Nokia is a registered trademark of Nokia Corporation. Other products and company names mentioned herein may be trademarks or tradenames of their respective owners.

The information presented is subject to change without notice. No responsibility is assumed for inaccuracies contained herein.

© 2017 Nokia.

Contains proprietary/trade secret information which is the property of Nokia and must not be made available to, or copied or used by anyone outside Nokia without its written authorization. Not to be used or disclosed except in accordance with applicable agreements.
Table of Contents

1. **Getting Started** .. 13
 1.1 About This Guide ... 13
 1.2 Router Configuration Process .. 15

2. **Security** .. 17
 2.1 Authentication, Authorization, and Accounting 17
 2.1.1 Authentication .. 18
 2.1.1.1 Local Authentication .. 19
 2.1.1.2 RADIUS Authentication .. 20
 2.1.1.3 TACACS+ Authentication 24
 2.1.1.4 LDAP Authentication .. 25
 2.1.2 Authorization .. 32
 2.1.2.1 Local Authorization ... 32
 2.1.2.2 RADIUS Authorization .. 32
 2.1.2.3 TACACS+ Authorization 33
 2.1.3 Accounting .. 35
 2.1.3.1 RADIUS Accounting .. 36
 2.1.3.2 TACACS+ Accounting .. 36
 2.2 Security Controls ... 37
 2.2.1 When a Server Does Not Respond 37
 2.2.2 Access Request Flow ... 38
 2.3 Centralized CPU Protection .. 39
 2.3.1 CPU Protection Extensions for ETH-CFM 42
 2.3.2 ETH-CFM Ingress Squelching 45
 2.4 Distributed CPU Protection (DCP) 48
 2.4.1 Applicability of Distributed CPU Protection 50
 2.4.2 Log Events, Statistics, Status and SNMP support 51
 2.4.3 DCP Policer Resource Management 51
 2.4.4 Operational Guidelines and Tips 52
 2.5 Classification-Based Priority for Extracted Protocol Traffic 54
 2.6 Vendor-Specific Attributes (VSAs) 56
 2.7 Other Security Features .. 57
 2.7.1 Secure Shell (SSH) .. 57
 2.7.2 SSH PKI Authentication .. 58
 2.7.2.1 Key Generation .. 59
 2.7.3 HMAC strengthening (SHA-224/256/384/512) 59
 2.7.4 MAC Client and Server List 60
 2.7.5 Regenerate the ssh-key without disabling SSH 60
 2.7.5.1 Key re-exchange procedure 61
 2.7.6 Per Peer CPM Queuing .. 62
 2.7.7 CPM Filters and Traffic Management 62
 2.7.8 TTL Security for BGP and LDP 63
 2.7.9 Exponential Login Backoff .. 64
 2.7.10 User Lockout .. 65
 2.7.11 CLI Login Scripts ... 65

Issue: 01
3HE 11979 AAAB TQZZA 01
2.7.12 802.1x Network Access Control ... 66
2.7.13 TCP Enhanced Authentication Option ... 66
2.7.13.1 Packet Formats ... 66
2.7.13.2 Keychain ... 68
2.7.14 gRPC Authentication .. 70
2.8 Configuration Notes .. 73
2.8.1 General ... 73
2.9 Configuring Security with CLI ... 75
2.9.1 Security Configurations ... 75
2.9.2 Security Configuration Procedures .. 76
2.9.2.1 Configuring Management Access Filters.. 76
2.9.2.2 Configuring IP CPM Filters Policy .. 77
2.9.2.3 Configuring MAC CPM Filters ... 78
2.9.2.4 Configuring IPv6 CPM Filters ... 78
2.9.2.5 Configuring CPM Queues ... 79
2.9.2.6 IPSec Certificates Parameters ... 80
2.9.2.7 Configuring Profiles ... 81
2.9.2.8 Configuring Users ... 86
2.9.2.9 Configuring Keychains ... 86
2.9.2.10 Copying and Overwriting Users and Profiles ... 87
2.9.3 RADIUS Configurations ... 91
2.9.3.1 Configuring RADIUS Authentication .. 91
2.9.3.2 Configuring RADIUS Authorization ... 92
2.9.3.3 Configuring RADIUS Accounting .. 92
2.9.4 Configuring 802.1x RADIUS Policies ... 93
2.9.5 TACACS+ Configurations .. 94
2.9.5.1 Enabling TACACS+ Authentication ... 94
2.9.5.2 Configuring TACACS+ Authorization .. 94
2.9.5.3 Configuring TACACS+ Accounting ... 95
2.9.5.4 Enabling SSH ... 95
2.9.6 LDAP Configurations ... 96
2.9.6.1 Configuring LDAP Authentication .. 96
2.9.6.2 Configuring Redundant Servers .. 97
2.9.6.3 Enabling SSH ... 98
2.9.7 Configuring Login Controls .. 98
2.10 Security Configuration Command Reference ... 101
2.10.1 Command Hierarchies ... 101
2.10.1.1 Security Commands .. 101
2.10.1.2 Login Control Commands ... 118
2.10.2 Command Descriptions .. 119
2.10.2.1 General Security Commands .. 120
2.10.2.2 LLDP Commands ... 125
2.10.2.3 Login, Telnet, SSH and FTP Commands ... 127
2.10.2.4 Management Access Filter Commands .. 140
2.10.2.5 Password Commands ... 155
2.10.2.6 Public Key Infrastructure (PKI) Commands 166
2.10.2.7 Profile Management Commands ... 182
2.10.2.8 User Management Commands ... 185
2.10.2.9 CLI Session Management Commands ... 195
3.4.3 Configuring SNMP Components ...335
3.4.3.1 Configuring a Community String..335
3.4.3.2 Configuring View Options ..336
3.4.3.3 Configuring Access Options ..336
3.4.3.4 Configuring USM Community Options ...337
3.4.3.5 Configuring Other SNMP Parameters ...338
3.5 SNMP Configuration Command Reference...339
3.5.1 Command Hierarchies...339
3.5.1.1 SNMP System Commands..339
3.5.1.2 SNMP Security Commands...339
3.5.2 Command Descriptions ...340
3.5.2.1 SNMP System Commands..340
3.5.2.2 SNMP Security Commands...340
3.6 SNMP Show Command Reference...353
3.6.1 Command Hierarchies...353
3.6.1.1 Show Commands ..353
3.6.2 Command Descriptions ...353
3.6.2.1 Show Commands ..353

4 NETCONF ..375
4.1 NETCONF Overview ...375
4.2 NETCONF in SR OS ...377
4.2.1 YANG Data Models ...377
4.2.2 Transport and Sessions...379
4.2.3 Datastores and URLs ..380
4.2.4 NETCONF Operations and Capabilities..382
4.2.4.1 <get> ...383
4.2.4.2 <get-config>...385
4.2.4.3 <edit-config>..385
4.2.4.4 <copy-config> and <delete-config> ...385
4.2.4.5 <lock>..386
4.2.4.6 <unlock>..387
4.2.4.7 <commit>...388
4.2.4.8 <discard-changes>..388
4.2.4.9 <validate>..388
4.2.5 Data Model, Datastore and Operation Combinations..............................389
4.2.6 General NETCONF Behavior ...389
4.2.6.1 System-Provisioned Configuration (SPC) Objects399
4.3 Establishing a NETCONF Session..402
4.4 XML Content Layer..404
4.4.1 <get> with XML Content Layer...404
4.4.2 <edit-config> with XML Content Layer ..406
4.4.3 <get-config> with XML Content Layer ...415
4.5 XML Content Layer Examples...423
4.6 CLI Content Layer ...427
4.7 CLI Content Layer Examples...428
4.8 NETCONF Configuration Command Reference433
4.8.1 Command Hierarchies...433
4.8.1.1 NETCONF System Commands...433
4.8.1.2 NETCONF Security Commands..433
4.8.2 Configuration Commands..434
4.8.2.1 NETCONF System Commands...434
4.8.2.2 NETCONF Security Commands..435
4.9 NETCONF Show Command Reference..437
4.9.1 Command Hierarchies...437
4.9.1.1 Show Commands ..437
4.9.2 Command Descriptions ...437
4.9.2.1 Show Commands ..437
4.10 NETCONF Admin Command Reference...441
4.10.1 Command Hierarchies...441
4.10.1.1 Admin Commands...441
4.10.2 Command Descriptions ...441
4.10.2.1 Admin Commands...441

5 Event and Accounting Logs ..443
5.1 Logging Overview..443
5.2 Log Destinations..445
5.2.1 Console ...445
5.2.2 Session..445
5.2.3 Memory Logs...446
5.2.4 Log Files..446
5.2.5 SNMP Trap Group...448
5.2.6 Syslog..448
5.3 Event Logs...451
5.3.1 Event Sources ...451
5.3.2 Event Control...453
5.3.3 Log Manager and Event Logs ...454
5.3.4 Event Filter Policies...454
5.3.5 Event Log Entries...456
5.3.6 Simple Logger Event Throttling ...457
5.3.7 Default System Log..458
5.3.8 Event Handling System..458
5.4 Customizing Syslog Messages Using Python ...467
5.4.1 Python Engine for Syslog ...467
5.4.1.1 Python Syslog APIs ..468
5.4.1.2 Timestamp Format Manipulation ..471
5.4.2 Python Processing Efficiency ...472
5.4.3 Python Backpressure...473
5.4.4 Event Selection for Python Processing ..473
5.4.5 Modifying a Log File...474
5.4.6 Deleting a Log File..475
5.4.7 Modifying a File ID..476
5.4.8 Modifying a Syslog ID..477
5.4.9 Modifying an SNMP Trap Group ..478
5.4.10 Deleting an SNMP Trap Group ...478
5.4.11 Modifying a Log Filter ..479
5.4.12 Modifying Event Control Parameters..480
5.4.13 Returning to the Default Event Control Configuration.............................481
5.5 Accounting Logs ... 483
 5.5.1 Accounting Records ... 483
 5.5.2 Accounting Files .. 506
 5.5.3 Design Considerations .. 506
 5.5.4 Reporting and Time-Based Accounting 507
 5.5.5 User Configurable Records .. 507
 5.5.6 Overhead Reduction in Accounting: Custom Record 507
 5.5.7 Changing Statistics Only .. 508
 5.5.8 Configurable Accounting Records................................. 508
 5.5.9 Significant Change Only Reporting 508
 5.5.10 Immediate Completion of Records 509
 5.5.11 Record Completion for XML Accounting 509
 5.5.12 AA Accounting per Forwarding Class 509
 5.6 Configuration Notes .. 510
 5.7 Configuring Logging with CLI .. 511
 5.7.1 Log Configuration Overview .. 511
 5.7.2 Log Types ... 511
 5.7.3 Basic Log Configuration .. 512
 5.7.4 Common Configuration Tasks 512
 5.7.5 Configuring an Event Log .. 512
 5.7.6 Configuring a File ID .. 513
 5.7.7 Configuring an Accounting Policy 514
 5.7.8 Configuring Event Control .. 515
 5.7.9 Configuring a Log Filter ... 515
 5.7.10 Configuring an SNMP Trap Group 516
 5.7.11 Configuring a Syslog Target 521
 5.8 Log Configuration Command Reference 525
 5.8.1 Command Hierarchies .. 525
 5.8.1.1 Log Configuration Commands 525
 5.8.1.2 Accounting Policy Commands 526
 5.8.1.3 Custom Record Commands .. 526
 5.8.1.4 File ID Commands .. 529
 5.8.1.5 Event Filter Commands .. 529
 5.8.1.6 Event Handling System (EHS) Commands 530
 5.8.1.7 Event Trigger Commands .. 530
 5.8.1.8 Log ID Commands ... 531
 5.8.1.9 SNMP Trap Group Commands 531
 5.8.1.10 Syslog Commands .. 532
 5.8.2 Command Descriptions ... 532
 5.8.2.1 Generic Commands ... 533
 5.8.2.2 Log Configuration Commands 534
 5.8.2.3 File ID Commands .. 538
 5.8.2.4 Log Filter Commands ... 542
 5.8.2.5 Log Filter Entry Commands 543
 5.8.2.6 Log Filter Entry Match Commands 544
 5.8.2.7 Event Handling System (EHS) Commands 549
 5.8.2.8 Event Trigger Commands ... 551
 5.8.2.9 Syslog Commands .. 553
 5.8.2.10 SNMP Trap Groups ... 559
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.2.11</td>
<td>Accounting Policy Commands</td>
<td>568</td>
</tr>
<tr>
<td>5.9</td>
<td>Log Command Reference</td>
<td>593</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Command Hierarchies</td>
<td>593</td>
</tr>
<tr>
<td>5.9.1.1</td>
<td>Show Commands</td>
<td>593</td>
</tr>
<tr>
<td>5.9.1.2</td>
<td>Clear Command</td>
<td>593</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Command Descriptions</td>
<td>594</td>
</tr>
<tr>
<td>5.9.2.1</td>
<td>Show Commands</td>
<td>594</td>
</tr>
<tr>
<td>5.9.2.2</td>
<td>Clear Commands</td>
<td>621</td>
</tr>
<tr>
<td>6</td>
<td>sFlow</td>
<td>623</td>
</tr>
<tr>
<td>6.1</td>
<td>sFlow Overview</td>
<td>623</td>
</tr>
<tr>
<td>6.2</td>
<td>sFlow Features</td>
<td>624</td>
</tr>
<tr>
<td>6.2.1</td>
<td>sFlow Counter Polling Architecture</td>
<td>624</td>
</tr>
<tr>
<td>6.2.2</td>
<td>sFlow Support on Logical Ethernet Ports</td>
<td>625</td>
</tr>
<tr>
<td>6.2.3</td>
<td>sFlow SAP Counter Map</td>
<td>626</td>
</tr>
<tr>
<td>6.2.4</td>
<td>sFlow Record Formats</td>
<td>626</td>
</tr>
<tr>
<td>6.3</td>
<td>sFlow Command Reference</td>
<td>631</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Command Hierarchies</td>
<td>631</td>
</tr>
<tr>
<td>6.3.1.1</td>
<td>System Commands</td>
<td>631</td>
</tr>
<tr>
<td>6.3.1.2</td>
<td>Show Commands</td>
<td>631</td>
</tr>
<tr>
<td>6.4</td>
<td>sFlow Configuration Command Descriptions</td>
<td>633</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Command Descriptions</td>
<td>633</td>
</tr>
<tr>
<td>6.4.1.1</td>
<td>System Commands</td>
<td>633</td>
</tr>
<tr>
<td>6.5</td>
<td>sFlow Show Command Descriptions</td>
<td>637</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Command Descriptions</td>
<td>637</td>
</tr>
<tr>
<td>6.5.1.1</td>
<td>Show Commands</td>
<td>637</td>
</tr>
<tr>
<td>7</td>
<td>Telemetry</td>
<td>641</td>
</tr>
<tr>
<td>7.1</td>
<td>Telemetry Overview</td>
<td>641</td>
</tr>
<tr>
<td>7.2</td>
<td>About Telemetry</td>
<td>642</td>
</tr>
<tr>
<td>7.2.1</td>
<td>gRPC in Telemetry</td>
<td>642</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Operations Layer</td>
<td>645</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Schema Paths</td>
<td>647</td>
</tr>
<tr>
<td>7.3</td>
<td>Telemetry Examples</td>
<td>650</td>
</tr>
<tr>
<td>7.4</td>
<td>gRPC Command Reference</td>
<td>657</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Command Hierarchies</td>
<td>657</td>
</tr>
<tr>
<td>7.4.1.1</td>
<td>System Commands</td>
<td>657</td>
</tr>
<tr>
<td>7.4.1.2</td>
<td>QoS Commands</td>
<td>657</td>
</tr>
<tr>
<td>7.5</td>
<td>Telemetry Configuration Command Descriptions</td>
<td>659</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Command Descriptions</td>
<td>659</td>
</tr>
<tr>
<td>7.5.1.1</td>
<td>System Commands</td>
<td>659</td>
</tr>
<tr>
<td>7.5.1.2</td>
<td>QoS Commands</td>
<td>660</td>
</tr>
<tr>
<td>7.6</td>
<td>gRPC Show, Admin Command Reference</td>
<td>661</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Command Hierarchies</td>
<td>661</td>
</tr>
<tr>
<td>7.6.1.1</td>
<td>Show Commands</td>
<td>661</td>
</tr>
<tr>
<td>7.6.1.2</td>
<td>Admin Commands</td>
<td>661</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Command Descriptions</td>
<td>662</td>
</tr>
<tr>
<td>7.6.2.1</td>
<td>Show Commands</td>
<td>662</td>
</tr>
<tr>
<td>7.6.2.2</td>
<td>Admin Commands</td>
<td>664</td>
</tr>
</tbody>
</table>
8 TLS .. 667
 8.1 TLS Overview.. 667
 8.2 TLS Server Interaction with Applications.. 668
 8.2.1 TLS Application Support... 668
 8.3 TLS Handshake.. 669
 8.4 TLS Client Certificate.. 671
 8.5 TLS Symmetric Key Rollover.. 672
 8.6 Supported TLS Ciphers... 673
 8.7 SR OS Certificate Management.. 674
 8.7.1 Certificate Profile.. 674
 8.7.2 TLS Server Authentication of the Client Certificate CN Field.............. 675
 8.7.3 CN Regexp Format.. 675
 8.8 Operational Guidelines... 676
 8.8.1 Server Authentication Behavior.. 676
 8.9 LDAP Redundancy and TLS.. 678
 8.10 Basic TLS Configuration.. 681
 8.11 Common Configuration Tasks... 683
 8.11.1 Configuring a Server TLS Profile.. 683
 8.11.2 Configuring a Client TLS Profile.. 683
 8.11.3 Configuring a TLS Client or TLS Server Certificate.......................... 683
 8.11.4 Configuring a TLS Trust Anchor... 684
 8.12 TLS Command Reference.. 687
 8.12.1 Command Hierarchies... 687
 8.12.1.1 Security TLS Commands.. 687
 8.12.1.2 LDAP TLS Profile Commands.. 688
 8.12.1.3 Admin Commands.. 688
 8.12.2 Command Descriptions... 688
 8.12.2.1 Security TLS Commands.. 688
 8.12.2.2 LDAP TLS Profile Commands.. 696
 8.12.2.3 Admin Commands.. 697
 8.13 TLS Show Command Reference... 699
 8.13.1 Command Hierarchies... 699
 8.13.1.1 Show Commands... 699
 8.13.2 Command Descriptions... 699
 8.13.2.1 Show Commands... 699
 9 Facility Alarms.. 703
 9.1 Facility Alarms Overview... 703
 9.2 Facility Alarms vs. Log Events.. 704
 9.3 Facility Alarm Severities and Alarm LED Behavior............................... 706
 9.4 Facility Alarm Hierarchy... 707
 9.5 Facility Alarm List.. 708
 9.6 Configuring Logging with CLI.. 721
 9.6.1 Basic Facility Alarm Configuration.. 721
 9.6.2 Common Configuration Tasks... 721
 9.6.2.1 Configuring the Maximum Number of Alarms to Clear.................... 721
 9.7 Facility Alarms Configuration Command Reference............................... 723
 9.7.1 Command Hierarchies... 723
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7.1.1</td>
<td>Facility Alarm Configuration Commands</td>
<td>723</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Command Descriptions</td>
<td>723</td>
</tr>
<tr>
<td>9.7.2.1</td>
<td>Generic Commands</td>
<td>723</td>
</tr>
<tr>
<td>9.8</td>
<td>Facility Alarms Show Command Reference</td>
<td>725</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Command Hierarchies</td>
<td>725</td>
</tr>
<tr>
<td>9.8.1.1</td>
<td>Show Commands</td>
<td>725</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Command Descriptions</td>
<td>725</td>
</tr>
<tr>
<td>9.8.2.1</td>
<td>Show Commands</td>
<td>725</td>
</tr>
<tr>
<td>10</td>
<td>Standards and Protocol Support</td>
<td>727</td>
</tr>
</tbody>
</table>
1 Getting Started

