measured with respect to 600 ohms and 2.16 μF with the 4-wire path broken or with the other end terminated in 900 ohms and 2.16 μF.

¶ Measured with a holding tone of −13 dBm0 and a threshold of 59 dBmC0.

** Measured by Institute of Electrical and Electronics Engineers (IEEE) method 455-1976.
Table 10-30. Transmission Specifications — Multiparty and FSR Channel Units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Multiparty**</th>
<th>FSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Resistance (Beyond the HDT excluding the set)</td>
<td>0-1500 Ω</td>
<td>0-900 Ω</td>
</tr>
<tr>
<td>1,004 Hz On-Hook Loss</td>
<td>≤ 5 dB over 1004 Hz Off-Hook Loss</td>
<td>On-hook transmission not supported</td>
</tr>
<tr>
<td>Loop Current</td>
<td>> 20 mA</td>
<td></td>
</tr>
<tr>
<td>1000-Hz Loss (±0.5 dB typical, ±1.0 dB max)</td>
<td>1 dB</td>
<td></td>
</tr>
<tr>
<td>Bandwidth (Relative to the 1,004-Hz loss) *</td>
<td>-0.5 to +1.0 dB at 400 Hz and 2,800 Hz</td>
<td></td>
</tr>
<tr>
<td>Return Loss at the COT †</td>
<td>ERL ≥ 18 dB, SRL ≥ 10 dB</td>
<td></td>
</tr>
<tr>
<td>Return Loss at the HDT ‡</td>
<td>ERL ≥ 18 dB, SRL ≥ 10 dB</td>
<td></td>
</tr>
<tr>
<td>Idle Channel Noise (at the HDT)</td>
<td>20 dBrnC Maximum</td>
<td></td>
</tr>
<tr>
<td>Signal-to-Distortion Ratio (at −10 dBm)</td>
<td>> 33 dB</td>
<td></td>
</tr>
<tr>
<td>Dial Pulse Distortion [Peak to Average Ratio (PAR)]</td>
<td>> 90</td>
<td></td>
</tr>
<tr>
<td>Gain Tracking (1,004 Hz)</td>
<td>±0.5 dB Maximum (± 0.25 dB Average)</td>
<td></td>
</tr>
<tr>
<td>Intermodulation Distortion (−13 dBm0 Input)</td>
<td>A-B (R2) Product: > 43 dB</td>
<td></td>
</tr>
<tr>
<td>Intermodulation Distortion (−13 dBm0 Input)</td>
<td>2A-B (R3) Product: > 44 dB</td>
<td></td>
</tr>
<tr>
<td>Single Frequency Distortion (0-12 kHz 0 dBm0)</td>
<td>< −28 dBm0</td>
<td></td>
</tr>
<tr>
<td>Impulse Noise §</td>
<td>≤ 15 Counts in 15 Minutes</td>
<td></td>
</tr>
<tr>
<td>See footnotes at end of table.</td>
<td>Continued on next page</td>
<td></td>
</tr>
</tbody>
</table>
Table 10-30. Transmission Specifications — Multiparty and FSR Channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Measured at 25° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overload at COT and HDT</td>
<td>$\geq +3$ dBm0</td>
</tr>
<tr>
<td>Longitudinal Balance at the HDT (Minimum)</td>
<td>200 Hz, 500 Hz, 1,000 Hz: ≥ 58 dB</td>
</tr>
<tr>
<td>(Minimum)¶</td>
<td>3,000 Hz: ≥ 53 dB</td>
</tr>
</tbody>
</table>

* Measured with a signal level of 0 dBm0. + means more loss, − means less loss.
† Measured with respect to 900 ohms and 2.16 µF and with 900 ohms in series with 2.16 µF in parallel with a hold coil at the HDT.
‡ Measured with respect to 900 ohms in series with 2.16 µF with a hold coil at the HDT and with −48 V battery feed terminated with 900 ohms in series with 2.16 µF at the COT.
§ Measured with a holding tone of −13 dBm0 at a threshold of 59 dBmC0.
** MSDT does not support positive ringing.
Table 10-31. Transmission Specifications — AUA45 Dual Ringing Repeater
Channel Unit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Measured at 25° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Design</td>
<td>The AUA45 channel unit is not limited to CSA design rules. Maximum cable loss should not exceed 9 dB, split in any proportion between the two end cable links. Total combined loop resistance (not including the terminating equipment) should not exceed 1500 ohms.</td>
</tr>
<tr>
<td>Structural Impedance</td>
<td>900 ohms +2.16 µF</td>
</tr>
<tr>
<td>Balance Impedance</td>
<td>900 ohms +2.16 µF</td>
</tr>
<tr>
<td>1,000-Hz Loss * (± 0.5 dB typical, ±1.0 dB max)</td>
<td>0 dB or 3 dB (switch selectable)</td>
</tr>
<tr>
<td>Bandwidth (Relative to the 1000-Hz loss)</td>
<td>+1 to −0.5 dB at 400 Hz and 2,800 Hz</td>
</tr>
<tr>
<td>Return Loss† (end-to-end)</td>
<td>ERL ≥ 26 dB, SRL ≥ 20 dB</td>
</tr>
<tr>
<td>Idle Channel Noise ‡</td>
<td>20 dBnC Maximum</td>
</tr>
<tr>
<td>Signal-to-Distortion Ratio (at −10 dBm)</td>
<td>> 33 dB</td>
</tr>
<tr>
<td>Peak to Average Ratio (PAR) (dial pulse distortion) at −13 dBm</td>
<td>> 90</td>
</tr>
<tr>
<td>Gain Tracking (1,004 Hz) −37 dBm0 to +3 dBm0 −50 dBm0 to −37 dBm0</td>
<td>± 0.5 dB Maximum ±1.0 dB Maximum</td>
</tr>
<tr>
<td>Intermodulation Distortion (−13 dBm0 Input) A-B (R2) Product: > 43 dB 2A-B (R3) Product: > 44 dB</td>
<td>< −28 dBm0</td>
</tr>
<tr>
<td>Single Frequency Distortion (0-12 kHz 0 dBm0)</td>
<td>≤ 15 Counts in 15 Minutes</td>
</tr>
<tr>
<td>Impulse Noise at 47 dBnC0</td>
<td>≤ 15 Counts in 15 Minutes</td>
</tr>
<tr>
<td>Overload at COT and HDT</td>
<td>at + 3 dBm0 is ≤ 0.5 dB compression</td>
</tr>
<tr>
<td>See footnotes at end of table.</td>
<td>Continued on next page</td>
</tr>
</tbody>
</table>
Longitudinal Balance at the HDT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Measured at 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>200 Hz, 500 Hz, 1,000 Hz: ≥ 58 dB</td>
</tr>
<tr>
<td></td>
<td>3,000 Hz: ≥ 53 dB</td>
</tr>
</tbody>
</table>

Equal-Level Cross talk

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Measured at 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Better than –65 dB (200 Hz to 3,400 Hz)</td>
</tr>
</tbody>
</table>

* Measured as insertion loss between 900-ohm terminations.
† Measured with respect to 900 ohms and 2.16 µF with the opposite end terminated in 900 ohms in series with 2.16 µF.
‡ Measured with 900-ohm terminations on both ends.
Table 10-32. Transmission Specifications — VF Channel Units with Adjustable Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2-Wire E SPOTS® CUs(AUA42, AUA43)</th>
<th>4-Wire CUs (AUA41, AUA44, AUA54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Resistance (beyond HDT, excluding telset)</td>
<td>CSA loops</td>
<td>0-2800 ohms (loop start, ground-start) 0-5000 ohms (DX)</td>
</tr>
<tr>
<td>Gain Range (Granularity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic Interface to digital line</td>
<td>−1.0 dB to 6.75 dB (in 0.25-dB steps)</td>
<td>Range depends on function code</td>
</tr>
<tr>
<td>Digital line to metallic interface</td>
<td>−8.0 dB to 1.5 dB (in 0.25-dB steps)</td>
<td>Granularity = 0.1 dB</td>
</tr>
<tr>
<td>Gain Tracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input −37 to +3 dBm</td>
<td>± 0.25 dB</td>
<td>± 0.25 dB</td>
</tr>
<tr>
<td>Input −50 to −37 dBm</td>
<td>± 0.50 dB</td>
<td>± 0.50 dB</td>
</tr>
<tr>
<td>Equalization</td>
<td>(Slope type) Equalized CSA cable roll-off at 0.4 kHz varies from 0.0 dB to 1.1 dB; at 2.8 kHz, roll-off varies from 0.3 dB to 1.75 dB</td>
<td>Post-equalization of cable less than 15 dB (H88) or 18 kft (NL) is comparable to D4 4FXS CU (J98726SB). Pre-equalization and post-equalization available by emulating 150-ohm mismatch.</td>
</tr>
<tr>
<td>Structural Impedance</td>
<td>600 ohms + 2.16 μF or 900 ohms + 2.16 μF</td>
<td>600 ohms or 1200 ohms</td>
</tr>
<tr>
<td>ERL/SRL (2-wire return loss with 4-wire path broken)</td>
<td>28/20 dB</td>
<td></td>
</tr>
<tr>
<td>RL (any Hz) / RL (1 kHz)</td>
<td></td>
<td>23/28 dB</td>
</tr>
<tr>
<td>Balance Capability, CSA loops</td>
<td>ERL better than 12 dB at digital line interface of channel unit facing loop</td>
<td>—</td>
</tr>
<tr>
<td>Longitudinal Balance (IEEE method)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUA42 AUA43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 Hz</td>
<td>63 dB 58 dB</td>
<td>67 dB</td>
</tr>
<tr>
<td>500 Hz</td>
<td>63 dB 58 dB</td>
<td>67 dB</td>
</tr>
<tr>
<td>1,000 Hz</td>
<td>63 dB 58 dB</td>
<td>67 dB</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10-32. Transmission Specifications — VF Channel Units with Adjustable Settings—Continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2-Wire E SPOTS® CUs (AUA42, AUA43)</th>
<th>4-Wire CUs (AUA41, AUA44, AUA54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000 Hz</td>
<td>58 dB</td>
<td>62 dB</td>
</tr>
<tr>
<td>Equal-Level Cross talk, C-message weighted between 0.2 and 3.4 kHz</td>
<td>−65 dB</td>
<td>−65 dB (channel unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−65 dB (interunit cross talk)</td>
</tr>
<tr>
<td>Idle-Channel Noise</td>
<td>23 dBnrc0 for AUA42/ AUA43 pair</td>
<td>20 dBnrc0 per channel unit, each direction</td>
</tr>
<tr>
<td>Impulse Noise, no more than 15 counts in 15 minutes at</td>
<td>59 dBnrc0</td>
<td>59 dBnrc0</td>
</tr>
<tr>
<td>Signal Distortion (at −10 dBm)</td>
<td>> 33 dB</td>
<td>> 33 dB</td>
</tr>
<tr>
<td>Single-Frequency distortion 0 dBm0 input tone at any frequency from 0 to 12 kHz</td>
<td>−28 dBm0 for AUA42/ AUA43 pair</td>
<td>−28 dBm0 per channel unit</td>
</tr>
<tr>
<td>Intermodulation Distortion (IM), −13 dBm0 input (IM products)</td>
<td>A-B (R2) < −43 dB</td>
<td>R2 < −49 dB</td>
</tr>
<tr>
<td></td>
<td>2A-B (R3) < −44 dB</td>
<td>R3 < −51 dB</td>
</tr>
<tr>
<td>Pulse Distortion [Peak to Average Ratio (PAR)]</td>
<td>not less than 90</td>
<td>not less than 94</td>
</tr>
</tbody>
</table>
Table 10-33. *SPQ*®400 Electrical and Transmission Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Resistance (excluding telset)</td>
<td>0 Ω to 900 Ω</td>
</tr>
<tr>
<td>Loop Current</td>
<td>20 mA (900 Ω loop) to 30 mA (0 Ω loop)</td>
</tr>
<tr>
<td>VF loss, off-hook, between CO and network interface (NIF) at customer location</td>
<td>4 to 8 dB</td>
</tr>
<tr>
<td>Nominal 1,000-Hz loss, SPQ400 only:</td>
<td>6.0 dB</td>
</tr>
<tr>
<td>0 Ω tip-to-ring</td>
<td>1.4 dB</td>
</tr>
<tr>
<td>900 Ω loop resistance</td>
<td></td>
</tr>
<tr>
<td>VF loss, on-hook, between CO and NIF at customer location</td>
<td>9 dB to 13 dB</td>
</tr>
<tr>
<td>Return loss at COT (reference Z of 900 Ω + 2.16 μF, terminated with 900 Ω + 2.16 μF)</td>
<td>ERL > 18 dB SRL > 10 dB</td>
</tr>
<tr>
<td>Return loss at RT (reference Z of 900 Ω + 2.16 μF, CO terminated with 900 Ω + 2.16 μF)</td>
<td>ERL > 18 dB SRL > 10 dB</td>
</tr>
<tr>
<td>Structural impedance</td>
<td>900 Ω + 2.16 μF</td>
</tr>
<tr>
<td>Minimum longitudinal balance (measured by IEEE Method 455-1976)</td>
<td>200 Hz to 1,000 Hz: ≥ 58 dB</td>
</tr>
<tr>
<td></td>
<td>3,000 Hz: ≥ 53 dB</td>
</tr>
<tr>
<td>Idle channel noise, end-to-end</td>
<td>≤ 20 dBrmC</td>
</tr>
<tr>
<td>Frequency response (loss relative to 1,004 Hz)</td>
<td></td>
</tr>
<tr>
<td>End-to-end</td>
<td></td>
</tr>
<tr>
<td>SPQ400 only (1/2 channel)</td>
<td></td>
</tr>
<tr>
<td>400 Hz to 2,800 Hz: −0.5 dB to +1 dB</td>
<td></td>
</tr>
<tr>
<td>3200 Hz: −0.5 dB to +1.5 dB</td>
<td></td>
</tr>
<tr>
<td>300 Hz and 3,400 Hz: −0 dB to +3 dB</td>
<td></td>
</tr>
<tr>
<td>400 Hz to 2800 Hz: −0.25 dB to +0.5 dB</td>
<td></td>
</tr>
<tr>
<td>3,200 Hz: −0.25 dB to +0.75 dB</td>
<td></td>
</tr>
<tr>
<td>and 3,400 Hz: −0 dB to +1.5 dB</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-Hz Rejection</td>
<td>> 20 dB</td>
</tr>
<tr>
<td>Cross talk (0-dBm0 input, 200 Hz to 3,400 Hz)</td>
<td>≤ −65 dBm0</td>
</tr>
<tr>
<td>Impulse noise at a threshold of 47 dBmCO for 15 minutes</td>
<td>≤ 15 counts</td>
</tr>
<tr>
<td>Data pulse distortion (PAR)</td>
<td></td>
</tr>
<tr>
<td>- End-to-end</td>
<td>> 90</td>
</tr>
<tr>
<td>- SPQ400 only (1/2 channel)</td>
<td>≥ 94</td>
</tr>
<tr>
<td>Single frequency distortion with input of:</td>
<td></td>
</tr>
<tr>
<td>- 0 Hz to 12 kHz, 0 dBm0</td>
<td>< −28 dBm0 at 0 Hz to 12 kHz</td>
</tr>
<tr>
<td>- 1,004 Hz to 1020 kHz, 0 dBm0</td>
<td>< −40 dBm0 at 0 Hz to 4,000 Hz</td>
</tr>
<tr>
<td>Signal-to-distortion with input of:</td>
<td></td>
</tr>
<tr>
<td>- 0 dBm0 to −30 dBm0</td>
<td>> 33 dB</td>
</tr>
<tr>
<td>- −30 dBm0 to −40 dBm0</td>
<td>> 27 dB</td>
</tr>
<tr>
<td>- −40 dBm0 to −45 dBm0</td>
<td>> 22 dB</td>
</tr>
<tr>
<td>System generated tones 0 Hz < f < 16 kHz</td>
<td>< −50 dBm0</td>
</tr>
<tr>
<td>Gain tracking at 1,004 Hz, relative to 0 dBm0</td>
<td></td>
</tr>
<tr>
<td>- −37 dBm0 to +3 dBm0</td>
<td>±0.5 dB maximum (±0.25 dB average)</td>
</tr>
<tr>
<td>- −50 dBm0 to −37 dBm0</td>
<td>±1.5 dB maximum (±0.5 dB average)</td>
</tr>
</tbody>
</table>
Table 10-34. SPQ®400 Environmental Specifications

| Temperature Range (Ambient) |
|-------------------------------|---|
| Operating | −40° to 85°C (−40° to 185°F) |
| Storage | −40° to 85°C (−40° to 185°F) |

| Relative Humidity, Noncondensing |
|-------------------------------|---|
| 5% to 95% |

Table 10-35. SPQ®440 Electrical and Transmission Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop resistance (excluding telset)</td>
<td>0 to 900 Ω, CSA</td>
</tr>
<tr>
<td>Loop current</td>
<td>20 mA to 30 mA, 25 mA to 30 mA</td>
</tr>
<tr>
<td>VF loss, off-hook, between CO and network interface (NIF) at customer location</td>
<td>4 to 8 dB, 2 to 5 dB</td>
</tr>
<tr>
<td>Nominal 1,000Hz loss, SPQ440 only:</td>
<td></td>
</tr>
<tr>
<td>0 Ω tip-to-ring</td>
<td>6.0 dB, 3.4 dB</td>
</tr>
<tr>
<td>Maximum loop resistance</td>
<td>1.4 dB, 0 dB</td>
</tr>
<tr>
<td>VF loss, on-hook, between CO and NIF at customer location</td>
<td>9 dB to 13 dB, 7 dB to 12 dB</td>
</tr>
<tr>
<td>Return loss at COT (reference Z of 900 Ω + 2.16 µF, terminated with 900 Ω + 2.16 µF for POTS or TR-57 CSA test loops for special services)</td>
<td>ERL > 18 dB, ERL > 10 dB, SRL > 5 dB</td>
</tr>
<tr>
<td>Return loss at RT (reference Z of 600 Ω + 2.16 µF, CO terminated with 900 Ω + 2.16 µF)</td>
<td>ERL > 22 dB, ERL > 22 dB, SRL > 14 dB, SRL > 14 dB</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10-35. SPQ®440 Electrical and Transmission Specifications — Continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTS and Special Services</td>
<td></td>
</tr>
<tr>
<td>Structural Impedance</td>
<td>600 ohms + 2.16 µF</td>
</tr>
<tr>
<td>Minimum longitudinal balance (measured by IEEE Method 455-1976)</td>
<td>200 Hz to 1,000 Hz: ≥ 58 dB 3,000 Hz: ≥ 53 dB</td>
</tr>
<tr>
<td>Idle channel noise, end-to-end</td>
<td>≥ 20 dBrnC</td>
</tr>
</tbody>
</table>

Frequency Response (Loss Relative to 1,004 Hz)

End-to-end	400 Hz to 2,800 Hz: −0.5 dB to +1 dB 3,200 Hz: −0.5 dB to +1.5 dB 300 Hz and 3,400 Hz: −0 dB to +3 dB
SPQ440 only (1/2 channel)	400 Hz to 2,800 Hz: −0.25 dB to +0.5 dB 3,200 Hz: −0.25 dB to +0.75 dB 300 Hz and 3,400 Hz: −0 dB to +1.5 dB
60 Hz Rejection	> 20 dB
Cross talk (0 dBm0 input, 200 Hz to 3,400 Hz)	≤ −65 dBm0
Impulse noise at a threshold of 47 dBrnCO for 15 minutes	≤ 15 counts
Data pulse distortion (PAR)	
End-to-end	> 90
SPQ440 only (1/2 channel)	≥ 94

Single frequency distortion with input of:

| 0 Hz to 12 kHz, 0 dBm0 | < −28 dBm0 at 0 Hz to 12 kHz |

Continued on next page
Table 10-35. SPQ®440 Electrical and Transmission Specifications — Continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,004 Hz to 1020 kHz, 0 dBm0</td>
<td>< −40 dBm0 at 0 Hz to 4,000 Hz</td>
</tr>
<tr>
<td>Signal-to-distortion with input of:</td>
<td></td>
</tr>
<tr>
<td>0 dBm0 to −30 dBm0</td>
<td>> 33 dB</td>
</tr>
<tr>
<td>−30 dBm0 to −40 dBm0</td>
<td>> 27 dB</td>
</tr>
<tr>
<td>−40 dBm0 to −45 dBm0</td>
<td>> 22 dB</td>
</tr>
<tr>
<td>System generated tones 0 Hz < f < 16 kHz</td>
<td>< −50 dBm0</td>
</tr>
<tr>
<td>Gain tracking at 1,004 Hz, relative to 0 dBm0:</td>
<td></td>
</tr>
<tr>
<td>−37 dBm0 to +3 dBm0</td>
<td>±0.5 dB maximum (±0.25 dB average)</td>
</tr>
<tr>
<td>−50 dBm0 to −37 dBm0</td>
<td>±1.5 dB maximum (±0.5 dB average)</td>
</tr>
</tbody>
</table>

Table 10-36. SPQ®440 Environmental Specifications

<table>
<thead>
<tr>
<th>Temperature Range (Ambient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
</tr>
<tr>
<td>Storage</td>
</tr>
</tbody>
</table>

Relative Humidity, Noncondensing

5% to 95%
Table 10-37. SPQ®909 Electrical and Transmission Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supervisory Range (including telset)</td>
<td>450 Ω</td>
</tr>
<tr>
<td>Loop Resistance (up to 500 ft. of AWG 22)</td>
<td>0 Ω to 20 Ω</td>
</tr>
<tr>
<td>Loop Current</td>
<td>20 mA to 25 mA</td>
</tr>
<tr>
<td>Nominal 1,000-Hz VF loss off-hook between CO and RT CUs</td>
<td>4 dB</td>
</tr>
<tr>
<td>SPQ909 alone</td>
<td>4 dB</td>
</tr>
<tr>
<td>Nominal 1,000-Hz VF loss off-hook between RT CUs and CO</td>
<td>2 dB</td>
</tr>
<tr>
<td>SPQ909 alone</td>
<td>2 dB</td>
</tr>
<tr>
<td>Nominal 1,000-Hz VF loss on-hook between CO and RT CUs</td>
<td>5.5 dB</td>
</tr>
<tr>
<td>SPQ909 alone</td>
<td>4 dB</td>
</tr>
<tr>
<td>Nominal 1,000-Hz VF loss on-hook between RT CUs and CO</td>
<td>3.5 dB</td>
</tr>
<tr>
<td>SPQ909 alone</td>
<td>2 dB</td>
</tr>
<tr>
<td>Return loss at COT (reference Z of 900 Ω + 2.16 μF, RT terminated with 600 Ω)</td>
<td>ERL > 18 dB, SRL > 10 dB</td>
</tr>
<tr>
<td>Return loss at RT (reference Z of 600 Ω, CO terminated with 900 Ω + 2.16 μF)</td>
<td>ERL > 26 dB, SRL > 21 dB</td>
</tr>
<tr>
<td>Hybrid Balance of SPQ909 (RT terminated with 600 Ω)</td>
<td>ERL > 26 dB, SRL > 21 dB</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10-37. *SPQ*®909 Electrical and Transmission Specifications — *Continued*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output impedance (structural impedance, hybrid impedance)</td>
<td>600 Ω</td>
</tr>
<tr>
<td>Minimum longitudinal balance (measured by IEEE Method 455-1985)</td>
<td>200 Hz to 1,000 Hz: ≥ 45 dB</td>
</tr>
<tr>
<td></td>
<td>3,000 Hz: ≥ 40 dB</td>
</tr>
<tr>
<td>Idle channel noise, end-to-end</td>
<td>≤ 20 dBrnC</td>
</tr>
<tr>
<td>Frequency response (loss relative to 1,004 Hz)</td>
<td></td>
</tr>
<tr>
<td>End-to-end</td>
<td>300 Hz to 3,000 Hz: −0.5 dB to +1 dB</td>
</tr>
<tr>
<td></td>
<td>3,200 Hz: −0.5 dB to +1.5 dB</td>
</tr>
<tr>
<td>SPQ909 alone</td>
<td>300 Hz to 3000 Hz: −0.25 dB to + 0.5 dB</td>
</tr>
<tr>
<td></td>
<td>3200 Hz: −0.25 dB to +0.75 dB</td>
</tr>
<tr>
<td>60-Hz Rejection (loss relative to 1,004 Hz)</td>
<td>> 20 dB</td>
</tr>
<tr>
<td>Cross talk (0 dBm0 input, 200 Hz to 3,400 Hz)</td>
<td>−65 dBm0</td>
</tr>
<tr>
<td>Impulse noise at a threshold of 47 dBrnCO for 15 minutes</td>
<td>≤ 15 counts</td>
</tr>
<tr>
<td>Data pulse distortion (PAR)</td>
<td></td>
</tr>
<tr>
<td>End-to-end</td>
<td>> 90</td>
</tr>
<tr>
<td>SPQ909 alone</td>
<td>≥ 94</td>
</tr>
<tr>
<td>Single frequency distortion with input of:</td>
<td></td>
</tr>
<tr>
<td>0 Hz to 12 kHz, 0 dBm0</td>
<td>< −28 dBm0 at 0 Hz to 12 kHz</td>
</tr>
<tr>
<td>1,004 Hz to 1,020 kHz, 0 dBm0</td>
<td>< −40 dBm0 at 0 Hz to 4000 Hz</td>
</tr>
<tr>
<td>Signal-to-distortion with input of:</td>
<td></td>
</tr>
<tr>
<td>0 dBm0 to −30 dBm0</td>
<td>> 33 dB</td>
</tr>
<tr>
<td>−30 dBm0 to −40 dBm0</td>
<td>> 27 dB</td>
</tr>
<tr>
<td>−40 dBm0 to −45 dBm0</td>
<td>> 22 dB</td>
</tr>
</tbody>
</table>

Continued on next page
Table 10-37. SPQ®909 Electrical and Transmission Specifications — Continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System generated tones 0 Hz < f < 16 kHz</td>
<td>< −50 dBm0</td>
</tr>
<tr>
<td>Gain tracking at 1004 Hz, relative to 0 dBm0:</td>
<td></td>
</tr>
<tr>
<td>−37 dBm0 to +3 dBm0</td>
<td>±0.5 dB maximum (±0.25 dB average)</td>
</tr>
<tr>
<td>−50 dBm0 to −37 dBm0</td>
<td>±1.5 dB maximum (±0.5 dB average)</td>
</tr>
<tr>
<td>−55 dBm0 to −50 dBm0</td>
<td>±3.0 dB maximum (±1.5 dB average)</td>
</tr>
</tbody>
</table>

Table 10-38. SPQ®909 Environmental Specifications

<table>
<thead>
<tr>
<th>Temperature Range (Ambient)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>−40° to 85°C (−40° to 185°F)</td>
</tr>
<tr>
<td>Storage</td>
<td>−40° to 85°C (−40° to 185°F)</td>
</tr>
<tr>
<td>Relative Humidity, Noncondensing</td>
<td></td>
</tr>
<tr>
<td>5% to 95%</td>
<td></td>
</tr>
</tbody>
</table>
Contents

- Overview
- Command Page Format
- Input Format
- Addresses
- Command and Prompt Mode
- Special Control Characters
- Paged Reports
- Confirmation Requests
- Output Descriptions
- Alarm Level Prompt
- Security
- Commands Menu
- Starting a CIT Session
- CPro-2000

Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLY</td>
<td>Apply New Software</td>
<td>11-17</td>
</tr>
<tr>
<td>CPY-PROG</td>
<td>Copy Program</td>
<td>11-25</td>
</tr>
<tr>
<td>DLT-CRS-STS1</td>
<td>Delete Cross-Connection STS-1</td>
<td>11-31</td>
</tr>
<tr>
<td>DLT-CRS-STS3c</td>
<td>Delete Cross-Connection STS-3c</td>
<td>11-33</td>
</tr>
<tr>
<td>DLT-CRS-VT1</td>
<td>Delete Cross-Connection VT1.5</td>
<td>11-36</td>
</tr>
<tr>
<td>DLT-ULSDCC-L4</td>
<td>Delete Upper Layer Section DCC - Layer 4</td>
<td>11-40</td>
</tr>
<tr>
<td>ENT-CRS-STS1</td>
<td>Enter Cross-Connection STS-1</td>
<td>11-43</td>
</tr>
<tr>
<td>ENT-CRS-STS3c</td>
<td>Enter Cross-Connection STS-3c</td>
<td>11-46</td>
</tr>
<tr>
<td>ENT-CRS-VT1</td>
<td>Enter Cross-Connection VT1.5</td>
<td>11-50</td>
</tr>
<tr>
<td>ENT-TL1MSGMAP</td>
<td>Enter TL1 Message Map</td>
<td>11-58</td>
</tr>
<tr>
<td>ENT-ULSDCC-L3</td>
<td>Enter Upper Layer Section DCC - Layer 3</td>
<td>11-61</td>
</tr>
<tr>
<td>ENT-ULSDCC-L4</td>
<td>Enter Upper Layer Section DCC - Layer 4</td>
<td>11-65</td>
</tr>
<tr>
<td>?</td>
<td>Help</td>
<td>11-73</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT-PM</td>
<td>Initialize Performance Monitoring</td>
<td>11-74</td>
</tr>
<tr>
<td>INIT-SYS</td>
<td>Initialize System</td>
<td>11-75</td>
</tr>
<tr>
<td>INS-PROG</td>
<td>Install Program</td>
<td>11-81</td>
</tr>
<tr>
<td>LOGOUT</td>
<td>Logout</td>
<td>11-88</td>
</tr>
<tr>
<td>OPR-ACO</td>
<td>Operate Alarm Cutoff</td>
<td>11-89</td>
</tr>
<tr>
<td>OPR-LPBK-T1</td>
<td>Operate Loopback T1</td>
<td>11-90</td>
</tr>
<tr>
<td>OPR-LPBK-T3</td>
<td>Operate Loopback T3</td>
<td>11-95</td>
</tr>
<tr>
<td>RESET</td>
<td>Reset</td>
<td>11-99</td>
</tr>
<tr>
<td>RLGN</td>
<td>Remote Login</td>
<td>11-101</td>
</tr>
<tr>
<td>RLS-LPBK-T1</td>
<td>Release Loopback T1</td>
<td>11-105</td>
</tr>
<tr>
<td>RLS-LPBK-T3</td>
<td>Release Loopback T3</td>
<td>11-107</td>
</tr>
<tr>
<td>RSTR-PASSWD</td>
<td>Restore Logins, Passwords, & User Types</td>
<td>11-108</td>
</tr>
<tr>
<td>RTRV-ALM</td>
<td>Retrieve Alarm & Status Conditions</td>
<td>11-111</td>
</tr>
<tr>
<td>RTRV-ATTR-ALM</td>
<td>Retrieve Attribute Alarm</td>
<td>11-112</td>
</tr>
<tr>
<td>RTRV-ATTR-CONT</td>
<td>Retrieve Attribute Control</td>
<td>11-114</td>
</tr>
<tr>
<td>RTRV-ATTR-ENV</td>
<td>Retrieve Attribute Environment</td>
<td>11-116</td>
</tr>
<tr>
<td>RTRV-CRS-STS1</td>
<td>Retrieve Cross-Connection STS-1</td>
<td>11-118</td>
</tr>
<tr>
<td>RTRV-CRS-STS3c</td>
<td>Retrieve Cross-Connection STS-3c</td>
<td>11-120</td>
</tr>
<tr>
<td>RTRV-CRS-VT1</td>
<td>Retrieve Cross-Connection VT1.5</td>
<td>11-122</td>
</tr>
<tr>
<td>RTRV-EQOPT</td>
<td>Retrieve Equipment</td>
<td>11-125</td>
</tr>
<tr>
<td>RTRV-FEAT</td>
<td>Retrieve Feature</td>
<td>11-129</td>
</tr>
<tr>
<td>RTRV-FECOM</td>
<td>Retrieve Far End Communications</td>
<td>11-130</td>
</tr>
<tr>
<td>RTRV-HSTY</td>
<td>Retrieve History</td>
<td>11-132</td>
</tr>
<tr>
<td>RTRV-LGN</td>
<td>Retrieve Login</td>
<td>11-133</td>
</tr>
<tr>
<td>RTRV-LINK</td>
<td>Retrieve Link</td>
<td>11-136</td>
</tr>
<tr>
<td>RTRV-MAP-NEIGHBOR</td>
<td>Retrieve Map Neighbor</td>
<td>11-138</td>
</tr>
<tr>
<td>RTRV-MAP-NETWORK</td>
<td>Retrieve Map Network</td>
<td>11-143</td>
</tr>
<tr>
<td>RTRV-NE</td>
<td>Retrieve Network Element</td>
<td>11-146</td>
</tr>
<tr>
<td>RTRV-OC1</td>
<td>Retrieve OC-1</td>
<td>11-151</td>
</tr>
<tr>
<td>RTRV-OC3</td>
<td>Retrieve OC-3</td>
<td>11-153</td>
</tr>
<tr>
<td>RTRV-OC12</td>
<td>Retrieve OC-12</td>
<td>11-156</td>
</tr>
<tr>
<td>RTRV-PASSWD</td>
<td>Retrieve Passwords</td>
<td>11-159</td>
</tr>
<tr>
<td>RTRV-PM-LINE</td>
<td>Retrieve Performance Monitoring Line</td>
<td>11-161</td>
</tr>
<tr>
<td>RTRV-PM-SECT</td>
<td>Retrieve Performance Monitoring Section</td>
<td>11-164</td>
</tr>
<tr>
<td>RTRV-PM-STS1</td>
<td>Retrieve Performance Monitoring STS-1</td>
<td>11-167</td>
</tr>
<tr>
<td>RTRV-PM-T1</td>
<td>Retrieve Performance Monitoring T1</td>
<td>11-170</td>
</tr>
<tr>
<td>RTRV-PM-T3</td>
<td>Retrieve Performance Monitoring T3</td>
<td>11-174</td>
</tr>
<tr>
<td>RTRV-PM-TCA</td>
<td>Retrieve Performance Monitoring TCA</td>
<td>11-178</td>
</tr>
<tr>
<td>RTRV-PM-VT1</td>
<td>Retrieve Performance Monitoring VT1.5</td>
<td>11-182</td>
</tr>
<tr>
<td>RTRV-PMTHRES-LINE</td>
<td>Retrieve Performance Monitoring Threshold Line</td>
<td>11-185</td>
</tr>
<tr>
<td>RTRV-PMTHRES-SECT</td>
<td>Retrieve Performance Monitoring Threshold Section</td>
<td>11-187</td>
</tr>
<tr>
<td>RTRV-PMTHRES-STS1</td>
<td>Retrieve Performance Monitoring Threshold STS-1</td>
<td>11-188</td>
</tr>
<tr>
<td>RTRV-PMTHRES-T1</td>
<td>Retrieve Performance Monitoring Threshold T1</td>
<td>11-190</td>
</tr>
<tr>
<td>RTRV-PMTHRES-T3</td>
<td>Retrieve Performance Monitoring Threshold T3</td>
<td>11-194</td>
</tr>
<tr>
<td>RTRV-PMTHRES-VT1</td>
<td>Retrieve Performance Monitoring Threshold VT1.5</td>
<td>11-198</td>
</tr>
<tr>
<td>RTRV-SECU</td>
<td>Retrieve Security</td>
<td>11-200</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTRV-STATE-EQPT</td>
<td>Retrieve State Equipment</td>
<td>11-204</td>
</tr>
<tr>
<td>RTRV-STATE-PATH</td>
<td>Retrieve State Path</td>
<td>11-208</td>
</tr>
<tr>
<td>RTRV-STATE-STS1</td>
<td>Retrieve State STS1</td>
<td>11-211</td>
</tr>
<tr>
<td>RTRV-STATE-VT1</td>
<td>Retrieve State VT1.5</td>
<td>11-214</td>
</tr>
<tr>
<td>RTRV-STS1</td>
<td>Retrieve STS-1</td>
<td>11-217</td>
</tr>
<tr>
<td>RTRV-SYNC</td>
<td>Retrieve Synchronization</td>
<td>11-220</td>
</tr>
<tr>
<td>RTRV-TRACE-STS1</td>
<td>Retrieve Path Trace STS-1</td>
<td>11-226</td>
</tr>
<tr>
<td>RTRV-T1</td>
<td>Retrieve T1</td>
<td>11-229</td>
</tr>
<tr>
<td>RTRV-T3</td>
<td>Retrieve T3</td>
<td>11-232</td>
</tr>
<tr>
<td>RTRV-TL1MSGMAP</td>
<td>Retrieve TL1 Message Map</td>
<td>11-236</td>
</tr>
<tr>
<td>RTRV-ULSDCC-L3</td>
<td>Retrieve Upper Layer Section DCC, Layer 3</td>
<td>11-238</td>
</tr>
<tr>
<td>RTRV-ULSDCC-L4</td>
<td>Retrieve Upper Layer Section DCC, Layer 4</td>
<td>11-241</td>
</tr>
<tr>
<td>RTRV-VT1</td>
<td>Retrieve VT1.5</td>
<td>11-247</td>
</tr>
<tr>
<td>SET-ATTR-ALM</td>
<td>Set Attribute Alarm</td>
<td>11-249</td>
</tr>
<tr>
<td>SET-ATTR-CONT</td>
<td>Set Attribute Control</td>
<td>11-251</td>
</tr>
<tr>
<td>SET-ATTR-ENV</td>
<td>Set Attribute Environment</td>
<td>11-253</td>
</tr>
<tr>
<td>SET-DATE</td>
<td>Set Date</td>
<td>11-255</td>
</tr>
<tr>
<td>SET-FEAT</td>
<td>Set Feature</td>
<td>11-257</td>
</tr>
<tr>
<td>SET-FECOM</td>
<td>Set Far End Communications</td>
<td>11-260</td>
</tr>
<tr>
<td>SET-LGN</td>
<td>Set Login</td>
<td>11-263</td>
</tr>
<tr>
<td>SET-LINK</td>
<td>Set Link</td>
<td>11-272</td>
</tr>
<tr>
<td>SET-NE</td>
<td>Set Network Element</td>
<td>11-273</td>
</tr>
<tr>
<td>SET-OC1</td>
<td>Set OC-1</td>
<td>11-278</td>
</tr>
<tr>
<td>SET-OC3</td>
<td>Set OC-3</td>
<td>11-280</td>
</tr>
<tr>
<td>SET-OC12</td>
<td>Set OC-12</td>
<td>11-284</td>
</tr>
<tr>
<td>SET-PASSWD</td>
<td>Set Password</td>
<td>11-287</td>
</tr>
<tr>
<td>SET-PMTHRES-LINE</td>
<td>Set Performance Monitoring Threshold Line</td>
<td>11-291</td>
</tr>
<tr>
<td>SET-PMTHRES-SECT</td>
<td>Set Performance Monitoring Threshold Section</td>
<td>11-295</td>
</tr>
<tr>
<td>SET-PMTHRES-STS1</td>
<td>Set Performance Monitoring Threshold STS-1</td>
<td>11-296</td>
</tr>
<tr>
<td>SET-PMTHRES-T1</td>
<td>Set Performance Monitoring Threshold T1</td>
<td>11-299</td>
</tr>
<tr>
<td>SET-PMTHRES-T3</td>
<td>Set Performance Monitoring Threshold T3</td>
<td>11-304</td>
</tr>
<tr>
<td>SET-PMTHRES-VT1</td>
<td>Set Performance Monitoring Threshold VT1.5</td>
<td>11-311</td>
</tr>
<tr>
<td>SET-SECU</td>
<td>Set Security</td>
<td>11-313</td>
</tr>
<tr>
<td>SET-STATE-STS1</td>
<td>Set State STS1</td>
<td>11-319</td>
</tr>
<tr>
<td>SET-STATE-T1</td>
<td>Set State T1</td>
<td>11-322</td>
</tr>
<tr>
<td>SET-STATE-T3</td>
<td>Set State T3</td>
<td>11-324</td>
</tr>
<tr>
<td>SET-STATE-VT1</td>
<td>Set State VT1.5</td>
<td>11-326</td>
</tr>
<tr>
<td>SET-STS1</td>
<td>Set STS-1</td>
<td>11-329</td>
</tr>
<tr>
<td>SET-SYNC</td>
<td>Set Synchronization</td>
<td>11-332</td>
</tr>
<tr>
<td>SET-T1</td>
<td>Set T1</td>
<td>11-337</td>
</tr>
<tr>
<td>SET-T3</td>
<td>Set T3</td>
<td>11-342</td>
</tr>
<tr>
<td>SET-TRACE-STS1</td>
<td>Set Path Trace STS-1</td>
<td>11-347</td>
</tr>
<tr>
<td>SET-VT1</td>
<td>Set VT1.5</td>
<td>11-351</td>
</tr>
<tr>
<td>SWITCH-FUNCTION</td>
<td>Switch Function</td>
<td>11-354</td>
</tr>
</tbody>
</table>
Contents

SWITCH-LS	Protection Switch Low Speed	11-356
SWITCH-PATH-STS1	Switch Path STS-1	11-360
SWITCH-PATH-VT1	Switch Path VT1.5	11-364
SWITCH-SYNC	Protection Switch Synchronization	11-367
TEST-ALM	Test Office Alarm	11-371
TEST-LED	Test LED Indicators	11-373
TEST-SYSCTL	Test System Controllers	11-374
TEST-TRMSN-T1	Test Transmission T1	11-376
TEST-TRMSN-T3	Test Transmission T3	11-381
TOGGLE (Ctl-T)	Toggle	11-386
UPD	Update	11-388

Detailed Alarm and History Reports

Introduction	11-393
RTRV-ALM	11-394
RTRV-HSTY	11-415
Overview

This chapter describes the command and report features of the American Standard Code for Information Interchange (ASCII) terminal interface to a DDM-2000 FiberReach Multiplexer. It provides detailed information about each command, as well as system report outputs and explanations.

Reason for Reissue

This chapter has been updated to provide the details of software commands for FiberReach Release 4.0. This release features the 29G-U OC-12 OLIU circuit pack, which provides OC-12 optics on the DDM-2000 FiberReach shelf. FiberReach Release 4.0 offers Target ID Address Resolution Protocol (TARP), which provides for multi-vendor interworking. For additional information on TARP, please refer to the “About This Document” sections.

Command Page Format

This chapter includes DDM-2000 commands that are presented as one- or multiple-page entries in alphabetical order. The name of each command appears at the top of each page.

Each entry is presented in a common format:

- The **NAME** part gives the name of the command and summarizes its function.
- The **INPUT FORMAT** provides the syntax for each command. Each command starts with a command name followed by a colon. Parameters follow the colon. Optional parameters are enclosed in square brackets [].
- The **DESCRIPTION** part provides detailed information about each command.
— The RELATED COMMANDS part identifies commands that affect or are affected by the named command or sets the conditions displayed by a report. Some commands are not affected by any other command and will not have this part included on the command page.

Entries which are to be typed exactly as shown are printed in **bold** type. System responses are printed in **courier** type. Descriptive names entry values are shown in *italic* type.

Input Format

All commands have a common input format:

```
command name[:Address][:parameters]
```

Address identifies a slot, channel, or operations interface within the shelf. In commands which require an address, it must appear immediately after the command name.

Parameters identifies a variable name assigned to some provisionable attribute of the command. The value of the parameter is defined on each command page.

Parameters are separated with commas (,). The parameters may be entered in *any* order, but they must be entered in the *name=value* format.

Brackets ([]) are not part of the command line. Parameters enclosed in brackets are optional. Default values are provided for these parameters.

Any command can be entered on a single line.

DDM-2000 is case sensitive. Commands may be entered in upper- and lowercase letters. Entries other than commands may be case sensitive (for example, passwords). DDM-2000 addresses and logins are sensitive to white space (that is, blanks between characters). For example, the address parameters "m1-all" and "m1- all" may be interpreted differently by DDM-2000. As a general rule, white space should not be included in commands.
Addresses

Table 11-1 specifies the valid addresses for slots, lines, ports, channels, paths, cross-connections, and operations interfaces. Where lists of items appear in braces {}, and one (and only one) of these items may be used to form the address.

Each address is made up of several components that are combined to indicate a specific location on the DDM-2000. The following list shows the potential values for each address component. Refer to this list when reviewing Table 11-1:

- **slot type:** Possible values are: main, m, fn, ls, sysctl, userpanel, and all.
- **group:** Possible values are: m, a, b, c, and all.
 - Note carefully in Table 11-1 when this value is followed by a dash (-) and when it is not.
- **slot within a group (abbreviated as slot):**
 - Possible values are: 1-2, and all.
- **line:** Possible values are: 1, 2, and all.
 - Note carefully in Table 11-1 when all is not allowed.
- **STS-1:** Possible values are: 1-12, and all.
- **VTG:** Possible values are: 1-7, and all.
- **VT1.5:** Possible values are: 1-4, and all.
- **special:** Possible values are: cit, dcc, env, and cont.

- **environmental alarm or control point (abbreviated as alm/cont point):**
 - Possible values are: 1-15, and all.
Table 11-1. DDM-2000 FiberReach Address Table

<table>
<thead>
<tr>
<th>Object</th>
<th>Entity</th>
<th>Address</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire system</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>Main slot</td>
<td>main-{1,2,all}</td>
<td>main-all</td>
<td></td>
</tr>
<tr>
<td>Function unit slot</td>
<td>fn-{1,2,all}</td>
<td>fn-all</td>
<td></td>
</tr>
<tr>
<td>(R3.1 and later)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function unit pair</td>
<td>fn</td>
<td>fn</td>
<td></td>
</tr>
<tr>
<td>(R3.1 and later)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low speed slot</td>
<td>ls-all</td>
<td>ls-all</td>
<td>ls-b-2</td>
</tr>
<tr>
<td></td>
<td>ls-[a,b,c,d]-{1-2,all}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sys. control slot</td>
<td>sysctl</td>
<td>sysctl</td>
<td></td>
</tr>
<tr>
<td>Aux. control slot</td>
<td>auxctl</td>
<td>auxctl</td>
<td></td>
</tr>
<tr>
<td>Low speed protection</td>
<td>lsprot</td>
<td>lsprot</td>
<td></td>
</tr>
<tr>
<td>assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC-1 line (using 26-type</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>OLIUs in Main)</td>
<td>main-{1,2,all}</td>
<td>main-1</td>
<td></td>
</tr>
<tr>
<td>OC-3 Line (using 28-type</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>OLIUs in Main)</td>
<td>main-{1,2,all}</td>
<td>main-1</td>
<td></td>
</tr>
<tr>
<td>OC-12 Line (using 29-type</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>OLIUs in Main, Rel. 4.0</td>
<td>main-{1,2,all}</td>
<td>main-1</td>
<td></td>
</tr>
<tr>
<td>later)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC-3 Line (using 22-type</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>OLIUs in FN slots)</td>
<td>fn-{1,2,all}</td>
<td>fn-1</td>
<td></td>
</tr>
<tr>
<td>Lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS1 port</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{a,b,c,d}-all</td>
<td>b-all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{a,b,c,d}-{1}-{1-4,all}</td>
<td>c-1-all</td>
<td></td>
</tr>
<tr>
<td>Ports</td>
<td></td>
<td>{a,b,c,d}-{2*}-{1-4,all}</td>
<td>c-2-3</td>
</tr>
<tr>
<td>DS3 port (BBG4/BBG4B,</td>
<td>f,all</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>R3.1 and later)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Access DS3 port</td>
<td>f-{1,2,all},all</td>
<td>f-1</td>
<td></td>
</tr>
<tr>
<td>(BBG19, R3.1 and later)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 port</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{a,b,c,d}-all</td>
<td>b-all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{a,b,c,d}-{1}-{1-2,all}</td>
<td>c-1-all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{a,b,c}-{2*}-{1-2,all}</td>
<td>b-2-2</td>
<td></td>
</tr>
</tbody>
</table>

* The value “2” is only used in shelves where low-speed slots are configured as unprotected.

(Table continues on the following page)
Table 11-1. DDM-2000 FiberReach Address Table

<table>
<thead>
<tr>
<th>Object</th>
<th>Entity</th>
<th>Address</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-1 Channel (within OC-1)</td>
<td>m{1,2}</td>
<td>m2-1</td>
<td></td>
</tr>
<tr>
<td>STS-1 Channel (within OC-3, using 28-type OLIUs in Main)</td>
<td>m{1,2}-(1-3,all)</td>
<td>m2-3</td>
<td></td>
</tr>
<tr>
<td>STS-1 Channel (within OC-12, using 29-type OLIUs in Main)</td>
<td>m{1,2}-(1-12,all)</td>
<td>m2-10</td>
<td></td>
</tr>
<tr>
<td>STS-1 Channel (for DS3, R3.1 and later)</td>
<td>f</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>STS-3c Channel (within OC-3, using 28-type OLIUs in Main and 22-type OLIUs in FN, R3.1 and later)</td>
<td>m{1,2}-(1-3,all)</td>
<td>m2-1</td>
<td></td>
</tr>
<tr>
<td>STS-3c Channel (within OC-12, using 29-type OLIUs in Main and 22-type OLIUs in FN, R4.0 and later)</td>
<td>m{1,2}-(1,4,7,10)</td>
<td>m2-4</td>
<td></td>
</tr>
<tr>
<td>VT1.5 Channel (within OC-1)</td>
<td>m{1,2}-(1,all*)-(1-7,all*)-(1-4,all)</td>
<td>m2-1-all m1-1-4-3</td>
<td></td>
</tr>
<tr>
<td>VT1.5 Channel (within OC-3, using 28-type OLIUs in Main, R3.1 and later)</td>
<td>m{1,2}-(1-3,all*)-(1-7, all*)-(1-4,all)</td>
<td>m1-2-all m2-1-4-3</td>
<td></td>
</tr>
<tr>
<td>VT1.5 Channel (within OC-12, using 29-type OLIUs in Main, Release 4.0 and later)</td>
<td>m{1,2}-(1-12,all*)-(1-7,all*)-(1-4,all)</td>
<td>m1-3-all m2-7-4-3</td>
<td></td>
</tr>
<tr>
<td>Main port (only when 28-type OLIUs are in Main)</td>
<td>m-{1-3,all}</td>
<td>m-2</td>
<td></td>
</tr>
<tr>
<td>Main port (only when 29-type OLIUs are in Main)</td>
<td>m-{1-12,all}</td>
<td>m-11</td>
<td></td>
</tr>
<tr>
<td>STS-3c Channels (when 28-type OLIUs are in Main)</td>
<td>m-1</td>
<td>m-1</td>
<td></td>
</tr>
<tr>
<td>STS-3c Channels (when 29-type OLIUs are in Main, R4.0 and later)</td>
<td>m-{1,4,7,10}</td>
<td>m-10</td>
<td></td>
</tr>
<tr>
<td>STS-3c Channels (for 22-type OLIUs in FN, R3.1 and later)</td>
<td>f-1</td>
<td>f-1</td>
<td></td>
</tr>
<tr>
<td>STS-1 channel (when FN equipped with DS3 Circuit pack)</td>
<td>f</td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>

* If all is chosen as any part of an address, no subsequent address fields should be defined.

(Table continues on the following page)
<table>
<thead>
<tr>
<th>Object</th>
<th>Entity</th>
<th>Address</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT1.5 Channels (within OC-1)</td>
<td></td>
<td>all</td>
<td>m-1-all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m-1-all</td>
<td>m-1-4-all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m-1-all</td>
<td>m-1-3-3</td>
</tr>
<tr>
<td>VT1.5 Channel (within OC-3, using 28-type OLIUs in Main)</td>
<td></td>
<td>all</td>
<td>m-1-3-3</td>
</tr>
<tr>
<td>VT1.5 Channel for DS1</td>
<td></td>
<td>all</td>
<td>a-1-all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>a-2-all</td>
</tr>
<tr>
<td>VT1.5 Channel (within OC-12, using 29-type OLIUs in Main, Release 4.0 and later)</td>
<td></td>
<td>all</td>
<td>m-1-3-2</td>
</tr>
<tr>
<td>VT1.5 Channel for T1</td>
<td></td>
<td>all</td>
<td>a-1-all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>b-1-2</td>
</tr>
<tr>
<td>Operation Interfaces</td>
<td>User Panel</td>
<td>userpanel</td>
<td>userpanel</td>
</tr>
<tr>
<td></td>
<td>CIT</td>
<td>cit-1</td>
<td>cit-1</td>
</tr>
<tr>
<td></td>
<td>Section Data Communication Channel</td>
<td>dcc-{m1,m2,all}</td>
<td>dcc-m1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dcc-all (security only)</td>
<td>dcc-all</td>
</tr>
<tr>
<td></td>
<td>Environmental Alarm Input</td>
<td>env-{1-15,all}</td>
<td>env-1</td>
</tr>
<tr>
<td></td>
<td>Environmental Control Input</td>
<td>cont-{1-4,all}</td>
<td>cont-2</td>
</tr>
<tr>
<td>Other</td>
<td>Faceplace Connector on the 28G-U and 29G-U OLIUs</td>
<td>fca-main</td>
<td>fca-main</td>
</tr>
</tbody>
</table>

* If all is chosen as any part of an address, no subsequent address fields should be defined.
The 2000 Product Family includes many SONET products that are capable of interworking with each other. At times, references to other SONET products may appear in DDM-2000 reports. The following list shows standard abbreviations for the various members of the 2000 family.

<table>
<thead>
<tr>
<th>Complete Product Name</th>
<th>Abbreviated Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>unknown*</td>
</tr>
<tr>
<td>DDM-2000 OC-3</td>
<td>DDM-OC3</td>
</tr>
<tr>
<td>DDM-2000 OC-12</td>
<td>DDM-OC12</td>
</tr>
<tr>
<td>DACS IV-2000</td>
<td>DACS-IV</td>
</tr>
<tr>
<td>FT-2000</td>
<td>FT-2000</td>
</tr>
<tr>
<td>DDM-2000 FiberReach</td>
<td>FbrRch</td>
</tr>
<tr>
<td>Foreign</td>
<td>Foreign**</td>
</tr>
</tbody>
</table>

* Indicates the type of product is unknown.
** Indicates that the product is not compatible with other SONET products.

Command Mode and Prompt Mode

There are two entry modes: command mode (no prompts) and prompt mode. In the command mode (the default), the command line and any user responses are terminated by the semicolon (;) or carriage return (<cr>).

The prompt mode is designed for users that are not familiar with DDM-2000. To enter the prompt mode, terminate any line with a carriage return (\ ENTER or \ RETURN key) or question mark (?). Prompts generally appear in the form:

\ Prompt Message [Default value]=

with the default value enclosed in square brackets ([..]). There are two types of default values:

Static default values, which assume the same value each time the command is invoked.

Current default values, which reflect the mode recent value entered into the system. In the case of an address containing the value “all”, the prompt will display the value [CurrentValues]. When “Current Values” is selected, the current setting of that parameter is not changed.

To reenter the command mode from the prompt mode, answer the current prompt, then continue entering input on the same line after typing a comma (,). When the input is completed, terminating the command with a semicolon (;) will return the session to the command mode. If a command is terminated with a semicolon (;),
the system will use default values for all optional parameters for which a value has not been given.

The **help** command provides in-context help during a dialog with DDM-2000. Help is provided automatically when an invalid input is entered and can also be requested anytime by typing a question mark (?).

Special Control Characters

The following characters have special meaning when used with DDM-2000:

- Backspace characters control H (^H), **BACKSPACE** key is used to erase character input.
- At sign (@) is used to erase an entire line of input.
- Question mark (?) is used to get help and to enter prompt mode at any time.
- Comma (,) is used to separate parameters from each other.
- Equal sign (=) is used to separate parameter names from parameter values.
- Control T (^T) is the **toggle** command. See the **toggle** command page for additional details.
- Carriage return (**ENTER** or **RETURN** key) or exclamation point (!) are used to end a line of input.
- Semicolon (;) is used to end a command. The system will use default values for all optional parameters for which a value has not been given.
- CANcel, DELete, and CTRL-x are used to abort a command which has been entered but has not yet started to execute. All commands can be aborted anytime before the “In Progress...” message is printed. Test commands (except **test-sysctl**) can be aborted at any time during execution using these keys. Reports may be aborted at any time using these keys.
- Colon (:): is used to separate the command name, address, and parameters.

Paged Reports

Reports are paged. When the end of the page has been reached, the prompt “more? [yes]=” is displayed if more report text remains. Page length can be set with the **set-link** command
Confirmation Requests

NOTE: Some commands can be service-affecting if their default parameters are ignored.

After all parameters have been entered, a caution message followed by the command name, the selected values of parameters, and the prompt "Execute? (y/n or CANcel/DELete to quit)=" is printed. To execute the command, enter "y" and carriage return. To change the value of any of the parameters, enter "n" and carriage return and you will be reprompted for all parameters. To abort the command, enter CANcel or DELete.

Output Descriptions

The output for most commands is described on the following manual pages. Refer to the “Detailed Alarm and History Reports” part of this section for more complete examples and explanations of the alarm and status report (rtrv alm) and the history report (rtrv hsty).

Alarm Level Prompt

When the system is ready to accept a new command, it prints the system prompt “<”. If there is an active alarm or status condition, the level of the highest level active alarm in the system is printed before the “<”. For example, the system prompt is “MN<” when a minor alarm condition exists in the system.

Security

The option of system security is provided for DDM-2000 systems. Three privileged user logins and a maximum of 100 nonprivileged user logins, consisting of general users, maintenance users, and Reports-Only users, are available. Privileged users may set system security on all data communication channels (DCC) and each craft interface terminal (CIT) interface (using the set secu command) and assign login and password pairs to general users (using the set lgn command). General users may execute commands that are not restricted to privileged users and obtain reports. Maintenance users may only execute commands that access the system, extract reports, and execute maintenance functions. Reports-Only users may only obtain reports and execute several basic commands.

When system security is enabled, all users are then required to enter a valid login and password pair to access the system.
The following commands are always restricted to privileged users only:

- `init-sys` (initialize system)
- `rstr-passwd` (restore password)
- `rtrv-lgn` (retrieve login)
- `rtrv-passwd` (retrieve password)
- `set-fecom` (set far-end communication)
- `set-lgn` (set login)
- `set-secu` (set security)
- `set-feat` (set feature)
- `set-sync` (set synchronization)

When security is enabled on a system, the following commands become restricted to privileged users only:

- `cpy-prog` (copy program)
- `ent-ulsdcc-l3` (enter upper layer section DCC, Layer 3)
- `ent-ulsdcc-l4` (enter upper layer section DCC, Layer 4)
- `ent-tl1msgmap` (enter TL1 message map for Operations Systems)
- `init-pm` (initialize performance monitoring)
- `ins-prog` (install program)
- `reset` (reset system software)
- `set-date` (set date)
- `set-ne` (set network element)

When security is enabled on a system, only the following commands may be executed by Reports-Only users:

- `?` (help)
- `logout` (log out)
- `rlgn` (remote login)
- `set-link` (set link)
- `set-passwd` (set password)
- `T` (toggle)
- all `rtrv` commands except `rtrv-lgn` and `rtrv-passwd`

Refer to the `set-secu` command for more details on system security.
DDM-2000 FiberReach Command Menu

Table 11-2 lists the DDM-2000 FiberReach commands by category and indicates what type of user is able to execute each command.

Table 11-2. DDM-2000 FiberReach Command Menu

<table>
<thead>
<tr>
<th>Command Category</th>
<th>Verb</th>
<th>Modifier</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURATION</td>
<td>rtv-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>alm</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>state-eqpt</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>state-path</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>state-sts1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>state-vt1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eqpt</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>feat</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fecom</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hsty</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sync</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>link</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oc1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oc3</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>attr-alm</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>attr-cont</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>attr-env</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ne</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>map-neighbor</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
</tbody>
</table>
Table 11-2. DDM-2000 FiberReach Command Menu (Contd)

<table>
<thead>
<tr>
<th>Command Category</th>
<th>Verb</th>
<th>Modifier</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURATION</td>
<td>rtrv-</td>
<td>map-network</td>
<td>Privileged, General, Maintenance, Reports only</td>
</tr>
<tr>
<td></td>
<td>crs sts1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crs sts3c</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crs vt1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ulsdcc l3</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ulsdcc l4</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sts1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tl1msgmap</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trace sts1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t3</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vt1</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x25</td>
<td>Privileged, General, Maintenance, Reports only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set-</td>
<td>oc1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oc3</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>date</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>link</td>
<td>Privileged, General, Maintenance, Reports only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>attr alm</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>attr cont</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>attr env</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ne</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>state t1</td>
<td>Privileged, General</td>
</tr>
</tbody>
</table>
Table 11-2. DDM-2000 FiberReach Command Menu (Contd)

<table>
<thead>
<tr>
<th>Command Category</th>
<th>Verb</th>
<th>Modifier</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>set-</td>
<td>state-sts1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>state-vt1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fecom</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>feat</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sts1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vt1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td>upd</td>
<td></td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td>init-</td>
<td>sys</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td>switch-</td>
<td>ls</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>path-vt1</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td>opr-</td>
<td></td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpbk-t1</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpbk-t3</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td>rls-</td>
<td></td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpbk-t1</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpbk-t3</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td>test-</td>
<td>trmsn-t1</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>led</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alm</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sysctl</td>
<td>Privileged, General, Mainenance</td>
</tr>
<tr>
<td></td>
<td>ins-</td>
<td></td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prog</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td>ent-</td>
<td>crs-vt1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crs-sts1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crs-sts3c</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>usldcc-i3</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>usldcc-i4</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tl1msgmap</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>osacmap</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td>dit-</td>
<td>crs-vt1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crs-sts1</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crs-sts3c</td>
<td>Privileged, General</td>
</tr>
</tbody>
</table>
Table 11-2. DDM-2000 FiberReach Command Menu (Contd)

<table>
<thead>
<tr>
<th>Command Category</th>
<th>Verb</th>
<th>Modifier</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cnvt-</td>
<td>crs</td>
<td>Privileged, General</td>
</tr>
<tr>
<td></td>
<td>cpy-</td>
<td>prog</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td>rtrv-</td>
<td>alm</td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td>FAULT</td>
<td>state-eqpt</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>state-path</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>eqpt</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>hsty</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>opr-</td>
<td>aco</td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>reset</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>rtrv-</td>
<td>pm-tca</td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pm-sect</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pm-line</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pm-t1</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pm-t3</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pm-sts1</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pm-vt1</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pmthres-sect</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pmthres-line</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
<tr>
<td></td>
<td>pmthres-sts1</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only</td>
</tr>
</tbody>
</table>
Table 11-2. DDM-2000 FiberReach Command Menu (Contd)

<table>
<thead>
<tr>
<th>Command Category</th>
<th>Verb</th>
<th>Modifier</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFORMANCE (Continued)</td>
<td>rtrv-</td>
<td>pmthres-vt1</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-t1</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-t3</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alm</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>state-eqpt</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>state-path</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eqpt</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hsty</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td>set-</td>
<td>pmthres-sect</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-line</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-sts1</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-vt1</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-t1</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmthres-t3</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td>SECURITY</td>
<td>init-</td>
<td>pm</td>
<td>Privileged only if Security enabled. Privileged, General if Security disabled.</td>
</tr>
<tr>
<td></td>
<td>rtrv-</td>
<td>Ig</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sec</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>passwd</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td>set-</td>
<td>Ig</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sec</td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>passwd</td>
<td>Privileged, General, Mainenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td>rstr-</td>
<td>passwd</td>
<td>Privileged</td>
</tr>
</tbody>
</table>
Table 11-2. DDM-2000 FiberReach Command Menu (Contd)

<table>
<thead>
<tr>
<th>Command Category</th>
<th>Verb</th>
<th>Modifier</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISCELLANEOUS</td>
<td>apply</td>
<td></td>
<td>Privileged</td>
</tr>
<tr>
<td></td>
<td>help</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td>logout</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td>rlogin</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only.</td>
</tr>
<tr>
<td></td>
<td>toggle</td>
<td></td>
<td>Privileged, General, Maintenance, Reports-Only.</td>
</tr>
</tbody>
</table>

Starting a CIT Session

Procedures in the “Operation and Maintenance” section of this manual describe how to “Connect a CIT and Establish a Session” with the DDM-2000.

CPro-2000

CPro-2000 is a software package from Lucent Technologies to help users of DDM-2000 Multiplexer systems set up and use an advanced, yet simple, craft operations environment on a personal computer using Microsoft* Windows*3.1 in the enhanced mode. CPro-2000 provides the user with the normal CIT access to DDM-2000 as well as a mouse-driven graphical user interface (GUI). The user may issue commands to DDM-2000 by using the mouse to select items from a menu and/or objects from the graphics display.

Commands

The following pages provide detailed information about the user interface commands supported by DDM-2000. Detailed report information is located at the end of this chapter.

* Registered trademark of Microsoft Corporation.
NAME

apply: Locally Overwrite the Executing Software Generic with a New Software Generic

INPUT FORMAT

`apply[[date=date][[time=time][.action=action]]];`

DESCRIPTION

⚠️ CAUTION:

Normal alarming and protection switching are disabled for the DDM-2000 system while this command is used to copy the Network Element’s dormant program.

This command can be used on the FiberReach product starting with Release 4.0.

This command can be issued by the user to initiate the installation of a dormant copy of a software generic stored in the network element’s flash memory, thereby replacing the currently executing software generic.

Once the *apply* command completes, the software in flash memory is left undisturbed, so that it can be copied to other like network elements.

⚠️ CAUTION:

Do not attempt any command that causes shelf reset while an apply command is in progress.

≌ NOTE:

This command is available to privileged users only for all CIT or DCC ports on the system.

Users can schedule a date and time for this command to be executed. If no date and time is supplied, the command will execute 15 minutes after it is received. Authorized users can remotely apply the dormant software generic to be the executing one by first remotely logging into the target network element and then initiating this command.
The input parameters are:

date Date is entered as six digits YYMMDD, where YY represents the last two digits of the year, MM is the month, and DD is the day. Default is the current system day. If no date parameter is entered, and action has the value of install or is NULL, and the entered value for time has already passed the 24-hour interval in the current system’s date, date will default to the next system’s day (current system’s day + 1). As an example, if the current time is 23:46 but the provisioned time is set for 21:00, the execution of the command will occur at 21:00 the next system’s day.

time The time parameter is supplied in order to identify the time at which the software is to be installed on the network element. If no time parameter is entered, and the action parameter has the value of install or is NULL, then the software will be scheduled for installation 15 minutes after receiving the apply command. The fifteen-minute interval is designed to give the user a chance to cancel the command and/or to issue similar command(s) to other network element(s) in the subnetwork.

This parameter is entered as six digits HHMM[SS]. HH expresses the hour on a 24-hour clock basis and the allowed values range from 00 to 23, with leading zeros required. MM expresses the minutes and the allowed values range from 00 to 59 with leading zeros required. SS expresses the seconds and the allowed values are NULL or a value ranging from 00 to 59 with leading zeros required.

action The action parameter enables the execution of this command to be either confirmed, or canceled. The allowed values are:

install This action causes the installation of software at the time and date supplied in the time and date parameters. The installation will take place in 15 minutes if time and date are not provisioned.

cancel Cancel the scheduled installation.

NULL No value. When no value is entered, the default value is install.

If a software installation was already scheduled, and a cancel value was received, the software installation is canceled.

⚠️ CAUTION:
If this command is scheduled for execution (action=install), the set-date command should never be issued before program installation is invoked and completed. In this case, the user is advised to wait until program installation is completed, and the system is reset.
NOTE:
If this command is issued with \texttt{(action=install)} while there is an outstanding \texttt{apply} command, the newly issued command will replace the old request with the newly entered values of \texttt{date} and \texttt{time}.

If this command is entered by a non-privileged user, the following denial message is displayed:

```
PICC
/* Privileged, Illegal Command Code. */
```

If the command syntax is correct, the following message will be displayed:

```
/* Testing for NE program copy ... */
```

If an \texttt{apply} command is issued to schedule (install or NULL) a software installation but \texttt{time} is entered with invalid syntax, the user will be reprompted to enter a valid \texttt{time} value.

If an \texttt{apply} command is issued to schedule (install or NULL) a software installation but \texttt{date} is entered with invalid syntax, the user will be reprompted to enter a valid \texttt{date} value.

If the time specified is unknown to the local system, the following denial message will be displayed:

```
IDNV
/* Input Data Not Valid */
/* Unknown time specified. */
```
If the date specified is unknown to the local system, the following denial message will be displayed:

IDNV
/* Input Data Not Valid */
/* Unknown date specified. */

If this command is issued and the dormant copy of software generic is either missing (does not reside in the flash memory) or is determined to have been corrupted, the following denial message is displayed:

SROF
/* Status, Requested Operation Failed */
/* Dormant file corrupted or missing. */

If an otherwise valid command with action equal to cancel is initiated, but with no outstanding apply command, the request will be denied and the following message displayed:

SROF
/* Status, Requested Operation Failed */
/* No apply command to cancel. */
After testing for NE program apply, the following confirmation message will be displayed:

```c
/* Caution! Execution of this command will erase the current
genetic n.n.n at Target Identifier and replace it with
genetic m.m.m. If this fails prior to completion,
the control system will likely become inoperable
until another install program attempt is successful.
This command will terminate any active CIT and TIL sessions.
This command will take time to install the new program. Check
the Software Release Description for the time estimates. */

You have selected the apply command with these parameters:

ProgramType = nesw
date = date
time = time
action = action

Execute? (y/n or CANcel/DELete to quit) =
```
When this command is used to install a new NE release of program that is significantly different from the program currently running on the system, the following confirmation message will be displayed after testing for program apply:

/* Caution! Execution of this command will erase the current generic n.n.n at Target Identifier and replace it with generic m.m.m. If this fails prior to completion, the control system will likely become inoperable until another install program attempt is successful. This command will terminate any active CIT and TLI sessions. Check the Software Release Description for the time estimates. */

/* Caution! Major changes exist between these two generics such that they may not be compatible. Check the TOPS and program compatibility information for additional information or actions needed. */

You have selected the apply command with these parameters:

date = date
time = time
action = action

Execute? (y/n or CANcel/DELete to quit) =

See "Install New Generic Program" in the TOP section of this manual for complete instructions before using this command. Use the rtrv-map-network command to obtain the exact TID for the target system. The current program version may also be obtained from the initial screen when logged into the system with a craft interface terminal (CIT).
When the user gives a positive response to the confirmation message, the following message is displayed:

| In progress; Program installation will start on <date>, at <time>. System will Reset when program installation is complete. |

After displaying the above message, the NE program apply will begin at the provisioned date and time.

All software apply commands that fail or succeed will be reported in the History log (rtrv-hsty report).

If an apply for NE generic is issued with action equal to install, and then an action equal to cancel is issued, the following confirmation message will be displayed:

/* Caution! Execution of this command will cancel the scheduled software installation at Target Identifier.*/

You have selected the apply command with these parameters:

ProgramType = nesw
action = cancel

Execute? (y/n or CANcel/DELete to quit) =

> NOTE:
When the value cancel is entered for Action, the user will not be prompted for the (date and time) parameters. As soon as the scheduled program installation is canceled as a result of this option, the Date and Time are initialized to zero (0) values.
When the user gives a positive response to the confirmation message, the following message is displayed:

```
Program installation is being canceled.
```

Once the program installation is canceled, the following message is displayed:

```
COMPLD
```

RELATED COMMANDS

- cpy-prog
- ins-prog
- rtrv-ne
NAME

 cpy-prog: Copy Program

INPUT FORMAT

 cpy-prog: TID;

DESCRIPTION

This command is used to copy a software program from one DDM-2000 network element to another. The software to be copied may be a non-executing, dormant copy of a software generic. When executing this command (to copy the Network Element’s software generic), the local network element will internally check whether the currently executing software generic or a dormant software generic should be copied into the memory of the target network element; if the dormant software generic is copied into the memory of the target network element, then it would reside as a dormant copy in the target network element also. If the executing software generic is copied into the target network element, then it would override the target network element’s executing generic. The apply command is used later to overwrite the currently executing generic with a copy of the generic included in the dormant software.

NOTE:

If security is enabled on any CIT or DCC port on a system, then this command is available to privileged users only for all CIT or DCC ports on the system. If security is not enabled on some systems in the network, users on unsecured systems will be able to copy either executing or dormant program onto systems with security enabled.

The input parameter is:

 TID The Target Identifier (system name) of the system into which the program will be loaded. TIDs are case insensitive.

If the command syntax is correct, the following message will be displayed:

/* Testing for program copy ... */
If the system name specified is the name of the local system instead of the remote system, the following error message will be displayed and the user will be asked to reenter the TID:

```c
/* Invalid Target Identifier (TID) */
/* Enter the name (TID) of the far end system. */
TID=
```

If the system name specified is unknown to the local system, the following error message will be displayed: and the user will be asked to reenter the TID.

```c
/* Unknown Target Identifier (TID) */
/* Enter the name (TID) of the far end system. */
TID=
```

If the system name specified currently has a duplicate TID alarm condition, the following denial message will be displayed:

```c
EIITA
/* Input, Invalid Target identifier (TID) */
/* Duplicate Target Identifier. */
```

If a user attempts to copy program from one product type to a different product type (for example, DDM-2000 OC-12 program into an FT-2000 system), the following denial message will be displayed:

```c
EIITA
/* Input, Invalid Target identifier (TID) */
/* <TID> is a different product type;
   Incompatible software. */
```

The above message is displayed before any association is established between the local and target network elements (NEs).
If a user attempts to copy an NE program to a target network element that has either an apply command in progress or apply is already scheduled, the following denial message is displayed:

```
SSTP
/* Status, execution STopped */
/* Apply command is either IP or scheduled in Target NE. */
```

If a user attempts to copy an NE program to a target network element that has a cpy-prog command in progress, the following denial message is displayed:

```
SSTP
/* Status, execution STopped */
/* A cpy-prog command is already IP in Target NE. */
```

If the remote system has a communication failure or a "P" is displayed in the SYSCTL 7-segment LED display, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Communication failure. */
```
For all FiberReach releases, after testing for program copy, the following confirmation message will be displayed:

```c
/* Caution! Execution of this command will erase the current generic n.n.n at Target Identifier and replace it with generic m.m.m. If this fails prior to completion, the control system will likely become inoperable until another install program attempt is successful. This command will terminate any other active CIT sessions. This command will take time to install the new program. Check the Software Release Description for the time estimates. */

Execute? (y/n or CANcel/DElete to quit) =
```

If a Network Element (NE) receives this command, but is unable to determine a TID-NSAP translation for the entered TID (TID could not be found), this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established.
TID entered is not found. */
```

If the remote NE’s TID does not match the entered TID (only the NSAP matched in this case), this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established. Inconsistent TID.
NSAP=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
```
If an NE receives this command and is able to determine a TID-NSAP translation, but the NSAP is unreachable (TID is kept the same, but NSAP must have been changed), this command will be denied and the following message displayed:

```
SNVS
    /* Status, Not in Valid State */
    /* Remote session cannot be established.
        Association setup failure.
        NSAP=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
```

In the above message, NSAP represents the one found in the TID-NSAP translation.

When this command is used to copy a new NE release of program (into the dormant memory of remote system) that is significantly different from the program currently running on the system, the following confirmation message will be displayed after testing for program copy:

```
/* Caution! Execution of this command will overwrite the current dormant generic (if any) at Target Identifier. */
/* Caution! Major changes exist between these two generics such that they may not be compatible. Check the TOPS and program compatibility information for additional information or actions needed. */

Execute? (y/n or CANcel/DELeete to quit) =
```
See "Install New Generic Program" in the TOP section of this manual for complete instructions before using this command. Use the `rtrv-map-network` command to obtain the exact TID for the target system. The current program version may also be obtained from the initial screen when logged into the system with a craft interface terminal (CIT).

When the user gives a positive response to the confirmation message, the program copy begins and the following message is displayed:

In progress ..

The number of dots and how fast they are displayed depend on the size of the program to be copied, number of DCC spans between the local and remote systems, and DCC traffic.

If the program copy fails, the following failure message will be displayed:

```c
SSTP
/* Status, execution STOped */
/* Program copy failed to Target Identifier
   Before attempting another copy, check the User’s Manual
to review a list of possible problems and their solutions. */
```

When the program has successfully been copied to the remote system, the following message is displayed:

```c
/* NE Generic program m.m.m is installed. */
```

If this command experiences memory space problems at the target network element (that is, the software will not fit in the space allocated in flash memory reserved for it), the currently executing software generic will be overwritten.

RELATED COMMANDS

- `rtrv-map-network`
- `rtrv-ne`
- `ins-prog`
NAME
dlt-crs-sts1: Delete Cross-Connection STS-1

INPUT FORMAT
dlt-crs-sts1:Address1,Address2[:cct=CrsType];

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service.

This command deletes STS-1 cross-connections. This command is available beginning with FiberReach Release 3.1 and later, when the FiberReach shelf is equipped with 28-type OC-3 OLIUs in both Main unit slots.

The input parameters are:
Address1 and Address2

These are the addresses of the two STS-1 channels, or one STS-1 channel and one DS3 port (in Release 3.1 and later) where the existing STS-1 cross-connection is to be deleted. In ring applications, pass-through connections are deleted by using the same address for Address1 and Address2.

If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later releases), valid addresses are: m-{1-3}

If the shelf is equipped with 29-type OLIUs in Main unit slots (in FiberReach Release 4.0 and later), the valid addresses are:
m-{1-12}

For the equipage of DS3 circuit packs in the Function unit slots (FiberReach Release 3.1 and later), the valid Function unit address is: f

cct
CrsType specifies the cross-connection type. The valid values are:
twoway Two-way (default) cross-connections apply to terminating, hubbing, add/drop, and pass-through configurations. This is the default value.

⚠️ NOTE:
The cct parameter is an optional parameter if the cross-connection type to be deleted is twoway. The cct parameter is required for other CrsType values.
Address1, Address2, and CrsType must match an existing STS-1 cross-connection or execution of the command will complete with the following message:

```c
SNVS
/* Status, Not in Valid State */
/* The specified STS-1 cross-connection does not exist. */
```

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```c
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

After entering this command, the following confirmation message is displayed:

```c
/* Caution! Execution of this command may affect service. 
You have selected the dlt-crs-sts1 command with these parameters:

Address1 = address
Address2 = address
CrsType = value */
```

Execute? (y/n or CANcel/DElete to quit) =

RELATED COMMANDS
ent-crs-sts1
rtrv-crs-sts1
NAME
dlt-crs-sts3c: Delete Cross-Connection STS-3c

INPUT FORMAT
dlt-crs-sts3c:Address1,Address2;cct=CrsType;

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service.

This command deletes STS-3c cross-connections. STS-3c signals are identified by the first STS-1 address in the STS-3c signal. The following chart shows the mapping for STS-3c addresses to the internal STS-1 signal structure:

<table>
<thead>
<tr>
<th>STS-3c Mapping</th>
<th>Interface</th>
<th>Address</th>
<th>Internal STS-1 #s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m-1</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m-4</td>
<td>4,5,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m-7</td>
<td>7,8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m-10</td>
<td>10,11,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FN</td>
<td>f-1</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>

Starting with FiberReach Release 3.1, this command can be used ONLY if the shelf is equipped with 28-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function unit slots. The ONLY valid cross-connect type is **twoway** (add-drop).

Starting with FiberReach Release 4.0, this command can be used also if the shelf is equipped with 29-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function Unit slots. The valid cross-connect type is **Twoway** (indicating pass-through and add-drop for 0X1).
The input parameters are:

Address1 and Address2

These are the addresses of the two STS-3c channels that are to be deleted. Valid connections are listed below. Where items appear in braces { }, any one (and only one) of these items may be used to form the address.

m-1 to f-1 Allowed if the FiberReach shelf is equipped with 28-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function unit slots.

m-{1,4,7,10} to m-{1,4,7,10} Allowed if the FiberReach shelf is equipped with 29-type OLIU circuit packs in its Main unit slots.

m-{1,4,7,10} to f-1 Allowed if the FiberReach shelf is equipped with 29-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function unit slots.

cct

CrsType specifies whether the cross-connection is two-way The valid values are:

twoway Two-way applies to add-drop and pass through cross-connections. Twoway is the default value.

The cct parameter is an optional parameter if the cross-connection type to be deleted is twoway.

Address1, Address2, and CrsType must match an existing STS-3c cross-connection, or execution of the command will be denied with the following message:

SNVS
/* Status, Not in Valid State */
/* The specified STS-3c cross-connection does not exist. */
If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

After entering this command, the following confirmation message is displayed:

```
/* Caution! Execution of this command may affect service. You have selected the dlt-crs-sts3c command with these parameters:

Address1 = address
Address2 = address
CrsType = value */

Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

- ent-crs-sts3c
- rtrv-crs-sts3c
NAME
dlt-crs-vt1: Delete Cross-Connection VT1.5

INPUT FORMAT

dlt-crs-vt1:Address1,Address2[\(\text{cct} = \text{CrsType}\)];

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service.

This command deletes VT1.5 signal cross-connections within a DDM-2000 FiberReach system.

The input parameters are:
Address1 and Address2

These are the addresses of the two VT1.5 channels, or one VT1.5 channel and one DS1 or T1 port, where existing cross-connections are to be deleted. In ring applications, pass-through connections are deleted by using the same address for Address1 and Address2.

If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:
m-1-{1-7}-{1-4, all}, m-1-all

If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later) valid VT1.5 addresses are:
m-1-{1-3, all}-{1-7}-{1-4, all}

If the shelf is equipped with 29-type OLIUs in Main unit slots (FiberReach Release 4.0 and later), valid OC-12 Main unit Addresses are:
m-{1-12}-{1-7, all}-{1-4, all}

Valid port addresses in 1X1 protected low-speed configurations:
\{a, b, c, d\}-{1-4, all}

Valid port addresses in 1X7 protected low-speed configurations:
\{a, b, c\}-{1, 2}-{1-4, all},
d-{1-4, all}

The T1EXT (BBF6) circuit pack supports two T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid. Specifying all selects ports 1 and 2 only.
CrsType specifies cross-connection type. The valid values are:

- **cct**: The default value.
- **twoway**: Two-way cross-connections apply to add/drop and pass-through cross-connections only. Two-way is the default value.
- **locked**: Locked cross-connections support nonpath-switched DS1 or T1 drop applications.

If the address includes the value `all`, the value for `cct` applies to every cross-connection within the range of the addresses.

The `Address1`, `Address2`, and `CrsType` parameters must match an existing VT1.5 cross-connection or execution of the command will complete with the following message:

```c
/* The specified VT1.5 cross-connection does not exist and cannot be deleted. */
```

If the cross-connection request address includes the value `all` and the addresses do not have a one-to-one relationship, this command will be denied with the following denial message:

```c
SNVS
/* Status, Not in Valid State */
/* Invalid cross-connection request. */
```
If this command is entered with several addresses or an address of all is used and one or more of these addresses cannot be processed, the command will complete but the following message will be displayed:

/* The following cross-connections not processed.
Cross-connect exists with different address:
Address1 Address2
Address1 Address2
 . .
 . . */

When CrsType is used and the command is entered with one or more addresses that cannot be processed or an address of all that cannot be processed, the command will complete but the following message will be displayed:

/* The following cross-connections were not processed
because the address or cross-connection type did not match.
Address1 Address2 CrsType
Address1 Address2 CrsType
 . . . */

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
After entering this command, the following confirmation message is displayed:

`/* Caution! Execution of this command may affect service.
 You have selected the dlt-crs-vt1 command with these parameters:

 Address1 = address
 Address2 = address
 CrsType = value */

 Execute? (y/n or CANcel/DELete to quit) =`

If this command is entered with all as part of the address, the following confirmation message is displayed:

`/* Caution! Execution of this command may affect service.
 Multiple cross-connections may be affected.
 You have selected the dlt-crs-vt1 command with these parameters:

 Address1 = address
 Address2 = address
 CrsType = value */

 Execute? (y/n or CANcel/DELete to quit) =`

RELATED COMMANDS

ent-crs-vt1

rtrv-crs-vt1
NAME
dlt-ulsdcc-l4: Delete Upper Layer Section DCC

INPUT FORMAT

dlt-ulsdcc-l4:[L4ajsys=AJSystemId][L4tdctid=TDCTID];

DESCRIPTION

NOTE:

This command page describes the functionality of the dlt-ulsdcc-l4 command in FiberReach Release 3.0 and all later TARP releases.

This command is used to delete provisionable parameters of Layers 3 through 7 of the open systems interconnection (OSI) 7-layer protocol stack. This stack refers to the OSI reference model which is a logical structure for network operations. This model defines a standard communication protocol between network elements as specified by the International Standards Organization (ISO).

This command is used to delete a row of data in buffers which hold user-settable parameters in Layer 4 of the OSI stack. These buffers are the TARP Manually Adjacent NE buffer and the TARP Data Cache (TDC).

NOTE:

If security is enabled, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

The input parameters are:

L4ajsys

This parameter specifies the NSAP System Identifier field of the TARP adjacent NE to be deleted from the TARP Manual Adjacency list of local NE. This is a 6 byte (12 hex digit) field of the TARP adjacent NE. Since the System ID is unique for each NE, the System ID is sufficient to identify a specific Manual Adjacency.

The format of this parameter is **L4ajsys=AJSystemId**, where **AJSystemId** is the 6 byte (12-digit hex) System ID field of the NSAP address of the Adjacent NE in the list.

This parameter deletes a single Manual Adjacent NE. Multiple Manual Adjacent NEs are deleted using multiple occurrences of the dlt-ulsdcc-l4 command.
The parameter **L4tdctid** is used to specify an entry in the TARP Data Cache (TDC) to delete.

Specifying this parameter causes the deletion of a single row of data in the TDC. Multiple rows of data are deleted using multiple occurrences of this command.

The TDC stores three parameters for each entry; the NSAP, TID and the address type. The address type is not user provisionable and is set to its default value (‘FE’ hex) in the TDC. Specifying the TID field of the NSAP is sufficient to identify the complete TDC entry.

L4tdctid This parameter specifies the TID of the Network Element for which the row of data is to be deleted from the TDC.

While entering **L4ajsyst**, if an incorrect number of digits is entered for a specific parameter, the following message is issued and the user is reprompted:

```
/* Invalid data entry
   Enter a <num> digit hexadecimal number. */
```

The `<num>` specifies the number of digits required.

If an invalid **L4TDCTID** value is entered (wrong syntax), the following message is displayed and the user is reprompted:

```
/* Invalid data entry
   Invalid L4TDCTID value entered. */
```
After entering this command, the following confirmation message is displayed:

/* Caution! Network Element access is affected by this command.
 You have selected the dlt-ulsdcc-l4 command with these parameters:
 L4aj sys = AJSystemId
 L4tdctid = TDCTID */
 Execute? (y/n or CANcel/DELete to quit) =

If no entries in the TDC match the Target Identifier (TID) specified in the L4tdctid, then no action is taken and the following denial message is displayed:

IDNV
/* Input, Data Not Valid */
/* Invalid L4tdctid value was entered. */

If no entries in the Manual Adjacency table match the SYS ID specified in the L4ajsys, then no action is taken and the following denial message is displayed:

IDNV
/* Input, Data Not Valid */
/* Invalid L4ajsys value was entered. */

RELATED COMMANDS

ent-ulsdcc-l4
ent-ulsdcc-l3
rtrv-ulsdcc-l4
NAME

ent-crs-sts1: Enter Cross-Connection STS-1

INPUT FORMAT

ent-crs-sts1:Address1,Address2[:cct=CrsType];

DESCRIPTION

This command sets bidirectional STS-1 cross-connections between Main and function unit slots and is available with FiberReach 3.1 and later releases, when equipped with the 28-type OLIU circuit packs in Main slots.

Also starting with FiberReach Release 3.1, the function unit slots can be equipped with DS3 circuit packs, supporting two-way (add/drop) cross-connection types.

Starting with FiberReach Release 4.0, this command can be used also when equipped with 26 or 29-type OLIU circuit packs in Main slots and DS3 circuit packs in the FN slots.

The input parameters are:

Address1 and Address2

These are the addresses of the two STS-1 channels or one STS-1 channel and one DS3 port that are to be cross-connected. For STS-1 ring pass-through traffic, Address1 and Address2 must be the same time slot. Valid addresses are listed on the following pages.

⇒ NOTE:

All cross-connections are bidirectional.

cct

CrsType specifies the cross-connection type. The valid values are:

twoway

Twoway cross-connections apply to terminating, hubbing, add/drop, pass-through, Twoway is the default value.

If the addresses indicate a pass-through cross-connection, the CrsType is not prompted for but is automatically set to twoway. The confirmation message indicates that a CrsType of twoway has been selected for the user. If a CrsType other than twoway is entered on the command line when the addresses indicate a pass-through cross-connection, the request is rejected.

In DDM-2000 FiberReach releases, the cross-connect mode is always manual (crs=manual). Valid manual cross-connections are listed below. Where items appear in braces { }, any one (and only one) of these items may be used to form the address.
Ring Release Cross-Connect Addresses:

\[m-\{1-3\} \text{ to } m-\{1-3\} \]
Allowed when Main slots are equipped with 28G-U OLIUs.

\[m-\{1-3\} \text{ to } f \]
Starting with Release 3.1, allowed when the addressed function group is equipped with DS3 (BBG4/BBG4B/BBG19) circuit packs.

\[m-\{1-12\} \text{ to } f \]
Starting with FiberReach Release 4.0, Allowed when Main slots are equipped with 29-type OLIU circuit packs, and function group FN is equipped with DS3 (BBG4, BBG4B, and BBG19).

\[m-1 \text{ to } f \]
Starting with FiberReach Release 4.0, Allowed when Main slots are equipped with 26-type OLIU circuit packs, and function group FN is equipped with DS3 (BBG4, BBG4B, and BBG19).

\[m-\{1,12\} \text{ to } m-\{1,12\} \]
Starting with FiberReach Release 4.0, Allowed to cross-connect pass-through signals when Main slots are equipped with 29-type OLIU circuit packs. Address1 and Address2 must be the identical time slot.

If this command is invoked using addresses where active cross-connections already exist, the following denial message will be displayed:

```
SACC
/* Status, Already Cross-Connected */
/* Establishing new cross-connections requires that existing cross-connections associated with these addresses be deleted. */
```

If the cross-connection request includes an invalid circuit pack type, invalid port address, or specifies a cross-connection not supported by the system, the following denial message will be displayed:

```
SNVS
/* Status, Not in Valid State */
/* Invalid cross-connection request. */
```
If the addresses indicate a pass-through cross-connection and the CrsType is not **twoway**, the request is denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Invalid cross-connection request */
```

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

After entering this command, the following confirmation message is displayed.

```
/* Caution! Network cross-connections are affected by this command. You have selected the ent-crs-sts1 command with these parameters:

Address1 = address
Address2 = address
CrsType = value

Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS
- dlt-crs-sts1
- retrv-crs-sts1
NAME

ent-crs-sts3c: Enter Cross-Connection STS-3c

INPUT FORMAT

ent-crs-sts3c:Address1,Address2[:cct=CrsType];

DESCRIPTION

This command sets bidirectional STS-3c cross-connections between main-1 and main-2 (using the 29-type OLIU circuit packs, starting with Release 4.0), or between Main slots and function unit slots (starting with FiberReach Release 3.1). The Function unit slots must be equipped with 22-type OLIU circuit packs and the Main unit slots must be equipped with the 28 or 29-type OLIU circuit packs.

NOTE:

This command can be used in a FiberReach shelf ONLY if the shelf is equipped with 28-type or 29-type OLIU circuit packs in its Main units. The only allowed cross-connect types are Twoway.

When using the 28-type OLIU in Main, the only Twoway cross-connect allowed is Add-Drop (for 0X1).

When using the 29-type OLIU in Main, the Twoway cross-connects allowed are Pass-Through and Add-Drop (for 0X1).

All other cross-connect types are not valid at this time.
The STS-3c signals are identified (addressed) by using the first STS-1 address contained in each STS-3c signal. The following chart shows the mapping of STS-3c addresses to the internal STS-1 structure:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Address</th>
<th>Internal STS-1 #s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>m-1</td>
<td>1,2,3</td>
</tr>
<tr>
<td></td>
<td>m-4</td>
<td>4,5,6 (29-type in Main)</td>
</tr>
<tr>
<td></td>
<td>m-7</td>
<td>7,8,9 (29-type in Main)</td>
</tr>
<tr>
<td></td>
<td>m-10</td>
<td>10,11,12 (29-type in Main)</td>
</tr>
<tr>
<td>FN</td>
<td>f-1</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>

The input parameters are:

Address1 and **Address2**

These are the addresses of the two STS-3c channels that are to be cross-connected. Valid manual cross-connections are listed below.

m-1 to f-1

Allowed to cross-connect Two-way (add-drop) signals if the FiberReach shelf is equipped with 28-type OLIUs in its Main unit slots, and 22-type OLIUs in its Function unit slots.

m-{1,4,7,10} to m-{1,4,7,10}

Allowed to cross-connect Two-way (pass-through) signals if the FiberReach shelf is equipped with 29-type OLIUs in its Main unit slots. Address1 and Address2 must be the identical time-slot.

m-{1,4,7,10} to f-1

Allowed to cross-connect Two-way (add-drop) signals if the FiberReach shelf is equipped with 29-type OLIUs in its Main unit slots, and 22-type OLIUs in its Function unit slots.

cct

CrsType specifies the cross-connection type. The only valid value is:

twoway

Two-way cross-connections apply to add-drop (for 0X1 applications, using the 28G-U or 29G-U OLIU in Main and 22-type OLIU in Function) and pass through cross-connections, using the 29-type OLIUs in Main. Two-way is the default value.
If this command is invoked using addresses where active STS-3c cross-connections or active STS-1 cross-connections within the STS-3c address already exist, the following denial message will be displayed:

```
SACC
/* Status, Already Cross-Connected */
/* Establishing new cross-connections requires that existing cross-connections associated with these addresses be deleted. */
```

If the cross-connection request includes an invalid circuit pack type, invalid address, or specifies a cross-connection not supported by the system, the following denial message will be displayed:

```
SVNS
/* Status, Not in Valid State */
/* Invalid cross-connection request. */
```

The following denial message will be displayed if both MAIN slots are not equipped:

```
SVNS
/* Status, Not in Valid State */
/* Both main slots must be equipped */
```
If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

After entering this command, the following confirmation message is displayed.

```
/* Caution!  Network cross-connections are affected by this command.
You have selected the ent-crs-sts3c command with these parameters:

Address1 = address
Address2 = address
CrsType = value */

Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

- set-feat
- rtrv-feat
- set-oc3
- rtrv-oc3
- dlt-crs-sts3c
- rtrv-crs-sts3c
- rtrv-crs-sts1
NAME

ent-crs-vt1: Enter Cross-Connection VT1.5

INPUT FORMAT

\texttt{ent-crs-vt1:Address1,Address2[cct=CrsType][,ring=RingId];}

DESCRIPTION

This command sets bidirectional VT1.5 cross-connections among Main and low-speed slots and may be applied to systems with various arrangements.

All cross-connections require the presence of OLIU circuit packs in the Main slots. The 26-type, 28-type (available in Release 3.1 and later) or 29-type (Release 4.0) OLIU circuit packs must be used to establish VT1.5 cross-connections.

硇 NOTE:

Any of the 12 STS-1s on the 29G-U OC-12 interface can be selected for VT cross-connection to Function Units or for Pass-Through cross-connections.

Figure 11-1 (on the following page) shows a DDM-2000 FiberReach shelf and highlights a function unit with 28 VT1.5 signals.
Note: Each STS-1 signal contains 28 VT1.5 signals.

Figure 11-1. DDM-2000 FiberReach Shelf with VT1.5 Signals

As highlighted in Figure 11-1, each OC-1 signal contains 1 STS-1 signal. The STS-1 signal contains 7 VT Groups of signals. Each VT Group contains 4 VT1.5 signals, and each VT1.5 signal corresponds to an individual DS1 or T1 port.
The input parameters are:

Address1 and **Address2**

These are the addresses of the two VT1.5 channels, or one VT1.5 channel and one DS1 or T1 port that are to be cross-connected. For VT1.5 ring pass-through traffic, **Address1** and **Address2** must be the same. Valid addresses are listed on the following pages.

NOTE:

All cross-connections are bidirectional.

cct

CrsType specifies the cross-connection type. The valid values are:

- **twoway** Two-way applies to add/drop and pass-through configurations. **Twoway** is the default value for **cct**.

- **locked** Locked cross-connections support nonpath-switched DS1 drop applications.

If the addresses indicate a pass-through cross-connection, the CrsType is not prompted for but is automatically set to **twoway**. The confirmation message indicates that a CrsType of **twoway** has been selected for the user. If a CrsType other than **twoway** is entered on the command line when the addresses indicate a pass-through cross-connection, the request is rejected. If the value **all** is used in the address, the **cct** applies to every cross-connection within the range of the addresses.

ring

RingId is the ring identification for locked cross-connections. The valid values are:

- **m1** Ring **m1** is the ring that is received on the Main-1 OLIU and is transmitted on the Main-2 OLIU.

- **m2** Ring **m2** is the ring that is received on the Main-2 OLIU and is transmitted on the Main-1 OLIU.

If the CrsType is **locked**, the RingId is always prompted for and is displayed in confirmation messages. If the CrsType is not **locked**, the RingId is not prompted for and it is not displayed in confirmation messages. If the CrsType is not **locked** and RingId is entered anyway, the value entered for RingId is ignored.
The following is a list of valid cross-connections. To successfully perform any cross-connection, the user must equip the Main slots with 26, 28-type (Starting with Release 3.1) or 29-type (Starting with Release 4.0) OLIU circuit packs. Where items appear in braces {}, any one (and only one) of these items may be used to form the address. The value all may be used as part of an address (allowed as indicated below) to cross-connect entire groups of signals. When all is used, no subsequent address fields should be defined.

Ring Release Cross-Connection Addresses:

\[
m-1-(1-7)-(1-4, all) \rightarrow \{a, b, c, d\}-1-(1-4, all)
\]

Allowed when equipped with 26-type OLIUs in Main Unit slots, and the addressed Low Speed (LS) port is equipped with a DS1 circuit pack in a 1x1 protected LS configuration.

\[
m-(1-3)-(1-7)-(1-4, all) \rightarrow \{a, b, c, d\}-1-(1-4, all)
\]

Allowed when equipped with 28-type OLIUs in Main slots (in FiberReach 2.2, 3.1 and later), and the addressed low-speed (LS) port is equipped with a DS1 circuit pack in a 1x1 protected LS configuration.

\[
m-(1-12)-(1-7)-(1-4, all) \rightarrow \{a, b, c, d\}-1-(1-4, all)
\]

Allowed when equipped with 29-type OLIUs in Main slots (FiberReach Release 4.0) and the addressed low-speed (LS) port is equipped with a DS1 circuit pack in a 1x1 protected LS configuration.

\[
m-(1-12)-(1-7, all)-(1-4, all) \rightarrow \{a, b, c\}-(1-2)-(1-4, all) \text{ or }
\]

\[
m-(1-12)-(1-7, all)-(1-4, all) \rightarrow d-1-(1-4, all)
\]

Allowed when equipped with 29-type OLIUs in Main unit slots, and the addressed low-speed (LS) port is equipped with a DS1 circuit pack in a 1x7 protected LS configuration.

\[
m-1-(1-7, all)-(1-4, all) \rightarrow \{a, b, c\}-(1-2)-(1-4, all) \text{ or }
\]

\[
m-1-(1-7, all)-(1-4, all) \rightarrow d-1-(1-4, all)
\]

Allowed when equipped with 26-type OLIUs in Main unit slots, and the addressed low-speed (LS) port is equipped with a DS1 circuit pack in a 1x7 protected LS configuration.

\[
m-(1-3)-(1-7, all)-(1-4, all) \rightarrow \{a, b, c\}-(1-2)-(1-4, all) \text{ or }
\]

\[
m-(1-3)-(1-7, all)-(1-4, all) \rightarrow d-1-(1-4, all)
\]

When equipped with 28-type OLIUs in Main slots (in FiberReach 3.1 and later), and the addressed low-speed (LS) port is equipped with a DS1 circuit pack in a 1x7 protected LS configuration.

\[
m-1-(1-7, all)-(1-4, all) \rightarrow m-1-(1-7, all)-(1-4, all)
\]

Allowed when the shelf is equipped with 26-type OLIUs in Main unit slots, (allows pass-through connections). The two addresses must be the same.
m-(1-3)-(1-7, all)-(1-4, all) to m-(1-3)-(1-7, all)-(1-4, all)

Allows pass-through cross-connections when equipped with 28-type OLIUs in Main slots (in FiberReach 3.1 and later).
The two addresses must be the same.

m-(1-12)-(1-7, all)-(1-4, all) to m-(1-12)-(1-7, all)-(1-4, all)

Allows pass-through cross-connections when equipped with 29-type OLIUs in Main slots (in FiberReach 4.0 and later)
The T1EXT (BBF6) circuit pack supports two T1 ports.
When addressing ports on a BBF6, only port numbers 1 and 2 are valid. Specifying all selects ports 1 and 2 only.

If the cross-connection request includes an invalid circuit pack type, invalid port address, or specifies a cross-connection not supported by the system, the following denial message will be displayed:

```
SNVS
/* Status, Not in Valid State */
/* Invalid cross-connection request. */
```

If the cross-connection request includes all in the addresses and the addresses do not have a one-to-one relationship, the following denial message will be displayed:

```
SNVS
/* Status, Not in Valid State */
/* Invalid cross-connection request. */
```

In ring systems, if this command is issued and one of the Main slots is not equipped, the following denial message will be displayed:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped. */
```
When setting up a path-protected hairpin local drop cross-connection, both slots of the function unit to which the OC-1 ring is terminated must be equipped with 27G2-U or 26G2-U OLIU circuit packs. Otherwise the following denial message will be displayed:

```c
SNVS
/* Status, Not in Valid State */
/* Both FN slots terminating the OC-1 ring must be equipped with 27G2-U or 26G2-U OLIU circuit packs. */
```

If this command is invoked using addresses where active cross-connections already exist, the following denial message will be displayed:

```c
SACC
/* Status, Already Cross-Connected */
/* Establishing new cross-connections requires that existing cross-connections associated with these addresses must be deleted first. */
```

If this command is entered with several addresses (for example, when an address of `all` is used) and one or more of these addresses are already cross-connected, the command will complete but send the following message indicating the requested cross-connections that could not be completed because of previously existing cross-connections:

```c
/* The following cross-connections not processed. Cross-connect exists with different address: Address1  Address2 Address1  Address2 .   .   */
```
When the command is entered with several addresses (for example, when an address of **all** is used), but one or more of these addresses is already cross-connected, the following response message will be displayed:

```c
/* The following cross-connections were not processed
   because the address or cross-connection type did not match
   Address1  Address2  CrsType
   Address1  Address2  CrsType
   .          .         .
*/
```

If the addresses indicate a pass-through cross-connection and the CrsType is not **two-way**, the request is denied with the following message:

```c
SNVS
/* Status, Not in Valid State */
/* Invalid cross-connection request */
```

After entering this command, the following confirmation message is displayed. If CrsType is not **locked**, RingId is not displayed in the following confirmation message:

```c
/* Caution! Network Cross-connections are affected by this command.
   You have selected the ent-crs-vtl command with these parameters:

   Address1 = address
   Address2 = address
   CrsType = value
   RingId = value */

Execute? (y/n or CANcel/DELETE to quit) =
```
If this command is entered with the parameter *all* as part of the address, the following confirmation message is displayed. If CrsType is not *locked*, RingId is not displayed in the confirmation message.

/* Caution! Execution of this command may affect service.
 Multiple cross-connections may be affected.
 You have selected the ent-crs-vt1 command with these parameters: */

```
Address1 = address
Address2 = address
CrsType = value
RingId = value */

Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

- dlt-crs-vt1
- rtrv-crs-vt1
NAME

ent-t1msgmap: Enter T1 Message Map for Operation Systems

INPUT FORMAT

ent-t1msgmap:acid=ACID,msgtype=MessageType,action=Action;

DESCRIPTION

NOTE:
If security is enabled on any CIT or DCC port on a shelf, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

This command maps the DDM-2000 T1 message types to the operations systems (OS) for this network element in the subnetwork. This command provides a filter for T1 messages by specifying T1 message classes (known as MessageTypes) and allowing the user to determine which message classes should be received at each type of OS (specified in the ACID parameter).

There are default message classes that exist for the ACIDs supported by DDM-2000. The following table shows the default mappings supported by DDM-2000. Most users should be able to use these mappings as defined. However, users may change the default mapping by using this command. Users may check the current provisioning by using the rtrv-t1msgmap command.

The following table displays the default mappings:

```
/* DDM-2000 T1 Autonomous Message Map
---------------------------------------------------------------------
   ACID        ALM ENV CON DB EVT PM SW
---------------------------------------------------------------------
t11Maintenance | x  x  x  x  x  x
|            x    x
| t11Test     | x  x  x  x  x  x
| t11MemoryAdministration | x  x  x  x
| t11PeerComm  | x  x  x  x  x  x
| t11Other1    | x  x  x  x  x  x
| t11Other2    | x  x  x  x  x  x
---------------------------------------------------------------------
*/
```

Each message type can be assigned to more than one ACID. However, if more than one assignment is made, a 9600 or higher baud x.25 link is recommended.
The input parameters are:

ACID

Application Context ID (ACID) is a string of up to 23 alphanumeric characters, which is the OS function. The valid ACID values are:

- **tl1Maintenance**

 (This identifies the maintenance OS type).

- **tl1MemoryAdministration**

 (This identifies the memory-administration OS type).

- **tl1Test**

 (This identifies the testing OS type).

- **tl1PeerComm**

 (This identifies the OS type for peer TL1 communications. This ACID is also used for incoming X.25 SVC DTE calling addresses that do not match any of the user-provisioned X.25 SVC DTE calling addresses).

- **tl1Other1**

 (This identifies the RIDES OS type).

- **tl1Other2**

 (This identifies an OS type for future use).

msgtype

MessageType is one of the supported classes of TL1 messages that the system generates. These message types are *not* sent to the OS unless they are enabled and associated with an ACID. The supported message types are:

- **ALM**

 To report the occurrence of an event that requires immediate attention by the craft at the OS. Report is sent via the REPT ALM message.

- **ENV**

 To report the occurrence of an environmental alarm to the OS. Report is sent via the REPT ALM ENV message.

- **CON**

 To report the active status conditions at the network element. Report is sent via the REPT COND message.

- **DB**

 To report database changes that have occurred as a result of line termination and cross-connection provisioning commands and changes due to external events such as circuit pack insertion or removal. Report is sent via the REPT DBCHG message.

- **EVT**

 To report events that do not require alarmed notifications or to report a status change of the network element. Report is sent via the REPT EVT message.

- **PM**

 To report performance monitoring data from the network element. Report is sent via the REPT PM message.

- **SW**

 To report equipment protection switches at the network element. Report is sent via the REPT SW message.
action Action is either **enabled** or **disabled** and associates the MessageType to the OS.

When this command is entered, the following confirmation message will be displayed:

```c
/* Caution! Operations Systems Autonomous message mapping is
 affected by this command.

You have selected the ent-t11msgmap command with these parameters:

    ACID = x
    MessageType = x
    Action = x          */

Execute? (y/n or CANcel/DELeete to quit) =
```

RELATED COMMANDS

rtrv-t11msgmap
NAME

ent-ulsdcc-l3: Enter Upper Layer Section DCC - Layer 3

INPUT FORMAT

```
ent-ulsdcc-l3[L3org=OrganizationId][,L3res=Reserved][,L3rd=RoutingDomain][,L3area=RoutingArea]
```

DESCRIPTION

NOTE:

This command page describes the functionality of the **ent-ulsdcc-l3** command in FiberReach Release 3.0 and all later TARP releases.

CAUTION:

Errors in provisioning this command to change the NSAP address of the target Network Element (NE) could result in silent failures. Command parameters should only be changed by users who intend and are authorized to provision the SONET subnetwork and partition DCC communications.

This command provisions parameters of Layers 3 of the open systems interconnection (OSI) 7-layer protocol stack. This stack refers to the OSI reference model which is a logical structure for network operations. This model defines a standard communication protocol between network elements as specified by the International Standards Organization (ISO).

If this command is used to change the value of at least one of the fields of Layer 3 NSAP address, it will cause the NE to reset. This action will erase all of the performance monitoring data and the history file. If possible, the NE will reinitialize the date and time. Otherwise, the date and time will assume default values.

This command is used to provision the user-settable fields in Layers 3 of the OSI stack. Layer 3 parameters include user-settable fields of the network service access point (NSAP) address. The NSAP address is a 20-byte (40 hex digit) address required by OSI to provide unique identification within the OSI network. Some of the fields within the NSAP are pre-defined and some others are user-settable. Each DDM-2000 is programmed with a unique NSAP address at the factory.

All Layer 3 parameters that can be provisioned using this command, and that are needed for the operation of the NE, have original values. Hence, it is not necessary to provision these parameters for the NE to operate properly in a network.
NOTE:
If security is enabled, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

The structure of the NSAP is shown in the following display. The field names are shown on the first row, and the size (in bytes) of each field is listed on the second row.

<table>
<thead>
<tr>
<th>NSAP Field:</th>
<th>AFI</th>
<th>IDI</th>
<th>IDI PAD</th>
<th>DFI</th>
<th>Org. ID</th>
<th>RES</th>
<th>RD</th>
<th>Area</th>
<th>Sys. Id.</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Default Value: (hex)</td>
<td>39</td>
<td>840</td>
<td>F</td>
<td>80</td>
<td>000000</td>
<td>0000</td>
<td>0000</td>
<td>none</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

The AFI, IDI and DFI (DSP Format Identifier) fields are not user provisionable. They are always set to "39" hex, "840" hex, "F" hex and "80" hex respectively to indicate that the ISO DCC syntax shall be used.

The Organization ID, Reserved (RES), Routing Domain (RD) and Area fields are user provisionable when setting the NSAP of the target NE.

The Organization ID field is a three byte field that identifies the Network Service Provider and is assigned by the ANSI. The Reserved field is currently not used and has a default value of hex "0000". The Routing Domain and Area fields, each of which are 2 bytes (4 hex digits), area is used in applications where there are multiple Level-1 areas to identify the different areas.

Each NE is programmed with a unique System Identifier at the factory. This six byte (12 hex digit) field of the NSAP guarantees that the NSAP for each NE is unique.

The Select (SEL) field is currently not user provisionable and is normally set to a default value of "0". Its purpose is to differentiate between multiple NSAP addresses associated with the same End system. Its value is not fixed but is set in a PDU according to its usage. It is set to "af" hex when TARP is run over CLNP. It has a value of "1d" hex when TP4 is run over CLNP. it may be set to "00" hex for other uses. When retrieved and displayed, it will always be shown as "00" hex.
For additional information on provisioning, refer to 824-102-144, 2000 Product Family Operation Interworking Guide for TARP Releases.

The input parameters are:

L3org Organization Id is a 6-digit hexadecimal field used to provision into the NSAP address the allocated company code assigned by the ANSI*-administered USA Registration Authority for OSI Organization Names. The original value for this parameter is 000000.

L3res Reserved is a 4-digit hexadecimal field that currently has not been assigned a specific purpose by the SONET standards. Users may populate this field to further uniquely identify the NSAP address. The original value for this parameter is 0000.

L3rd This field identifies a unique routing domain within an administrative domain.

The format of this parameter is \(L3rd=RoutingDomain \), where \(RoutingDomain \) is the 2 byte (4-digit hex) NSAP Routing Domain field of the local NE. The original value for this parameter is 0000.

L3area This field identifies the area within the routing domain to which the NSAP address belongs.

The format of this parameter is \(L3area=RoutingArea \), where \(RoutingArea \) is the 2 byte (4-digit hex) NSAP Area field of the local NE. The original value for this parameter is 0000.

If an incorrect number of digits is entered for a specific NSAP parameter, the following message is issued and the user is reprompted:

```c
/* Invalid data entry
   Enter a <num> digit hexadecimal number */
```

The `<num>` specifies the number of digits required.

* Registered trademark of the American National Standards Institute, Inc.
After entering this command the following confirmation message is displayed:

/* Caution! Network Element access is affected by this command.

Caution! When executed, this command will cause the NE to restart the program. This action will erase all of the performance monitoring data and the history file. If possible, it will reinitialize the date and time with the far end via the DCC. Otherwise, the date and time will assume default values.

You have selected the ent-ulsdcc-l3 command with these parameters:
L3org = OrganizationId
L3res = Reserved
L3rd = RoutingDomain
L3area = RoutingArea

Execute? (y/n or CANcel/DELete to quit) =

♫ NOTE:
This command executes immediately upon entering it; however the changes may not be reflected in the rtrv-map-neighbor report for up to 20 minutes after this command is executed.

If the user enters the same parameter values as currently defined for the "L3" parameters, the system does not reset.

RELATED COMMANDS

dlt-ulsdcc-l4
ent-ulsdcc-l4
rtrv-ulsdcc-l3
rtrv-ulsdcc-l4
NAME

et-ulsdcc-l4: Enter Upper Layer Section DCC - Layer 4

INPUT FORMAT

```plaintext
ent-ulsdcc-l4:L4tlif=LifeTime][L4ajs=AJSystemId
[L4ajorg=AJOrganizationId][L4ajres=AJReserved
[L4ajrd=AJRoutingDomain][L4ajarea=AJRoutingArea]]
[L4t1tm=TimerT1][L4t2tm=TimerT2][L4t3tm=TimerT3
[L4t4tm=TimerT4][L4lftm=LDBFlushTimer]
[L4etdc=L4etdc][L4tdcsys=L4tdcSystemId][L4tdctid=L4tdctid]
[L4tdcorg=L4tdcOrganizationId][L4tdcres=L4tdcReserved
[L4tdcrd=L4tdcRoutingDomain][L4tdcarea=L4tdcRoutingArea]];
```

DESCRIPTION

NOTE:
This command page describes the functionality of the `ent-ulsdcc-l4` command in FiberReach Release 3.0 and all later TARP releases.

CAUTION:

Errors in provisioning this command to change the NSAP address of the target Network Element (NE) could result in silent failures. Command parameters should only be changed by users who intend and are authorized to provision the SONET subnetwork and partition DCC communications.

This command provisions parameters of Layers 4 of the open systems interconnection (OSI) 7-layer protocol stack. This stack refers to the OSI reference model which is a logical structure for network operations. This model defines a standard communication protocol between network elements as specified by the International Standards Organization (ISO).

This command is used to provision the user-settable fields in Layer 4 of the OSI stack. The NSAP address is a 20-byte address required by OSI to provide unique identification within the OSI network. Some of the fields within the NSAP are pre-defined and some others are user-settable. Each DDM-2000 is programmed with a unique NSAP address at the factory.

User-settable Layer 4 parameters are used to enter TARP Manual Adjacencies. Manually specifying a NE to be logically adjacent to local NE, for TARP propagation purposes requires the specification of the adjacent NEs NSAP address. The NSAP, which is 20 bytes long (40 hex digit), is composed of separate fields, most of which have default values. Thus, to simplify the entry of the NSAP address, the NSAP is entered via a number of separate TARP Manual Adjacency NSAP parameters; those parameters are covered in a later section of this command page.
Multiple TARP Manual Adjacent NE values are entered using multiple occurrences of this command.

All Layer 4 parameters that can be provisioned using this command, and that are needed for the operation of the NE, have original values. Hence, it is not necessary to provision these parameters for the NE to operate properly in a network.

NOTE 1:
A maximum of two Manual Adjacencies can be initiated from a Network Element.

NOTE 2:
If security is enabled, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

The structure of the NSAP is shown in the following display. The field names are shown on the first row, and the size (in bytes) of each field is listed on the second row.

NSAP Structure

<table>
<thead>
<tr>
<th>NSAP Field:</th>
<th>AFI</th>
<th>IDI</th>
<th>IDI PAD</th>
<th>DFI</th>
<th>Org. ID</th>
<th>RES</th>
<th>RD</th>
<th>Area</th>
<th>Sys. Id.</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Default Value: (hex)</td>
<td>39</td>
<td>840</td>
<td>F</td>
<td>80</td>
<td>000000</td>
<td>0000</td>
<td>0000</td>
<td>none</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

The AFI, IDI and DSI (DSP Format Identifier) fields are not user provisionable. They are always set to "39" hex, "840" hex, "F" hex and "80" hex respectively to indicate that the ISO DCC syntax shall be used.

The Organization ID, Reserved (RES), Routing Domain (RD) and Area fields are user provisionable when entering a TARP Manual Adjacency NSAP and when entering an NSAP into the TARP Data Cache (TDC).

The Organization ID field is a three byte field that identifies the Network Service Provider and is assigned by the ANSI. The Reserved field is currently not used and has a default value of "0000" hex. The Routing Domain and Area fields, each of which are 2 bytes (4 hex digits), area used in applications where there are multiple Level-1 areas to identify the different areas.

Each NE is programmed with a unique System Identifier at the factory. This six byte (12 hex digit) field of the NSAP guarantees that the NSAP for each NE is unique.
The Select (SEL) field is currently not user provisionable and is normally set to a default value of "0". Its purpose is to differentiate between multiple NSAP addresses associated with the same End system. Its value is not fixed but is set in a PDU according to its usage. It is set to "af" hex when TARP is run over CLNP. It has a value of "1d" hex when TP4 is run over CLNP. It may be set to "00" hex for other uses. When retrieved and displayed, it will always be shown as "00" hex.

For additional information on provisioning, refer to 824-102-144 2000 Product Family Operation Interworking Guide for TARP Releases.

The user-settable input parameters are:

L4tlif
This parameter sets the TARP lifetime parameter in TARP PDUs originated by the local NE. The TARP lifetime specifies the maximum number of hops allowed for a TARP PDU. When this number of hops is exceeded, the TARP PDU will not be forwarded. This parameter may have a value in the range from 1 to 65535. An error message will be returned if a value of 0 is entered. The default value for this parameter is 100 in decimal.

L4ajss
This parameter is used to provision the NSAP System Identifier field of the TARP adjacent NE. This is a 6 byte (12 hex digit) field of the TARP adjacent NE. No default value is assumed for this parameter.

> **NOTE:**
The NSAP System Id field, **L4ajs**, which is unique for each NE, is the only parameter that is required to enter a manual adjacency.

If this parameter is specified, then any of the other user settable NSAP field parameters that are not specified and NSAP fields that are not settable by the user (IDP, DFI and SEL fields) are set to their default values in the TARP Manual Adjacency list. These default values shall be the equivalent NSAP fields of the local NE. If no value is specified for **L4ajs** parameter, the user will not be prompted for the rest of the **L4aj** parameters.

L4ajorg
This parameter is used to provision the NSAP Organization Id field of the TARP adjacent NE. This is a 3 byte (6-digit hex) field of the TARP adjacent NE. The default value for this parameter is the value of the NSAP Organization Id field of the local NE.

L4ajres
This parameter is used to provision the NSAP Reserved field of the TARP adjacent NE. This is a 2 byte (4-digit hex) field of the TARP adjacent NE. The default value for this parameter is the value of the NSAP Reserved field of the local NE.

L4ajrd
This parameter is used to provision the NSAP Routing Domain field of the TARP adjacent NE. This is a 2 byte (4-digit hex) field of the TARP adjacent NE. The default value for this parameter is the value
of the NSAP Routing Domain field of the local NE.

L4ajarea This parameter is used to provision the NSAP Area field of the TARP adjacent NE. This is a 2 byte (4-digit hex) field of the TARP adjacent NE. The default value for this parameter is the value of the NSAP Area field of the local NE.

L4t1tm This parameter is used to provision the TARP Timer T1. T1 is the maximum time waiting for response to TARP Type 1 request PDU (search level 1 routing area). This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 15 seconds.

L4t2tm This parameter is used to provision the TARP Timer T2. T2 is the maximum time waiting for response to TARP Type 2 request PDU (search outside of level 1 area). This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 25 seconds.

L4t3tm This parameter is used to provision the TARP Timer T3. T3 is the maximum time waiting for response to Address resolution request (type 5, for example, requesting the TID when the NSAP address is known). This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 40 seconds.

L4t4tm This parameter is used to provision the TARP Timer T4. T4 starts when T2 expires. It is used for error recovery. This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 20 seconds.

L4lftm This parameter is used to provision the TARP Loop Detection Buffer Flush Timer. It sets the time period for flushing the TARP Loop Detection Buffer. This parameter may have a value in the range from 1 to 1440 minutes. Its default value is 5 minutes.

L4etdc This parameter is used to Enable or Disable the TARP Data Cache. Possible values are either *enable* or *disable*. The default value is *enable*.

The following set of parameters are used to enter data manually into the TARP Data Cache. An entry in a TARP Data Cache consists of three parameters: The NSAP address, the Target Identifier (TID) and the address type of an NE. The NSAP, which is 20 bytes long (40 hex digit), is composed of separate fields, most of which have default value. To simplify the entry of the NSAP address, the NSAP is entered via a number of separate TDC NSAP parameters as follows:

L4tdcsys This parameter is used to provision the NSAP System Identifier field of the NE to be manually entered into the TARP Data Cache. If this parameter is specified, then **L4tdctid** must also be specified for the entry to be made in the TARP Data Cache.
This is a 6 byte (12 hex digit) field of the NE to be manually entered into the TARP Data Cache. There is no default value for this parameter.

NOTE:
The NSAP System ID field, \texttt{L4tdcsys}, which is unique for each NE, is the only parameter that is required to enter a TARP data cache entry.

If this parameter is specified, then any of the other user settable NSAP field parameters that are not specified and NSAP fields that are not settable by the user (IDP, DFI and SEL fields) are set to their default values in creating the NSAP portion of the TARP Data Cache entry. Those default values will be the equivalent NSAP fields of the local NE.

If no value is specified for \texttt{L4tdcsys} parameter, the user will not be prompted for the rest of the \texttt{L4tdc} parameters.

\texttt{L4tdctid} This parameter is used to provision the Target Identifier (TID) portion of TARP Data Cache entry for manually entering data into the TARP Data Cache (TDC). It indicates the TID of the NE associated with the TDC NSAP address parameters that are specified. This parameter has a maximum of 20 characters and it has no default value.

If \texttt{L4tdctid} is specified, then \texttt{L4tdcsys} must have also been specified for the entry to be made in TARP Data Cache.

Along with the TDC NSAP, this parameter is required to enter a set of data into the TDC. Both the NSAP parameters and \texttt{L4tdctid} need to be specified for the transaction to be complete. This will enter a single row of data into the TDC. Multiple rows of data are entered using multiple occurrences of \texttt{ent-ultsdcc-l4}.

NOTE:
If the set of specified NSAP and TID does not already exist in the TDC, then the data is added to the TDC. If the NSAP-TID pair already exists in the TDC, then no action is taken.

\texttt{L4tdcorg} This parameter is used to provision the NSAP’s Organization Id field of the NE that is to be manually entered into the TDC. It specifies the allocated Network
Services Provider Code assigned by the ANSI-administered USA Registration Authority for OSI Organization Names. The default value for this parameter is the NSAP’s Organization ID field of local NE.

L4tdcres This parameter is used to provision the NSAP Reserved field of the NE to be manually entered into the TDC. This is a two byte (4-digit hex) NSAP Reserved field of the NE that is to be manually entered into the TDC. The default value for this parameter is the NSAP’s Reserved field of local NE.

L4tdcrd This parameter is used to provision the NSAP Routing Domain field of the NE to be manually entered into the TDC. This is a 2 byte (4-digit hex) NSAP Routing Domain field of the NE to be manually entered into the TDC. The default value for this parameter is the NSAP’s Routing Domain field of local NE.

L4tdcarea This parameter is used to provision the NSAP Area field of the NE to be manually entered into the TDC. It identifies the Area within the Routing Domain to which the NSAP address belongs. This is a 2 byte (4-digit hex) NSAP Area field of the NE to be manually entered into the TDC. The default value for this parameter is the NSAP’s Area field of local NE.

If an incorrect number of digits is entered for a specific NSAP parameter, the following message is issued and the user is reprompted:

```c
/* Invalid data entry
   Enter a <num> digit hexadecimal number */
```

The `<num>` specifies the number of digits required.
If an invalid \texttt{L4tif} value is entered (that is, a value equal to or less than 0, or a value greater than 65535), the following message is displayed and the user is reprompted:

```c
/* Invalid data entry
   Invalid L4tif value entered. */
```

If an invalid \texttt{L4t1tm}, \texttt{L4t2tm}, \texttt{L4t3tm}, \texttt{L4t4tm} or \texttt{L4lftm} value is entered (for example, a value equal to or less than 0), the following message is displayed and the user is reprompted:

```c
/* Invalid data entry. */
```

If an invalid \texttt{L4TDCTID} value, or no \texttt{L4TDCTID} value is entered, the following message is displayed and the user is reprompted:

```c
/* Invalid data entry
   Invalid L4TDCTID value entered. */
```
After entering this command the following confirmation message is displayed:

/* You have selected the ent-ulsdcc-l4 command with these parameters:

L4t1lf = LifeTime
L4ajsys = AJSystemId
L4ajorg = AJOrganizationId
L4ajres = AJReserved
L4ajrd = AJRoutingDomain
L4ajarea = AJRoutingArea
L4t1tm = TimerT1
L4t2tm = TimerT2
L4t3tm = TimerT3
L4t4tm = TimerT4
L41ftm = LDBFlushTimer
L4etdc = L4etdc
L4tdcsys = L4tdcSystemId
L4tdctid = L4tdctid
L4tdcorg = L4tdcOrganizationId
L4tdcres = L4tdcReserved
L4tdcrd = L4tdcRoutingDomain
L4tdarea = L4tdcRoutingArea

Execute? (y/n or CANcel/DELete to quit) =

If the user changes the value of any "L4" parameter or enters the same parameter values as currently defined for the "L3" parameters, the system does not reset.

RELATED COMMANDS

ent-ulsdcc-l3
rtrv-ulsdcc-l3
rtr-vulsdcc-l4
dlt-ulsdcc-l4
NAME

help: Provide In-context Help

INPUT FORMAT

?

DESCRIPTION

Help (?) provides help within a craft dialog on the CIT. Help is provided automatically when an invalid input is entered and can also be requested at any time by typing "?". The "?" displays a help message and then displays another prompt.

The help message is either a description of format of the required entry or a menu of choices.
NAME

init.pm: Initialize Performance Monitoring (PM)

INPUT FORMAT

\texttt{init.pm: reg=Register;}

DESCRIPTION

This command initializes all current day and/or all current quarter-hour performance-monitoring storage registers. Registers for previous day and previous quarter-hours are not affected.

⇒ NOTE:

If security is enabled on any CIT or DCC port on a shelf, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

The input parameter is:

\texttt{reg} Register is the class of registers to be initialized and may be one of the following:

\begin{itemize}
 \item \texttt{day} Day registers
 \item \texttt{qh} Quarter-hour registers
 \item \texttt{all} Day and quarter-hour registers
\end{itemize}

RELATED COMMANDS

\texttt{rtrv.pm-line}
\texttt{rtrv.pm-sect}
\texttt{rtrv.pm-sts1}
\texttt{rtrv.pm-tca}
NAME

init-sys: Initialize System

INPUT FORMAT

init-sys:Address;

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service. The command init-sys:all should NOT be used on an in-service system. This command should only be used at the end of installation before system turnup.

This command initializes provisionable parameters to their default values. The time and date parameters are reset from the far end.

⚠️ NOTE:
After entering the init-sys command, the system will show transient DCC failures that are recorded in the Alarm and History reports. This is a normal, expected system response.

The command init-sys:all should be used only at the end of installation before system turnup. The command init-sys:sysctl should only be used after a SYSCTL is replaced. To clear a system problem, the reset command should be used, since it resets the system software without changing the provisioned parameters except for the page parameter in set-link, which is reset to default value in this case.

⚠️ NOTE:
This command is available to privileged users only.

The input parameter is:

Address Address determines whether just system controller parameters are initialized or whether all parameters on the entire system are initialized. Address may have the following values:

sysctl The address sysctl can be used after a system controller is replaced on an in-service system. It is the equivalent of pressing the UPD/INIT button within 10 seconds of the processor start-up sequence (while the CR LED on the user panel is flashing). This command restores the following list of parameters to their default values:
NOTE:
Parameters can be provisioned using the following commands listed below the parameters.

Alarm delays
 set-attr-alm

NSAP

Starting with FiberReach Release 3.0 and later TARP releases, the following additional parameters will be affected as well:
L4ajorg, L4ajres, L4ajrd, L4ajaarea, L4ajsyst
L3lv2is
L4ttif
L4ttmtm, L4tt2tm, L4tt3tm, L4tt4tm, L4ttftm
L4etdcl
ent-ulsdcc-l3
ent-ulsdcc-l4

Security
 set-lgn
 set-passwd
 set-secu

CIT link configuration
 set-link

Protection Switching
(inhibit, forced, lockout, manual)
 switch-ls
 switch-sync

Performance monitoring thresholds
 set-pmthres-sect
 set-pmthres-line
 set-pmthres-sts1
 set-pmthres-t1
 set-pmthres-vt1

Environmental alarm names and alarm levels
 set-atrr-env

Environmental control names
 set-atrr-cont

Far-end communications enabled/disabled
 set-fecom

Idle value, Alarm Group
 set-ne
In FiberReach Release 3.0 and later TARP releases, the Alarm Group parameter will not be part of the
\texttt{set-ne} provisioning parameters, and therefore will not be affected by this command.

\textbf{all} The address \texttt{all} is used only at the end of an installation before turning over the system. This ensures that \texttt{all} parameters in the system have the proper default values before any system-specific provisioning is done.

\textbf{CAUTION:}
\textit{The address \texttt{all} should NOT be used on an in-service system.}

\textbf{NOTE:}
The \texttt{init-sys:all} command is available to privileged users only.

This parameter initializes all the parameters listed under \texttt{sysctl} PLUS the following:

- Loopbacks
 - \texttt{opr-lpbk-t1}
- Cross-connections
 - \texttt{dlt-crs-vtl}
 - \texttt{ent-crs-vtl}
- OC-1 signal degrade threshold
 - \texttt{set-ocl}
 - \texttt{set-sts1}
 - \texttt{set-vtl}
- Signal failure thresholds
 - \texttt{set-t1}
- Protection Switching (manual)
 - \texttt{switch-ls}
 - \texttt{switch-sync}
- Feature Options
 - \texttt{set-feat}
- System name (TID)
 - \texttt{set-ne}
- PMN
 - \texttt{set-attr-alm}
- Site Id, NE Id — In FiberReach Release 3.0 and later TARP releases, the Site Id and NE Id parameters will not be available, and therefore are not affected by
this command.

```
set-ne
```

TBOS and CO/RT selection — In FiberReach Release 3.0 and later TARP releases, the TBOS parameter will not be available, and therefore it will not be affected by this command.

```
set-ne
```

User Side/Network Side settings on DCC

```
set-fecom
```

Low-Speed Protection Mode

The low-speed protection mode is set to match the installed low-speed protection assembly. If no valid protection assembly can be detected, the low-speed protection mode defaults to 1x7.

In addition to initializing parameters, entering the address all will clear all performance monitoring data and alarms. For failure conditions that still exist after parameters are initialized, the alarms will be redeclared. Time and date parameters are not affected by this command.

Executing an `init-sys:sysctl` with no main OLIU packs equipped will set the following parameters to default values:

Feature Options

Directory Services Network Element (DSNE) — In FiberReach Release 3.0 and later TARP releases, the DSNE parameter will not be part of the `set-ne` provisioning parameters, and therefore will not be affected by this command.

System name (TID)

PMN

Site Id, NE Id — In FiberReach Release 3.0 and later TARP releases, the Site Id and NE Id parameters will not be part of the `set-ne` provisioning parameters, and therefore will not be affected by this command.

TBOS Address — In FiberReach Release 3.0 and later TARP releases, the TBOS Address parameter will not be part of the `set-ne` provisioning parameters, and therefore will not be affected by this command.

TBOS Enabled — In FiberReach Release 3.0 and later TARP releases, the TBOS Enabled parameter will not be part of the `set-ne` provisioning parameters, and therefore will not be affected by this command.
TBOS link — In FiberReach Release 3.0 and later TARP releases, the TBOS link parameter will not be part of the `set-ne` provisioning parameters, and therefore will not be affected by this command.

CO/RT selection

UserSide/NetworkSide settings on DCC

DCC channel enable/disable

When the command `init-sys:sysctl` is entered, the following confirmation message will be displayed:

```/* CAUTION! Execution of this command will set ALL parameters on the controller to their original default values. This may disrupt this system’s operations interfaces. Refer to the DDM-2000 User/Service Manual before executing this command. Caution! When executed, this command causes the NE to restart the program. This action will erase all of the performance monitoring data and the history file, and reinitialize the date and time with the far end system. Proceed with EXTREME CAUTION! You have selected the init-sys command with these parameters: Address = sysctl */ Execute? (y/n or CANcel/DELete to quit) =
```
Entering the command `init-sys: all` will cause the following confirmation message to be displayed:

```markdown
/* CAUTION!

THIS COMMAND SHOULD NEVER BE EXECUTED ON AN IN-SERVICE SYSTEM!

This command will set ALL parameters in the whole system
to their original default values.
This may result in a lengthy service outage and may disrupt
this system’s operations interfaces.

Caution! When executed, this command causes the NE to
restart the program. This action will erase all of
the performance monitoring data and the history file,
and reinitialize the date and time with the far end
system.

PROCEED WITH EXTREME CAUTION!

You have selected the init-sys command with these parameters:

Address = all */
Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

- reset
- upd
NAME
ins-prog: Install Program

INPUT FORMAT
ins-prog: TID;

DESCRIPTION
This command installs a new program into the system controller. This command supports a local program installation to a network element from a personal computer (PC) connected to the CIT port of the target system. The command cpy-prog is used to copy the system controller program from a local network element to a remote network element.

The software to be installed may be a non-executing dormant copy of a software generic. When executing this command, the local network element will support local or remote program installation into the memory of the target network element where it will reside as a dormant copy.

The apply command is used later to overwrite the currently executing generic with a copy of the generic included in the dormant software.

NOTE:
This command cannot be executed during a remote login session.

This command also supports a remote program installation to flash memory as standby copy from a PC connected to the CIT port of another DDM-2000 system.

NOTE 1:
This command must be executed from a PC with the program to be installed in its hard disk or on a set of floppy disks.

NOTE 2:
If security is enabled on any CIT or DCC port on a shelf, then this command is available to privileged users only for all CIT or DCC ports on the shelf. If security is not enabled on all shelves in the network, users on unsecured shelves will be able to install software into the dormant memory of shelves with security enabled.

The input parameter is:

TID The Target Identifier (system name) of the shelf into which the program will be loaded. TIDs are case insensitive.
If the command syntax is correct, the following message will be displayed:

```c
/* Testing for program installation ... */
```

This command can only be completed successfully if it is executed from a CIT or modem port but not if it is received over the DCC. This command cannot be executed during a remote login session. If this command is executed during a remote login session, the following message will be displayed:

```c
SNVS
/* Status, Not in Valid State */
/* This command cannot be executed from within a rlgn session. */
```

If this command is not executed from a PC, the following denial message will be displayed:

```c
SSTP
/* Status, execution STOped */
/* PC communication link could not be established. Please connect PC with program to be installed and start again. */
```

If this command is used to install a program for a certain product type while the TID of the shelf into which the program will be loaded identifies a different product type (for example, a program to be installed is for DDM-2000 OC-3 product type, while the target product type is FT-2000), the request will be denied and the following message is displayed:

```c
IITA
/* Input, Invalid TArget identifier (TID) */
/* <TID> is a different product type; Incompatible software. */
```
If a user attempts to remotely install an NE program into a Target network element that has either an `apply` command in progress or `apply` is already scheduled, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Apply command is either IP or scheduled in Target NE. */
```

If a user attempts to remotely install an NE program to a Target network element that has a cpy-prog command in progress, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* A cpy-prog command is already IP in Target NE. */
```

If this command is used to install a program locally to a DDM-2000 but the PC contains DLC Subsystem program, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Incompatible program. */
```

If the communication link between the PC and the system that it connects to fails, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* PC communication link failure. */
```
To support remote program installation from a PC, the PC, the local system that the PC connects to, and the target system must be running compatible programs. To support local program installation from a PC, the PC, and the local (target) system that the PC connects to must be running compatible programs. If the programs are not compatible, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Communication protocol failure. */
```

For remote program installation, if the target system has a communication failure, has a "P" displayed in its SYSCTL 7-segment LED display, or does not support remote program installation from a PC, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Communication failure. */
```

If a Network Element (NE) receives this command, but is unable to determine a TID-NSAP translation for the entered TID (TID could not be found), this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established. TID entered is not found. */
```

If the entered TID does not match the remote NE’s TID (only the NSAP matched in this case), this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established. Inconsistent TID. NSAP=<XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX> */
```

In the above message, NSAP represents the remote NE’s NSAP.
If an NE receives this command and is able to determine a TID-NSAP translation, but the NSAP is unreachable (TID is kept the same, but NSAP must have been changed), this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established.
  Association setup failure.
  NSAP=<XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX> */
```

In the above message, NSAP represents the one found in the TID-NSAP translation.

If communication cannot be established when attempting to download software to a local site from a PC, the following message will be displayed:

```
SSTP
/* Status, execution STOppeD */
/* Communication link cannot be established.
  Please connect PC with DDM-2000 upgrade program and start again. */
```

If a user attempts to download software that is incompatible with the shelf type (for example, DDM-2000 OC-12 software into a DDM-2000 OC-3 system), or controller type for the following denial message will be displayed:

```
SCSN
/* Status, invalid Command SequenCe */
/* Incompatible Software */
```
When this command is used to download software to a local site from a personal computer (PC), the following confirmation message will be displayed after testing for program installation:

/* Caution! Execution of this command will erase the current generic n.n.n at Target Identifier and replace it with generic m.m.m. If this fails prior to completion, the control system will likely become inoperable until another install program attempt is successful. This command will terminate any other active CIT sessions. This command will take about 30 minutes to install the new program. Check the Software Release Description for estimates at 9600 baud. Lower data rates will take proportionally longer. */

Execute? (y/n or CANcel/DELete to quit) =

When upgrading software, the following confirmation message will be displayed after testing for program installation:

/* Caution! Execution of this command will overwrite the current dormant generic (if any) at Target Identifier. */

Execute? (y/n or CANcel/DELete to quit) =
When this command is used to download a new release of NE software (into the dormant memory of remote system) that is significantly different from the NE software currently running on the remote system, or to download NE software into the dormant memory of a local system from a PC where the software to be downloaded is significantly different from the NE software currently running on the local system, the following confirmation message is displayed:

```
/* Caution! Execution of this command will overwrite the current dormant generic (if any) at Target Identifier. */
/* Caution! Major changes exist between these two generics such that they may not be compatible. Check the TOPS and software compatibility information for additional information or actions needed. */

Execute? (y/n or CANcel/DELete to quit) =
```

When a user gives a positive response to the confirmation message, the following message is displayed:

```
In progress ...........................................
```

The number of dots and how fast they are displayed depend on the size of the program to be installed, baud rate, and for remote program installation, number of DCC spans between the local and remote systems, and DCC traffic.

See "Install New Generic Program" in the TOP section of this manual for complete instructions before using this command. Use the `rtrv-ne` or `rtrv-map-network` commands to obtain the exact TID for the system. The command `rtrv-eqpt` provides the current program version. The current program version may also be obtained from the initial screen and every report header line when logged into the system with a craft interface terminal (CIT). The current program version is also available on the user panel.

Each time a carriage return is entered, the system will also print a header line containing the TID and program version.

RELATED COMMANDS

- `rtrv-eqpt`
- `rtrv-ne`
NAME

logout: Terminate CIT Session

INPUT FORMAT

logout;

DESCRIPTION

This command terminates a user CIT session.

If this command is entered during a local session, it will terminate all sessions established by the user. If entered during a remote session, this command will terminate the remote session and return the user to the local session.

RELATED COMMANDS

rlgn
toggle
NAME

opr-aco: Operate Alarm Cutoff

INPUT FORMAT

opr-aco;

DESCRIPTION

This command silences the audible office alarms. Alarms remain silent until a new alarm condition arises.

If this command is executed while there is an active alarm condition in the system, it will:

- Silence active audible office alarms
- Light the alarm cut-off (ACO) LED on the user panel
- Set the parallel telemetry ACO output point
- Clear all parallel telemetry outputs (Not Applicable to all TARP releases) except the system ID and ACO outputs.

This command is equivalent to pushing the ACO button on the user panel, activating the TBOS ACO control point or activating the parallel telemetry ACO input.

For any DDM-2000 Multiplexer shelf in a network that has co-located DDM-2000 shelves (same site parameter settings), any one of the following actions will silence audible office alarms on all shelves at the same site:

- Pressing the ACO button
- Executing the opr-aco command
- Setting the TBOS ACO control point

NOTE:

For all TARP releases, only the Local ACO parameter (obtained by either pressing the ACO button or executing opr-aco command) is allowed.

The TBOS ACO control points, parallel telemetry ACO, remote ACO, and the site parameter are not applicable.
NAME

opr-lpbk-t1: Operate-Loopback-T1

INPUT FORMAT

opr-lpbk-t1: Address[:lpktype=LoopbackType];

DESCRIPTION

⚠️ CAUTION:
 Execution of this command may affect service.

This command executes a loopback on a DS1 or T1 circuit pack towards the optical fiber (terminal) or the DSX (facility) as shown in Figure 11-2. The loopback remains in place until released by the **rls-lpbk-t1** command.

Figure 11-2. DS1 Loopback
The input parameters are:

Address
Address of DS1 or T1 port(s) to be looped back.
For a terminal loopback, valid addresses in a 1x1 protected LS configuration are:
\[
\text{all, } \{a,b,c,d\}-\text{all, } \{a,b,c,d\}-1-(1-4,\text{all})
\]
For a terminal loopback, valid addresses in a 1x7 protected LS configuration are:
\[
\text{all, } \{a,b,c\}-\{1,2\}-(1-4,\text{all}), \text{ d-1-(1-4,all)}
\]
For a facility loopback, valid addresses in a 1x1 protected LS configuration are:
\[
\text{all, } \{a,b,c,d\}-\text{all, } \{a,b,c,d\}-1-(\text{all})
\]
For Release 3.0 and later with the BBF3B the valid 1x1 protected addresses are:
\[
\text{all, } \{a,b,c,d\}-\text{all, } \{a,b,c,d\}-1-(1-4,\text{all})
\]
For a facility loopback, valid addresses in a 1x7 protected LS configuration are:
\[
\text{all, } \{a,b,c\}-\{1,2\}-(\text{all}), \text{ d-1-all.}
\]
For Release 3.0 and later with the BBF3B the valid 1x7 protected addresses are:
\[
\text{all, } \{a,b,c\}-\{1,2\}-(1-4,\text{all}), \text{ d-1-(1-4,all)}
\]
The BBF6 and BBF8 circuit packs support two T1 ports. When addressing ports on these packs, only ports number 1 and 2 are valid. Specifying all selects ports 1 and 2 only.

lpbktype
Loopback type specifies whether the loopback is terminal or facility. The valid values for this parameter are:

terminal
Terminal loopback directed towards the high-speed facility. This is a default value.

facility
Facility loopback directed towards the DSX or T1 interface. For the BBF1, BBF1B, and BBF3 circuit packs, operation of the loopback causes all four incoming DS1 signals to be looped back towards the DSX or T1 interface.
In Release 3.0 and later, an individual DS1 facility loopback is supported on each DS1 interface on the BBF3B circuit pack.
If the loopback type is not consistent with the address, the following denial message is displayed:

```
SNVS
/* Status, Not in Valid State */
/* loopback type is not consistent with the address. */
```

If the command cannot be completed due to hardware problems on the circuit pack, the following message is displayed:

```
/* Address CPname CP failed */
```

`Address` and `CPname` refer to the slot address and provisioned circuit pack type for the slot, respectively.

If a slot is in AUTO state or determined to have the wrong circuit pack type for the command, the following message is displayed:

```
/* Slot is in AUTO state or Address is not equipped - no loopback established */
/* Enter DS1 port Address: */
```

If the command cannot be completed due to hardware problems on the SYSCTL, the following message is displayed:

```
/* SYSCTL failed - no loopback established */
```
If this command is invoked to establish other than an existing loopback type (that is, if a facility loopback is requested when a terminal loopback already exists or vice versa) for the same address, the following denial message will be displayed:

```plaintext
SNVS
/* Status, Not in Valid State */
/* Establishing new loopback type (facility/terminal) requires that existing loopback type (terminal/facility) associated with this address must be released. */
```

When input for a terminal loopback, this command will cause the following confirmation message to be displayed:

```plaintext
/* Caution! Execution of this command may affect the DS1 performance monitoring data and may affect service. You have selected the opr-lpbk-t1 command with these parameters:

Loopbacktype=loopbacktype
Address=address */

Execute? (y/n or CANCEL/DELETE to quit) =
```
When input for a facility loopback, this command will cause the following confirmation message to be displayed:

```c
/* Caution! Execution of this command may affect the DS1 and VT performance monitoring data and may affect service.
   You have selected the opr-lpbk-tl command with these parameters:
   Loopbacktype=loopbacktype
   Address=address */

Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

rls-lpbk-t1
NAME

opr-lpbk-t3: Operate-Loopback-T3

INPUT FORMAT

opr-lpbk-t3: Address[lpbktpe=LoopbackType];

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service.