1.1 About This Guide

This guide describes system concepts and provides configuration explanations and examples to configure SR-OS boot option file (BOF), file system and system management functions.

This guide is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

The topics and commands described in this document apply to the:

- 7450 ESS
- 7750 SR
- 7950 XRS
- VSR

Table 1 lists the available chassis types for each SR OS router.

Table 1 Supported SR OS Router Chassis Types

<table>
<thead>
<tr>
<th>7450 ESS</th>
<th>7750 SR</th>
<th>7950 XRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 7450 ESS-7/12 running in standard mode (not mixed-mode)</td>
<td>• 7450 ESS-7/12 running in mixed-mode (not standard mode)</td>
<td>• 7950 XRS-16c</td>
</tr>
<tr>
<td></td>
<td>• 7750 SR-a4/a8</td>
<td>• 7950 XRS-20/40</td>
</tr>
<tr>
<td></td>
<td>• 7750 SR-c4/c12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7750 SR-1e/2e/3e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7750 SR-7/12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7750 SR-12e</td>
<td></td>
</tr>
</tbody>
</table>

For a list of unsupported features by platform and chassis, refer to the SR OS R15.0.Rx Software Release Notes, part number 3HE 12060 000x TQZZA or the VSR Release Notes, part number 3HE 12092 000x TQZZA.

Command outputs shown in this guide are examples only; actual displays may differ depending on supported functionality and user configuration.
Note: This guide generically covers Release 15.0.Rx content and may contain some content that will be released in later maintenance loads. Refer to the SR OS R15.0.Rx Software Release Notes, part number 3HE 12060 000x TQZZA or the VSR Release Notes, part number 3HE 12092 000x TQZZA, for information on features supported in each load of the Release 15.0.Rx software.
1.2 Router Configuration Process

Table 2 lists the tasks necessary to configure system security and access functions and logging features on the 7450 ESS, 7750 SR, and 7950 XRS platforms. Each chapter in this book is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>System security</td>
<td>Configure system security</td>
<td>Security Configuration Procedures</td>
</tr>
<tr>
<td></td>
<td>Configure RADIUS</td>
<td>RADIUS Configurations</td>
</tr>
<tr>
<td></td>
<td>Configure TACACS+</td>
<td>TACACS+ Configurations</td>
</tr>
<tr>
<td></td>
<td>Configure LDAP</td>
<td>LDAP Configurations</td>
</tr>
<tr>
<td></td>
<td>Configure login controls</td>
<td>Configuring Login Controls</td>
</tr>
<tr>
<td>Network management</td>
<td>Configure SNMP elements.</td>
<td>Configuring SNMP with CLI</td>
</tr>
<tr>
<td>Secure network management</td>
<td>Configure NETCONF elements</td>
<td>NETCONF</td>
</tr>
<tr>
<td>Operational functions</td>
<td>Configure event and accounting logs</td>
<td>Configuring Logging with CLI</td>
</tr>
<tr>
<td>Data management</td>
<td>Configure sFlow elements</td>
<td>sFlow</td>
</tr>
<tr>
<td>Network monitoring</td>
<td>Configure telemetry</td>
<td>Telemetry</td>
</tr>
<tr>
<td>Network security</td>
<td>Configure TLS server and client</td>
<td>Common Configuration Tasks</td>
</tr>
<tr>
<td>Equipment monitoring</td>
<td>Configure facility alarms</td>
<td>Configuring Logging with CLI</td>
</tr>
</tbody>
</table>

Note: All features are supported on all SR OS platforms (7750 SR, 7450 ESS, and 7950 XRS) unless indicated otherwise.
2 Security

2.1 Authentication, Authorization, and Accounting

This chapter describes authentication, authorization, and accounting (AAA) used to monitor and control network access on routers. Network security is based on a multi-step process. The first step, authentication, validates a user’s name and password. The second step is authorization, which allows the user to access and execute commands at various command levels based on profiles assigned to the user.

Another step, accounting, keeps track of the activity of a user who has accessed the network. The type of accounting information recorded can include a history of the commands executed, the amount of time spent in the session, the services accessed, and the data transfer size during the session. The accounting data can then be used to analyze trends, and also for billing and auditing purposes.

You can configure routers to use local, Remote Authentication Dial In User Service (RADIUS), or Terminal Access Controller Access Control System Plus (TACACS+) security to validate users who attempt to access the router by console, Telnet, or FTP. You can select the authentication order which determines the authentication method to try first, second, and third.

The router supports the following security features:

- RADIUS can be used for authentication, authorization, and accounting
- TACACS+ can be used for authentication, authorization, and accounting
- Local security can be implemented for authentication and authorization

Figure 1 depicts end user access-requests sent to a RADIUS server. After validating the user names and passwords, the RADIUS server returns an access-accept message to the users on ALA-1 and ALA-2. The user name and password from ALA-3 could not be authenticated, thus access was denied.
2.1.1 Authentication

Authentication validates a user name and password combination when a user attempts to log in.

When a user attempts to log in through the console, Telnet, SSH, SCP, or FTP, the client sends an access request to a RADIUS, TACACS+, or local database.

Transactions between the client and a RADIUS server are authenticated through the use of a shared secret. The secret is never transmitted over the network. User passwords are sent encrypted between the client and RADIUS server which prevents someone snooping on an insecure network to learn password information.

If the RADIUS server does not respond within a specified time, the router issues the access request to the next configured servers. Each RADIUS server must be configured identically to guarantee consistent results.

If any RADIUS server rejects the authentication request, it sends an access reject message to the router. In this case, no access request is issued to any other RADIUS servers. However, if other authentication methods such as TACACS+ and/or local are configured, then these methods are attempted. If no other authentication methods are configured, or all methods reject the authentication request, then access is denied.
For the RADIUS server selection, round-robin is used if multiple RADIUS servers are configured. Although, if the first alive server in the list cannot find a user-name, the router does not re-query the next server in the RADIUS server list and denies the access request. It may get authenticated on the next login attempt if the next selected RADIUS server has the appropriate user-name. It is recommended that the same user databases are maintained for RADIUS servers in order to avoid inconsistent behavior.

The user login is successful when the RADIUS server accepts the authentication request and responds to the router with an access accept message.

Implementing authentication without authorization for the routers does not require the configuration of VSAs (Vendor Specific Attributes) on the RADIUS server. However, users, user access permissions, and command authorization profiles must be configured on each router.

Any combination of these authentication methods can be configured to control network access from a router:

- Local Authentication
- RADIUS Authentication
- TACACS+ Authentication
- LDAP Authentication

2.1.1.1 Local Authentication

Local authentication uses user names and passwords to authenticate login attempts. The user names and passwords are local to each router not to user profiles.

By default, local authentication is enabled. When one or more of the other security methods are enabled, local authentication is disabled. Local authentication is restored when the other authentication methods are disabled. Local authentication is attempted if the other authentication methods fail and local is included in the authentication order password parameters.

Locally, user names and password management information can be configured. This is referred to as local authentication. Remote security servers such as RADIUS or TACACS+, are not enabled.
2.1.1.2 RADIUS Authentication

Remote Authentication Dial-In User Service (RADIUS) is a client/server security protocol and software that enables remote access servers to communicate with a central server to authenticate dial-in users and authorize access to the requested system or service.

RADIUS allows you to maintain user profiles in a shared central database and provides better security, allowing a company to set up a policy that can be applied at a single administered network point.

2.1.1.2.1 RADIUS Server Selection

The RADIUS server selection algorithm is used by different applications:

- RADIUS operator management
- RADIUS authentication for Enhanced Subscriber Management
- RADIUS accounting for Enhanced Subscriber Management
- RADIUS PE-discovery

In all these applications, up to 5 RADIUS servers pools (per RADIUS policy, if used) can be configured.

The RADIUS server selection algorithm can work in 2 modes, either Direct mode or Round-robin mode.

Direct Mode

The first server is used as the primary server. If this server is unreachable, the next server, based on the server index, of the server pool is used. This continues until either all servers in the pool have been tried or an answer is received.

If a server is unreachable, it will not be used again by the RADIUS application for the next 30 seconds to allow the server to recover from its unreachable state. After 30 seconds the unreachable server is available again for the RADIUS application. If in these 30 seconds the RADIUS application receives a valid response for a previously sent RADIUS packet on that unreachable server, the server will be available for the RADIUS application again, immediately after reception of that response.
Round-Robin Mode

The RADIUS application sends the next RADIUS packet to the next server in the server pool. The same server non-reachability behavior is valid as in the Direct mode.

Server Reachability Detection

A server is reachable, when the operational state UP, when a valid response is received within a timeout period which is configurable by the retry parameter on the RADIUS policy level.

A server is treated as not-reachable, when the operational state down, when the following occurs:

- A timeout — If a number of consecutive timeouts are encountered for a specific server. This number is configurable by the retry parameter on RADIUS policy level.
- A send failed — If a packet cannot be sent to the RADIUS server because the forwarding path towards the RADIUS server is broken (for example, the route is not available, the is interface shutdown, etc.), then, no retry mechanism is invoked and immediately, the next server in line is used.

A server that is down can only be used again by the RADIUS algorithm after 30 seconds, unless, during these 30 seconds a valid RADIUS reply is received for that server. Then, the server is immediately marked UP again.

The operational state of a server can also be "unknown" if the RADIUS application is not aware of the state of the RADIUS server (for example, if the server was previously down but no requests had been sent to the server, thus, it is not certain yet whether the server is actually reachable).

Application Specific Behavior

Operator Management

The server access mode is fixed to Round-Robin (Direct cannot be configured for operator management). A health-check function is available for operator management, which can optionally be disabled. The health-check polls the server once every 10 seconds with an improbable user name. If the server does not respond to this health-check, it will be marked down.
If the first server in the list cannot find a user, the next server in the RADIUS server list is not queried and access is denied. If multiple RADIUS servers are used, it is assumed they all have the same user database.