This command executes a loopback on a DS3 port towards the optical fiber (terminal) or DSX (facility), as shown in Figure 11-3.

Starting with FiberReach Release 3.1, this command is allowed if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots. In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 29/26-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

Note that terminal and facility loopbacks cannot be set at the same time. The loopback remains in place until released by the rls-lpbk-t3 command.

Figure 11-3. DS3 Loopback
The input parameters are:

<table>
<thead>
<tr>
<th>Address</th>
<th>Address of DS3 port(s) to be looped back.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid DS3 Port Addresses (BBG4/BBG4B):</td>
<td>{f, all}</td>
</tr>
<tr>
<td>Valid DS3 Port Addresses (BBG19):</td>
<td>all, f-{1-2, all}</td>
</tr>
</tbody>
</table>

lpbktype loopbacktype specifies whether the loopback is terminal or facility

- **terminal** terminal loopback directed towards the high-speed facility. This is a default value.
- **facility** facility loopback directed towards the DSX.

If the command cannot be completed due to hardware problems on the circuit pack, the following message is displayed:

```
/* Address CPname CP failed */
```

Address and CPname refer to the slot address and provisioned circuit pack type for the slot, respectively.

If a slot is in AUTO state or determined to have the wrong circuit pack type for the command, the following message is displayed:

```
/* Slot is in AUTO state or Address is not equipped - no loopback established */
/* Enter DS3 port Address: */
```

If the command cannot be completed due to hardware problems on the SYSCTL, the following message is displayed:

```
/* SYSCTL failed - no loopback established */
```
If a slot is determined to have the wrong pack type for the command, the following message will be printed on the CIT:

/* address is not equipped properly - no loopback established */

Where address is a slot AID.

If this command is invoked to establish other than an existing loopback type (that is, if a facility loopback is requested when a terminal loopback already exists or vice versa) for the same address, the following denial message will be displayed:

SNVS
/* Status, Not in Valid State */
/* Establishing new loopback type (facility/terminal) requires that existing loopback type (terminal/facility) associated with this address must be released. */

When input for terminal loopback, this command will cause the following confirmation message to be displayed:

/* Caution! Execution of this command may affect the DS3 performance monitoring data and may affect service. You have selected the opr-lpbk-t3 command with these parameters: */

Loopbacktype=loopbacktype
Address=address */

Execute? (y/n or CANcel/DELete to quit) =
When input for facility loopback, this command will cause the following confirmation message to be displayed:

/* Caution! Execution of this command may affect the DS3 performance monitoring data and may affect service. You have selected the opr-lpbk-t3 command with these parameters:

Loopbacktype=loopbacktype
Address=address */

Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS

rls-lpbk-t3
NAME
reset: Reset the System Software Program

INPUT FORMAT
reset;

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect performance-monitoring data.

This command resets the system software program. All history and performance-monitoring data is lost. All alarm information is lost and "rediscovered." The date and time are lost and "rediscovered" from the far end or set to default (70-01-01 for date and 00:00:00 for time). No provisioning information is lost or changed, except for the page length parameter in set-link, which is reset to the default value.

An automatic date and time recovery process takes place by reading the date and time from the remote shelf connected to the interface of the local shelf (in linear applications). In ring applications, the date and time data is recovered from the remote shelf connected to the local shelf.

If the low-speed protection assembly has been changed since the last reset, this command will also attempt to change the low-speed protection mode to match the new protection assembly. The attempt will fail only if one or more cross-connects to low-speed ports are still provisioned. In this case, a "ls prot mode not chgd-(crs)" alarm will be raised against the low-speed protection assembly. To complete the change, remove all cross-connections to low-speed ports and reexecute the reset command.

⇒ NOTE 1:
Unlike other commands, an abbreviated version of this command name may not be entered. The user must type the complete command name when entering this command or the command request will be denied.

⇒ NOTE 2:
If security is enabled on any CIT or DCC port on a shelf, then this command is available to privileged users only for all CIT or DCC ports on the shelf.
NOTE 3:
If a reset is done on any shelf, all adjacent shelves (shelves at the other ends of the optical interfaces that terminate on the shelf being reset) may show transient "section DCC channel failed" alarms. This is a normal system response.

When input, this command displays the following confirmation message:

/* Caution! When executed, this command causes the NE to restart the program. This action will erase all of the performance monitoring data and the history file. If possible, it will reinitialize the date and time with the far end system. You have selected the reset command. */

Execute? (y/n or CANcel/DELete to quit) =

During system start-up after reset or other initialization, the user who is connected to a CIT port cannot log in. When the user presses RETURN, the following message is issued:

/* System Initialization is in progress. Try to log in again later. */
NAME
rlgn: Remote Login

INPUT FORMAT
rlgn: TID;

DESCRIPTION
This command establishes a remote login session via the SONET data communications channel (DCC). Any network element (NE) which is part of the same maintenance subnetwork and has a compatible product type may be accessed with this command.

The alarm and status report for the far end system is printed automatically when this command is executed.

Starting with FiberReach Release 4.0, if upon logging in a user’s password expires, this command will be accepted but the user will not be able to perform any function until the associated password has successfully been changed through the set-passwd command. The only commands allowed in this case are set-passwd and logout.

A special error message will be displayed (after the Lucent banner) as part of the command completion response informing the user that the password has expired and must be updated. The banner will be displayed immediately after the Lucent proprietary banner.

The input parameter is:
TID TID is the target identifier (system name) of the desired remote shelf.

If the command is successfully completed and security is enabled the user will be prompted for login and password (similar to a local login session).

NOTE:
A remote login session may be terminated unexpectedly if a user elsewhere in the network enables or disables the DCC.

Starting with FiberReach Release 4.0, if the login request completes successfully, and the (customer provisioned) proprietary banner feature is enabled, both Lucent and customer proprietary messages are displayed after login and password verification.

If the customer proprietary banner is disabled, only Lucent proprietary banner is displayed after login and password verification.
If a user attempts to login to a remote shelf where another remote session is already established, the following denial message will be displayed:

```c
RNBY
/* Resource, Ne is Busy */
/* A remote session is not allowed.
   Try again later. */
```

If a user is logged into a shelf and then tries to remotely login to the same shelf, the following denial message will be displayed:

```c
SNVS
/* Status, Not in Valid State */
/* Local session already established.
   A remote login to this TID is not allowed. */
```

If a user has toggled back to the local NE after establishing a remote session and tries to return to the remote session using this command, the following denial message will be displayed:

```c
SNVS
/* Status, Not in Valid State */
/* Remote session already established.
   A second remote session is not allowed. */
```

If the user attempts to log into a system whose product type does not support remote logins from the local NE, the following denial message will be displayed:

```c
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established.
   A remote login to this product type is not allowed. */
```
If a nonprivileged user remotely logs into a remote NE through a DCC in lockout state, the following denial message will be displayed:

```
PIPW
/* Privilege, Illegal PassWord */
/* Access Blocked. */
```

If an unknown TID (or TID could not be found) is entered, the following message will be displayed and the user will be reprompted for the TID:

```
/* TID entered is not found. */
```

If an unknown TID (NE is unable to determine TID-NSAP translation for the entered TID and TID could not be found) is entered, this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established. 
   TID entered is not found. */
```

If the entered TID does not match the remote NE’s TID, (only the NSAP matched in this case), this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established. 
   Inconsistent TID. 
   NSAP=<XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX> */
```

In the above message, NSAP represents the remote NE’s NSAP.
If an NE receives this command and is able to determine a TID-NSAP translation, but the NSAP is unreachable (TID is kept the same, but NSAP must have been changed) or for any other reason, the remote NE is simply not reachable, this command will be denied and the following message displayed:

```
SNVS
/* Status, Not in Valid State */
/* Remote session cannot be established.
   Association setup failure.
   NSAP=<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx> */
```

In the above message, NSAP represents the one found in the TID-NSAP translation. Starting with FiberReach Release 4.0, if the login request does not complete successfully because the user’s password has expired, the following error response will be displayed immediately after the Lucent banner (before the alarm and status report):

```
/* Your password has expired. Until you change
   your password, you will not be allowed further
   access to this NE. */
```

RELATED COMMANDS

- logout
- toggle
- rtrv-map-neighbor
- rtrv-map-network
NAME

rls-lpbk-t1: Release-Loopback-T1

INPUT FORMAT

```
rls-lpbk-t1:Address[lpbktype=LoopbackType];
```

DESCRIPTION

This command releases a previously established loopback on a DS1 or T1 port. When using the IMA LAN interfaces, the only allowed loopback type is terminal.

The input parameters are:

- **Address**: Address of DS1 or T1 port(s) where a loopback is to be released.
 - For a terminal loopback, valid addresses in a 1X1 protected LS configuration are:
 - all, {a,b,c,d}-all, {a,b,c,d}-l-{1-4, all}
 - For a facility loopback, valid addresses in a 1X1 protected LS configuration are:
 - all, {a,b,c,d}-all, {a,b,c,d}-l-{all}
 - For a facility loopback on the BBF3B circuit pack in Release 3.0 and later, valid addresses in a 1X1 protected LS configuration are:
 - all, {a,b,c,d}-all, {a,b,c,d}-l-{1-4, all}
 - For a terminal loopback, valid addresses in a 1x7 protected LS configuration are:
 - all, {a,b,c}-l-{1,2}-l-{1-4, all}, d-l-{l-4, all}
 - For a facility loopback, valid addresses in a 1x7 protected LS configuration are:
 - all, {a,b,c}-l-{1,2}-{all}, d-l-all
 - For a facility loopback on the BBF3B circuit pack in Release 3.0 and later, valid addresses in a 1X7 protected LS configuration are:
 - all, {a,b,c}-l-{1,2}-l-{1-4, all}, d-l-{1-4, all}

The BBF6 circuit pack supports two T1 ports. When addressing ports on a BBF6, only ports number 1 and 2 are valid. Specifying **all** selects ports 1 and 2 only.
lpbktype Loopbacktype specifies whether the loopback is terminal or facility. Since only one type of loopback is allowed at a time on DS1 or T1EXT circuit packs, this parameter is not used for these circuit packs.

terminal terminal loopback is directed towards the high speed facility. This is the default value.

Terminal is the only loopback type allowed when using the IMA LAN interfaces.

facility facility loopback is directed towards the DSX.

If the command is issued with an incorrect address for the specified loopback, the following denial message is displayed:

```
SNVS
  /* Status, Not in Valid State */
  /* loopback type is not consistent with the address. */
```

NOTE:
If the address **all** is used, the command will be denied if the loopback type is inconsistent with any existing loopback.

RELATED COMMANDS

opr-lpbk-t1
NAME

rls-lpbk-t3: Release-Loopback-T3

INPUT FORMAT

rls-lpbk-t3: Address [lpbktype=LoopbackType];

DESCRIPTION

This command releases a loopback on a DS3 port previously established by an **opr-lpbk-t3** command.

Starting with FiberReach Release 3.1, this command is allowed if the shelf is equipped with 28-type OLIU\(s\) in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIU\(s\) in Main and DS3 circuit packs in the Function unit slots.

The input parameter is:

- **Address**
 - Address of DS3 port(s) where a loopback is to be released.
 - Valid DS3 Port Addresses (BBG4/BBG4B):
 - {f, all}
 - Valid DS3 Port Addresses (BBG19):
 - all, f-{1-2, all}

- **lpbktype**
 - Loopback type specifies whether the loopback is terminal or facility.
 - For BBG4/BBG4B/BBG19 circuit packs, only one type of loopback at a time is allowed on a given address.
 - Valid values are:
 - **terminal**
 - terminal loopback is directed towards the high speed facility. This is the default value.
 - **facility**
 - facility loopback is directed towards the DSX-3.

RELATED COMMANDS

opr-lpbk-t3
NAME
rstr-passwd: Restore Logins, Passwords, and User Types

INPUT FORMAT

rstr-passwd: login, passwd, user_type, clr;

DESCRIPTION

NOTE:
This command is available to privileged users only.

This command is only used to restore the login, password (in encrypted and
encoded form), and user type information from an external workstation into the
network element (NE). The restored information is information that would have
been previously loaded from the NE into the external workstation through the
rtrv-passwd command.

This command is intended to be used only in expert mode by an external
personal computer or workstation and not at a CIT.

The input parameters are:

login This is the login name that was established by the security
 administrator on the NE before the rtrv-passwd command was
 executed.

passwd This is the current encrypted and encoded password selected by
 the owner of the login before the rtrv-passwd command was
 executed.

user_type This is the user access class assigned to this login by the security
 administrator before the rtrv-passwd command was executed.
 This parameter may have one of the following values:

 privileged
 The privileged user may execute any commands
 including restricted commands.

 general
 The general user may execute any commands that are
 not restricted to privileged users.

 maintenance
 The maintenance user may only execute commands
 that access the system, extract reports, and execute
 maintenance functions through a specific set of
 commands. No privileged commands are allowed to be
 executed by maintenance users.

 reports-only
 The reports-only user may only execute basic
 commands that extract reports from the system.
clr

This parameter indicates whether the login data existing on the NE should be deleted before the login, password, and user type information can be restored. This parameter may have one of the following values:

- **clear**: Clear the NE login file before restoring the login information (used only when user_type is privileged).
- **noclear**: Append the restored login information to the network element login file.

If this command is executed with the parameter **clr** set to **clear**, all login information in the NE login file will be cleared. Then the new login information is restored from the external workstation. However, all active login sessions will not be terminated.

Attempts to input invalid parameter(s) data will result in the user being denied execution of this command. The following denial message is displayed:

```
IDNV
/* Input Data Not Valid, invalid data entered. */
```

An invalid parameter indicates that either a login does not match the valid login definition, the length of the encrypted password (after decoding it into encrypted form) is invalid, a **user_type** is invalid (for example, a misspelled **user_type**), or a **clr** value is invalid (that is, other than clear or noclear).

If this command attempts to restore another login line when the NE’s maximum number of supported logins is reached, the following denial message will appear:

```
SLEM
/* Status, List, Exceeds Maximum */
/* Maximum number of logins already exists.
   Cannot enter another login. */
```
If the user attempts to restore another privileged user when the maximum number of privileged users has already been reached, this attempt will be denied and the following message will be displayed:

```
SLOM
/* Status, List, Over Maximum allowed */
/* Maximum number of privileged users already exists. */
```

If an attempt is made to restore an already existing privileged user’s login/password information with a user_type of either general, maintenance, or reports-only, this attempt is denied and the following message is displayed:

```
SDNC
/* Status, Data Not Consistent */
/* Privileged user logins cannot be restored as General, maintenance or Reports-only. */
```

If an attempt is made to restore a user’s login/password information, with a user_type of either general, maintenance or reports-only and clr=clear, the attempt will be denied and the following message is displayed:

```
SDNC
/* Status, Data Not Consistent */
/* for clr=clear, user_type must be set to privileged. */
```

RELATED COMMANDS

- retrv-passwd
- set-lgn
- set-passwd
NAME

rtrv-alm: Retrieve Alarm and Status

INPUT FORMAT

rtrv-alm[:alm=AlarmLevel];

DESCRIPTION

This command displays a report of active alarm and status conditions at the local network element. The report includes the source address of the alarm as well as date and time of the alarm, whether or not the condition is service-affecting, and a short description of the condition.

The input parameter is:

alm AlarmLevel for which a report is desired. This parameter may have one of the following values:

 all (default)
 cr
 mj
 mn
 pmn
 other (abnormal, ne-acty, status conditions)

Alarms are listed from greatest to least severity. Within a severity level, newer alarms are listed first.

NOTE:

Due to the large number of conditions reported, the RTRV-ALM report pages have been located at the end of this section for easier reference. Please refer to the RTRV-ALM table (Table 11-3) for a complete description of report outputs.

RELATED COMMANDS

rtrv-hsty
NAME

rtrv-attr-alm: Retrieve Attribute Alarm

INPUT FORMAT

rtrv-attr-alm;

DESCRIPTION

This command displays current alarm attributes, as provisioned by the set-attr-alm command.

The output report appears as follows:

```c
/* System Alarm Attributes Report
  ********************************************************************************
Alarm Delay (almdel)=almdel, Clear Delay (clrdel)=clrdel, PMN=pmn
*/
```

The output parameters are:

- **Alarm Delay** This shows the alarm holdoff delay in seconds for incoming signal and equipment failures. This parameter is an integer with a range of 0 through 30.

- **Clear Delay** This shows the alarm clear delay in seconds for equipment failures. This parameter is an integer with a range of 0 through 30.

- **PMN** PMN is the office alarm level to be raised during a power minor alarm condition. This parameter has the values MJ (major) or MN (minor) indicating the alarm level.

NOTE:

Incoming signal failure conditions, AIS, and FERF signals are subject to the provisionable alarm holdoff delay and a fixed 15-second clear delay. Yellow signals are not subject to holdoff or clear delays. Circuit pack failures (except control circuit pack failures) are subject to the provisionable alarm holdoff and clear delays.
RELATED COMMANDS

set-attr-alm
NAME

rtrv-attr-cont: Retrieve Attribute Control

INPUT FORMAT

rtrv-attr-cont[Address];

DESCRIPTION

This command displays the provisioned name of miscellaneous discrete environmental control points, as set by the set-attr-cont command.

The input parameter is:

Address Address of the environmental control point. The default address is cont-all. Valid Addresses: cont-{1-4, all}

The output report appears as follows:

/* Control Point Provisioning Report
 ==
 Address Description
 ==
ccont-1 StartGenerator
cont-2 StartPump
cont-3 control3
cont-4 control4
*/

The output parameters are:

Address This is the address of the control point.
Description This is the provisioned description of the environmental control point.
NOTE:
This command will be denied if it is entered in a system whose SYSCTL CO/RT parameter is set to CO (via the set-ne command). Use the rtrv-ne command to determine the switch setting. The following denial message will be displayed:

```
ENRI
/* Equipage, Not equipped for Retrieving specified Information */
/* Environmental controls can be provisioned only in RT systems */
```

RELATED COMMANDS
- rtrv-attr-env
- rtrv-ne
- set-attr-cont
- set-attr-env
NAME
rtrv-attr-env: Retrieve Attribute Environment

INPUT FORMAT
rtrv-attr-env[Address];

DESCRIPTION
This command displays the provisioned alarm and provisioned name and provisioned alarm type of miscellaneous discrete environmental alarm/status points, as set by the set-attr-env command.

The input parameter is:
Address The address of the environmental input point.
Valid Addresses: env-{1-15, all}, env-{all} (default)

The output report appears as follows:

/* Environmental Alarm Provisioning Report
==
Address Alarm Alarm Type Description
==
env-1 CR MISC Fire
env-2 NA Power OpenDoor
env-3 MN code-7 environment3
.
.
.
.
.
env-15 MN Misc externalMinor
*/

The output parameters are:
Address The address of the environmental alarm/status point.
Alarm

Alarm is the provisioned alarm level of the environmental input and has the following values:

CR Critical alarm
MJ Major alarm
MN Minor alarm
NA Not alarmed, but reported

Alarm Type This is the user-defined classification of the environmental alarm/status point.

Description Provisioned description of the environmental alarm/status point.

≥ NOTE:
This command will be denied if it is entered in a system whose SYSCTL CO/RT parameter is set to CO (via the set-ne command). Use the rtrv-ne command to determine the switch setting. The following denial message will be displayed:

ENRI
/* Equipage, Not equipped for Retrieving specified Information */
/* Environmental alarms can be provisioned only in RT systems. */

RELATED COMMANDS

rtrv-attr-cont
rtrv-ne
set-attr-cont
set-attr-env
NAME

rtrv-crs-sts1: Retrieve Cross-Connection STS-1

INPUT FORMAT

rtrv-crs-sts1[Address];

DESCRIPTION

This command retrieves STS-1 cross-connections within the DDM-2000 system.

NOTE:

This command is available with FiberReach 3.1 and later releases.

This report also indicates if any VT1.5 cross-connections exist. A VT1.5 cross-connection map report, obtained by using the rtrv-crs-vt1 command, will show the specific VT1.5 cross-connections.

The input parameter is:

Address The address of one or more STS-1 channels for which cross-connections are to be reported. The default address is all STS-1 channels in the system.
If the shelf is equipped with 28-type OLIUs in the Main units (in FiberReach 3.1 and later), the valid addresses are: m-{1−3, all}
However for the equipage of DS3 circuit packs in the Function unit slots (FiberReach Release 3.1 and later), the valid Function unit address is: f.
If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIUs in its Main units, the valid addresses are: m-{1−12, all}.

The output report appears on the following page.
NOTE:
Starting with FiberReach Release 3.0 each cross-connection is reported only once (not once in each direction).

The above report lists both STS-1 and STS-3c cross connections (if applicable) in separate sections. The output report shows the channels in an order that reflects the physical layout of the system (for example, the high-speed slots are shown first, followed by those associated with the function unit).

Also the STS-3c section within the FiberReach report is applicable if the main unit slots are equipped with OC-12 interfaces (29G-U OLIU circuit packs).

The output parameters are:

Address 1 Address 1 is the address of an STS-1 channel.
Address 2 Address 2 is the address of an STS-1 channel.
Cross Connect Type
This parameter is available with all ring releases.

This column specifies whether the cross-connection is two-way (twoway) - Two-way cross-connections apply to terminating, hub, add/drop, pass-through configurations. For detailed information on the mentioned cross-connection types, refer to ent-crs-sts1 command page.

RELATED COMMANDS

dlt-crs-sts1

ent-crs-sts1
NAME

rtrv-crs-sts3c: Retrieve Cross-Connection STS-3c

INPUT FORMAT

```
rtrv-crs-sts3c[:Address];
```

DESCRIPTION

This command retrieves STS-3c cross-connections within the DDM-2000 system. Cross-connections are entered using the `ent-crs-sts3c` command.

This command is available in FiberReach starting with Release 3.1. This command can be used only if the shelf is equipped with 28 or 29-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function unit slots.

If the Main Unit slots are equipped with 28-type OLIU circuit packs, the ONLY valid cross-connect type is `twoway` (add-drop).

If the Main Unit slots are equipped with 29-type OLIU circuit packs (available in Release 4.0 and later), the only valid cross-connect type is `twoway` (add-drop and pass-through).

NOTE:

If Slots 1 and 2 are equipped with different pack types (for example, during an upgrade), this report will include data for what is considered at the time as the valid system pack type.

The input parameter is:

- **Address**
 The address of one or more STS-3c channels for which cross-connections are to be reported. The default address is all STS-3c channels in the system.

 If the FiberReach shelf is equipped with 28-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function unit slots, the valid STS-3c Addresses are: `m-{1,all}, f-1`

 If the OC-3 shelf is equipped with 29-type OLIU circuit packs in its Main unit slots, and 22-type OLIU circuit packs in its Function unit slots, the valid STS-3c Addresses are: `m-{1,4,7,10,all}, f-1`.
The output report appears as follows:

/* Cross-Connection Map Report
===
Address Address Cross Connect Ring for
 1 2 Type Drop&Cont
===
---STS-3c------------------
m-1 f-1 twoway -
m-7 m-7 twoway -
---STS-1------------------
*/

The output report shows the STS-3c channels in an order that reflects the physical layout of the system (for example, the high-speed slots are shown first, followed by those associated with the function unit). The output report also shows the STS-1 channels (if applicable) in a separate section. The STS-1 channels are listed in the same order as described for the STS-3c channels.

The output parameters are:

Address 1 Address 1 is the address of an STS-3c channel.
Address 2 Address 2 is the address of an STS-3c channel.
Cross Connect Type
 This column specifies whether the cross-connection is two-way (twoway)

RELATED COMMANDS

dlt-crs-sts3c
NAME

rtrv-crs-vt1: Retrieve Cross-Connection VT1.5

INPUT FORMAT

rtrv-crs-vt1[:Address];

DESCRIPTION

NOTE:
If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the output report for this command will include data for what is considered at the time as the valid system pack type.

This command retrieves VT1.5 signal cross-connections within a DDM-2000 FiberReach system, as set by the ent-crs-vt1 command.

The input parameter is:

Address
Following is the list of valid addresses:

If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:
m-1-{1-7, all}-(1-4, all), m-1-all

If the shelf is equipped with 28-type OLIUs in Main units (in FiberReach 3.1 and later) valid addresses are:
m-(1-3, all)-(1-7, all)-(1-4, all)

If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIUs in its Main units, valid VT1.5 Addresses are:
m-{1-12, all}-(1-7, all)-(1-4, all)

Valid port addresses in 1X1 protected low-speed configurations:
{a,b,c,d}-1-{1-4, all}

Valid port addresses in 1X7 protected low-speed configurations:
{a,b,c}-(1,2}-{1-4, all},
d-1-{1-4, all}

The T1EXT (BBF6) circuit pack supports 2 T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid. Specifying all selects ports 1 and 2 only.
The output report appears as follows. Only existing ports or channels that are cross-connected will be displayed in the report.

```
/* VT1 Cross Connect Report */
-------------------------------------------------------------
Address 1 Address 2 Cross Connect Type
-------------------------------------------------------------
m-1-1-2 m-1-1-2 twoway -
m-1-5-4 c-1-4 twoway -
m-1-7-4 d-1-4 locked ml
.
.
.
*/
```

NOTE:
Starting with FiberReach Release 3.0 each cross-connection is reported only once (not once in each direction).

The output parameters are:

- **Address 1**
 - Address1 is the address of a VT1.5 channel or a DS1 or T1 port.

- **Address 2**
 - Address2 is the address of a VT1.5 channel or a DS1 or T1 port.

- **Cross Connect Type**
 - This parameter specifies the cross connection type. It also specifies whether the cross-connection is two-way, or locked. Two-way applies to add/drop and pass-through configurations.

- **Ring Id**
 - This column identifies the ring for locked connections.

The report shows the current state of VT1.5 cross-connections in the NE. When the address of multiple VT1.5 channels, DS1 ports, or T1 ports are specified in the execution of this command, the report will show the addresses in the first column in numerical order reflecting the physical layout of the shelf.

The report will also indicate if any STS-1 cross-connections exist. An STS-1 cross-connection map report, obtained by using the `rtrv-crs-sts1` command, shows the specific STS-1 cross-connections.
RELATED COMMANDS

dlt-crs-vt1
ent-crs-vt1
rtrv-crs-sts1
rtrv-state-path
NAME

rtrv-eqpt: Retrieve Equipment

INPUT FORMAT

rtrv-eqpt[:Address];

DESCRIPTION

This command displays the circuit pack type and version information for one or more slots on a network element (NE). It also shows which low-speed protection mode (1x1 or 1x7) is active for the shelf.

The input parameter is:

Address Address identifies one or more slot(s). The default is all slots.
Valid Slot Addresses: all, main-{1,2,all}, ls-all, ls-{a,b,c,d}-{1,2,all}, sysctl, auxctl, fn-{1,2,all}

A sample output report appears on the following page.
The output parameters are:

Address
This is the address of the slot.

Circuit Pack
Circuit pack is the mnemonic name that identifies the general type function provided by a circuit pack. For example, Optical Line Interface Units are all named OLIU; SYStem ConTroLlers are named SYSCTL.

Apparatus Code
Apparatus code uniquely identifies the specific function provided by a circuit pack. Circuit packs with different apparatus codes are not interchangeable even if they have the same name.

Series Number
This is used to indicate interchangeability among circuit packs with the same circuit pack name and apparatus code but different manufacturing versions. In general, a circuit pack can be replaced by another circuit pack that has the same apparatus code and the same or later series number.
CLEI Code
CLEI code is the 10-character code identifying each circuit pack.

ECI Code
Equipment catalog item (ECI) code is a 6-character code identifying each circuit pack. This code corresponds to the bar-coded label on the faceplate of the circuit pack, and is uniquely equivalent to the *CLEI* code.

Serial Number
This is a 12-character code uniquely identifying each circuit pack and indicating the date and place of manufacture.

Program Version
Program version is the version of software that is currently stored on the circuit pack.

PID
Program identification code identifies the version of firmware on one or more socketed devices on the circuit pack.

Low speed protection mode
This identifies which low-speed protection mode is active. Possible values are 1x1 and 1x7. If the installed low-speed protection assembly does not match this mode or is missing, the report will also identify the error condition.

The report always contains a line for every slot included in the range of the address whether or not the slot is equipped.

Hyphens (-) indicate information in that field is not applicable (that is, type and version information for slots that are not equipped).

Question marks (?) indicate that the information is unknown (for example, an unrecognized circuit pack, because the system is unable to read version information from a circuit pack inserted into a slot in the AUTO state).

If an incorrect circuit pack is inserted in a slot, the report will show the expected circuit pack name for that slot and indicate that the current circuit pack does not match inventory.

If an unpowered circuit pack is placed in a slot, the report will indicate that the circuit pack is unpowered and version information is unavailable.

If the system cannot report complete and correct version information for a circuit pack because of a field upgrade, then the information that may be incorrect (apparatus code, series, *CLEI* code, and ECI code) is followed by a "?".

COMMON LANGUAGE is a registered trademark and CLEI, CLLI, CLCI, and CLFI are trademarks of Bell Communications Research, Inc.
RELATED COMMANDS

rtrv-state
NAME

rtrv-feat: Retrieve Feature

INPUT FORMAT

rtrv-feat;

DESCRIPTION

This command retrieves a list of active feature options enabled by the set-feat command.

The output report appears as follows:

```/* Feature Options Enabled Report
==========================================================================
<table>
<thead>
<tr>
<th>Feature Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>feature</td>
<td>description</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
| */
```

The output parameters are:

<table>
<thead>
<tr>
<th>Feature Option</th>
<th>This is the name of the feature currently enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Description of the feature.</td>
</tr>
</tbody>
</table>

RELATED COMMANDS

set-feat
NAME

rtrv-fecom: Retrieve Far-end Communications

INPUT FORMAT

rtrv-fecom: [Address];

DESCRIPTION

This command displays the provisioned state of a network element’s (NE’s) section data communication channels (DCC), as set by the set-fecom command.

The DCC is an embedded overhead communications channel in the SONET line used for end-to-end communications and maintenance. The DCC carries alarm, control, and status information between NEs.

The input parameter is:

Address Address is the address of the DCC. The default value is dcc-all.

Valid Addresses: dcc-{m1,m2,all}
For FiberReach Release 4.0 and later dcc-m is a valid address when the OC-3 or OC-12 main interface is set to the identical mode.

The far-end communication output report appears as follows:

```
/* Far End Communication Configuration Report
==============================================================================
 DCC Communications DCC
 Address NS/US
==============================================================================
dcc-m1 enabled us
dcc-m2 disabled ns

*/
```
The output parameters for this report are:

- **DCC Address**: This column displays the address of a DCC.
- **Communication**: This column shows whether communication over the DCC is enabled or disabled.
- **DCC NS/US**: DCC network side/user side (NS/US) parameter settings are available with the BBG8 controller to identify the setting of each end of the DCC in the network element. This identification is needed for OSI communications and is required for all nodes in the subnetwork. To avoid alarms, only one end of a span may be designated as the user side and only one end of a span may be designated as the network side.

RELATED COMMANDS

- `rtrv-map-neighbor`
- `rtrv-map-network`
- `set-fecom`
NAME

rtrv-hst: Retrieve History

INPUT FORMAT

rtrv-hst;

DESCRIPTION

This command displays an event-history report. This report contains a list of the most recent system events. This report will contain up to 500 events. The events are listed in last-in, first-out order, and are date- and time-stamped.

NOTE:

Due to the large number of conditions reported, the RTRV-HSTY report pages have been located at the end of this section for easier reference. Please refer to the RTRV-HSTY table (Table 11-4) for a complete description of report outputs.

RELATED COMMANDS

rtrv-alm
NAME

rtrv-lgn: Retrieve Login

INPUT FORMAT

rtrv-lgn;

DESCRIPTION

This command retrieves login authorization information. This report lists each user’s login and privileges. The report does not contain passwords.

=> NOTE:
This command is available to privileged users only.

For FiberReach Release 3.1 and earlier, the output report appears as follows:

```c
/* Login Provisioning Report */
Login          User Type
--------------------
nname          privileged
name           privileged
name           privileged
--------------------
name            general
name            general
--------------------
name           maintenance
name           maintenance
--------------------
name           reports-only
name           reports-only
*/
```
Starting with FiberReach Release 4.0, the output report appears as follows:

```
/* Login Provisioning Report
===================================================
<table>
<thead>
<tr>
<th>Login</th>
<th>User Type</th>
<th>Password Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>privileged</td>
<td>passwd_age</td>
</tr>
<tr>
<td>name</td>
<td>privileged</td>
<td>passwd_age</td>
</tr>
<tr>
<td>name</td>
<td>privileged</td>
<td>passwd_age</td>
</tr>
<tr>
<td>name</td>
<td>general</td>
<td>passwd_age</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>name</td>
<td>maintenance</td>
<td>passwd_age</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>name</td>
<td>reports-only</td>
<td>passwd_age</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
*/
```

The output parameters are:

Login
This column lists the login names.

User Type
This column indicates the type of authorization each user is assigned. The valid values are privileged, general, maintenance, and reports-only.

Password Age
Password Age. Starting with FiberReach Release 4.0, this parameter specifies the period in days after which the user has to change his/her password. This parameter can have a value between 7 and 999, or 0. A 0 value indicates that the password aging feature is disabled (default).

Privileged logins are listed first in the report, followed by general logins, maintenance logins, and then reports-only logins. Each category of logins is separated by a row of hyphens.

NOTE:
There are always three (and only three) privileged logins on the DDM-2000 system.
RELATED COMMANDS

set-lgn
set-secu
rtrv-secu
NAME

rtrv-link: Retrieve CIT Link Configuration

INPUT FORMAT

rtrv-link;

DESCRIPTION

This command displays the currently-provisioned parameters for the user’s craft interface link, as set by the set-link command. This includes the link which the user is logged into, the baud rate, and the page length of reports.

The baud rate is set by autobaud and is not a provisionable parameter.

The output report appears as follows:

```c
/* Interface Link Configuration Report
   ------------------------------------------------------------------------
   Link=link, PageLength (pg)/pg, Baud=baud (auto)
   */
```

The output parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>Link identifies the CIT link from which the command was executed and may have the following values:</td>
</tr>
<tr>
<td>cit-1</td>
<td>This indicates the front-access port.</td>
</tr>
<tr>
<td>dcc-x</td>
<td>A SONET DCC port used for remote access (dcc-m).</td>
</tr>
<tr>
<td>PageLength</td>
<td>This is the number of lines displayed in one page of a report. Reports with a number of lines greater than one page will be paged.</td>
</tr>
</tbody>
</table>
Baud
Baud identifies the data rate for this link. The CIT data rate is automatically set to agree with the terminal or workstation connected to the link. The (auto) after the data rate indicates that the data rate is set by the autobaud routine on the SYSCTL circuit pack. After connecting to the CIT port, press <enter><enter> or <CR><CR> (double carriage return) or "AA" or "aa" to allow the system to automatically set its baud rate to the rate of the terminal or workstation attached to the port.

RELATED COMMANDS

- set-link
- rtrv-ne
NAME
rtrv-map-neighbor: Retrieve Neighbor Map

INPUT FORMAT
rtrv-map-neighbor;

DESCRIPTION

▌ NOTE:
This command page describes the functionality of the
rtrv-map-neighbor command in FiberReach Release 3.0 and later
FiberReach TARP releases.

This command displays the immediate DCC neighbors that are reachable by the
local Network Element (NE).

The TIDs included in this report are always determined by real-time TARP
NSAP-to-TID queries, even if TARP Data Cache is enabled.

▌ NOTE 1:
Network Elements provisioned as neighbors through TARP Manual
Adjacency are not listed as neighbors in this report. This information can
be obtained through the rtrv-ulsdcc report.

▌ NOTE 2:
Adjacent NEs provisioned as Level 1 ISs across multiple Level 1 areas will
not be listed as neighbors in this report.

For more explanation on the Level 1 and Level 2 routing and the IS/ES
terminology, refer to 824-102-144, Lucent Technologies 2000 Product Family
The following is an example report under normal conditions and it is applicable to FiberReach Release 3.0 and later:

```c
/* Neighbor Map for local_system

<table>
<thead>
<tr>
<th>TID</th>
<th>Connected Thru</th>
<th>Product Type</th>
<th>Level 2 IS NSAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>local_system</td>
<td>FiberReach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 840F 80 000000 0000 0000 0000 08006a1ad06e 00</td>
<td>main-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site3NE1</td>
<td>39 840F 80 000000 0000 0000 0000 00000e3a0273 00</td>
<td>main-2</td>
<td></td>
</tr>
<tr>
<td>Site7NE1</td>
<td>39 840F 80 000000 0000 0000 0000 08006a1ad07f 00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*/
```

Note that the NSAP value is part of the same line as the other reported information, but it is wrapped around based on an 80-column screen width.

NOTE 1:

If Multiple Area Addresses have been provisioned at any other NE in the local NE’s area, and a TARP NSAP-to-TID translation for a remote NE is successfully completed, this report will only list the information corresponding to the primary NSAP of the remote NE. A remote NE’s primary NSAP is the NSAP for which the remote NE responds successfully to an NSAP-to-TID TARP query.

NOTE 2:

In the event Multiple Area Addresses are used for an NE in the local NE’s area, and none of the TARP NSAP-to-TID queries were successful, this report will list each of the possible NSAPs (each NSAP corresponding to one of the multiple Area Addresses) for the remote NE, along with a “?” displayed in the TID column.

The local NE is listed first in the report. The rest of the entries are sorted by channel number or Connected Through Address.

The output report contains two lines for each neighbor system with which the local NE is communicating via SONET section DCC.
Starting with FiberReach Release 3.1, a new output parameter, `DCC` is added to the report. This parameter is used to indicate whether DCC communication between two neighboring network elements (in two neighboring Level 1 areas) is functional or not. This parameter is populated also, if at least one of those two neighboring ISs is not a Level 2 IS.

Also when the local NE is a Level 1 IS and its neighbor is in a different area, the value of "?" is expected for Level 2 IS output parameter.

As a result, the output report will look as the following:

```plaintext
/* Neighbor Map for local_system
---------------------------------------------------------------
TID    Connected Thru  Product Type  Level 2 IS  DCC
NSAP
---------------------------------------------------------------
local_system    FiberReach
  39 840F 80 000000 0000 0000 0000 0000e3a0273 00
  Site3NE1       main-1
  39 840F 80 000000 0000 0000 0000 0000e3a0273 00
  Site7NE1       main-2
  39 840F 80 000000 0000 0000 0000e3a0273 00
*/
```

Note that the NSAP value is part of the same line as the other reported information, but it is wrapped around based on an 80-column screen width.

The output report parameters are:

TID
This column contains the TID of the local NE and its direct DCC.

Any time the local NE is unable to determine the TID for its neighbor's NSAP, this report will indicate this by showing a "?" in the TID column.

Connected Through
This column contains the address of the optical lines through which the local NE is directly connected to the NE identified in the TID column. When the main ring interface is provisioned for the identical DCC mode using the `set-oc3` or `set-oc12` command the Connected Through Address is `main`.

NOTE:
In the event of a DCC link failure between the local NE and its immediate neighbor occurs, the line corresponding to this NE will be removed from the report.
<table>
<thead>
<tr>
<th>Product Type</th>
<th>This is the product type of the local NE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2 IS</td>
<td>This column identifies whether the listed Network Element is provisioned as a Level 2 IS. Possible values are: "Y" or ".". FiberReach Release 3.0 NEs cannot be provisioned as Level 2 ISs. Starting with FiberReach Release 3.1, this parameter can have the value of "?" in cases where the local NE is a Level 1 IS and its neighbor is in a different area; as a result, the output value "?" would be expected for this parameter (i.e., the neighbor's Level in such cases cannot be determined).</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the local NE is a Level 2 IS and its neighbor is in a different area, the local NE is expected to know if its neighbor is a Level 2 IS, otherwise the local NE can deduce that the neighbor is a Level 1 IS.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This new parameter can highlight potential provisioning errors, and reporting the neighbor's NSAP can help identify the needed corrections (e.g., when the local NE is a Level 1 IS and its neighbor is in a different Level 1 area, DCC will be equal to "NO").</td>
</tr>
<tr>
<td>DCC</td>
<td>This output parameter is available starting with FiberReach Release 3.1 and it is used to indicate whether DCC communication between two neighboring network elements (in two neighboring Level 1 areas) is functional or not. This parameter can have either of two values: "NO" indicating that DCC communications is not really functional. A blank " " indicates that DCC communications is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This new parameter can highlight potential provisioning errors, and reporting the neighbor's NSAP can help identify the needed corrections (e.g., when the local NE is a Level 1 IS and its neighbor is in a different Level 1 area, DCC will be equal to "NO").</td>
</tr>
<tr>
<td>NSAP</td>
<td>The NSAP address is a 20-byte (40-character) address required by OSI to provide unique identification within the OSI network and consists of a number of fields, some of which are pre-defined and some of which are user-settable. The structure of the NSAP is shown in the following display.</td>
</tr>
</tbody>
</table>
NSAP Structure

<table>
<thead>
<tr>
<th>NSAP Field:</th>
<th>AFI</th>
<th>IDI</th>
<th>IDI PAD</th>
<th>DFI</th>
<th>Organization ID</th>
<th>RES</th>
<th>RD</th>
<th>Area</th>
<th>Sys. Id.</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Default Value: (hex)</td>
<td>39</td>
<td>840</td>
<td>F</td>
<td>80</td>
<td>000000</td>
<td>0000</td>
<td>0000</td>
<td>none</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not provisionable</td>
<td>user provisionable</td>
<td>not provisionable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The different fields that make up the NSAP address are separated by a single space in the report. For more information on the NSAP’s individual fields, refer to the `ent-ulsdcc` command page.

RELATED COMMANDS

rtrv-map-network
NAME

rtrv-map-network: Retrieve Network Map

INPUT FORMAT

rtrv-map-network;

DESCRIPTION

NOTE:
This command page describes the functionality of the rtrv-map-network command in FiberReach Release 3.0 and later FiberReach TARP releases.

This command displays all Network Elements (NEs) in the same Level 1 area that are reachable by the local NE through the DCC.

The TIDs included in this report are always determined by real-time TARP NSAP-to-TID queries, even if TARP Data Cache is enabled.

The following is an example output report:

```
/* Network Map for local_system
===========================================
TID        Product Type  Level 2 IS
NSAP
===========================================
local_system  FiberReach
  39 840F 80 000000 0000 0000 0000 08006adad06e 00
Site3NE1  39 840F 80 000000 0000 0000 0000 00000e3a0273 00
Site7NE1  39 840F 80 000000 0000 0000 0000 08006ada07f 00
*/
```

Note that the NSAP value is part of the same line as the other information, but is wrapped around based on an 80-column screen width.

The local NE is listed first in the report. The rest of the entries are sorted by TID.
The output report parameters are:

TID

This column contains the TID of the local and remote NEs in the subnetwork.

Any time the local NE is unable to determine a TID for a reachable NSAP, the network map report indicates this by showing a "?" in the TID column.

> NOTE:

When "?" is displayed in the report, it will always appear, along with the related information at the end of the report.

Product Type

This is the product type of the local NE (for example, DDM-2000 OC-3).

Level 2 IS

This column identifies whether the listed NE is the default Level 2 IS. If local NE is a Level 2 IS, this will be indicated by "Y" under this column. Possible values are: "Y" or " ". The blank indicates a non-Level 2 IS (Level 1 NE). FiberReach Release 3.0 NEs cannot be provisioned as Level 2 ISs.

NSAP

The NSAP address is a 20-byte (40-character) address required by OSI to provide unique identification within the OSI network and consists of a number of fields, some of which are pre-defined and some of which are user-settable. The structure of the NSAP is shown in the following display.

NSAP Structure

<table>
<thead>
<tr>
<th>NSAP Field:</th>
<th>AFI</th>
<th>IDI</th>
<th>IDI PAD</th>
<th>DFI</th>
<th>Organization ID</th>
<th>RES</th>
<th>RD</th>
<th>Area</th>
<th>Sys. Id.</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>Default Value: (hex)</td>
<td>39</td>
<td>840</td>
<td>F</td>
<td>80</td>
<td>000000</td>
<td>0000</td>
<td>0000</td>
<td>none</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not provisionable</td>
<td>user provisionable</td>
<td>not provisionable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on the NSAP’s individual fields, refer to the `ent-ulsdcc` command page.

The report lists the different fields that make up the NSAP address separated by a single space.

If some NEs that have duplicate TIDs were found in the same subnetwork, they will both be reported in the report.
If an NE becomes isolated, and if the user were to run this report while this condition still exists, the isolated NE would no longer be listed in the report; only NEs that are reachable by the local NE are listed.

⃣> NOTE 1:
If Multiple Area Addresses have been provisioned at any other NE in the local NE’s area, and a TARP NSAP-to-TID translation for a remote NE is successfully completed, this report will only list the information corresponding to the primary NSAP of the remote NE. A remote NE’s primary NSAP is the NSAP for which the remote NE responds to an NSAP-to-TID TARP query.

⃣> NOTE 2:
In the event Multiple OSI Network Layer Area Addresses have been provisioned at any other NE in the local NE’s area, and none of the TARP NSAP-to-TID queries were successful, this report will list each of the possible NSAPs (each NSAP corresponding to one of the multiple Area Addresses) for the remote NE, along with a "?" displayed in the TID column.

RELATED COMMANDS

rtrv-map-neighbor
NAME

rtrv-ne: Retrieve Network Element

INPUT FORMAT

rtrv-ne;

DESCRIPTION

NOTE:
This command page describes the functionality of the rtrv-ne command in FiberReach Release 3.0 and later FiberReach TARP releases.

This command displays the information that is provisioned by the set-ne command and set by switches on the SYSCTL pack.

For FiberReach Release 3.1 and earlier, the output report appears as follows:

```
/* System Provisioning Report
   =========================================================================
   TID=system_name
   IDLE=ais/unequipped
   CO/RT Selector=location
   Product=value  (hw)
   */
```
Starting with FiberReach Release 4.0, the output report appears as follows:

```c
/* System Provisioning Report

TID=system_name
GNE=not active/limited
RneStat=enabled/disabled
Alarm Group=number
AGNE=yes/no
AGNE Address=TID1
AGNE Address=TID2 ****entry if more AGNEs exist****
IDLE=ais/unequipped
CO/RT Selector=location
Product=value (hw)
Dormant_Release=dormant_release(nesw/iansw)
Apply:Action=action Schedule:Date=date Time:time
*/
```

The output parameters are:

TID
This is the system name, indicated by a string of up to 20 alphanumeric characters. The default value for TID is "LT-DDM-2000". The TID must be unique for each element in a subnetwork.

GNE
This parameter is valid starting with FiberReach Release 4.0. The GNE field is used to identify whether this system is the gateway network element (GNE), providing TL1 interface. It has a value of either limited or not active (default).

A Network Element is considered a "limited" GNE if

- CIT-1 is provisioned with porttype of tl1

If this is not true, the Network Element is considered to be a "not active" GNE.

RneStat
This parameter is valid starting with FiberReach Release 4.0. Remote NE Status (feature) can have a value of enabled or disabled. If this parameter has a value of enabled, the Alarm Group and AGNE will be displayed, as well as the other parameters; otherwise the Alarm Group and AGNE are not displayed.

Alarm Group
This parameter is valid starting with FiberReach Release 4.0. Alarm Group (AG) has a numeric value of 1 through 255. All NEs in the subnetwork, whether nearby or not, that have the same AG number are members of the same group. All members of the AG will share NE Status information with each other but not with NEs of different alarm Groups. The default AG number for DDM-2000 is 255 and may not have to be changed if a single AG is desired.
This parameter is valid starting with FiberReach Release 4.0. AGNE (Alarm Gateway NE) has a value of yes or no, which indicates whether this system is an alarm gateway network element. The default value for this parameter is no. One AGNE is needed for each alarm group to support the message communications for NE Status features (FE activity, office alarms, miscellaneous discrete, local ACO, and FE user panel status). Any member of the alarm group can be an AGNE but some may be preferred because of their position in the subnetwork or location near a maintenance center. Other NEs of the same alarm group may be provisioned as backup AGNEs if required. At least one NE in each alarm group must be designated as an AGNE. NEs without an AGNE would raise "AGNE communication failure" alarms (if Remote NE Status feature is enabled).

AGNE Address This parameter is valid starting with FiberReach Release 4.0. The AGNE Address is the target identifier (TID) of the AGNE for this alarm group. It can be the TID of this NE or any other NE in the alarm group. More than one NE can be an AGNE for backup reasons. If more than one AGNE exists for this alarm group, it is also listed here. AGNE Addresses for NEs in other alarm groups are not listed here. If an AGNE is not defined, this parameter is left blank.

IDLE If value is aias, the system will insert an Alarm Indication Signal toward the SONET line when channels are not cross-connected or not equipped with path terminating equipment. If value is unequipped, the system will insert the unequipped signal toward the SONET line when channels are not cross-connected or not equipped with path terminating equipment.

CO/RT Selector The CO/RT Selector identifies either a central office (CO) shelf or a remote terminal (RT) shelf to control the operation of the miscellaneous discrete points and fan control relays.
Product

Product is a keyword that is set by switches on the BBG8 SYSCTL and the value of the SHELFID pin (DDM shelf or ARM shelf) of the backplane to identify the product to be supported.

DDM-2000 OC-3
The shelf is part of a DDM-2000 network. The software also checked for the OHCTL and determined that the product is OC-3 (BBG9 or BBG10).

DDM-2000 OC-12
The shelf is part of a DDM-2000 network. The software also checked for the OHCTL and determined that the product is OC-12 (BCP4).

SLC-2000 ARM
The shelf is part of a SLC®-2000 Access System ARM network. The software also checked for the OHCTL and determined that the product is OC-3 (BBG9 or BBG10).

DDM-2000 FiberReach
The shelf is part of a FiberReach network. The OHCTL is not a part of the shelf.

Dormant_Release

This parameter is reported starting with FiberReach Release 4.0. If a dormant software generic or release is currently stored by the network element, this parameter will report the release number in the form XX.XX.XX.
Apply

Action This parameter is reported starting with FiberReach Release 4.0. If a dormant software generic is currently stored by the network element, and the apply command is scheduled for program installation with Action=install on Date=date and Time=time, the date is reported as a 6 digit YYMMDD, and time as HH:MM:SS

If no program installation is scheduled yet, a blank " " is reported under Action. Date and time will report blank " " values also (example: Date= Time=)

If a dormant software generic is currently stored by the network element, and the apply command is scheduled with Action=cancel, a blank " " is reported for Action. Date and time will report blank " " values also (example: Date= Time=)

Schedule

Date This parameter is reported starting with FiberReach Release 4.0. If the apply command is scheduled for program installation with Action=install on Date=date. This parameter is reported as a 6 digit YYMMDD.

Time This parameter is reported starting with FiberReach Release 4.0. If the apply command is scheduled for program installation with Action=install. This parameter is reported as HH:MM:SS

RELATED COMMANDS

rtrv-map-network
set-ne
NAME

rtrv-oc1: Retrieve OC1

INPUT FORMAT

rtrv-oc1[:Address];

DESCRIPTION

This command displays the configuration of OC-1 line(s), as set by the set-oc1 command.

The input parameter is as follows:

Address

Address identifies the OC-1 line(s). The default is all.

Valid OC-1 Addresses: all, main-{1,2,all}

The output report appears as follows:

/* OC-1 Line Provisioning Report
==
<table>
<thead>
<tr>
<th>Line Address</th>
<th>Signal Degrade</th>
<th>AIS Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>address n</td>
<td>alm</td>
<td></td>
</tr>
<tr>
<td>address n</td>
<td>alm</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
*/

The output parameters are:

Line Address Address of the OC-1 line.

Signal Degrade Threshold

This is the bit error rate (BER) threshold shown as a logarithm to the base 10. The value of n is an integer with a range of -5 through -9 corresponding to BERs of 10^{-5} through 10^{-9}, respectively.
aisalm

This parameter appears in release 2.1 and later. It indicates the provisioned alarm level of the NSA OC-1 line AIS and has the following values:

- cr: Critical alarm
- mj: Major alarm
- mn: Minor alarm
- na: Not alarmed, but reported (default).

RELATED COMMANDS

set-oc1
NAME

rtrv-oc3: Retrieve OC3

INPUT FORMAT

rtrv-oc3[:Address];

DESCRIPTION

This command displays the configuration of OC-3 lines, as set by the set-oc3 command.

⇒ NOTE:

This command is available with FiberReach 3.1 and later releases, using the 28-type OLIU circuit pack.

The input parameter is as follows:

Address identifies the OC-3 line(s). The default is all. If the shelf is equipped with 28-type OLIUs in Main unit slots (starting with FiberReach Release 3.1), the valid addresses are: all, main-(1,2,all)

If the shelf is equipped with 28-type OLIUs in Main unit slots and 22-type OLIUs in Function unit slots (starting with FiberReach Release 3.1), the valid Function unit addresses are:

fn-(1,2,all)

When the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach Release 3.1 and later releases) or equipped with 22-type OLIUs in function unit slots (in FiberReach Release 3.1 and later), the output report appears as follows:

/* OC-3 Line Provisioning Report

Line Signal Degrate Optical Sync AIS
Address Threshold Power (hw) Message Alarm

address n x message alm
address n x message alm
 : : : :
 : : : :
*/
For FiberReach Release 4.0 and later releases, the output report appears as follows:

```c
/* OC-3 Line Provisioning Report
===============================================================================
<table>
<thead>
<tr>
<th>Line Address</th>
<th>Signal Degradation</th>
<th>Sync</th>
<th>AIS</th>
<th>DCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>n</td>
<td>message</td>
<td>alm</td>
<td>dccmode</td>
</tr>
<tr>
<td>address</td>
<td>n</td>
<td>message</td>
<td>alm</td>
<td>dccmode</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
*/
```

The output parameters are:

- **Line Address**: Address of the OC-3 line.
- **Signal Degradation**: Threshold
 - This is the bit error rate (BER) threshold shown as a logarithm to the base 10. The value of \(n \) is an integer with a range of -5 through -9, corresponding to BERs of \(10^{-5} \) through \(10^{-9} \), respectively.
- **Sync Message**: Starting with FiberReach Release 3.1 (when equipped with 28-type OLIUs in Main unit slots), this parameter indicates the type of synchronization messaging that has been provisioned for that OC-3 optical interface by the `set-oc3` command. The valid values for this parameter are `Kbyte` (default value), `Sbyte`, and `disabled`. The sync messages use the K2 byte or the S1 byte in the SONET line overhead to determine synchronization quality.
AIS Alarm

This parameter specifies the alarm level of a non-service-affecting OC-3 line AIS failure condition. The valid values are:

- cr Critical alarm
- mj Major alarm
- mn Minor alarm
- na Not alarmed, but reported (default).

DccMode

This parameter specifies whether the OC-3 interface is configured for interworking with a ring or 1+1 interface. There are two valid values for this parameter, distinct (default) or identical. When configured for distinct a separate DCC data link (SONET embedded over head channel) is assigned to each OC-3 line in the pair. This is the configuration that supports ring interworking. To allow the OC-3 ring interface to interconnect to a 1+1 OC-3 interface at the far-end, the DccMode should be set to identical.

In this configuration the same DCC channel is transmitted on both OC-3 lines, and the K-bytes are configured for the 1+1 protection mode to prevent the far-end from initiating an APS channel alarm. The DccMode parameter is only applicable to the Main OC-3 interface in R4.0 and later. Assignment of this parameter always affects both OC-3 lines.

A "-" in this column indicates that DccMode is not settable for the specified Address.

RELATED COMMANDS

rtrv-sync
NAME
rtrv-oc12: Retrieve OC12

INPUT FORMAT
rtrv-oc12[:Address];

DESCRIPTION
This command displays the configuration of OC-12 lines provisioned by the set-oc12 command. For FiberReach, this command is available starting with Release 4.0.

The input parameter is as follows:

Address Address identifies the OC-12 line(s). The default is all.

If the FiberReach shelf is equipped with 29-type OLIUs in its Main unit slots, the valid addresses are:
all (default), main-{1, 2, all}

NOTE:
If slot 1 and 2 are equipped with different pack types (for example, during an upgrade), this report will include data for what is considered at the time as the valid system pack type.

For and later ring releases, The output report appears as follows:

/* OC-12 Line Provisioning Report
===
| Line | Signal | Degrade | Sync | AIS | DCC |
| Address | Threshold | Message | Alarm | Mode |
===
address -n message alm dccmode
address -n message alm dccmode
... ...
*/

The DCC Mode parameter is applicable to FiberReach Release 4.0 and later releases.
The output parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Address</td>
<td>Address of the OC-12 line.</td>
</tr>
<tr>
<td>Signal Degraded</td>
<td>Threshold: This is the bit error rate (BER) threshold as a logarithm to the base 10. The value of (n) is an integer with a range of -5 through -9 corresponding to BERs of (10^{-5}) through (10^{-9}). If a slot is empty or equipped with something other than an OC-12 optical unit, a hyphen (-) will appear in this column.</td>
</tr>
<tr>
<td>Sync Message</td>
<td>For FiberReach Release 4.0 and later ring releases, this parameter indicates the type of synchronization messaging that has been provisioned for that OC-12 optical interface by the <code>set-oc12</code> command. The valid values for this parameter are <code>Kbyte</code> (default value), <code>Sbyte</code>, and <code>disabled</code>. The sync messages use the K2 byte or the S1 byte in the SONET line overhead to determine synchronization quality.</td>
</tr>
<tr>
<td>AIS Alarm</td>
<td>This parameter specifies the alarm level of a non-service-affecting OC-12 line AIS failure condition. The valid values are <code>cr</code> Critical alarm, <code>mj</code> Major alarm, <code>mn</code> Minor alarm, <code>na</code> Not alarmed, but reported (default)</td>
</tr>
<tr>
<td>DccMode</td>
<td>This parameter specifies whether the OC-12 interface is configured to interwork with a ring or 1+1 application. There are two valid values for this parameter, <code>distinct</code> (default) or <code>identical</code>. When configured for <code>distinct</code> a separate DCC data link (SONET embedded over head channel) is assigned to each OC-12 line in the pair. This is the configuration that supports ring interworking. To allow the OC-12 interface to interconnect to a 1+1 OC-12 interface at the far-end, the DccMode should be set to <code>identical</code>. In this configuration the same DCC channel is transmitted on both OC-12 lines, and the K-bytes are configured for the 1+1 protection mode to prevent the far-end from initiating an APS channel alarm. The DccMode parameter is only applicable to the Main OC-12 interface in Release 4.0 and later. Assignment of this parameter always affects both OC-12 lines.</td>
</tr>
</tbody>
</table>
RELATED COMMANDS

- set-oc3
- set-oc12
NAME

rtrv-passwd: Retrieve Passwords

INPUT FORMAT

rtrv-passwd;

DESCRIPTION

This command displays the logins, passwords (in encrypted form), and user type for all logins in the system. This command should only be used to back up this information to an external workstation.

Additional workstation software and the rstr-passwd command will be used to re-create this information on the network element when a new controller is installed.

NOTE:

This command is available to privileged users only.

The output report appears as follows:

/* Password Provisioning Report
 ==
 Login : Password : User Type :
 ==
 ATT01:08:sdfsdt-g:privileged:
 ATT02:08:67&8#1g:privileged:
 ATT03:08:57s&8#1g:privileged:
 DDM-2000:07:kdsms5--:general:
 george:09:RVoc6*bQI:maintenance:
 pete:08:RTnu8*bB:reports-only:
 */

The output parameters are:

Login The login name established by the security administrator.
Password The length and current encrypted password selected by the user of the login.
User Type The access class assigned to this login by the security administrator.
RELATED COMMANDS

- rstr-passwd
- rtrv-lgn
- set-lgn
- set-passwd
NAME

rtrv-pm-line: Retrieve Performance Monitoring Line

INPUT FORMAT

rtrv-pm-line:Address;

DESCRIPTION

This command displays performance-monitoring data associated with the OC-1, OC-3 and OC-12 (with 29-type OLIUs in Main) lines terminated on the system. Starting with FiberReach Release 3.1, the OC-3 data is available when the Main unit slots are equipped with 28-type OLIU circuit packs.

The 29G-U OLIU circuit pack is available starting with Release 4.0

NOTE:

If Main slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the output report for this command will include data for what is considered at the time as the valid system pack type.

The input parameters are:

Address Address of the OC-1, OC-3 or OC-12 lines.
Valid OC-1 Line Addresses: all, main-{1,2,all}

When the shelf is equipped with 28-type OLIUs in Main (available in Release 3.1 and later), the valid OC-3 Line Addresses are:
all, main-{1,2,all}

When the shelf is equipped with 22-type OLIUs in the Function unit slots (available in Release 3.1 and later), the valid OC-3 Line Addresses for the Function unit slots are:
fn-{1,2,all}

When the shelf is equipped with 29-type OLIUs in Main (Release 4.0 and later), the valid OC-12 Line Addresses are:
main-{1,2,all}
The output report appears as follows:

```c
/* Line Performance Monitoring Status Report
   Last initialized: day registers at yy-mm-dd hh:mm:ss
   quarter hour registers at yy-mm-dd hh:mm:ss
==============================================================================
Time    Type A Type B
==============================================================================
address time nn... nn... nn... nn... nn... nn... nn...
        . . . . . . . .
-------------------------------------------------------------------------------------------------
address time nn... nn... nn... nn... nn... nn... nn...
        . . . . . . . .
*/
```

The output parameters are:

- **Address**: This column shows the address of the monitored signal.
- **Start Time**: This column indicates the time on the system clock when the data collection started.
- **B2 CV**: This parameter shows the number of coding violations for the data collection interval that started at the time reported in the previous column.
- **B2 ES**: This parameter shows the number of errored seconds in the data collection interval.
- **B2 SES**: This parameter shows the number of severely errored seconds.
- **B2 ESA**: This parameter shows the number of Type A errored seconds in the data collection interval. A Type A errored second is a second with a single error.
- **B2 ESB**: This parameter shows the number of Type B errored seconds in the data collection interval. A Type B errored second is a second with more than one error but less than the number of errors in a severely errored second. An OC-1 severely errored second contains 12 or more errors. An OC-3 severely errored second contains 32 or more errors. Starting with FiberReach Release 2.2 and 3.1, this is applicable to FiberReach, when the shelf is equipped with 28-type OLIU circuit packs in Main. An OC-12 severely errored second contains 124 or more errors.
- **B2 UAS**: This parameter shows the number of unavailable seconds.

NOTE:
Rows that are all zeros are not printed, except for the current day and current quarter, which are always printed.
A greater-than symbol (>) following a count indicates that the register has overflowed and that the indicated count is the register maximum.

A hyphen (-) indicates that the count for that parameter is not available due to a trouble condition.

A blank indicates that the report field does not apply.

A question mark (?) following a count indicates that the count includes data for less than the full counting interval. This may occur if a reset or set-date command is entered into the system or if the OLIU circuit pack is inserted or removed. If the count is both overflowed and incomplete, only the greater-than symbol (>) appears.

An asterisk (*) following a count for a parameter indicates that a threshold crossing has occurred for that parameter.

RELATED COMMANDS

init-pm
rtrv-pm-sect
rtrv-pm-tca
rtrv-pmthres-line
set-pmthres-line
NAME
rtrv-pm-sect: Retrieve Performance Monitoring Section

INPUT FORMAT
rtrv-pm-sect: Address;

DESCRIPTION
This command displays performance-monitoring data associated with the following:

- OC-3 optics (if the shelf is equipped with 28-type OLIUs in Main unit slots and/or 22-type OLIUs in the Function unit slots)
- OC-12 optics (if shelf is equipped with 29-type OLIUs in Main unit slots). The 29-type OLIUs are available starting with FiberReach Release 4.0
- STS-12 section (if shelf is equipped with 29-type OLIUs in Main unit slots)
- STS-1 section (within an OC-1 line, if the shelf is equipped with 26-type OLIUs in Main unit slots),
- STS-3 section (within an OC-3 line, if the shelf is equipped with 28-type OLIUs in Main unit slots, or 22-type OLIUs in the Function unit slots). The 28-type OLIUs are available in FiberReach 3.1 and later releases.

The 29G-U OLIU is available starting with Release 4.0.

\[\text{NOTE:}\]
If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the report will include data for what is considered at the time as the valid system pack type.

The input parameter is:

Address Address of the OC-1 (if the shelf is equipped with 26-type OLIUs in Main unit slots), OC-3 (if the shelf is equipped with 28G-U OLIUs in Main unit slots) or OC-12 (if shelf is equipped with 29-type OLIUs in Main unit slots) line(s). The address all may be used to retrieve all performance-monitoring information.

If the shelf is equipped with 26-type OLIUs in Main unit slots, valid OC-1 line addresses are: all, main-{1,2,all}

If the shelf is equipped with 28-type OLIUs in Main unit slots, valid OC-3 line addresses are: main-{1,2,all}

If the shelf is equipped with 29-type OLIUs in Main unit slots, valid OC-12 line addresses are: main-{1,2,all}

If the shelf is equipped with 28-type OLIUs in Main unit slots, and 22-type OLIUs in the Function unit slots, the valid OC-3 line addresses for the Function unit are: fn-{1,2,all}.
The output report appears as follows:

```plaintext
/* Section Performance Monitoring Status Report
   Last initialized: day registers at yy-mm-dd hh:mm:ss
   quarter hour registers at yy-mm-dd hh:mm:ss
   ===================================================
   Address Start Time
   ===================================================
   address time aaa
     . . .
     . . .
   --------------------------------------------------
   address time aaa
     . . .
     . . .
   */
```

The output parameters are:

- **Address**: This indicates the address of the OC-1 line (if the shelf is equipped with 26-type OLIUs in Main unit slots), OC-3 line (if the shelf is equipped with 28-type OLIUs in Main unit slots and/or 22-type OLIUs in the Function unit slots), or OC-12 line (if the shelf is equipped with 29-type OLIUs in Main unit slots).

- **Start Time**: This indicates the time on the system clock when the data collection started.

- **SEFS**: This column displays the number of severely errored frame seconds.

NOTE:

Rows that are all zeros or "no's" are not printed except for current day and current quarter hour, which are always printed.

A greater-than symbol (>) following a count indicates that the register has overflowed and that the indicated count is the register maximum.

A hyphen (-) indicates that the count for that parameter is not available due to a trouble condition or the parameter is not applicable for current equipage.

A blank indicates that the report field does not apply.

A question mark (?) following a count indicates that the count includes data for less than the full counting interval. This may occur if a `reset` or `set-date` command is entered into the system or if the OLIU circuit pack is inserted or removed. If the count is both overflowed and incomplete, only the greater-than symbol (>) appears.
An asterisk (*) following a count for a parameter indicates that a threshold crossing has occurred for that parameter.

RELATED COMMANDS

init-pm
rtrv-pm-line
rtrv-pm-tca
rtrv-pmthres-sect
set-pmthres-sect
NAME
rtrv-pm-sts1: Retrieve Performance Monitoring STS-1

INPUT FORMAT
rtrv-pm-sts1:Address;

DESCRIPTION
This command reports path performance-monitoring data associated with STS-1 signals terminating on the network element. For STS-1 cross-connections to non-ring interfaces, data is collected on the active path of the signals and only the active path is reported. For STS-1 cross-connections, path termination exists if one of the interfaces is not SONET (for example, a BBG4B DS3 interface).

For all VT1.5 cross-connections, there is an STS-1 path that is terminated. For OC-1, OC-3 and OC-12 ring interfaces, data is collected on both STS-1 ring paths and both paths are reported.

The input parameter is:
Address This parameter identifies the address of STS-1 channels. It is the address of the incoming STS-1 signal before it is cross-connected.

If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:
all, m(1,2)-1

If the shelf is equipped with 28-type OLIUs in Main unit slots, valid addresses are:
all, m(1,2)-(1-3,all)
(to 28G-U in Main slots with VT1.5 cross-connects)
all, m-(1-3,all)
(to 28G-U in Main slots with STS-1 cross-connects)
all, m(1,2)-(1-3,all)
(with BBG19 circuit packs in Function slots, and 28-type OLIUs in Main slots)

If the shelf is equipped with 29-type OLIUs in its Main unit slots, the valid addresses are:
all, {m1,m2}-(1-12,all)
(to OC-12 in Main with VT1.5 cross-connects. Also applicable to the BBG19 packs in Function Unit slots with Locked DS3 cross-connects).
all, m-(1-12,all)
(to OC-12 in Main from DS3 with STS-1 cross-connects).
{m1,m2}-1
(to OC-1 in Main with VT1.5 cross-connects. Also applicable to the BBG19 packs in Function Unit slots with Locked DS3 cross-connects).
all, m-(1,all)
(to OC-1 in Main from DS3 with STS-1 cross-connects).
The output report appears as follows:

/* STS-1 Path Performance Monitoring Status Report
 Last initialized: day registers at yy-mm-dd hh:mm:ss
 quarter hour registers at yy-mm-dd hh:mm:ss
 ==
 Address Start B3 CV B3 ES B3 ES B3 ES B3 SES B3 UAS
 Time Type A Type B
 ==
 address time nn... nn... nn... nn... nn... nn...

 ==
 address time nn... nn... nn... nn... nn... nn...

 */

The output parameters are:

Address
This column shows the address of the monitored signal.

Start Time
This column indicates the time on the system clock when the data collection started.

B3 CV
This column shows the number of coding violations.

B3 ES
This column shows the number of errored seconds.

B3 ES Type A
This column shows the number of Type A errored seconds.
A Type A errored second is a second with a single error.

B3 ES Type B
This column shows the number of Type B errored seconds.
A Type B errored second is a second with more than one error but less than the number of errors in a severely errored second.

B3 SES
This column shows the number of severely errored seconds.
A severely errored second contains 9 or more errors.

B3 UAS
This column shows the number of unavailable seconds of service. A count of unavailable seconds begins after 10 consecutive severely errored seconds has occurred.
NOTE:

Rows that are all zeros are not printed except for current day and current quarter hour, which are always printed.

A greater-than symbol (>) following a count indicates that the register has overflowed and that the indicated count is the register maximum.

A hyphen (-) indicates that the count for that parameter is not available due to a trouble condition.

A blank indicates that the report field does not apply.

A question mark (?) following a count indicates that the count includes data for less than the full counting interval. This may occur if a reset or set-date command is entered into the system or if the DS3, EC1, OLIU circuit pack is inserted or removed. If the count is both overflowed and incomplete, only the greater-than symbol (>) appears.

An asterisk (*) following a count for a parameter indicates that a threshold crossing has occurred for that parameter.

RELATED COMMANDS

init-pm

rtrv-pm-tca

rtrv-pmthres-sts1

set-pmthres-sts1
NAME
rtrv-pm-t1: Retrieve Performance Monitoring T1

INPUT FORMAT
rtrv-pm-t1:Address;

DESCRIPTION
This command displays the parameter data associated with one or more DS1 signals passing through the system and is available only if the DS1 performance monitoring feature is set via the set-feat command.

Quarter-hour registers are available for DS1 PM, in addition to daily registers.

The input parameter is:
Address Address is the address of DS1 or T1 ports.
Valid Addresses (1x1 protected systems):
 all, {a,b,c,d}-1-{1-4,all}
Valid Addresses (1x7 protected systems):
 all, {a,b,c}-{1,2}-{1-4,all}
 d-1-{1-4,all}

The BBF6 circuit pack supports 2 T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid. Specifying all selects ports 1 and 2 only.

The output report appears as follows:

```/* DS1 Path Performance Monitoring Status Report
Last initialized: day registers at yy-mm-dd hh:mm:ss
================================================================================================
Address Start ES-L CV-P ES-P SES-P UAS-P
Time CV-PFE ES-PFE SES-PFE UAS-PFE
================================================================================================
address time n n n n n n
          n n n n n
```

...
The output parameters are:

Address: This shows the address of the DS1 or T1 signal.

Start Time: This indicates the time on the system clock when the data collection started.

ES-L: This indicates the number of errored second line (ES-L) counts during the data collection interval that started at the time reported in the second column.

CV-P: This indicates the number of path coding violations (CV-P) during the data collection interval that started at the time reported in the second column.

ES-P: This indicates the number of errored second path (ES-P) counts during the data collection interval that started at the time reported in the second column.

SES-P: This indicates the number of severely errored second path (SES-P) counts during the data collection interval that started at the time reported in the second column.

UAS-P: This indicates the number of unavailable second path (UAS-P) counts during the data collection interval that started at the time reported in the second column.

CV-PFE: This indicates the number of far-end path coding violations (CV-PFE) during the data collection interval that started at the time reported in the second column.

ES-PFE: This indicates the number of errored second path far-end (ES-PFE) counts during the data collection interval that started at the time reported in the second column.