RADIUS Authentication

If the first server in the list cannot find a user, the next server in the RADIUS server list is not queried and access is denied. If multiple RADIUS servers are used, it is assumed they all have the same user database.

RADIUS Challenge/Response Interactive Authentication

Challenge-response interactive authentication is used for key authentication where the RADIUS server is asking for the valid response to a displayed challenge. The challenge packet includes a challenge to be displayed to the user, such as a unique generated numeric value unlikely ever to be repeated. Typically this is obtained from an external server that knows what type of authenticator is in the possession of the authorized user and can therefore choose a random or non-repeating pseudorandom number of appropriate length.

The user then enters the challenge into his device (or software) and it calculates a response, which the user enters into the client which forwards it to the RADIUS server within an access request. If the response matches the expected response, the RADIUS server allows the user access, otherwise it rejects the response.

RADIUS challenge/response mode is enabled using the CLI interactive-authentication command in the config>system>security>radius context. RADIUS interactive authentication is disabled by default. The option needs to be enabled using CLI.

Enabling interactive authentication under CLI does not mean that the system uses RADIUS challenge/response mode by default. The configured password authentication-order parameter is used. If the authentication-order parameter is local RADIUS, the system will first attempt to login the user using local authentication. If this fails, the system will revert to RADIUS and challenge/response mode. The authentication-order will precede the RADIUS interactive-authentication mode.
Even if the authentication-order is RADIUS local, the standard password prompt is always displayed. The user enters a username and password at this prompt. If RADIUS interactive-authentication is enabled the password does not have to be the correct password since authentication is accomplished using the RADIUS challenge/response method. The user can enter any password. The username and password are sent to the RADIUS server, which responds with a challenge request that is transmitted back to the node by the RADIUS server. Once the user enters the challenge response, the response is authenticated by the RADIUS server to allow node access to the user.

For example, if the system is configured with system security authentication-order set to local RADIUS, at the login prompt the user can enter the username “admin” and the corresponding password. If the password for local authentication does not match, the system falls into RADIUS authentication mode. The system checks the interactive-authentication configuration and if it is enabled it enters into challenge/response mode. It sends the username and password to the RADIUS server, and the server sends the challenge request back to the node and to the user where it appears as a challenge prompt on screen. A challenge received from the RADIUS server typically contains a string and a hardware token that can be used to generate a password on the users’ local personal token generator. For example, the RADIUS server might send the challenge prompt “Enter response for challenge 12345:” to the SR OS. The string “12345” can be entered in the local token generator which generates the appropriate challenge response for the entered string. This challenge response can then be entered on the SR OS prompt for authorization.

Once the user enters the correct challenge response it is authenticated using the RADIUS server. The server authenticates the user and the user gains access to the node.

If session timeout and Idle timeout values are configured on the RADIUS server, these are used to govern the length of time before the SR OS cancels the challenge prompt. If the user is idle longer than the received idle-timeout (seconds) from the RADIUS server, and/or if the user does not press ENTER before the received session-timeout (seconds).

Note: For SSH only the session-timeout value is used. The SSH stack cannot track character input into the login prompt until the enter key is pressed.

If the idle/session attribute is not available or if the value is set to a very large number, the SR OS uses the smallest value set in “configure system login-control idle-timeout” and the idle/session timeout attribute value to terminate the prompt. If the “login-control idle-timeout” is set to 0 (equivalent to infinite), the maximum idle-timeout (24-hours) is used for the calculation.
The SR OS displays the log-in attempts/failure per user in the “show system security user user-name” screen. If the RADIUS rejects a challenge response, it counts as a failed login attempt and a new prompt is displayed. The number of failed attempts is limited by the value set for “configure system security password attempt.” An incorrect challenge response results in a failure count against the password attempts.

RADIUS Accounting

RADIUS accounting can be used for two purposes:

- CLI command accounting
- Enhanced Subscriber Management subscriber host accounting

The RADIUS accounting application will try to send all the accounting records of a subscriber host to the same RADIUS server. If that server is down, then the records are sent to the next server, and from that moment on, the RADIUS application uses that server as the destination for accounting records for that subscriber host. Enhanced Subscriber Management applies to the 7750 SR platform.

RADIUS PE-Discovery

If the first server in the list cannot find a user, the next server in the RADIUS server list is not queried and access is denied. If multiple RADIUS servers are used, it is assumed they all have the same user database.

The RADIUS PE-discovery application makes use of a 10 second time period instead of the generic 30 seconds and uses a fixed consecutive timeout value of 2 (see Server Reachability Detection).

As long as the Session-Timeout (attribute in the RADIUS user file) is specified, it is used for the polling interval. Otherwise, the configured polling interval will be used (60 seconds by default).

2.1.1.3 TACACS+ Authentication

Terminal Access Controller Access Control System, commonly referred to as TACACS is an authentication protocol that allows a remote access server to forward a user's logon password to an authentication server to determine whether access can be allowed to a given system. TACACS is an encryption protocol and therefore less secure than the later Terminal Access Controller Access Control System Plus (TACACS+) and RADIUS protocols.
TACACS+ and RADIUS have largely replaced earlier protocols in the newer or recently updated networks. TACACS+ uses Transmission Control Protocol (TCP) and RADIUS uses the User Datagram Protocol (UDP). TACACS+ is popular as TCP is thought to be a more reliable protocol. RADIUS combines authentication and authorization. TACACS+ separates these operations.

2.1.1.4 LDAP Authentication

Lightweight Directory Access Protocol (LDAP) can provide authentication, authorization, and accounting (AAA) functionality using in-band-management, and can allow users to access the full virtualized data center and networking devices. SR OS currently supports LDAP provision of a centralized authentication method with public key management. The authentication method is based on SSH public keys or keyboard authentication (username, password).

Administrators can access networking devices with one private key; public keys are usually saved locally on the SSH server. Proper key management is not feasible with locally-saved public keys on network devices or on virtual machines, as this would result in hundreds of public keys distributed on all devices. LDAPv3 provides a centralized key management system that allows for secure creation and distribution of public keys in the network. Public keys can be remotely saved on the LDAP server, which makes key management much easier, as shown in Figure 2.

Figure 2 Key Management

The administrator starts an SSH session through an SSH client using their private key. The SSH client for the authentication method sends a signature created with the user’s private key to the router. The router authenticates the signature using the user’s public key and gives access to the user. To access the public key, the router looks up the public key stored on the LDAP server instead of a locally-saved key stored on the router. Communication between the router and the LDAP server should be secured with LDAP over SSL/STL (LDAPS). After successful authentication, LDAP returns a set of public keys that can be used by the router to verify the signature.
LDAP is integrated into the SR OS as an AAA protocol alongside existing AAA protocols, such as RADIUS and TACACS+. The AAA framework provides tools and mechanisms (such as method lists, server groups, and generic attribute lists) that enable an abstract and uniform interface to AAA clients, irrespective of the actual protocol used for communication with the AAA server.

The authentication functions are:

- Public key authentication — The client tries to SSH to the SR OS using public keys. Public keys can be stored locally or on the LDAP server and retrieved as needed to authenticate the user.
- Password authentication — Keyboard interactive
 The LDAP server can be used for user authentication using keyboard interactive, as with simple user name and password authentication.

2.1.1.4.1 LDAP Authentication Process

A client starts an LDAP session by connecting to an LDAP server, called a Directory System Agent (DSA), which—by default—are on TCP port 389 and UDP port 636 for LDAP. The SR OS then sends an operation request to the server, and the server sends responses in return, as shown in Figure 3. With some exceptions, the client does not need to wait for a response before sending the next request, and the server may send the responses in any order. All information is transmitted using Basic Encoding Rules (BER).

In the SR OS, the client can request the following operations:

- StartTLS — Uses the LDAPv3 Transport Layer Security (TLS) extension for a secure connection.
- Bind — Authenticates and specify the LDAP protocol version.
- Search — Searches for and retrieve directory entries.
- Unbind — Closes the connection (not the inverse of Bind).
The connection between the router as the LDAP client and the LDAP server should be encrypted using TLS, as all credentials between the router and LDAP are transmitted in clear text.

2.1.1.4.2 Authentication Order

SR OS supports local and LDAP public key storage, the order of which is configured using the `config>system>security>password>authentication-order` command.

Note: The SR OS sends available authentication methods to the client and supports public key and password authentication. If the client is configured using `public-key-authentication` then it will use the public key authentication method.

If the client chooses the public key and LDAP is first in authentication order, then the SR OS will try to authenticate using public key retrieval from the LDAP server. If the public key retrieval from LDAP server fails and `exit-on-reject` was not configured, the SR OS will try the next method (`local`) in authentication order for the public key. If the next method also fails, a user authentication fail message will be sent to the client.
If the public key retrieval from the LDAP server fails and **exit-on-reject** is configured, the SR OS will not try the next method in the authentication order. A user authentication fail message will be sent to the client. At this point, the client can be configured to only use public key authentication, or use both public key authentication followed by password authentication. If the client is configured to use password authentication, it will go through the authentication order again, (for example, it will try all the configured methods in the configured **authentication-order**) as long as **exit-on-reject** is not configured.

Authentication Order Public Key Detail

There are two keys for public key authentication: a private key stored on the client and a public key stored on the server (local) or AAA server (ldap). The client uses the private key to create a signature, which only the public key can authenticate. If the signature is authenticated using the public key, then the user is also authenticated and is granted access. SR OS can locally store, using CLI, as many as 32 RSA keys and 32 ECDHA keys for a single user. In total, the SR OS can load a maximum of 128 public keys in a single authentication attempt.

Note: The client creates a signature using a single private key, but this signature can be authenticated on the SR OS with maximum of 128 public keys in a single try. If all these public keys fail to authenticate, then a failure message will be sent to the client and the number of failed attempts will be incremented.

If the client has another private key, it can create a new signature with this new private key and attempt the authentication one more time, or switch to password authentication.

The following steps outline the procedure where the client attempts to authenticate using a public key and the authentication order is configured as ldap, then local.

Note: With each increment of failed attempts, the SR OS also checks the limit for lock-out. If the limit is reached, the user is locked out.

1. The SSH client opens a session and tries to authenticate the user with private-key-1 (creating signature-1 from private-key-1).
2. The SR OS checks the authentication order.
3. The SR OS loads public keys for the user, as follows.
 a. If **exit-on-reject** is not configured, the SR OS loads all public keys from the LDAP server and all public keys from the locally-saved location.
b. If exit-on-reject is configured, the SR OS only loads all public keys from the LDAP server and not from the locally-saved location.

4. The SR OS compares received client signature-1 with signature calculated from loaded public keys and attempts to find a match.
 a. If a match is found, the user is authenticated. The procedure ends.
 b. If no match is found, authentication fails and the SSH client is informed. The LDAP server waits for the SSH client's reaction.

5. The SSH client reacts in one of several ways.
 a. The connection is closed.
 b. The password authentication method is continued. In this case, on the SR OS, the number of failed authentication attempts is not incremented.
 c. The next public key is continued, as follows.
 i. If it is not 21st received public key, return to step 3.
 ii. If it is the 21st received public key, the number of failed authentication attempts is incremented and the connection is closed.

2.1.1.4.3 LDAP Authentication via Password

In addition to public key authentication, the SR OS supports password (keyboard) authentication using the LDAP server.

Note: TLS provides the encryption for password authentication.

In the following example, the client attempts to authenticate using a password and only ldap is configured in the authentication order.

1. The client uses telnet or SSH to reach the SR OS.
2. The SR OS retrieves the user name and password (in plain text).
3. The SR OS performs a bind operation to the LDAP server using the config>system>security>ldap>server>blind-operation command to set the root-dn and password variables.
4. The SR OS performs a search operation for the username on LDAP server.
 a. If the user name is found, LDAP sends user_distinguished_name to the router.
 b. If the user name is not found, the authentication fails. The attempt and failed attempt counters will be incremented.
5. The SR OS performs a bind operation to LDAP with user_distinguished_name and the password from step 2.

6. The LDAP server checks the password.
 a. If the password is correct, the bind operation succeeds. The failed attempt and successful attempt counters are incremented.
 b. If the password is incorrect, bind is unsuccessful and authentication fails. The attempt and failed attempt counters are incremented.

7. The SR OS sends a message to unbind from the LDAP server.

2.1.1.4.4 Timeout and Retry Configuration for the LDAP Server

The **retry** value is the maximum number of connection attempts that the SR OS can make to reach the current LDAP server before attempting the next server. For example, if the value is set to the default of 3, the SR OS will try to establish the connection to current server three times before attempting to establish a connection to the next server.

The **timeout** value is the number of seconds that the SR OS will wait for a response from the server with which it is attempting to establish a connection. If the server does not reply within the specified timeout value, the SR OS increments the **retry** counter by one. The SR OS attempts to establish the connection to the current server up to the configured **retry** value before moving to the next configured server.

2.1.1.4.5 TLS Behavior and LDAP

RFC 4511 section 4.14.1 states, “A client requests TLS establishment by transmitting a StartTLS request message to the server” and “The client MUST NOT send any LDAP PDUs at this LDAP message layer following this request until it receives a StartTLS Extended response”. As such, if an LDAP has a TLS profile configured and the TLS is in an operationally down state, no LDAP packets will be transmitted if TLS negotiation has not been completed, including when the TLS profile is shut down.

2.1.1.4.6 LDAP Health Check

The health check for LDAP is configured under `config>system>security>password`.
The **health-check** function, which can be disabled, is available for operator management. The health check polls the server at a specified interval (the default is 30 seconds). The SR OS health check attempts to establish a TCP connection to the LDAP server. The TCP connection is closed by an LDAP unbind message.

2.1.1.4.7 LDAP Redundancy and TLS

LDAP supports up to five redundant (backup) servers. Depending on the configuration of **timeout** and **retry** values, if an LDAP server is found to be out of service or operationally down, the SR OS will switch to the redundant servers. The SR OS will try the next LDAP server in the server list by choosing the next largest configured server index.

LDAP servers can use the same TLS profile or can have their own TLS profile. Each TLS profile can have a different configuration of **trust-anchor**, **cipher-list** and **cert-profile**. For security reasons, the LDAP server could be in different geographical areas and, as such, each will be assigned its own server certificate and trust anchor. The TLS profile design allows users to mix and match all components.

Redundant LDAP servers are shown in **Figure 4**.

Figure 4 LDAP and TLS Redundancy
2.1.2 Authorization

The SR OS supports local, RADIUS, and TACACS+ authorization to control the actions of specific users. Any combination of these authorization methods can be configured to control actions of specific users:

- Local Authorization
- RADIUS Authorization
- TACACS+ Authorization

Local authorization and RADIUS authorization operate by applying a profile based on user name and password configurations once network access is granted. The profiles are configured locally as well as VSAs on the RADIUS server. See Vendor-Specific Attributes (VSAs).

2.1.2.1 Local Authorization

Local authorization uses user profiles and user access information after a user is authenticated. The profiles and user access information specifies the actions the user can and cannot perform.

By default, local authorization is enabled. Local authorization is disabled only when a different remote authorization method is configured, such as TACACS+ or RADIUS authorization.

You must configure profile and user access information locally.

2.1.2.2 RADIUS Authorization

RADIUS authorization grants or denies access permissions for a router. Permissions include the use of FTP, Telnet, SSH (SCP), and console access. When granting Telnet, SSH (SCP) and console access to the router, authorization can be used to limit what CLI commands the user is allowed to issue and which file systems the user is allowed or denied access.

Once a user has been authenticated using RADIUS (or another method), the router can be configured to perform authorization. The RADIUS server can be used to:

- Download the user profile to the router
- Send the profile name that the node should apply to the router.
Profiles consist of a suite of commands that the user is allowed or not allowed to execute. When a user issues a command, the authorization server looks at the command and the user information and compares it with the commands in the profile. If the user is authorized to issue the command, the command is executed. If the user is not authorized to issue the command, then the command is not executed.

Profiles must be created on each router and should be identical for consistent results. If the profile is not present, then access is denied.

Table 3 displays the following scenarios:

- Remote (RADIUS) authorization cannot be performed if authentication is done locally (on the router).
- The reverse scenario is supported if RADIUS authentication is successful and no authorization is configured for the user on the RADIUS server, then local (router) authorization is attempted, if configured in the authorization order.

When authorization is configured and profiles are downloaded to the router from the RADIUS server, the profiles are considered temporary configurations and are not saved when the user session terminates.

<table>
<thead>
<tr>
<th>Supported Authorization Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
</tr>
<tr>
<td>Router configured user</td>
</tr>
<tr>
<td>RADIUS server configured user</td>
</tr>
<tr>
<td>TACACS+ server configured user</td>
</tr>
</tbody>
</table>

When using authorization, maintaining a user database on the router is not required. User names can be configured on the RADIUS server. User names are temporary and are not saved in the configuration when the user session terminates. Temporary user login names and their associated passwords are not saved as part of the configuration.

2.1.2.3 TACACS+ Authorization

TACACS+ authorization operates in one of three ways:

- All users who authenticate via TACACS+ can use a single common default profile that is configured on the SR OS, or
• Each command attempted by a user is sent to the TACACS+ server for authorization
• The operator can configure local profiles and map tacplus priv-lvl based authorization to those profiles (the use-priv-lvl option)

To use a single common default profile to control command authorization for TACACS+ users, the operator must configure the tacplus use-default-template option and configure the parameters in the user-template tacplus_default to point to a valid local profile.

If the default template is not being used for TACACAS+ authorization and the use-priv-lvl option is not configured, then each CLI command issued by an operator is sent to the TACACS+ server for authorization. The authorization request sent by the SR OS contains the first word of the CLI command as the value for the TACACS+ cmd and all following words become a cmd-arg. Quoted values are expanded so that the quotation marks are stripped off and the enclosed value are seen as one cmd or cmd-arg.

2.1.2.3.1 Examples

Here is a set of examples, where the following commands are typed in the CLI:

- “show”
- “show router”
- “show port 1/1/1”
- “configure port 1/1/1 description “my port”

This results in the following AVPairs:

```plaintext
cmd=show

cmd=show
cmd-arg=router

cmd=show
cmd-arg=port
cmd-arg=1/1/1

cmd=configure
cmd-arg=port
cmd-arg=1/1/1
cmd-arg=description
cmd-arg=my port
```

For TACACS+ authorization, the SR OS sends the entire CLI context in the cmd and cmd-arg values. Here is a set of examples where the CLI context is different:

- *A:dut-c# configure service*
- *A:dut-c>config>service# vprn 555 customer 1 create
- *A:dut-c>config>service>vprn$ shutdown

This results in the following AVPairs:

```
cmd =configure
cmd-arg=service

    cmd=configure
cmd-arg=service
cmd-arg=vprn
cmd-arg="555"
cmd-arg=customer
cmd-arg=1
    cmd-arg=create

    cmd=configure
    cmd-arg=service
    cmd-arg=vprn
    cmd-arg="555"
cmd-arg=customer
cmd-arg=1
cmd-arg=create
    cmd-arg=shutdown
```

2.1.3 Accounting

When enabled, RADIUS accounting sends command line accounting from the router to the RADIUS server. The router sends spars using UDP packets at port 1813 (decimal).

The router issues an accounting request packet for each event requiring the activity to be recorded by the RADIUS server. The RADIUS server acknowledges each accounting request by sending an accounting response after it has processed the accounting request. If no response is received in the time defined in the timeout parameter, the accounting request must be retransmitted until the configured retry count is exhausted. A trap is issued to alert the NMS (or trap receiver) that the server is unresponsive. The router issues the accounting request to the next configured RADIUS server (up to 5).

User passwords and authentication keys of any type are never transmitted as part of the accounting request.
2.1.3.1 RADIUS Accounting

Accounting tracks user activity to a specified host. When RADIUS accounting is enabled, the server is responsible for receiving accounting requests and returning a response to the client indicating that it has successfully received the request. Each command issued on the router generates a record sent to the RADIUS server. The record identifies the user who issued the command and the timestamp.

Accounting can be configured independently from RADIUS authorization and RADIUS authentication.

2.1.3.2 TACACS+ Accounting

The OS allows you to configure the type of accounting record packet that is to be sent to the TACACS+ server when specified events occur on the device. The `accounting record-type` parameter indicates whether TACACS+ accounting start and stop packets be sent or just stop packets be sent. Start/stop messages are only sent for individual commands, not for the session.

When a user logs in to request access to the network using Telnet or SSH, or a user enters a command for which accounting parameters are configured, or a system event occurs, such as a reboot or a configuration file reload, the router checks the configuration to see if TACACS+ accounting is required for the particular event.

If TACACS+ accounting is required, then, depending on the accounting record type specified, sends a start packet to the TACACS+ accounting server which contains information about the event.

The TACACS+ accounting server acknowledges the start packet and records information about the event. When the event ends, the device sends a stop packet. The stop packet is acknowledged by the TACACS+ accounting server.
2.2 Security Controls

You can configure routers to use RADIUS, TACACS+, and local authentication to validate users requesting access to the network. The order in which password authentication is processed among RADIUS, TACACS+ and local passwords can be specifically configured. In other words, the authentication order can be configured to process authorization through TACACS+ first, then RADIUS for authentication and accounting. Local access can be specified next in the authentication order in the event that the RADIUS and TACACS+ servers are not operational. The security methods capabilities are listed in Table 4.

Table 4 Security Methods Capabilities

<table>
<thead>
<tr>
<th>Method</th>
<th>Authentication</th>
<th>Authorization</th>
<th>Accounting*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

* Local commands always perform account logging using the `config log` command.

2.2.1 When a Server Does Not Respond

A trap is issued if a RADIUS + server is unresponsive. An alarm is raised if RADIUS is enabled with at least one RADIUS server and no response is received to either accounting or user access requests from any server.

Periodic checks to determine if the primary server is responsive again are not performed. If a server is down, it will not be contacted for 5 minutes. If a login is attempted after 5 minutes, then the server is contacted again. When a server does not respond with the health check feature enabled, the server's status is checked every 30 seconds. Health check is enabled by default. When a service response is restored from at least one server, the alarm condition is cleared. Alarms are raised and cleared on Nokia's Fault Manager or other third party fault management servers.

The servers are accessed in order from lowest to highest specified index (from 1 to 5) for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received, implying a lower indexed server is not available. If a response from the server is received, no other server is queried.
2.2.2 Access Request Flow

In Figure 5, the authentication process is defined in the config>system>security>password context. The authentication order is determined by specifying the sequence in which password authentication is attempted among RADIUS, TACACS+, and local passwords. This example uses the authentication order of RADIUS, then TACACS+, and finally, local. An access request is sent to RADIUS server 1. One of two scenarios can occur. If there is no response from the server, the request is passed to the next RADIUS server with the next lowest index (RADIUS server 2) and so on, until the last RADIUS server is attempted (RADIUS server 5). If server 5 does not respond, the request is passed to the TACACS+ server 1. If there is no response from that server, the request is passed to the next TACACS+ server with the next lowest index (TACACS+ server 2) and so on.

If a request is sent to an active RADIUS server and the user name and password is not recognized, access is denied and passed on to the next authentication option, in this case, the TACACS+ server. The process continues until the request is either accepted, denied, or each server is queried. Finally, if the request is denied by the active TACACS+ server, the local parameters are checked for user name and password verification. This is the last chance for the access request to be accepted.

Figure 5 Security Flow
2.3 Centralized CPU Protection

The SR OS provides several rate limiting mechanisms to protect the CPM/CFM processing resources of the router:

- Centralized CPU Protection: A centralized rate limiting function that operates on the CPM to limit traffic destined to the CPUs. For legacy (historical) reasons, the term “centralized CPU protection” is referred to as "CPU protection" in this guide, in the CLI, and elsewhere.
- Distributed CPU Protection: A control traffic rate limiting protection mechanism for the CPM/CFM that operates on the line cards (hence ‘distributed’). See Distributed CPU Protection (DCP) for more information.

CPU protection protects the CPU of the node that it is configured on from a DoS attack by limiting the amount of traffic coming in from one of its ports and destined to the CPM (to be processed by its CPU) using a combination of the configurable limits.

Some of the limits are configured globally for the node, and some of the limits are configured in CPU Protection profiles which are assigned to interfaces.

The following limits are configured globally for the node (but take effect per port or per interface):

- link-specific rate — Applies to the link-specific protocols LACP (Ethernet LAG control) and LMI (ATM, Ethernet and Frame Relay). The rate is a per-link limit (each link in the system will have LACP/LMI packets limited to this rate).
- port-overall-rate – Applies to all control traffic each port. The rate is a per-port limit (each port in the system will have control traffic destined to the CPM limited to this rate).
- protocol-protection — Blocks network control traffic for unconfigured protocols. If IS-IS is not configured on an IP interface all IS-IS-related traffic will be dropped and not reach the CPU.

The following limits are configured within CPU Protection policies (1-255). CPU Protection policies are created, configured, and then assigned to interfaces.

- overall-rate — Applies to all control traffic destined to the CPM (all sources) received on the interface (only where the policy is applied). This is a per-interface limit. Control traffic received above this rate will be discarded.
• per-source-rate — Used to limit the control traffic destined to the CPM from each individual source. This per-source-rate is only applied when an object (SAP) is configured with a cpu-protection policy and also with the optional mac-monitoring or ip-src-monitoring keywords. A source is defined as a SAP, Source MAC Address tuple for mac-monitoring and as a SAP, Source IP Address tuples for ip-src-monitoring. Only certain protocols (as configured under included-protocols in the cpu protection policy) are limited (per source) when the ip-src-monitoring keyword is used.

• out-profile-rate – Applies to all control traffic destined to the CPM (all sources) received on the interface (only where the policy is applied). This is a per-interface limit. Control traffic received above this rate will be marked as discard eligible (such as, out-profile/low-priority/yellow) and is more likely to be discarded if there is contention for CPU resources.

A three-color marking mechanism uses a green, yellow and red marking function. This allows greater flexibility in how traffic limits are implemented. A CLI command within the DoS protection policy called out-profile-rate maps to the boundary between the green (accept) and yellow (mark as discard eligible/low priority) regions. The overall-rate command marks the boundary between the yellow and red (drop) regions point for the associated policy (Figure 6).

Figure 6 Profile Marking

There are two default CPU protection policies. They are modifiable, but cannot be deleted.

Policy 254:
• This is the default policy that is automatically applied to access interfaces
• Traffic above 6000 pps is discarded
• overall-rate = 6000
• per-source-rate = max
• out-profile-rate = 6000

Policy 255:
• This is the default policy that is automatically applied to Network interfaces
• Traffic above 3000 pps is marked as discard eligible, but is not discarded unless there is congestion in the queuing towards the CPU
• overall-rate = max
• per-source-rate = max
• out-profile-rate = 3000

All traffic destined to the CPM and that will be processed by its CPU will be subject to the limit specified. Therefore, if there is a protocol running on the violating interface, then protocol traffic on that interface will be affected. The objective of CPU protection is to limit the amount of traffic that the CPU will process at an early stage, therefore, the good and bad traffic coming in cannot be distinguished when it arrives at a rate higher than the user-configured limit.

If the overall rate is set to 1000 pps and as long as the total traffic that is destined to the CPM and intended to be processed by the CPU is less than or equal to 1000 pps, all traffic will be processed. If the rate exceeds 1000 pps, then protocol traffic is discarded (or marked as discard eligible/low priority in the case of the out-profile-rate) and traffic on the interface is affected.

This protects all the other interfaces on the system and make sure that a violation from one interface does not affect the rest of the box.

The protocol-protection configuration is not a rate (just an enable/disable configuration). When enabled, this feature causes the network processor on the CPM to discard all packets received for protocols that are not configured on the particular interface. This helps mitigate DoS attacks by filtering invalid control traffic before it hits the CPU. The system automatically populates and maintains a per-interface list of configured (such as valid) protocols (based on interface config, etc). For example, if an interface does not have IS-IS configured, then protocol-protection will discard any IS-IS packets received on that interface.

Some protocols are not bound to a specific interface, for example, BGP. The SR OS will discard packets for these protocols if the protocol is not configured anywhere in the system. Protection for the following protocols is achieved using the per-peer-queuing feature of the SR OS: BGP, T-LDP, LDP, MSDP.

Protocols controlled by the protocol-protection mechanism include:

• OSPFv2
• OSPFv3
• IS-IS
• RSVP-TE
• RIP
• PIM
• MLD
• IGMP
• L2TP
• PPPoE
• BFD
• GTP

Note: If PIM or PIM snooping is not configured on any interfaces/SAPs, then all PIM packets will be discarded. If PIM or PIM snooping is configured on an interface/SAP, then multicast PIM messages are filtered based on PIM being enabled on that particular interface. All unicast PIM messages are sent to the CPU to be processed.

The CPU protection features are supported on the following platforms:

• 7750 SR-7/SR-12
• 7750 SR-12e
• 7450 ESS-7/ESS-12
• 7950 XRS

Note: For more information about CPU protection, see “CPU Protection” and “Monitoring Attacks on the 7750 SR” sections in the SR OS Security Best Practices.