SES-PFE: This indicates the number of severely errored second path far-end (SES-PFE) counts during the data collection interval that started at the time reported in the second column.

UAS-PFE: This indicates the number of unavailable second path far-end (UAS-PFE) counts during the data collection interval that started at the time reported in the second column.

NOTE 1:
There are two rows of output for each address. The first row reports ES-L and near-end parameters. The second row reports far-end parameters.

NOTE 2:
Rows that are all zeros are not printed except for current day, which is always printed.
NOTE 3:

Rows that are all zeros are not printed except for current quarter-hour and current day, which are always printed. Any rows containing partial counts will always be printed as well.

A greater-than symbol (>) following a count indicates that the register has overflowed and that the indicated count is the register maximum.

A hyphen (-) indicates that the count for that parameter is not available due to a trouble condition.

A blank indicates that the report field does not apply.

A question mark (?) following a count indicates that the count includes data for less than the full counting interval. This may occur if a reset or set-date command is entered into the system or if the DS1, or T1EXT circuit pack is inserted or removed. If the count is both overflowed and incomplete, only the greater-than symbol (>) appears.

An asterisk (*) following a count for a parameter indicates that a threshold crossing has occurred for that parameter.

This command may only be used if the ds1pm feature is enabled via the set-feat command. If this feature is not enabled, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Command not available, feature disabled */
```

If this command is entered on a DDM-2000 loaded with a release of software that does not currently support this feature, the following denial message will be displayed:

```
SSTP
/* Status, execution STopped */
/* Command not available in this release */
```
RELATED COMMANDS
 P init-pm
 rtrv-feat
 rtrv-pmthres-vt1
 set-feat
NAME

rtrv-pm-t3: Retrieve Performance Monitoring T3

INPUT FORMAT

rtrv-pm-t3: Address;

DESCRIPTION

This command displays performance-monitoring data associated with one or more DS3 signals passing through the system. This report is enhanced to display the performance monitoring data for the DS3 line and path incoming from the DSX-3, in addition to the previously displayed data for the DS3 path incoming from the fiber.

Starting with FiberReach Release 3.1, this command is allowed if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 29/26-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

The line and path PM data from the DSX-3, as well as all near-end and far-end C-bit parity PM data are available ONLY when a BBG4/BBG4B, BBG19 pack is active (in-service) in a function unit slot. When a function unit slot is equipped with one of these new circuit packs, the DS3 line performance monitoring data will always be displayed regardless of what type of mode the DS3 service has been provisioned for. If the clear channel (cc) mode is selected, the report will display the DS3 line PM data and dash lines (--) for both directions of all DS3 path PM data.

NOTE:

When using the BBG4B or BBG19 circuit pack, this report will show the total number of TCAs associated with DS3 path performance monitoring parameters incoming from the fiber and the DSX-3. The TCAs associated with DS3 line performance monitoring parameters are reported also for the BBG4B. Finally, C-bit parity for Near End or Far End are reported for the BBG4B as well.

When using the BBG4 circuit pack, this report will show the total number of TCAs associated with DS3 path performance monitoring parameters incoming from the fiber only.
The input parameters are:

Address Address of the DS3 signal(s).

Valid DS3 Port Addresses (BBG4/BBG4B): \(\{f, \text{all}\}\)

Valid DS3 Port Addresses (BBG19): \(\text{all}, \ f-\{1-2,\text{all}\}\)

The output report appears as follows:

```
/* DS3 Performance Monitoring Status Report
Last initialized:  day registers at yy-mm-dd hh:mm:ss
quarter hour registers at yy-mm-dd hh:mm:ss
===================================================================================================
<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Start</th>
<th>SEFS</th>
<th>CV</th>
<th>ES</th>
<th>SES</th>
<th>UAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>time</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>dsx-p</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>dsx-pfe</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>fiber-p</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>fiber-pfe</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>line</td>
<td>time</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>dsx-p</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>dsx-pfe</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>fiber-p</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>fiber-pfe</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>
===================================================================================================
```

The output parameters are:

Address This shows the address of the DS3 signal incoming from the DSX-3 or the fiber.

Type Direction This shows the type of the PM data (line, path, path far-end) and the direction from which the signal is received (dsx-3 or fiber).

Start Time This indicates the time on the system clock when the data collection started. The parameters are reported as a combination of their type and direction from which they are received. For line parameters, refer to CV-L, ES-L, and SES-L definitions. For dsx-p and fiber-p parameters, see SEFS, CV-P, ES-P, SES-P, and UAS-P definitions. For far-end dsx-pfe and fiber-pfe path parameters, refer to SEFS, CV-PFE, ES-PFE, SES-PFE, and UAS-PFE definitions.
CV-L This indicates the number of B3ZS coding violations occurring over the accumulation period for the DS3 signal incoming from the DSX-3.

ES-L This indicates the number of seconds with at least one B3ZS coding violation or LOS for the DS3 signal incoming from the DSX-3.

SES-L This indicates the number of seconds with greater than 44 B3ZS coding violations or LOS for the DS3 signal incoming from the DSX-3.

SEFS This indicates the number of out of frame seconds or AIS seconds for the DS3 signal incoming from the DSX-3 or the fiber.

CV-P This shows the number of P-bit, adjusted F&M bit, or C-bit parity coding violations for the DS3 signal incoming from the DSX-3 or the fiber.

ES-P This shows the number of path errored seconds for the DS3 signal incoming from the DSX-3 or the fiber.

SES-P This shows the number of path severely errored seconds for the DS3 signal incoming from the DSX-3 or the fiber. A severely errored second contains 44 or more errors.

UAS-P This shows the number of path unavailable seconds of service for the DS3 signal incoming from the DSX-3 or the fiber. A count of unavailable seconds begins after 10 consecutive severely errored seconds has occurred.

CV-PFE This shows the number of FEBE bits path coding violations at the far-end for a C-bit framed DS3 service that has been provisioned for cbit frame and cpbit format using the `set-t3` command. This applies to a DS3 signal incoming from the DSX-3 or the fiber.

ES-PFE This shows the number of far-end path errored seconds for a C-bit framed DS3 service that has been provisioned for cbit frame and cpbit format using the `set-t3` command. This applies to a DS3 signal incoming from the DSX-3 or the fiber.

SES-PFE This shows the number of far-end path severely errored seconds for a C-bit framed DS3 service that has been provisioned for cbit frame and cpbit format using the `set-t3` command. This applies to a DS3 signal incoming from the DSX-3 or the fiber. A severely errored second contains 44 or more errors.

UAS-PFE This shows the number of far-end path unavailable seconds for a C-bit framed DS3 service that has been provisioned for cbit frame and cpbit format using the `set-t3` command. This applies to a DS3 signal incoming from the DSX-3 or the fiber. A count of unavailable seconds begins after 10 consecutive severely errored seconds has occurred.
NOTE:

Rows that are all zeros are not printed except for current day and current quarter, which are always printed.

A greater-than symbol (>) following a count indicates that the register has overflowed and that the indicated count is the register maximum.

A hyphen (-) indicates that the count for that parameter is not available due to a trouble condition.

A blank indicates that the report field does not apply.

A question mark (?) following a count indicates that the count includes data for less than the full counting interval. This may occur if a `reset` or `set-date` command is entered into the system or if the DS3 circuit pack is inserted or removed, or a terminal or a facility loopback is established. If the count is both overflowed and incomplete, only the greater-than symbol (>) appears.

An asterisk (*) following a count for a parameter indicates that a threshold crossing has occurred for that parameter.

RELATED COMMANDS

- `init-pm`
- `rtrv-pm-tca`
- `rtrv-pmthres-t3`
- `set-pmthres-t3`
- `set-t3`
NAME

rtrv-pm-tca: Retrieve Performance Monitoring TCA

INPUT FORMAT

rtrv-pm-tca;

DESCRIPTION

This command displays the number of threshold crossing alerts (TCAs) associated with signals terminating in or passing through the system. A TCA occurs when a performance-monitoring counter exceeds a user-selected threshold.

▶ NOTE:

If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the output report for this command will include data for what is considered at the time as the valid system pack type.

The output report appears as follows:

```c
/* TCA Performance Monitoring Summary Report
==============================================================================
Address  Section  Line  STS-1  DS3  DS3
        Path  Path  Path
==============================================================================
address   n   n
address   n   n
address               n   n   n
address               n   n
==============================================================================
```

▶ NOTE:

Starting with FiberReach Release 3.1, the DS3 Path and DS3 Line columns apply, when the FiberReach shelf's Function unit slots are equipped with DS3 circuit packs.
If the `dslpm` feature is enabled (via the `set-feat` command), the following additional lines will appear in the TCA report:

<table>
<thead>
<tr>
<th>DS1 Address</th>
<th>DS1 Count</th>
<th>TCA Address</th>
<th>TCA Count</th>
<th>DS1 Address</th>
<th>DS1 Count</th>
<th>TCA Address</th>
<th>TCA Count</th>
<th>DS1 Address</th>
<th>DS1 Count</th>
<th>TCA Address</th>
<th>TCA Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
</tr>
<tr>
<td>.</td>
</tr>
</tbody>
</table>

If the `vtpm` feature is enabled (via the `set-feat` command), the following additional lines will appear in the TCA report:

<table>
<thead>
<tr>
<th>VT1.5 Address</th>
<th>VT1.5 Count</th>
<th>TCA Address</th>
<th>TCA Count</th>
<th>VT1.5 Address</th>
<th>VT1.5 Count</th>
<th>TCA Address</th>
<th>TCA Count</th>
<th>VT1.5 Address</th>
<th>VT1.5 Count</th>
<th>TCA Address</th>
<th>TCA Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
<td>address</td>
<td>count</td>
</tr>
<tr>
<td>.</td>
</tr>
</tbody>
</table>

The output report shows the address and type of parameters that are generating TCAs. Blanks in the report indicate that the output parameter does not apply for the specified address.

The output parameters are:

- **Address**
 - Address of the monitored signal. This can be the address of an OC-1 line (if the shelf is equipped with 26-type OLIUs in Main unit slots), OC-3 line (if the shelf is equipped with 28-type OLIUs in Main unit slots and/or 22-type OLIUs in the Function unit slots), OC-12 29-type OLIUs (Release 4.0) in Main unit slots, STS-1 channel or DS3 port.
 - When the shelf is equipped with BBG19 circuit packs in Fn slots, independent TCA counts are reported for each of the two STS-1 channels; one from each ring cross-connected to the BBG19 packs in the Function Units.
Section

This shows the total number of TCAs associated with section performance monitoring parameters (severely errored frame seconds).

Line

This shows the total number of TCAs associated with line performance monitoring parameters (B2 CV, B2 ES, B2 ES Type A, B2 ES Type B, B2 SES, B2 UAS, PSC,

STS-1 Path

This shows the total number of TCAs associated with STS-1 path performance monitoring parameters (B3 CV, B3 ES, B3 ES Type A, B3 ES Type B, B3 SES, or B3 UAS).

DS3

This shows the total number of TCAs associated with DS3 path performance monitoring parameters (severely errored frame seconds, P-bit, adjusted F&M bit, or C-bit parity CV-P, ES-P, SES-P, UAS-P) incoming from the fiber and the DSX-3.

The report will also show the total number of TCAs for DS3 line performance monitoring parameters (CV-L, ES-L, SES-L).

NOTE:

When using the BBG4B circuit pack, this parameter will show the total number of TCAs associated with DS3 path performance monitoring parameters incoming from the fiber and the DSX-3. The TCAs associated with DS3 line performance monitoring parameters are reported also for the BBG4B. Finally, C-bit parity for Near End or Far End are reported for the BBG4B as well.

When using the BBG4 circuit pack, this parameter will show the total number of TCAs associated with DS3 path performance monitoring parameters incoming from the fiber only.

For ports on the BBG4B or BBG4 (Starting with FiberReach Release 3.1; when the shelf is equipped with DS3 circuit packs in Fn) circuit packs, path and line TCAs for the DS3 signal incoming from the DSX-3 will be displayed with a port address (f) Path TCAs for the DS3 signal incoming from the fiber, will be displayed with a channel address; e.g, m-1 (OC-3 or FiberReach)

Independent TCA counts are reported for each of the two DS3 ports (f-1, f-2) in a function unit equipped with BBG19 DS3 circuit packs, and for each channel (m1-x, m2-x) connected to the ports.
<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1 Address</td>
<td>This column shows the address of the DS1 signal.</td>
</tr>
<tr>
<td>VT1.5 Address</td>
<td>This column shows the address of the VT1.5 signal.</td>
</tr>
<tr>
<td>TCA Count</td>
<td>This column indicates the total number of TCAs associated with the addressed signal.</td>
</tr>
</tbody>
</table>

RELATED COMMANDS

- init-pm
- rtrv-pm-line
- rtrv-pm-sect
- rtrv-pm-t3
- set-pmthres-line
- set-pmthres-sect
- set-pmthres-t3
NAME

rtrv-pm-vt1: Retrieve Performance Monitoring VT1.5

INPUT FORMAT

rtrv-pm-vt1:Address;

DESCRIPTION

This command displays the parameter data associated with one or more VT1.5 channels terminating on a DS1, DS1PM, or T1EXT circuit pack. This command is available only if the VT1.5 performance monitoring feature is set via the set-feat command.

NOTE:
If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the output report for this command will include data for what is considered at the time as the valid system pack type.

The input parameter is:

Address Address is the address of VT1.5 channels.

Valid Addresses: all

m-1-(1-7,all)-(1-4,all)
(For 26-type OLIUs in Main unit slots)

m-(1-3,all)-(1-7,all)-(1-4,all)
(For 28-type OLIUs in Main unit slots, Release 3.1 and later)

m-(1-12,all)-(1-7,all)-(1-4,all)
(For 29-type OLIUs in MAIN slots, starting in FiberReach Release 4.0).
The output report appears as follows:

```plaintext
/* VT1.5 Path Performance Monitoring Status Report
   Last initialized: day registers at yy-mm-dd hh:mm:ss
   quarter hour registers at yy-mm-dd hh:mm:ss
   Address Start   V5 ES  V5 SES  V5 UAS
   Time      -------------------------------------------------------------------------
               address  time  n    n    n
               address  time  n    n    n
               .     .     .    .    .
               .     .     .    .    .
   */
```

The output parameters are:

Address
This shows the address of the VT1.5 signal.

Start Time
This indicates the time on the system clock when the data collection started.

V5 ES
This indicates the number of VT1.5 errored seconds (ES) during the data collection interval that started at the time reported in the previous column.

V5 SES
This indicates the number of VT1.5 severely errored seconds (SES) during the data collection interval that started at the time reported in the previous column.

V5 UAS
This indicates the number of VT1.5 unavailable seconds (UAS) during the data collection interval that started at the time reported in the previous column.

NOTE:
Rows that are all zeros are not printed except for current day and current quarter, which are always printed.

A greater-than symbol (>) following a count indicates that the register has overflowed and that the indicated count is the register maximum.

A hyphen (-) indicates that the count for that parameter is not available due to a trouble condition.

A blank indicates that the report field does not apply.

A question mark (?) following a count indicates that the count includes data for less than the full counting interval. This may occur if a reset or set-date command is entered into the system or if the DS1, DS1PM, or T1EXT circuit pack is inserted or removed. If the count is both overflowed and incomplete, only the greater-than symbol (>) appears.
An asterisk (*) following a count for a parameter indicates that a threshold crossing has occurred for that parameter.

This command may only be used if the vtpm feature is enabled via the set-feat command. If this feature is not enabled, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpped */
/* Command not available, feature disabled */
```

If this command is entered on a DDM-2000 system loaded with a release of software that does not currently support this feature, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpped */
/* Command not available in this release */
```

RELATED COMMANDS

init-pm
rtrv-pmthres-vt1
NAME

rtrv-pmthres-line: Retrieve Performance Monitoring Threshold Line

INPUT FORMAT

rtrv-pmthres-line;

DESCRIPTION

This command displays the system’s current OC-1 (26-type), OC-3 (28-type), OC-12 (29-type) and/or (22-type) OLIUs line performance parameter thresholds, as set by the set-pmthres-line command. The 28-type OLIU circuit pack is available with Release 3.1 and later releases.

The 22-type OLIU circuit pack (in Function unit slots) is available with Release 3.1 and later releases.

The 29-type OLIU circuit pack is available starting with Release 4.0.

NOTE:

If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), this report will include data for what is considered at the time as the valid system pack type.

The output report appears as follows:

/* Line Performance Monitoring Thresholds Report
==
Parameter | Thresholds
| Quarter | Day
| Hour |
==
B2 Coding Violations OC12 (B2CVOC12) | n | n
B2 Coding Violations OC3 (B2CVOC3) | n | n
B2 Coding Violations OC1 (B2CVOC1) | n | n
B2 Errored Seconds (B2ES) | n | n
B2 Errored Seconds Type A (B2ESA) | n | n
B2 Errored Seconds Type B (B2ESB) | n | n
B2 Severely Errored Seconds (B2SES) | n | n
B2 Unavailable Seconds (B2UAS) | n | n
*/

The first column of the report contains the names of the line performance monitoring parameters. The second and third columns contain the quarter hour and day thresholds for each parameter. The output parameters are:

B2 Coding Violations OC12 This parameter displays the threshold values for the B2 coding violation counts for OC-12 lines.
B2 Coding Violations OC3
This parameter displays the threshold values for the B2 coding violation counts for OC-3 lines.

B2 Coding Violations OC1
This parameter displays the threshold values for the B2 coding violation counts for OC-1 lines.

B2 Errored Seconds
This parameter displays the threshold values for the B2ES count.

B2 Errored Seconds Type A
This parameter displays the threshold values for the B2ESA count.

B2 Errored Seconds Type B
This parameter displays the threshold values for the B2ESB count.

B2 Severely Errored Seconds
This parameter displays the threshold values for the B2SES count.

B2 Unavailable Seconds
This parameter displays the threshold values for the B2UAS count.

A parameter threshold of zero indicates that thresholding is disabled.
A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent bit error ratio (BER) of \(10^{-7}\).

RELATED COMMANDS
init-pm
rtrv-pm-line
rtrv-pm-tca
set-pmthres-line
NAME

rtrv-pmthres-sect: Retrieve Performance Monitoring Threshold Section

INPUT FORMAT

rtrv-pmthres-sect;

DESCRIPTION

This command displays the system’s current section performance parameter thresholds, as set by the set-pmthres-sect command.

The output report appears as follows:

/** Section Performance Monitoring Thresholds Report */

===

Parameter Thresholds
Quarter Day Hour

===

Severely Errored Frame Seconds (SEFS) n n

The output parameters are:

Severely Errored Frame Seconds

This parameter displays the threshold values for the SEFS count. A parameter threshold of zero indicates that the thresholding is disabled.

RELATED COMMANDS

init-pm
rtrv-pm-sect
rtrv-pm-tca
set-pmthres-sect
NAME

rtrv-pmthres-sts1: Retrieve Performance Monitoring Threshold STS-1

INPUT FORMAT

rtrv-pmthres-sts1;

DESCRIPTION

This command retrieves the system’s STS-1 path performance monitoring thresholds, as set by the set-pmthres-sts1 command.

The output report appears as follows:

/* STS-1 Path Performance Monitoring Thresholds Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarter</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Hour</td>
</tr>
<tr>
<td>B3 Code Violations (B3CV)</td>
<td>n</td>
</tr>
<tr>
<td>B3 Errored Seconds (B3ES)</td>
<td>n</td>
</tr>
<tr>
<td>B3 Errored Seconds Type A (B3ESA)</td>
<td>n</td>
</tr>
<tr>
<td>B3 Errored Seconds Type B (B3ESB)</td>
<td>n</td>
</tr>
<tr>
<td>B3 Severely Errored Seconds (B3SES)</td>
<td>n</td>
</tr>
<tr>
<td>B3 Unavailable Seconds (B3UAS)</td>
<td>n</td>
</tr>
</tbody>
</table>
* /

The first column of the report contains the names of the path performance monitoring parameters. The second and third columns contain the quarter-hour and day thresholds for each parameter. The output parameters are:

Quarter Hour This column contains the quarter-hour thresholds for each performance monitoring parameter.

Day This column contains the day thresholds for each performance-monitoring parameter.

B3CV This parameter shows the threshold for coding violations. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent Bit Error Ratio (BER) of 10^{-7}. A threshold of zero indicates that the thresholding is disabled.

B3ES This parameter shows the threshold for errored seconds.

B3ESA This parameter shows the threshold for type A errored seconds.

B3ESB This parameter shows the threshold for type B errored seconds.
B3SES This parameter shows the threshold for the number of severely errored seconds.

B3UAS This parameter shows the threshold for unavailable seconds of service.

RELATED COMMANDS

 init-pm
 set-pmthres-sts1
 rtrv-pm-sts1
 rtrv-pm-tca
NAME

rtrv-pmthres-t1: Retrieve Performance Monitoring Threshold T1

INPUT FORMAT

rtrv-pmthres-t1;

DESCRIPTION

This command displays the current DS1 path and line performance parameter thresholds set for a shelf by the set-pmthres-t1 command, and it is available only if the DS1 performance monitoring feature is set via the set-feat command.

The output report appears as follows:

/* DS1 Path Performance Monitoring Thresholds Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Thresholds</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quarter</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hour</td>
<td></td>
</tr>
</tbody>
</table>

Errored Seconds-Line (ESL) n n
Code Violations-Path SF (CVPBF) n n
Code Violations-Path ESP (CVPESF) n n
Errored Seconds-Path (ESP) n n
Severely Errored Seconds-Path (SESP) n n
Unavailable Seconds-Path (UASP) n n
Code Violations-Path Far End (CVPFE) n n
Errored Seconds-Path Far End (ESPFE) n n
Severely Errored Seconds-Path Far End (SESPFE) n n
Unavailable Seconds-Path Far End (UASPFE) n n
*/
The output parameters are:

Errored Seconds-Line This parameter shows the daily threshold for DS1 line errored seconds. Beginning with FiberReach Release 2.1, this parameter will also show the quarter-hour threshold value.

Code Violations-Path SF This parameter shows the daily threshold for DS1 path code violations for SF encoded paths. This parameter will also show the quarter-hour threshold value. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent bit error ratio (BER) of 10^{-7}.

Code Violations-Path ESF This parameter shows the daily threshold for DS1 path code violations for ESF encoded paths. This parameter will also show the quarter-hour threshold value. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent bit error ratio (BER) of 10^{-7}.

Errored Seconds-Path This parameter shows the daily threshold for DS1 path errored seconds. This parameter will also show the quarter-hour threshold value.

Severely Errored Seconds-Path This parameter shows the daily threshold for DS1 path severely errored seconds. This parameter will also show the quarter-hour threshold value.

Unavailable Seconds-Path This parameter shows the daily threshold for DS1 path unavailable seconds. This parameter will also show the quarter-hour threshold value.

Code Violations-Path Far End This parameter shows the daily threshold for DS1 path code violations at the far end. This parameter will also show the quarter-hour threshold value. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent bit error ratio (BER) of 10^{-7}.
Errored Seconds—Path Far End
This parameter shows the daily threshold for DS1 path errored seconds at the far end. This parameter will also show the quarter-hour threshold value.

Severely Errored Seconds—Path Far End
This parameter shows the daily threshold for DS1 path severely errored seconds at the far end. This parameter will also show the quarter-hour threshold value.

Unavailable Seconds—Path Far End
This parameter shows the daily threshold for DS1 path unavailable seconds at the far end. This parameter will also show the quarter-hour threshold value.

A threshold of zero indicates that thresholding is disabled.

A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent Bit Error Ratio (BER) of 10^n.

This command may only be used if the `ds1pm` feature is enabled via the `set-feat` command. If this feature is not enabled, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpPed */
/* Command not available, feature disabled */
```

If this command is entered on a DDM-2000 system loaded with a release of software that does not currently support this feature, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpPed */
/* Command not available in this release */
```
RELATED COMMANDS

rtrv-feat
set-feat
set-pmthres-t1
NAME

rtrv-pmthres-t3: Retrieve Performance Monitoring Threshold T3

INPUT FORMAT

rtrv-pmthres-t3;

DESCRIPTION

This command displays the system’s current DS3 performance parameter thresholds, as set by the set-pmthres-t3 command.

Starting with FiberReach Release 3.1, this command is allowed if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

NOTE:

When using the BBG4B or BBG19 circuit pack, this command will show the total number of TCAs associated with DS3 path performance monitoring parameters incoming from the fiber and the DSX-3. The TCAs associated with DS3 line performance monitoring parameters are reported also for the BBG4B. Finally, C-bit parity for Near End or Far End are reported for the BBG4B as well.

When using the BBG4 circuit pack, this command will show the total number of TCAs associated with DS3 path performance monitoring parameters incoming from the fiber only.

The output report appears on the following page.

NOTE:

All DS3 line parameters, in addition to DS3 C-bit parity and all other path parameters for the incoming signal from the DSX-3, are only applicable when a BBG4/BBG4B, BBG19 pack is active (in-service) in a function unit slot.
/* DS3 Performance Monitoring Thresholds Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarter</td>
</tr>
<tr>
<td></td>
<td>Hour</td>
</tr>
<tr>
<td></td>
<td>Day</td>
</tr>
<tr>
<td>Coding Violations-Line (CVL)</td>
<td>n</td>
</tr>
<tr>
<td>Errored Seconds-Line (ESL)</td>
<td>n</td>
</tr>
<tr>
<td>Severely Errored Seconds-Line (SESL)</td>
<td>n</td>
</tr>
<tr>
<td>Severely Errored Frame Seconds (SEFS)</td>
<td>n</td>
</tr>
<tr>
<td>P-bit Coding Violations-Path (PCV)</td>
<td>n</td>
</tr>
<tr>
<td>F&M bit Coding Violations-Path (FMCV)</td>
<td>n</td>
</tr>
<tr>
<td>C-bit Coding Violations-Path (CP)</td>
<td>n</td>
</tr>
<tr>
<td>Errored Seconds-Path (ESP)</td>
<td>n</td>
</tr>
<tr>
<td>Severely Errored Seconds-Path (SESP)</td>
<td>n</td>
</tr>
<tr>
<td>Unavailable Seconds-Path (UASP)</td>
<td>n</td>
</tr>
<tr>
<td>Severely Errored Frame Seconds-Far End</td>
<td>n</td>
</tr>
<tr>
<td>C-bit Coding Violations-Path Far End</td>
<td>n</td>
</tr>
<tr>
<td>Errored Seconds-Path Far End (ESPFE)</td>
<td>n</td>
</tr>
<tr>
<td>Severely Errored Seconds-Path Far End</td>
<td>n</td>
</tr>
<tr>
<td>Unavailable Seconds-Path Far End (UASPFE)</td>
<td>n</td>
</tr>
</tbody>
</table>

A threshold of zero indicates that thresholding is disabled.

The output parameters are:

CVL These parameters display the threshold for the coding violations count of the DS3 line B3ZS data. A negative value for this parameter indicates that the threshold is specified in terms of an equivalent bit error ratio (BER) of 10^n.

ESL These parameters display the threshold for the errored seconds count of the DS3 line with at least one B3ZS coding violation.

SESL These parameters display the threshold for the severely errored seconds count of the DS3 line with greater than 44 B3ZS coding violations.

SEFS These parameters display the threshold values for severely errored frame seconds. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.
PCV These parameters display the threshold for the DS3 P-bit coding violation counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent BER of 10^n.

FMCV These parameters display the threshold for the DS3 F&M bit coding violation counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent BER of 10^n.

CP These parameters display the threshold for the DS3 C-bit coding violation counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent BER of 10^n.

ESP These parameters display the threshold for the DS3 P-bit, adjusted F&M bit, or C-bit errored seconds counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

SESP These parameters display the threshold for the DS3 P-bit, adjusted F&M bit, or C-bit severely errored seconds counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

UASP These parameters display the threshold for the DS3 P-bit, adjusted F&M bit, or C-bit unavailable seconds counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

SEFSPE These parameters display the threshold values for the far-end DS3 C-bit severely errored frame seconds. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

CPFE These parameters display the threshold for the DS3 far-end C-bit coding violation counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent BER of 10^n.

These parameters display the threshold for the DS3 far-end C-bit errored seconds counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

These parameters display the threshold for the DS3 far-end C-bit severely errored seconds counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

These parameters display the threshold for the DS3 far-end C-bit unavailable seconds counts. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber.

RELATED COMMANDS

init-pm
rtrv-pm-t3
rtrv-pm-tca
set-pmthres-t3
set-t3
NAME

rtrv-pmthres-vt1: Retrieve Performance Monitoring Threshold VT1.5

INPUT FORMAT

rtrv-pmthres-vt1;

DESCRIPTION

This command displays the current VT1.5 path performance parameter thresholds set for a shelf by the `set-pmthres-vt1` command, and it is available only if the VT1.5 performance monitoring feature is enabled via the `set-feat` command.

The output report appears as follows:

```c
/* VT1.5 Path Performance Monitoring Thresholds Report

Parameter Thresholds
Quarter Day Hour

V5 Errored Seconds (V5ES) nnnn nnn
V5 Severely Errored Seconds (V5SES) nnnn nnn
V5 Unavailable Seconds (V5UAS) nnnn nnn
*/
```

In the report, a threshold of zero indicates that thresholding is disabled. A negative threshold value indicates that the coding violation threshold is specified in terms of an equivalent bit error ratio (BER) of 10^{-10}.

The output parameters are:

- **V5 Errored Seconds**
 - This parameter shows the quarter hour and daily threshold for VT1.5 errored seconds.

- **V5 Severely Errored Seconds**
 - This parameter shows the quarter hour and daily threshold for VT1.5 severely errored seconds.

- **V5 Unavailable Seconds**
 - This parameter shows the quarter hour and daily threshold for VT1.5 unavailable seconds of service.
This command may only be used if the \texttt{vtpm} feature is enabled via the \texttt{set-feat} command. If this feature is not enabled, the following denial message will be displayed:

\begin{verbatim}
SSTP
/* Status, execution STopped */
/* Command not available, feature disabled */
\end{verbatim}

If this command is entered on a DDM-2000 loaded with a release of software that does not currently support this feature, the following denial message will be displayed:

\begin{verbatim}
SSTP
/* Status, execution STopped */
/* Command not available in this release */
\end{verbatim}

RELATED COMMANDS

\begin{itemize}
 \item \texttt{rtrv-feat}
 \item \texttt{set-feat}
 \item \texttt{set-pmthres-vt1}
\end{itemize}
NAME

rtrv-secu: Retrieve Security

INPUT FORMAT

rtrv-secu;

DESCRIPTION

This command retrieves CIT and DCC ports security and timeout information.

Starting with FiberReach Release 3.0, this command will also report on the users who are currently logged into the Network Element via the CIT and DCC ports, as well as the users logged in to the NE via the X.25 PVCs and/or SVCs (only if local NE is a GNE). This X.25 section of the report will be displayed (in the TL1 section of the report) after the CIT and DCC information.

Starting with FiberReach Release 4.0, this command will report on the porttype of the addressed CIT port (whether used for TL1 or CIT access). The baudrate and echo (whether enabled or disabled) are reported as well.

For FiberReach Release 3.0, the output report appears as follows:

```plaintext
/* Port Security Configuration Report
==============================================================================
Access    Security   Timeout,   Active
 Link      lockout   minutes   User
==============================================================================
cit-1      lockout   0         LUC01
dcc        enabled   15        geol23
==============================================================================
TL1
---
Access    SNPA   Active
 Link      User
==============================================================================
dcc      user5
*/
```
For FiberReach Release 3.1 and later releases, the output report appears as follows:

```c
/* Port Security Configuration Report
===============================================================================
<table>
<thead>
<tr>
<th>Access</th>
<th>Active</th>
<th>Security</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>User</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>cit-1</td>
<td>user11</td>
<td>enabled</td>
<td>0</td>
</tr>
<tr>
<td>dcc</td>
<td>enabled</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>dcc</td>
<td>enabled</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
===============================================================================

For FiberReach Release 4.0 and later releases, the output report appears as follows:

```c
/* Port Security Configuration Report
===
<table>
<thead>
<tr>
<th>Access</th>
<th>Port</th>
<th>Baud</th>
<th>Echo</th>
<th>Active</th>
<th>Security</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>Type</td>
<td>Rate</td>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>cit-1</td>
<td>t11</td>
<td>9600</td>
<td>enabled</td>
<td>user11</td>
<td>enabled</td>
<td>0</td>
</tr>
<tr>
<td>dcc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>disabled</td>
<td>15</td>
</tr>
<tr>
<td>dcc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>user1</td>
<td></td>
</tr>
</tbody>
</table>
===
```

**NOTE:**
The top section of the report (CIT/DCC, and TL1 over CIT) and the bottom section (TL1 DCC) are separated by a dotted line.

The output parameters are:

**Access Link**
- Access link is the address of a CIT or DCC interface.
- Valid Addresses: **dcc, cit-1**
- Valid TL1 DCC Addresses (Starting with FiberReach Release 3.0):
  - **dcc** (when used for TL1 remote access to a non-GNE)

**Port Type**
- This parameter is available starting with FiberReach Release 4.0. It specifies whether the provisioned Address (**cit-1**) is being used for **t11** or **cit** application. If the value reported under Access Link is **cit-1**, the reported value for this parameter can be **t11** or **cit**. No
**porttype** parameter value is reported when the Access Link is dcc. This will be designated by a " " (blank).

**baudrate**
This parameter is available starting with FiberReach Release 4.0. It specifies the baudrate in which TL1 messages are received/transmitted. The values for this parameter are: **1200, 2400, 4800, 9600** (Default), and **19200**. This parameter is reported, only if Port Type is **t11**; otherwise a " " (blank) is reported.

**echo**
This parameter is available starting with FiberReach Release 4.0. It specifies whether the character entered needs to be echoed back. The reported values are: **enabled** (default) or **disabled**. This parameter is reported only if Port Type is **t11**; otherwise a " " (blank) is reported.

**Active User**
This parameter is available starting with FiberReach Release 3.0. This parameter reports on the user’s login id that is currently logged into the NE via the communication port identified by the Access Link column. If no user is currently logged in at the time of the report, this parameter is reported as a dash ("-").

**Security**
Security shows whether security is enabled, disabled, or in lockout state on the listed CIT or DCC port. The valid values are **enabled, disabled, or lockout**. When security is enabled, a user must enter a valid login and password to begin a session. When security is in **lockout state**, only a **privileged user** is permitted to access the system through the locked out CIT/DCC ports.

**Timeout**
This parameter shows the time duration, in minutes, before an inactive session is terminated on a specified CIT or DCC interface. If timeout is zero (0), then there is no timeout.
This section is available starting with FiberReach Release 3.0. This section of the report will list the users logged in to the NE via the TL1 dcc. Starting with FiberReach Release 3.1, this section of the report will be displayed in the second (bottom) section underneath the dotted line (-----), and it will include information on the addressed TL1 DCC information on the Active User. The TL1 title for this section will be eliminated starting with this release.

**NOTE:**
Starting with FiberReach Release 4.0, the top section of the report includes (CIT/DCC, and/or TL1 over CIT) information, and the bottom section includes (TL1 DCC). Both sections of the report are separated by a dotted line.

This section of the report will display the following columns:

**Access Link**
See earlier description.

**Active User**
This parameter is available starting with FiberReach Release 3.0. This parameter reports the login id for a user that is currently logged into the NE via the communication port identified by the Address column. If no user is currently logged in at the time of the report, this parameter is reported as a blank.

**RELATED COMMANDS**
- rtrv-lgn
- set-secu
NAME

rtrv-state-eqpt: Retrieve State Equipment

INPUT FORMAT

\[ rtrv-state-eqpt[:Address]; \]

DESCRIPTION

This command displays slot, port, and protection switching state information for the network element (NE).

\[ \Longrightarrow \text{NOTE:} \]

If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the report will include data for what is considered at the time as the valid system pack type.

The input parameter is:

Address

Address identifies one or more slots. The default is `all` for all slots in the system.

Valid FiberReach Addresses: `all`, `main-{1,2,all}`, `fn-{1,2,all}`, `ls-all`, `ls-{a,b,c,d}-{1,2,all}

The output report appears on the following page.

```
/* Equipment State Report
==
Address Circuit Port Switch Switch
Pack State(s) State Priority
==
address pack p s priority
address pack p s priority

==
address pack p s priority

address pack p s priority
*/
```

In the output report, slot types are separated by a row of dashes. Within each slot type, slots are listed in order of their addresses, with protection slots listed last. Slots for control circuit packs (SYSCTL, AUXCTL) are not listed in this report.
The output parameters are:

**Address**
Address is the address of a slot.

**Circuit Pack**
Circuit pack is the circuit pack name. A hyphen (-) means not applicable or not equipped.

**Port State(s)**
The state of the signal, from the DSX or T1 interface for DS-1, or DS-3 signals (starting with FiberReach Release 3.1, and when equipped with DS3 circuit packs in Function unit slots), is reported.

Port State (p) may be blank or have one of the following values:

- **i** (In-Service) In this state, the port is monitored for failures, and the appropriate alarm is generated if a failure is detected. To retire the alarm and transition the associated port to the auto state, the update function must be performed after the input signal is removed.

- **a** (Automatic) In this state, the port will automatically be put in-service if a good signal is detected. This state is not allowed for OC-N signals.

- **n** (Not Monitored) In this state, the signal is not monitored or alarmed. The port will not automatically go to the in-service state when a signal is detected.

- **—** Not applicable (not equipped).

The port state is always blank for timing circuits, for protection slots for 1x1 and 1xn protected circuit packs, and for OLIU circuit packs. Starting with FiberReach Release 3.1, the BBG19 (NMLI) circuit pack is supported. The BBG19 DS3 circuit pack is 0x1 protected and thus has independent port states for the service and protection slots. The port state is always a hyphen (-) for low-speed slots in the auto state.

**Switch State**
This indicates whether the circuit pack is active or standby, corresponding to the state of the protection switching relays. Switch state(s) may be one of the following:

- **active** Each OLIU in the main slots is feeding its ring channels incoming from the fiber to the other side for pass-through connections and is sending drop channels to the function units (starting with FiberReach Release 3.1) and/or low-speed slots. Some or all of the received ring channels incoming from this OLIU may be active. This can be determined using the `rtrv-state-path` command on this system. Some or all of the transmitted ring
channels outgoing to the fiber may also be active. 
This can be determined by using the `rtrv-state-path` command on all remote systems.

`active-fn` For a main OLIU slot, this means that the ring path protection switching is currently being done on this pack, and this pack is choosing each active ring channel from either ring and sending it to the function units (starting with FiberReach Release 3.1) and/or low-speed slots.

For other pack types, active means the signal is being transmitted and received from this pack. Even if the pack is removed, the slot will remain active unless there is a protection circuit pack that service can be switched to.

`standby` The circuit pack or optical line is not currently active.

— Not applicable or not equipped.

For ring applications because of pass-through connections, the switch state will always be active for both main OLIUs. For function units provisioned for

Switch Priority
Switch priority is the currently active protection switch request. Only a higher priority protection switch request can cause a protection switch to be done. For ring applications, the switch priority in this report applies only to the equipment switching of the main to function unit signals. See the `rtrv-state-path` command for path protection switching information.

**NOTE:**
For 1X1 or 1+1 protected packs, the Switch Priority is displayed for both packs. The Switch Priority displayed for one pack is displayed for the other. This priority is applicable starting with FiberReach Release 3.1, when the shelf is equipped with DS3 circuit packs in the Function unit slots.

Switch priority may be one of the following:

`inhibit` No protection switches will be done until the switch is reset.

`lockout of protection` This prevents access to the protection pack for the group.

`lockout of service` This prevents access to the protection circuit pack for the specified service slot.
forced  No automatic or manual switches will be done until the forced switch is reset.

APS-pack failure  Automatic protection switching has occurred due to a circuit pack failure.

APS-automatic lock  Traffic is forced and held onto the protection pack, unable to revert to the service pack until midnight. This occurs following four automatic switches from service to protection during a 10-minute interval.

manual  Traffic has been manually switched to protection.

—  No manual or automatic switch requests are active.

For ring applications, the switch priority in this report applies only to the equipment switching of the main OLIUs to low-speed slots, or main OLIUs to Function unit slots (when equipped with DS3 circuit packs in Function unit slots). See the **rtrv-state-path** command for path protection switching information.

The switch priority is always blank for protection slots, with one exception. For 1xn protected slots, the protected slot may have a switch priority of **lockout of protection**.

The state of the timing reference is reported in the **rtrv-sync** command.

**RELATED COMMANDS**

- rtrv-alm
- rtrv-state-path
- rtrv-sync
- set-state-t1
- set-state-t3
- switch-fn
- switch-ls
- switch-sync
- upd
NAME
rtrv-state-path: Retrieve State Path

INPUT FORMAT

\texttt{rtrv-state-path[:Address];}

DESCRIPTION

This command displays signal path state information for path-protected signals dropped at the network element (NE). To determine which of the transmitted ring channels outgoing to the fiber are active, it may be necessary to also use the \texttt{rtrv-state-eqpt} command on all remote systems.

Any application that is path protected is reported.

\begin{itemize}
  \item \textbf{NOTE:}
    \begin{itemize}
      \item If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), the report will include data for what is considered at the time as the valid system pack type.
    \end{itemize}
\end{itemize}

Any application that is path protected is reported.

The input parameter is:

\begin{itemize}
  \item \texttt{Address}
    \begin{itemize}
      \item In FiberReach systems, \texttt{address} is any connected VT1.5 path. The default is \texttt{all} for all paths in the system.
      \item If the shelf is equipped with 26-type OLIUs in Main unit slots, valid VT1.5 addresses are:
        \texttt{all, (m1,m2)-1-(1-7, all)-(1-4, all)}
      \item If the shelf is equipped with 26-type OLIUs in Main unit slots and DS3 circuit packs in the Function Unit slots (Release 4.0), valid STS-1 addresses are:
        \texttt{all, (m1,m2)-1}
      \item If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1, and later), the valid VT1.5 addresses are:
        \texttt{m(1,2)-(1-3, all)-(1-7, all)-(1-4, all), all}
      \item Starting with FiberReach Release 3.1, if the shelf is equipped with DS3 circuit packs in the Function unit slots, the valid STS-1 addresses for OC-3 are: \texttt{m(1,2)-(1-3, all), all}
      \item If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIUs in its Main unit slots, the valid VT1.5 Main addresses are:
        \texttt{m(1,2)-(1-12, all)-(1-7, all)-(1-4, all)}
      \item The valid STS-1 Main addresses are:
        \texttt{m(1,2)-(1-12, all)}
    \end{itemize}
\end{itemize}
The output report appears as follows:

```c
/* Path Protection Switch State Report
===
 Ring 1 Ring 2
Address Act APS Condition Address Act APS Condition
===
address x condition address x condition

*/
```

The output parameters are:

**Address**
The address is any VT1.5 or STS-1 (if equipped with DS3 circuit packs in the Function unit slots). The report always displays both the Ring 1 and Ring 2 addresses.

**Act**
This column indicates whether the associated Ring 1 path (receive into local main-1) [receive into local main-1 or fn-1 (Release 3.1 and later)] or Ring 2 path (receive into local main-2) Ring 2 path [receive into local main-2 or fn-2 (Release 3.1 and later)] is active.

This column may contain one of the following:

- **Y**: The path is provisioned as drop, and this side is active (path protection switching is allowed).
- **(blank)**: The path is provisioned as drop, and this side is in standby.

**APS Condition**
This column lists the condition that caused the automatic protection switch to occur and appears on the path where the condition was detected. (The manual protection switch request is not shown because the system is nonrevertive.) The condition may be one of the following:

- Signal failure
- Pack removal
- Pack failure
- Signal degrade

Only manual or automatic protection switch (APS) requests that are higher priority than the currently active requests will cause a protection switch to occur. Currently, only the manual protection switch request is allowed, and because it is a lower priority than the APS
requests, only APS requests will appear in the report. The APS conditions will remain active while the condition that caused the switch still exists. When that failure clears, the APS condition is changed to blank if no other APS requests exist.

NOTE:
Whenever a VT1.5 cross-connection is made, the STS-1 path is actually terminated. When an STS-1 address is entered, this command does not report any STS-1 signals because individual VT1.5s within that STS-1 can be active on different rings. In general both rings are normally active.

To really know the state of VT cross-connected STS-1 signals, it is necessary to look at the states of all the constituent VT1.5 signals.

RELATED COMMANDS
rtrv-state-eqpt
switch-path-vt1
switch-path-sts1
NAME

rtrv-state-sts1: Retrieve State of STS-1 Channels

INPUT FORMAT

rtrv-state-sts1::*Address*;

DESCRIPTION

This command retrieves STS-1 channel states.

![NOTE 1:]
The channel state will be reported when the path of the channel can be either switched or terminated.

![NOTE 2:]
If slots 1 and 2 are equipped with different pack types (for example, during and upgrade), the report will include data for what is considered at the time as the valid system pack type.

The input parameter is:

*Address* Address is the address of the STS-1 channels whose state is to be reported. The default is all STS-1 channels.

If the shelf is equipped with 26-type OLIUs in Main unit slots, the valid address is: m-1.

If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1, and later), the valid addresses are: m-{1-3, all}

If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIUs in both Main unit slots, the valid addresses are: m-{1-12, all}
The output report appears as follows.

```markdown
/* STS-1 Channel State Report
===
Address Channel State
===
 m-1 AUTO
 */
```

**NOTE:**

An empty report is displayed if there are no cross-connections or if no channels are monitored (for example, pass-through cross-connections).

The output parameters are:

- **Address**
  - Address is the address of an STS-1 channel.

- **Channel State**
  - Channel State is the state of the STS-1 channel identified in the address field. It may have one of the following values:
    - **auto** Automatic. There is not a good signal on this channel. (STS-1 AIS or STS-1 loss of pointer [LOP] condition may be present.) Alarm or status conditions associated with this channel are not reported. Performance monitoring is not done for the channel. If a good signal is detected on this channel, then the channel will be put in the *in-service* state automatically.
    - **is** In-service. The channel is monitored. Alarm and status conditions are reported normally.
    - **nmon** Not Monitored. The channel is not being monitored. Alarm and status conditions are not reported for this channel. Performance monitoring is not done for the channel. The channel will remain in this state until the state is changed (with the `set-state-sts1` command) or until the cross-connection involving this channel is deleted.
RELATED COMMANDS

dlt-crs-sts1
ent-crs-sts1
rtrv-crs-sts1
rtrv-state-vt1
set-state-sts1
upd
NAME

rtrv-state-vt1: Retrieve State of VT1.5 Channels

INPUT FORMAT

rtrv-state-vt1[:Address];

DESCRIPTION

This command retrieves VT1.5 channel states.

NOTE:
If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), this report will include data for what is considered at the time as the valid system pack type.

The input parameter is:

Address  Address is the address of VT1.5 channels whose state is to be reported. The default address is all.

   - If the shelf is equipped with 26-type OLIs in Main unit slots, valid addresses are: m-1-all, m-1-{1-7}-{1-4,all}
   - If the shelf is equipped with 28-type OLIs in Main unit slots (in FiberReach 3.1, and later), the valid addresses are: m-{1-3}-all, m-{1-3}-{1-7}-{1-4,all}
   - If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIs in its Main unit slots, the valid VT1.5 channel addresses are: main-{1-12,all}-{1-7,all}-{1-4,all}.  

The output report appears as follows. Only channels that are cross-connected will be displayed in the output report.

/* VT1.5 Channel State Report  
-------------------------------------------------------------  
<table>
<thead>
<tr>
<th>Address</th>
<th>Channel State</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-1-1-1</td>
<td>auto</td>
</tr>
<tr>
<td>m-1-1-2</td>
<td>is</td>
</tr>
<tr>
<td>m-1-1-3</td>
<td>nmon</td>
</tr>
<tr>
<td>m-1-1-4</td>
<td>auto</td>
</tr>
</tbody>
</table>
*/

The output parameters are:

Address Address is the address of a VT1.5 channel.

Channel State Channel State is the state of the VT1.5 channel identified in the address field. It may have one of the following values:

- **auto** Automatic. There is not a good signal on this channel. (The VT AIS or a VT loss of pointer condition may be present.) Alarm or status conditions associated with this channel are not reported. Also, performance monitoring is not reported. If a good signal is detected on this channel, then the channel will be put in the in-service state automatically.

- **is** In-service. The channel is monitored. Alarm and status conditions are reported normally.

- **nmon** Not Monitored. The channel is not being monitored. Alarm and status conditions are not reported for this channel. Performance monitoring is not done for the channel. The channel will remain in this state until the state is changed (with the `set-state-vt1` command) or until the cross-connection involving this channel is deleted.
RELATED COMMANDS

dlt-crs-sts1
dlt-crs-vt1
ent-crs-sts1
ent-crs-vt1
rtrv-crs-sts1
rtrv-crs-vt1
rtrv-state-sts1
set-state-vt1
upd
NAME

rtrv-sts1: Retrieve STS1

INPUT FORMAT

rtrv-sts1[:Address];

DESCRIPTION

This command retrieves three types of provisioned parameters for STS-1 channels. The parameter types are:

- signal degrade alarm threshold
- signal fail alarm threshold
- alarm level for sa/nsa STS path AIS condition

> NOTE:

If slots 1 and 2 are equipped with different pack types (for example, during an upgrade), this report will include data for what is considered at the time as the valid system pack type.

The input parameter is:

Address  Address is the address of the STS-1 channels whose parameters are to be reported. The default is all STS-1 channels.

If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are: m-1.

If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later), the valid addresses are:

m-(1-3, all)

If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIUs in its Main unit slots, the valid addresses are:

m-(1-12, all)

Only STS-1 channels that are cross-connected will be displayed in the output report.
When the command is entered with the default address of **all** the output report appears as follows:

```c
/* STS1 Channel Provisioning Report
===
SignalDegradation = value
SignalFailure = value

STS1 AIS Alarm Information
Address AIS Alarm AIS Alarm
 Service Affecting Non Service Affecting
===
address sa nsa
address sa nsa
. . .
. . .
. . .
*/
```

If the address is anything but **all**, then the report appears as follows:

```c
/* STS-1 Channel Provisioning Report
===
Address AIS Alarm AIS Alarm
 Service Affecting Non Service Affecting
===
address sa nsa
address sa nsa
. . .
. . .
. . .
*/
```
The output parameters are:

**SignalDegraded**  This is the signal degrade threshold value.

**SignalFailure**  This is the signal failure threshold value.

**address**  This is the address of the provisioned channel.

**AIS Alarm**  One or more columns of information will show the AIS alarm values for service affecting (SA) and non-service affecting (NSA) alarms. SA alarms may have one of the following values:

- **cr**  Critical alarm (default for ring channels)
- **na**  Not alarmed, but reported

NSA alarms may have one of the following values:

- **mn**  Minor alarm (default)
- **nr**  Not alarmed and not reported.

**RELATED COMMANDS**

```
set-sts1
```
NAME

rtrv-sync: Retrieve Synchronization

INPUT FORMAT

rtrv-sync;

DESCRIPTION

This command displays the provisioning and operational information on the synchronization attributes of the DDM-2000, as set by the set-sync command.

The following pages show output reports for this command and explain the various fields on the reports. Output reports will vary according to the provisioned timing mode and the software release.
The following report is for FiberReach.

```c
/* Synchronization Report

Parameter | Value(s)

Sync Source (src) | address timing_message

Shelf Timing
Provisioned Mode | mode
Active Timing Mode | mode
Active Circuit Pack | pack
Active Reference/Line | ref
Mode Switching (mdsw) | mode

Sync Message Information
OC-N Line | Input Message | Output Message | Type

address | Message | Message | Type
address | Message | Message | Type

*/
```

The output parameters for the reports are as follows. Some parameters may not apply to all the reports. The output parameters are:

**Sync Source**
The sync source is the optical line provisioned from which shelf timing is derived.

- main-1
- main-2

The choices for Sync Source (except the dash) are followed by this message:

*for Shelf only* **Sync Source** is set for LineTimed shelf.

**Provisioned Mode**
Provisioned Mode is the provisioned synchronization mode. The valid values are:

- **LineTimed**
  Timing derived from the OC-1 payload-carrying signal in the Main slots (when equipped with 26-type OLIUs in Main unit slots).
  If the shelf is equipped with 28-type OLIUs in the Main unit slots (Release 3.1 and later), the timing is derived from the OC-3 payload carrying signal in the Main slots.
  If the shelf is equipped with 29-type OLIUs in...
Main (Release 4.0), the timing is derived from the OC-12 payload carrying signal in the Main slots.

**Active Timing Mode**

Active timing mode is the active timing synchronization mode of the system. The value may be any of the values listed previously in Provisioned Mode or one of the following:

- **Holdover**
  
  Timing generator is operating in holdover mode because the provisioned references are not available or because the system has been manually switched to holdover mode.

- **No Timing**
  
  Timing circuit packs have been removed.

- **?**
  
  Timing mode is unreadable.

**Active Circuit Pack**

Active Circuit Pack indicates which timing generator circuit pack is currently active. The value is main-1, main-2, or - (empty slot).

**Active Reference/Line**

Active Line is the active LineTimed reference for the timing generator. When Provisioned Mode is LineTimed, Active Line has the following values:

- main-1, main-2, or NA (neither timing reference is active). When the active timing mode is Holdover, Active Line is the timing reference that will provide timing if the system switches out of holdover mode.

**Mode Switching**

Mode Switching indicates whether the mode switching for the timing generator is revertive or nonrevertive.

- **Revertive**
  
  Revertive mode switching. If the system is provisioned for revertive mode switching, it will automatically switch from holdover mode to the provisioned mode (LineTimed) when a good reference becomes available.

- **Nonrevertive**
  
  Nonrevertive mode switching. If the system is provisioned for nonrevertive mode, it will switch to holdover mode (as a result of...
a timing reference failure) and remain in this mode until it is manually switched back to the provisioned timing mode by the \texttt{switch-sync} command.

\textbf{AIS} DS1 AIS is inserted if a failure exists that prohibits tracing of the DS1 output to the incoming optical line. It is also inserted due to certain incoming synchronization message quality levels on the active timing source.

\begin{itemize}
  \item Indicates the slot is in the auto state.
  \item The circuit pack is unreadable, or slot is equipped and empty.
\end{itemize}

\textbf{Active Reference} This shows the actual line that the DS1 timing output is being derived from, with the following values:

\textbf{Sync Message Information} This heading identifies the section of the report where input and output messages used to determine the timing source quality are listed.

If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later), or with 29-type OLIUs in Main unit slots (Release 4.0) this section of the report is available only if any of the optical interfaces have been provisioned for kbyte (default) or Sbyte sync messaging using the \texttt{set-oc3} (when equipped with 28-type OLIUs in Main) or \texttt{set-oc12} (when equipped with 29-type OLIUs in Main).

\textbf{OC-N Line} This parameter identifies the addresses of optical interfaces that can carry sync messages.

\textbf{Input Message}

\begin{itemize}
  \item \texttt{disabled} Indicates that the field is not applicable (for example, if synchronization messaging is disabled).
  \item \texttt{?} Indicates that the message is not readable (for example, due to a line failure).
\end{itemize}

This column identifies the \texttt{Kbyte} input message received on each optical interface line, and may have one of the following values:
Don’t Use  The interface is not suitable for synchronization timing (Quality Level 7).

Timing Looped Back  The network element connected to this interface is line-timed from it (Quality Level 7).

Stratum 4  The interface is receiving timing from a Stratum 4 clock source (Quality Level 6).

Internal Clock  This interface is receiving timing from a system in holdover or free running (Quality Level 5). This is applicable to the DDM-2000 systems equipped with TGS (BBF2 or BBF2B) circuit packs.

Stratum 3  The interface is receiving timing from a Stratum 3 clock source (Quality Level 4) or from a DDM-2000 system equipped with TG3 (BBF4) circuit packs that is either in holdover or free running.

Stratum 2  The interface is receiving timing from a Stratum 2 clock source (Quality Level 3).

Sync Quality Unknown  This interface is receiving timing from a good quality clock source (Quality Level 2).

Stratum 1  The interface is receiving timing from a Stratum 1 clock source (Quality Level 1).

Output Message  This identifies the output message sent out on each OC-N interface line. The valid values for this parameter are the same as those listed for Input Message.

Type  Available in FiberReach Release 3.1 and later (if equipped with 28-type OLIUs in Main unit slots), or 29-type OLIUs in Main (FiberReach Release 4.0).

NOTE:  No Sync messaging of any type is provided for the 22-type in the Function unit slots and therefore, no data is provided for it in this column.

This column identifies the type of sync messaging the optical interface was provisioned for using the set-oc3 and/or set-oc12 command. The valid values are:
Kbyte  
Sbyte  
disabled

**NOTE:** 
For OC-1 interfaces, this column will only display Kbyte.

For OC-3 or OC-12 interfaces in Main, this column will display either Kbyte, Sbyte, or disabled.

**Sync Autoreconfiguration**  
This capability allows the system to choose the best timing source to use when it is provisioned for line timing. The valid values are enabled and disabled.

Sync Autoreconfig is disabled by default.

**RELATED COMMANDS**

- rtrv-oc3
- rtrv-state
- set-sync
- set-oc3
- switch-sync
NAME

rtrv-trace-sts1: Retrieve Path Trace Characteristics

INPUT FORMAT

rtrv-trace-sts1:Address;

DESCRIPTION

This command retrieves the provisioned transmit and receive path traces for the STS cross-connected STS-1 channel. The command also outputs the actual receive path trace, and the status of the path trace.

NOTE: For OC-3 in FiberReach (starting with Release 3.1) this feature is only applicable to the STS path terminated to a BBG4B circuit pack.

The input parameter is:

Address This is a STS-1 channel address of the SONET path terminating signal for which the path trace is assigned.
Valid Addresses (within OC-3 in FiberReach Release 3.1 and later): m–{1–3, all}
Valid 29-type (FiberReach Release 4.0) OLIU Addresses:
  m–(1–12, all)
Valid 26-type (FiberReach Release 4.0) OLIU Addresses:
  m–1
The output report appears as follows:

```c
/* STS-1 Path Trace Report
==
Address Parameter Value
==
m-1 Status: MISMATCH
INCTRC: ActualReceiveTraceWhichDoesNotMatchProvisionedReceiveTrace789123
EXPTRC: ProvisionedTransmitTraceyzabcdefghijklmnopqrstuvwxyz1234567891
TRC : ProvisionedReceiveTracexyzabcdefghijklmnopqrstuvwxyz1234567891
==
m-2 Status: GOOD
INCTRC: AID2Receive1mnopqrstuvwxyz1234567891
EXPTRC: AID2Transmit1mnopqrstuvwxyz1234567891
TRC : AID2Receive1mnopqrstuvwxyz1234567891
==
m-3 Status: MISMATCH
INCTRC:
EXPTRC: AID2Transmit1mnopqrstuvwxyz1234567891
TRC : AID2Receive1mnopqrstuvwxyz1234567891
==*/
```

The output parameters are:

**Address**  
This is a channel address of the SONET path terminating signal for which the path trace is assigned.

**Status**  
STS path trace status. This is a status report of the incoming trace. For **rtrv-trace-sts1** messages, **status** may have one of the following values:

- **GOOD**  
  Good. This indicates that the **INCTRC** and the **EXPTRC** match.

- **MISMATCH**  
  Mismatch. This indicates that the **INCTRC** and the **EXPTRC** do not match.

- **UNAVAILABLE**  
  Unavailable. This indicates that there is no **INCTRC** because there has been a path interruption. This is also true for the STS path terminating to other than a BBG4B or BBG11B circuit pack for which the path trace is unavailable.

**INCTRC**  
Incoming Path trace message. This indicates the incoming Path Trace (J1) content.
**EXPTRC**

Expected incoming Path trace message. This indicates the expected Path Trace (J1) content.

**TRC**

Outgoing Path trace message. This identifies the path trace message to be transmitted.

If the STS-1 channel for which the `rtrv-trace-sts1` command was issued is not available, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Address points to a non-existent channel. */
```

**RELATED COMMANDS**

`set-pthtrc-sts1`
NAME

trv-t1: Retrieve T1

INPUT FORMAT

```
trv-t1::Address;
```

DESCRIPTION

This command displays the configuration information and attributes of one or more DS1 or T1 ports, as set by the `set-t1` command.

When this command is used in FiberReach Release 4.0 and later on a DS1 port that is associated with an IMA LAN circuit pack, dashes (-) will be displayed for all parameters except the Port Address, Alarm Level, Port State, PM Mode and Format.

The input parameter is:

- **Address**: Address identifies the DS1 or T1 port(s). One or more ports may be specified. The default address is `all`.
  - Valid Addresses (1x1 protected shelves):
    - `all`, `{a,b,c,d}-1-{1-4,all}`
  - Valid Addresses (1x7 protected shelves):
    - `all`, `{a,b,c}->{1,2,all}--{1-4,all}`
    - `d-1-{1-4,all}`

The BBF6 circuit pack supports 2 T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid.

Specifying `all` selects ports 1 and 2 only.

The output report appears as follows:

```c
/* T1 Port Provisioning Report

<table>
<thead>
<tr>
<th>Port Address</th>
<th>Line Coding</th>
<th>Alarm Level</th>
<th>AIS Failure Thrshld</th>
<th>BPV State</th>
<th>PM Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-1-1</td>
<td>ami (hw)</td>
<td>na</td>
<td>yes</td>
<td>-3</td>
<td>no</td>
</tr>
<tr>
<td>a-1-2</td>
<td>ami (hw)</td>
<td>na</td>
<td>yes</td>
<td>-3</td>
<td>no</td>
</tr>
<tr>
<td>a-1-3</td>
<td>ami (hw)</td>
<td>na</td>
<td>yes</td>
<td>-3</td>
<td>no</td>
</tr>
<tr>
<td>a-1-4</td>
<td>ami (hw)</td>
<td>na</td>
<td>yes</td>
<td>-3</td>
<td>no</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

*/
```
The output parameters are:

**Port Address**
Port Address is the address of the DS1 or T1 port.

**Line Coding**
Line Coding is the DS1 line coding which may have the value am1 (alternate mark inversion) or b8zs (AMI with bipolar 8-zero substitution). If a previous `set-t1` command has set this parameter to a value that overrides the circuit pack switch setting, either of these values will be followed with the string "override." Otherwise, it will be followed by the string "(hw)" to indicate that the line coding for the port is determined by the hardware switches.

**Alarm Level**
Alarm Level describes the alarm level for an incoming DS1 signal failure and may have one of the following values:

- **MJ**: Major alarm
- **MN**: Minor alarm
- **NA**: No alarm

If the system is provisioned for and reporting no alarm but an alarm exists, the NE ACTY LED on the user panel will be illuminated and the fault LED on the circuit pack will flash. The condition will be reported in the alarm and status report as a near-end activity.

**AIS**
Alarm Indication Signal indicates whether an AIS is to be inserted toward the fiber when a loss of an incoming DS1 signal is detected. The values are yes and no.

⇒ **NOTE:**
When the "BPV to LOS" DLC parameter is set to yes, the AIS parameter is ignored. (An all zeros signal, not AIS, is transmitted to the far end even if the AIS parameter is set to yes.)

**Failure Thrshld**
Failure threshold is the BER threshold in terms of a logarithm to the base 10. The value may be -8, -7, -6, or -3, corresponding to BERs of $10^{-8}$, $10^{-7}$, $10^{-6}$, and $10^{-3}$, respectively.

**BPVtoLOS**
This column indicates whether an incoming DS1 signal failure (a bit error ratio above the threshold set by the failure threshold parameter) will be translated into an outgoing all-zeros signal at the far end. The values are yes and no.
### State
State is the state of the port. It may be one of the following:

- **is**  
  In-service. A valid T1 signal from the DSX-1 or T1 interface that is being monitored.

- **auto**  
  Automatic. The system is waiting for a valid T1 signal from the DSX-1 or T1 interface.

- **nmon**  
  Not Monitored

### PM Mode
This column indicated the performance-monitoring (PM) mode of the DS1 or T1 interface and may be one of the following values:

- **on**  
  DS1 PM enabled on this port

- **off**  
  DS1 PM disabled on this port

### Format
This column indicates the PM format of the DS1 or T1 interface and may be one of the following values:

- **none**  
  No DS1 PM possible on this port due to equipage (PM Mode always off.)

- **sf**  
  Superframe

- **esf**  
  Extended superframe, near-end and far-end
  The PM format of the DS1 interfaces on the IMA LAN circuit pack always has the value of esf.

- **esfn**  
  Extended superframe, near-end only

### RELATED COMMANDS
- `set-state-t1`
- `set-t1`
NAME

rtrv-t3: Retrieve T3

INPUT FORMAT

rtrv-t3[:Address];

DESCRIPTION

This command displays a port provisioning report for one or all DS3 ports, as set by the `set-t3` command.

Starting with FiberReach Release 3.1, this command is applicable ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is applicable also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

The input parameter is:

Address  Address identifies the DS3 ports. One port or all ports may be specified. The default address is all.

Valid DS3 Port Addresses (for BBG4 and BBG4B): \{f, all\}

Valid DS3 Port Addresses (for BBG19):
all, f-{1-2, all}

The output report appears as follows:

```c
/* T3 Port Provisioning Report
 __
 Port Mode AIS Alarm Failure State PM PM PM
 Address Level Threshold Mode Frame Format
 __
 address mode ais alarm fth state pmmd frame fmt

*/
```
The output parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Port Address</strong></td>
<td>Port Address is the address of the DS3 port</td>
</tr>
<tr>
<td><strong>Mode</strong></td>
<td>Mode is the violation monitor removal mode of the DS3 signal. It may have one of the following values:</td>
</tr>
<tr>
<td>vm</td>
<td>Monitor and remove DS3 P-bit errors (default value).</td>
</tr>
<tr>
<td>vm</td>
<td>Monitor but do not remove DS3 P-bit errors.</td>
</tr>
<tr>
<td>cc</td>
<td>Clear channel. Do not monitor or remove DS3 P-bit errors.</td>
</tr>
<tr>
<td><strong>AIS</strong></td>
<td>AIS indicates whether or not a DS3 alarm indication signal (AIS) should be inserted. The value may be <strong>yes</strong> or <strong>no</strong>. When AIS is set to <strong>yes</strong>:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Alarm Level</strong></td>
<td>Alarm describes the alarm level for an incoming DS3 signal failure and has the following values:</td>
</tr>
<tr>
<td>CR</td>
<td>Critical alarm</td>
</tr>
<tr>
<td>MJ</td>
<td>Major alarm</td>
</tr>
<tr>
<td>MN</td>
<td>Minor alarm</td>
</tr>
<tr>
<td>NA</td>
<td>No alarm</td>
</tr>
</tbody>
</table>

AIS is always inserted if the violation monitor removal mode is provisioned for vm or vm.

**NOTE:**

Failure Threshold

Failure threshold is the BER threshold in terms of a logarithm to the base 10. The value may be either -6 or -3, corresponding to BERs of $10^{-6}$ and $10^{-3}$, respectively.
### State

State is the state of the port with the values:

- **is** In-service. A valid T3 signal from the DSX-3 is being monitored.
- **auto** Automatic. The system is waiting for a valid T3 signal from the DSX-3.
- **nmon** Not Monitored

### PM Mode

This column shows the performance monitoring (PM) mode of the DS3 interface, and may be one of the following values:

- **on** DS3 PM enabled on this port (default value).
- **off** DS3 PM disabled on this port (PM data is not monitored or reported).
- **—** Indicates no DS3 path PM because *cc* was selected for Mode. The DS3 PM report will display the line PM data and dash lines (\(-\)) for both directions of the DS3 path PM data when a BBG4B or BBG19 pack is active (in-service) in a function unit slot.

### PM Frame

This parameter indicates the type of framing for the incoming DS3 signal from both the fiber and the DSX-3. It may have one of the following values:

- **m13** The incoming DS3 signal is in M13 framing type (default value).
- **cbit** The incoming DS3 signal is in C-bit framing type.
- **—** Indicates no DS3 path PM because *cc* was selected for Mode. The DS3 PM report will display the line PM data and dash lines (\(-\)) for both directions of the DS3 path PM data when a BBG4B or BBG19 pack is active (in-service) in a function unit slot.
PM Format

This parameter indicates the type of path PMON that will appear in the DS3 PM report. This parameter will appear only if the \texttt{vmr} or \texttt{vm} mode has already been selected. This parameter may have one of the following values:

\textbf{pbit} \hspace{1cm} When this value is selected, the DS3 PM report will display counts of SEFS as well as DS3 P-bit CV, ES, SES, and UAS (default value).

\textbf{fmbit} \hspace{1cm} When this value is selected, the DS3 PM report will display counts of SEFS as well as DS3 adjusted F&M bit CV, ES, SES, and UAS.

\textbf{cpbit} \hspace{1cm} When this value is selected, the DS3 PM report will display counts of SEFS as well as DS3 CP-bit parity near-end and far-end CV, ES, SES, and UAS.

\textbf{—} \hspace{1cm} Indicates no DS3 path PM because \texttt{cc} was selected for Mode. The DS3 PM report will display the line PM data and dash lines (\texttt{-}) for both directions of the DS3 path PM data when a BBG4B or BBG19 pack is active (in-service) in a function unit slot.

RELATED COMMANDS

\begin{itemize}
\item \texttt{set-state-t3}
\item \texttt{set-t3}
\end{itemize}
NAME

rtrv-tl1msgmap: Retrieve Message Map for Operation Systems

INPUT FORMAT

rtrv-tl1msgmap;

DESCRIPTION

This command displays the table that associates the OS Application Context Identifier (ACID) to TL1 autonomous message types. This allows the DDM-2000 network element to direct messages to the proper OS destination.

The output report appears as follows:

```
/* TL1 Autonomous Message Map
 ==
 ACID ALM ENV CON DB EVT PM SW
 ==
 t11Maintenance x x x x x x
 t11MemoryAdministration x x x
 t11Test x
 t11PeerComm x x x x x
 t11Other1 x x x x x x
 t11Other2 x x x x x x
 x - enabled
 <blank> - disabled
*/
```
The output parameters are:

**ACID**

ACID is the Application Context ID to be assigned to a particular SNPA or SubNetwork Point of Attachment on the x.25 channel. Each ACID defines the type of TL1 messages to be sent by the network element. Default MessageType mappings exist for ACIDs supported by DDM-2000. Supported ACID values are:

- tl1Maintenance
- tl1MemoryAdministration
- tl1Other1
- tl1Test
- tl1PeerComm
- tl1Other2.

**msgtype**

MessageType is one of the supported classes of TL1 messages that the system generates. These message types are not sent to the OS unless they are enabled and associated to an ACID. The supported message types are:

- **ALM** - REPT ALM
- **ENV** - REPT ALM ENV
- **CON** - REPT COND
- **DB** - REPT DBCHG
- **EVT** - REPT EVT
- **PM** - REPT PM
- **SW** - REPT SW

**RELATED COMMANDS**

ent-tl1msgmap
NAME

rtrv-ulsdcc-l3: Retrieve Upper Layer Section DCC - Layer 3

INPUT FORMAT

rtrv-ulsdcc-l3;

DESCRIPTION

NOTE:

This command page describes the functionality of the rtrv-ulsdcc-l3 command in and FiberReach Release 3.0 and all later TARP releases.

This command is currently used to retrieve the parameters in Layers 3 through 7 of the OSI stack, many of which are provisioned by the ent-ulsdcc-l3 command. Layer 3 parameters include the fields of the network service access point (NSAP) address and the enable/disable state of Level-2 IS-IS Routing.

The NSAP is a 20-byte address that provides unique identification for each network element. Only certain portions of this address are user-settable.

The output report appears as follows:

```c
/* Upper Layer Section DCC Provisioning Report
 */
L3 NSAP address:
idp dfi org res rd area sys sel lv2is
xxxxxxx xx xxxxx xxxx xxxx xxxx xxxxxxx xx e/d
*/
```

The output parameters are:

L3 NSAP Address

This is the 20-byte address assigned to a network element. This is only a string. Under this string, the following seven parameters that make up the NSAP address are identified:

- **idp** Where "xxxxxx" indicates the 6-digit hexadecimal IDP field value of the local NE NSAP. This part of the NSAP address is assigned according to the International Standards Organization (ISO) standards. For
SONET systems, the value is set to 39840F to indicate that U.S. American National Standards Institute (ANSI) is the registration authority responsible for the assignment of the NSAP address.

dfi Where "xx" indicates the 2-digit hexadecimal DFI field value of the local NE's NSAP. This part of the NSAP address specifies the format for the rest of the NSAP address. For SONET systems, the value is set to hex 0X80. This is to specify that a format in alignment with GOSIP version 2 is to be used.

org Where "xxxxxxx" indicates the 6-digit hexadecimal Organization Id field value of the local NE's NSAP. This part of the NSAP address contains the allocated hexadecimal company code assigned by the ANSI-administered USA Registration Authority for OSI Organization Ids.

res Where "xxxx" indicates the 4-digit hexadecimal Reserved field value of the local NE's NSAP. This part of the NSAP address currently has not been assigned a specific purpose by the SONET standards.

rd Where "xxxx" indicates the 4-digit hexadecimal Routing Domain field value of the local NE's NSAP. This field is user provisionable. However, until the standard use of this field is defined, this parameter should not be provisioned to a value other than its default value.

area Where "xxxx" indicates the 4-digit hexadecimal Routing Area field value of the local NE's NSAP. It is used to identify NEs in the same area. Where multiple areas are defined, IS-IS Level-2 Routing needs to be enabled to allow addressing across areas. This field is user provisionable.

sys Where "xxxxxxxxxxxx" indicates the 12-digit hexadecimal System Id field value of the local NE's NSAP. This part of the NSAP address is assigned by IEEE administrators to U.S.-manufactured systems to guarantee a globally-unique NSAP.
**sel** Where "xx" indicates the 2-digit hexadecimal Selector Id field value of the local NE’s NSAP. This part of the NSAP address is used to differentiate multiple NSAP addresses within a system. The value of this field is not fixed, but is set in a PDU according to its usage; it is set to "AF" in hex when TARP is run over CLNP. IT has a value of “1D” in hex when TP4 is run over CLNP. IT may be set to "00" in hex for other uses. When retrieved and displayed, it will always be shown as "00" in hex.

**lv2is** This parameter indicates if the local NE is enabled as an IS-IS Level2 Router. Possible values are either e for enable or d for disable.

**RELATED COMMANDS**
- dlt-ulsdcc-l4
- ent-ulsdcc-l3
- ent-ulsdcc-l4
NAME
rtrv-ulsdcc-l4: Retrieve Upper Layer Section DCC - Layer 4

INPUT FORMAT
rtrv-ulsdcc-l4[tdc_rpt=tdc_rpt];

DESCRIPTION

\[\text{NOTE:}\]
This command page describes the functionality of the \texttt{rtrv-ulsdcc-l4} command in and FiberReach Release 3.0 and all later TARP releases.

This command is used to retrieve the parameters in Layer 4 of the OSI stack, many of which are provisioned by the \texttt{ent-ulsdcc-l4} command. Layer 4 parameters include the TARP timers and TARP Data Cache provisioned parameters and the TARP Manual Adjacencies. The TARP TARP Data Cache information may be retrieved if its retrieval is enabled through the \texttt{tdc_rpt} parameter. The input parameter is:

\begin{itemize}
  \item \texttt{tdc_rpt} \quad \text{TARP Data Cache reporting; This parameter enables the retrieval of TARP Data Cache. Specifying this parameter will result in the TID, the NSAP address and the protocol address type to be retrieved and output for every entry in the TARP Data Cache for local NE.}
\end{itemize}

This is an optional parameter and it can have the value of either \texttt{yes} or \texttt{no}. If a value of NULL (no value) is entered, a value of \texttt{no} is assumed and the TARP Data Cache is not retrieved. The default value of this parameter is \texttt{no}. 
After entering this command, the output report appears as follows:

```c
/* Upper Layer Section DCC Provisioning Report
==
L4TM data:
 L4tlif L4t1tm L4t2tm L4t3tm L4t4tm L4t1ftm
 xxxx xxxx xxxx xxxx xxxx xxxx
==
L4AJ NSAP data:
 idp dfi org res rd area sys sel
 xxxxxxx xx xxxxxxx xxxxx xxxxx xxxxxxxxx xxx
 xxxxxxx xx xxxxxxx xxxxx xxxxx xxxxxxxxxxxxxxx
L4TDC data: L4etdc=enable
 L4tdctid=LT-DDM-2000
 xxxxxxx xx xxxxxxx xxxxx xxxxx xxxxxxxxxx xxx
 L4tdctid=LT-DDM-2001
 xxxxxxx xx xxxxxxx xxxxx xxxxx xxxxxxxxxx xxx
 L4tdctid=LT-DDM-2002
 xxxxxxx xx xxxxxxx xxxxx xxxxx xxxxxxxxxx xxx
 L4tdctid=LT-DDM-2003
 xxxxxxx xx xxxxxxx xxxxx xxxxx xxxxxxxxxx xxx
 .
 .
 .
 .
 .
 .
 */
```
The output parameters are:

L4TM data This is only a string and under this string, the following parameters are identified:

L4t1lif This parameter reports on the TARP lifetime parameter in TARP PDUs originated by the local NE. The TARP lifetime specifies the maximum number of hops allowed for a TARP PDU. When this number of hops is exceeded, the TARP PDU will not be forwarded. This parameter may have a value in the range from 1 to 65535. The default value for this parameter is 100.

L4t1tm This parameter indicates the TARP Timer T1. T1 is the maximum time waiting for response to TARP Type 1 request PDU (search level 1 routing area). This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 15 seconds.

L4t2tm This parameter indicates the TARP Timer T2. T2 is the maximum time waiting for response to TARP Type 2 request PDU (search outside of level 1 area). This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 25 seconds.

L4t3tm This parameter indicates the TARP Timer T3. T3 is the maximum time waiting for response to Address resolution request (type 5, example: requesting the TID when the NSAP address is known). This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 40 seconds.

L4t4tm This parameter indicates the TARP Timer T4. T4 starts when T2 expires. It is used for error recovery. This parameter may have a value in the range from 1 to 3600 seconds. Its default value is 20 seconds.

L4lftm This parameter indicates the TARP Loop Detection Buffer Flush Timer. It sets the time period for flushing the TARP Loop Detection Buffer. This parameter may have a value in the range from 1 to 1440 minutes. Its default value is 5 minutes.
L4AJ NSAP

This header indicates that what follows is the 20-byte (40-digit hex) NSAP address of an entry in the TARP Manually Adjacent NE list. A maximum of two Manually Adjacent NEs can be assigned to an NE.

ajidp Where "xxxxxx" indicates the 6-digit hexadecimal IDP field value of the Manually Adjacent NE.

ajdfi Where "xx" indicates the 2-digit hexadecimal DFI field value of the Manually Adjacent NE.

ajorg Where "xxxxxx" indicates the 6-digit hexadecimal Organization field value of the Manually Adjacent NE.

ajres Where "xxxx" indicates the 4-digit hexadecimal Reserved field value of the Manually Adjacent NE.

ajrd Where "xxxx" indicates the 4-digit hexadecimal Routing Domain field value of the Manually Adjacent NE.

ajarea Where "xxxx" indicates the 4-digit hexadecimal Area field value of the Manually Adjacent NE.

ajsyst Where "xxxxxxxxxxxx" indicates the 12-digit hexadecimal System ID field value of the Manually Adjacent NE.

ajsel Where "xx" indicates the 2-digit hexadecimal Selector field value of the Manually Adjacent NE, which is currently reported as "00".

L4TDC data

This is only a string and under this string, the following parameters are identified:

L4etdc This parameter is used to Enable or Disable the TARP Data Cache. Possible values are either enable or disable. The default value is enable.

L4tdctid This parameter indicates the Target Identifier (TID) portion of entry in the TARP Data Cache (TDC). This parameter has a maximum of 20 characters and it has no default value.

tdcidp Where "xxxxxx" indicates the 6-digit hexadecimal IDP field value of the NE that was manually entered into the TDC.
tdcdfs Where "xx" indicates the 2-digit hexadecimal DFI field value of the NE that was manually entered into the TDC.

tdcor Where "xxxxxx" indicates the 6-digit hexadecimal NSAP's Organization Id field value of the NE that was manually entered into the TARP Data Cache. It specifies the allocated Network Services Provider Code assigned by the ANSI-administered USA Registration Authority for OSI Organization Names. The default value for this parameter is "000000" hex.

tdcres Where "xxxx" indicates the 4-digit hexadecimal NSAP's Reserved field value of the NE that was manually entered into the TARP Data Cache. This is a two byte (4-digit hex) NSAP Reserved field of the NE that is to be manually entered into the TDC. The default value for this parameter is the NSAP's Reserved field of local NE.

tdcrd Where "xxxx" indicates the 4-digit hexadecimal NSAP's Routing Domain field value of the NE that was manually entered into the TARP Data Cache. This is a 2 byte (4-digit hex) NSAP Routing Domain field of the NE to be manually entered into the TDC. The default value for this parameter is the NSAP's Routing Domain field of local NE.

tdcarea Where "xxxx" indicates the 4-digit hexadecimal NSAP's Routing Area field value of the NE that was manually entered into the TARP Data Cache. It identifies the Area within the Routing Domain to which the NSAP address belongs. This is a 2 byte (4-digit hex) NSAP Area field of the NE to be manually entered into the TDC. The default value for this parameter is the NSAP's Area field of local NE.

tdcsys Where "xxxxxxxxxxxx" indicates the 12-digit hexadecimal NSAP's System Id field value of the NE that was manually entered into the TARP Data Cache.

The default value for this parameter is the value of the System Identifier Area field of the local NE.
tdcse1  Where "xx" indicates the 2-digit hexadecimal NSAP's Selector Id field value of the NE that was manually entered into the TARP Data Cache. This parameter is currently being reported as "00".

RELATED COMMANDS

ent-ulsdcc-l4
ent-ulsdcc-l3
dlt-ulsdcc-l3
dlt-ulsdcc-l4
NAME

rtrv-vt1: Retrieve VT1.5

INPUT FORMAT

rtrv-vt1[:Address];

DESCRIPTION

This command retrieves two types of provisioned parameters for VT1.5 channels. The parameter types are:

- Signal degrade alarm threshold
- Alarm level for sa/nsa VT1.5 path AIS condition
  (Reported only for Release 2.1 and later).

The input parameter is:

Address   This parameter is available for Release 2.1 and later only. Address is the address of VT1.5 channels whose state is to be reported. The default is all addresses. If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:
  m=1-(1-7, all)-(1-4, all)

  If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later), valid addresses are:
  m=(1-3, all)-(1-7, all)-(1-4, all)

  If the shelf is equipped with 29-type (starting with FiberReach Release 4.0) OLIUs in its Main unit slots, the valid Main unit addresses are:
  m=(1-12, all)-(1-7, all)-(1-4, all)

Only VT1.5 channels that are cross-connected will appear in the output report.
The output report appears as follows:

```c
/* VT1.5 Channel Provisioning Report
===
SignalDegrade = value
VT AIS Alarm Information
<table>
<thead>
<tr>
<th>Address</th>
<th>AIS Alarm</th>
<th>AIS Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Service Affecting</td>
<td>Non Service Affecting</td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>sa</td>
<td>nsa</td>
</tr>
<tr>
<td>address</td>
<td>sa</td>
<td>nsa</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
*/
```

The VT AIS Alarm Information is reported only for Release 2.1 and later.

For Release 2.1 and later, a signal degrade value of zero (0) will not appear in the report. The output parameters are:

- **SignalDegrade**: This is the signal degrade threshold value.
- **address**: This is the VT1.5 address of the provisioned channel.
- **AIS Alarm**: One or more columns of information will show the AIS alarm values for service affecting (SA) and non-service affecting (NSA) alarms. SA alarms may have one of the following values:
  - **mj**: Major alarm (default for ring channels)
  - **na**: Not alarmed, but reported

NSA alarms may have one of the following values:
- **mn**: Minor alarm (default)
- **nr**: not alarmed and not reported

**RELATED COMMANDS**

- `set-vt1`
NAME

set-attr-alm: Set Alarm Attribute

INPUT FORMAT

```
set-attr-alm[; almdel=AlarmDelay][, clrdel=ClearDelay][, pmn=PMN];
```

DESCRIPTION

This command sets the alarm holdoff and clear delays.

The input parameters are:

- **almdel**: AlarmDelay is the delay for incoming signal and equipment failures. It sets an interval of time that a fault condition is present before an alarm is declared. The delay is in seconds, between 0 and 30, with a default value of 2.

  **NOTE:**
  If a signal degrade threshold is exceeded, the recovery interval for the signal degrade condition may be longer than the provisioned holdoff delay, and an alarm will result. For example, suppose an OC-3 interface with an alarm delay of 20 seconds and a signal degrade threshold of $10^{-6}$ has a signal degrade failure of 10 seconds. Since the recovery interval for a $10^{-6}$ error rate threshold is 15 seconds, the total length of the alarm condition (10 seconds of failure plus 15 seconds of recovery) will exceed the provisioned alarm delay of 20 seconds, and an alarm will be declared.

- **clrdel**: ClearDelay is the delay in time before an alarm can be declared to be clear. For equipment failures and signal failures (including AIS and FERF), the clear delay time interval begins when the alarm failure clears. For equipment failures, the delay is between 0 and 30 seconds, with a default value of 15 seconds. For signal failures, clear delay is fixed at 15 seconds.

- **pmn**: PMN is the Power Minor alarm level, which can be either minor (MN) or major (MJ). The default is Minor.
When input, this command will cause the following confirmation message to be displayed:

/* Caution! Alarm or maint. thresholds are affected by this command.  You have selected the set-attr-alm command with these parameters:

AlarmDelay = nn
ClearDelay = nn */
PMN = nn */

Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS

rtrv-attr-alm
NAME

set-attr-cont: Set Attribute Control

INPUT FORMAT

```
set-attr-cont:Address:desc=Description;
```

DESCRIPTION

This command is used to provision (define) the name of the environmental control points.

The input parameters are:

Address  
Address identifies the control point to be provisioned. There is no default for this parameter.

Valid Addresses: cont-{1-4}

desc  
Description is a descriptive name for the control point. The description may be an alphanumeric string, upper- and lower-case with no spaces, up to 26 characters long. Symbolic characters may be included in the descriptive name of the control point.

The following symbolic characters have special meanings either for the CIT interface or for the X.25 TL1 interface and cannot be included in the description:

- `;` semicolon
- `?` question mark
- `@` at sign
- `\` back slash
- `!` exclamation point
- `:` colon
- `"` double quote

All control characters and special keys cannot be included in the description.
<NOTE:
This command will be denied if entered in a system whose CO/RT parameter is set to CO (via the set-ne command). The following denial message will be displayed:

ENSI
/* Equipage, Not equipped for Setting specified Information */
/* Environmental controls can be provisioned only in RT systems. */

RELATED COMMANDS
rtrv-attr-cont
NAME
set-attr-env: Set Attribute Environment

INPUT FORMAT

```
set-attr-env:Address[:alm=Alarm][.almtyp=AlarmType][.desc=Description];
```

DESCRIPTION

This command is used to provision (set) the alarm level of the environmental input points. Active inputs appear as entries in the alarm and history reports of the local network element (NE) and generate autonomous TL1 messages through the gateway network element (GNE).

The input parameters are:

- **Address**
  - Address identifies the environmental point to be provisioned.
  - There is no default value for this parameter.
  - Valid Addresses: env-{1-15}, env-{all}

- **alm**
  - Alarm is the provisioned alarm level of the environmental input and has the following values:
    - cr Critical alarm
    - mj Major alarm
    - mn Minor alarm (default)
    - na Not alarmed, but reported.

- **almtyp**
  - AlarmType. This parameter is used to classify the type of alarm.
  - The description may be an alphanumeric string, upper- and lowercase with no spaces, up to 10 characters long. The original value of AlarmType is "Misc."

- **desc**
  - Description is a descriptive name for the point. The description may be an alphanumeric string, upper- and lowercase with no spaces, up to 26 characters long.

- **NOTE:**
  - The address env-{all} is allowed only when alm is the only parameter used for this command. The address env-{all} is not allowed when the almtyp and/or desc parameters are used.
The following symbolic characters have special meanings either for the CIT interface or for the X.25/TL1 interface and cannot be included in the description:

;  semicolon    ?  question mark
@  at sign      space
\  back slash   !  exclamation point
:  colon        =  equal sign
"  double quote ,  comma

All control characters and special keys cannot be included in the description.

NOTE:
This command will be denied if entered in a system that has the IO/RT parameter is set to CO (via the set-ne command). The following denial message will be displayed:

```
ENSI
/* Equipage, Not equipped for Setting specified Information */
/* Environmental alarms can be provisioned only in RT systems. */
```

RELATED COMMANDS

rtrv-attr-cont
rtrv-attr-env
rtrv-ne
set-attr-cont
NAME

set-date: Set Date and Time

INPUT FORMAT

```
set-date:[date=Date][,time=Time];
```

DESCRIPTION

This command sets the date and time. Executing this command will corrupt the current quarter hour and day performance-monitoring (PM) bins.

⚠️ CAUTION:

*If an *apply* command is scheduled for execution *(action=install)*, the *set-date* command should NOT be issued before program installation is invoked and completed. The user is advised to wait until program installation is completed and the system is reset.

⇒ NOTE 1:

If security is enabled on any CIT or DCC port on a shelf, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

⇒ NOTE 2:

In the event of a shelf reset, an automatic date and time recovery process takes place by reading the date and time from the remote shelf connected to the interface of the local shelf (in linear applications). In ring applications, the date and time data is recovered from the remote shelf connected to of the local shelf. In both linear and ring applications, if the automatic recovery fails, both date and time are set to default (**70-01-01** for date and **00:00:00** for time).

The input parameters are:

- **date**: Date is entered as six digits YYMMDD, where YY is the last two digits of the year, MM is the month, and DD is the day. Default is the current system day.
- **time**: Time is entered as six digits HHMMSS, where HH is hours (00-23), MM is minutes (00-59), and SS is seconds (00-59). Default is the current system time.
When input, this command will cause the following confirmation message to be displayed:

/*Caution! Execution of this command will corrupt the current quarterhour and current day performance monitoring data. You have selected the set-date command with these parameters:

Date = YYMMDD
Time = HHMMSS */

Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS

apply
NAME

set-feat: Set Feature

INPUT FORMAT

set-feat: feat=Feature, act=Action;

DESCRIPTION

This command enables a user to configure the network element for feature options that are licensed for use.

NOTE:
This command is available to privileged users only.

The input parameters are:

**feat**  
Feature is the feature option available to the user, and it may have one of the following values:

- **vtpm**  
  This feature provides performance-monitoring of cross-connected VT1.5 services.

- **dslpm**  
  This feature provides performance-monitoring of cross-connected (dropped) DS1 services in ring systems.

- **banner**  
  Starting with FiberReach Release 4.0, this feature allows a customer to display a user provisionable proprietary notice upon login in order to enhance system’s security

**act**  
Action is the action the user wants to perform on the listed feature, and it may have one of the following values:

- **enabled**  
  This enables a feature option. This action will also unblock the use of commands needed by this feature.

- **disabled**  
  This disables a feature option. This action will also block the use of commands needed by this feature. The user may be required to reprovision the shelf before disabling a feature.
If a user fails to remove all equipment or reprovision parameters associated with a feature before disabling that feature, the command will be denied with the following message:

SNVS
/* Status, Not in Valid State */
/* System must be reprovisioned to disable <Feature>. */

If this command is entered and no main OLIUs are equipped, there is no place to store a backup copy of the feature options. Thus, the command will be denied with the following message:

EQWT
/* Equipage, Wrong Type */
/* No change in provisioning - both main slots are unequipped */

Enabling a feature will cause the following confirmation message to be displayed:

/* ACCESS TO, AND USE OF THIS <feature> FEATURE IS PERMITTED ONLY IF SPECIFICALLY AND EXPRESSLY AUTHORIZED UNDER THE RELEVANT DDM-2000 SOFTWARE AGREEMENT BETWEEN LUCENT TECHNOLOGIES AND CUSTOMER.

You have selected the set-feat command with the parameters:
Feature = feature
Action = action */

Execute? (y/n or CANcel/DELete to quit) =
Disabling a feature will cause the following confirmation message to be displayed:

```c
/* Caution! Execution of this command will disable all of the
 system capabilities associated with the <feature> feature
 and circuit packs which support that feature will no longer
 provide access to that feature.

 You have selected the set-feat command with these parameters:
 Feature = feature
 Action = action */

Execute? (y/n or CANcel/DELete to quit) =
```

**RELATED COMMANDS**

rtrv-feat
NAME

set-fecom: Set Far-End Communications

INPUT FORMAT

```
set-fecom: Address[.com=Communications][.nsus=NS/US];
```

DESCRIPTION

This command enables or disables communication over the section data communication channels (DCC). A DCC is an embedded overhead communications channel in the SONET line used for end-to-end communications and maintenance. The DCC carries alarm, control, and status information between network elements (NEs).

**NOTE:**

This command is available to privileged users only.

Starting with Release 3.0, this command will complete successfully if it is executed during a remote login session.

The input parameters are:

- **Address**: Address identifies the address of the DCC.
  - Valid Addresses: `dcc-{m1,m2,all}`
  - Starting with FiberReach R4.0 and later, `dcc-m` is the only valid address when the Main OC-3 or OC-12 interface is set to the "identical" dcc mode with the `set-oc3` or `set-oc12` command.

- **com**: This parameter indicates whether communication over a specified DCC is enabled or disabled. The valid values are `enabled` or `disabled`. The default value is `enabled`.

- **nsus**: NetworkSide/UserSide (NS/US) is the identification of the DCC identity for the NE. Each DCC on the NE must define its NS/US identity in the OSI network. When the NS/US parameter is the same at both ends, an alarm is active. NetworkSide/UserSide may have the following parameter values:
  - **ns**: Network Side (NS) defines this end of the DCC to be a network site. For DDM-2000 networks either termination of the DCC can be this value as long as the other termination is different. Default values are listed on the following page.
  - **us**: User Side (US) defines this end of the DCC to be a user site. For DDM-2000 networks, either termination of the DCC can be this value as long as the other termination is different. Default values are listed on the following page.
The following chart shows default settings for the NS/US parameter:

<table>
<thead>
<tr>
<th>Rings Applications</th>
<th>dcc-m1</th>
<th>dcc-m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1 OLIUs</td>
<td>us</td>
<td>ns</td>
</tr>
<tr>
<td>OC-3/OC-12 OLIUs</td>
<td>us</td>
<td>ns</td>
</tr>
</tbody>
</table>

For FiberReach Release 4.0 and later when the main OC-3 or OC-12 interface is provisioned for the identical DCC mode using the set-oc3 or set-oc12 commands the settings for both main interfaces is the same value with a default of **us**.

When this command is input, the following confirmation message will be displayed:

```plaintext
/* Caution! Network element access is affected by this command. You have selected the set-fecom command with these parameters:

 Address = address
 Communications = enabled
 NS/US = value */

Execute? (y/n or CANcel/DELete to quit) =
```
If the **nsus** parameter is changed, no NE reset will be caused and the following confirmation message will be displayed:

```c
/* Caution! Network Element access is affected by this command.
 You have selected the set-fecom command with these parameters:
 Address = address
 Communications = enabled
 NS/US = value */
```

**RELATED COMMANDS**

- `rtrv-fecom`
- `rtrv-map-neighbor`
- `rtrv-map-network`
NAME

set-lgn: Set Login

INPUT FORMAT

\texttt{set-lgn[;act=\textit{Action}];}

DESCRIPTION

This command enters, edits, and deletes logins and passwords. Prior to the first use of this command, the 3 default logins are \textit{LUC01}, \textit{LUC02}, and \textit{LUC03}. The default password is \textit{DDM-2000}.

\textbf{NOTE 1:}

Some situations (for example, a software upgrade or a new circuit pack installation) may cause the default login to change. Users who may no longer gain system access with the \textit{ATTXX} login should try \textit{LUCXX}.

\textbf{NOTE 2:}

This command is available to privileged users only.

\textbf{NOTE 3:}

To enable security, a privileged user must execute the \texttt{set-secu} command. Creating logins and passwords does \textit{not} automatically enable security.

A maximum of 100 (general, maintenance and reports-only user) logins is supported. When security is enabled, the following four types of users are permitted to access the system with a valid login and password:

- \texttt{privileged user} The privileged user may execute any commands, including restricted commands.
- \texttt{general user} The general user may execute any commands that are not restricted to privileged users.
- \texttt{maintenance} The maintenance user may only execute commands that access the system, extract reports, and execute maintenance functions through a specific set of commands. No privileged commands are allowed to be executed by maintenance users.
- \texttt{reports-only} The reports-only user may only execute commands that access the system and extract reports.

Starting with FiberReach Release 4.0, a total of 150 users will be allowed. 147 users can be distributed among \texttt{general}, \texttt{maintenance}, and/or \texttt{reports-only}. A maximum of 3 \textit{privileged} users will still be allowed.
All users may use the `set-passwd` command to modify their own passwords. The input parameters are:

**act** Action has one of the following values:

**enter** Enter a new login and password pair (default value). Login is a case-sensitive alphanumeric string consisting of a minimum of five and a maximum of ten alphabetic characters and/or numbers. When entering a new login, the type of user (privileged user, general user, maintenance or reports-only) must be specified and a password should also be assigned to the new user. A user may then use the `set-passwd` command to modify his/her own password after the login has been activated.

Password is a case-sensitive string of alphanumeric and symbolic characters. Password may have a minimum of six and a maximum of ten characters. Additionally, the password must include at least two numeric characters and one symbolic (non-alphabetic and non-numeric) character. The following symbolic characters have special meanings either for the User Interface or for the X.25 TL1 interface and cannot be included in a password:

```
; semicolon space
@ at sign ? question mark
\ back slash ! exclamation point
: colon slash = equal sign
" double quote , comma
```

Additionally, the following control characters and special keys CANNOT be included in a password:

```
<CR> carriage return <tab> tab key
<bksp> backspace key <esc> escape key
 delete key
```

**passwd_age**

Password Aging interval. Starting with FiberReach Release 4.0, this parameter specifies the period in days after which the user has to change his/her password. It can have a value between 7 and 999, or 0. A value of 0 disables the password aging feature (default).
**edit**  Change an existing login and/or password

**passwd_age**
Password Aging interval: Starting with FiberReach Release 4.0, this parameter specifies the period in days after which the user has to change his/her password. It can have a value between 7 and 999, or 0. A value of 0 disables the password aging feature (default).

**delete**  Delete an existing login.

The **set-lgn** command executes in prompt mode. Based on the action selected (enter, edit, or delete), different dialogs are displayed and the user is prompted for input. These dialogs are shown on the following pages, and the user input is indicated with bold type.
The following screen shows the dialog to enter a login:

```
set-lgn: act=enter;
enter the new login = new_login
enter password for new login = new_password
reenter password for new login = new_password
enter user type for this login = user_type

/* Caution! Network Element access is affected by this command.
 You have selected the set-lgn command with these parameters:

 Action = enter
 Login = new_login
 User Type = user_type */

Execute? (y/n or CANcel/DELete to quit) =
```

NOTE:
Passwords will not be displayed when they are entered.

Starting with FiberReach Release 4.0, the following screen shows the dialog to enter a login:

```
set-lgn: act=enter;
enter the new login = new_login
enter password for new login = new_password
reenter password for new login = new_password
enter user type for this login = user_type
enter password age for this login = passwd_age

/* Caution! Network Element access is affected by this command.
 You have selected the set-lgn command with these parameters:

 Action = enter
 Login = new_login
 User Type = user_type
 Password Age = passwd_age */

Execute? (y/n or CANcel/DELete to quit) =
```

NOTE:
For the password aging parameter, a user entry of <CR>
initializes the value to 0.
The following screen shows the dialog to edit a login:

```
set-lgn: act=edit;
enter the login to be changed = old_login
enter the new login = new_login
enter password for new login = new_password
reenter password for new login = new_password
enter user type for this login = user_type

/* Caution! Network Element access is affected by this command.
You have selected the set-lgn command with these parameters:

Action = edit
Old Login = old_login
New Login = new_login
Old User Type = user_type
New User Type = user_type */
Execute? (y/n or CANcel/DELete to quit) =
```

Starting with FiberReach Release 4.0, the following screen shows the dialog to edit a login:

```
set-lgn: act=edit;
enter the login to be changed = old_login
enter the new login = new_login
enter password for new login = new_password
reenter password for new login = new_password
enter user type for this login = user_type
enter password age for this login = passwd_age

/* Caution! Network Element access is affected by this command.
You have selected the set-lgn command with these parameters:

Action = edit
Old Login = old_login
New Login = new_login
Old User Type = user_type
New User Type = user_type
Password Age = passwd_age */
Execute? (y/n or CANcel/DELete to quit) =
```

**NOTE:**
For the password aging parameter, a user entry of <CR> initializes the value to 0.
The following screen shows the dialog to delete a login:

```
set-lgn:act=delete;
enet the login to be deleted = user_login
/* Caution! Network Element access is affected by this command.
 You have selected the set-lgn command with these parameters:

 Action = delete
 Login = user_login */

Execute? (y/n or CANcel/DELeTe to quit) =
```

If the login value does not match the valid login definition (syntactically incorrect), the following message will appear:

```
/* Entry does not follow rules for logins. */
/* Logins must be 5 to 10 alphabetic characters and/or numbers;
 characters allowed are A..Z, a..z and/or 0..9 */
```

The user may try once again to enter a login. If the user enters a login that does not match the valid login definition, the following denial message will be displayed:

```
IDEI
/* Input, Data Entry Invalid */
/* Entry does not follow rules for passwords and logins. */
```
If the entered password value does not match the valid password definition (syntactically incorrect), the following message will appear:

`/* Entry does not follow rules for passwords. */
/* Passwords must be 6 to 10 characters, with at least 2 non alphabetic characters and additionally, at least 1 symbolic characters allowed are: A..z or a..z, 0..9, all symbolic characters, EXCEPT the following:

; semicolon       ? question mark
@ at sign        space
: colon          = equal sign
" double quote   , comma
\ back slash    ! exclamation point

* /

The user may try once again to enter a password. If the user enters a password that does not match the valid password definition, the following denial message will be displayed:

IDEI
`/* Input, Data Entry Invalid */
/* Entry does not follow rules for passwords and logins. */

Privileged user logins can be edited to change the login name, password, or both. However, privileged logins cannot be deleted. If an attempt is made to delete a privileged user login, the following denial message will be displayed:

SDNC
`/* Status, Data Not Consistent */
/* Privileged user logins cannot be deleted. */
If an attempt is made to add a privileged user login, the following message will keep displaying until a valid user type (general, maintenance, or reports-only) is entered:

```c
/* Not a valid response */
/* Select from: */
1. general
2. maintenance
3. reports-only
enter user type for this login [general] =
```

When a user selects the edit or delete option for a login but the login entered does not exist, the following message will be displayed:

```c
IIUS
/* Input, Invalid USER identifier */
/* login <value> is unknown. */
```

If a user invokes this command with Action=enter and the entered login matches the login definition (syntactically correct) but also matches an already existing valid login, the attempt will be denied and the following denial message will be displayed:

```c
IIUS
/* Input, Invalid USER identifier */
/* login <value> is unknown. */
```
If a user attempts to enter another login when the maximum supported logins already exists, the following denial message will appear:

**SLEM**
/* Status, List, Exceeds Maximum */
/* Maximum number of logins already exists. Cannot enter another login. */

Starting with FiberReach Release 4.0, if a Network Element receives an invalid value for the Password Age parameter, the following denial message will be displayed:

**IDNV**
/* Input, Data Not Valid */
/* Invalid Password Age value \texttt{pwd\_age}. */

**RELATED COMMANDS**
- rtrv-lgn
- set-passwd
- set-secu
NAME

set-link: Set CIT Link Configuration

INPUT FORMAT

set-link:pg=pagelength;

DESCRIPTION

This command sets the configuration of the current user’s craft interface terminal (CIT) link.

The input parameter is:

pg   PageLength is the vertical size of the displayed page in lines. The value may be an integer between 3 and 150 with a default of 24. If the page length is set to zero, no pager is used and system output is sent directly to the screen. The page length is set to the default value each time a new CIT session is started.

RELATED COMMANDS

rtrv-link
NAME

set-ne: Set Network Element

INPUT FORMAT

_set-ne:_tid= TID[,_cort= CO/RT][,_idle= IdleChannelSignal];
(For FiberReach Release 3.1 and earlier)

_set-ne:_tid= TID[,_rnestat= RneStat][,.almgrp= AlarmGroup]
 [,.agne= AGNE][,.cort= CO/RT][,.idle= IdleChannelSignal];
(For FiberReach Release 4.0 and later)

DESCRIPTION

- **NOTE:**
  This command page describes the functionality of the _set-ne_ command in FiberReach Release 3.0 and later FiberReach TARP releases.

This command sets the network element (NE) characteristics (parameters) of a DDM-2000.

- **NOTE:**
  If security is enabled on any CIT or DCC port on a shelf, then this command is available to privileged users only for all CIT or DCC ports on the shelf.

The input parameters are:

- **tid**
  TID is a string of up to 20 characters, and may include upper- and lowercase letters, numbers, and the following characters: "-", "+", ":", ":", ":", ":". Prior to the first use of this command, the initial value is _LT-DDM-2000_. The _TID_ will be printed at the beginning of the output for all commands. For proper operation of TL1/X.25 OS interfaces, the _TID_ must be unique for each NE.

- **NOTE 1:**
  Changing the _TID_ (system name) does not change the network address, which is determined by the NSAP but does affect proper TL1 message reporting.

- **NOTE 2:**
  It is strongly recommended to change the default TIDs of all NEs in the subnetwork at systems startup.
CAUTION: Changing the TID will cause all active TL1 logins to this NE to be dropped. New TL1 logins to this NE will have to be activated using the new TID value.

rnestat This parameter is valid starting with FiberReach Release 4.0. Remote NE Status (feature) can have a value of enabled or disabled. If this parameter has a value of enabled, the user will be prompted for almgrp andagne, as well as the other parameters; otherwise the user will not be prompted for almgrp andagne.

almgrp This parameter is valid starting with FiberReach Release 4.0. Alarm Group (AG) has a numeric value of 1 through 255. All NEs in the subnetwork, whether nearby or not, that have the same AG number are members of the same group. All members of the AG will share NE Status information with each other but not with NEs of different alarm Groups. The default AG number for DDM-2000 is 255 and may not have to be changed if a single AG is desired.

agne This parameter is valid starting with FiberReach Release 4.0. AGNE (Alarm Gateway NE) has a value of yes or no, which indicates whether this system is an alarm gateway network element. The default value for this parameter is no. At least one AGNE is needed for each alarm group to support the message communications for NE Status features (FE activity, office alarms, miscellaneous discretes, local ACO and FE user panel status). Any member of the alarm group can be an AGNE but some may be preferred because of their position in the subnetwork or location near a maintenance center. Other NEs of the same alarm group may be provisioned as backup AGNEs if required. At least one NE in each alarm group must be designated as an agne. Network Elements without an AGNE can raise "AGNE communication failure" alarms (If the remote NE status feature is enabled).

idle IdleChannelSignal determines whether or not an AIS or Unequipped signal should be inserted toward the SONET line in VT1.5 and STS-1 channels that are not cross-connected. The value may be one of the following:

ais STS-1 or VT1.5 AIS is inserted towards the SONET line from SONET interfaces (OLIUs and STS1Es) if the channel is not cross-connected or if a low-speed slot is not equipped but the function unit is STS-1 cross-connected.

unequipped The STS-1 or VT1.5 Unequipped signal is inserted towards the SONET line from SONET interfaces (OLIUs and STS1Es) if the channel is not cross-connected or if
a low-speed slot is not equipped but the function unit is STS-1 cross-connected.

**NOTE:**

It is recommended that the user choose the `ais` option for this parameter, since all SONET equipment is capable of detecting and performing path protection switching when receiving a VT/STS AIS signal.

**cort**

The CO/RT parameter for CO (Central Office) or RT (Remote Terminal) identifies the system as having characteristics of a CO or an RT. The values for CO/RT are `co` and `rt` with `rt` as the default value. The value of CO/RT controls the operation of the miscellaneous discretes, and the external fan control.

**NOTE:**

To optimize the performance of your network and simplify provisioning when the Remote NE Status feature is enabled, it is strongly recommended that the following guidelines and rules are followed:

- If network partitioning is implemented, an Alarm Group should be restricted to a Level1 area (Multiple Alarm Groups are allowed within the same Level1 area).
- Multiple AGNEs can be defined in an Alarm Group.
- It is recommended to define a maximum of 2 AGNEs per Alarm Group.
- It is good practice to not define the same Alarm Group Id across different Level1 areas.
Some of the command parameters are backed up on the main OLIU packs (tid, cort). Any attempt to provision any of these parameters with no main OLIU packs equipped will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* System must be equipped with at least one main OLIU circuit pack to provision selected parameters. */
```

When this command is entered, the following confirmation message will be displayed:

```
/* Caution! Network Element access is affected by this command. */
You have selected the set-ne command with these parameters:
TID = LT-DDM-2000
IDLE = ais/unequipped
idle = ais/unequipped
Execute? (y/n or CANcel/DELeete to quit) =
```

Starting with FiberReach Release 4.0, when this command is entered and the rnestat feature is enabled, the following confirmation message will be displayed:

```
/* Caution! Network Element access is affected by this command. */
You have selected the set-ne command with these parameters:
TID = LT-DDM-2000
RneStat = enabled
AlarmGroup = number
AGNE = yes/no
idleChannelSignal = ais/unequipped
CO/RT = co/rt
Execute? (y/n or CANcel/DELeete to quit) =
```
Changing the `cort` parameters will cause the network element to reset. Before these parameters are changed, the following caution message will be displayed prior to the confirmation message:

```c
/* Caution! Network Element access is affected by this command.

Caution! When executed, this command causes the NE to restart the program. This action will erase all of the performance monitoring data and the history file. If possible, it will reinitialize the date and time with the far end via the DCC. Otherwise, the date and time will assume default values.
You have selected the set-ne command with these parameters:
```

**RELATED COMMANDS**

- `reset`
- `rlgn`
- `rtrv-ne`
- `rtrv-map-network`
- `ent-ulsdcc-l3`
- `ent-ulsdcc-l4`
NAME

set-oc1: Set OC-1 Characteristics

INPUT FORMAT

```bash
set-oc1:Address[dgr=SignalDegradeThreshold][aisalm=Alarm];
```

DESCRIPTION

This command sets the characteristics (parameters) of a specified OC-1 line.

The input parameters are:

- **Address**: Address identifies the OC-1 line(s).
  - Valid OC-1 Addresses: `all`, `main-{1,2,all}`

- **dgr**: SignalDegradeThreshold specifies the signal degrade threshold as a BER in terms of a logarithm to the base 10. When this threshold is crossed, an alarm will be raised. The value of this parameter has a range of -9 to -5. The default value is -6.

> **NOTE:**
> The signal degrade value for both addresses of each OC-1 line pair must be the same. Therefore, any change to signal degrade for one address will automatically be made to the other by the software.

- **aisalm**: Alarm is the provisioned alarm level of the nonservice affecting (NSA) OC-1 line AIS and has the following values:
  - `cr` Critical alarm
  - `mj` Major alarm
  - `mn` Minor alarm
  - `na` Not alarmed, but reported (default).
When input, this command will cause the following confirmation request to be displayed (NonServiceAffecting AIS will be displayed for Release 2.1 and later):

```c
/* Caution! Alarm or maint. thresholds and sync messages are affected by this command. You have selected the set-ocl command with these parameters:

Address = x
SignalDegradedThreshold = -n

Execute? (y/n or CANcel/DELete to quit) =
```

**RELATED COMMANDS**

`rtrv-oc1`
NAME

set-oc3: Set OC-3 Characteristics

INPUT FORMAT

```
set-oc3: Address[dgr=SignalDegradeThreshold][,syncmsg=SynchronizationMessaging][,aisalm=Alarm];
```
(FiberReach Release 3.1)

```
set-oc3: Address[dgr=SignalDegradeThreshold][,syncmsg=SynchronizationMessaging][,aisalm=Alarm][,dcc=DccMode];
```
(FiberReach Release 4.0 and later)

DESCRIPTION

This command sets several characteristics (parameters) of a specified OC-3 line or line pair. This command requires the use of the 28G-U OLIU circuit packs in Main, and it is available in FiberReach Release 3.1, and later releases.

The input parameters are:

- **Address**
  - Address identifies the OC-3 line(s) or line pair(s).
  - If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1, and later), the valid addresses are:
  - `main-{1,2,all}, all`
  - If the shelf is equipped with 22-type OLIUs in Function unit slots (in FiberReach 3.1 and later), the valid addresses are:
  - `fn, all`

- **dgr**
  - SignalDegradeThreshold specifies the signal degrade threshold as a BER in terms of a logarithm to the base 10. When this threshold is crossed, an alarm will be raised and automatic protection switching of the service line will be initiated. The value of this parameter has a range of -9 to -5. The default value is -6.
  - For ring releases, the signal degrade value for addresses of main-1 and main-2 must be the same. Therefore, any change to signal degrade for one address will automatically be made to the other by the software.

- **syncmsg**
  - This parameter is available in FiberReach Release 3.1 (when equipped with 28-type OLIU in the Main unit slots) and later (when equipped with 28/29-type OLIUs in the Main Unit slots).

**NOTE:**
In FiberReach Release 3.1 and later releases, there is no synchronization messaging of any type provisioned for the 22-type OLIU in the Function unit slots of the FiberReach shelf. Therefore, no data is provisioned for this parameter.
Synchronization messaging allows timing to be reconfigured in a network upon a node or fiber failure. This parameter has one of the following values:

- **Kbyte**: This is the default value. When this option is selected, both K2 and S1 byte sync messages are transmitted, but only K2 byte is received and interpreted for sync messaging.

- **Sbyte**: When this option is selected, only the S1 byte is sent and received for sync messaging. K2 byte will always send a "Don't Use" message.

**NOTE:**
To minimize the amount of time that DDM-2000 is in holdover mode when upgrading a ring network from Kbyte to Sbyte messages, it is recommended that the user first upgrade the nodes farthest away from the external timing source, and then proceed to nodes closer to the timing source.

- **disabled**: When this option is selected, interpretation of both K2 and S1 bytes will be disabled and hence a "Don't Use" message will be transmitted on both bytes at all times.

This parameter is not prompted for if the user enters a Main Address value.

**aisalm**
Alarm is the provisioned alarm level of the NSA OC-3 line AIS and has the following values:

- **cr**: Critical alarm
- **mj**: Major alarm
- **mn**: Minor alarm
- **na**: Not alarmed, but reported (default).

**dcc**
This parameter is only applicable to the Main OC-3 interface in R4.0 and later. DccMode is a parameter that configures an OC-3 ring interface to interwork with either a ring or 1+1 application. There are two valid values for this parameter, "distinct" (default) or "identical". When configured for "distinct" a separate DCC data link (SONET embedded overhead channel) is assigned to each OC-3 line in the pair.

This is the configuration that supports ring interworking. To allow the OC-3 interface to interconnect to a 1+1 OC-3 interface at the far-end, the DccMode should be set to "identical". In this
mode the transmit DCC bytes are copied or bridged on both OC-3 lines, and the K-bytes are configured for the 1+1 protection mode. In the receive direction only the DCC bytes from the active line are processed.

Assignment of this parameter always affects both OC-3 lines. This parameter is not prompted for if the user enters a Function unit Address value.

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

When input, this command will cause the following confirmation request to be displayed:

```
/* Caution! Alarm or maint. thresholds and sync messages are affected by this command.
You have selected the set-oc3 command with these parameters:

Address = x
SignalDegradedThreshold = -n
NonServiceAffectingAIS= value

Execute? (y/n or CAncel/DELeete to quit) =
```
Beginning with FiberReach Release 3.1 (when the shelf is equipped with 28-type OLIUs in Main unit slots), this command will cause the following confirmation request to be displayed:

/* Caution! Alarm or maint. thresholds and sync messages are affected by this command.
You have selected the set-oc3 command with these parameters:

Address = x
SignalDegradethreshold = -n
SynchronizationMessaging = value
NonServiceAffectingAIS= value */

Execute? (y/n or CANcel/DELete to quit) =

When this command is input in FiberReach Rlease 4.0 and later, the following confirmation request to be displayed:

/* Caution! Alarm or maint. thresholds and sync messages are affected by this command.
You have selected the set-oc3 command with these parameters:

Address = x
SignalDegradethreshold = -n
SynchronizationMessaging = value
NonServiceAffectingAIS= value
DccMode = value */

Execute? (y/n or CANcel/DELete to quit) =

The DccMode parameter appears in R4.0 and later releases. The DccMode parameter confirmation only applies to Main slots.

RELATED COMMANDS

rtrv-oc3

rtrv-sync
NAME

set-oc12: Set OC-12 Characteristics

INPUT FORMAT

```
set-oc12: Address[:dgr=SignalDegrade][,syncmsg=SynchronizationMessaging][,aisalm=Alarm][,dcc=DccMode];
```

DESCRIPTION

This command sets the Signal Degrade (DGR) threshold, the line AIS alarm level and the Synch messaging status of the specified OC-12 line pair.

The input parameters are:

- **Address** identifies the OC-12 line or line pair.
- **dgr** specifies the signal degrade threshold as a BER in terms of a logarithm to the base 10. The value of this parameter has a range of -5 to -9. The default value is -6. For ring releases, when using the 29-type OLIU circuit packs in the shelf’s Main unit slots, the degrade values for main-1 and main-2 must be the same. Any change to one address will also be made automatically to the other by the software.
- **syncmsg** allows timing to be reconfigured in a network upon a node or fiber failure. Parameter value is one of the following:
  - **Kbyte** This is the default value. When this option is selected, both K2 and S1 byte sync messages are transmitted, but only K2 byte is received and interpreted for sync messaging.
  - **Sbyte** When this option is selected, only the S1 byte is sent and received for sync messaging. K2 byte will always send a "Don't Use" message.
  - **disabled** When this option is selected, interpretation of both K2 and S1 bytes will be disabled and hence a "Don’t Use" message will be transmitted on both bytes at all times.
aisalm For ring releases, the AIS alarm values for Main-1 and Main-2 (when using 29-type OLIU circuit packs in the Main unit slots) must be the same. Any change to one address will also be made automatically to the other by the software. Alarm is the provisioned alarm level of the non-service affecting (NSA) OC-12 line AIS and has the following values:

- **cr** Critical alarm
- **mj** Major alarm
- **mn** Minor alarm
- **na** Not alarmed, but reported (default)

dcc DccMode is a parameter that configures an OC-12 ring interface for interworking with either a ring or 1+1 application. There are two valid values for this parameter, "distinct" (default) or "identical". When configured for "distinct" a separate DCC data link (SONET embedded overhead channel) is assigned to each OC-12 line in the pair. This is the configuration that supports ring interworking. To allow the OC-12 interface to interconnect to a 1+1 OC-12 interface at the far-end, the DccMode should be set to "identical". In this mode the transmit DCC bytes are copied or bridged on both OC-12 lines, and the K-bytes are configured for the 1+1 protection mode. In the receive direction only the DCC bytes from the active line are processed. This parameter is only applicable to the Main OC-12 interface in R4.0 and later.

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```
This command will cause the following confirmation request to be displayed:

/* Caution! Alarm or maint. thresholds are affected by this command. You have selected the set-ocl2 command with these parameters:

Address = x
SignalDegradeThreshold = -n
SynchronizationMessaging = x
NonServiceAffectingAIS= value */
DccMode = value

Execute? (y/n or CANcel/DELete to quit) =

The **DccMode** parameter appear in R4.0 and later releases.

**RELATED COMMANDS**

rtrv-oc12

rtrv-sync
NAME
set-passwd: Set Password

INPUT FORMAT
set-passwd;

DESCRIPTION
This command changes a user’s password. All users can change their own passwords. Privileged users can change other users’ passwords by using the set-lgn command.

Starting with FiberReach Release 4.0, this command is used also to change a user’s password when his/her password expires.

The following screen shows the dialog to change a password. In the dialog, the user input is shown in bold type.

> NOTE:
Passwords will not be displayed when they are entered.

```
<set-passwd;
enter your old password = old_password
type in your new password = new_password
reenter your new password = new_password
```

There are no default values for the old and new passwords.
A valid password is a case-sensitive ASCII string containing a minimum of six and a maximum of ten characters. The password must also include at least two numeric characters and one symbolic (non-alphabetic and non-numeric) character. The following symbolic characters have special meanings either for the User Interface or for the x.25 TL1 interface and cannot be included in a password:

- ; semicolon
- ? question mark
- @ at sign
- : colon
- = equal sign
- " double quote
- , comma
- \ back slash
- ! exclamation point

Additionally, the following control characters and special keys CANNOT be included in a password:

- <CR> carriage return
- <tab> tab key
- <bksp> backspace key
- <esc> escape key
- <del> delete key

If the entered password value does not match the valid password definition (syntactically incorrect), the following message will be displayed:

```c
/* Entry does not follow rules for passwords. */
/* Passwords must be 6 to 10 characters, with at least 2 non
alphabet characters and additionally, at least 1 symbolic.
Characters allowed are: A..Z or a..z, 0..9, all symbolic
characters, EXCEPT the following:

- ; semicolon
- @ at sign
- : colon
- " double quote
- \ back slash
- ? question mark
- = equal sign
- , comma
- ! exclamation point

*/
```

enter your new password:
The user may try once again to enter a password. If the user tries again to enter a password that does not match the valid password definition, the following denial message will be displayed:

```
IDEI
/* Input, Data Entry Invalid */
/* Entry does not follow rules for passwords and logins. */
```

If a user is changing a password and the password entered does not match the present valid password, it will be rejected and the user will be prompted to try again. The user is allowed only one retry. If the user attempts and fails a second time, the entry will be denied with the following message and the old password will remain in effect:

```
PIP\W
/* Privilege, Illegal PassWord */
/* The old password remains in effect. */
```

If the new password that a user enters when changing a password meets the password definition requirements (syntactically correct), but does not match on its two entries (enter your new password; reenter your new password), the following message will be displayed:

```
/* The first and second entries of new password did not match. */
```

The user may try once again to change the password. If the user fails a second time to match the two entries, the following denial message will be displayed and the old password will remain in effect:

```
IDNC
/* Input, Data Not Consistent */
/* First and second entries of new password did not match.
The old password remains in effect. */
```
RELATED COMMANDS

rtrv-lgn

set-lgn

set-secu
NAME

set-pmthres-line: Set Performance Monitoring Threshold Line

INPUT FORMAT

set-pmthres-line:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QHB2CVOC12</td>
<td>nnnnn</td>
<td>OC-12 coding threshold for quarter-hour intervals</td>
</tr>
<tr>
<td>DayB2CVOC12</td>
<td>nnnnn</td>
<td>Day threshold for quarter-hour intervals</td>
</tr>
<tr>
<td>QHB2CVOC3</td>
<td>nnnnn</td>
<td>OC-3 coding threshold for quarter-hour intervals</td>
</tr>
<tr>
<td>DayB2CVOC3</td>
<td>nnnnn</td>
<td>Day threshold for quarter-hour intervals</td>
</tr>
<tr>
<td>QHB2CVOC1</td>
<td>nnnnn</td>
<td>OC-1 coding threshold for quarter-hour intervals</td>
</tr>
<tr>
<td>DayB2CVOC1</td>
<td>nnnnn</td>
<td>Day threshold for quarter-hour intervals</td>
</tr>
<tr>
<td>QHB2ES</td>
<td>nnn</td>
<td>OC-3 coding threshold for half-hour intervals</td>
</tr>
<tr>
<td>DayB2ES</td>
<td>nnnnn</td>
<td>Day threshold for half-hour intervals</td>
</tr>
<tr>
<td>QHB2ESA</td>
<td>nnn</td>
<td>OC-3 coding threshold for half-hour intervals</td>
</tr>
<tr>
<td>DayB2ESA</td>
<td>nnnnn</td>
<td>Day threshold for half-hour intervals</td>
</tr>
<tr>
<td>QHB2ESB</td>
<td>nnn</td>
<td>OC-1 coding threshold for half-hour intervals</td>
</tr>
<tr>
<td>DayB2ESB</td>
<td>nnnnn</td>
<td>Day threshold for half-hour intervals</td>
</tr>
<tr>
<td>QHB2SES</td>
<td>nnn</td>
<td>OC-1 coding threshold for half-hour intervals</td>
</tr>
<tr>
<td>DayB2SES</td>
<td>nnnnn</td>
<td>Day threshold for half-hour intervals</td>
</tr>
<tr>
<td>QHB2UAS</td>
<td>nnn</td>
<td>OC-1 coding threshold for half-hour intervals</td>
</tr>
<tr>
<td>DayB2UAS</td>
<td>nnnnn</td>
<td>Day threshold for half-hour intervals</td>
</tr>
</tbody>
</table>

where nnn . . . is a numerical value in the range given in the following parameter descriptions.

NOTE:

Parameters are shown in uppercase letters for readability. Parameters may be entered in either upper- or lowercase letters.

DESCRIPTION

This command sets the performance parameter thresholds of:

- OC-1 lines, if the shelf is equipped with 26-type OLIUs in Main unit slots
- OC-3 lines (in FiberReach Release 3.1, and later), if the shelf is equipped with 28-type OLIUs in Main unit slots and 22-type OLIUs in the Function unit slots (in Release 3.1 and later).
- OC-12 lines, when the shelf is equipped with 29-type OLIUs in Main unit slots (in Release 4.0 and later)

This command activates and deactivates the processing of threshold crossings for performance parameters.

Entering a value of zero (0) for a parameter will disable thresholding for that parameter.

The input parameters are:

**QHB2CVOC12**

This parameter sets the threshold for the OC-12 coding violations count on a quarter-hourly basis. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 55365. The default value is 5537. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10.
DayB2CVOC12

A positive value of this parameter sets the threshold for the OC-12 coding violation count on a daily basis. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 5315040. The default value is 531504. A negative value of this parameter sets the parity count threshold in terms of an equivalent BER expressed as a logarithm to the base 10.

QHB2CVOC3

This parameter is available in FibreReach Release 3.1 and later releases. This parameter sets the threshold for the OC-3 coding violations count on a quarter-hourly basis. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 13841. The default value is 1384. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10.

DayB2CVOC3

This parameter is available in FibreReach Release 3.1 and later releases. A positive value of this parameter sets the threshold for the OC-3 coding violation count on a daily basis. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 1328736. The default value is 132874. A negative value of this parameter sets the parity count threshold in terms of an equivalent BER expressed as a logarithm to the base 10.

QHB2CVOC1

This parameter sets the threshold for the OC-1 coding violations count on a quarter-hourly basis. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 4613. The default value is 461. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10.

DayB2CVOC1

A positive value of this parameter sets the threshold for the OC-1 coding violation count on a daily basis. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 442848. The default value is 44285. A negative value of this parameter sets the parity count threshold in terms of an equivalent BER expressed as a logarithm to the base 10.

QHB2ES

This parameter sets the threshold for the ES type A count on a quarter-hourly basis. This parameter is an integer with range 0 through 900 and a default value of 40.
This parameter sets the threshold for the ES type A count on a daily basis. This parameter is an integer with range 0 through 65535 and default value of 900.

QHB2ESA
This parameter sets the threshold for the ES type A count on a quarter-hourly basis. This parameter is an integer with range 0 through 900 and default value of 30.

DayB2ESA
This parameter sets the threshold for the ES type A count on a daily basis. This parameter is an integer with range 0 through 65535 and default value of 90.

QHB2ESB
This parameter sets the threshold for the ES type B count on a quarter-hourly basis. This parameter is an integer with range 0 through 900 and default value of 30.

DayB2ESB
This parameter sets the threshold for the ES type B count on a daily basis. This parameter is an integer with range 0 through 65535 and default value of 90.

QHB2SES
This parameter sets the threshold for the SES count on a quarter-hourly basis. This parameter is an integer with range 0 through 63 and default value of 20.

DayB2SES
This parameter sets the threshold for the SES count on a daily basis. This parameter is an integer with range 0 through 4095 and default value of 60.

QHB2UAS
This parameter sets the threshold for the UAS count on a quarter-hourly basis. This parameter is an integer with range 0 through 63 and default value of 30.

DayB2UAS
This parameter sets the threshold for the UAS count on a daily basis. This parameter is an integer with range 0 through 4095 and default value of 90.

The following tables show the error counts equivalent to different BER thresholds for OC-1, OC-3 (available in Release 3.1 and later) and OC-12 (Release 4.0).

### B2 OC12 Line Errors

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHB2CVOC12)</th>
<th>Equivalent Day Threshold (DayB2CVOC12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>55364</td>
<td>5315052</td>
</tr>
<tr>
<td>-8</td>
<td>5537</td>
<td>531505</td>
</tr>
<tr>
<td>-9</td>
<td>554</td>
<td>53151</td>
</tr>
<tr>
<td>-10</td>
<td>55</td>
<td>5315</td>
</tr>
</tbody>
</table>
B2 OC3 Line Errors

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHB2CVOC3)</th>
<th>Equivalent Day Threshold (DayB2CVOC3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>13841</td>
<td>1328736</td>
</tr>
<tr>
<td>-8</td>
<td>1384</td>
<td>132874</td>
</tr>
<tr>
<td>-9</td>
<td>138</td>
<td>13287</td>
</tr>
<tr>
<td>-10</td>
<td>14</td>
<td>1329</td>
</tr>
</tbody>
</table>

B2 OC1 Line Errors

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHB2CVOC1)</th>
<th>Equivalent Day Threshold (DayB2CVOC1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>4613</td>
<td>442848</td>
</tr>
<tr>
<td>-8</td>
<td>461</td>
<td>44285</td>
</tr>
<tr>
<td>-9</td>
<td>46</td>
<td>4428</td>
</tr>
<tr>
<td>-10</td>
<td>5</td>
<td>443</td>
</tr>
</tbody>
</table>

RELATED COMMANDS

init-pm
rtrv-pm-line
rtrv-pm-tca
rtrv-pmthres-line
set-pmthres-sect
NAME

set-pmthres-sect: Set Performance Monitoring Threshold Section

INPUT FORMAT

set-pmthres-sect:[Qhsefs=nn],[Daysefs=nnnn];

DESCRIPTION

This command sets the performance-monitoring thresholds of an OC-1 and OC-3 (available in Release 3.1 and later releases) sections, as well as activating and deactivating the processing of threshold crossings for performance parameters.

The input parameters are:

Qhsefs This parameter sets the threshold for SEFS on a quarter-hourly basis. This parameter is an integer with range of 0 through 63 and default value of 10. Entering a parameter value of zero (0) will disable thresholding for this parameter.

Daysefs This parameter sets the threshold for SEFS on a daily basis. This parameter is an integer with range of 0 through 4095 and a default value of 30. Entering a parameter value of zero (0) will disable thresholding for this parameter.

RELATED COMMANDS

init-pm
rtrv-pm-sect
rtrv-pm-tca
rtrv-pmthres-sect
NAME

set-pmthres-sts1: Set Performance Monitoring Threshold STS-1

INPUT FORMAT

set-pmthres-sts1: [QHB3CV=nnnn][,DayB3CV=nnnnnn][,QHB3ES=nnn]
[,DayB3ES=nnnnnn][,QHB3ESA=nnn][,DayB3ESA=nnnnnn][,QHB3ESB=nnn]
[,DayB3ESB=nnnnnn][,QHB3SES=nnn][,DayB3SES=nnnnnn][,QHB3UAS=nn]
[,DayB3UAS=nnnnn];

where nnn... is the numerical value given in the following parameter descriptions.

NOTE:

Parameters are shown in upper-case letters for readability. Parameters may be entered in either upper- or lower-case letters.

DESCRIPTION

This command provisions STS-1 path performance parameter thresholds as well as enabling and disabling the processing of threshold crossings for the various parameters. Entering a parameter value of zero (0) will disable thresholding for that parameter.

The input parameters are:

QHB3CV This parameter sets the threshold for the coding violations count on a quarter-hourly basis. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 4510. The default value is 451.

DayB3CV This parameter sets the threshold for the coding violations count on a daily basis. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 432960. The default value is 43296.

QHB3ES This parameter sets the threshold for errored seconds on a quarter-hourly basis. This parameter has an integer range of 0 through 900 and a default value of 40.

DayB3ES This parameter sets the threshold for errored seconds on a daily basis. This parameter has an integer range of 0 through 65535 and a default value of 900.
QHB3ESA  This parameter sets the threshold for type A errored seconds on a quarter-hourly basis. A type A ES is a second with a single error. This parameter has an integer range of 0 through 900 and a default value of 30.

DayB3ESA  This parameter sets the threshold for type A errored seconds on a daily basis. A type A ES is a second with a single error. This parameter has an integer range of 0 through 65535 and a default value of 90.

QHB3ESB  This parameter sets the threshold for type B errored seconds on a quarter-hourly basis. A type B ES is a second with more than one error, but less than the number of errors in a severely errored second. This parameter has an integer range of 0 through 900 and a default value of 30.

DayB3ESB  This parameter sets the threshold for type B errored seconds on a daily basis. A type B ES is a second with more than one error, but less than the number of errors in a severely errored second. This parameter has an integer range of 0 through 65535 and a default value of 90.

QHB3SES  This parameter sets the threshold for the severely errored frame seconds count on a quarter-hourly basis. This parameter has an integer range of 0 through 63 and a default value of 20.

DayB3SES  This parameter sets the threshold for the severely errored frame seconds count on a daily basis. This parameter has an integer range of 0 through 4095 and a default value of 60.

QHB3UAS  This parameter sets the threshold for unavailable seconds on a quarter-hourly basis. This parameter has an integer range of 0 through 63 and a default value of 30.

DayB3UAS  This parameter sets the threshold for unavailable seconds on a daily basis. This parameter has an integer range of 0 through 4095 and a default value of 90.
The following table shows the error counts equivalent to different BER thresholds.

### B3 STS-1 Path Errors

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHB3CV)</th>
<th>Equivalent Day Threshold (DayB3CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>4510</td>
<td>432960</td>
</tr>
<tr>
<td>-8</td>
<td>451</td>
<td>43296</td>
</tr>
<tr>
<td>-9</td>
<td>45</td>
<td>4330</td>
</tr>
<tr>
<td>-10</td>
<td>5</td>
<td>433</td>
</tr>
</tbody>
</table>

**RELATED COMMANDS**

- init-pm
- rtrv-pmthres-sts1
- rtrv-pm-sts1
- rtrv-pm-tca
NAME

set-pmthres-t1: Set Performance Monitoring Threshold T1

INPUT FORMAT

set-pmthres-t1:[QHESL=nnnn][DayESL=nnnnn][QHCVPFSF=nnnnn][DayCVPSF=nnnnnnn]
[QHCVFESF=nnnnnn][DayCVFFSF=nnnnnnn][QHESP=nnn][DayESP=nnnnnnn]
[QHCVPESF=nnnnnn][DayCVPESF=nnnnnnnn][QHESP=nnn][DayESP=nnnnnnn]
[QHCVPFE=nnnnnn][DayCVPFE=nnnnnnnnn][QHESPFE=nnn][DayESPFE=nnnnnnn]
[QHSESP=nnn][DaySESP=nnnnn][QHUASP=nnn][DayUASP=nnnnn]
[QHCVPF=nnnnnn][DayCVPF=nnnnnnnn][QHESPFE=nnn][DayESPFE=nnnnnnn]
[QHCVPFE=nnnnnn][DayCVPFE=nnnnnnnn][QHESPFE=nnn][DayESPFE=nnnnnnn]

where nnn... is a numerical value in the range given in the following parameter descriptions.

NOTE:

Parameters are shown in upper-case letters for readability. Parameters may be entered in either upper- or lower-case letters.

DESCRIPTION

This command sets DS1 path and line performance monitoring thresholds, and is available with the BBF3/BBF3B circuit pack. This command also enables and disables the processing of threshold crossing alerts (TCAs) for these parameters.

This command may only be used if the dsipm feature is enabled via the set-feat command.

Entering a value of zero (0) for a parameter will disable thresholding for that parameter.

A negative integer threshold value indicates that the threshold is specified in terms of an equivalent Bit Error Ratio (BER) of $10^{10}$.

The input parameters are:

**QHESL**
This parameter sets the threshold for the errored second line (ESL) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 900 and a default value of 65.

**DayESL**
This parameter sets the threshold for the errored second line (ESL) count on a daily basis. This parameter is an integer with a range of 0 through 65535 and a default value of 648.

**QHCVPFSF**
This parameter sets the threshold for the code violations path SF (CVPSF) count on a quarter-hourly basis. A negative value of this parameter indicates that the code violation count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -7 through -5, corresponding to BERs of $10^{-7}$ through $10^{-5}$, and an integer range of 0 through 16383. The default value is 72.
**DayCVPSF**

This parameter sets the threshold for the code violations path SF (CVPSF) count on a daily basis. A negative value of this parameter indicates that the code violation count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of $-8$ through $-5$, corresponding to BERs of $10^{-8}$ through $10^{-5}$, and an integer range of 0 through 1048575. The default value is 691.

**QHCVPESF**

This parameter sets the threshold for the code violations path ESF (CVPESF) count on a quarter-hourly basis. A negative value of this parameter indicates that the code violation count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of $-8$ through $-5$, corresponding to BERs of $10^{-8}$ through $10^{-5}$, and an integer range of 0 through 16383. The default value is 13296.

**DayCVPESF**

This parameter sets the threshold for the code violations path ESF (CVPESF) count on a daily basis. A negative value of this parameter indicates that the code violation count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of $-8$ through $-5$, corresponding to BERs of $10^{-8}$ through $10^{-5}$, and an integer range of 0 through 1048575. The default value is 132960.

**QHESP**

This parameter sets the threshold for the errored second path (ESP) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 900 and a default value of 65.

**DayESP**

This parameter sets the threshold for the errored second path (ESP) count on a daily basis. This parameter is an integer with a range of 0 through 65535 and a default value of 648.

**QHSESP**

This parameter sets the threshold for the severely errored second path (SESP) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 63 and a default value of 10.

**DaySESP**

This parameter sets the threshold for the severely errored second path (SESP) count on a daily basis. This parameter is an integer with a range of 0 through 4095 and a default value of 100.

**QHUASP**

This parameter sets the threshold for the unavailable second path (UASP) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 63 and a default value of 10.

**DayUASP**

This parameter sets the threshold for the unavailable second path (UASP) count on a daily basis. This parameter is an integer with a range of 0 through 4095 and a default value of 10.
QHCVPFE
This parameter sets the threshold for the code violations path far-end (CVPFE) count on a quarter-hourly basis. A negative value of this parameter indicates that the code violation count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -8 through -5, corresponding to BERs of $10^{-8}$ through $10^{-5}$, and an integer range of 0 through 16383. The default value is 13296.

DayCVPFE
This parameter sets the threshold for the code violations path far-end (CVPFE) count on a daily basis. A negative value of this parameter indicates that the code violation count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -8 through -5, corresponding to BERs of $10^{-8}$ through $10^{-5}$, and an integer range of 0 through 1048575. The default value is 132960.

QHESPFE
This parameter sets the threshold for the errored second path far-end (ESPFE) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 900 and a default value of 65.

DayESPFE
This parameter sets the threshold for the errored second path far-end (ESPFE) count on a daily basis. This parameter is an integer with a range of 0 through 65535 and a default value of 648.

QHSESPFE
This parameter sets the threshold for the severely errored second path far-end (SESPFE) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 63 and a default value of 10.

DaySESPFE
This parameter sets the threshold for the severely errored second path far-end (SESPFE) count on a daily basis. This parameter is an integer with a range of 0 through 4095 and a default value of 100.

QHUASPFE
This parameter sets the threshold for the unavailable second path far-end (UASPFE) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 63 and a default value of 10.

DayUASPFE
This parameter sets the threshold for the unavailable second path far-end (UASPFE) count on a daily basis. This parameter is an integer with a range of 0 through 4095 and a default value of 10.
The following tables show the error counts equivalent to different BER thresholds.