2.3.1 CPU Protection Extensions for ETH-CFM

CPU protection supports the ability to explicitly limit the amount of ETH-CFM traffic that arrives at the CPU for processing. ETH-CFM packets that are redirected to the CPU by either a Management Endpoint (MEP) or a Management Intermediate Point (MIP) will be subject to the configured limit of the associated policy. Up to four CPU protection policies may include up to ten individual eth-cfm specific entries. The eth-cfm entries allow the operator to apply a packet per second rate limit to the matching combination of level and opcode, for eth-cfm packet that are redirected to the CPU. Any eth-cfm traffic that is redirected to the CPU by a Management Point (MP) that does not match any entries of the applied policy is still subject to the overall rate limit of the policy itself. Any eth-cfm packets that are not redirected to the CPU are not subject to this function and are treated as transit data, subject to the applicable QoS policy.
The operator first creates a CPU Policy and includes the required eth-cfm entries. Overlap is allowed for the entries within a policy, first match logic is applied. This means ordering the entries in the proper sequence is important to ensure the proper behavior is achieved. Even though the number of eth-cfm entries is limited to ten, the entry numbers have a valid range from 1 to 100 to allow for ample space to insert policies between one and other.

Ranges are allowed when configuring the Level and the OpCode. Ranges provide the operator a simplified method for configuring multiple combinations. When more than one Level or OpCode is configured in this manner the configured rate limit is applied separately to each combination of level and OpCode match criteria. For example, if the Levels are configured as listed in Table 5, with using a range of 5 to 7 and the OpCode is configured for 3,5 with a rate of 1. That restricts all possible combinations on that single entry to a rate of 1 packet per second. In this example six different match conditions are programmed behind the scene.

Table 5 Ranges versus Levels and OpCodes

<table>
<thead>
<tr>
<th>Level</th>
<th>OpCode</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Once the policy is created it must be applied to a SAP or binding within a service for these rates to take effect. This means the rate is on a per SAP or binding basis. Only a single policy may be applied to a SAP or binding. The **eth-cfm-monitoring** option must be configured in order for the ETH CFM entries to be applied when the policy is applied to the SAP or binding. If this option is not configured, eth-cfm entries in the policy will be ignored. It is also possible to apply a policy to a SAP/Binding configuring **eth-cfm-monitoring** which does not have an MP. In this case, although these entries are enforced, no packets are being redirect to the CPU due to the lack of an MP.

By default, rates are applied on a per peer basis. This means each individual peer is subject to the rate. However, it is suggested that the **aggregate** option be configured to apply the rate to the sum total of all peers. MIPs for example only respond to Loopback Messages and Linktrace Messages. These are typically on demand functions and per peer rate limiting is likely not required thus making the aggregate function a more appealing model.
eth-cfm-monitoring and **mac-monitoring** are mutually exclusive and cannot be configured on the same SAP or binding. **mac-monitoring** is used in combination with the traditional CPU protection and is not specific to the ETH CFM rate limiting feature described here.

When an MP is configured on a SAP or binding within a service which allows an external source to communicate with that MP, for example a User to Network Interface (UNI), it is suggested that **eth-cfm-monitoring** with the **aggregate** option be configured on all SAP or binding to provide the highest level of rate control.

The example below shows a sample configuration for a policy and the application of that policy to a SAP in a VPLS service configured with a MP.

Policy 1 entry 10 limits all eth-cfm traffic redirected to the CPU for all possible combinations to 1 packet per second. Policy 1 entry 20 limits all possible combinations to a rate of zero, dropping all request which match any combination. If entry 20 did not exist then only rate limiting of the entry 10 matches would occur and any other eth-cfm packets redirected to the CPU would not be bound by a CPU protection rate.

```plaintext
config>sys>security>cpu-protection#
policy 1
   eth-cfm
      entry 10 level 5-7 opcode 3,5 rate 1
      entry 20 level 0-7 opcode 0-255 rate 0
config>service>vpls#
sap 1/1/4:100
   cpu-protection 1 eth-cfm-monitoring aggregate
   eth-cfm
      mip
      no shutdown
```

The centralized CPU protection features are supported on the following platforms:

- 7750 SR-7/SR-12
- 7450 ESS-7/ESS-12
- 7950 XRS
2.3.2 ETH-CFM Ingress Squelching

CPU protection provides a granular method to control which ETH-CFM packets are processed. As indicated in the previous section, a unique rate can be applied to ETH-CFM packets classifying on specific MD-Level and specific OpCode and applied to both ingress (Down MEP and ingress MIP) and egress (Up MEP and egress MIP) extraction. That function is to protect the CPU upon extraction when a Management Point (MP) is configured.

It is also important to protect the ETH-CFM architecture deployed in the service provider network. The protection scheme here varies from CPU protection. This model is used to prevent ETH-CFM frames at the service provider MD-levels from gaining access to the network even when extraction is not in place. ETH-CFM squelching allows the operator to achieve this goal using a simple method to drop all ETH-CFM packets at or below the configured MD-level. The ETH-CFM squelch feature is ingress only.

Figure 7 shows a typical ETH-CFM hierarchical model with a Subscriber ME (6), Test ME (5), EVC ME (4) and an Operator ME (2). This model provides the necessary transparency at the different levels of the architecture. For security reasons, it may be necessary to prevent errant levels from entering the service provider network at the UNI, ENNI, or other untrusted interconnection points. Configuring squelching at level four on both UNI-N interconnection ensures that ETH-CFM packets matching the SAP or binding delimited configuration will silently discard ETH-CFM packets at ingress.

![ETH-CFM Hierarchical Model](image)

Squelching configuration uses a single MD-level (0 to 7) to silently drop all ETH-CFM packets matching the SAP or binding delimited configuration at and below the specified MD-level. In Figure 7, a squelch level is configured at MD-level 4. This means the configuration will silently discard MD-levels 0,1,2,3 and 4, assuming there is a SAP or binding match.
The operator is able to configure Down MEPs and ingress MIPs that conflict with the squelched levels. This also means that any existing MEP or MIP processing ingress CFM packets on a SAP on Binding where a squelching policy is configured will be interrupted as soon as this command is entered into the configuration. These MPs will not be able to receive any ingress ETH-CFM frames because squelching is processed before ETH-CFM extraction.

CPU Protection Extensions for ETH-CFM are still required in the model above because the Subscriber ME (6) and the Test ME (5) are entering the network across an untrusted connection, the UNI. ETH-CFM squelching and CPU Protection for ETH-CFM can be configured on the same SAP or binding. Squelching is first in the process order followed by CPU Protection for ETH-CFM.

MPs configured to support primary VLAN are not subjected to the squelch function. Primary VLAN based MPs, supported only on Ethernet SAPs, are extractions that take into consideration an additional VLAN beyond the SAP configuration.

The difference in the two protection mechanisms is shown in the Table 6. CPU Protection is used to control access to the CPU resources when processing is required. Squelching is required when the operator is protecting the ETH-CFM architecture from external sources.

Table 6 CPU Protection and Squelching

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU Protection Extension for ETH-CFM</th>
<th>ETH-CFM Squelching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Filtering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Egress Filtering</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Granularity</td>
<td>Specified Level AND OpCode</td>
<td>Level (At and below)</td>
</tr>
<tr>
<td>Rate</td>
<td>Configurable Rate (includes 0=drop all)</td>
<td>Silent Drop</td>
</tr>
<tr>
<td>Primary VLAN Support</td>
<td>Rate shared with SAP delineation</td>
<td>Not exposed to squelch</td>
</tr>
<tr>
<td>Extraction</td>
<td>Requires MEP or MIP to extract</td>
<td>No MEP or MIP required</td>
</tr>
</tbody>
</table>
As well as including the squelching information under the `show service service-id all`, display output the `squelch-ingress-level` key has been added to the `sap-using` and `sdp-using show` commands.

```
show service sap-using squelch-ingress-levels
ETH-CFM Squelching
PortId SvcId Squelch Level
6/1/1:100.* 1 0 1 2 3 4 5 6 7
lag-1:100.* 1 0 1 2 3 4
6/1/1:200.* 2 0 1 2
lag-1:200.* 2 0 1 2 3 4 5
Number of SAPs: 4
```

```
show service sdp-using squelch-ingress-levels
ETH-CFM Squelching
SdpId SvcId Type Far End Squelch Level
12345:400000000 2147483650 Spok 1.1.1.1 0 1 2 3 4
```

Note: Extreme caution must be used when deploying this feature.
2.4 Distributed CPU Protection (DCP)

The SR OS provides several rate limiting mechanisms to protect the CPM/CFM processing resources of the router:

- Centralized CPU Protection: A centralized rate limiting function that operates on the CPM to limit traffic destined to the CPUs. See Centralized CPU Protection for more information. For legacy (historical) reasons, the term “centralized CPU protection” is referred to as "CPU protection" in this guide, in the CLI, and elsewhere.

- Distributed CPU Protection: A control traffic rate limiting protection mechanism for the CPM/CFM that operates on the line cards (hence ‘distributed’).

Distributed CPU Protection (DCP) offers a powerful per-protocol-per-object (examples of objects are SAPs and network interfaces) rate limiting function for control protocol traffic that is extracted from the data path and sent to the CPM. The DCP function is implemented on the router line cards that allows for high levels of scaling and granularity of control.

The DCP rate limiting is configured via policies that are applied to objects (for example, SAPs).

The basic types of policers in DCP are:

- Enforcement Policers — An instance of a policer that is policing a flow of packets comprised of a single (or small set of) protocols(s) arriving on a single object (for example, SAP). Enforcement policers perform a configurable action (for example, discard) on packets that exceed configured rate parameters. There are two basic sub-types of enforcement policers:
 - Static policers — always instantiate.
 - Dynamic policers — only instantiated (allocated from a free pool of dynamic policers) when a local monitor detects non-conformance for a set of protocols on a specific object.

- Local Monitors — A policer that is primarily used to measure the conformance of a flow comprised of multiple protocols arriving on a single object. Local monitors are used as a trigger to instantiate dynamic policers.

The use of dynamic policers reduces the number of policers required to effectively monitor and control a set of protocols across a large set of objects since the per-protocol-per-object dynamic policers are only instantiated when an attack or misconfiguration occurs, and they are only instantiated for the affected objects.
Figure 8 Per SAP per Protocol Static Rate Limiting with DCP

This figure shows a mix of policies: static, mixed and dynamic.

Traffic switched from monitoring to enforcing policers if a trigger is tripped.

Figure 9 Per Network Interface per Protocol Static Rate Limiting with DCP

This figure shows a mix of policies: static, mixed and dynamic.
2.4.1 Applicability of Distributed CPU Protection

The system assigns a default Distributed CPU Protection (DCP) policy to newly created access and network interfaces. Originally, these policies, "_default-access-policy" and "_default-network-policy", are created empty and are modifiable by the operator. Additional DCP policies can be created for interfaces requiring a dedicated configuration.

If DCP functionality is not required on a given access or network interface, then an empty DCP policy can be created and explicitly assigned to the interface.

DCP policies can be applied to the following types of objects:

- most types of SAPs, including capture SAPs, SAPs on pseudowires, B-VPLS SAPs and VPLS template SAPs, but are not applicable to Epipe template SAPs and video ISA SAPs
- network interfaces, but not to any other type of interface, a DCP policy can be configured at the interface SAP instead

Control packets that are both forwarded (which means they could be subject to normal QoS policy policing) and also copied for extraction are not subject to Distributed CPU Protection (including in the all-unspecified bucket). This includes traffic snooping (for example, PIM in VPLS) as well as control traffic that is flooded in an R-VPLS instance and also extracted to the CPM such as ARP, ISIS and VRRP. Centralized per SAP and interface cpu-protection can be employed to rate limit or mark this traffic if desired.

Control traffic that arrives on a network interface, but inside a tunnel (for example, SDP, LSP, PW) and logically terminates on a service (that is, traffic that is logically extracted by the service rather than the network interface layer itself) will bypass the DCP function. The control packets in this case will not be subject to the DCP policy that is assigned to the network interface on which the packets arrived. This helps to avoid customer traffic in a service from impacting other services or the operator’s infrastructure.

Control packets that are extracted in a vprn service, where the packets arrived into the node via a VPLS SAP (that is, r-vpls scenario), will use the DCP policy and policer instances associated with the VPLS SAP. In this case the DCP policy that an operator creates for use on VPLS SAPs, for VPLSs that have a Layer 3-interface bound to them (r-vpls), may have protocols such as OSPF, ARP, configured in the policy.
2.4.2 Log Events, Statistics, Status and SNMP support

A comprehensive set of log events are supported for DCP in order to alert the operator to potential attacks or misconfigurations and to allow tuning of the DCP settings. Refer to the NOTIFICATION-TYPE objects with “Dcp” in the names in the following MIBs for details:

- TIMETRA-CHASSIS-MIB
- TIMETRA-SAP-MIB
- TIMETRA-VRTR-MIB

The log events can also be seen in the CLI using the following show log event-control | match Dcp command

DCP throttles the rate of DCP events to avoid event floods when multiple parallel attacks or problems are occurring.

Many of the DCP log events can be individually enabled or disabled at the DCP policy level (in the DCP policy config) as well as globally in the system (in log event-control).

If needed when a DCP log event indicates a SAP, and that SAP is an MSAP, the operator can determine which subscriber(s) is/are on a specific MSAP by using the show service active-subs command and then filtering (“| match”) on the msap string.

Statistics and status related to DCP are available both via:

- CLI
- SNMP — See various tables and objects with “Dcp” or “DCpuProt” in their name in the TIMETRA-CHASSIS-MIB, TIMETRA-SECURITY-MIB, TIMETRA-SAP-MIB and TIMETRA-VRTR-MIB

2.4.3 DCP Policer Resource Management

The policer instances are a limited h/w resource on a given forwarding plane. DCP policers (static, dynamic, local-monitor) are consumed from the overall forwarding plane policer resources (from the ingress resources if ingress and egress are partitioned). Each per-protocol policer instantiated reduces the number of FP child policers available for other purposes.
When DCP is configured with dynamic enforcement, then the operator must set aside a pool of policers that can be instantiated as dynamic enforcement policers. The number of policers reserved for this function are configurable per card/fp. The policers in this pool are not available for other purposes (normal SLA enforcement).

Static enforcement policers and local monitoring policers use policers from the normal/global policer pool on the card/fp. Once a static policer is configured in a DCP policy and it is referenced by a protocol in the policy, then this policer will be instantiated for each object (SAP or network interface) that is created and references the policy. If there is no policer free on the associated card/fp, then the object will be blocked from being created. Similarly for local monitors: once a local monitoring policer is configured and referenced by a protocol, then this policer will be instantiated for each object that is created and references the policy. If there is no policer free, then the object will be blocked from being created.

Dynamic enforcement policers are allocated as needed (when the local monitor detects non-conformance) from the reserved dynamic-enforcement-policer-pool.

When a DCP policy is applied to an object on a LAG, then a set of policers is allocated on each forwarding plane (on each line card that contains a member of the LAG). The LAG mode is ignored and the policers are always shared by all ports in the LAG on that forwarding plane on the SAP/interface. In other words, with link-mode lag a set of DCP policers are not allocated per port in the LAG on the SAP.