### DS1 Coding Violations—Path (SF)

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHCVP)</th>
<th>Equivalent Day Threshold (DayCVP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>72</td>
<td>6912</td>
</tr>
<tr>
<td>-6</td>
<td>7</td>
<td>691</td>
</tr>
<tr>
<td>-7</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td>-8</td>
<td>--</td>
<td>7</td>
</tr>
</tbody>
</table>

### DS1 Coding Violations—Path (ESF)

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHCVP)</th>
<th>Equivalent Day Threshold (DayCVP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>13842</td>
<td>1328832</td>
</tr>
<tr>
<td>-6</td>
<td>1384</td>
<td>132883</td>
</tr>
<tr>
<td>-7</td>
<td>138</td>
<td>13288</td>
</tr>
<tr>
<td>-8</td>
<td>14</td>
<td>1329</td>
</tr>
</tbody>
</table>

This command may only be used if the `ds1pm` feature is enabled via the `set-feat` command. If this feature is not enabled, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpped */
/* Command not available, feature disabled */
```
If this command is entered on a DDM-2000 loaded with a release of software that does not currently support this feature, the following denial message will be displayed:

```
SSTP
/* Status, execution SToPped */
/* Command not available in this release */
```

RELATED COMMANDS

- `rtrv-feat`
- `rtrv-pmthres-t1`
- `set-feat`
NAME
set-pmthres-t3: Set Performance Monitoring Threshold T3

INPUT FORMAT

set-pmthres-t3:[QHCVL=nnnnn][.DayCVL=nnnnnnn][.QHESL=nnn]
   [.DayESL=nnnnn][.QHESEL=nnn][.DaySESL=nnn][.QHSEFS=nnn]
   [.DaySEFS=nnnnn][.QHFMCV=nnnnnnn][.DayFMCV=nnnnnnn]
   [.QHESP=nnn][.DayESP=nnnnn][.QHESPFE=nnn]
   [.QHUASP=nnn][.DayUASP=nnnnn][.QHCPFSE=nnn][.DayCFPE=nnnnn]
   [.QHCPFE=nnnnn][.DayCPFE=nnnnnnn][.QHESPFE=nnn][.DayESPFE=nnnnn]
   [.QHSESPFE=nnn][.DaySESPFE=nnnnn][.QHUASPFE=nnn][.DayUASPFE=nnnnn];

where nnn.... is a numerical value in the range given in the parameter description listed below.

NOTE:
Parameters are shown in upper-case letters for readability. Parameters may be entered in either upper- or lower-case letters.

DESCRIPTION

This command sets the performance parameter thresholds of a DS3 signal as well as activating and deactivating the processing of threshold crossings for error performance parameters. Entering a value of zero (0) for a parameter will disable thresholding for that parameter.

Starting with FiberReach Release 3.1, this command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

NOTE:
All DS3 line parameters (in addition to DS3 C-bit parity and all other path parameters for the incoming signal from the DSX-3) are only applicable when a BBG4/BBG4B or BBG19 (in Release 3.1 and later) pack is active (in-service) in a function unit slot.

The input parameters are:

QHCVL This parameter sets the threshold for the coding violations count on a quarter-hourly basis for the DS3 line B3ZS data. A negative value for this parameter indicates that the threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding
to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 16383. The default value is 40.

**DayCVL**
This parameter sets the threshold for the coding violations count on a daily basis for the DS3 line B3ZS data. A negative value for this parameter indicates that the threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 1048575. The default value is 3865.

**QHESL**
This parameter sets the threshold for the errored seconds count on a quarter-hourly basis for the DS3 line with at least one B3ZS coding violation. This parameter has an integer range of 0 through 900 with a default value of 25.

**DayESL**
This parameter sets the threshold for the errored seconds count on a daily basis for the DS3 line with at least one B3ZS coding violation. This parameter has an integer range of 0 through 65535 with a default value of 25.

**QHSESL**
This parameter sets the threshold for the severely errored seconds count on a quarter-hourly basis for the DS3 line with greater than 44 B3ZS coding violations. This parameter has an integer range of 0 through 63 with a default value of 4.

**DaySESLS**
This parameter sets the threshold for the severely errored seconds count on a daily basis for the DS3 line with greater than 44 B3ZS coding violations. This parameter has an integer range of 0 through 4095 with a default value of 40.

**QHSEFS**
This parameter sets the threshold for the severely errored frame seconds count on a quarter-hourly basis. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 63 with a default value of 2.

**DaySEFS**
This parameter sets the threshold for the severely errored frame seconds count on a daily basis. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 4095 with a default value of 8.

**QHPCV**
This parameter sets the threshold for the coding violations count on a quarter-hourly basis for the **pbit** type of format. The type is selected using the **set-t3** command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 16383. The default value is 40.
**DayPCV**

This parameter sets the threshold for the coding violations count on a daily basis for the `pbit` type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 1048575. The default value is 3820.

**QHFMCV**

This parameter sets the threshold for the coding violations count on a quarter-hourly basis for the `fmbit` type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 16383. The default value is 40.

**DayFMCV**

This parameter sets the threshold for the coding violations count on a daily basis for the `fmbit` type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 1048575. The default value is 3820.

**QHCP**

This parameter sets the threshold for the coding violations count on a quarter-hourly basis for the near-end `cpbit` type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 16383. The default value is 40.

**DayCP**

This parameter sets the threshold for the coding violations count on a daily basis for the near-end `cpbit` type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This
parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 1048575. The default value is 3820.

**QHESP**  
This parameter sets the threshold for the errored seconds count on a quarter-hourly basis for pbit, fmbit, and cpbit type of formats. The type is selected using the set-t3 command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 900, with a default value of 25.

**DayESP**  
This parameter sets the threshold for the errored seconds count on a daily basis for pbit, fmbit, and cpbit type of formats. The type is selected using the set-t3 command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 65535 with a default value of 250.

**QHESERESP**  
This parameter sets the threshold for the severely errored seconds count on a quarter-hourly basis for pbit, fmbit, and cpbit type of formats. The type is selected using the set-t3 command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 63 with a default value of 4.

**DaySERESP**  
This parameter sets the threshold for the severely errored seconds count on a daily basis for pbit, fmbit, and cpbit type of formats. The type is selected using the set-t3 command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 4095, with a default value of 40.

**QHUASP**  
This parameter sets the threshold for the unavailable seconds count on a quarter-hourly basis for pbit, fmbit, and cpbit type of formats. The type is selected using the set-t3 command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 63 with a default value of 10.

**DayUASP**  
This parameter sets the threshold for the unavailable seconds count on a daily basis for pbit, fmbit, and cpbit type of formats. The type is selected using the set-t3 command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 4095 with a default value of 10.
This parameter sets the threshold for the severely errored frame seconds count on a quarter-hourly basis for the far-end **cpbit** type of format. The type is selected using the **set-t3** command. This parameter is monitored by reading the received X-bits in the DS3 C-bit parity frame. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 63 with a default value of 2.

This parameter sets the threshold for the severely errored frame seconds count on a daily basis for the far-end **cpbit** type of format. The type is selected using the **set-t3** command. This parameter is monitored by reading the received X-bits in the DS3 C-bit parity frame. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 4095, with a default value of 8.

This parameter sets the threshold for the coding violations count on a quarter-hourly basis for the far-end **cpbit** type of format. The type is selected using the **set-t3** command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 16383. The default value is 40.

This parameter sets the threshold for the coding violations count on a daily basis for the far-end **cpbit** type of format. The type is selected using the **set-t3** command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. A negative value of this parameter indicates that the parity count threshold is specified in terms of an equivalent BER expressed as a logarithm to the base 10. This parameter has a range of -10 through -7, corresponding to BERs of $10^{-10}$ through $10^{-7}$, and an integer range of 0 through 1048575. The default value is 3820.

This parameter sets the threshold for the errored seconds count on a quarter-hourly basis for the far-end **cpbit** type of format. The type is selected using the **set-t3** command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 900 with a default value of 25.

This parameter sets the threshold for the errored seconds count on a daily basis for the far-end **cpbit** type of format. The type is selected using the **set-t3** command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and
the fiber. This parameter has an integer range of 0 through 65535 with a default value of 250.

**QHSESPFE**
This parameter sets the threshold for the severely errored seconds count on a quarter-hourly basis for the far-end *cpbit* type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 63 with a default value of 4.

**DaySESPFE**
This parameter sets the threshold for the severely errored seconds count on a daily basis for the far-end *cpbit* type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 4095 with a default value of 40.

**QHUASPFE**
This parameter sets the threshold for the unavailable seconds count on a quarter-hourly basis for the far-end *cpbit* type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 63 with a default value of 10.

**DayUASPFE**
This parameter sets the threshold for the unavailable seconds count on a daily basis for the far-end *cpbit* type of format. The type is selected using the `set-t3` command. This is a path parameter that applies to the incoming DS3 signal from both the DSX-3 and the fiber. This parameter has an integer range of 0 through 4095 with a default value of 10.

The following tables show the error counts equivalent to different BER thresholds.

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHCV)</th>
<th>Equivalent Day Threshold (DayCV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>3979</td>
<td>381972</td>
</tr>
<tr>
<td>-8</td>
<td>398</td>
<td>38197</td>
</tr>
<tr>
<td>-9</td>
<td>40</td>
<td>3820</td>
</tr>
<tr>
<td>-10</td>
<td>4</td>
<td>382</td>
</tr>
</tbody>
</table>
### DS3 Line Coding Violations

<table>
<thead>
<tr>
<th>BER Threshold</th>
<th>Equivalent 15 Min. Threshold (QHCVL)</th>
<th>Equivalent Day Threshold (DayCVL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>4026</td>
<td>386519</td>
</tr>
<tr>
<td>-8</td>
<td>402</td>
<td>38651</td>
</tr>
<tr>
<td>-9</td>
<td>40</td>
<td>3865</td>
</tr>
<tr>
<td>-10</td>
<td>4</td>
<td>386</td>
</tr>
</tbody>
</table>

### RELATED COMMANDS

- init-pm
- rtrv-pm-t3
- rtrv-pm-tca
- rtrv-pmthres-t3
- set-t3
NAME

set-pmthres-vt1: Set Performance Monitoring Threshold VT1.5

INPUT FORMAT

set-pmthres-vt1:[QHV5ES=nnnnnn],[DayV5ES=nnnnnnn],[QHV5SES=nnn] [.DayV5SES=nnnnn],[QHV5UAS=nnn],[DayV5UAS=nnnnnn];

where nnn.... is a numerical value in the range given in the following
parameter descriptions.

NOTE:

Parameters are shown in upper-case letters for readability. Parameters
may be entered in either upper- or lower-case letters.

DESCRIPTION

This command sets VT1.5 path performance monitoring thresholds. This
command also enables and disables the processing of threshold crossing alerts
(TCAs) for these parameters.

This command may only be used if the vtpm feature is enabled via the
set-feat command. Entering a value of zero (0) for a parameter will disable
thresholding for that parameter.

The input parameters are:

QHV5ES This parameter sets the threshold for the errored second (ES)
count on a quarter-hourly basis. This parameter is an integer with
a range of 0 through 900 and a default value of 40.

DayV5ES This parameter sets the threshold for the errored second (ES)
count on a daily basis. This parameter is an integer with a range
of 0 through 65535 and a default value of 900.

QHV5SES This parameter sets the threshold for the severely errored second
(SES) count on a quarter-hourly basis. This parameter is an
integer with a range of 0 through 63 and a default value of 20.

DayV5SES This parameter sets the threshold for the severely errored second
(SES) count on a daily basis. This parameter is an integer with a
range of 0 through 4095 and a default value of 60.
QHV5UAS This parameter sets the threshold for the unavailable second (UAS) count on a quarter-hourly basis. This parameter is an integer with a range of 0 through 63 and a default value of 30.

DayV5UAS This parameter sets the threshold for the unavailable second (UAS) count on a daily basis. This parameter is an integer with a range of 0 through 4095 and a default value of 90.

This command may only be used if the vtpm feature is enabled via the set-feat command. If this feature is not enabled, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpped */
/* Command not available, feature disabled */
```

If this command is entered on a DDM-2000 loaded with a release of software that does not currently support this feature, the following denial message will be displayed:

```
SSTP
/* Status, execution STOpped */
/* Command not available in this release */
```

RELATED COMMANDS

rtrv-feat
rtrv-pmthres-vt1
set-feat
NAME
set-secu: Set Security

INPUT FORMAT

```
set-secu:Address[[sec=Security][,to=Timeout]];
```

```
set-secu:Address[[porttype=Porttype][,baudrate=Baudrate][,echo=echo][,sec=Security][,to=Timeout]];
```

DESCRIPTION

This command configures network element (NE) system security on each CIT and DCC interface. Starting with FiberReach Release 4.0, this command will also allow the user to receive and/or transmit TL1 messages from the front CIT port.

The three default logins are LUC01, LUC02, and LUC03 (all upper-case letters). The default password is DDM-2000. Privileged users should change these defaults before enabling security or setting security to a lockout state.

⚠️ NOTE:
This command is available to privileged users only.

The input parameters are:

- **address**
  Address is the address of the CIT and/or DCC ports. There is no default address.
  Valid Addresses: `dcc-all, cit-1`

- **porttype**
  Specifies whether the provisioned Address `cit-1` (DCE port - front access) is used for `CIT` or `TL1` application. If the value of Address is `cit-1`, this parameter can have two possible values: `cit` or `tl1`. Default value is `cit`.

If a CIT port is provisioned to run TL1, up to 50 TL1 remote associations can be created on that CIT port.

⚠️ NOTE 1:
If as a result of executing this command, the **porttype** parameter’s value changes from/to `cit` to/from `tl1`, any active login session on the specified port will be terminated and the user(s) logged out including Privileged users and current users.

⚠️ NOTE 2:
Once `cit-1` port is set to `tl1`, it needs to be reprovisioned to `cit` before the CIT program can be used again.
**baudrate**  
Specifies the baudrate in which TL1 messages are received/transmitted. The values for this parameter are: **1200**, **2400**, **4800**, **9600** (Default), and **19200**.

This parameter is prompted for, only if `porttype` parameter has the value of `tl1`.

**NOTE:**
If as a result of executing this command, the `baudrate` parameter’s value changes, any active login session on the specified port will be terminated and the user(s) logged out; including Privileged users and current users.

**echo**  
Specifies whether the character entered needs to be echoed back or not. The values for this parameter are: `enabled`, or `disabled`. The default value is `enabled`.

This parameter is prompted for, ONLY if `porttype` parameter has the value of `tl1`.

**sec**  
Security determines whether security is enabled, disabled, or in lockout state on the specified CIT and DCC port(s). Enabling security requires users to enter a valid login and password pair to access the system via the specified CIT or DCC-all.

The values for this parameter are `enabled`, `disabled` (default value), and `lockout`.

When security is in lockout state, the only user type permitted to access the system through the locked out CIT/DCC port is a privileged user; all non-privileged users, even with a valid login and password pair, are not allowed to access the system.

**NOTE 1:**
When security is in the lockout state, non-privileged users are not deleted from the login/password database, but are simply blocked from accessing the system. Existing active login sessions initiated by non-privileged users are not affected (that is, not dropped) if security is set to `lockout`.

**NOTE 2:**
If the Address parameter is equal to `cit-1` and Porttype is equal to `tl1`, Security is `enabled` automatically. As a result, this parameter is not prompted for and will not show in the confirmation message.
Timeout specifies the time, in minutes, before an inactive session on the specified port is automatically terminated. This has a value ranging from 0 to 120 minutes and a default value of 15 minutes. Setting this parameter to 0 will disable the timeout function.

Execution of this command for security reasons affects all subsequent attempts to establish login sessions but does not affect the currently active sessions.

When security is enabled, the following four types of users are permitted to access the system with a valid login and password:

- **privileged**
  The privileged user may execute any commands, including restricted commands.

- **general**
  The general user may execute any commands not restricted to privileged users.

- **maintenance**
  The maintenance user may only execute commands that access the system, extract reports, and execute maintenance functions through a specific set of commands. This user may not execute any privileged commands.

- **reports-only**
  The reports-only user may only execute commands that extract reports from the system and several other basic commands.

When security is enabled on a system, only the following commands may be executed by reports-only users:

- `?` (help)
- `logout` (logout)
- `rlgn` (remote login)
- `set-passwd` (set password)
- `set-link` (set link)
- `^T` (toggle)
- all `rtrv` commands except `rtrv-lgn` and `rtrv-passwd`. 
In addition to `set-secu`, the commands `init-sys`, `rtrv-1gn`, `set-fecom`, `set-feat`, `set-1gn`, `set-sync`, `rtrv-paswd`, and `rstr-paswd` are restricted to privileged users only. The following commands also become restricted to privileged users only when security is enabled on a system:

- `cpy-prog` (copy program)
- `ent-ulsdcc` (enter upper layer section DCC)
- `init-pm` (initialize performance-monitoring)
- `ins-prog` (install program)
- `reset` (reset system software)
- `set-date` (set date)
- `set-ne` (set network element)
- `ent-t11msgmap` (enter TL1 message map)

Entering the `set-secu` command to change the value of `sec` on a specified Address will cause the following confirmation message to be displayed:

```c
/* Caution! Network Element access is affected by this command. You have selected the set-secu command with these parameters:

Address = address
Security = security
Timeout = n */

Execute? (y/n or CANcel/DELete to quit) =
```
Entering this command to change the value of `porttype` to `t11`, will cause the following confirmation message to be displayed:

```c
/* Caution! Network Element access is affected by this command. All active sessions on the affected port will be terminated after command completion. You have selected the set-secu command with these parameters:

Address = address
Porttype = porttype
Baudrate = baudrate
Echo = echo
Timeout = n */

Execute? (y/n or CANcel/DELete to quit) =
```

Entering this command to change the value of `porttype` from `t11` to `cit`, will cause the following confirmation message to be displayed:

```c
/* Caution! Network Element access is affected by this command. All active sessions on the affected port will be terminated after command completion. You have selected the set-secu command with these parameters:

Address = address
Porttype = porttype
Baudrate = baudrate
Echo = echo
Security = security
Timeout = n */

Execute? (y/n or CANcel/DELete to quit) =
```
RELATED COMMANDS

rtrv-lgn
rtrv-secu
set-fecom
set-lgn
NAME

set-state-sts1: Set State of STS-1 Channels

INPUT FORMAT

\texttt{set-state-sts1:Address:ps=PrimaryState;}

DESCRIPTION

This command sets the states of STS-1 channels. It is used to turn on and off the monitoring of signal failures and maintenance signals for specified channels.

The input parameters are:

\textbf{Address}  Address identifies the STS-1 channel(s). Valid addresses are:

- If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are: \textit{m–1}.
- If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later), the valid addresses are: \textit{all, m–{1–3, all}}
- If the shelf is equipped with 29-type (starting with Release 4.0) OLIU circuit packs in its Main unit slots, valid Main unit Addresses are: \textit{all, m–{1–12, all}}

Channel states can be set for:

- STS-1 channels within OC-1, OC-3 or OC-12 interfaces that are cross-connected to DS3 or DS1 interfaces
- STS-1 channels that are dropped from an OC-3, OC-1 or OC-12 ring interface (29-type) in the Main unit slots to DS1, or DS3 interface (starting with FiberReach Release 3.1, and when equipped with DS3 circuit packs in the function unit slots).

\textbf{ps}  PrimaryState is the channel state which may have one of the following values:

- \texttt{auto}  Set the channel state to automatic. Monitor the channel, but do not report alarm or status conditions. When a good signal is detected, automatically change the channel state to in-service and begin normal reporting of alarm and status conditions.
- \texttt{nmon}  Set the channel state to not monitored. Do not report alarm or status conditions for the channel. Do not change the channel state to in-service if a good signal is detected. The channel will remain in this state until the state is changed again with this command or until the
cross-connection involving this channel is deleted.

If a primary state of **nmon** is entered, the following message will be displayed:

```c
/* Channel(s) address will not be monitored or
 alarmed in this state */
```

The following confirmation message will be displayed after the command entry:

```c
/* Caution! Alarm or maint. thresholds are affected by this command.
 You have selected set-state-stsl command with these parameters:

 Address = x
 PrimaryState = x */

Execute? (y/n or CANcel/DELete to quit) =
```

If an attempt is made to execute this command when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```c
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

**NOTE:**

If an STS-1 address of **all** is provisioned, this command will skip silently all STS-1 channels that are cross-connected as passthrough, dropped not terminated, or not cross-connected at all.
RELATED COMMANDS

- ent-crs-sts1
- ent-crs-vt1
- dlt-crs-sts1
- dlt-crs-vt1
- rtrv-crs-sts1
- rtrv-state-sts1
- set-state-vt1
- upd
NAME

set-state-t1: Set T1 Port State

INPUT FORMAT

`set-state-t1: Address: ps=PrimaryState;`

DESCRIPTION

This command sets the state of DS1 or T1 ports. This command is used to turn on and off the alarm due to signal failures from a specified port.

The input parameters are:

- **Address**: Address identifies the DS1 or T1 port(s).
  
  Valid Addresses (1x1 protected configuration): `all`, `{a, b, c, d}-{1, all}-{1-4, all}

  Valid Addresses (1x7 protected configuration): `all`, `{a, b, c}-{1, 2, all}-{1-4, all}, {d-1-{1-4, all}

  The BBF6 circuit pack supports 2 T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid. Specifying `all` selects ports 1 and 2 only.

- **ps**: PrimaryState is the port state which may have one of the following values:

  - **auto**: Set state to be monitored for good signal at the specified port.
  - **nmon**: Set state to "not alarmed" (not monitored).

NOTE:

If a port is in the **nmon** state, it must be returned to the **auto** state (using this command) before any circuit packs associated with that port can be removed from the equipment list by the **upd** command.
If a primary state of **nmon** is entered, the following message will be displayed:

```c
/* Port(s) address will not be alarmed in this state */
```

The following confirmation message will be displayed after the command entry:

```c
/* Caution! Alarm or maint. thresholds are affected by this command.
You have selected set-state-t1 command with these parameters:
Address = x
PrimaryState = x */

Execute? (y/n or CANcel/DELete to quit) =
```

**NOTE:**
If an STS-1 address of **all** is provisioned, this command will skip silently all STS-1 channels or VTs within those STS-1 channels that are cross-connected as passthrough, dropped not terminated or even not cross-connected at all.

**RELATED COMMANDS**
- rtrv-t1
- rtrv-state
- upd
NAME

set-state-t3: Set T3 Port State

INPUT FORMAT

\texttt{set-state-t3:Address:ps=PrimaryState;}

DESCRIPTION

This command sets the state of one or more DS3 ports. This command is used to turn on and off the alarm due to signal failures from a specified port. Starting with FiberReach Release 3.1, this command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

The input parameters are:

- \texttt{Address} Address identifies the DS3 port(s).
  - Valid DS3 Port Addresses (BBG4,BBG4B): \texttt{f, all}
  - Valid DS3 Port Addresses (BBG19): \texttt{all, f-{1-2, all}}
- \texttt{ps} PrimaryState is the port state which may have one of the following values:
  - \texttt{auto} Set state to be monitored for good signal at the specified port.
  - \texttt{nmon} Set memory state to not-alarmed.

NOTE:

If a port is in the \texttt{nmon} state, it must be returned to the \texttt{auto} state, using this command, before any circuit packs associated with that port can be removed from the equipment list by the \texttt{update} command.

If a port state of \texttt{nmon} is entered, the following message will be displayed:

\verbatim
/* Port(s) address will not be alarmed in this state */
\endverbatim
The following confirmation message will be displayed after command entry:

/* Caution!  Alarm or maint. thresholds are affected by this command.  
   You have selected the set-state-t3 command with these parameters: 

   Address = x
   PrimaryState =x */

Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS
   rtrv-state-eqpt
   rtrv-t3
   upd
NAME

set-state-vt1: Set State of VT1.5 Channels

INPUT FORMAT

set-state-vt1:Address:ps=PrimaryState;

DESCRIPTION

This command sets the states of VT1.5 channels within:

- OC-1 interfaces (if the shelf is equipped with 26-type OLIUs in Main unit slots)
- OC-3 interfaces (if the shelf is equipped with 28-type OLIUs in Main unit slots).
- OC-12 interfaces (when using 29G-U OLIU circuit packs)

This command is used to turn on and off the monitoring of signal failures and maintenance signals for specified channels.

Channel states can be set for VT1.5 channels within OC-1, OC-3 or OC-12 (Release 4.0) interfaces that are cross-connected to DS1 interfaces.

The input parameters are:

Address

Address identifies the VT1.5 channel(s). If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:

- m-1-all, m-1-{1-7}-{1-4,all}

If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1, and later), the valid addresses are:

- m-{1-3,all}-{1-7}-{1-4,all}

If the shelf is equipped with 29-type OLIU circuit packs in its Main unit slots, the valid Main unit addresses are:

- m-{1-12,all}-{1-7,all}-{1-4,all}

ps

PrimaryState is the channel state which may have one of the following values:

- auto: Set the channel state to automatic. Monitor the channel, but do not report alarm or status conditions. Do not do performance monitoring for this channel. When a good signal is detected, automatically change the channel state to in-service.

- nmon: Set the channel state to not monitored. Do not report alarm or status conditions for the channel. Do not do performance monitoring for this channel. Do not change the channel state to in-service if a good signal is detected. The channel will remain in this state until the state is changed again with this command or until the...
cross-connection involving this channel is deleted.

If a primary state of **nmon** is entered, the following message will be displayed:

```c
/* Channel(s) address will not be monitored or alarmed in this state */
```

The following confirmation message will be displayed after the command entry:

```c
/* Caution! Alarm or maint. thresholds are affected by this command. You have selected set-state-vtl command with these parameters:
 Address = x
 PrimaryState = x */

Execute? (y/n or CANcel/DELete to quit) =
```

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```c
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

---

**NOTE:**

If an STS-1 address of **all** is provisioned, this command will skip silently all STS-1 channels or VTs within those STS-1 channels that are cross-connected as passthrough, dropped not terminated or even not cross-connected at all.
RELATED COMMANDS

dlt-crs-vt1
ent-crs-vt1
rtrv-crs-vt1
rtrv-state-vt1
set-state-sts1
NAME

set-sts1: Set STS-1 Characteristics

INPUT FORMAT

```
set-sts1: Address:dgr=SignalDegrade:sfail=SignalFailure[,nса=Alarm]
 [,sa=Alarm];
```

DESCRIPTION

This command provisions the following three types of parameters for STS-1 channels:

**Signal Degrade Alarm Threshold:**
This parameter is only provisioned for ring channels (for example, incoming STS-1 channels on optical linear extensions in ring systems are not monitored). Possible values are $10^{-5}$ through $10^{-9}$, with a default value of $10^{-6}$. Only the 26-type, 28-type and 29-type OLIU circuit packs support the provisionable signal degrade function.

**Signal Fail Alarm Threshold:**
This parameter is only provisioned for ring channels. Possible values are $10^{-3}$ and $10^{-6}$, with a default value of $10^{-3}$.

**Alarm Level for SA/N-SA STS Path AIS Condition:**
The alarm level for both service affecting and non-service affecting path AIS conditions can be provisioned in Release 2.1 and later.

The input parameters are:

**Address**
Address identifies the STS-1 channels.
- If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:
  - all, m-1
- If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1, and later), the valid addresses are:
  - all, m-(1-3, all)
- If the shelf is equipped with 29-type (FiberReach Release 4.0) OLIUs in its Main unit slots, the valid Main unit Addresses are:
  - m-(1-12, all) with 29-type OLIUs in Main

**dgr**
*SignalDegrade* specifies a bit error rate (BER) threshold for the STS-1 channel in terms of a logarithm to base 10. When this threshold is crossed, an alarm will be raised and automatic protection switching to the STS-1 protection path will be initiated. The only valid address for the SignalDegrade parameter is all. For FiberReach, the signal degrade is an integer with range -5 through -9 and default or original value of -6.
**sfail**  
*SignalFailure* specifies the BER of the STS-1 channel in terms of a logarithm to the base 10. Meeting or exceeding this threshold in a "VT Path_Switched ring" is considered a signal fail condition, resulting in a VT AIS insertion and subsequently causing a VT path protection switching. The only valid address for the SignalFailure parameter is all. This parameter can have one of the following values:

-3  BER threshold resulting in VT AIS insertion in a "VT Path_switched ring" and causing the VT path protection switching (default).

-6  If provisioned, this BER threshold will result in VT AIS insertion in a "VT Path_Switched ring", and will cause a VT path protection switching.

**nsa**  
This parameter is available in FiberReach Release 2.1 and later. This parameter is the provisioned alarm level of the non-service affecting STS-1 path AIS and has the following values:

- **mn**  Minor alarm (default)

- **nr**  Not alarmed and not reported.

**sa**  
This parameter is the provisioned alarm level of the service affecting STS-1 path AIS and has the following values:

- **cr**  Critical alarm (default for ring channels)

- **na**  Not alarmed, but reported

If the signal degrade or signal fail threshold parameter is entered and the address used is any value other than all the command will be denied with the following message:

```/* The only valid address for the signal degrade or the signal fail parameter is { all }.  
 To set the signal degrade parameter enter
 set-sts1:all:dgr=value; */```

Provisioning the AIS parameters requires that at least one VT cross-connection exist in the specified address range or the command will not execute, and the following message will be displayed.

```
SNVS
/* Status, Not in Valid State */
/* The specified path is not properly cross-connected. */
```

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

The following confirmation message will be displayed after the command entry:

```
/* Caution! Alarm or maint. thresholds are affected by this command. 
You have selected the set-sts1 command with this parameter: 

SignalDegraded = <value>
SignalFailure = <value>
ServiceAffectingAIS = <value>
NonServiceAffectingAIS = <value> */

Execute? (y/n or CANcel/DELete to quit) =
```

NOTE:
If an STS-1 address of **all** is provisioned, this command will skip silently all STS-1 channels that are cross-connected as passthrough, dropped not terminated, or not cross-connected at all.

RELATED COMMANDS

rtrv-sts1
NAME

set-sync: Set Synchronization Characteristics

DESCRIPTION

⚠️ CAUTION:

Execution of this command may affect service.

This command provisions the synchronization mode switching, synchronization source, when the 26-type, 28-type (Starting with FiberReach Release 3.1) or 29-type OLIUs (Starting with FiberReach Release 4.0) timing hardware is provisioned to be line timed.

For FiberReach, the only provisioned timing mode is line-timed from an incoming optical interface. This timing reference is used to generate all outgoing signals.

Use of this command may affect timing for other network elements of the timing network.

‼️ NOTE:

This command is available to privileged users only for all CIT or DCC ports on the shelf.

INPUT FORMAT

RING SYSTEMS - LINE TIMED

```plaintext
set-sync: [mdsw=ModeSwitching][.src=SynchronizationSource];
```

```plaintext
set-sync: [mdsw=ModeSwitching][.src=SynchronizationSource]
    [,auto=SyncAutoreconfiguration];
```

(When equipped with 26-type, 28-type or 29-type OLIUs in Main. 28-type OLIUs are available starting with Release 3.1, and 29-type OLIUs are available starting with Release 4.0.)
The input parameters are:

- **mdsw**: ModeSwitching may have one of the following values:
 - **revertive**: Revertive mode switching (default value). If the system switches to holdover timing mode due to a failure of the timing references, it will automatically switch back to the provisioned timing mode (LineTimed) after one of the references becomes good.
 - **nonrevertive**: Nonrevertive mode switching. If the system switches to holdover timing mode due to a failure of the timing references, it will *not* automatically switch back to the provisioned timing mode (LineTimed) after the reference becomes good. The `switch-sync` command must be used to restore the system to the provisioned timing mode (LineTimed).

- **src**: SynchronizationSource. This parameter selects the line from which shelf line timing will be derived. This parameter may have one of the following values:
 - **main-1** (default)
 - **main-2**

- **auto**: This parameter is available with FiberReach 3.1 and later releases. SyncAutoreconfiguration allows the system to choose the best timing source to use when it is provisioned for Line Timing. The synchronization source selection is based on the synchronization messages received from the available timing (synchronization) sources. Automatic Protection Switching takes place to the standby timing source when the active source fails. The switch is nonrevertive, and there will not be an automatic switch back to the former timing reference.

 When SyncAutoreconfiguration is enabled, the system automatically reconfigures between line timing sources. For FiberReach (starting with Release 3.1 and 4.0) **main-1** and **main-2** are the source options (if the shelf is equipped with 26, 28-type or 29-type OLIUs in Main unit slots).

 NOTE:

 When the shelf is equipped with 26-type OLIUs, **auto** is *enabled* by default. When the shelf is equipped with 28/29-type OLIUs, **auto** is *disabled* by default.

 Use the `switch-sync` command to manually switch to the other timing source.
This parameter may have the following values:

enabled SyncAutoreconfiguration is active.

disabled SyncAutoreconfiguration is not active (default).

In FiberReach Release 3.1 and later, when sync messages are active (as set by the `set-oc3` and/or `set-oc12` command) and a user requests to set the timing source to a LineTime source which has a sync message that does not support timing, the command will be completed, but the following message will be displayed:

```c
/* Source selected currently is unusable for timing.  
   Timing will switch to holdover or if Sync Autoreconfiguration is  
   enabled, timing may switch to other source. */
```

If this command is entered and both Main slots are empty, the command will be denied with the following message:

```c
EQWT  
/* EQuipe, Wrong Type */
/* No change in provisioning - both main slots are unequipped */
```
For SyncAutoreconfiguration, several other parameters must be set before this feature can be enabled. If these parameters are not set, the SyncAutoreconfiguration request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* <message reason>
Sync Autoreconfiguration cannot be enabled */
```

Valid message reasons include the following:

- K byte messages disabled
- Sync messages disabled.

If an attempt is made to execute this command when a mix of incompatible OLIU packs exists in the Main slots, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

The following confirmation message will be displayed after command entry:

```
/* Caution! Execution of this command may modify network synchronization and affect service.
You have selected the set-sync command with these parameters:

ModeSwitching = x
SynchronizationSource = x

Execute? (y/n or CANcel/DELete to quit) =
```
Starting with FiberReach Release 3.1, if both Main unit slots are equipped with either 26 or 28-type OLIUs, the following confirmation message will be displayed after command entry:

/* Caution! Execution of this command may modify network synchronization and affect service.
You have selected the set-sync command with these parameters:

ModeSwitching = x
SynchronizationSource = x
SyncAutoreconfiguration = x */

Execute? (y/n or CANcel/DELete to quit) =

The above confirmation message applies also if the Main slots are equipped with 29-type OLIUs (Release 4.0).

When SyncAutoreconfiguration is available and its value is being changed from enabled to disabled, the following confirmation message will be displayed after command entry:

/* Caution! Execution of this command may modify network synchronization and affect service. Executing this command with auto-disabled will disable autonomous selection of source for shelf timing.
You have selected the set-sync command with these parameters:

ModeSwitching = x
SynchronizationSource = x
SyncAutoreconfiguration = disabled */

Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS

rtrv-sync
set-oc3
set-oc12
switch-sync
NAME

set-t1: Set T1 Characteristics

INPUT FORMAT

set-t1: address[.lc=LineCode][.alm=AlarmLevel][.fth=FailureThreshold]
 [.dlc=DLCBPVtoLOS][.ais=AlarmIndicationSignal][.pmmd=PMMode]
 [.fmt=Format];

DESCRIPTION

⚠️ CAUTION:

Execution of this command may affect service.

This command sets the parameters of one or more DS1 or T1 ports. These characteristics include alarm levels, line coding, failure thresholds, and AIS conditions.

💡 NOTE:

The DS1 protection circuit pack is automatically provisioned with all the same user-settable options as the service pack it protects, except for the line buildout (LBO) value (which is not provisioned via the CIT).

The input parameters are:

Address Address is the address of the DS1 or T1 port(s) to be provisioned. One port or more may be specified.

Valid Addresses (1x1 protected configurations): all,
 {a,b,c,d}-all, {a,b,c,d}-(1-4,all)

Valid Addresses (1x7 protected configurations): all,
 {a,b,c,d}-all, {a,b,c}-(1,2)-(1-4,all)
 d-1-(1-4,all)

The BBF6 circuit pack supports 2 T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid. Specifying all selects ports 1 and 2 only.
lc
LineCode is the DS1 line coding which may be one of the following:

ami Alternate Mark Inversion (overrides the linecode switch)

b8zs Bipolar with 8 Zero Substitution (overrides the linecode switch)

noOverride No override of the linecode switch (default value).

If either ami or b8zs is selected, the line code will be set to the selected value and a software override will be active even if the selected value matches the current switch setting. While the software override is active, changes in the switch settings will not affect the line code. A software override will remain active until the set-t1 command is executed again and the noOverride option is selected or until the associated circuit pack is removed from the equipment list.

alm AlarmLevel sets the alarm level for an incoming DS1 Signal Failure and may be one of the following:

mj Major Alarm

mn Minor Alarm

na No Alarm (default value).

If the system is provisioned for no alarm, the NE ACTY LED on the user panel will be illuminated, and the fault LED on the circuit pack will flash. The condition will be reported in the alarm and status report as a near-end activity.

fth FailureThreshold sets the failure threshold in terms of a logarithm to the base 10. The value may be -8, -7, -6, or -3, corresponding to BERs of 10^{-8}, 10^{-7}, 10^{-6}, and 10^{-3}, respectively. The default value is -3. When the failure threshold is crossed, an alarm will be raised and automatic protection switching of the service line will be initiated.

dlc (bpv) DLCBPVtoLOS determines whether an incoming DS1 signal failure (a bit error rate above the failure threshold set by the failure threshold parameter, fth) will be translated to an outgoing DS1 loss of signal (all zeros) at the far end. The value is either yes or no. The default value is no. Setting this parameter to yes permits a digital loop carrier system terminal (such as the SLC® 96 carrier system) to detect the loss of signal and initiate protection switching of the DS1. When the parameter is set to yes, the ais parameter is automatically set to no. (An all zeros signal, not AIS, is transmitted to the far end even if the AIS parameter is set to yes.)
ais

AlarmIndicationSignal determines whether an AIS should be inserted towards the optical fiber when a loss of incoming DS1 signal is detected. The values are yes and no; the default value is yes. This parameter is ignored if the bpv parameter (described above) is set to yes.

pmmd

This parameter sets the mode for ports supported by the DS1 performance-monitoring circuit pack. Pmmd is only used for performance-monitoring. Setting this parameter does not affect the transmitted or received signal. This parameter may be one of the following values:

- off: DS1 PM turned off (default value)
- on: DS1 PM turned on (only if CP type is BBF3, BBF9, BBF10 or BBF6).

fmt

Format supports the PMMode parameter. It is available only if CP type is BBF3 or BBF6.

Also starting with OC-3 Release 15.0, this parameter will be applicable to the T1EXT (BBF6) circuit pack.

This parameter sets the format to be monitored by the DS1 performance-monitoring or T1EXT circuit pack. Fmt is only used for performance-monitoring. Setting this parameter does not affect the transmitted or received signal. This parameter may be one of the following values:

- sf: Superframe
- esf: Extended superframe, near-end and far-end. (default)
- esfn: Extended superframe, near-end only.

If multiple addresses are specified, the following caution message will be displayed immediately before the confirmation request message:

/* Caution: This command addresses multiple objects within this system. Selections other than CurrentValues will affect all addressed objects. */
The following confirmation message will be displayed after the command entry, when addressing packs without performance-monitoring capability:

/* Caution! Execution of this command may affect service.
You have selected the set-t1 command with these parameters:

Address = x
LineCode = x
AlarmLevel = x
FailureThreshold = x
DLCBPfToLOS = x
AlarmIndicationSignal = x */

Execute? (y/n or CAnceL/DElete to quit) =

The following confirmation message will be displayed after the command entry when addressing packs with performance-monitoring capability or if addressing a group of packs using al1 in the address:

/* Caution! Execution of this command may affect service.
You have selected the set-t1 command with these parameters:

Address = x
LineCode = x
AlarmLevel = x
FailureThreshold = x
DLCBPfToLOS = x
AlarmIndicationSignal = x
PMMode = x
Format = x */

Execute? (y/n or CAnceL/DElete to quit) =
RELATED COMMANDS

rtrv-t1
set-state-t1
NAME

set-t3: Set T3 Characteristics

INPUT FORMAT

set-t3: Address: [md=Mode] [ais=AlarmIndicationSignal] [alm=AlarmLevel] [fth=FailureThreshold] [pmmd=PMMMode] [frame=Frame] [fmt=Format];

DESCRIPTION

⚠️ CAUTION:

Execution of this command may affect service.

This command sets the characteristic parameters of one or more DS3 ports. These characteristics include alarm levels, failure thresholds, AIS conditions, and performance monitoring.

Starting with FiberReach Release 3.1, this command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

The input parameters are:

Address

Address is the address of the DS3 port(s) to be provisioned. One or all ports may be specified. Function groups equipped with BBG19 DS3 circuit packs have independent ports for each slot in the function group; however parameters provisioned for the function group are applied to both ports.

Valid DS3 Port Addresses (BBG4, BBG4B, BBG19): \{f, all\}

md

Mode is the violation monitor removal mode of the DS3 signal. This parameter may have one of the following values:

- vmr: Monitor and remove DS3 P bit errors (default value).
- vm: Monitor but do not remove DS3 P bit errors.
- cc: Clear channel — Do not monitor or remove DS3 P bit errors.

If this parameter is set to `vmr` or `vm`, the `ais` parameter will not be prompted for.

If this parameter is set to `cc`, the `pmmd`, `frame`, and `fmt` parameters will not be used. Also in this case, the `pmmd`, `frame`, and `fmt` parameters will keep their current values. The current values for both parameters will be available to be used whether the
value of \texttt{md} is set to \texttt{vm} or \texttt{vmr}.

\begin{itemize}
 \item \textbf{ais} \hspace{1cm} AlarmIndicationSignal determines whether or not a DS3 AIS should be inserted. The value may be \texttt{yes} or \texttt{no}. When AIS is set to \texttt{yes}:
 \begin{itemize}
 \item DS3 AIS is inserted towards the DSX-3 upon detection of an OC-3 loss of signal or STS path AIS incoming from the fiber.
 \item DS3 AIS is inserted towards the fiber upon detection of DS3 LOS incoming from the DSX-3.
 \end{itemize}
\end{itemize}

\begin{itemize}
 \item \textbf{NOTE:} \hspace{1cm} AIS is always inserted if the violation monitor removal mode is provisioned for \texttt{vmr} or \texttt{vm}.
 \item \textbf{NOTE:} \hspace{1cm} If \texttt{md} value was set to \texttt{vmr} or \texttt{vm}, and it is set to \texttt{cc} the AIS always defaults to \texttt{off} value.
\end{itemize}

\begin{itemize}
 \item \textbf{alm} \hspace{1cm} AlarmLevel sets the alarm level for an incoming DS3 Signal Failure and may be one of the following:
 \begin{itemize}
 \item \texttt{cr} \hspace{1cm} Critical Alarm
 \item \texttt{mj} \hspace{1cm} Major Alarm
 \item \texttt{mn} \hspace{1cm} Minor Alarm
 \item \texttt{na} \hspace{1cm} No Alarm
 \end{itemize}
 \item \texttt{fth} \hspace{1cm} FailureThreshold sets the Failure Threshold in terms of a logarithm to the base 10. The value may be either -6 or -3, corresponding to BERs of 10^{-6} and 10^{-3}, respectively. The default value is -3. When the failure threshold is crossed, an alarm will be raised.
 \item \texttt{pmmd} \hspace{1cm} PMMode is only used for performance-monitoring (PM). Setting this parameter does not affect the transmitted or received signal. This parameter will appear only if the \texttt{vmr} or \texttt{vm} mode has already been selected. This parameter may be one of the following values:
 \begin{itemize}
 \item \texttt{on} \hspace{1cm} DS3 PM turned on. This is the default value.
 \item \texttt{off} \hspace{1cm} DS3 PM turned off. PM data is neither collected nor reported in this mode.
 \end{itemize}
\end{itemize}
Frame is only used for performance-monitoring (PM) on the BBG4/BBG4B, BBG11/BBG11B, or BBG19 circuit packs. Setting this parameter does not affect the transmitted or received signal. This parameter will appear only if the vmr or vm mode has already been selected. This parameter may have one of the following values:

- **ml3**: The incoming DS3 signal from both the fiber and the dsx-3 is of the M13 framing type. This is the default value.

- **cbit**: The incoming DS3 signal from both the fiber and the dsx-3 is of the C-bit framing type.

fmt

Format supports the PMMode and Frame parameters and sets the type of PMON that will appear in the DS3 PM report. This parameter will appear only if the vmr or vm mode has already been selected. If the cc mode is selected, these parameters will not be visible to the user. This parameter may have one of the following values:

- **pbit**: When this value is selected, the DS3 PM report will display counts of SEFS as well as DS3 P-bit CV, ES, SES, and UAS (default value). This option is valid for both frame types.

- **fmbit**: When this value is selected, the DS3 PM report will provide counts of SEFS as well as DS3 adjusted F&M bit CV, ES, SES, and UAS. This option is valid for both frame types.

- **cpbit**: When this value is selected, the DS3 PM report will provide counts of SEFS as well as DS3 CP-bit parity CV, ES, SES, and UAS for both near-end and far-end (FEBE) data. This option is valid ONLY for cbit type of frame.
The following confirmation message will be displayed after command entry

/* Caution! Execution of this command may affect service. You have selected the set-t3 command with these parameters: */

Address = x
Mode = x
AlarmIndicationSignal = x
AlarmLevel = x
FailureThreshold = x
PMMode = x
Frame = x
Format = x */

Execute? (y/n or CANcel/DELETE to quit) =

NOTE:
The above display will only prompt for the alarm indication signal (AIS) if the Mode is set to cc. The above display will only prompt for the PMMode, Frame and Format if the Mode parameter is set to vmr or vm.

If the m13 frame and cpbit format options have both been selected, the following denial message will be displayed:

/* <address> - invalid combination of frame and format -- provisioning unchanged */
The following confirmation message will be displayed after the command entry when addressing a group of packs using all in the address:

```c
/* Caution! Execution of this command may affect service. 
You have selected the set-t3 command with these parameters:

Address = x
Mode = x
AlarmIndicationSignal = x
AlarmLevel = x
FailureThreshold = x
PMMode = x
Frame = x
Format = x

Execute? (y/n or CANcel/DELete to quit) =
*/
```

If multiple addresses are specified, the following caution message will be printed out immediately before the confirmation request message:

```c
/* Caution: This command addresses multiple objects within this system. Selections other than CurrentValues will affect all addressed objects. */
```

RELATED COMMANDS

- `rtrv-t3`
- `set-state-t3`
NAME

set-trace-sts1: Set STS Path Trace Characteristics

INPUT FORMAT

```
set-trace-sts1:Address[EXPTRC=Expectedincomingpathtrace]
[TRC=OutgoingPathTrace];
```

DESCRIPTION

This command assigns user-selectable alphanumeric character strings to the transmit and receive path trace fields of an STS cross-connected STS-1 signal. The allowed ASCII characters include the letters "A" through "Z" and "a" through "z", numbers "0" through "9", and the following special characters:

- # (pound sign)
- $ (dollar sign)
- % (percent sign)
- & (ampersand)
- ((open parenthesis)
-) (close parenthesis)
- + (plus)
- * (asterisk)
- | (pipe)
- - (hyphen)
- [(open square bracket)
-] (close square bracket)
- { (open bracket)
- } (close bracket)
- ' (apostrophe)
- ` (grave accent)
- . (period)
- / (slash)
- < (less than)
- > (greater than).

Starting with FiberReach Release 3.1, this command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 (BBG4B) circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 (BBG4B) circuit packs in the Function unit slots.

NOTE:

This feature is only applicable to STS paths terminating to a BBG4B circuit pack.
The input parameters are:

Address
This is a STS-1 channel address of the SONET path terminating signal for which the path trace is assigned.

Valid Addresses (within OC-3 in FiberReach Release 3.1 and later): \(m\in\{1-3, all\} \)

If the shelf is equipped with 29-type (FiberReach Release 4.0) OLIU circuit packs in its Main unit slots, the valid Main unit addresses are: \(m\in\{1-12\} \)

If the shelf is equipped with 26-type OLIU circuit packs in its Main unit slots, the valid Main unit addresses are: \(m\in\{1\} \)

EXPTRC
EXPTRC specifies the expected incoming path trace message. It is a string of 62 or less alphanumeric characters.

TRC
TRC specifies the outgoing path trace message. It is a string of 62 or less alphanumeric characters.

If the channel is not cross-connected to a STS-1 PTE, the request will be denied with the following message:

```plaintext
SNVS
/* Status, Not in Valid State */
/* Valid cross-connection does not exist. STS Path trace cannot be set. */
```

If the STS-1 channel for which this command was issued is not available, the request will be denied with the following message:

```plaintext
SNVS
/* Status, Not in Valid State */
/* Address points to a non-existent channel. */
```
If an attempt is made to set the path trace for an STS path other than the one terminated to a DS3 (BBG4B) circuit pack, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Check the equipage. BBG4B for OC-3 or FiberReach,
   and BBG11B for OC-12 is required. */
```

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

When input, this command will cause the following confirmation request to be displayed:

```
/* You have selected the set-pthtrc command with these
 parameters:

 Address = address
 EXPTRC = message
 TRC = message

 Execute? (y/n or CANcel/DELete to quit) =
```
RELATED COMMANDS

rtrv-trace-sts1
rtrv-crs-sts1
set-sts1
NAME

set-vt1: Set VT1.5 Characteristics

INPUT FORMAT

```
set-vt1:Address:dgr=SignalDegrade[nsa=Alarm][,sa=Alarm];
```

DESCRIPTION

This command provisions two type of parameters for VT1.5 channels. They are:

1. **Signal Degrade Alarm Threshold**

 This parameter is provisioned only for ring channels (that is, incoming VT1.5 channels on optical linear extensions in ring systems are not monitored). Possible values are 10^{-6} through 10^{-8}, with a default value of 10^{-6}. Only the 26, 28-type and 29-type OLIU circuit pack supports the provisionable signal degrade function.

2. **Alarm Level for SA/NSA VT Path AIS Condition**

 The alarm level for both service affecting and non-service affecting path AIS conditions can be provisioned in Release 2.1 and later.

The input parameters are:

- **Address**

 Address identifies the VT1.5 channels.

 If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:

 m−1−(1−7, all)−(1−4, all), all (Release 2.1 and later)

 If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later), the valid addresses are:

 m−(1−3, all)−(1−7, all)−(1−4, all)

 If the shelf is equipped with 29-type OLIUs in its Main unit slots, the valid Main unit Addresses are:

 m−(1−12, all)−(1−7, all)−(1−4, all)

- **dgr**

 SignalDegrade specifies the bit error ratio (BER) threshold for the VT1.5 signals in terms of a logarithm to the base 10. When this threshold is crossed, an alarm will be raised and automatic protection switching to the protection path will be initiated. For Release 2.1 and later, the only valid address for the SignalDegrade parameter is all.

 The default or original value is 10^{-6}.
nsa This parameter is available in FiberReach release 2.1 and later. It is
the provisioned alarm level of the non-service affecting VT path AIS and
has the following values:

mn Minor alarm (default)

nr Not alarmed and not reported.

sa This parameter is available in FiberReach Release 2.1 and later. This
is the provisioned alarm level of the service affecting VT path AIS and
has the following values:

mj Major alarm (default for ring channels)

na Not alarmed, but reported

If the signal degrade parameter is entered and the address used is any value
other than all the command will be denied with the following message:

/* The only valid address for the signal degrade parameter is { all }.
To set the signal degrade parameter enter
set-vtl:all:dgr=value; */

To provision the AIS parameters requires that at least one VT cross-connection
exist in the specified address range or the command will not execute and the
following message will be displayed.

SNVS
/* Status, Not in Valid State */
/* The specified path is not properly cross-connected. */
The following confirmation message will be displayed after command entry:

```plaintext
/* Caution! Alarm or maint. thresholds are affected by this command.
   You have selected the set-vtl command with these parameters: */

   SignalDegrate  =  <value> */
   ServiceAffectingAIS  =  <value>
   NonServiceAffectingAIS  =  <value> */

   Execute? (y/n or CANcel/DELete to quit) =
```

If an attempt is made to execute this command, when a mix of incompatible OLIU packs exists in Main, the request will be denied with the following message:

```plaintext
SNVS
/* Status, Not in Valid State */
/* Both main slots must be equipped with compatible OLIU packs. */
```

NOTE:
If an STS-1 address of **all** is provisioned, this command will skip silently all STS-1 channels or VTs within those STS-1 channels that are cross-connected as passthrough, drop not terminated or even not cross-connected at all.

RELATED COMMANDS

rtrv-vtl
NAME

switch-fn: Protection Switch Function Unit

INPUT FORMAT

switch-fn:Address;pri=Priority;

DESCRIPTION

⚠️ CAUTION:

Execution of this command may affect service.

Starting with FiberReach Release 3.1, this command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 (BBG4/BBG4B) circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 (BBG4/BBG4B) circuit packs in the Function unit slots.

This command controls operation of function unit circuit pack protection switching when equipped with termination packs such as DS3 circuit packs. This command does not support the BBG19 circuit pack.

The input parameters for this command are:

- **Address**
 - Address of the function unit slot pair.
 - Valid Addresses: fn
- **pri**
 - Priority indicates the priority of the protection switching request and has the following values:
 - **reset**
 - Clear active external switch requests.
 - **inhibit**
 - Prevent further switches (automatic, manual, or forced) until the switch is reset.
 - **forced**
 - Switch to the standby slot, whether it is good or not, and prevent further switches (automatic or manual) until the switch is reset.
 - **manual**
 - Switch to the standby slot only if it is good.
After entering this command, the following confirmation message is displayed:

/* Caution! Execution of this command may affect service. You have selected the switch-fn command with these parameters:

 Address = x
 Priority = pri */

Execute? (y/n or CANcel/DELete to quit) =

If this command is executed with priority inhibit or forced, then automatic protection switching will be disabled until this command is executed again with priority reset.

RELATED COMMANDS
 rtrv-state
 switch-line
NAME

switch-ls: Protection Switch Low Speed

INPUT FORMAT

switch-ls:Address;pri=Priority;

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service.

This command controls the operation of low-speed circuit pack protection switching.

The input parameters are:

Address The address of the low-speed slot(s). Addresses may either be a single low-speed slot (for example, ls-a-1) or all low-speed slots in a single group (for example, ls-b-all).

Valid Low-Speed Slot Addresses for manual and forced:
ls-(a,b,c,d)-1 (Note: all not allowed)

Valid Low-Speed Service Slot Addresses for reset and lockout:
ls-(a,b,c,d)-{1,all}
(1x1 low-speed protection configuration)
ls-all, ls-(a,b,c)-{1,2}, ls-d-{1}
(1x7 low-speed protection configuration)

Valid Low-Speed Protection Slot Addresses for reset and lockout:
ls-(a,b,c,d)-2 (Protection slot only with 1x1 low-speed protection)
ls-d-2 (Protection slot only with 1x7 low-speed protection)

pri Priority indicates the priority of the protection switching request and has the following values:

reset Clear active external switch requests (lockout, forced, or manual) and return any traffic on the protection slot to the service slot.

lockout Locks out protection switching requests (except the reset request). If the lockout is directed to the protection slot, any traffic that is currently on the protection line is unconditionally switched back to the service line and no traffic from any service line will be switched to the protection line. If the lockout is directed to a service slot, traffic on that service line that was previously switched to protection is unconditionally
switched back to the service line and no further traffic can be switched from that specific service line to the protection line. The lockout request for either condition will remain in effect until a low-speed protection switch reset is entered.

forced

Force switch to the protection low-speed slot unless there is an outstanding lockout or forced switch request. For a forced switch, the address must be a single slot. The forced switch will remain in effect until a low-speed protection switch reset or lockout request is entered.

manual

Manual switch to the protection low-speed slot only if the protection slot is good and not in use (service slot only). For a manual switch, the address must be a single slot. The failure or removal of a DS1 or T1EXT circuit pack, or a forced, lockout, or reset request will preempt a manual switch request.

If the protection switch request changes the protection switching condition to a condition lower or equal to the priority of the pre-existing protection switching condition, execution of this command will be denied with the following denial message:

```
SPSP
/* Status, Protection Switch Priority */
/* The CIT-initiated protection switch request has a lower priority than the existing protection switching condition. */
```

If an address of **all** is used with a priority of **manual**, the request will be denied with the following denial message:

```
IDNC
/* Input, Data Not Consistent */
/* Manual switch not allowed for multiple slots. */
```
If an address of **all** is used with a priority of **forced**, the request will be denied with the following denial message:

```c
IDNC
/* Input, Data Not Consistent */
/* Forced switch not allowed for multiple slots. */
```

If a protection slot address is used with a priority of **manual**, the request will be denied with the following denial message:

```c
IDNC
/* Input, Data Not Consistent */
/* Manual switch not allowed for protection slot. */
```

If a protection slot address is used with a priority of **forced**, the request will be denied with the following denial message:

```c
IDNC
/* Input, Data Not Consistent */
/* Forced switch not allowed for protection slot. */
```

If the switch request would place service onto a slot currently holding a circuit pack type that is not allowed ("CP not allowed" alarm active), the request will be denied with the following denial message:

```c
SPFA
/* Status, Protection unit FAiled */
```
If the switch request would place service onto a protection circuit pack type that cannot protect the service circuit pack, the request will be denied with the following denial message:

```
SSRD
/* Status, Switch Request Denied */
/* Protection circuit pack cannot protect the service circuit pack */
```

On entry, the following confirmation message is displayed:

```
/*Caution! Execution of this command may affect service.
   You have selected the switch-ls command with these parameters:

   Address = x
   Priority = x */

Execute? (y/n or CANcel/DELeete to quit) =
```

If this command is executed with priority lockout or forced, then automatic protection switching will be disabled until this command is executed again with priority reset.

RELATED COMMANDS

- rtrv-state
- rtrv-state-eqpt
NAME

switch-path-sts1: Switch Path STS-1

INPUT FORMAT

switch-path-sts1:Address:pri=Priority;

DESCRIPTION

This command controls STS-1 path switching on path protected ring configurations. Path switching is always unidirectional (one-way).

This command is allowed if the shelf is equipped with 28-type (Release 3.1), 26-type or 29-type (Release 4.0) OLIUs in Main and all DS3 circuit packs (except BBG19) in the Function unit slots.

The input parameters are:

Address
Address is the address of the STS-1 channel currently carrying dropped traffic. When this command is executed, traffic will be switched away from this path to the other path on the ring. There is no default for this parameter. Connections provisioned as 0x1 ring or 0x1 DS3 cannot be switched.

Valid OC-3 Addresses (28-type OLIU): m\{1,2\}−\{1−3, all\}
(Applicable to BBG4/BBG4B DS3 circuit packs)

Valid OC-12 Addresses: m\{1,2\}−\{1−12, all\}
(29G-U (Release 4.0 and later) OLIU in Main)

Valid OC-1 Addresses: m\{1,2\}−1
(29G-U (Release 4.0 and later) OLIU in Main)

pri
Priority indicates the priority of the protection switch request. The one and only valid value is *manual*. This requests a switch from the addressed path to the standby path unless a path signal fail or path signal degrade exists on the standby path.
If the path address specified in the command is not equipped or the STS-1 channel is not drop, add/drop cross-connected, the command will be denied with the following message:

```
SVNS
/* Status, Not in Valid State */
/* The specified path is not equipped and/or cross-connected. */
```

The following message applies only if the Main unit slots of a shelf are equipped with 29G-U OLIU circuit packs. If the path address specified in the command is an STS-1 channel that is part of an STS-3c cross-connected channel, the command will be denied with the following message:

```
SVNS
/* Status, Not in Valid State */
/* The specified path is not properly cross-connected. */
```

If the addressed path is associated with a connection of type
- pass-through
- 0x1 ring

the command will be denied with the following message:

```
SVNS
/* Status, Not in Valid State */
/* The specified path cannot be switched. */
```

NOTE:
A pass-through path passes directly from the OC-N receiver to the OC-N transmitter. The service carried with this path is not dropped at this node.
If an equal or higher priority switch already exists on the addressed path, the command will be denied with the following message:

```
SPSP
/* Status, Protection Switch Priority */
/* Equal or higher priority switch exists */
```

If `-all` appears in the address and if an equal or higher priority switch already exists on some of the addressed paths, the path is part of an STS-3c cross-connected channel (only if Main unit slots are equipped with 29-type OLIUs) or if the path is VT1.5 add/drop cross-connected, the command will list these exceptions as follows:

```
/* stsl address equal or higher priority switch exists
  stsl address vt cross-connected signals exist
*/
```

If `-all` appears in the address and the path is not equipped, not cross-connected, or is a pass-through, 0x1 ring connection, or 0X1 DS3 connection, the path will be silently skipped.

Since DDM-2000 path switching is unidirectional, the user will receive the following notification message immediately before the confirmation request:

```
/* The path protection switching request is unidirectional.
   It may be necessary to perform a switch-path-sts1 at the far end
to switch both transmit and receive to the same path. */
```
After entering this command, the following confirmation message is displayed:

/* Caution! Execution of this command may affect service.
You have selected the sw-path-sts1 command with these parameters:

 Address=
 Priority= */

Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS
rtrv-crs-sts1
rtrv-crs-vt1
rtrv-state-eqpt
rtrv-state-path e
NAME

switch-path-vt1: Switch Path VT1.5

INPUT FORMAT

switch-path-vt1:Address:pri=Priority;

DESCRIPTION

This command controls VT1.5 path switching on path protected ring configurations. Path switching is always unidirectional (one-way).

The input parameters are:

Address
Address is the address of the VT1.5 path currently carrying drop or drop and continue traffic. When this command is executed, traffic will be switched away from this path to the other path on the ring. There is no default for this parameter.
Valid addresses are:
m(1,2)-1-all, m(1-2)-1-(1-7)-(1-4, all)
If the shelf is equipped with 26-type OLIUs in Main unit slots, valid addresses are:
m(1,2)-1-all, m(1,2)-1-(1-7)-(1-4, all)
If the shelf is equipped with 28-type OLIUs in Main unit slots (in FiberReach 3.1 and later), the valid addresses are:
m(1,2)-(1-3, all)-(1-7)-(1-4, all)
If the shelf is equipped with 29-type (Release 4.0 and later) OLIU in Main slots, the valid addresses are:
m(1,2)-(1-12, all)-(1-7, all)-(1-4, all)

pri
Priority indicates the priority of the protection switch request. The one and only valid value is:

manual This parameter requests a switch from the addressed path to the standby path unless a path signal failure or path signal degrade exists on the standby path.
If the path address specified in the command is not equipped or VT1.5 cross-connected, the command will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* The specified path is not equipped and/or cross-connected. */
```

If the path address specified in the command is a pass-through path, the command will be denied with the following message:

```
SNVS
/* Status, Not in Valid State */
/* The specified path cannot be switched. */
```

NOTE:
A pass-through path passes directly from the OC-N receiver to the OC-N transmitter. The service carried with this path is not dropped at this node.

If an equal or higher priority switch already exists on the addressed path, the command will be denied with the following message:

```
SPSP
/* Status, Protection Switch Priority */
/* Equal or higher priority switch exists */
```

If `-all` appears in the address and if an equal or higher priority switch already exists on some of the addressed paths, the command will list these exceptions. If `-all` appears in the address and the path is STS-1 add/drop cross-connected, it will be listed as an exception.

```
/* vt address equal or higher priority switch exists
 vt address sts cross-connected signal exists
    : : : : : :
 */
```
Since DDM-2000 path switching is unidirectional, the user will receive the following notification message and confirmation request:

```c
/* The path protection switching request is unidirectional. 
   It may be necessary to perform a switch-path-vtl at the far end 
   to switch both transmit and receive to the same path. */

/* Caution! Execution of this command may affect service. 
   You have selected the sw-path-vtl command with these parameters: 
   Address=
   Priority= */

Execute? (y/n or CANcel/DElete to quit) =
```

RELATED COMMANDS

- rtrv-state-eqpt
- rtrv-state-path
NAME

switch-sync: Protection Switch Synchronization

INPUT FORMAT

\[
\text{switch-sync: } s=\text{SyncFunction}, \text{pri=Priority};
\]

DESCRIPTION

⚠️ CAUTION:

Execution of this command may affect service.

This command controls operation of the synchronization protection switching. This command lets the user control which synchronization reference is used and enables the user to switch a synchronization reference when needed.

The input parameters are:

- **s** SyncFunction specifies the synchronization function and may be one of the following:
 - **mode** Selects protection switching of timing mode. Specify only if the system is provisioned for LineTimed.
 - **circuitpack** Selects protection switching of timing circuit packs. In Release 3.0 and later, FiberReach selects protection switching of the main OLIU circuit pack that is currently used as the line-timing source for the system to the other main OLIU circuit pack. This will also result in an "active-fn" main OLIU equipment switch.
 - **src** Selects the optical line from which shelf line-timing will be derived. The SynchronizationSources that can be switched are **main-1** and **main-2**.

- **pri** Priority indicates the priority of the protection switching request.

In FiberReach Release 3.0 and later, for a SyncFunction value of **circuitpack**, the priority (**pri**) value is:

- **manual** Switch from active timing circuit pack to standby timing circuit pack

For a SyncFunction value of **mode**, the priority (**pri**) values are:

- **reset** Clear any active manual switch. This will allow the system to switch back to LineTimed if the system is provisioned for non-revertive mode switching or if it has been manually switched to holdover mode.
- **manual** Switch from the provisioned timing mode, LineTimed, to holdover mode. The system will remain in holdover mode until the switch is reset.
For a SyncFunction value of src, the priority (pri) value is:

manual Switch from the active SynchronizationSource to the standby source.

If no synchronization source switch can be completed due to the equippage of the alternate sources, the command will be denied with the following message:

```
EQWT
/* Equipage, Wrong Type */
/* Alternate sync sources improperly equipped */
```

If this command is executed with SyncFunction=mode, then automatic protection switching will be disabled until this command is executed again with the same SyncFunction and with Priority=reset.

If an equal or higher priority switch (for example, pri=inhibit) already exists on the addressed path, the command will be denied with the following message:

```
SPSP
/* Status, Protection Switch Priority */
/* Equal or higher priority switch exists */
```
If the SyncFunction is **src** and the priority of **reset** or **inhibit** is entered, the request will be denied with one of the following denial messages:

IDNC
/* Input, Data Not Consistent */
/* Reset not allowed for source switching. */

or

IDNC
/* Input, Data Not Consistent */
/* Inhibit not allowed for source switching. */

If this command is entered and both timing slots are empty, the command will be denied and the following denial message will be displayed:

ENEQ
/* Equipage, Not EQuipped */

After entering this command, the following confirmation message is displayed:

/* Caution! Execution of this command may affect service.
 You have selected the switch-sync command with these parameters:

 SyncFunction=s
 Priority=pri */

Execute? (y/n or CANcel/DELeete to quit) =
RELATED COMMANDS

rtrv-state-eqpt
rtrv-sync
set-sync
NAME
test-alm: Test Office Alarms

INPUT FORMAT
test-alm: [md=Mode], [r=Repeat];

DESCRIPTION
This command tests the audible and visible office alarms and associated user panel LEDs.

The specific office alarm test turns on a specific alarm for 10 seconds and turns it off for 10 seconds, after which the office alarm reverts to its normal operation.

The general office alarm test cycles through the various alarm levels (CR, MJ, MN) at 4-second intervals as shown in the following table:

<table>
<thead>
<tr>
<th>Step</th>
<th>Time (Seconds)</th>
<th>ALARM LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CR MJ MN</td>
</tr>
<tr>
<td>1.0</td>
<td>0-4</td>
<td>off off off</td>
</tr>
<tr>
<td>2.0</td>
<td>4-8</td>
<td>ON off off</td>
</tr>
<tr>
<td>3.0</td>
<td>8-12</td>
<td>off ON off</td>
</tr>
<tr>
<td>4.0</td>
<td>12-16</td>
<td>off off ON</td>
</tr>
<tr>
<td>5.0</td>
<td>16-20</td>
<td>off off off</td>
</tr>
</tbody>
</table>

The alarm cutoff (ACO) button functions normally while this test is executing. Depressing ACO silences audible office alarms.

Input parameters are:

md Mode identifies the office alarm test to be performed. It takes the following values:

all General test of all office alarms (default)
cr Specific test of critical alarm
mj Specific test of major alarm
mn Specific test of minor alarm.

r Repeat specifies the number of times that Steps 2 through 4 should be repeated. It is an integer with a range of 1 through 10 and a default value of 1.

This command can be aborted by pressing the "CANcel" or "DELeTe" key while the command is in progress.
The following denial message will be output if the test cannot be performed due to other activity in the system:

```
test-alm: DENY
SSRB
/* Status, System Resource Busy */
```
NAME

test-led: Test LED Indicators

INPUT FORMAT

```
test-led:[Address]:[r=Repeat];
```

DESCRIPTION

This command activates circuit pack or user panel LEDs for 10 seconds on, then
10 seconds off, after which the LED reverts to normal operation. This command
does not affect office alarms.

This test can also be done by pressing the alarm cutoff (ACO) button on the user
panel.

The input parameters are:

- **Address**: This is the address of any slot(s) or **userpanel**, with a default
 value of **all**.
 - Valid Addresses:
 - **all**, **main-(1,2,all)**, **ls-(a,b,c,d,all)-(1,2,all)**,
 - **sysctl**, **userpanel**
 - **fn-(1,2,all)** (For FiberReach R3.1 and later)

- **r**: Repeat specifies the number of times that the test should be
 repeated. It is an integer with the range 1 through 10 and a
default value of 1.
 - This command can be aborted by pressing the "CANcel" or
 "DELete" key while the command is in progress.

When this command is entered while an alarm test is in progress, the following
denial message will be output if the test cannot be done due to other activity in
the system.

```
test-led:address DENY
SSRB
/* Status, System Resources Busy */
```
NAME
test-sysctl: Test System Controllers

INPUT FORMAT
test-sysctl;

DESCRIPTION
This command causes the entire control system (system controller) to perform a self-test. If this command is entered while a transmission test (test-trmsn-t1) is in progress, the following denial message will be displayed:

SSRB
/* Status, System Resources Busy */

At the end of the test, one of the following messages will be displayed.

If the test passes, the following message will be displayed:

test-sysctl: COMPLD
/* Controller Diagnostic Test Report
===
Test PASSED
*/
If the test fails, the following message is displayed, indicating that the controller circuit pack has failed:

```
test-sysctl: COMPLD
/* Controller Diagnostic Test Report
=================================================================================================
SYSCTL CP FAILED
*/
```

In addition to a failure message, the Fault LED on the failed circuit pack and the Major alarm LED on the user panel will be illuminated, and the MJ office alarm will be activated.
NAME

test-trmsn-t1: Test Transmission T1

INPUT FORMAT

test-trmsn-t1: Address: [dirn=Direction][, dur=Duration];

DESCRIPTION

⚠️ CAUTION:
Execution of this command will affect service. This command causes the insertion of a test signal on the selected channel in the MUX or DEMUX direction and will affect service on the selected channel.

This command sets up an automated transmission test for a low-speed DS1 or T1 port.

The test signal is a repetitive pattern which the system checks for bit errors. Only one channel is tested each time; multiple channels may not be tested simultaneously. Before this command is executed, the signal must be appropriately looped back. DDM-2000 checks for the presence of a loopback before beginning the test. If no loopback exists, the system will return a warning message before performing the test.

This command is used for installation of new equipment and for maintenance.

The input parameters are:

Address
Address of the DS1 or T1 port.
Valid Addresses (1x1 protected configuration):
{a, b, c, d}-1-{1-4}
Valid Addresses (1x7 protected configuration):
{a, b, c}-(1, 2)-{1-4}, d-1-{1-4, all}

The BBF6 circuit pack supports 2 T1 ports. When addressing ports on a BBF6, only port numbers 1 and 2 are valid.

dirn
Direction of the transmission test. This parameter has the following values:

mux
The test signal is inserted in the MUX direction (towards the optical fiber) as shown in Figure 11-4 on the following page. This is the default for this parameter.

demux
The test signal is inserted in the DEMUX direction (towards the DSX or T1 interface) as shown in Figure 11-5 on the following page.
dur
Duration of the test in minutes. This value has a range of 1 through 120 with a default value of 1.

This command can be aborted by pressing the "CANcel" or "DELeTe" key while the command is in progress.

NOTE:
Loopbacks on the fiber when testing in the MUX direction will cause an "inconsistent DCC switches" alarm condition. The alarm should be ignored during the loopback testing. To avoid this alarm, the user may disable the DCC prior to performing this test.

Figure 11-4. Automated Transmission Test of DS1 Signal in MUX Direction
Loopback can be fiber loopback, internal loopback, or DSX external loopback.

Figure 11-5. Automated Transmission Test of DS1 Signal in DEMUX Direction

This command displays the following output report:

```c
/* DS1 Transmission Test Report
---------------------------------------------------------------
DS1 Port = addr, Direction = dirn, Duration = dur minutes
---------------------------------------------------------------
Elapsed   Error
Time(sec)  Seconds
---------------------------------------------------------------
 nnn       nnn
 .         .
 .         .
 nnn       nnn
 */
```
The output parameters are:

- **DS1 Port**: The address of the DS1 or T1 port
- **Direction**: The direction of the transmission test
- **Duration**: The duration of the test in minutes
- **Elapsed Time**: Elapsed time of the test in seconds
- **Errored Seconds**: Total number of errored seconds.

A question mark (?) as the rightmost character in the **Errored Seconds** indicates uncertain data because of a protection switch during the test.