In order to support large scale operation of DCP, and also to avoid overload conditions, a polling process is used to monitor state changes in the policers. This means there can be a delay between when an event occurs in the data plane and when the relevant state change or event notification occurs towards an operator, but in the meantime the policers are still operating and protecting the control plane.

2.4.4 Operational Guidelines and Tips

The following points offer various optional guidelines that may help an operator decide how to leverage Distributed CPU Protection.

- The rates in a policy assigned to a capture SAP should be higher than those assigned to MSAPs that will contain a single subscriber. The rates for the capture sap policy should allow for a burst of MSAP setups.
- To completely block a set of specific protocols on a given SAP, create a single static policer with a rate of 0 and map the protocols to that policer. Dynamic policers and local monitors can’t be used to simultaneously allow some protocols but block others (the non-zero rates in the monitor would let all protocols slip through at a low rate).
• During normal operation it is recommended to configure "log-events" (no verbose keyword) for all static-policers, in the dynamic-parameters of all protocols and for all local-monitoring-policers. The verbose keyword can be used selectively during debug, testing, tuning and investigations.

• Packet based rate limiting is generally recommended for low rate subscriber based protocols whereas kb/s rate limiting is recommended for higher rate infrastructure protocols (such as BGP).

• It is recommended to configure an exceed-action of low-priority for routing and infrastructure protocols. Marked packets are more likely to be discarded if there is congestion in the control plane of the router, but will get processed if there is no contention for CPU resources allowing for a work-conserving behavior in the CPM.

• In order to assign a different dist-cpu-protection policy to a specific MSAP (instance) or to all MSAPs for a specific msap policy, the operator can assign a new dist-cpu-protection policy to the MSAP policy and then use the `eval-msap` tool:

```
A:nodeA>tools>perform# subscriber-mgmt eval-msap
- eval-msap {policy <msap-policy-name> | msap <sap-id>}
```

Note: Any new MSAPs will also be assigned the new dist-cpu-protection policy.

• If needed, an operator can determine which subscriber is on a specific MSAP by using the `show service active-subs` command and then filtering ("| match") on the msap string.

• If protocol X is trusted, and using the “all-unspecified” protocol is not required, then simply avoid creating protocol X in the policy configuration.

• If protocol X is trusted, but the all-unspecified bucket is required, then there are two options:
 - avoid creating protocol X so that it is treated as part of the all-unspecified bucket (but account for the packets from X in the all-unspecified rate and local-mon rate), or
 - create protocol X and configure it to bypass.
2.5 Classification-Based Priority for Extracted Protocol Traffic

The SR OS supports a set of mechanisms to protect the router control and management planes from various types of attacks, floods, and misconfigurations. Many of the mechanisms operate by default with no need for operator configuration or intervention.

One class of mechanisms employed on the router to protect against floods of control traffic involves identifying potentially harmful or malicious traffic through the use of rate measurements. Centralized CPU protection protects and isolates interfaces from each other by default by treating unexpectedly high rate control traffic on an interface as lower priority (to be discarded if the control plane experiences congestion). Distributed CPU protection can protect and isolate at a per-protocol, per-interface granularity through configured rate profiles. These rate-based protection mechanisms make no assumptions about the contents of the packets and can be used when nothing about the packets can be trusted (for example, DSCP or source IP address, which can be spoofed).

The SR OS also supports an alternative to rate-based mechanisms for cases where the packet headers can be trusted to differentiate between good and bad control traffic. A configurable prioritization scheme can be enabled (using the init-extract-prio-mode l3-classify command) on a per-FP basis to initialize the drop priority of all Layer 3 extracted control traffic based on the QoS classification of the packets. This is useful, for example, in networks where the DSCP and EXP markings can be trusted as the primary method to distinguish, protect, and isolate good terminating protocol traffic from unknown or potentially harmful protocol traffic instead of using the rate-based distributed CPU protection and centralized CPU protection traffic marking/coloring mechanisms (for example, out-profile-rate and exceed-action low-priority).

The operational guidelines for deploying classification-based priority for extracted control traffic are as follows.

- Centralized CPU protection should be effectively disabled for all interfaces/SAPs on FPs configured in l3-classify mode by changing some CPU protection policy parameters from their default values. This is required so that centralized CPU protection does not re-mark good control traffic (traffic that was initially classified as high priority) as low priority if a flood attack occurs on the same interface. Effectively disabling centralized CPU protection can be done by ensuring that:
 - a rate value of max is configured for port-overall-rate (max is the default value for port-overall-rate)
all objects (interfaces, MSAP policies, and SAPs) that can be assigned a CPU protection policy are referencing a policy that sets the out-profile-rate to max and the overall-rate to max (this can be done in the two default CPU protection policies if all FPs in the system are in l3-classify mode)

- DCP can be used in conjunction with l3-classify mode, but care must be taken to prevent DCP from acting on protocols where the operator wants to use QoS classification (such as DSCP or EXP) to differentiate between good and bad Layer 3 packets. On an FP with l3-classify mode, DCP should be configured so that BGP, LDP, and other protocols do not have their initial drop priority (color) overwritten by DCP if the QoS classification of these protocols is trusted. This can be achieved by using exceed-action none for those protocols in a DCP policy. For other protocols where QoS classification cannot be used to distinguish between good and bad extracted packets, DCP can be used to color the packets with a drop priority based on a configured rate.

- If any LAG member is on an FP in l3-classify mode, all FPs that host the other members of that LAG should also be in l3-classify mode.

- The QoS classification rules that are used on interfaces/SAPs on FPs in l3-classify mode should be configured to differentiate between good and bad control traffic. The default network ingress QoS policies do differentiate (for example, based on DSCP), but the default access ingress QoS policies do not.

The l3-classify mode for extracted control traffic is supported on the 7750 SR and 7950 XRS.
2.6 Vendor-Specific Attributes (VSAs)

The software supports the configuration of Nokia-specific RADIUS attributes. These attributes are known as vendor-specific attributes (VSAs) and are discussed in RFC 2138. VSAs must be configured when RADIUS authorization is enabled. It is up to the vendor to specify the format of their VSA. The attribute-specific field is dependent on the vendor’s definition of that attribute. The Nokia-defined attributes are encapsulated in a RADIUS vendor-specific attribute with the vendor ID field set to 6527, the vendor ID number.

Note: The PE-record entry is required to support the RADIUS Discovery for Layer 2 VPN feature. A PE-record is only relevant if the RADIUS Discovery feature is used, not for the standard RADIUS setup.

The following RADIUS vendor-specific attributes (VSAs) are supported by Nokia.

- `timetra-access <ftp> <console> <both>` — This is a mandatory command that must be configured. This command specifies if the user has FTP and/or console (serial port, Telnet, and SSH) access.

- `timetra-profile <profile-name>` — When configuring this VSA for a user, it is assumed that the user profiles are configured on the local router and the following applies for local and remote authentication:
 1. The authentication-order parameters configured on the router must include the local keyword.
 2. The user name may or may not be configured on the router.
 3. The user must be authenticated by the RADIUS server.
 4. Up to 8 valid profiles can exist on the router for a user. The sequence in which the profiles are specified is relevant. The most explicit matching criteria must be ordered first. The process stops when the first complete match is found.

 If all the above mentioned conditions are not met, then access to the router is denied and a failed login event/trap is written to the security log.

- `timetra-default-action <permit-all|deny-all|none>` — This is a mandatory command that must be configured even if the timetra-cmd VSA is not used. This command specifies the default action when the user has entered a command and no entry configured in the timetra-cmd VSA for the user resulted in a match condition.

- `timetra-cmd <match-string>` — Configures a command or command subtree as the scope for the match condition.

The command and all subordinate commands in subordinate command levels are specified.
2.7 Other Security Features

This section describes the other security features supported by the SR OS.

2.7.1 Secure Shell (SSH)

Secure Shell Version 1 (SSH) is a protocol that provides a secure, encrypted Telnet-like connection to a router. A connection is always initiated by the client (the user). Authentication takes places by one of the configured authentication methods (local, RADIUS, or TACACS+). With authentication and encryption, SSH allows for a secure connection over an insecure network.

The OS allows you to configure Secure Shell (SSH) Version 2 (SSH2). SSH1 and SSH2 are different protocols and encrypt at different parts of the packets. SSH1 uses server as well as host keys to authenticate systems whereas SSH2 only uses host keys. SSH2 does not use the same networking implementation that SSH1 does and is considered a more secure, efficient, and portable version of SSH.

SSH runs on top of a transport layer (like TCP or IP), and provides authentication and encryption capabilities.

The OS has a global SSH server process to support inbound SSH and SCP sessions initiated by external SSH or SCP client applications. The SSH server supports SSHv1. This server process is separate from the SSH and SCP client commands on the routers which initiate outbound SSH and SCP sessions.

Inbound SSH sessions are counted as inbound telnet sessions for the purposes of the maximum number of inbound sessions specified by Login Control. Inbound SCP sessions are counted as inbound ftp sessions by Login Control.

When SSH server is enabled, an SSH security key is generated. The key is only valid until either the node is restarted or the SSH server is stopped and restarted (unless the preserve-key option is configured for SSH). The key size is non-configurable and set at 1024 bits. When the server is enabled, both inbound SSH and SCP sessions will be accepted provided the session is properly authenticated.

When the global SSH server process is disabled, no inbound SSH or SCP sessions will be accepted.
When using SCP to copy files from an external device to the file system, the SCP server will accept either forward slash ("/"), or backslash ("\") characters to delimit directory and/or filenames. Similarly, the SCP client application can use either slash or backslash characters, but not all SCP clients treat backslash characters as equivalent to slash characters. In particular, UNIX systems will often times interpret the backslash character as an “escape” character which does not get transmitted to the SCP server. For example, a destination directory specified as “cf1:\dir1\file1” will be transmitted to the SCP server as “cf1:dir1file1” where the backslash escape characters are stripped by the SCP client system before transmission. On systems where the client treats the backslash like an “escape” character, a double backslash “\\” or the forward slash “/” can typically be used to properly delimit directories and the filename.

Two cipher lists, the client-cipher-list and the server-cipher-list, can be configured for negotiation of the best compatible ciphers between the client and server. The two cipher lists can be created and managed under the security ssh sub menu. The client-cipher-list is used when the SR OS is acting as ssh client and the server-cipher-list is used when the SR OS is acting as a server. The first cipher matched on the lists between the client and server is the preferred cipher for the session.

2.7.2 SSH PKI Authentication

The SR OS supports Secure Shell Version 2, but user authentication appears to be limited to using a username and password.

Note: SSHv1 is not supported when the node is running in FIPS-140-2 mode.

SSH also supports public key authentication whereby the client can provide a signed message that has been encrypted by his private key. As long as the server has been previously configured to know the client's public key, the server can authenticate the client.

Using Public Key authentication (also known as Public Key Infrastructure - PKI) can be more secure than the existing username/password method for a few reasons:

- A user will typical re-use the same password with multiple servers. If the password is compromised, the user must reconfigure the password on all affected servers.
• A password is not transmitted between the client and server using PKI. Instead the sensitive information (the private key) is kept on the client. Therefore it is less likely to be compromised.

This feature includes server side support for SSHv2 public key authentication. It does not include a key generation utility.

Support for PKI should be configured in the system level configuration where one or more public keys may be bound to a username. It should not affect any other system security or login functions.

2.7.2.1 Key Generation

Before SSH can be used with PKI, someone must generate a public/private key pair. This is typically supported by the SSH client software. For example, PuTTY supports a utility called PuTTYgen that will generate key pairs.

SSHv2 supports both RSA and DSA keys. The Digital Signature Algorithm is a U.S Federal Government standard for digital signatures. PuTTYGen can be used to generate either type of key. The SR OS currently supports only RSA keys.

Assume the client is using PuTTY. First the user generates a key pair using PuTTYgen. The user sets the key type (SSH-1 RSA, SS-2 RSA, or SSH-2 DSA) and sets the number of bits to be used for the key (default = 1024). The user can also configure a passphrase that will be used to store the key locally in encrypted form. If the passphrase is configured the user must enter the passphrase in order to use the private key. Thus, it is a password for the private key. If the passphrase is not used the key is stored in plain text locally.

Next the user must configure the server to use his public key. This typically requires the user to add the public key to a file on the server. For example, if the server is using OpenSSH, the key must be added to the ssh/authorized_keys file. On the SR OS, the user can program the public Key via Telnet/SSH or SNMP.

2.7.3 HMAC strengthening (SHA-224/256/384/512)

SR OS supports Secure Shell. Previously, the MAC algorithms were hard-coded and in a predefined order which was negotiated between server and client. There was no way to change this predefined order to tailor customer needs.

SR OS only supports SHA-1 algorithms and stronger SHA-2 algorithms are not supported.
This feature introduces two stronger HMAC SHA-2 algorithms:

- HMAC_SHA2_256
- HMAC_SHA2_512

2.7.4 MAC Client and Server List

In addition to stronger HMAC algorithms, this feature introduces a configurable server and client MAC list for SSHv2. This allows the user to add or remove MAC algorithms from the list. The user can program the strong HMAC algorithms on top of the configurable MAC list (for example, lowest index in the list) in the order to be negotiated first between the client and server. The first algorithm in the list that is supported by both the client and the server is the one that is agreed upon.

There are two configurable MAC lists:

- server list
- client list

Note: Configurable MAC list is only supported for SSHv2 and not SSHv1. SSHv1 only supports 32-bit CRC.

2.7.5 Regenerate the ssh-key without disabling SSH

Two releases ago, SR OS did not periodically rollover the SSH symmetric key. SR OS now supports periodic rollover of the SSH symmetric key. Symmetric key rollover is important in long SSH sessions. Symmetric key rollover ensures that the encryption channel between the client and server is not jeopardized by an external hacker that is trying to break the encryption via a brute force attack.

This feature introduces symmetric key rollover on SSH client or server. The following are triggers for symmetric key rollover and negotiation:

- the negotiation of the key base on a configured time period
- the negotiation of the key base on a configured data transmission size

For extra security, by default, the key re-exchange is enabled under SR OS. The default values are as follow:
2.7.5.1 Key re-exchange procedure

Key re-exchange is started by sending an SSH_MSG_KEXINIT packet while not already doing a key exchange. When this message is received, a party must respond with its own SSH_MSG_KEXINIT message, except in cases where the received SSH_MSG_KEXINIT already was a reply. Either party may initiate the re-exchange, but roles must not be changed (for example, the server remains the server, and the client remains the client).

Key re-exchange is performed using whatever encryption was in effect when the exchange was started. Encryption, compression, and MAC methods are not changed before a new SSH_MSG_NEWKEYS is sent after the key exchange (as in the initial key exchange). Re-exchange is processed identically to the initial key exchange, except that the session identifier will remain unchanged. Some or all of the algorithms can be changed during the re-exchange. Host keys can also change. All keys and initialization vectors are recomputed after the exchange. Compression and encryption contexts are reset.