If an equipment failure is detected during test, the following message is displayed:

```*/ Hardware failed - Test Aborted */```

The system checks for presence of a loopback at the beginning of the test. If a loopback does not exist, the test continues and the following message appears before and after the report:

```*/ Preliminary hardware test indicates no loopback. */```

If the test is interrupted or aborted, the following message is displayed:

```*/ Test Manually Aborted */```

The following denial message will be displayed if the test cannot be performed due to other activity in the system:

```SSRB
*/ Status, System Resources Busy */```
When this command is entered, the following confirmation message is displayed:

```c
/* Establish appropriate loopbacks (manual or electronic) 
   prior to test execution, if appropriate. */
/* Caution! Execution of this test may interrupt service. 
   You have selected the test-trmsn-t1 command with these parameters:
   Address = x 
   Direction = dirn 
   Duration = dur */
Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

- opr-lpbk-t1
- rls-lpbk-t1
NAME

test-trmsn-t3: Test Transmission T3

INPUT FORMAT

test-trmsn-t3: Address: [dirn=Direction][,dur=Duration];

DESCRIPTION

⚠️ CAUTION:

Execution of this command will affect service. This command causes the insertion of a test signal on the selected channel in the MUX or DEMUX direction and will affect service on the selected channel.

Starting with FiberReach Release 3.1, this command is allowed ONLY if the shelf is equipped with 28-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

In FiberReach Release 4.0, this command is allowed also if the shelf is equipped with 26/29-type OLIUs in Main and DS3 circuit packs in the Function unit slots.

This command sets up an automated transmission test for a low-speed DS3 port. The direction of the test can be towards either the MUX (towards the optical fiber) or the DEMUX (towards the DSX) transmission directions. The test signal is a framed DS-3 signal which DDM-2000 checks for P-bit parity errors. Only one channel is tested each time; multiple channels may not be tested simultaneously. Before this command is executed, the signal must be appropriately looped back.

This command is used for installation of new equipment and for maintenance. In either case, the signal must be appropriately looped back.

If the test is run in the MUX direction and an external loopback is established at the far end, then the far end must be provisioned for clear channel (CC) mode with no AIS in order to test the entire transmission path. If an external loopback is used and the far end is provisioned for VMR Mode, only errors in the receive direction will be monitored.

If the test is run using a DS3 internal loopback, DDM-2000 automatically puts the path in clear channel mode while the loopback is active. When the loopback is released, the mode returns to its previous state.

DDM-2000 checks for the presence of a loopback before beginning the test. If no loopback exists, the system will return a warning message before peforming the test.
NOTE 1:
Loopbacks on the fiber when testing in the MUX direction will cause an "inconsistent DCC switches" alarm condition. The alarm should be ignored during the loopback testing. To avoid this alarm, the user may disable the DCC prior to performing this test.

NOTE 2:
When the addressed port is on a BBG19 DS3 circuit pack, the cross-connection between the port and the OC-N ring is a 0x1 DS3 connection. This means that for a test in the MUX direction, the test signal is transmitted only on the outgoing fiber connected to one of the main OLIUs. Only the signal received via the same OLIU is monitored for errors. It is the user’s responsibility to ensure that the far-end loopback causes the signal to return on the proper fiber interface.

The input parameters are:

Address Address of the DS3 port.

Valid DS3 Port Addresses (BBG4, BBG4B):

Valid DS3 Port Addresses (BBG19):

dirn Direction of the transmission test. This parameter has the following values:

- **mux** The test signal is inserted in the MUX direction and the received signal is monitored from the MUX direction (default) as shown in Figure 11-6.

- **demux** The test signal is inserted in the DEMUX direction and the received signal is monitored from the DEMUX direction as shown in Figure 11-7.

dur Duration of the test in minutes. This value has a range of 1 through 120 with a default value of 1.

This command can be aborted by pressing the "CANcel" or "DELeTe" key while the command is in progress.
Multiplexing Direction

Loopback can be fiber loopback, internal loopback, DSX, or T1 carrier external loopback

Demultiplexing Direction

Figure 11-6. Automated Transmission Test of DS3 Signal in MUX Direction

Fiber Reach DDM-2000 Issue 3 June 2000 11-383
This command displays the following output report:

```c
/* DS3 Transmission Test Report
   ==============================================================
   DS3 Port = addr, Direction = dirn, Duration = dur minutes
   ==============================================================
   Elapsed   Errored
   Time(sec)  Seconds
   ==============================================================
   n         n     Out Of Frame
   .         .
   .         .
   .         .
   */
```

The output parameters are:

- **DS3 Port**: The address of the DS3 port
- **Direction**: The direction of the transmission test
- **Duration**: The duration of the test in minutes
- **Elapsed Time**: Elapsed time of the test in seconds
- **Errored Seconds**: Total number of errored seconds.

A question mark (?) as the rightmost character in the **Errored Seconds** column indicates uncertain data because of a protection switch during the test.

The message "Out Of Frame" appears in the report if an out-of-frame condition is detected during the test.

If an equipment failure is detected during the test, the following message is displayed:

```c
/* Hardware Failed - Test Aborted */
```

The system checks for the presence of a loopback at the beginning of the test. If a loopback does not exist, the test continues and the following message appears before and after the report:

```c
/* Preliminary hardware test indicates no loopback. */
```
If the test is interrupted or aborted, the following message is displayed:

/* Test Manually Aborted */

The following denial message will be output if the test cannot be performed due to other activity in the system:

SSRB
/* Status, System Resources Busy */

When this command is entered, the following confirmation message is displayed:

/* Establish appropriate loopbacks (manual or electronic)
prior to test execution, if appropriate. */
/* Caution! Execution of this test may interrupt service.
You have selected the test-trmsn-t3 command with these parameters:
Address = x
Direction = dirn
Duration = dur */
Execute? (y/n or CANcel/DELete to quit) =

RELATED COMMANDS
 opr-lpbk-t3
 rls-lpbk-t3
 rtrv-pm-t3
NAME
toggle: Toggle Between Local and Remote Sessions

INPUT FORMAT
^t (Press "t" while holding the \text {CTRL} key)

DESCRIPTION
This command toggles the user between the local and remote sessions. It provides a quick and easy way to switch from the local session to the remote session, while not terminating either one. The user must have established two valid sessions with network elements (NEs) in the local NE's subnetwork before this command executes successfully.

This command may be entered only between command executions; that is, only at the system prompt. If entered as a response to a parameter prompt, an error message will be displayed.

This command does not display a typical completion message. When entered, the TID for the NE switched to is displayed, followed by the date and time. This line is followed by a prompt from that system.

The following denial message will be output if the toggle cannot be performed.

\begin{verbatim}
SNVS
/* Status, Not in Valid State */
/* No remote login is active */
\end{verbatim}

If the toggle request fails due to a far-end communication failure (after trying for 45 seconds or more), the following denial message will be displayed:

\begin{verbatim}
SROF
/* Status, Requested Operation Failed */
/* Far end Communication failure */
\end{verbatim}
RELATED COMMANDS

logout
rlgn
NAME

upd: Update Equipment List

INPUT FORMAT

upd;

DESCRIPTION

⚠️ CAUTION:
Execution of this command may affect service.

This command updates the system data base (as recorded in the nonvolatile memory) to reflect the existing hardware configuration and incoming signals.

This command can be executed either by pushing the Update/Initialize button, located on the SYSCTL circuit pack or by entering the command from the CIT. When the Update/Initialize button is pushed, a dot (.) will appear on the 7-segment display.

➡️ NOTE 1:
An upd may be performed at any time except before or during the 10-second window after powering up the System Controller (SYSCTL) while the critical (CR) LED is flashing.

➡️ NOTE 2:
The user should note that the critical LED light on the SYSCTL circuit pack will continue to flash after pressing the Update/Initialize button for a system reset. Do not reenter this command. The LED light will stop flashing after 10 seconds.
This command should be executed after the following:

- Removing a circuit pack — Activating the `upd` command following circuit pack removal deletes the circuit pack from the equipment list and clears the associated alarm. This command also changes the slot state to `auto`. Failure to update after removing a circuit pack will continue the "CP removed" alarm, which will become an "unexpected CP type", or similar alarm when a new and different type of circuit pack is placed in the slot. Performing the update at this later time will clear this alarm and provide default provisioning for the new circuit pack, provided the circuit pack is acceptable.

- Removing a signal input — When an incoming DS1 or T1 signal is removed, the system data base must be updated to reflect the change and clear the associated alarm.

- Removing an STS1 or VT1.5 AIS alarm for incoming channels.

- Changing a switch setting on a circuit pack — The `upd` command should be activated following switch setting changes on the BBF1/BBF1B DS1, BBF3 DS1PM, or BBF6 T1EXT circuit packs. This command enters the new settings into the system. Failure to update will cause an "unexpected CP switches" or "unexpected CP type" alarm, since the new switch settings do not agree with the switch settings already recorded in the system. Activating the update function will clear this alarm and make the new switch settings effective.

- Replacing Circuit Pack types — The user can "upgrade" from one type of circuit pack to another type in the following cases.

 Automatic Upgrades — no alarms occur and there is no need to update:

 1. For low-speed slots — from any BBF1/BBF1B to any other BBF1B/BBF1 type DS1 pack
 2. For 1+1 slot pairs — from older 26-type to enhanced 26-type OLIU packs.

 Manual Upgrades — "unexpected CP type" alarm or "protection CP different" alarm will occur, and an update must be done:

 1. For low-speed slots — from BBF1/BBF1B to BBF3 type DS1 packs
 2. For low-speed slots — from BBF3 to BBF1/BBF1B type DS1 packs

Following the documented upgrade procedures (slot 1 of 1x1 or 1+1 pairs), the old type circuit pack is removed and replaced with the new type circuit pack. Activating the update function will clear the alarm for new pack type and make the new circuit pack settings active.
ALARM RESTRICTIONS
Pressing the UPD button or issuing the `update` command will *not* change provisioning if the following alarms exist. The user will have to correct the alarmed condition before executing this command. These alarms are:

- illegal CP type
- CP not allowed *(reason)*
- invalid CP switches.

SYSTEM RESTRICTIONS AND CORRECTIVE ACTIONS
Pressing the UPD button or issuing the `update` command will not retire a "CP removed", "unexpected CP type", or "unexpected CP switches" alarm or allow the system to accept the new provisioning request if certain system conditions exist. The user will have to correct the condition before updating the system.

If a restriction is detected, the following message will be displayed:

```
/* Address not equipped properly -- provisioning unchanged. */
```

The system restriction and corrective actions needed are:

- **Port status in NMON or IN SERVICE**
 If a low-speed circuit pack is removed before the incoming signal is removed or while the associated port or ports are in the *nmon* state, the system will not recognize that the service is no longer being carried on the port and will not remove the circuit pack from the equipment list. Note that this restriction does not apply to OLIU circuit packs in systems that support OC-N line states.

 Corrective Action: If the port is in the *nmon* state, it must be moved to the *auto* state, using the `set-state-t1` command, before the circuit pack can be removed and the system can be updated. If an incoming signal is present, it must first be removed, then the circuit pack can be removed, and the system can be updated.

- **Manual cross-connection exists**
 A manual cross-connection is entered into the system when an arrangement other than the default is desired and to support various applications.

 Corrective Action: The system will not recognize a circuit pack removal until the manual cross-connection to the addressed circuit pack is deleted. (See the `dlt-crs-vt1` and `rtrv-crs-vt1` commands for more information on manual cross-connections.)
For 1+1 or 1x1 slot pairs, one circuit pack of the pair can be removed as long as the other remains to support the cross-connection. For rings systems, the MAIN circuit packs are special and all cross-connections in the system must be deleted before the addressed circuit pack can be removed.

- **Upgrades from Slot 2**
 Upgrades from Slot 2 of a 1x1 or 1+1 pair are not permitted when Slot 1 is equipped.
 Corrective Action: The documented upgrade procedures to change one type of circuit pack for another require that the change first be made in slot 1 of a slot pair when slot 1 is equipped.

- **Timing Source removed**
 When the sync timing source is provisioned to be LineTimed and the addressed circuit pack is selected for timing, the slot state will not change to auto.
 Corrective Action: Insert an OLIU circuit pack that supports the timing selected or change the timing source.

- **Sync Autoreconfiguration Selected**
 When the sync timing is provisioned for Autoreconfiguration and the addressed circuit pack is one of the sources for timing, the slot state will not change to auto.
 Corrective Action: Insert an OLIU circuit pack that supports the timing selected or change the timing provisioning.

- **Change Time setting from Line to External**
 If a system’s sync timing source switch from Line to External timing is attempted by changing the switches on the TGS pack to an External timing setting while leaving the sync timing in Autoreconfiguration mode enabled, the attempt to switch from Line to External Timing will fail.
 Corrective Action: In order to switch from Line to External timing, the user MUST ensure that in addition to setting the switches on the TGS pack to External timing, the Sync Autoreconfiguration parameter is set to disabled.
If a protection switch request of **forced**, **inhibit**, or **lockout** is specified to a slot that is now empty, entering the `upd` command may cause the protection switch to occur possibly affecting service. When this occurs, the following confirmation message will be displayed:

```c
/* Caution! Execution of the update command may interrupt service because of an active protection switch request on an empty slot. It also updates the equipment list and initializes ALL parameters associated with empty slots. */

Execute? (y/n or CANcel/DELete to quit) =
```

RELATED COMMANDS

- `dlt-crs-vt1`
- `rtrv-crs-sts1`
- `rtrv-crs-vt1`
- `rtrv-state-eqpt`
- `rtrv-state-path`
- `set-state-t1`
Detailed Alarm and History Reports

This section provides details of the Retrieve Alarm and Retrieve History commands with explanations of specific output messages.

Each command includes an INPUT FORMAT part, providing the syntax for the command, and a DESCRIPTION part, providing the details of the command input and output parameters. Following the DESCRIPTION part is a table listing the output messages associated with each command and a description of each message.
NAME
rtrv-alm: Retrieve Alarm and Status

INPUT FORMAT

rtrv-alm[:alm=AlarmLevel];

DESCRIPTION

This command displays a report of active alarm and status conditions of the local network element. The report includes the source address of the alarm, as well as the date and time of the alarm, whether or not the condition is service affecting, and a short description of the condition.

The input parameter is:

\textbf{alm} \quad \text{AlarmLevel for which a report is desired. This parameter may have one of the following values:}

\begin{verbatim}
all
cr
mj
mn
pmn
other
\end{verbatim}

Alarms are listed from greatest to least severity. Within a severity level, newer alarms are listed first.
Example Alarm Report:

```c
/* Active Alarms and Status Report
===============================================================================
Alarm  Source  Date Time  Srv  Description
Level  Address  Detected
===============================================================================
Condition address  MM-DD  HH:MM:SS  srv  description
.
.
Condition address  MM-DD  HH:MM:SS  srv  description
*/
```

The output parameters are:

Alarm Level Alarm level is the alarm or status condition being reported. A status condition is named status if there is no user panel LED illuminated for that condition. An alarm condition is the name of the topmost LED on the user panel that is illuminated and may be one of the following conditions:

- CRITICAL
- MAJOR
- MINOR
- PWR MINOR
- abnormal (status LED)
- ne-acty (status LED)
- fe-acty (status LED)
- status (no LED)

Source Address Source address is the address of the event. An event source may be a slot, channel, port, or an operations interface. See Table 11-1 at the beginning of this chapter for the address of slots, ports, channels, and operations interfaces, respectively.
Refer to Table 11-1 for other source addresses.

Date Detected
Month (MM) and day (DD) of the event.

Time Detected
Time (Hours, Minute, Seconds) of event occurrence.

Srv
Srv indicates whether the condition is service affecting or not, and may have the following values:
- **SA** Service affecting
- **NSA** Not service affecting
- **-** Not applicable for this condition (not service affecting).

Description
Table 11-3 lists the meanings and likely causes of the conditions reported in the alarm and status report. For conditions with more than one possible cause, the most likely causes are listed first.

RELATED COMMANDS

```plaintext
rtrv-hsty
```
<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd CP reqd for BBF6</td>
<td>The BBF6 (T1EXT) circuit packs require both function unit slots in the group to be equipped. A second circuit pack of the same type should be inserted in the empty function unit slot.</td>
</tr>
<tr>
<td>−48V power/fuse failed</td>
<td>A −48 volt power feeder or a fuse on the user panel has failed.</td>
</tr>
<tr>
<td>−48V power/fuse FA</td>
<td>FB failed</td>
</tr>
<tr>
<td>AC power failed</td>
<td>The AC power supply to a remote terminal cabinet has failed.</td>
</tr>
<tr>
<td>ACO active</td>
<td>The parallel telemetry outputs and audible office alarms normally active due to the alarm conditions in the system are being suppressed. See the opr-aco command.</td>
</tr>
<tr>
<td>AGNE communication failure</td>
<td>A network element cannot establish communication with the alarm gateway network element (AGNE), or the AGNE cannot establish communication with a network element in the same alarm group. Use the rtrv-map-network command to determine if both network elements are in the same alarm group. In FiberReach Release 3.0 and later TARP releases, “AGNE communication failure” events will no longer be detected or reported. Starting with FiberReach 4.0, the remote NE status feature is reinstated. If this event is reported it means that a network element cannot establish communication with the alarm gateway network element (AGNE), or that the AGNE has lost communication with a network element in the same alarm group.</td>
</tr>
<tr>
<td>APS - automatic lock</td>
<td>The service associated with a DS1 or T1EXT CP has been automatically switched and locked onto the protection DS1 or T1EXT CP. The automatic protection switching (APS) lock will remain active until midnight. Cause: Four automatic switches of a single DS1 or T1EXT CP in 10 minutes, probably because of an intermittent failure of the DS1 or T1EXT CP.</td>
</tr>
<tr>
<td>Description</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>control</td>
<td>The specified environmental control point (miscellaneous discrete output) is active. Note: The actual message that appears in the alarm and status report for this condition can be provisioned; this is the default message. See the <code>rtrv-attr-cont</code> and <code>set-attr-cont</code> commands. Cause: The system was instructed to close the environmental control point by either a TBOS control point or by the closing of the corresponding environmental control input at the far end.</td>
</tr>
<tr>
<td>CP not allowed-(eqpt)</td>
<td>A DS1, DS1PM, or T1EXT CP is installed in a low-speed slot and has caused a protection mismatch between a service slot and a protection slot. Also for T1EXT in a Group 4 shelf, equipping the corresponding Function Units with BBG2 packs will cause this message.</td>
</tr>
<tr>
<td>CP removed</td>
<td>A CP previously installed in this system is removed. The CP should be replaced, or an “update” should be done to remove it from the system equipment list.</td>
</tr>
<tr>
<td>DS1 CP failed</td>
<td>Internal equipment failure of the specified DS1 CP.</td>
</tr>
<tr>
<td>DS1 loopback</td>
<td>A loopback (toward the optical fiber) is active on the specified T1 port. See the <code>opr-lpbk-t1</code> and <code>rls-lpbk-t1</code> commands.</td>
</tr>
<tr>
<td>DS1 loopback (to fiber)</td>
<td>A loopback (toward the optical fiber) is active on the specified T1 port. See the <code>opr-lpbk-t1</code> and <code>rls-lpbk-t1</code> commands.</td>
</tr>
<tr>
<td>DS1 loopback (to DSX)</td>
<td>A loopback (toward the DSX or T1 interface) is active on the specified T1 port. See the <code>opr-lpbk-t1</code> and <code>rls-lpbk-t1</code> commands.</td>
</tr>
<tr>
<td>DS1 trmsn test IP</td>
<td>A transmission test using the internal test signal generator and monitor is in progress on the specified T1 port. See the <code>test-trmsn-t1</code> command.</td>
</tr>
<tr>
<td>DS1PM CP failed</td>
<td>Internal equipment failure of the specified DS1PM CP.</td>
</tr>
<tr>
<td>DS3 CP failed</td>
<td>Internal equipment failure of the specified DS3 CP. Starting with FiberReach Release 3.1, this alarm is applicable if the Function unit is equipped with DS3 circuit packs.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS3 loopback (to Fiber)</td>
<td>A loopback (toward the optical fiber) is active on the specified T3 port.</td>
</tr>
<tr>
<td></td>
<td>Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td></td>
<td>See the <code>opr-lpbk-t3</code> and <code>rls-lpbk-t3</code> commands.</td>
</tr>
<tr>
<td>DS3 loopback (to DSX)</td>
<td>A loopback (toward the DSX) is active on the specified T3 port.</td>
</tr>
<tr>
<td></td>
<td>Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td></td>
<td>See the <code>opr-lpbk-t3</code> and <code>rls-lpbk-t3</code> commands.</td>
</tr>
<tr>
<td>DS3 trmsn test IP</td>
<td>A transmission test using the internal test signal generator and monitor is in progress on the specified T3 port.</td>
</tr>
<tr>
<td></td>
<td>Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td></td>
<td>See the <code>test-trmsn-t3</code> command.</td>
</tr>
<tr>
<td>Description</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>dormant/exec code mismatch</td>
<td>This alarm condition is raised when the network element detects that it contains dormant software with a release number that does not match the release number of the executing software.</td>
</tr>
<tr>
<td>environmentn</td>
<td>The specified environmental alarm point (miscellaneous discrete input) is active. The actual message that appears in the alarm and status report for this condition can be provisioned; this is the default message. See the rtrv-attr-env and set-attr-env commands.</td>
</tr>
<tr>
<td>excessive holdover</td>
<td>The system has been in holdover mode for more than 4 hours. This may cause degraded performance (high error rates) on the transmitted and/or received signals. Whenever this condition exists, the condition "holdover mode active" also exists. Likely Causes: See "holdover mode active."</td>
</tr>
<tr>
<td>externalMinor</td>
<td>The external minor alarm input (environmental alarm input 15) is active. Typically, this input will be connected to the power shelf and will indicate that the DC power or the cooling fan in a remote terminal cabinet has failed. The actual message that appears in the alarm and status report for this condition can be provisioned; this is the default message. See the rtrv-attr-env and set-attr-env commands.</td>
</tr>
<tr>
<td>fan control relay failed</td>
<td>The thermostat on the SYSCTL indicates that the cooling fan should be turned on, and the fan control relay on the SYSCTL CP failed to operate or the fan control relay output (backplane connector P62) does not connect to a fan. The system will continue to operate but might overheat if the SYSCTL controls a fan, leading to degraded or interrupted transmission and/or circuit pack failures. Likely causes: Telemetry output common pin on P62 is not grounded; SYSCTL CP failure.</td>
</tr>
<tr>
<td>fan shelf failed</td>
<td>The system has detected a failure of the DDM-2000 fan shelf. The system will continue to operate but it may overheat. The fan must be replaced within 4 hours of the failure; otherwise service might be interrupted and/or circuit packs might fail. Likely causes: Filter needs replacing, a fan pack failed, fan shelf has lost one or both power feeders, or the fan shelf control board has failed.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>forced switch</td>
<td>When associated with a line, this message means that the identified line is not selected as the active receiving line, and an automatic or manual protection switch to make this the active receiving line will not be done. The forced switch will remain in effect until the protection switch is reset, or a lockout or inhibit switch request is received. Note that switching is unidirectional (one-way). Because of this, the specified line might still be active (if the far end is selecting the specified line to receive traffic), and the far end might still be free to switch the line it is selecting to receive traffic. See the switch-line command. See the switch-ls command.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>holdover mode active</td>
<td>The system is in holdover synchronization mode. Likely causes:</td>
</tr>
<tr>
<td></td>
<td>a. The system was manually switched to holdover mode (with the <code>switch-sync</code> command) and the switch has not been reset</td>
</tr>
<tr>
<td></td>
<td>b. The system automatically switched to holdover mode due to failure of the timing references, as follows:</td>
</tr>
<tr>
<td></td>
<td>1. The reference failures have not cleared.</td>
</tr>
<tr>
<td></td>
<td>2. The system is provisioned for nonrevertive synchronization mode switching.</td>
</tr>
<tr>
<td></td>
<td>3. The system is provisioned for line-timed operation and the optical line or OLIU circuit pack has failed, or a message indicating an</td>
</tr>
<tr>
<td></td>
<td>upstream clock problem has been received on the sync message bits of the optical line. (See the <code>rtrv-sync</code> command.)</td>
</tr>
<tr>
<td></td>
<td>4. The system is provisioned for sync message signaling, but the upstream system from which it line-times has not been provisioned for sync</td>
</tr>
<tr>
<td></td>
<td>message signaling. The condition can be cleared by provisioning both systems the same. (See the <code>set-sync</code> and <code>rtrv-sync</code></td>
</tr>
<tr>
<td></td>
<td>commands.)</td>
</tr>
<tr>
<td></td>
<td>The condition can be cleared by repairing at least one of the timing references (if both are failed) and resetting synchronization mode</td>
</tr>
<tr>
<td></td>
<td>protection switch with the command <code>switch-sync:s=mode,pri=reset</code>. In a central office system, the synchronization mode can also</td>
</tr>
<tr>
<td></td>
<td>be reset with a TBOS control point.</td>
</tr>
<tr>
<td>inc. (from DSX) DS1 LOS</td>
<td>At least 128 consecutive zeros are received in the DS1 signal incoming from the DSX-1, or the energy at the DS1 input is below a preset</td>
</tr>
<tr>
<td></td>
<td>threshold. Likely causes: Hard failure of upstream equipment or facility (towards the DSX-1). The DS1 input is disconnected at the</td>
</tr>
<tr>
<td></td>
<td>backplane or the DSX-1; equipment is failed or removed at DSX-1.</td>
</tr>
<tr>
<td>Description</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>inc. (from DSX) DS1 sig fail</td>
<td>The bit error ratio (BER) in the DS1 signal incoming from the DSX-1 exceeds the provisioned failure threshold, 10^{-3}, 10^{-6}, 10^{-7}, or 10^{-8}. Likely causes: Mismatch of line code (AMI/B8ZS); failure of upstream equipment or facility (towards the DSX-1); cross talk in office wiring; failure of the DS1 CP.</td>
</tr>
<tr>
<td>inc. (from fiber) DS3 AIS</td>
<td>The system has detected DS3 alarm indication signal (AIS) in the DEMUX direction (that is, coming from the fiber) for the specified DS3 signal. Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs. Likely causes: The incoming DS3 signal at the far end is failed, or DS3 AIS is received from the DSX-3 at the far end.</td>
</tr>
<tr>
<td>inc. (from DSX) DS3 AIS</td>
<td>The system has detected DS3 alarm indication signal (AIS) in the MUX direction (that is, coming from the DSX-3) for the specified DS3 signal. Likely cause: The incoming DS3 signal at the far end is failed.</td>
</tr>
<tr>
<td>inc DS3 LOS</td>
<td>At least 128 consecutive zeros were detected in the DS3 signal received from the DSX-3. Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs. Likely causes: Equipment failed or removed at DSX-3; DS3 input disconnected at the DSX-3 or at the DDM-2000 backplane.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. (from fiber) DS3 OOF</td>
<td>The system has detected a DS3 out-of-frame (OOF) condition in the DEMUX direction (that is, coming from the fiber) for the specified DS3 signal. This condition is reported only if the DS3 interface is provisioned in VM or VMR mode. Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs. See the <code>set-t3</code> and <code>rtrv-t3</code> commands. Likely causes: An out-of-frame DS3 signal incoming to the DSX-3 at the far end; failure of the DS3 CP at the far end or near end; the DS3 signal is looped at both ends.</td>
</tr>
<tr>
<td>inc. (from DSX) DS3 sig. fail</td>
<td>The bit error ratio (BER) in the incoming DS3 signal exceeds the provisioned failure threshold, 10^{-3} or 10^{-6}. Starting with FiberReach Release 3.1, this alarm is applicable if the Main unit slots are equipped with the 28-type OLIUs and the Function unit slots are equipped with DS3 circuit packs. Likely causes: Failure of the upstream equipment or facility (towards the DSX-3); cross talk in office wiring; unprotected failure of DS3 CP.</td>
</tr>
<tr>
<td>inc. EC1 FERF</td>
<td>The system has detected the EC-1 far-end receive failure (FERF) signal in the incoming EC-1 signal. Likely causes: The far end has detected an incoming signal failure on the specified EC-1 line. This may be caused by failure of the STS1E or 3STS1E CP at the near end, the STS1E or 3STS1E CP at the far end, or the transmit cable on the specified line.</td>
</tr>
<tr>
<td>inc. OC12 FERF</td>
<td>The system has detected the OC-12 far end receive failure (FERF) signal in the incoming OC-12 signal. Likely causes: The far end has detected an incoming signal failure on the specified OC-12 line. This may be caused by failure of the OLIU CP at the near end, the OLIU CP at the far end, or the transmit fiber on the specified line.</td>
</tr>
<tr>
<td>inc. OC12 line AIS</td>
<td>The system has detected OC-12 line alarm indication signal (AIS) on an incoming OC-12 line. Likely cause: Failure of an OLIU CP at the far end.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. OC12 LOF</td>
<td>The system has detected a loss-of-frame (LOF) condition in an incoming OC-12 signal. LOF is defined as an out-of-frame (OOF) condition (four consecutive errored STS-1 framing patterns) that lasts for at least 3 milliseconds. Likely causes: Failure of the OLIU CP at the near end, failure of the OLIU CP at the far end, or failure of the receive fiber.</td>
</tr>
<tr>
<td>inc. OC12 LOS</td>
<td>The system has detected a loss-of-signal (LOS) condition on the OC-12 line. Likely causes: Failure of the OLIU CP at near end, failure of the OLIU CP at far end, or failure of the receive fiber.</td>
</tr>
<tr>
<td>inc. OC12 sig. degrade (BER)</td>
<td>The bit error ratio (BER) in the specified OC-12 line exceeds the provisioned soft error threshold (10^{-9} to 10^{-5}) but is below the hard error threshold of 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the OLIU CP at the far end, failure of the receive fiber, or optical attenuator is being used when it should not be, or is not being used when it should be.</td>
</tr>
<tr>
<td>inc. OC12 sig. failed (BER)</td>
<td>The bit error ratio (BER) in the received OC-12 signal exceeds 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the receive fiber, or failure of the OLIU CP at the far end.</td>
</tr>
<tr>
<td>inc. OC3 BER</td>
<td>The bit error ratio (BER) in the received OC-3 signal exceeds 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the receive fiber, or failure of the OLIU CP at the far end. Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| inc. OC3 FERF | The system has detected the OC-3 far end receive failure (FERF) signal in the incoming OC-3 signal. Likely causes: The far end has detected an incoming signal failure on the specified OC-3 line. This may be caused by failure of the OLIU CP at the near end, the OLIU CP at the far end, or the transmit fiber on the specified line.
Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots. |
| inc. OC3 LOF | The system has detected a loss-of-frame (LOF) condition in an incoming OC-3 signal. LOF is defined as an out-of-frame (OOF) condition (five consecutive errored STS-1 framing patterns) that lasts for at least 3 milliseconds.
Likely causes: Failure of the OLIU CP at the near end, failure of the OLIU CP at the far end, or failure of the receive fiber.
Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots. |
| inc. OC3 LOP STS1 x | The system has detected a loss-of-pointer (LOP) condition. A valid STS-1 pointer could not be found for eight consecutive frames in the identified STS-1 signal.
Likely causes: If this condition occurs on the STS-1 on both OC-3 lines, the likely cause is an unprotected failure of a MXRVO or DS3 CP at the far end. If this condition occurs only on one OC-3 line, the likely cause is failure of the OLIU CP at the near end or far end. |
| inc. OC3 LOS | The system has detected loss-of-signal (LOS) condition on the OC-3 line.
Likely causes: Failure of the OLIU CP at near end, failure of the OLIU CP at far end, or failure of the receive fiber.
Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots. |
Table 11.3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. OC3 line AIS</td>
<td>The system has detected OC-3 line alarm indication signal (AIS) on an incoming OC-3 line. Likely cause: Failure of an OLIU CP at the far end. Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots.</td>
</tr>
<tr>
<td>inc. OC3 sig. degrade (BER)</td>
<td>The bit error ratio (BER) in the specified OC-3 line exceeds the provisioned soft error threshold (10^{-9} to 10^{-5}) but below the hard error threshold of 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the OLIU CP at the far end, failure of the receive fiber, or incorrect setting of the optical power switch on the OLIU CP. Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots.</td>
</tr>
<tr>
<td>inc. OC3 sig. failed (BER)</td>
<td>The bit error ratio (BER) in the received OC-3 signal exceeds 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the receive fiber, or failure of the OLIU CP at the far end. Starting with FiberReach Release 3.1, this message is associated with the 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in the Function unit slots.</td>
</tr>
<tr>
<td>inc. OC1 FERF</td>
<td>The system has detected the OC-1 far end receive failure (FERF) signal in the incoming OC-1 signal. Likely causes: The far end has detected an incoming signal failure on the specified OC-1 line. This may be caused by failure of the OLIU CP at the near end, the OLIU CP at the far end, or the transmit fiber on the specified line.</td>
</tr>
<tr>
<td>inc. OC1 LOF</td>
<td>The system has detected a loss-of-frame (LOF) condition in an incoming OC-1 signal. LOF is defined as an out-of-frame (OOF) condition (five consecutive errored STS-1 framing patterns) that lasts for at least 3 milliseconds. Likely causes: Failure of the OLIU CP at the near end, failure of the OLIU CP at the far end, or failure of the receive fiber.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. OC1 LOS</td>
<td>The system has detected loss-of-signal (LOS) condition on the OC-1 line. Likely causes: Failure of the OLIU CP at near end, failure of the OLIU CP at far end, or failure of the receive fiber.</td>
</tr>
<tr>
<td>inc. OC1 line AIS</td>
<td>The system has detected OC-1 line alarm indication signal (AIS) on an incoming OC-1 line. Likely cause: Failure of an OLIU CP at the far end.</td>
</tr>
<tr>
<td>inc. OC1 sig. degrade (BER)</td>
<td>The bit error ratio (BER) in the specified OC-1 line exceeds the provisioned soft error threshold (10^{-9} to 10^{-5}) but below the hard error threshold of 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the OLIU CP at the far end, or failure of the receive fiber.</td>
</tr>
<tr>
<td>inc. OC1 sig. failed (BER)</td>
<td>The bit error ratio (BER) in the received OC-1 signal exceeds 10^{-3}. Likely causes: Failure of the OLIU CP at the near end, failure of the receive fiber, or failure of the OLIU CP at the far end.</td>
</tr>
<tr>
<td>inc. STS1 AIS</td>
<td>The system has detected an incoming STS-1 alarm indication signal (AIS) in the active OC-3 or OC-1 line. or DS3 AIS toward the DSX or T1 interface and transmitting STS-1 yellow back toward the fiber from which the AIS is being received. Likely causes: Incomplete or incorrect cross-connect provisioning in an end-to-end network; unprotected removal or failure of a DS3, MXRVO, STS1E, or OLIU CP at the far end; unprotected optical line failure.</td>
</tr>
<tr>
<td>inc. STS1 LOP OC1 x</td>
<td>The system has detected a loss-of-pointer (LOP) condition. A valid STS-1 pointer could not be found for eight consecutive frames in the identified STS-1 signal. Likely causes: If this condition occurs on the STS-1 on both OC-1 lines, the likely cause is an unprotected failure of an MXRVO or an OLIU CP at the far end. If this condition occurs on only one OC-1 line, the likely cause is failure of the OLIU CP at the near end or far end.</td>
</tr>
<tr>
<td>Description</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>inc. STS1 LOP OC12 x</td>
<td>The system has detected a loss-of-pointer (LOP) condition. A valid STS-1 pointer could not be found for eight consecutive frames in the identified STS-1 signal. Likely causes: If this condition occurs on only one OC-12 line, the likely cause is failure of the OLIU CP at the near end or far end of the line. If the condition affects the same pointer in both OC-N lines of an OC-N interface, the cause could be an unprotected failure of an STS crosconnected circuit pack (DS3, MXRVO, TMUX, OLIU, STS1E) in the adjacent upstream network element. The problem could also be the result of a local or an upstream timing synchronization failure or invalid timing configuration.</td>
</tr>
<tr>
<td>inc. STS1 LOP OC3 x</td>
<td>The system has detected a loss-of-pointer (LOP) condition. A valid STS-1 pointer could not be found for eight consecutive frames in the identified STS-1 signal. Starting with FiberReach Release 3.1, this alarm is applicable if the shelf is equipped with 28-type OLIU circuit packs in the Main unit slots, and 22-type OLIUs in Function unit slots (for Broadband applications). Likely causes: If this condition occurs on the STS-1 on both OC-3 lines, the likely cause is an unprotected failure of an MXRVO or a DS3 CP at the far end. If this condition occurs on only one OC-3 line, the likely cause is failure of the OLIU CP at the near end or far end.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. STS1 sig. degrade (BER)</td>
<td>For STS-1 path switched ring applications, the bit error ratio (BER) of the specified STS-1 signal exceeds the user-provisioned signal degrade threshold. Likely causes: Failure at a fiber or failure of an OLIU circuit pack at some point in the STS-1 path.</td>
</tr>
<tr>
<td>inc. STS1 unequipped</td>
<td>The system has detected the unequipped code (SONET path overhead signal code label byte=0) on an in-service STS-1 channel. Likely cause: An upstream STS-1 cross-connect has been deleted.</td>
</tr>
<tr>
<td>inc. STS1 sig. failed (BER)</td>
<td>For ring applications, the bit error ratio (BER) of the specified STS-1 signal exceeds the signal fail threshold (10^{-3}) or (10^{-6}). For VT1.5 path-switched rings, the system responds by inserting VT Path AIS in each pass-through VT contained in the STS-1. Locally, the system will select the VTs from the STS-1 on the other ring, as appropriate. Likely causes: Failure of the near end OLIU CP reporting the STS-1 failure, failure of the far end OLIU, or failure of the receive fiber if the OC-n is also reporting a failure.</td>
</tr>
<tr>
<td>inc. STS1 yellow</td>
<td>The system has detected an incoming STS-1 yellow signal inserted by the far-end path terminating equipment. Likely causes: Unprotected unidirectional failure of an OLIU CP or fiber at some point in the end-to-end path.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. VT AIS</td>
<td>The system has detected a VT path alarm indication signal (AIS) incoming from the active OC-n line. The system responds by transmitting DS1 AIS toward the DSX-1 or T1 interface and VT yellow back toward the fiber from which the AIS is being received. Likely causes: Incomplete or incorrect cross-connect provisioning in end-to-end network; unprotected removal or failure of a DS1 or T1EXT CP at the far end. In ring applications, a non-service affecting VT AIS alarm message may result from an upstream OLIU or fiber failure affecting only one ring direction. A VT yellow alarm message is not returned for a non-service affecting VT AIS.</td>
</tr>
<tr>
<td>inc. VT LOP</td>
<td>The system has detected a VT loss-of-pointer (LOP) condition. Likely causes: Unprotected failure of a DS1 or T1EXT CP at the near end; unprotected failure of a DS1 or T1EXT CP at the far end; unprotected failure of an MXRVO CP at the far end; unprotected failure of an OC1 CP at the near or far end; unprotected failure of a 2OC1 CP at the far end.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. VT unequipped</td>
<td>The system has detected the unequipped code (SONET path overhead VT signal code label byte=0) on an in-service VT1.5 channel. Likely cause: An upstream VT1.5 cross-connect has been deleted.</td>
</tr>
<tr>
<td>inc. VT yellow</td>
<td>The far end is detecting VT AIS or VT LOP and inserting VT yellow in its transmit signal. Likely causes: Unprotected unidirectional failure of a circuit pack or fiber at some point in the end-to-end path.</td>
</tr>
<tr>
<td>inconsistent DCC values</td>
<td>The "User/Network" parameter values are set the same at both ends of the DCC.</td>
</tr>
<tr>
<td>inhibit auto. OS messages</td>
<td>This message occurs when TL1 autonomous alarm reporting is inhibited by the TL1 <code>inh-msg</code> command. This message is cleared by enabling autonomous message reporting with the TL1 <code>alw-msg</code> command.</td>
</tr>
<tr>
<td>lockout of protection</td>
<td>When associated with a low-speed protection slot, this message means that no service slot in the entire low-speed group will be allowed to switch to protection. The lockout will remain in effect until the protection switch is reset. See the <code>switch-ls</code> command.</td>
</tr>
<tr>
<td>lockout of service</td>
<td>When associated with a low-speed service slot, this message means that the specified low-speed service slot is active and will not be switched to protection. The lockout will remain in effect until the protection switch is reset. See the <code>switch-ls</code> command.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls prot assembly removed</td>
<td>The system has been reset with no low-speed protection assembly installed. This is not a valid system configuration. The user should install a low speed protection assembly and execute the reset function.</td>
</tr>
<tr>
<td>ls prot mode not chgd-(crs)</td>
<td>An attempt to change the low-speed protection mode has failed because all cross-connections terminating on low-speed ports were not removed. The user should remove all such cross-connections and execute the reset function.</td>
</tr>
<tr>
<td>manual switch</td>
<td>The specified DS1 or T1EXT CP is manually switched to protection. The manual switch will remain in effect until the protection switch is reset or until a failure occurs and an automatic switch preempts the manual switch. See the <code>switch-ls</code> command.</td>
</tr>
<tr>
<td>manual sync. mode switch</td>
<td>The synchronization mode has been manually switched to holdover or free-running and will remain in that mode until the switch request is reset. See the <code>switch-sync</code> command.</td>
</tr>
<tr>
<td>OC12 connector failed</td>
<td>The faceplate connector which carries the pass through channels between the OC12 interfaces on the 24-type or 29-type OLIUs has been removed or has failed.</td>
</tr>
<tr>
<td>OLIU CP failed</td>
<td>Internal equipment failure of the specified OLIU CP.</td>
</tr>
<tr>
<td>program installation IP</td>
<td>This system is being used to install software into another system. If this procedure is interrupted prior to completion, the remote systems' control circuit packs will likely become inoperable until another install program attempt is successful.</td>
</tr>
<tr>
<td>protection CP different</td>
<td>This message will only be seen when a FiberReach node is configured for 1x7 low-speed protection. The circuit pack in the protection slot is different from and will not protect all of the circuit packs in the service slots. If this is acceptable, execute the update function to clear the alarm. Otherwise, one or more of the service or protection circuit packs must be changed.</td>
</tr>
</tbody>
</table>
Table 11-3. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>section DCC channel failed</td>
<td>The system cannot communicate with the far-end system through the SONET section data communications channel (DCC). Likely causes: SYSCTL or OHCTL CP failure, reset, or initialization at the far end; failed program installation at far end; program installation in progress at the far end; SYSCTL or OLIU CP failure at the near end.</td>
</tr>
<tr>
<td>SYSCTL CP failed</td>
<td>Internal equipment failure of the SYSCTL CP. The system has determined that some part of the SYSCTL CP has failed. Note that some types of failures cannot be reported since the SYSCTL CP cannot function under these conditions.</td>
</tr>
<tr>
<td>SYSCTL standby boot fail</td>
<td>Internal equipment failure of the SYSCTL circuit pack during a local or remote software download. Likely cause: SYSCTL circuit pack hardware failure.</td>
</tr>
<tr>
<td>T1EXT CP failed</td>
<td>Internal equipment failure of the specified T1EXT CP.</td>
</tr>
<tr>
<td>unexpected CP present</td>
<td>A circuit pack has been installed into the one of the function unit slots. The circuit pack should be removed from the shelf.</td>
</tr>
<tr>
<td>unexpected CP switches</td>
<td>When associated with the SYSCTL slot, this message means that an invalid switch setting has been selected on the CP, or that some of the unused switches are not in the prescribed position. For DS1 or T1EXT slots, this message means that a change in a circuit pack switch setting was made.</td>
</tr>
<tr>
<td>unexpected CP type</td>
<td>When associated with a low-speed slot, this message means that a different but supported circuit pack type (for example, BBF3) is inserted in a slot already provisioned.</td>
</tr>
</tbody>
</table>
NAME

rtrv-hsty: Retrieve History

INPUT FORMAT

rtrv-hsty;

DESCRIPTION

This command displays an event-history report. This report contains a list of the most recent system events. This report contains up to 500 events. The events are listed in last-in, first-out order and are date- and time-stamped.

The output report appears as follows:

```c
/* Maintenance History Report
============================================================================
Date   Time   Sys.Alm. Source Event Level Description
============================================================================
MM-DD  HH:MM:SS alarm address description
    .     .      .             .
MM-DD  HH:MM:SS alarm address description
*/
```

The output parameters are:

Date Month (MM) and day (DD) of the event.
Time Time (hours, minute, seconds) of event occurrence. Time stamps reflect the time the entry is made. Entries are added to the history report BEFORE any applicable holdoff delays and AFTER any applicable clear delays.

System Alarm Level Alarm level corresponds to the system alarm level at the time immediately after the event occurred. Alarm level is the level of the highest active or pending alarm/status condition. The alarm level is reported as if the holdoff delay was zero. Additionally, the alarm level column may show CR, MJ, MN, or PMN alarms for troubles that never really became alarms, since holdoff delays may prevent the troubles from reaching an alarm condition.

The alarm level may be one of the following:
CRITICAL Critical Alarm
MAJOR Major Alarm
MINOR Minor Alarm
PWR MINOR Power Minor Alarm
abnormal Abnormal condition
ne-acty Near-End Activity
fe-acty Far-End Activity This alarm level is not reported in TARP releases.
status Status condition
— No active alarm or status condition in the system.

Source
The source of the event. An event source may be the entire system or a slot, a channel, or an operations interface. If security is enabled, it may also be a CIT or a login name. Refer to "Commands" and Table 11-1 at the beginning of this section for the addresses of lines, slots, ports, channels, and operations interfaces.

Event Description
Table 11-4 lists the meaning and likely cause of each of the messages that appear in the maintenance history report.

In addition to the messages listed here, any of the messages that appear in the alarm and status report can appear in the history report to record the onset of alarm and status conditions.

Also, all CIT and TL1 commands that affect the state of the system (provisioning commands; protection switching commands; loopbacks; transmission, alarm, and telemetry tests) will appear in the report.

NOTE:
Any messages that appear in the RTRV-ALM report may also appear in the history report.
Table 11-4. RTRV-HSTY Descriptions

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-48V power/fuse good</td>
<td>A failed -48 volt power feeder or a failed fuse on the user panel has been repaired.</td>
</tr>
<tr>
<td>CP removed</td>
<td>A circuit pack has been removed from the specified slot.</td>
</tr>
<tr>
<td>AC power failed–FE clrd</td>
<td>The AC power supply to a remote terminal cabinet has been restored.</td>
</tr>
<tr>
<td>AC power good</td>
<td>The AC power supply to the shelf has been restored.</td>
</tr>
<tr>
<td>AGNE communication good</td>
<td>An AGNE communication failure has been cleared. In FiberReach Release 3.0 and later TARP releases, this event will not appear in the history report anymore, since the "AGNE communication failure" is no longer detected in those releases.</td>
</tr>
<tr>
<td>APS – CP failed</td>
<td>An automatic protection switch was done because the system detected a circuit pack failure.</td>
</tr>
<tr>
<td>APS – Fn failure</td>
<td>This means that there exists at least one local Hairpin Add-Drop cross-connect established between Fn-X and Fn-Y, where Fn-X contains a 27G2-U OLIU circuit pack. An automatic protection switch on the Main circuit packs (CPs) was done because the system detected a circuit pack failure/removal of a 27G2-U in Fn-X-1/2, which caused the Main packs to switch as well. NOTE: The APS of Mains did not take place in this case because of a Main CP failure</td>
</tr>
<tr>
<td>APS – OC3c Data intf failed</td>
<td>An automatic protection switch was done because the system detected a failure of the OC3C data interface on the BBG21 circuit pack. Use the rtrv-state-eqpt command to view the current state of this circuit pack.</td>
</tr>
<tr>
<td>APS – automatic lock reset</td>
<td>The automatic protection switch lock for a DS1 or T1EXT circuit pack has been released.</td>
</tr>
<tr>
<td>APS – sig. degraded</td>
<td>An automatic protection switch was done because the system detected a degraded signal on the OC-N line or path.</td>
</tr>
<tr>
<td>APS – sig. failed</td>
<td>An automatic protection switch was done because the system detected a failure of the OC-N line or path (incoming AIS, loss of signal, or bit error rate higher than 10^{-3}).</td>
</tr>
<tr>
<td>auto switch</td>
<td>An automatic protection switch of a DS1 or T1EXT circuit pack is active. When the failure that caused the switch to be done clears, the switch will be reset automatically. Likely causes: Protected failure or removal of a DS1 or T1EXT CP.</td>
</tr>
</tbody>
</table>

NOTE: The APS of Mains did not take place in this case because of a Main CP failure.
<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto sync. mode switch</td>
<td>An automatic protection switch of the synchronization mode is active. When the failure that</td>
</tr>
<tr>
<td></td>
<td>caused the switch to be done clears, the switch will be reset automatically if automatic mode</td>
</tr>
<tr>
<td></td>
<td>switching is enabled. (See the <code>set-sync</code> and <code>rtrv-sync</code> commands.)</td>
</tr>
<tr>
<td>CIT timeout</td>
<td>A craft interface terminal (CIT) session was automatically terminated because there was no</td>
</tr>
<tr>
<td></td>
<td>activity now as there was terminal interface activity no longer provisioned on the CIT for</td>
</tr>
<tr>
<td></td>
<td>the provisioned time. (See the <code>set-secu</code> command.)</td>
</tr>
<tr>
<td>control rlsl</td>
<td>The system has released the specified miscellaneous discrete environmental control because</td>
</tr>
<tr>
<td></td>
<td>it has been requested to do so through the serial telemetry or discrete telemetry interface.</td>
</tr>
<tr>
<td></td>
<td>This message will appear only in a remote terminal. Any name may be provisioned in place of</td>
</tr>
<tr>
<td></td>
<td>the <code>control</code> part of this message.</td>
</tr>
<tr>
<td>cpy-prog compl.</td>
<td>The software copy procedure has been completed. This message will show at the source NE.</td>
</tr>
<tr>
<td>disconnect</td>
<td>The craft interface terminal has been disconnected.</td>
</tr>
<tr>
<td>dlt-ulsdcc compl.</td>
<td>Starting with FiberReach Release 3.0 and later TARP releases, this event will indicate the</td>
</tr>
<tr>
<td></td>
<td>deletion of provisionable parameters of Layer 4 (that is, deletion of TARP Adjacent NE from</td>
</tr>
<tr>
<td></td>
<td>the Manual Adjacency list, deletion of a TARP Data Cache entry).</td>
</tr>
<tr>
<td>DS1 CP good</td>
<td>The failure of the specified circuit pack has cleared.</td>
</tr>
<tr>
<td>DS1 CP inserted</td>
<td>A circuit pack was inserted into the shelf.</td>
</tr>
<tr>
<td>DS1 or T1 port in service</td>
<td>A DS1 or T1 port was put in the in-service state. This happens automatically when an incoming</td>
</tr>
<tr>
<td></td>
<td>signal is detected (coming from the DSX or T1 interface) unless the port has been provisioned</td>
</tr>
<tr>
<td></td>
<td>to the "not monitored" state.</td>
</tr>
<tr>
<td>DS1PM CP good</td>
<td>The failure of the DS1PM circuit pack has cleared.</td>
</tr>
</tbody>
</table>
Table 11-4. RTRV-HSTY Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1PM CP inserted</td>
<td>A DS1PM circuit pack was inserted into the shelf.</td>
</tr>
<tr>
<td>DS3 CP good</td>
<td>The failure of the DS3 CP has been cleared. This is applicable starting with FiberReach Release 3.1</td>
</tr>
<tr>
<td>DS3 CP inserted</td>
<td>A DS3 circuit pack was inserted into the shelf. This is applicable starting with FiberReach Release 3.1</td>
</tr>
<tr>
<td>DS3 port in service</td>
<td>A DS3 port was put in the in-service state. This happens automatically when an incoming signal is detected (coming from the DSX) unless the port has been provisioned to the not monitored state. Starting with FiberReach Release 3.1, this event is applicable if the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td>enable auto OS messages</td>
<td>Autonomous OS message reporting has been enabled with the TL1 command <code>alw-msg</code>.</td>
</tr>
<tr>
<td>environment n rlsd</td>
<td>The specified miscellaneous discrete environment alarm input point has been released, indicating that an environmental alarm or status condition has cleared. This message will appear only in a remote terminal. Any name may be provisioned in place of the <code>environment n</code> part of this message.</td>
</tr>
<tr>
<td>externalMinor clrd</td>
<td>The external minor alarm condition has cleared.</td>
</tr>
<tr>
<td>fan control relay good</td>
<td>The fan control relay on the SYSCTL CP was failed but is now operating properly to turn on the fans.</td>
</tr>
<tr>
<td>fan shelf good</td>
<td>A fault on the fan shelf has been cleared.</td>
</tr>
<tr>
<td>frequency error clrd</td>
<td>The frequency offset failure has been cleared.</td>
</tr>
</tbody>
</table>
Table 11-4. RTRV-HSTY Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>holdover mode clrd</td>
<td>The system is no longer in holdover timing mode. It has switched from holdover mode to the provisioned timing mode (LoopTimed).</td>
</tr>
<tr>
<td>inc. DS1 good</td>
<td>A failure of the DS1 signal coming from the DSX or T1 interface is cleared. For IMA LAN, a failure of the DS1 signal coming from the (high speed) fiber is cleared.</td>
</tr>
<tr>
<td>inc. (from fiber) DS3 AIS clrd</td>
<td>The system is no longer detecting DS3 AIS (alarm indication signal) in the DEMUX direction (that is, coming from the fiber). Starting with FiberReach Release 3.1, this event is applicable if the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td>inc. DS3 good</td>
<td>A failure of the DS3 signal coming from the DSX is cleared. Starting with FiberReach Release 3.1, this event is applicable if the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td>inc. (from fiber) DS3 OOF clrd</td>
<td>A DS3 out-of-frame (OOF) condition in the DEMUX direction (coming from the fiber) is cleared. Starting with FiberReach Release 3.1, this event is applicable if the Function unit slots are equipped with DS3 circuit packs.</td>
</tr>
<tr>
<td>inc. OC12 FERF clrd</td>
<td>The system is no longer detecting the OC-12 far end receive failure (FERF) signal.</td>
</tr>
<tr>
<td>inc. OC12 good</td>
<td>A failure of the OC-12 signal from the DSX has been cleared.</td>
</tr>
<tr>
<td>inc. OC12 LOP STS1 #x clrd</td>
<td>The system is no longer detecting a loss-of-pointer (LOP) condition on the specified STS-1 signal.</td>
</tr>
</tbody>
</table>
Table 11-4. RTRV-HSTY Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. OC3 FERF clrd</td>
<td>The system is no longer detecting the OC-3 far end receive failure (FERF) signal.</td>
</tr>
<tr>
<td></td>
<td>This event is applicable starting with FiberReach 2.2 and 3.1, when the shelf is equipped with 28-type OLIUs in the Main unit slots.</td>
</tr>
<tr>
<td>inc. OC3 good</td>
<td>A failure of the OC-3 line has been cleared. This message is associated with the 28-type OLIUs in Main and is available in FiberReach 2.2, 3.1 and later.</td>
</tr>
<tr>
<td>inc. OC3 LOP STS1 #x clrd</td>
<td>The system is no longer detecting a loss-of-pointer (LOP) condition on the specified STS-1 signal.</td>
</tr>
<tr>
<td>inc. OC3 sig. degrade clrd</td>
<td>A failure of the specified OC-3 signal has cleared. OC-3 line AIS and/or OC-3 line FERF conditions may still be present on the specified OC-3 line. The OC-3 LOP condition may still be present for one or more of the STS-1 signals in the OC-3 line. This message is associated with the 28-type OLIUs in Main and is available in FiberReach 2.2, 3.1 and later.</td>
</tr>
<tr>
<td>inc. OC3 line AIS clrd</td>
<td>The system is no longer detecting the OC-3 alarm indication signal (AIS) on the specified OC-3 line. This message is associated with the 28-type OLIUs in Main and is available in FiberReach 2.2, 3.1 and later.</td>
</tr>
<tr>
<td>inc. OC1 FERF clrd</td>
<td>The system is no longer detecting the OC-1 far end receive failure (FERF) signal.</td>
</tr>
<tr>
<td>inc. OC1 good</td>
<td>A failure of the OC-1 line has been cleared.</td>
</tr>
<tr>
<td>inc. OC1 sig. degrade clrd</td>
<td>A failure of the specified OC-1 signal has cleared. OC-1 line AIS and/or OC-1 line FERF conditions may still be present on the specified OC-1 line. The OC-1 LOP condition may still be present for the STS-1 signal in the OC-1 line.</td>
</tr>
<tr>
<td>inc. OC1 line AIS clrd</td>
<td>The system is no longer detecting the OC-1 alarm indication signal (AIS) on the specified OC-1 line.</td>
</tr>
</tbody>
</table>
Table 11-4. RTRV-HSTY Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc. STS1 AIS clrd</td>
<td>The STS-1 alarm indication signal (AIS) is no longer being received. An upstream failure (in the MUX direction) has cleared.</td>
</tr>
<tr>
<td>inc. STS1 LOP OC12 slot clrd</td>
<td>The system is no longer detecting a loss-of-pointer (LOP) condition on the specified STS-1 signal.</td>
</tr>
<tr>
<td>inc. STS1 LOP OC3 slot clrd</td>
<td>The system is no longer detecting a loss-of-pointer (LOP) condition on the specified STS-1 signal. Starting with FiberReach Release 3.1, this event is applicable if the shelf is equipped with 28-type OLIUs in the Main unit slots, and 22-type OLIUs in the Function unit slots (used for 0X1 STS-3c).</td>
</tr>
<tr>
<td>inc. STS1 LOP OC1 slot clrd</td>
<td>The system is no longer detecting a loss-of-pointer (LOP) condition on the specified STS-1 signal.</td>
</tr>
<tr>
<td>inc. STS1 sig. degrade clrd</td>
<td>A failure of the specified STS-1 signal has cleared.</td>
</tr>
<tr>
<td>inc. STS1 sig. failed clrd</td>
<td>A failure of the specified STS-1 signal has cleared.</td>
</tr>
<tr>
<td>inc. STS1 unequipped clrd</td>
<td>A failure of the specified STS-1 signal has cleared.</td>
</tr>
<tr>
<td>inc. STS1 yellow clrd</td>
<td>The STS-1 yellow signal is no longer being received.</td>
</tr>
<tr>
<td>inc. VT AIS clrd</td>
<td>The VT alarm indication signal (AIS) is no longer being received. A downstream failure (in the MUX direction) has cleared</td>
</tr>
<tr>
<td>inc. VT LOP clrd</td>
<td>A loss-of-pointer condition on the VT1.5 signal has been cleared.</td>
</tr>
<tr>
<td>inc. VT sig. degrade clrd</td>
<td>Failure of the specified VT1.5 signal has cleared.</td>
</tr>
<tr>
<td>inc. VT unequipped clrd</td>
<td>A failure of the specified VT1.5 signal has cleared.</td>
</tr>
<tr>
<td>inc. VT yellow clrd</td>
<td>The VT yellow signal is no longer being received from the fiber (in the DEMUX direction).</td>
</tr>
<tr>
<td>ins-prog compl.</td>
<td>The software installation procedure has been completed. This message will show at the source NE.</td>
</tr>
<tr>
<td>Description</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>login: login_id</td>
<td>A login session with a user’s login identification has been started on the specified CIT port. Starting with FiberReach Release 4.0, this is applicable to the TL1 X.25 port also.</td>
</tr>
<tr>
<td>login: login_id DENY</td>
<td>A login session was attempted but denied because of an invalid login and password pair, or the system was in Lockout state. Starting with FiberReach Release 4.0, this is applicable to the TL1 X.25 port also.</td>
</tr>
<tr>
<td>logout: login_id</td>
<td>A login session with a user’s login identification has ended on the specified CIT port. Starting with FiberReach Release 4.0, this is applicable to the TL1 X.25 port also.</td>
</tr>
<tr>
<td>logout: login_id DISCONNECT</td>
<td>A login session with a user’s login identification has ended by a disconnect on the specified CIT port. Starting with FiberReach Release 4.0, this is applicable to the TL1 X.25 port also.</td>
</tr>
<tr>
<td>low speed prot mode chgd to 1x1</td>
<td>The low-speed protection mode has been changed from 1x7 to 1x1. This was accomplished by changing the low speed protection assembly and executing a system reset.</td>
</tr>
<tr>
<td>low speed prot mode chgd to 1x7</td>
<td>The low-speed protection mode has been changed from 1x1 to 1x7. This was accomplished by changing the low speed protection assembly and executing a system reset.</td>
</tr>
<tr>
<td>ls prot assembly removed clrd</td>
<td>The alarm indicating that the system was reset with no low-speed protection assembly installed has been cleared.</td>
</tr>
<tr>
<td>ls prot mode not chgd clrd</td>
<td>The alarm indicating a failed attempt to change the low-speed protection mode has been cleared. If the low-speed protection mode has been changed, a separate history log event will document the change.</td>
</tr>
</tbody>
</table>
Table 11-4. RTRV-ALM Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>main-(1,2) protection switch</td>
<td>Equipment switching in a ring application has occurred due to equipment failure.</td>
</tr>
<tr>
<td>OLIU CP good</td>
<td>The failure of the specified circuit pack has cleared.</td>
</tr>
<tr>
<td>OLIU CP inserted</td>
<td>A circuit pack was inserted into the shelf.</td>
</tr>
<tr>
<td>protection CP different clrd</td>
<td>The alarm indicating that a low-speed protection slot contains a circuit pack that cannot protect all of the service slots has been cleared. Note that the condition that caused the alarm may not have been removed.</td>
</tr>
<tr>
<td>remote session logout</td>
<td>A remote CIT session (set up by the rlgn command) has been terminated. This may have been caused by normally logging out of the remotely accessed far end session, or once in the far end session, the user toggled back and logged out of the local session.</td>
</tr>
<tr>
<td>remote TL1 session logout</td>
<td>A remote TL1 session (set up by the ACT-USER command) has been terminated. This is caused by normally logging out of the remotely accessed far end TL1 session. (This is reported starting with FiberReach Release 4.0)</td>
</tr>
<tr>
<td>remote TL1 session terminated</td>
<td>A remote TL1 session (set up by the ACT-USER command) has been abnormally terminated. This may have been caused by a failure of the controller, or any other abnormal termination at the far end NE. (This is reported starting with FiberReach Release 4.0)</td>
</tr>
<tr>
<td>remote session terminated</td>
<td>A remote CIT session (set up by the rlgn command) has been abnormally terminated. This may have been caused by a failure of the controller, circuit pack failure, timeout, or any other abnormal termination at the far end NE.</td>
</tr>
<tr>
<td>reset</td>
<td>The system software program has been reset.</td>
</tr>
<tr>
<td>rlgn:login_id DENY</td>
<td>A remote login session was attempted but denied because of an invalid login and password pair, or the DCC connecting the remote system was in Lockout state.</td>
</tr>
</tbody>
</table>
Table 11-4. RTRV-HSTY Descriptions (Contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>section DCC channel good</td>
<td>The failure of the SONET section data communications channel has cleared.</td>
</tr>
<tr>
<td>STS1 channel in service</td>
<td>An STS1 channel was put in the in-service state. This happens automatically when a "good" signal is detected on the channel (neither AIS, unequipped signal, nor "loss of pointer" condition is present), unless the channel has been provisioned to the "not monitored" state.</td>
</tr>
<tr>
<td>switch reset</td>
<td>— An automatic protection switch of a DS1 or T1EXT circuit pack been automatically reset.</td>
</tr>
<tr>
<td></td>
<td>— The system has switched from holdover synchronization mode to the provisioned synchronization mode (LoopTimed). or</td>
</tr>
<tr>
<td></td>
<td>— A manually initiated protection switch has been reset (by the switch-sync, or switch-ls command), or by removing a CP from the shelf.</td>
</tr>
<tr>
<td>sysctl crs map recovered</td>
<td>A read failure of the cross-connection data base occurred during restart, but the backup copy was recovered and is being used.</td>
</tr>
<tr>
<td>sysctl crs map initialized</td>
<td>A read failure of the cross-connection data base occurred during restart, and recovery using backup copies also failed. The cross-connection map was initialized.</td>
</tr>
<tr>
<td>sysctl channel states</td>
<td>A read failure of the channel state data base occurred during restart, and recovery using backup copies also failed. The channel state data on SYSCTL was used.</td>
</tr>
<tr>
<td>initialized</td>
<td></td>
</tr>
<tr>
<td>sysctl port states</td>
<td>A read failure of the port state data base occurred during restart, and the recovery using backup copies also failed. The port state data on SYSCTL was used.</td>
</tr>
<tr>
<td>initialized</td>
<td></td>
</tr>
<tr>
<td>T1EXT CP good</td>
<td>The failure of the specified circuit pack has cleared.</td>
</tr>
<tr>
<td>T1EXT CP inserted</td>
<td>A circuit pack was inserted into the shelf.</td>
</tr>
<tr>
<td>TMUX CP good</td>
<td>The failure of the TMUX CP has been cleared.</td>
</tr>
<tr>
<td>TMUX CP inserted</td>
<td>A TMUX circuit pack was inserted into the shelf.</td>
</tr>
<tr>
<td>VT channel in service</td>
<td>A VT channel was put in the in-service state. This happens automatically when a "good" signal is detected on the channel (neither AIS, unequipped signal, nor "loss of pointer" condition are present), unless the channel has been provisioned to the "not monitored" state.</td>
</tr>
</tbody>
</table>
A SONET Overview

Contents

Overview
History
Basic Purpose
Technical Overview
 • SONET Signal Hierarchy
 • SONET Layers
 • SONET Frame Structure
 • Section Overhead
 • Line Overhead
 • Path Overhead
 • STS-1 Path Overhead
 • VT Path Overhead
 • SONET Multiplexing Procedure
 • SONET Demultiplexing Procedure
 • SONET Digital Multiplexing Schemes
 • Asynchronous Multiplexing
 • Synchronous Multiplexing
 • Virtual Tributary Signals
 • Concatenated Mode
SONET Interface
 • SONET Payloads
 • Higher Rate Transport
Conclusion
A SONET Overview

Overview

This section briefly describes the Synchronous Optical Network (SONET).

History

In the early 1980s, the American National Standards Institute (ANSI) recognized the need for an optical signal standard for future broadband transmission. The ANSI T1X1 subcommittee began working on optical signal and interface standards in 1984. In 1985, Bellcore (now Telcordia Technologies) proposed a network approach to fiber system standardization to T1X1. The proposal suggested a hierarchical family of signals whose rates would be integer multiples of a basic modular signal. The proposal further suggested a synchronous multiplexing technique, leading to the coining of the term Synchronous Optical NETwork (SONET).

The International Telephone and Telegraph Consultative Committee (CCITT) first showed interest in 1986. Conferences held through 1987 and 1988 resulted in coordinated specifications for both the American National Standard (SONET) and the CCITT-International Standard, Synchronous Digital Hierarchy (SDH). Approval of both sets of standards occurred in late 1988.
Basic Purpose

The basic purpose of SONET is to provide a standard synchronous optical hierarchy with sufficient flexibility to accommodate digital signals that currently exist in today's network as well as those planned for the future.

SONET currently defines standard rates and formats and optical interfaces. These and other related issues continue to evolve through the ANSI committees. SONET ultimately will permit an optical midspan meet in a multivendor environment.

The American National Standard defines the following:

- Optical parameters (ANSI T1.106-1988)
- Electrical parameters (ANSI T1.102-1993 Draft)
- Multiplexing schemes to map existing digital signals (for example, DS1, DS2, and DS3) into SONET payload signals (ANSI T1.105-1991)
- Criteria for optical line automatic protection switch (APS) (ANSI T1.105-1991)
- Overhead channels to support standard operation, administration, maintenance, and provisioning (OAM&P) functions (ANSI T1.105-1991).

Technical Overview

SONET Signal Hierarchy

The SONET signal hierarchy is based on a basic "building block" frame called the synchronous transport signal - level 1 (STS-1), as shown in Figure A-1 on the following page. The STS-1 frame has a reoccurring rate of 8000 frames per second. Each frame is 125 microseconds.

The STS-1 frame consists of:

- 90 columns (each column is an 8-bit byte)
- 9 rows.

The STS-1 frame is transmitted serially starting from the left with row 1 column 1 on through column 90, then row 2 column 1 through 90, continuing on, row-by-row, until all 810 bytes (9 X 90) of the STS-1 frame have been transmitted.
Since each STS-1 frame consists of 810 bytes and each byte has 8 bits, the frame contains 6480 bits a frame. There are 8000 STS-1 frames per second, at the STS-1 signal rate of 51,840,000 (6480 X 8000) bits a second.

The first three columns in each of the nine rows carry the SECTION and LINE overhead bytes. Collectively, these 27 bytes are referred to as transport overhead.

The remainder of the frame, columns 4 through 90, is reserved for payload signals (for example, DS1, DS3, and path overhead) and is referred to as the STS-1 synchronous payload envelope (STS-1 SPE). The optical counterpart of the STS-1 is the optical carrier level 1 signal (OC-1), which is the result of a direct optical conversion. The electrical counterpart of the STS-1 is the electrical carrier level 1 signal (EC-1).

Figure A-1. SONET STS-1 Frame — Simplified Version
SONET Layers

SONET divides its processing functions into three layers. These three layers are associated with equipment that reflects the natural divisions in network spans. Figure A-2 shows these defined layers in a signal path. They include:

- **SECTION and Section Terminating Equipment** - the transmission spans between lightwave terminating equipment and the regenerators. The spans between the regenerators are also considered sections. Section terminating equipment provides regenerator functions and terminates the section overhead to provide single-ended operations and section performance monitoring.

- **LINE and Line Terminating Equipment** - the transmission span between terminating equipment (STS-1 cross-connections) that provides line performance monitoring. If there are no intervening repeaters, the line terminating equipment also functions as section terminating equipment.

- **STS-1 and VT Path and Path Terminating Equipment** - the transmission span for an end-to-end tributary (DS1 or DS3) signal that provides functions including signal labeling and path performance monitoring for signals as they are transported through a SONET network. STS-1 path terminating equipment can also provide cross-connections for lower rate (that is, DS1) signals. A virtual tributary (VT) is a sub-DS3 payload and is described later in more detail.

![Figure A-2. Section, Line, and Path Definitions](image-url)
Each SONET layer has a set of overhead bytes as shown in Figure A-3. These bytes carry information used by various network elements.

- **Section Overhead** contains information that is used by all SONET equipment including repeaters.
- **Line Overhead** is used by all SONET equipment except repeaters.
- **Path Overhead** is carried within the payload envelope.
 - **STS-1 path overhead** remains with the STS-1 SPE until its asynchronous signal is extracted (for example, DS-3) or until its individual VT1.5 signals are demultiplexed.
 - **VTN (N= 1.5, 2, 3, or 6) path overhead** remains with the VTN until its asynchronous signal is extracted.

Figure A-3. SONET Frame Format
SONET Frame Structure

The following pages provide more detailed information on the function of various overhead bytes for each SONET layer.

Section Overhead

- Framing (A1, A2)
 - Provides framing for each STS-1.
- STS-1 ID (J0)
 - Provides the order of appearance in a byte-interleaved STS-N frame; for example, STS-1 #1, STS-1 #2,...,STS-1 #48. In future applications, this byte will provide a section trace function. For information on STS-N signals, see the "Higher Rate Transport" part of this section.
- Section Bit-Interleaved Parity (BIP-8) (B1)
 - Provides SECTION performance monitoring and is calculated over all bits of the previous STS-N frame. Defined only for STS-1 #1 of an STS-N signal.
- Section Orderwire (E1)
 - Provides a local orderwire for voice communication channel between section terminating network elements, such as repeaters. Defined only for STS-1 #1 of an STS-N signal.
- Section User Channel (F1)
 - Set aside for the user's purpose. Defined only for STS-1 #1 of an STS-N signal.
- Section Data Communications Channel (D1, D2, D3)
 - Is a 192 kb/s message-based channel. Used for alarms, maintenance, control, monitoring, and other communication needs between section terminating equipment. Defined only for STS-1 #1 of an STS-N signal.
Line Overhead

- **Line Pointer (H1, H2)**
 - Two bytes indicate the offset in bytes between the pointer action byte (H3) and the first byte (J1) of the STS-1 synchronous payload envelope (SPE).

- **Pointer Action (H3)**
 - One byte is allocated for frequency justification.

- **Line Bit-Interleaved Parity (BIP-8) (B2)**
 - This byte is for line performance monitoring. This byte is provided in all STS-1 signals within an STS-N signal.

- **Line Automatic Protection Switching (APS) (K1, K2)**
 - Two bytes used for APS signaling between line level entities. In addition, bits 6, 7, and 8 of K2 are used for line alarm indication signal (AIS) and line far-end receive failure (FERF). Defined only for STS-1 #1 of an STS-N signal.

- **Line Data Communications Channel (D4 - D12)**
 - Is a 576 kb/s message-based channel.

- **Synch. Status (S1)**
 - In STS-1 #1, the S1 byte is for synchronization status messages, and only bits 5 through 8 are used.

- **Line REI (M0)**
 - The M0 byte is for STS-1 line far-end block error (FEBE), and only bits 5 through 8 are used.

- **Line Orderwire (E2). Defined only for STS-1 #1 of an STS-N signal.**
 - One byte is allocated to be used as an express orderwire between line terminating equipment.
Path Overhead

There are two types of path overheads:
- STS-1 path overhead
- VT path overhead.

STS-1 Path Overhead

The STS-1 path overhead is assigned to and remains with the STS-1 SPE until the payload is extracted and is used for functions that are necessary to transport all synchronous payload envelopes.

- **STS-1 Path Trace (J1)**
 - Repetitively transmits a 64 byte, fixed length, string so that an STS-1 path receiving terminal can verify its continued connection to the intended transmitter.

- **STS-1 Path Bit-Interleaved Parity (BIP-8) (B3)**
 - Provides each STS-1 path performance monitoring. This byte is calculated over all bits of the previous STS-1 SPE before scrambling.

- **STS-1 Path Signal Labels (C2)**
 - Indicates the construction of the STS-1 SPE. A value of 00000000 indicates an unequipped STS-1 SPE. Values for various payload mappings are defined in TR-NWT-000253, Issue 2.

- **STS-1 Path Status (G1)**
 - Conveys the STS-1 path terminating status, far end block errors (FEEB), and yellow alarm signal conditions back to an originating STS-1 path terminating equipment.

- **STS-1 Path User Channel (F2, F3)**
 - User communication channel between Path elements.

- **VT Multiframe Indicator (H4)**
 - Provides a general multiframe indicator for VT-structured payloads.

- **STS-1 Path Automatic Protection Switching (K3)**
 - Path Automatic Protection Switching

- **TCM - Tandem Connection Maintenance (N1)**
 - Bits 1-4 used for incoming error monitoring. Bits 5-8 used as communications channel.
VT Path Overhead

There is one byte of VT path overhead called V5. It occurs on every fourth frame; that is, 2000 times a second.

This byte provides for VT paths the same functions that B3, C2, and G1 provide for STS paths, namely:

- Error checking
- Signal label
- Path status.

The bit assignments of the VT path overhead are specified in the following list and are illustrated in Figure A-4:

- Bits 1 and 2 are used for error performance monitoring (BIP-2).
- Bit 3 is a VT path far-end-block-error (FEBE) indication that is sent back toward an originating VT PTE when errors are detected by the BIP-2.
- Bit 4 and Bit 8 are used for remote defect indication (RDI)
- Bits 5 through 7 provide a VT signal label.

Figure A-4. VT Path Overhead Byte

<table>
<thead>
<tr>
<th>BIP-2</th>
<th>FEBE</th>
<th>RDI</th>
<th>Signal Label</th>
<th>RDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

VT Path Signal Label Coding:

- 0 0 0 Unequipped
- 0 0 1 Equipped-Nonspecific
SONET Multiplexing Procedure

SONET has provisions for multiplexing asynchronous DS1s, synchronous DS1s, and asynchronous DS3s. Refer to Figures A-5 and A-6.

The first stage in multiplexing is mapping the input DS1 or DS3 tributary. In the case of DS1 inputs, three time slots (DS0s) are added to the incoming signal thus becoming a VT1.5. An asynchronous DS1 that fully meets the specified rate is mapped into the VT1.5 SPE as clear channel input since no framing is needed.

- Each VT1.5 carries a single DS1 payload.
- Four VT1.5s are bundled into a VT group (VT-G).
- Seven VT-Gs are byte-interleaved into an STS-1 frame.

The VT-G to-STS-1 multiplex is a simple byte-interleaving process, so individual VT signals are easily observable within the STS-1. Thus, cross-connections and add/drop can be accomplished without the back-to-back multiplexing/multiplexing steps required by asynchronous signal formats. The structured VTs are now multiplexed into the STS-1 SPE, and the path, line, and section overhead are added. The final multiplexing, as shown in Figure A-5, provides the scrambled STS-N signal to the optical conversion stage.
Figure A-5. SONET Multiplexing Procedure
SONET Demultiplexing Procedure

As shown in Figure A-6, demultiplexing is the inverse of multiplexing. The unscrambled STS-1 signal from the optical conversion stages is processed to extract the section and line overhead and accurately locate the SPE. The next stage processes the path overhead and demultiplexes the VTs. A standard DS3 signal will be provided to the asynchronous network after path overhead processing. For DS1 signals, the individual DS1 VTs are then processed to extract VT overhead and, via the VT pointer, accurately locate the DS1 SPE. Finally, desynchronization of the DS1 SPE provides a standard DS1 signal to the asynchronous network.

Figure A-6. SONET Demultiplexing Procedure
Two key points should be noted at this time. First, the SONET frame is a fixed time (125 µs) and no bit-stuffing is used. Second, as shown in Figure A-7, the synchronous payload envelope can float within the frame using byte-stuffing. This is to permit compensation for small variations in frequency between the clocks of the two systems that may occur if the systems are independently timed (plesiochronous timing). The SPE can also drift across the 125-µs frame boundary. SONET STS pointers are used to locate the SPE relative to the transport overhead.

Figure A-7. STS-1 Synchronous Payload Envelope in Interior of STS-1 Frame
SONET Digital Multiplexing Schemes

Asynchronous Multiplexing

Currently, fiber optic facilities are primarily used to carry DS3 signals. The DS3 signal consists of a combination of the following payload signals:

- 28 DS1s
- 14 DS1Cs
- 7 DS2s.

Typically, 28 DS1 signals are multiplexed into a DS3 signal, using an M13 format. Refer to Figure A-8. M13 format is a process that includes bit-interleaving four DS1 into a DS2 signal and then bit-interleaving seven DS2 signals into a DS3. The DS3 rate is not a direct multiple of the DS1 or the DS2 rates due to the bit-stuffing synchronization technique used in asynchronous multiplexing.

Identification of DS0s contained in any DS-N signal, except DS1, is complex and DS0s cannot be directly extracted. Thus, an asynchronous DS3 signal must be demultiplexed down to the DS1 level to access and cross-connect DS0 and DS1 signals.

Another disadvantage of the M13 format is there is no end-to-end overhead channel for use by OAM&P groups.

Figure A-8. Asynchronous Multiplexing
Synchronous Multiplexing

SONET’s method of byte-interleaving DS1s to a higher signal rate permits economical extraction of a single DS1 without the need to demultiplex the entire STS-1 SPE. In addition, SONET provides overhead channels for use by OAM&P groups.

In SONET, a single asynchronous DS3 signal is mapped into an STS-1 SPE (Figure A-9).

Virtual Tributary Signals

Sub-DS3 asynchronous signals (DS1, DS1C, DS2 and E1) are byte-interleaved into a digital signal called a virtual tributary (VT). The VT is a structure designed for the transport and switching of sub-DS3 payloads. Like the STS-1 signal, the VT signal has a floating pointer that allows each VT SPE to move within the VT structure. There are four sizes of virtual tributaries (VT1.5, VT2, VT3, VT6). Higher rate payloads are transported as one or more concatenated STS-1 signals.
Concatenated Mode

For services requiring multiples of the STS-1 rate, STS-1 path payloads may be shared to create a single broadband payload called a concatenated STS-Nc (OC-Nc). STS-1 signals are mapped into an STS-Nc SPE and transported as a concatenated STS-Nc signal. This STS-Nc signal can be carried by an STS-N or OC-N (or higher level) line signal.

The STS-N signal is multiplexed, switched, and transported through the network as a single entity. A concatenation indicator, used to show that the STS-1s of the STS-Nc signal are linked together, is contained in the STS-1 payload pointer of all but the first STS-1. The line and section overhead is sent on the first STS-1 and the payload pointer for the first STS-1 is applied to all STS-1 signals in the concatenated signal.

Figure A-10 shows an example of an STS-3c SPE. It consists of 3 x 87 columns and 9 rows of bytes. The order of transmission is row by row, from left to right.
Figure A-10. STS-3c Concatenated Payload
SONET Interface

The SONET interface (Figure A-11) provides the optical midspan meet between SONET network elements. A SONET network element is the hardware and software that processes one or more layers of the SONET signal.

Figure A-11. SONET Interface

SONET Payloads

Table A-1 shows the digital signals that can be transported as SONET payloads.
DS1 and DS3 signals are the most important of these signals in the current network. Broadband payloads, such as asynchronous transfer mode (ATM) and fiber distributed data interface (FDDI), with rates of 150 Mb/s and higher, are also important. Other payloads may be defined for specific applications.
Higher Rate Transport

Higher rate SONET signals are created by byte-interleaving N STS-1 to form an STS-N signal. The STS-N is then scrambled and converted to an optical carrier - level N (OC-N) signal. The OC-N has a line rate of exactly N times the OC-1 signal (see Table A-2).

Table A-2. SONET Transport Rates

<table>
<thead>
<tr>
<th>OC Level</th>
<th>Line Rate (Mb/s)</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td>51.84</td>
<td>28 DS1s or 1 DS3</td>
</tr>
<tr>
<td>OC-3</td>
<td>155.52</td>
<td>84 DS1s or 3 DS3s</td>
</tr>
<tr>
<td>OC-9</td>
<td>466.56</td>
<td>252 DS1s or 9 DS3s</td>
</tr>
<tr>
<td>OC-12</td>
<td>622.08</td>
<td>336 DS1s or 12 DS3s</td>
</tr>
<tr>
<td>OC-18</td>
<td>933.122</td>
<td>504 DS1s or 18 DS3s</td>
</tr>
<tr>
<td>OC-24</td>
<td>1244.16</td>
<td>672 DS1s or 24 DS3s</td>
</tr>
<tr>
<td>OC-36</td>
<td>1866.24</td>
<td>1008 DS1s or 36 DS3s</td>
</tr>
<tr>
<td>OC-48</td>
<td>2488.32</td>
<td>1344 DS1s or 48 DS3s</td>
</tr>
</tbody>
</table>

Conclusion

The intent of this section is to present a short overview of SONET. More detailed expositions can be found in various literature. An excellent description of SONET can be found in Reference 3.
REFERENCES

4. ANSI T1.102-1993 Draft •American National Standard for Telecommunications - Digital Hierarchy Electrical Interface Specifications. •
Glossary

0x1
See Ring (0x1) Low-Speed Interface.

1+1
The 1+1 protection switching architecture protects against failures of the optical transmit/receive equipment and their connecting fiber facility. One bidirectional interface (two fibers plus associated OLIUs on each end) is designated "service," and the other is designated "protection." In each direction, identical signals are transmitted on the service and protection lines ("dual-fed"). The receiving equipment monitors the incoming service and protection lines independently, and selects traffic from one line (the "active" line) based on performance criteria and technician/OS control. In 1+1 both service and protection lines could be active at the same time. Also referred to as linear (1+1) low speed interface.

1xN, 1x1
1xN protection switching pertains to circuit pack protection that provides a redundant signal path through the DDM-2000 (it does not cover protection switching of an optical facility; see "1+1"). In 1xN switching, a group of N service circuit packs share a single spare protection circuit pack. 1x1 is a special case of 1xN, with N=1. In 1x1 only one is active at a time.

2B1Q
2 - Binary, 1 - Quaternary. This means that the input voltage level can be one of 4 distinct levels (Note: 0 Volts is not a valid voltage under this scheme). These levels are called Quaternaries. Each quaternary represents 2 data bits, since there are 4 possible ways to represent 2 bits.

A

ABN
Abnormal (status condition)

ACO
Alarm Cutoff — A pushbutton switch available on the user panel that can be used to retire an audible office alarm.

ACO/TST
Alarm Cutoff and Test — The name of a pushbutton on the user panel.

Active
Active identifies a 1+1 protected OC-N line which is currently selected by the receiver at either end as the payload carrying signal or a 1x1 or 1xn protected circuit pack that is currently carrying service. (See Standby.)

ADM
Add/Drop Multiplexer
AGNE
Alarm Gateway Network Element — A defined NE in an alarm group through which members of the alarm group exchange information.

AIS
Alarm Indication Signal — A code transmitted downstream in a digital network that shows that an upstream failure has been detected and alarmed.

AMI
Alternate Mark Inversion — A line code that employs a ternary signal to convey binary digits, in which successive binary ones are represented by signal elements that are normally of alternating, positive and negative polarity but equal in amplitude, and in which binary zeros are represented by signal elements that have zero amplitude.

ANSI
American National Standards Institute

APS
Automatic Protection Switch

ARM
Access Resource Module

AS&C
Alarm, Status, and Control

ASCII
American Standard Code for Information Interchange — A standard 8-bit code used for exchanging information among data processing systems and associated equipment.

ASN.1
Abstract Syntax Notation 1

ASNE
Alarm Server Network Element

ATM
Asynchronous Transfer Mode

Auto
Automatic — One possible state of a DS1 or DS3 port. In this state, the port will automatically be put "in service" if a good signal is detected coming from the DSX panel.

Automatic Protection Switch
A protection switch that occurs automatically in response to an automatically detected fault condition.

Automatic Synchronization Reconfiguration
A feature that allows another synchronization source to be automatically selected and the synchronization source provisioning to be automatically reconfigured in the event of a synchronization source failure or network synchronization change, for example, a fiber cut.

AUXCTL
Auxiliary Control — The name of the slot to the left of the SYSCTL slot on the DDM-2000 OC-3 and FiberReach wideband shelves and to the right of the SYSCTL slot on the DDM-2000 OC-12 shelf.
Available Time
 In performance monitoring, the 1-second intervals.

B

B3ZS
Bipolar 3-Zero Substitution — A line coding method that replaces a string of three zeros with a sequence of symbols having some special characteristic.

B8ZS
Bipolar 8-Zero Substitution — A line coding method that replaces a string of eight zeros with a sequence of symbols having some special characteristic.

Backbone Ring
A host ring

BDFB
Battery Distribution and Fuse Bay

BER
Bit Error Ratio — The ratio of bits received in error to the total bits sent.

BIP
Bit Interleaved Parity — A method of error monitoring over a specified number of bits, that is, BIP-3 or BIP-8.

BITS
Building Integrated Timing Supply — A single clock that provides all the DS1 and DS0 synchronization references required by clocks in a building.

BRI
Basic Rate Interface

Broadband
Any communications channel with greater bandwidth than a voice channel; sometimes used synonymously with wideband.

C

CC
Clear Channel — A provisionable mode for the DS3 output that causes parity violations not to be monitored or corrected before the DS3 signal is encoded.

CCITT
International Telephone and Telegraph Consultative Committee — An international advisory committee under United Nations' sponsorship that has composed and recommended for adoption worldwide standards for international communications. Recently changed to the International Telecommunications Union Telecommunications Standards Sector (ITU-TSS).
CD-ROM
 Compact Disk, Read Only Memory

CDTU
 Channel and Drop Test Unit

CEV
 Controlled Environment Vault

Channel
 A logical signal within a port. For example, for an EC-1 port, there is one STS-1 channel and sometimes 28 VT1.5 channels. See Port.

Channel State Provisioning
 A feature that allows a user to suppress reporting of alarms and events during provisioning by supporting multiple states (automatic, in-service and not monitored) for VT1.5 and STS-1 channels. See Port State Provisioning.

CIT
 Craft Interface Terminal

CLF
 Carrier Line Failure Status

CLK
 Clock

CMISE
 Common Management Information Service Element

CMOS
 Complementary Metal Oxide Semiconductor

CO
 Central Office

COT
 Central Office Terminal

CP
 Circuit Pack

CPE
 Customer Premises Equipment

CR
 Critical (alarm status)

CSA
 Carrier Serving Area

CSU
 Channel Service Unit

CS&O
 Customer Support and Operations
Glossary

CV
Coding Violation (a performance-monitoring parameter)

CVFE
Coding Violation Far-End — An indication returned to the transmitting terminal that an errored block has been detected at the receiving terminal.

D

DACS III-2000
Digital Access and Cross-Connect System that provides clear channel switching at either the DS3 or the STS-1 rates, eliminating the need for manual DSXs.

DACS IV-2000
Digital Access and Cross-Connect System that provides electronic DS3/STS-1 or DS1/VT1.5 cross-connect capability, eliminating the need for manual DSXs.

DCC
Data Communications Channel — The embedded overhead communications channel in the SONET line. It is used for end-to-end communications and maintenance. It carries alarm, control, and status information between network elements in a SONET network.

DCE
Data Communications Equipment — In a data station, the equipment that provides the signal conversion and coding between the data terminal equipment (DTE) and the line. The DCE may be separate equipment or an integral part of the DTE or of intermediate equipment. A DCE may perform other functions usually performed at the network end of the line.

DDM-Plus
Lucent's optical and electrical DS1 transport system. DDM-Plus transports up to four DS1s per pair of optical fiber and can provide T1 extension over existing copper wires.

DDM-1000
Lucent's Dual DS3 Multiplexer — A digital multiplexer that multiplexes DS1, DS1C, or DS2 signals into a DS3 signal or a 90 Mb/s or 180 Mb/s optical signal.

DDM-2000
Lucent's next generation network multiplexers that multiplex DS1, DS3, or EC-1 inputs into EC-1, OC-1, OC-3, or OC-12 outputs.

Default Provisioning
The parameter values that are preprogrammed as shipped from the factory.

Demultiplexing
A process applied to a multiplexed signal for recovering signals combined within it and for restoring the distinct individual channels of these signals.

DEMUX
Demultiplexer — "The DEMUX direction" is from the fiber toward the DSX.
Digital Multiplexer
 Equipment that combines by time-division multiplexing several digital signals into a single composite digital signal.

DLC
 Digital Loop Carrier

DPLL
 Digital Phase-Locked Loop

DRI
 Dual Ring Interworking — Two ring networks interconnected at two common nodes.

Drop and Continue
 A technique that allows redundant signal appearances at two central offices in a DRI network, allowing protection against central office failures.

DS1
 Digital Signal Level 1 (1.544 M/bs)

DS1 Circuit Pack
 The DS1 interface circuit pack interfaces to the DSX-1 panel.

DS3
 Digital Signal Level 3 (44.736 M/bs)

DS3 Circuit Pack
 The DS3 circuit pack interfaces to the DSX-3 panel.

DSn
 Digital Signal Rate n — One of the possible digital signal rates at DDM-2000 OC-3 and OC-12 interfaces: DS1 (1.544 Mb/s) or DS3 (44.736 Mb/s).

DSNE
 Directory Services Network Element — A designated network element that is responsible for administering a database that maps network element names (TIDs) to addresses [NSAPs (network service access points)] in an OSI subnetwork. There can be one DSNE per ring. There can also be a GNE.

DSX
 Digital Cross-Connect Panel — A panel designed to interconnect equipment that operates at a designated rate. For example, a DSX-3 interconnects equipment operating at the DS3 rate.

DSXBIU
 Digital Signal Cross-Connect Backplane Interface Unit

DT
 Distant Terminal

DTE
 Data Terminating Equipment — That part of a data station that serves as a data source (originates data for transmission), a data sink (accepts transmitted data), or both.

Dual 0x1 Cross-Connection
 In a single-homed application, the DDM-2000 OC-3/OC-12 Multiplexer uses a dual 0x1 cross-connection to map the VT1.5 channels between the DDM-2000 FiberReach OC-3 and the DDM-2000
OC-12 rings. This dual 0x1 architecture means that the VT1.5 path switching is one in the DDM-2000 FiberReach and not in the host DDM-2000. Individual DS1 signals within an STS-1 can therefore be dropped to DDM-2000 OC-3 shelves at several nodes around the ring. See Single 0x1.

Dual Homing
In DDM-2000 FiberReach, a network topology in which two OC-3 shelves serve as DDM-2000 FiberReach Multiplexer hosts supporting up to twelve OC-1 rings. Each DDM-2000 FiberReach Multiplexer ring is interconnected between the two separate hosts. Two SLC-2000 Access Systems serving as DDM-2000 FiberReach hosts can support up to four OC-1 rings. See Single Homing.

E

EC-1, EC-n
Electrical Carrier — The basic logical building block signal with a rate of 51.840 Mb/s for an EC-1 signal and a rate of n times 51.840 Mb/s for an EC-n signal. An EC-1 signal can be built in two ways: A DS1 can be mapped into a VT1.5 signal and 28 VT1.5 signals multiplexed into an EC-1 (VT1.5 based EC-1), or a DS3 can be mapped directly into an EC-1 (DS3 based EC-1).

ECI
Equipment Catalog Item — The bar code number on the faceplate of each circuit pack used by some inventory systems.

EEEPROM
Electrically Erasable Programmable Read-Only Memory

EIA
Electronic Industries Association

EMC
Electromagnetic Compatibility

EMI
Electromagnetic Interference

EOOF
Excessive Out of Frame

EPROM
Erasable Programmable Read-Only Memory

EQ
Equipped (memory administrative state)

ES
Errored Seconds — A performance monitoring parameter. ES “type A” is a second with exactly one error; ES “type B” is a second with more than one and less than the number of errors in a severely errored second for the given signal. ES by itself means the sum of the type A and type B ESs.

ESD
Electrostatic Discharge

ESF
Extended Super Frame (format for DS1 signal)
EST
Environmental Stress Testing

F

FCC
Federal Communications Commission

FDDI
Fiber Distribution Data Interface

FE
Far-End — Any other network element in a maintenance subnetwork other than the one the user is at or working on. Also called remote.

FE-ACTY
Far End Activity — An LED on the user panel.

FEBE
Far End Block Error — An indication returned to near-end transmitting node that an errored block has been detected at the far end.

FE ID
Far End Identification — The 7-segment display on the faceplate of the SYSCTL circuit pack.

FEPROM
Flash EPROM — A new technology that combines the non-volatility of EPROM with the in-circuit reprogrammability of EEPROM (electrically-erasable PROM.)

FERF
Far-End Receive Failure — An indication returned to a transmitting terminal that the receiving terminal has detected an incoming section failure.

FE SEL
Far End Select — An LED on the user panel.

FIT
Failures in 10^9 hours of operation.

Free Running
An operating condition of a clock in which its local oscillator is not locked to an internal synchronization reference and is using no storage techniques to sustain its accuracy.

FT-2000
Lucent's SONET OC-48 Lightwave System

Function Unit
Refers to any one of a number of different circuit packs that can reside in the A, B, or C function unit slots on the DDM-2000 OC-3 Multiplexer, or in the A, B, C, or D function unit slots of the DDM-2000 OC-12 Multiplexer.
G

GCNS-2000
Lucent's Gigabit Cell Network Switch

GNE
Gateway Network Element — A network element that has an active X.25 link. Can also be a DSNE.

GR
Telcordia Technologies General Requirement

Group
The eight slots that may be equipped.

GTP
General Telemetry Processor

GUI
Graphical User Interface

H

Hairpin Routing
A cross-connection between Function Units; for example, Function Unit C to Function Units A or B. Cross-connections go through Main, but no bandwidth or time slots are taken from the backbone ring. Eliminates need for another shelf.

HDSL
High Data Rate Digital Subscriber Line

HECI
Humans Equipment Catalog Item

Holdover
An operating condition of a network element in which its local oscillator is not locked to any synchronization reference but is using storage techniques to maintain its accuracy with respect to the last known frequency comparison with a synchronization reference.

I

IC
Internal Clock — Used in synchronization messaging.

ID
Identifier — See Shelf ID and Site ID.
Glossary

IEC
International Electrotechnology Commission

IMF
Infant Mortality Factor

INC
Incoming Status

INCM
A parallel telemetry point used to indicate incoming low-speed failures.

I/O
Input/Output

IP
Internetwork Protocol

IR
Intermediate Reach — A term used to describe distances of from 15 to 40 km between optical transmitter and receiver without regeneration. See LR (Long Reach).

IS
In Service — One possible state of a DS1, DS3, or EC-1 port. Other possible states are "auto" (automatic) and "nmon" (not monitored).

ISCI
Intershelf Control Interface

ISI
Intershelf Interface

ISDN
Integrated Services Digital Network

IS-3
An intraoffice short reach proprietary interface provided by the 21D/21D-U and 22D-U optical line interface units.

ISO
International Standards Organization — See OSI.

ITU-TSS
International Telecommunication Union — Telecommunication Standardization Sector

IVHS
Intelligent Vehicle Highway System

J

Jitter
Timing jitter is defined as short-term variations of the significant instants of a digital signal from their ideal positions in time.
LAN
Local Area Network

LAPD
Link Access Procedure "D"

LOBO
Line Build Out — An equalizer network between the DDM-2000 OC-3 and OC-12 Multiplexers and the DSX panel. It guarantees the proper signal level and shape at the DSX panel.

LCN
Local Communications Network

LEC
Local Exchange Carrier

LED
Light Emitting Diode — Used on a circuit pack faceplate to show failure (red) or service state. It is also used to show the alarm and status condition of the system.

Line Timing
The capability to directly derive clock timing from an incoming OC-N signal while providing the user the capability to provision whether switching to an alternate OC-N from a different source (as opposed to entering holdover) will occur if the OC-N currently used as the timing reference for that NE becomes unsuitable as a reference. For example, intermediate nodes in a linear network are line timed. See Loop Timing.

Local
See NE (Near-End).

Locked Cross-Connection
This is a variation of the ring cross-connection that allows the user to lock the path selector to a specified rotation of the ring. Any signal received from the other rotation of the ring is ignored.

LOF
Loss of Frame — A failure to synchronize to an incoming signal.

Loop Timing
Loop timing is a special case of line timing. It applies to NEs that have only one OC-N interface. For example, terminating nodes in a linear network are loop timed. See Line Timing.

LOP
Loss of Pointer — A failure to extract good data from an STS-1 payload.

LOS
Loss of Signal — The complete absence of an incoming signal.

LR
Long Reach — A term used to describe distances of 40 km or more between optical transmitter and receiver without regeneration. See IR (Intermediate Reach).
LS
Low Speed

M

Main
Slots on the DDM-2000 shelf in which the OLIU circuit packs are installed.

Maintenance Subnetwork
A maintenance subnetwork consists of a CO (or gateway network element), a local DDM-2000 and all remote DDM-2000s connected via SONET DCC that are enabled.

Midspan Meet
The capability to interface between two lightwave terminals of different vendors. This applies to high-speed optical interfaces.

MD
Mediation Device

MJ
Major Alarm

MM
Multimode

MML
huMan-Machine Language defined by ITU-TSS, formerly CCITT.

MN
Minor Alarm

MPEG
Moving Picture Experts Group

MSDT
Multi-Services Distant Terminal

MTBF
Mean Time Between Failures

MTBMA
Mean Time Between Maintenance Activities

Multiplexing
The process of combining several distinct digital signals into a single composite digital signal.

Mult
Multiplying — The cascading of signals in a bay. In the MULT mode, the DS1 external reference can be cascaded to other shelves in a bay using Mult cables. Normally starting with the bottom shelf (Number 1) and working towards the top of the bay.

MUX
Multiplex
MXBIU
Multiplexer and Backplane Interface Unit

MXRVO Circuit Pack
The MXRVO circuit pack multiplexes seven VT-G signals from the DS1 circuit packs to an STS-1 signal for connection to the OLIU circuit packs.

N

NE
Near-End — The network element the user is at or working on. Also called local.

Network Element — The basic building block of a telecommunications equipment within a telecommunication network that meets SONET standards. Typical internal attributes of a network element include: one or more high- and low-speed transmission ports, built-in intelligence, synchronization and timing capability, access interfaces for use by technicians and/or operation systems. In addition, a network element may also include a time slot interchanger.

NE-ACTY
Near End Activity — An LED on the user panel.

NEBS
Network Equipment-Building System

nm
Nanometer (10^-9 meters)

NMA
Network Monitoring and Analysis — An operations system designed by Telcordia Technologies which is used to monitor network facilities.

NMON
Not Monitored — A provisioning state for equipment that is not monitored or alarmed.

NMLI
Native Mode LAN Interface external to the DDM-2000 FiberReach multiplexer.

Node
In SONET a node is a line terminating element.

Non-Revertive
A protection switching mode in which, after a protection switch occurs, the equipment remains in its current configuration after any failure conditions that caused a protection switch to occur clear or after any external switch commands are reset. (See Revertive.)

NRZ
Nonreturn to Zero

NSA
Not Service Affecting
NSAP
Network Services Access Point — An address that identifies a network element. Used for maintenance subnetwork communication using the OSI protocol.

NTF
No Trouble Found

O

OAM&P
Operations, Administration, Maintenance, and Provisioning

OC, OC-n
Optical Carrier — The optical signal that results from an optical conversion of an STS signal; that is, OC-1 from STS-1 and OC-n from STS-n.

OC-1
Optical Carrier Level 1 Signal (51.84 Mb/s)

OC-3
Optical Carrier Level 3 Signal (155 Mb/s)

OC-3c (STS-3c)
Optical Carrier Level 3 Concatenated Signal — Low-speed broadband signal equivalent to three STS-1s linked together with a single path overhead.

OC-12
Optical Carrier Level 12 Signal (622 Mb/s)

OHCTL
The overhead controller circuit pack provides user access to the SONET overhead channels.

OLIU
Optical Line Interface Unit

OOF
Out of Frame

OOL
Out of Lock

Operations Interface
Any interface that provides information on the system performance or control. These include the equipment LEDs, user panel, CIT, office alarms, and all telemetry interfaces.

OPS/INE
Operations System/Intelligent Network Element

OS
Operations System — A central computer-based system used to provide operations, administration, and maintenance functions.

OSMINE
Operations Systems Modifications for the Integration of Network Elements
OSI
Open Systems Interconnection — Referring to the OSI reference model, a logical structure for network operations standardized by the International Standards Organization (ISO).

OSGNE
Operations System Gateway Network Element — An OSGNE serves as a single interface to the OS for NEs in the same subnetwork using X.25 interfaces.

OSP
Outside Plant

P
Pass Through
Paths that are cross-connected directly across an intermediate node in a ring network.

P-bit
Performance Bit

PC
Personal Computer

PCU
Power Converter Unit

PID
Program Identification

PINFET
Positive Intrinsic Negative Field Effect Transistor

PJC
Pointer Justification Count

Plesiochronous Network
A network that contains multiple maintenance subnetworks, each internally synchronous and all operating at the same nominal frequency, but whose timing may be slightly different at any particular instant. For example in SONET networks, each timing traceable to their own Stratum 1 clock are considered plesiochronous with respect to each other.

PLL
Phased-Locked Loop

PM
Performance Monitoring — Measures the quality of service and identifies degrading or marginally operating systems (before an alarm would be generated).

PMN
Power Minor Alarm

POH
Path Overhead
POP
Points of Presence

Port
The physical, electrical, or optical interface on a system. For example, DS1, DS3, EC-1, OC-3, and OC-12. See Channel.

Port State Provisioning
A feature that allows a user to suppress alarm reporting and performance monitoring during provisioning by supporting multiple states (automatic, in-service and not monitored) for low speed ports. See Channel State Provisioning.

POTS
Plain Old Telephone Service

Proactive Maintenance
Refers to the process of detecting degrading conditions not severe enough to initiate protection switching or alarming, but indicative of an impending signal fail or signal degrade defect (for example, performance monitoring).

Protection Line
As defined by the SONET standard, the protection line is the pair of fibers (one transmit and one receive) that carry the SONET APS channel (K1 and K2 bytes in the SONET line overhead). On a DDM-2000 FiberReach system, a protection line is a pair of fibers that terminate on an OLIU circuit pack in the main slot. (See Service Line.)

PRM
Performance Report Message

PROTN
Protection

Product Family 2000
Lucent's line of SONET standard network products providing total network solutions.

PRS
Primary Reference Source

PSU
Power Supply Unit

PVC
Permanent Virtual Circuit

PWR
Power

R

RAM
Random Access Memory
Glossary

Reactive Maintenance
Refers to detecting defects/failures and clearing them.

Remote
See FE (Far-End).

REN
Ringer Equivalent Number

Revertive
A protection switching mode in which, after a protection switch occurs, the equipment returns to the nominal configuration (that is, the service equipment is active, and the protection equipment is standby) after any failure conditions that caused a protection switch to occur clear or after any external switch commands are reset. (See Non-Revertive.)

RGU
Ringing Generator Unit

Ring
A configuration of nodes comprised of network elements connected in a circular fashion. Under normal conditions, each node is interconnected with its neighbor and includes capacity for transmission in either direction between adjacent nodes. Path switched rings use a head-end bridge and tail-end switch. Line switched rings actively reroute traffic over a protection line.

Ring (0x1) Low Speed Interface
Formerly referred to as dual 0x1 or single 0x1. In ring applications, the DDM-2000 OC-3 and OC-12 Multiplexers use a 0x1 interface meaning both fibers carry service as opposed to a linear (1+1) low speed interface where one fiber is used for service and the other for protection. See 1+1.

RPP

RT
Remote Terminal — An unstaffed equipment enclosure that may have a controlled or uncontrolled environment.

RTAC
Lucent's Regional Technical Assistance Center (1-800-225-RTAC)

RZ
Return to Zero

S

SA
Service Affecting

SCADA
Supervisory Control and Data Acquisition

SD
Signal Degradate
Glossary

SDH
Synchronous Digital Hierarchy

Self-Healing
Ring architecture in which two or more fibers are used to provide route diversity. Node failures only affect traffic dropped at the failed node.

SEFS
Severely Errored Frame Seconds

SEO
Single-Ended Operations — The maintenance capability that provides remote access to all DDM-2000 systems from a single location over the DCC.

Service Line
On a DDM-2000 FiberReach system, a service (or "working") line is a pair of fibers (one transmit and one receive) that terminate on an OLIU circuit pack in the main slot. As defined by the SONET standard, the SONET APS channel is not defined on a service (or "working") line. (See Protection Line.)

SES
Severely Errored Seconds — This performance monitoring parameter is a second in which a signal failure occurs, or more than a preset amount of coding violations (dependent on the type of signal) occurs.

SF
Super Frame (format for DS1 signal)

Shelf ID
A switch settable parameter with values of from 1 to 8. Used to log into a selected shelf in a bay using the CIT.

SID
System Identification

Single 0x1 Cross-Connection
In a dual-homed application, the DDM-2000 OC-3/OC-12 Multiplexer uses a single 0x1 cross-connection to map the VT1.5 channels between the DDM-2000 FiberReach OC-1 and the DDM-2000 OC-3/OC-12 rings. This single 0x1 architecture maps low speed to high speed on a specified ring rotation. The high speed to low speed drop is made on the same specified ring with no path switching. Protection is provided at the VT1.5 end points. See Dual 0x1.

Single Homing
In DDM-2000 FiberReach, a network topology in which a single OC-3 shelf serves as a DDM-2000 FiberReach Multiplexer host supporting up to six OC-1 rings. A SLC-2000 Access System serving as a host can support up to two OC-1 rings. See Dual Homing.

Site ID
A switch settable parameter with values of from 1 to 8. Displayed on SYSCTL circuit pack to indicate to which site the user panel alarms and LEDs apply.

SLIM
Subscriber Loop Interface Module

SM
Single Mode
SONET
Synchronous Optical Network

SPE
Synchronous Payload Envelope

SPOTS
Super POTS

SQU
Sync Quality Unknown. Used in synchronization messaging.

SRD
Software Release Description

Standby
Standby identifies a 1+1 protected OC-N line which is not currently selected by the receiver at either end as the payload carrying signal, or a 1x1 or 1xn protected circuit pack that is not currently carrying service. (See Active.)

Star Topology
For DDM-2000 FiberReach, this refers to a configuration of multiple point-to-point OC-1 extensions from a single DDM-2000 OC-3/OC-12 Multiplexer.

Status
The indication of a short-term change in the system.

STS, STS-n
Synchronous Transport Signal — The basic logical building block signal with a rate of 51.840 Mb/s for an STS-1 signal and a rate of n times 51.840 Mb/s for an STS-n signal.

STS-1 SPE
STS-1 Synchronous Payload Envelope — A 125-microsecond frame structure composed of STS path overhead and the STS-1 payload.

STS-3c
Synchronous Transport Level 3 Concatenated Signal — See OC-3c.

Subnetwork
Group of SONET network elements that share a SONET data communications channel.

Synchronization Messaging
SONET synchronization messaging is used to communicate the quality of network timing, internal timing status, and timing states throughout a subnetwork.

SYSCTL
The system controller circuit pack that provides overall administrative control of the terminal.

T

T1EXT
T1 Carrier Extension Circuit Pack
Glossary

T1X1 and T1M1
The ANSI committees responsible for telecommunications standards.

TA
Telcordia Technologies Technical Advisory

TABS
Telemetry Asynchronous Byte Serial (Protocol)

TARP
Target Address Resolution Protocol

TBOS
Telemetry Byte-Oriented Serial (Protocol) — Defines one physical interface for direct connection between the telemetry remote and the monitored equipment. An RS-422 port is used to provide the operations system with sufficient alarm and status information to localize a problem to a given DDM-2000 and to determine the severity of the problem.

TCA
Threshold-Crossing Alert — A condition set when a performance-monitoring counter exceeds a user-selected threshold. A TCA does not generate an alarm but is available on demand through the CIT and is shown by TBOS and causes a message to be sent to NMA via the X.25/TL1 interface.

TCVCXO
Temperature-Compensated Voltage-Controlled Crystal Oscillator — A highly stable and accurate clock source used in the DDM-2000 TGS circuit pack.

TGS
The timing generator circuit pack generates clock signals for distribution to the transmit circuits. It operates in the free-running, loop-timing, phase-lock, and holdover modes.

TID
Target Identifier — The Telcordia Technologies name for the system name.

TL1
Transaction Language 1 — A Telcordia Technologies machine-to-machine communications language that is a subset of ITU-TSS, formerly CCITT’s, human-machine language.

TLB
Timing Looped Back — Used in synchronization messaging.

TOP
Task Oriented Practice

TR
Telcordia Technologies Technical Requirement

TSA
Time Slot Assignment

TSI
Time Slot Interchange

TSO
Technical Support Organization — Supports RTAC and the customers.
U

UAS
Unavailable Seconds. In performance monitoring, the count of seconds in which a signal is declared failed or, in which, 10 consecutively severely errored seconds (SES) occurred, until the time when 10 consecutive non-SES occur.

Unidirectional
A protection switching mode in which the system at each end of an optical span monitors both service and protection lines and independently chooses the best signal (unless overridden by an equipment failure or by an external request, such as a forced switch or lockout). In a system that uses unidirectional line switching, both the service and protection lines may be active simultaneously, with one line carrying traffic in one direction and the other line carrying traffic in the other direction. The K1 and K2 bytes in the SONET line overhead are used to convey to the far end which line the near end receiver has chosen, so that an "active" indication may be made at the far end.

UOC
Universal Optical Connector — Receptacles on the faceplate of some OLIUs that accept ST, SC, or FC connectors.

UPD/INIT
A pushbutton on the user panel.

V

V-DT
Virtual-Distant Terminal

VF
Voice Frequency

VLSI
Very Large Scale Integration — Refers to very complex state of the art integrated circuits.

VM
Violation Monitor — A mode of the DS3 circuit pack in which it will monitor but not remove P-bit parity violations on the DS3 signal received from the fiber.

VMR
Violation, Monitor, and Removal — A mode of the DS3 circuit pack in which it will monitor and remove P-bit parity violations on the DS3 signal received from the fiber.

V-MSDT
Virtual Multi-Services Distant Terminal

VONU
Virtual Optical Network Unit

VT
Virtual Tributary — A structure designed for transport and switching of a sub-DS3 payload.
Glossary

VT1.5
A 1.728 Mb/s virtual tributary

VT-G
Virtual Tributary Group — A 9-row by 12-column SONET structure (108 bytes) that carries one or more VTs of the same size. Seven VT groups (756 bytes) are byte-interleaved within the VT-organized STS-1 synchronous payload envelope.

W

WAN
Wide Area Network

Z

Zero Code Suppression
A technique used to reduce the number of consecutive zeros in a line-codes signal (B3ZS for DS3 signals and B8ZS for DS1 signals).
Index

Numerics

<table>
<thead>
<tr>
<th>Numerics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>177A Retainer Card Description</td>
<td>7-29</td>
</tr>
<tr>
<td>22D-U OLIU,</td>
<td>7-2, 10-13</td>
</tr>
<tr>
<td>22F/22F-U/22F2-U OLIU</td>
<td>7-2, 10-17</td>
</tr>
<tr>
<td>22G-U/22G2-U/22G3-U/22G4-U OLIU,</td>
<td>7-2, 10-18</td>
</tr>
<tr>
<td>22-Type OLIUs Circuit Pack Description</td>
<td>7-66</td>
</tr>
<tr>
<td>Quick Reference Summary,</td>
<td>7-73</td>
</tr>
<tr>
<td>26G2-U OLIU,</td>
<td>7-2, 10-22</td>
</tr>
<tr>
<td>Quick Reference Summary,</td>
<td>7-81</td>
</tr>
<tr>
<td>28G-U/28G2-U OLIU,</td>
<td>7-2, 10-27, 10-48</td>
</tr>
<tr>
<td>Circuit Pack Description,</td>
<td>7-82</td>
</tr>
<tr>
<td>Network Topologies,</td>
<td>2-25</td>
</tr>
<tr>
<td>Quick Reference Summary,</td>
<td>7-88</td>
</tr>
<tr>
<td>Service Application Release 3.1,</td>
<td>2-39</td>
</tr>
<tr>
<td>Service Applications Release 2.2,</td>
<td>2-34</td>
</tr>
<tr>
<td>29G-U OLIU,</td>
<td>7-2, 10-31</td>
</tr>
<tr>
<td>29H-U OLIU,</td>
<td>7-2, 10-32</td>
</tr>
<tr>
<td>29-Type OLIU Circuit Pack Description</td>
<td>7-89</td>
</tr>
<tr>
<td>Network Topologies,</td>
<td>2-26</td>
</tr>
<tr>
<td>Service Applications Release 4.0,</td>
<td>2-43</td>
</tr>
<tr>
<td>2B+D ISDN service,</td>
<td>8-63</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>A</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABN LED</td>
<td>6-10</td>
</tr>
<tr>
<td>Access CIT Ports</td>
<td>9-5</td>
</tr>
<tr>
<td>Front</td>
<td>3-1, 9-22</td>
</tr>
<tr>
<td>Modem</td>
<td>9-5</td>
</tr>
<tr>
<td>Terminal,</td>
<td>6-2, 9-5</td>
</tr>
<tr>
<td>ACO Indicator,</td>
<td>10-52</td>
</tr>
<tr>
<td>ACO LED,</td>
<td>6-10</td>
</tr>
<tr>
<td>ACO/TST Pushbutton,</td>
<td>6-11</td>
</tr>
<tr>
<td>ACTIVE Indicator,</td>
<td>6-13, 10-52</td>
</tr>
<tr>
<td>ACTIVE LED on Rings,</td>
<td>9-21</td>
</tr>
<tr>
<td>Administration,</td>
<td>8-1</td>
</tr>
<tr>
<td>Controller Maintenance and Memory Administration,</td>
<td>8-7</td>
</tr>
<tr>
<td>Data Base Backup and Restoral,</td>
<td>8-3</td>
</tr>
<tr>
<td>ITM SNC,</td>
<td>8-4</td>
</tr>
<tr>
<td>Narrowband Shelf,</td>
<td>8-58</td>
</tr>
<tr>
<td>Remote Software Download and Copy,</td>
<td>8-2</td>
</tr>
<tr>
<td>Security,</td>
<td>8-4, 8-58</td>
</tr>
<tr>
<td>Service Affecting Actions,</td>
<td>8-8</td>
</tr>
<tr>
<td>Software Compatibility,</td>
<td>8-6</td>
</tr>
<tr>
<td>Software Downloads and Upgrades,</td>
<td>8-58</td>
</tr>
<tr>
<td>Software Upgrades,</td>
<td>8-2</td>
</tr>
<tr>
<td>Version Recognition,</td>
<td>8-1</td>
</tr>
<tr>
<td>Wideband Shelf,</td>
<td>8-1, 8-2</td>
</tr>
<tr>
<td>AIS,</td>
<td>9-14</td>
</tr>
<tr>
<td>Alarms,</td>
<td>6-10</td>
</tr>
<tr>
<td>Delay,</td>
<td>6-13, 9-13</td>
</tr>
<tr>
<td>LEDs,</td>
<td>6-11, 9-4</td>
</tr>
<tr>
<td>Office,</td>
<td>6-13</td>
</tr>
<tr>
<td>Reports,</td>
<td>9-38</td>
</tr>
<tr>
<td>Status,</td>
<td>9-38</td>
</tr>
<tr>
<td>Applications,</td>
<td>5-14</td>
</tr>
<tr>
<td>DDM-2000 FiberReach Service Applications,</td>
<td>2-28</td>
</tr>
<tr>
<td>Dual Wire Center,</td>
<td>2-14</td>
</tr>
<tr>
<td>Dual-Homed Access Via a Backbone Ring,</td>
<td>2-13</td>
</tr>
<tr>
<td>Enhanced Routing,</td>
<td>2-20</td>
</tr>
<tr>
<td>Integrated Narrowband Business Carrier Access,</td>
<td>2-54</td>
</tr>
<tr>
<td>Intelligent Vehicle Highway System,</td>
<td>2-62</td>
</tr>
<tr>
<td>Intelligent Vehicle Highway System (IVHS),</td>
<td>2-62</td>
</tr>
<tr>
<td>Locked STS-3c Broadband Services,</td>
<td>8-56</td>
</tr>
<tr>
<td>Network Topologies,</td>
<td>2-9</td>
</tr>
<tr>
<td>Single Homing to Linear DDM-2000 OC-3 Networks,</td>
<td>2-16</td>
</tr>
<tr>
<td>Single-Homed Access via Backbone Ring,</td>
<td>2-10</td>
</tr>
<tr>
<td>Stand-Alone OC-1 Ring/Hub Networks,</td>
<td>2-17</td>
</tr>
<tr>
<td>Summary,</td>
<td>2-1</td>
</tr>
<tr>
<td>Teleprotection and SCADA Communications for Electric Utilities,</td>
<td>2-64</td>
</tr>
<tr>
<td>AUA413,</td>
<td>7-91</td>
</tr>
<tr>
<td>AUA421,</td>
<td>7-91</td>
</tr>
<tr>
<td>Channel and Drop Test Unit,</td>
<td>4-12</td>
</tr>
<tr>
<td>AUA432,</td>
<td>7-91</td>
</tr>
<tr>
<td>Power Converter Unit,</td>
<td>4-10</td>
</tr>
<tr>
<td>Audiences of Document, Intended,</td>
<td>xii</td>
</tr>
<tr>
<td>Automatic Synchronization Reconfiguration,</td>
<td>9-21</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>B</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBF1B,</td>
<td>7-1, 10-2</td>
</tr>
<tr>
<td>DS1 Circuit Pack Description,</td>
<td>7-15</td>
</tr>
<tr>
<td>DS1 Quick Reference Summary,</td>
<td>7-20</td>
</tr>
<tr>
<td>BBF3/BBF3B,</td>
<td>7-1, 10-3</td>
</tr>
<tr>
<td>DS1PM Circuit Pack Description,</td>
<td>7-22</td>
</tr>
<tr>
<td>DS1PM Quick Reference Summary,</td>
<td>7-28</td>
</tr>
<tr>
<td>BBF6,</td>
<td>7-1</td>
</tr>
<tr>
<td>T1 EXT Circuit Pack Description,</td>
<td>7-38</td>
</tr>
<tr>
<td>T1EXT</td>
<td>10-8</td>
</tr>
<tr>
<td>T1EXT Quick Reference Summary,</td>
<td>7-45</td>
</tr>
<tr>
<td>BBF8,</td>
<td>7-1, 10-11</td>
</tr>
<tr>
<td>HDSL Quick Reference Summary,</td>
<td>7-61</td>
</tr>
<tr>
<td>High Data-Rate Digital Subscriber Line Circuit Pack Description,</td>
<td>7-54</td>
</tr>
<tr>
<td>BBG19,</td>
<td>3-28, 7-1, 10-7</td>
</tr>
</tbody>
</table>
Index

DS3 Data Services Interface Circuit Pack Description, 7-46
DS3 Quick Reference Summary, 7-52
BBG4/BBG4B, 3-26, 7-1, 10-5
DS3 Circuit Pack Description, 7-30
DS3 Circuit Packs, 7-35
DS3 Quick Reference Summary, 7-36
BBG8/BBG8B, 7-1
SYSCTL Circuit Pack Description, 7-3
SYSCTL Quick Reference Summary, 7-9
Brownout Protection, 7-7

C

Canadian Standards Association, 10-56
Carrier Assembly, 3-9
C-Bit, 9-27, 9-28
CDTU
 Circuit Pack Description, 7-93
Channel and Drop Test Unit, AUA421
 Narrowband Shelf, 4-12
Channel Unit
 Circuit Pack Descriptions, 7-96
 Provisioning, Narrowband Shelf, 8-61
 Virtual Slot Concept, NBS, 8-65
Circuit Packs
 177A Retainer Card, 7-29
 22-Type OLIUs, 7-66
 26G2-U OLIU, 7-75
 28G2-U/28G2-U OLIU, 7-82
 29G-U/29H-U, 7-89
 Automatic Provisioning, 8-10
 BBF1B, 7-15
 BBF3/BBF3B DS1PM, 7-22
 BBF6 T1 EXT, 7-38
 BBF8 HDSL, 7-54
 BBG19 DS3 Data Service, 7-46
 BBG4/BBG4B DS3, 7-30
 BBG8/BBG8B SYSCTL, 7-3
 CDTU, 7-93
 Channel Unit, Narrowband Shelf, 7-96
 Control, 7-2
 Descriptions, 7-1
 DS1, 7-15
 DSXBIU, 7-94
 ECC2 User Panel, 7-11
 Faceplate Indicators, 6-8
 Faceplate LEDs, 9-4
 Keyed, 3-7
 Keying, 3-7
 Narrowband Shelf, 7-91
 Optical Interface, 7-64
 PCU, 7-92
 RGU, 7-92
 SYSCTL, 7-2
 Universal Optical Connector, 7-62
 Wideband Shelf, 7-1
 Circuit Packs, Control, 7-2
 ECC2, 7-1
 Circuit Packs, Transmission
 BBF1B, 7-1
 BBF3/BBF3B, 7-1
 BBF6, 7-1
 BBF8, 7-1
 BBG19, 7-1
 BBG4/BBG4B, 7-1
 CIT, 6-2
 Access, 6-2
 Access Modem, 6-2
 Compatible Modems, 10-51
 Interfaces, 6-2
 Local Access, 6-2
 PC as a CIT, 6-6
 Ports, 9-5
 Remote Access Using DCC, 6-6
 Using PC as, 6-6
 Clear Delay, 6-13, 9-13
 Comments
 Document, lxvi
 Connectors
 Optical, 3-1
 Control Circuit Packs, 7-2
 Wideband Shelf, 4-6
 Control Pushbuttons
 ACO/Test and UPD/INIT, 6-11, 9-4
 Controller Maintenance, 8-7
 CPro-2000
 Graphical User Interface and Provisioning Tool, 6-7, 10-51
 Craft Interface Terminals, 9-5, 10-49
 See CIT, 6-2
 Cross-Connection
 Add/Drop for DS3, 8-27
 Basic DS3, 8-53
 DS3 Locked, 8-54
 Examples, 8-41, 8-43, 8-45, 8-47, 8-49, 8-51, 8-53, 8-54, 8-55
 for Release 3.1 and Later, 8-52
 Locked, 8-30
 Manual Procedure, 8-35
 Manual STS-3c, 8-29
 Pass-Through, 8-28
 Pass-Through for STS-1, 8-29
 Provisioning, 8-22
 Ring Provisioning, 8-22
 STS-3c, 8-55
 Termination/Drop, 8-23
 Cross-Connections, Manual
 Procedure, 8-35
 Customer Technical Support, lxvi

IN-2 Issue 3 June 2000
INDEX

LED, 9-4
FAULT Indicators, 6-12
FAULT LEDs, 4-12
FE ACTY LED, 6-10
FE SEL Pushbutton, 6-10
FERF, 9-14
FHB2, 7-91
FHB2 Digital Signal Cross-Connect Backplane Interface Unit
Narrowband Shelf, 4-10
FiberReach Multiplexer
Access to X.25 Port, 6-14
Application Types, 2-2
Applications Summary, 2-1
Basic Description, 1-3
Carrier Assembly, 3-9
Narrowband Shelf, 1-4, 3-31
Narrowband Shelf Channel Unit Plug-Ins, 3-34, 7-96
Network Topologies, 2-9, 2-25
Power Architecture, 4-2
Release 2.2, 1-7
Release 3.0, 1-8
Release 3.1, 1-9
Release 4.0, 1-10
Release Descriptions, 1-7
Releases, 1-7
Reliability, 10-59
Service Applications, 2-28
SLC LineReach Access System, 1-5
Wall-Mount Distant Terminal, 3-10
Wideband Shelf, 1-3, 3-1
FiberReach Release 4.0
Remote NE Status Features, xliii
Fire Resistance, 10-55
Frame Structure
SONET, A-6
Fuses, 10-56, 10-64
Shelf, 10-56, 10-64

G

Grounding Jacks, lii

H

Hairpin Local Drop Routing, 2-24
Hairpin Local Drop Routing Example, 8-50
Hardened
Uncontrolled Environments, 10-55
HDSL, 2-43
Application, 2-32
Interface (BBF8), 10-11

I

Indicators, 6-13
ACTIVE, 6-13
Equipment, 6-12, 10-52
Faceplate, 6-8
FAULT, 6-12
Fault, 6-12
User Panel, 10-52
Infant Mortality, 10-60
Inservice Upgrades, 9-10
Instructions
Safety, xlvii
Integrated Narrowband Business Carrier Access, 2-54
Integration
Wideband and Narrowband Shelves, 5-6
with Dual Wire Center Applications, 2-14
Intelligent Vehicle Highway System (IVHS), 2-62
Interfaces
Craft Interface Terminal, 10-49
Office Alarms, 10-53
Operations, 10-49
Interfaces and Multiplexing, 5-1
Intermediate Reach OC-3 Interface (22F2-U OLIUs), 10-17
ISDN 2B+D Service, 8-63
ITM SNC, 6-15, 8-4

J

Jumpers
Lightguide, 10-12

L

LAN/WAN
Data Networking, 2-28, 2-32
Laser Classifications, xlvii
Class I, xlvii
Layers
SONET, A-4
LEDs, 4-12
Index

Alarms, 6-11
Circuit Pack Fault, 9-4
User Panel, 6-10, 6-11, 9-4
Lightguide Jumpers, 10-12
Line Coding Violations (B2 Parity), 9-29
Locked Cross-Connection, 9-30
Long Reach OC-1 Interface (26G2-U/27G-U/27G2-U OLIUs), 10-22
Long Reach OC-12 Interface (29G-U OLIU), 10-31
Long Reach OC-12 Interface (29H-U OLIU), 10-32
Long Reach OC-3 Interface (22G-U/22G2-U/22G3-U/22G4-U OLIUs), 10-18
Long Reach OC-3 Interface (28G-U/28G2-U OLIU), 10-27
Loopbacks, 9-22
DS1, 9-22
Optical, 9-22
Low-Speed Equipment Protection, 9-21
Lucent 2000 Product Family, 1-1

M

Maintenance
Automatic Diagnostics, 9-13
Craft Interface Terminal, 9-5
Fault Detection, Isolation and Reporting, 9-13
History Reports, 9-39
Loopbacks and Testing, 9-22
Operations System (OS) Interface, 9-6
Operations Tier 1, 9-4
Operations Tier 2, 9-5
Operations Tier 3, 9-6
Proactive, 9-23
Signaling, 9-10
Single-Ended Philosophy, WBS, 9-1
Three-Tiered Operation, 9-3
User Panel and Faceplate LEDs, 9-4
Wideband Shelf, 9-1
Memory Administration, 8-7
Messages
TL1, 6-14
Miscellaneous Discretes, 9-6
User-Definable, 6-16, 10-53
Mixing
OC-3 Optical Interface, 10-36
Modems, 10-51
Compatible, 10-51
Multiplexing
Asynchronous, SONET, A-14
Concatenated Mode, SONET, A-16
Digital Schemes, SONET, A-14
SONET, A-6
Synchronous, SONET, A-15
Multiplexing and Mapping
OC-1 Path Protected Ring Application, 8-35
Multi-Vendor OI, xlii, 9-7

N

Narrowband Business Carrier Access, 2-54
Narrowband Shelf, 3-31, 7-91
–48 V Battery Powering, 4-6
Administration, 8-58
Channel Unit Plug-Ins, 7-96
Channel Units, 3-34
Circuit Packs, 7-91
Configurations, 2-48
FiberReach Multiplexer, 1-4
Front View, 3-32
Interfaces, 5-4
Multiplexing, 5-4
Octet Mode, 8-61
Operations Interfaces, 6-1
Power Minor Alarm, 4-13
Power Options, 4-8
 Provisioning, 8-61
Quad Mode, 8-61
Rear View, 3-33
Transmission Circuit Packs, 4-10
Typical Applications, 2-48
Wall Distant Terminal Powering, 4-4, 4-9
NE ACTY LED, 6-10
Network Bay and Cabinet Mounting (WBS), 10-54
Network Monitoring and Analysis, 6-14
Network Topologies, 2-9, 2-25
Dual-Homed Access via a Backbone Ring, 2-13
Integration with Dual Wire Center Applications, 2-14
Single Homing to Linear DDM-2000 OC-3 Networks, 2-16
Single-Homed Access via Backbone Ring, 2-10
Stand-Alone OC-1 Ring/Hub Networks, 2-17
Network Topology
28G-U/28G2-U, 2-25
29-Type, 2-26
NSAP Provisioning, 8-16

O

OC-1, 2-9
OC-1 and OC-3 VT1.5 Single-Homed Path-Switched Ring, 8-38
OC-1 Path Protected Ring Application Example, 8-35
OC-1 Ring Hairpin Routing, Dual-Homed, 2-23
OC-1 Ring Hairpin Routing, Dual-Homed Example, 8-48
OC-1 Ring Hairpin Routing, Single-Homed, 2-22
OC-1 Ring Hairpin Routing, Single-Homed Example, 8-46
Index

OC-1 Ring Pass-Through, 2-21
OC-1 Ring Pass-Through Example, 8-44
OC-1/OC-3 Section Parameters, 9-28
OC-1/OC-3/OC-12 Line Parameters, 9-29
OC-1/OC-3/OC-12 Transmission Interface, 5-1
OC-12
 Network Topology, 2-25
OC-3
 Network Topology, 2-25
OC-3 Optical Interface Mixing, 10-36
OC-3 Rate Interface (22D-U OLIUs), 10-13
OC-3 Rate Interface, Intra-Office (IS-3), 10-13
OC-3/OC-1 Path Switched Ring (0x1), 9-17
Octet, 8-65
 Octet Mode
 Narrowband Shelf, 8-61
Office Alarms, 6-13
Office Alarms Interfaces, 10-53
OLIU Circuit Packs
 Wideband Shelf, 4-6
ONU
 Narrowband Shelf Provisioning, 8-61
 Operation System Interface Availability, 10-60
 Operations Interface Tests, 9-23
 Operations Interfaces, 6-1 10-49
 Operations Interworking (OI)
 Provisioning, 8-12
 Operations System (OS) Interface, 9-6
 Operations System/Intelligent Network Element, 6-14
 Operations Tier 1, 9-4
 Operations Tier 2, 9-5
 Operations Tier 3, 9-6
OPS/INE, 6-14
Optical Connector, 3-1
 Universal, 10-36
Optical Interface, 7-62
 Circuit Packs, 7-64
 OC-3 Mixing, 10-36
 STS-3c 0x1, 2-45
Optical Interfaces, 7-2
 Specifications, 10-12
Optical Module Maintenance Objective, 10-60

PCU
 Circuit Pack Description, 7-92
Performance
 Jitter, 10-44
 Signal, 10-44
 Transient, 10-46
 Wander, 10-44
Performance Monitoring, 9-23 10-47
 Adjusted F&M Bit, 9-27
 C-Bit, 9-28
 Data Storage and Reports, 9-37
 DS1, 9-25
 DS1 Line Parameters, 9-37
 DS1 Path, 9-26
 DS1 Path Parameters, 9-33
 DS1/DS3 Line and Path and DS3 Path, 9-24
 DS3, 9-27
 DS3 Line, 9-28 9-36
 DS3 Parameters, 9-34
 DS3 Path, 9-27
 DS3 Performance Monitoring, 9-34
 During Failed Conditions, 9-37
 OC-1/OC-3 Section Parameters, 9-28
 OC-1/OC-3/OC-12 Line Parameters, 9-29
 Parameter Thresholds, 9-37
 P-Bit, 9-27
 Performance Parameters, 9-28
 Performance Status Report, 9-39
 Reports, 9-39
 STS-1 Path Parameters, 9-31
 Thresholds, 10-47
 VT, 9-25
 VT1.5 Path Parameters, 9-32
Personal Computer for Software Download
 Specifications, 10-50
Pointer Justification Count, 9-30
Power, 4-1
 Converters, Wideband Shelf, 4-1
 Dissipation (NBS), 10-64
 Dissipation (WBS), 10-56
 Distribution, 4-14
 Distribution, Wideband Shelf, 4-3
 Feeders, Wideband Shelf, 4-1
 Loss Restart, 10-46
Power Architecture
 Wideband Shelf, 4-2
Power Converter Unit, AUA432
 Narrowband Shelf, 4-10
Power Options
 Narrowband Shelf, 4-8
Power Supply Unit, BGW1
 Narrowband Shelf, 4-10
Proactive Maintenance, 9-23
Program Flash-EPROM, 7-5
Protection Architectures
 Wideband Shelf, 5-4

P

Panel, Front, 3-7
Parameters
 CIT Selectable, 8-18
 Hardware Switch Selectable, 8-17
 Performance, 9-28
 Selectable, 8-17
Path Protection Switching
 Rings, 9-14
 P-Bit, 9-27
Index

<table>
<thead>
<tr>
<th>Protection Switching</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>9-21</td>
</tr>
<tr>
<td>Ring Networks</td>
<td>10-45</td>
</tr>
<tr>
<td>Synchronization Reference</td>
<td>9-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provisioning</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS or Unequipped Provisioning</td>
<td>8-12</td>
</tr>
<tr>
<td>Automatic Provisioning on Circuit Pack Replacement</td>
<td>8-10</td>
</tr>
<tr>
<td>Channel State</td>
<td>8-11</td>
</tr>
<tr>
<td>Cross-Connection</td>
<td>8-22</td>
</tr>
<tr>
<td>DCC</td>
<td>8-12</td>
</tr>
<tr>
<td>Default Provisioning</td>
<td>8-9</td>
</tr>
<tr>
<td>Feature Packaging</td>
<td>8-10</td>
</tr>
<tr>
<td>ISDN 2B+D in NBS</td>
<td>8-63</td>
</tr>
<tr>
<td>Line State Provisioning</td>
<td>8-12</td>
</tr>
<tr>
<td>Manual Cross-Connection Procedure</td>
<td>8-35</td>
</tr>
<tr>
<td>Narrowband Shelf</td>
<td>8-61</td>
</tr>
<tr>
<td>Narrowband Shelf Channel Units</td>
<td>8-61</td>
</tr>
<tr>
<td>NSAP</td>
<td>8-16</td>
</tr>
<tr>
<td>OC-1 and OC-3 VT1.5 Single-Homed Path Switched Ring</td>
<td>8-38</td>
</tr>
<tr>
<td>Open Systems Interconnection</td>
<td>8-10</td>
</tr>
<tr>
<td>Operations Interworking</td>
<td>8-12</td>
</tr>
<tr>
<td>OSI</td>
<td>8-10</td>
</tr>
<tr>
<td>Port State</td>
<td>8-11</td>
</tr>
<tr>
<td>Remote Provisioning</td>
<td>8-10</td>
</tr>
<tr>
<td>Reports</td>
<td>9-38</td>
</tr>
<tr>
<td>Ring Cross-Connection</td>
<td>8-22</td>
</tr>
<tr>
<td>TARP</td>
<td>8-16</td>
</tr>
<tr>
<td>Wideband Shelf</td>
<td>8-9</td>
</tr>
<tr>
<td>Provisioning Tool, SNC-2000 CPro</td>
<td>6-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose of Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushbutton</td>
<td></td>
</tr>
<tr>
<td>ACO/TST</td>
<td>6-11</td>
</tr>
<tr>
<td>Combinations</td>
<td>6-12</td>
</tr>
<tr>
<td>FE SEL</td>
<td></td>
</tr>
<tr>
<td>UPD/INIT</td>
<td>6-11</td>
</tr>
<tr>
<td>PWR ON Indicator</td>
<td>10-52</td>
</tr>
<tr>
<td>PWR ON LED</td>
<td>6-10</td>
</tr>
</tbody>
</table>

Q

Quad Mode, Narrowband Shelf

8-61

R

Reissue Reason

xiii

22G4-U OLIU. xiii

29G-U/29H-U OLIUs. xiii

BBF6 T1EXT with T1 Loopback. xiii

DCC Provisioning on Main Slots. xlii

FiberReach Multiplexer Release 4.0. xlii

OC-3 Release 13.0 and Later. xlii

Provisioning of Asynchronous CIT Port. xlii

Remote Alarm Status. xlii

STS-3c 0X1 with 29-Type in Main. xlii

Reliability of FiberReach Multiplexer. 10-59

Predictions. 10-61

Remote NE Status Features

Remote CIT Alarm Reports. xliii

Remote Office Alarms. xliii

Reports. 9-38

Alarm and Statuses. 9-38

Database Change Transmission to OS. 9-39

Equipment. 9-40

Maintenance History. 9-39

Network Map. 9-40

Path State. 9-40

Performance Monitoring. 9-39

Performance Status Report. 9-39

Provisioning. 9-38

State, Circuit Packs. 9-39

TCA Summary. 9-39

Requirements

Earthquake. 10-55

EMC. 10-55

Power. 10-56

Power (NBS). 10-64

Restart

Power Loss. 10-46

Retainer Card

177A Retainer. 7-29

RGU

Circuit Pack Description. 7-92

Ring Networks. 10-45

Ring Topologies. 2-3

OC-12 Path Switched Ring. 2-7

Ringing Generator Units

Narrowband Shelf. 4-11

Rings

ACTIVE LED on. 9-21

Cross-Connection Provisioning. 8-22

Dual-Homed Ring Interworking Application. 9-19

OC-1 and OC-3 VT1.5 Single-Homed Path Switched Ring. 8-38

OC-3/OC-1 Path Switched Ring (0x1). 9-17

OC-3/OC-1 Ring Interworking. 9-17

Path Protection Scheme. 9-15

Path Protection Switching. 9-14

Single-Homed Interworking Application. 9-18

Status of ACTIVE LED on. 9-21

Routing

Hairpin Local Drop. 2-24

OC-1 Ring Hairpin Routing, Dual-Homed. 2-23

OC-1 Ring Hairpin Routing, Single-Homed. 2-22
OC-1 Ring Pass-Through, 2-21
Routing, Enhanced, 2-20

S

Safety
Cautions, xlv
Dangers, xlv
Enclosed Systems Precautions, xlviii
ESD Considerations, li
Grounding Jacks, lii
Instructions, xlvii, lii, liv
Labels, xlv
Laser Information, xlv
Lasers and Eye Damage, xlvii
Lightwave Guidelines, xlv
Lightwave Precautions, xlviii
Lightwave Safety Guidelines, xlv
Product Labels, xlv
Surge Protection Shelf, l
T1EXT Lightning Shelf, l
Unenclosed Systems Precautions, l
Warnings, xlv
Wrist Straps, lii

SCADA, 2-64
Secured-Area Telecommunication Applications Cabinet
See STAC System, 3-37
Security, 8-4, 8-58
Administration, 8-4

Service Affecting Actions, 8-8
Service Applications
Using 28-Type OLIU for Release 2.2, 2-34
Using 28-Type OLIU for Release 3.1, 2-39
Using 29-Type OLIU Release 4.0, 2-43
Service Provisioning
FiberReach Narrowband Shelf ONU, 8-61

Shelf
Circuit Pack Keying, 3-7
Configurations, 3-1
Craft Interface Port, 9-5
Descriptions, 3-1
Front Access, 3-1
Fuses, 10-56, 10-64
Signal Performance, 10-44
Signaling Mode, 10-49
Single Homing to Linear DDM-2000 OC-3 Networks, 2-16
Single-Homed Access via Backbone Ring, 2-10
Single-Homed Interworking Application, 9-18
Single-Homed Path-Switched Ring Example, 8-38
SLC LineReach Access System, 1-5, 2-60
SLC-2000 Access System
Basic Description, 1-2
Software and Circuit Pack Compatibility, 8-15
Software Compatibility, 8-6, 8-14
Software Download
Personal Computer Specifications, 10-50
Software Download and Copy, Remote, 8-2
Software Downloads and Upgrades, 8-58
Software Upgrades, 8-2
SONET
Demultiplexing Procedure, A-11, A-12
Digital Multiplexing Schemes, A-12
Frame Structure, A-6
Higher Rate Transport, A-20
History, A-1
Interface, A-18
Layers, A-4
Line Overhead, A-7
Multiplexing, A-6
Multiplexing Procedure, A-10
Overhead Bytes, 10-44
Path Overhead, A-8
Payloads, A-18
Purpose, A-2
Section Overhead, A-6
Signal Hierarchy, A-2
Transport (SLC LineReach), 2-60
Transport, Integrated Configuration, 2-60
Virtual Tributary Signals, A-15

Sparing Guidelines, 10-39
Specifications
22D-U OLIUs, 10-13
22F/22F-U/22F2-U OLIU, 10-17
22G-U/22G2-U/22G3-U/22G4-U OLIUs, 10-18
26G2-U OLIU, 10-22
28G-U/28G2-U OLIU, 10-27
29G-U OLIU, 10-31
29H-U OLIU, 10-32
CPro-2000 Graphical User Interface and Provisioning Tool, 10-51
Craft Interface Terminal, 10-49
Delay, 10-46
Digital Data Performance, 10-49
DS1 Low-Speed (BBF1B), 10-2
DS1PM Low-Speed (BBF3/BBF3B), 10-3
DS3 Low-Speed (BBG19), 10-7
DS3 Low-Speed (BBG4/4B), 10-5
DS3 Low-Speed (BBG4/BBG4B), 10-5
Electrical Interfaces, 10-2
Environmental, 10-55
Equipment Indicators, 10-52
External Transmission Interfaces, OC-3, 10-1
HDSL Interface (BBF8), 10-49
Lightguide Jumpers, 10-12
Lucent 2000 Product Family OI, 10-53
Modems, 10-51
Narrowband Shelf, 10-64
OC-3 Optical Interface Mixing, 10-36
Office Alarms, 10-53
Index

Operations Interfaces, 10-49
Optical Interfaces, 10-12
Performance Monitoring, 10-47
Personal Computer for Software Download, 10-50
Physical, 10-54
Physical (NBS), 10-64
Protection Switching, 10-45
Signal Performance, 10-44
Signaling, 10-49
Signaling Mode, 10-49
Sparing Guidelines, 10-39
T1 Carrier Low-Speed (BBF6 T1EXT), 10-8
Terminal-to-Terminal Voice-Frequency Transmission, 10-65
TL1/X.25 Interface, 10-53
Transmission Specifications (NBS), 10-65
Universal Optical Connectors, 10-42
User Panel, 10-52
Wander/Jitter, 10-44
Specifications, Technical, 10-1
STAC System, 3-37
Construction, 3-38
Reliability, 3-38
Stand-Alone OC-T Ring/Hub Networks, 2-17
STS Pointer Justification Count, 9-30
STS Pointer Justification Count, 9-30
STS-1 Path Coding Violations (B3 Parity), 9-31
STS-1 Path Parameters, 9-31
STS-3c 0 X1
Wideband Shelf Configuration, 3-30
STS-3c 0X1 Optical Interface, 2-45
Subnetwork, SONET, Definition, 9-2
Supervisory Control and Data Acquisition Communications for Electric Utilities, 2-64
Support
Customer Support and Operations, lxviii
Document Comments, lxvi
Documentation, lxvi
Engineering and Installation Services, lxvii
Technical for Customer, lxvi
Transmission Systems Technical Support Services, lxix
Switch Settings
BBF1B DS1 Circuit Pack, 7-18
BBF3/BBF3B DS1PM Circuit Pack, 7-26
BBF6 T1EXT Circuit Pack, 7-43
BBF8 Circuit Pack, 7-60
BBG19 DS3 Circuit Pack, 7-51
BBG4B DS3 Circuit Pack, 7-35
DS1 Circuit Pack, 7-18
Switching
Protection, 9-14, 10-45
Synchronization, 5-1, 5-7
External Timing/Line Timing Configuration, 5-9
Free Running/Line Timed Network, 5-7
Line Timing, 5-7
Line Timing/Line Timing Configuration, 5-11
Manual Timing Pack Switch, 5-7
Subnetwork Configurations, 5-7
Subnetwork configurations, 5-7
Timing Distribution, 5-12
Synchronization Messaging, 5-14, 9-21
Automatic Synchronization Reconfiguration, 5-14
Examples, 5-17
Feature Details and Options, 5-15
Provisioning Integrity, 5-15
Reconfiguration in an Access Ring, 5-17
Synchronization Reference Protection, 9-21
SYSCTL, 7-1
System
Introduction, 1-1

T

T1 Carrier Low-Speed (BBF6 T1EXT), 10-8
T1 Extensions, 3-19
Lightning and Surge Protection Assembly, 3-15
Wideband Shelf, 3-19
T1 Extensions and DS1 Service
Wideband Shelf Configuration, 3-22
T1 Services, 2-9, 2-54
T1 Transmission Interface, 5-2
T1EXT Lightning Shelf, 7-1
TARP, xli, 9-7
Provisioning, 8-16
Technical Specifications, 10-1
Technical Support, Customer, lxvi
Teleprotection for Electric Utilities, 2-64
Tests
Automated Installation, 9-23
Loopbacks, 9-22
Manual, 9-23
Operations Interface, 9-23
Test Signal Generators, 9-23
Transmission, 9-23
Three-Tiered Operations, 9-3
Threshold Crossing Alert (TCA), 9-37
Thresholds
Performance Monitoring, 10-47
TIDs, 9-40
Timing Mode
Holdover, 9-22
TL1/X.25, 9-6
Interlace, 6-14, 10-53
Messages, 6-14
Transient Performance, 10-46
Transmission, 5-1
Availability, 10-59
Demultiplexing, 5-2
Interface, 5-1
Multiplexing, 5-2
Index

Optical Interface, 7-62
Specifications (NBS), 10-65
Start-Up on Signal Application, 10-46
Transmission and Architecture, 5-2
Transmission Circuit Packs
Narrowband Shelf, 4-10
Transmission Interface
DS1, 5-1
OC-1/OC-3/OC-12, 5-1
T1, 5-2
Transmission Specifications
Multiparty and FSR Channel Units, 10-68
VF Channel Units with Adjustable Settings, 10-72
Transmission Tests, 9-23

U

Uncontrolled Environments
Hardened, 10-55
Underwriters Laboratories, Specifications, 10-56
Universal Optical Connector, 10-36
Universal Optical Connectors, 10-42
UPD/INIT Pushbutton, 6-11
Upgrades, 9-10
Inservice, 9-10
Software, 9-10
User Panel, 6-8
Indicators, 10-52
LEDs, 6-10
Wander/Jitter, 10-44
Wideband Shelf
-48 V Battery Powering, 4-1
Administration, 8-1
Circuit Packs, 7-1
Configuration, 3-16
Configurations, 2-9
Description, 3-1
DS1 Services, 3-17
DS1/DS1PM Circuit Pack, 4-6
FiberReach Multiplexer, 1-3
Front Panel, 3-7
Interfaces, 5-2
Maintenance, 9-1
Multiplexing, 5-2
OLIU Circuit Packs, 4-6
Operations Interfaces, 5-1
Optical Connectors, 3-1
Physical Characteristics, 10-54
Plug-Ins, 3-14
Power Architecture, 4-2
Protection Architectures, 5-4
Provisioning, 8-9
Specifications, 10-1
SYSCTL Circuit Pack, 4-6
T1 Extensions, 3-19
T1 Extensions and DS1 Service, 3-22
Wall Distant Terminal Powering, 4-4
Wall Mount Enclosure Options, 3-11
Wall Distant Terminal Powering, 4-4
Wrist Straps, ili
Static Control, ili

V

Version Recognition, 8-1
Administration, 8-1
Virtual Channel Unit Slot Concept (NBS), 8-65
VT
Performance Monitoring, 9-25
VT1.5 Path Parameters, 9-32

W

Wall Distant Terminal, 3-10
Powering, 4-4
Powering, Narrowband Shelf, 4-9