RFC 4253 recommends key exchange after every hour or 1Gbytes of transmitted data, which is met by SR OS default implementation.

SR OS can roll over keys via two mechanisms:

- bytes (default is 1 Gbyte and the keys will be negotiated)
- minutes (default is 1 minute)

Note: If both are configured, the key rollover will happen based on whichever occurs first.

Note: If these parameters are changed, only new SSH connections will inherit them. The existing SSH connections will use the previously configured parameters.
2.7.6 Per Peer CPM Queuing

System-level security is crucial in service provider networks to address the increased threat of Denial-of-Service (DoS) attacks.

Control Processor Module Queuing (CPMQ) implements separate hardware-based queues which are allocated on a per-peer basis. CPMQ allocates a separate queue for each LDP and BGP peer and ensures that each queue is served in a round-robin fashion. This mechanism guarantees fair and “non-blocking” access to shared CPU resources across all peers. This would ensure, for example, that an LDP-based DoS attack from a given peer would be mitigated and compartmentalized so that not all CPU resources would be dedicated to the otherwise overwhelming control traffic sent by that specific peer.

CPMQ, using the per-peer-queuing command, ensures that service levels would not (or only partially be) impacted in case of an attack from a spoofed LDP or BGP peer IP address. SSH and Telnet supports per-peer queuing when the login-control ttl-security command is enabled.

2.7.7 CPM Filters and Traffic Management

Nokia routers have traffic management and queuing hardware dedicated to protecting the control plane.

CPM filters can be used to drop or accept packets, as well as allocate dedicated hardware shaping (CPM) queues for traffic directed to the control processors.

Users can allocate dedicated CPM hardware queues for certain traffic designated to the CPUs and can set the corresponding rate-limit for the queues.

CPM filters and queues control all traffic going in to the CPM from IOMs/XMAs, including all routing protocols. CPM filters apply to packets from all network and access ports, but not to packets from a management Ethernet port. CPM packet filtering and queuing is performed by network processor hardware using no resources on the main CPUs. CPM filters and queues are not configurable on one-slot chassis.

There are three filters that can be configured as part of the CPM filter policy: IP (v4) fitter, IPv6 filter and MAC filter.
The SR OS filter implementation exits the filter when the first match is found and execute the actions according to the specified action. For this reason, entries must be sequenced correctly from most to least explicit. When both mac-filter and ip-filter/ipv6-filter are to be applied to a given traffic, mac-filter is applied first.

An entry of an IP(v4), IPv6, MAC CPM filters must have at least one match criteria defined to be active. A default action can be specified for CPM filter policy that applies to each of IP, IPv6, MAC filters that are in a no shutdown state as long as the CPM filter policy has at least one active filter entry in any of the IP(v4), IPv6, and MAC filters.

2.7.8 TTL Security for BGP and LDP

The BGP TTL Security Hack (BTSH) was originally designed to protect the BGP infrastructure from CPU utilization-based attacks. It is derived on the fact that the vast majority of ISP eBGP peerings are established between adjacent routers. Since TTL spoofing cannot be performed, a mechanism based on an expected TTL value can provide a simple and reasonably robust defense from infrastructure attacks based on forged BGP packets.

While TSH is most effective in protecting directly connected peers, it can also provide a lower level of protection to multi-hop sessions. When a multi-hop BGP session is required, the expected TTL value can be set to 255 minus the configured range-of-hops. This approach can provide a qualitatively lower degree of security for BGP (for example, a DoS attack could, theoretically, be launched by compromising a box in the path). However, BTSH will catch a vast majority of observed distributed DoS (DDoS) attacks against eBGP. For further information, refer to draft-gill-btsh-xx.txt, *The BGP TTL Security Hack (BTSH)*.

TSH can be used to protect LDP peering sessions as well. For details, see draft-chen-ldp-ttl-xx.txt, *TTL-Based Security Option for LDP Hello Message*.

The TSH implementation supports the ability to configure TTL security per BGP/LDP peer and evaluate (in hardware) the incoming TTL value against the configured TTL value. If the incoming TTL value is less than the configured TTL value, the packets are discarded and a log is generated.
2.7.9 Exponential Login Backoff

A malicious user may attempt to gain CLI access by means of a dictionary attack using a script to automatically attempt to login as an “admin” user and using a dictionary list to test all possible passwords. Using the exponential-backoff feature in the config>system>login-control context the OS increases the delay between login attempts exponentially to mitigate attacks.

A malicious user may attempt to gain CLI access by means of a dictionary attack using a script to automatically attempt to login as an “admin” user and using a dictionary list to test all possible passwords. Using the exponential-backoff feature in the config>system>login-control context the OS increases the delay between login attempts exponentially to mitigate attacks.

When a user tries to login to a router using a Telnet or an SSH session, there are a limited number of attempts allowed to enter the correct password. The interval between the unsuccessful attempts change after each try (1, 2 and 4 seconds). If the system is configured for user lockout, then the user will be locked out when the number of attempts is exceeded.

However, if lockout is not configured, there are three password entry attempts allowed after the first failure, at fixed 1, 2 and 4 second intervals, in the first session, and then the session terminates. Users do not have an unlimited number of login attempts per session. After each failed password attempt, the wait period becomes longer until the maximum number of attempts is reached.

The OS terminates after four unsuccessful tries. A wait period will never be longer than 4 seconds. The periods are fixed and will restart in subsequent sessions.

The config>system>login-control>[no] exponential-backoff command works in conjunction with the config>system>security>password>attempts command, which is also a system wide configuration.

For example:

```
*A:*ALA-48>config>system# security password attempts
   - attempts <count> [time <minutes1>] [lockout <minutes2>]
   - no attempts

<count>       : [1..64]
<minutes1>     : [0..60]
<minutes2>     : [0..1440]
```

Exponential backoff applies to any user and by any login method such as console, SSH and Telnet.
2.7.10 User Lockout

When a user exceeds the maximum number of attempts allowed (the default is 3 attempts) during a certain period of time (the default is 5 minutes), the account used during those attempts will be locked out for a pre-configured lock-out period (the default is 10 minutes).

A security or LI event log will be generated as soon as a user account has exceeded the number of allowed attempts, and the show>system>security>user command can be used to display the total number of failed attempts per user.

In addition to the security or LI event log, an SNMP trap is also generated so that any SNMP server (including the NSP NFM-P) can use the trap for an action.

The account will be automatically re-enabled as soon as the lock-out period has expired. The list of users who are currently locked out can be displayed with the show>system>security>lockout command.

A lock-out for a specific user can be administratively cleared using the admin>user user-name>clear-lockout command.

2.7.11 CLI Login Scripts

The SR OS supports automatic execution of CLI scripts when a user successfully logs into the router and starts a CLI session.

Users who authenticate via the local user database can use the configurable configure>system>security>user user-name>console>login-exec file-url login exec script.

A global login-script can be configured to execute a common script when any user logs into CLI. A per user login-script can also be configured to execute when a specific user logs into CLI. These login-scripts execute whether the user was authenticated via the local user database, TACACS+ or RADIUS. The scripts can be used, for example, to define a common set of CLI aliases that are made available on the router for all users.

To configure a global login exec script, use the configure>system>login-control>login-scripts> global file-url script.
To configure a user-specific login exec script, use the configure>system>login-control>login-scripts>per-user>user-directory>file-url file-name file-name script.

2.7.12 802.1x Network Access Control

The SR OS supports network access control of client devices (PCs, STBs, etc.) on an Ethernet network using the IEEE. 802.1x standard. 802.1x is known as Extensible Authentication Protocol (EAP) over a LAN network or EAPOL.

2.7.13 TCP Enhanced Authentication Option

The TCP Enhanced Authentication Option, currently covered in draft-bonica-tcp-auth-05.txt, Authentication for TCP-based Routing and Management Protocols, extends the previous MD5 authentication option to include the ability to change keys without tearing down the session, and allows for stronger authentication algorithms to be used.

The TCP Enhanced Authentication Option is a TCP extension that enhances security for BGP, LDP and other TCP-based protocols. This includes the ability to change keys in a BGP or LDP session seamlessly without tearing down the session. It is intended for applications where secure administrative access to both the end-points of the TCP connection is normally available.

TCP peers can use this extension to authenticate messages passed between one another. This strategy improves upon current practice, which is described in RFC 2385, Protection of BGP Sessions via the TCP MD5 Signature Option. Using this new strategy, TCP peers can update authentication keys during the lifetime of a TCP connection. TCP peers can also use stronger authentication algorithms to authenticate routing messages.

2.7.13.1 Packet Formats

| Kind | Length | T|K| Alg ID|Res| Key ID |
|---|
| Authentication Data | |
| // |
Option Syntax

- **Kind**: 8 bits

 The Kind field identifies the TCP Enhanced Authentication Option. This value will be assigned by IANA.

- **Length**: 8 bits

 The Length field specifies the length of the TCP Enhanced Authentication Option, in octets. This count includes two octets representing the Kind and Length fields.

 The valid range for this field is from 4 to 40 octets, inclusive.

 For all algorithms specified in this memo the value will be 16 octets.

- **T-Bit**: 1 bit

 The T-bit specifies whether TCP Options were omitted from the TCP header for the purpose of MAC calculation. A value of 1 indicates that all TCP options other than the Extended Authentication Option were omitted. A value of 0 indicates that TCP options were included.

 The default value is 0.

- **K-Bit**: 1 bit

 This bit is reserved for future enhancement. Its value must be equal to zero.

- **Alg ID**: 6 bits

 The Alg ID field identifies the MAC algorithm.

- **Res**: 2 bits

 These bits are reserved. They must be set to zero.

- **Key ID**: 6 bits

 The Key ID field identifies the key that was used to generate the message digest.

- **Authentication Data**: Variable length

 The Authentication Data field contains data that is used to authenticate the TCP segment. This data includes, but need not be restricted to, a MAC. The length and format of the Authentication Data Field can be derived from the Alg ID.

 The Authentication for TCP-based Routing and Management Protocols draft provides an overview of the TCP Enhanced Authentication Option. The details of this feature are described in draft-bonica-tcp-auth-04.txt.
2.7.13.2 Keychain

The keychain mechanism allows for the creation of keys used to authenticate protocol communications. Each keychain entry defines the authentication attributes to be used in authenticating protocol messages from remote peers or neighbors, and it must include at least one key entry to be valid. Through the use of the keychain mechanism, authentication keys can be changed without affecting the state of the associated protocol adjacencies for OSPF, IS-IS, BGP, LDP, and RSVP-TE.

Each key within a keychain must include the following attributes for the authentication of protocol messages:

- key identifier
- authentication algorithm
- authentication key
- direction
- start time

In addition, additional attributes can be optionally specified, including:

- end time
- tolerance

Table 7 shows the mapping between these attributes and the CLI command to set them.

Table 7 Keychain Mapping

<table>
<thead>
<tr>
<th>Definition</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>The key identifier expressed as an integer (0...63)</td>
<td><code>config>system>security>keychain>direction>bi>entry</code></td>
</tr>
<tr>
<td></td>
<td><code>config>system>security>keychain>direction>uni>receive>entry</code></td>
</tr>
<tr>
<td></td>
<td><code>config>system>security>keychain>direction>uni>send>entry</code></td>
</tr>
<tr>
<td>Authentication algorithm to use with key[i]</td>
<td><code>config>system>security>keychain>direction>bi>entry with algorithm algorithm parameter.</code></td>
</tr>
<tr>
<td></td>
<td><code>config>system>security>keychain>direction>uni>receive>entry with algorithm algorithm parameter.</code></td>
</tr>
<tr>
<td></td>
<td><code>config>system>security>keychain>direction>uni>send>entry with algorithm algorithm parameter.</code></td>
</tr>
</tbody>
</table>
The following table details which authentication algorithm can be used in association with specific routing protocols.

Table 8 shows the mapping between these attributes and the CLI command to set them.

Table 7 Keychain Mapping (Continued)

<table>
<thead>
<tr>
<th>Definition</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared secret to use with key[i].</td>
<td>config>system>security>keychain>direction>uni>receive>entry with shared secret parameter</td>
</tr>
<tr>
<td></td>
<td>config>system>security>keychain>direction>uni>send>entry with shared secret parameter</td>
</tr>
<tr>
<td></td>
<td>config>system>security>keychain>direction>bi>entry with shared secret parameter</td>
</tr>
<tr>
<td>A vector that determines whether the key[i] is to be used to generate MACs for inbound segments, outbound segments, or both.</td>
<td>config>system>security>keychain>direction</td>
</tr>
<tr>
<td>Start time from which key[i] can be used.</td>
<td>config>system>security>keychain>direction>bi>entry>begin-time</td>
</tr>
<tr>
<td></td>
<td>config>system>security>keychain>direction>uni>send>entry >begin-time</td>
</tr>
<tr>
<td>End time after which key[i] cannot be used by sending TCPs.</td>
<td>Inferred by the begin-time of the next key (youngest key rule).</td>
</tr>
<tr>
<td>Start time from which key[i] can be used.</td>
<td>config>system>security>keychain>direction>bi>entry>begin-time</td>
</tr>
<tr>
<td></td>
<td>config>system>security>keychain>direction>bi>entry>tolerance</td>
</tr>
<tr>
<td></td>
<td>config>system>security>keychain>direction>uni>receive>entry >begin-time</td>
</tr>
<tr>
<td></td>
<td>config>system>security>keychain>direction>uni>receive>entry >tolerance</td>
</tr>
<tr>
<td>End time after which key[i] cannot be used</td>
<td>config>system>security>keychain>direction>uni>receive>entry>end-time</td>
</tr>
</tbody>
</table>

Table 8 Security Algorithm Support Per Protocol

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Clear Text</th>
<th>MD5</th>
<th>HMAC-MD5</th>
<th>HMAC-SHA-1-96</th>
<th>HMAC-SHA-1</th>
<th>HMAC-SHA-256</th>
<th>AES-128-CMAC-96</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RSVP</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
2.7.14 gRPC Authentication

gRPC communication between the client and server must be authenticated and encrypted. There are two types of authentication:

- Authentication via session credentials — Session credentials operate similarly to device authentication, ensuring that the device is allowed in the network and is authorized by the provider. This type of authentication is performed using PKI and X.509.3 certificates. gRPC uses TLS for session authentication.

 SR OS supports TLS servers for gRPC.

- Authentication using channel credentials — Channel credentials use a user name and password that are entered at the gRPC client terminal to authenticate gRPC packets using an AAA method.

Session authentication provides proof that the client and server are authorized devices and that they belong to the provider. After authentication, the session becomes encrypted using TLS, and gRPC PDUs are transmitted between the client and server.

Figure 10 shows a basic session authentication using TLS.
Channel credentials use username and password authentication. Each gRPC channel packet can contain a username and a password. Authentication is done through standard SR OS authentication order and mechanisms. All current authentication methods, including local and AAA servers, are applicable to gRPC channels. In addition, all authentication orders currently used by Telnet or SSH are compatible with gMI Call authentication.

Figure 11 shows a basic gMI Call authentication using SR OS.

Figure 11 gMI Call Authentication Using SR OS

![Diagram showing gMI Call Authentication Using SR OS]

1. User tries to authenticate over gRPC, username/password
2. Authentication mechanism?
3. If user is authenticated, continue with gRPC communication

1. SR OS listens to the gRPC and the authentication request.
2. SR OS tries to authenticate the user via authentication-order "local, radius, tacacs, LDAP"
3. If tacacs is first in authentication order, SR OS sends a request to TACACs + server
4. Forward the authentication result via gRPC to the client

Encrypted gRPC Communication

Note: gRPC is not affected by password aging.

gRPC channel packets contain the username and password in clear text, and are only encrypted using TLS. If a TLS server profile is assigned to the gRPC session, all PDUs between the server and client are encrypted. If TLS becomes operationally down, no gRPC PDUs are transmitted in clear text.

SR OS relies on existing authentication mechanisms for gRPC channels, including:

- AAA servers and local authentication orders configured using the `config>system>security>password>authentication-order` command
- password complexity rules
- requiring the user to be configured as part of gRPC access by using the `config>system>security>user>access>grpc` command
- disconnecting the gRPC session by using the `admin>disconnect gMI` command
Security profiles can authorize bulk **get**, **set**, and **subscribe** gRPC commands that are received by the server. Profiles can be configured to permit or deny specific gRPC commands; for example, a profile for one user can authorize **get** and **set** commands, while a profile for another user can authorize **get** commands only.
2.8 Configuration Notes

This section describes security configuration restrictions.

2.8.1 General

• If a RADIUS or a TACACS+ server is not configured, then password, profiles, and user access information must be configured on each router in the domain.
• If a RADIUS authorization is enabled, then VSAs must be configured on the RADIUS server.
2.9 Configuring Security with CLI

This section provides information to configure security using the command line interface.

2.9.1 Security Configurations

This section provides information to configure security and configuration examples of configuration tasks.

To implement security features, configure the following components:

- Management access filters and CPM filters
- Profiles
- User access parameters
- Password management parameters
- Enable RADIUS, TACACS+, and/or LDAP
 - One to five RADIUS, TACACS+, and/or LDAP servers
 - RADIUS, TACACS+, and/or LDAP parameters

Table 9 depicts the capabilities of authentication, authorization, and accounting configurations. For example, authentication can be enabled locally and on RADIUS, TACACS+, and LDAP servers. Authorization can be executed locally, on a RADIUS server, or on a TACACS+ server. Accounting can be performed on a RADIUS or TACACS+ server.

Table 9 Security Configuration Requirements

<table>
<thead>
<tr>
<th>Authentication</th>
<th>Authorization</th>
<th>Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Local</td>
<td>None</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Local and RADIUS</td>
<td>RADIUS</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Local</td>
<td>TACACS+</td>
</tr>
<tr>
<td>LDAP</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
2.9.2 Security Configuration Procedures

2.9.2.1 Configuring Management Access Filters

Creating and implementing management access filters is optional. Management access filters are software-based filters that control all traffic going in to the CPM, including all routing protocols. They apply to packets from all ports. The filters can be used to restrict management of the router by other nodes outside either specific (sub)networks or through designated ports. By default, there are no filters associated with security options. The management access filter and entries must be explicitly created on each router. These filters also apply to the management Ethernet port.

The OS implementation exits the filter when the first match is found and execute the actions according to the specified action. For this reason, entries must be sequenced correctly from most to least explicit. When both mac-filter and ip-filter/ipv6-filter are to be applied to a given traffic, mac-filter is applied first.

An entry may not have any match criteria defined (in which case, everything matches) but must have at least an action keyword specified CPM to be considered active complete. Entries without the action keyword are considered incomplete and will be rendered inactive. Management Access Filter must have at least one active entry defined for the filter to be active.

The following CLI commands are an example of how to configure a management access filter on the 7450 ESS. This example only accepts packets matching the criteria specified in entries 1 and 2. Non-matching packets are denied.

The following is an example of a management access filter configuration that accepts packets matching the criteria specified in IP, IPv6 and MAC entries. Non-matching packets are denied for IPv4 filter and permitted for IPv6 and MAC filters.

*A:Dut-C>config-system>security>mgmt-access-filter# info
--
ip-filter
default-action deny
entry 10
 description "Accept SSH from mgmnt subnet"
 src-ip 192.168.5.0/26
 protocol tcp
 dst-port 22 65535
 action permit
exit
exit
ipv6-filter
default-action permit
entry 10
 src-ip 3FFE::1/128
 next-header rsvp
2.9.2.2 Configuring IP CPM Filters Policy

The following displays a CPM filter configuration example:

```
*A:Dut-C>config>sys>security>cpm-filter# info
ip-filter
  shutdown
  entry 100 create
  action queue 50
  log 110
  match protocol icmp
    fragment true
    icmp-type dest-unreachable
    icmp-code host-unreachable
    multiple-option false
    option-present true
    src-ip 192.100.2.0/24
  exit
  exit
exit
ipv6-filter
  shutdown
  entry 30 create
  action drop
  log 190
  match next-header tcp
    dscp ef
    dst-ip 3FFE::2:2/128
    src-port 100 100
    tcp-syn true
    tcp-ack false
    flow-label 10
  exit
  exit
exit
mac-filter
  shutdown
  entry 40 create
```
2.9.2.3 Configuring MAC CPM Filters

CPM filters and queues control all traffic going in to the CPM, including all routing protocols. They apply to packets from all network and access ports, but not to packets from a management Ethernet port. CPM packet filtering and queuing is performed by network processor hardware using no resources on the main CPUs. CPM filters and queues are not configurable on one-slot chassis.

The following displays a MAC CPM filter configuration example:

```
*A:ALA-49>config>sys>sec>cpm-mac-filter# info
----------------------------------------------
entry 10 create
  description "MAC-CPM-Filter 10.10.10.100 #007"
  match
  exit
  log 101
  action drop
  exit
entry 20 create
  description "MAC-CPM-Filter 10.10.10.100 #008"
  match
  exit
  log 101
  action drop
  exit
no shutdown
----------------------------------------------
*A:ALA-49>config>sys>sec>cpm-mac-filter#
```

2.9.2.4 Configuring IPv6 CPM Filters

The following example displays an IPv6 CPM filter configuration:

```
A:ALA-48>config>sys>sec>cpm-ipv6-filter# info
entry 10 create
  description "IPv6 CPM Filter"
  log 101
```
match next-header igr
 dst-ip 1000::1:1:1:1:1:1:1/112
 src-ip 2000::1::1/96
 flow-label 5000
exit
exit
entry 20 create
description "CPM-Filter 10.4.101.2 #201"
log 101
match next-header tcp
dscp af11
 dst-ip 3FEE:12E1:2AC1:EA32::/64
 src-ip 3FEE:1FE1:2AC1:EA32::/64
 flow-label 5050
exit
exit
no shutdown
A:ALA-48>config>sys>sec>cpm>ipv6-filter#

2.9.2.5 Configuring CPM Queues

CPM queues can be used to provide rate limit capabilities for traffic destined to CPM as described in an earlier section of this document.

The following example displays a CPM queue configuration:

A:ALA-987>config>sys>security>cpm-queue# info
--
queue 33 create
delete
queue 101 create
cbs 5
 mbs 5
 rate 5 cir 5
exit
queue 102 create
cbs 5
 mbs 5
 rate 5 cir 5
exit
queue 103 create
cbs 5
 mbs 5
 rate 5 cir 5
exit
queue 104 create
cbs 5
 mbs 5
 rate 5 cir 5
exit
--
A:ALA-987>config>sys>security>cpm-queue#
2.9.2.6 IPSec Certificates Parameters

The following is an example to importing a certificate from a pem format:

*A:SR-7/Dut-A# admin certificate import type cert input cf3:/pre-import/R1-0cert.pem
 output R1-0cert.der format pem

The following is an example for exporting a certificate to pem format:

*A:SR-7/Dut-A# admin certificate export type cert input R1-0cert.der output cf3:/
 R1-0cert.pem format pem

The following displays an example of profile output:

*A:SR-7/Dut-A>config>system>security>pki# info

 ca-profile "Root" create
 description "Root CA"
 cert-file "R1-0cert.der"
 crl-file "R1-0crl.der"
 no shutdown
 exit

*A:SR-7/Dut-A>config>system>security>pki#

The following displays an example of an ike-policy with cert-auth output:

*A:SR-7/Dut-A>config>ipsec>ike-policy# info

 ike-version 2
 auth-method cert-auth
 own-auth-method psk

The following displays an example of a static lan-to-lan configuration using cert-auth:

... interface "VPRN1" tunnel create
 sap tunnel-1.private:1 create
 ipsec-tunnel "Sanity-1" create
 security-policy 1
 local-gateway-address 30.1.1.13 peer 50.1.1.15 delivery-service 300
 dynamic-keying
 ike-policy 1
 pre-shared-key "Sanity-1"
 transform 1
 cert
 trust-anchor "R1-0"
 cert "M2cert.der"
 key "M2key.der"
2.9.2.7 Configuring Profiles

Profiles are used to deny or permit access to a hierarchical branch or specific commands. Profiles are referenced in a user configuration. A maximum of sixteen user profiles can be defined. A user can participate in up to sixteen profiles. Depending on the authorization requirements, passwords are configured locally or on the RADIUS server.

The following example displays a user profile output:

```
A:ALA-1>config>system>security# info
----------------------------------------------
... profile "ghost"
    default-action permit-all
        entry 1
        match "configure"
            action permit
        exit
        entry 2
        match "show"
        exit
        entry 3
        match "exit"
        exit
    exit
... ----------------------------------------------
A:ALA-1>config>system>security#
```

2.9.2.7.1 Parameters

Matching in authorization profiles allows the use of parameters and optional parameters. A set of angle brackets <...> indicates matching on a parameter and/or optional parameter.

The following rules govern parameter matching in the CLI:

Rule 1

Any parameter and/or optional parameter can be present in the match string.
Rule 2

When a parameter and an optional parameter is present in the user-profile match string, all parameters or optional parameters to its left must also be stated/present.

Rule 3

The user can either specifically state or completely omit unnamed parameters in the match string, as required. However, all unnamed parameter in the CLI command must be present in the match string when matching on an unnamed parameter is used.

For example, consider the **OSPF** command:

```plaintext
*A:SwSim14# configure router ospf
- no ospf [<ospf-instance>]
- ospf [<ospf-instance>] [router-id]

<ospf-instance> : [0..31]
<router-id> : <ip-address>
```

In this case, the user can match on OSPF to allow or deny the command per user-profile, as follows:

Match "configure router ospf" action deny

Or the user can decide to only allow a certain OSPF instance for a user, as follows:

Match "configure router ospf <ospf-instance-value> <router-id-value>"

Note: Although the user's matching is based on <ospf-instance-value> that is "an unnamed value", all other unnamed values in the **OSPF** command (such as the <router-id-value>) must also be present in the match string.

Rule 4

When multiple unnamed parameters are present in the match string, the parameters must be provided in the correct order as described in the command help to generate the correct match behavior. For example, using the order of parameters described in the **OSPF** command usage in Rule 3 above, use the following statement for a user-profile match:

```plaintext
match *configure router ospf <ospf-instance-value> <router-id-value>
```

The desired match behavior might not be achieved if the unnamed parameters <ospf-instance-value> and <router-id-value> are out of order with respect to the help screen.
The following displays a parameter matching output:

```
config>system>security>profile# info
  entry 10
    match "show router <22> route-table "
    action permit
  exit
  entry 20
    match "configure service vprn <22>"*
    action read-only
  exit
  entry 30
    match "show service id <22>"
    action permit
  exit
  entry 40
    match "configure router interface <system>"
    action deny
  exit
```

2.9.2.7.2 Wildcards

In addition, parameter configuration is facilitated by the availability of wildcards (.*') in the OAM subtree and for commands such as ping, trace-route and mtrace. For example, consider the following command:

```
ping <ip-address> router 10
```

Instead of listing all the permitted IP addresses in the policy, as shown in the following example,

```
Match ping <10.0.0.1> router <10>
Action permit
Match ping <10.0.0.2> router <10>
Action permit
```

The wildcard<ip-address> parameter allows a simpler search criterion. In the following example, the use of <*> wildcard enables the ability to ping any address in the router 10 context, that is, any address in VRF 10:

```
Match ping <*> router <10>
Action permit
```
Note: While wildcards are available and allowed for all parameters in the OAM subtree, Nokia recommends that caution is exercised when using wildcards and limit their use to commands such as ping, trace-route, and mtrace. The use of wildcards in certain formats may be a security concern and result in making the IP addresses in the VRF, including the base routing table, unreachable. Or it could allow the customer to ping any IP address in the VRF, including the base routing table. This may be a potential security concern and should be avoided.

For example, the following usage is not advised:

```
Match ping <.*> router <.*>
Action permit
```

2.9.2.7.3 CLI Resource Management

SR OS has the capability to manage telnet/ssh sessions per user and at a higher level per system. At the system level, the user can configure a **cli-session-group** for different customer priorities. The **cli-session-group** is a container that sets the maximum number of CLI sessions for a class of customers, with a unique session limit for each customer. For example, as depicted in Figure 12, “Gold” category customers can have a **cli-session-group** that allows them more telnet/ssh sessions compared to “Silver” category customers.

Figure 12 *cli-session-group for Customer Classes*

```
*A:SwSim8>config>system>security# info
profile "customer-1"
  CLI-Session-group "Gold"
  Ssh-max-session 5
  Telnet-max-session 5
  Combined-session 5

*A:SwSim8>config>system>security# info
profile "customer-2"
  CLI-Session-group "Silver"
  Ssh-max-session 3
  Telnet-max-session 3
  Combined-session 3
```
The configured **cli-session-group** can be assigned to user-profiles. At the user profile level, each profile can be configured with its own max ssh/telnet session and it will be policed/restricted by the higher order **cli-session-group** that is assigned to it.

As depicted in **Figure 13**, the final picture is a hierarchical configuration with top-level cli-session-groups that control each customer’s total number of SSH or telnet sessions and the user-profile for each user for that customer.

Figure 13 Hierarchy of cli-session-group Profiles

Every profile will subtract one from its corresponding **max-session** when a TELNET or SSH session is established in the following cases:

- where multiple profiles are configured under a user
- where multiple profiles arrive from different AAA servers (Local Profile, RADIUS Profile or TACACS Profile)
The first profile to run out of corresponding `max-session` will limit future TELNET or SSH sessions. In other words, while each profile for the user can have its independent `max-session`, only the lowest one will be honored. If the profile with the lowest `max-session` is removed, the next lower profile `max-session` will be honored and so on. All profiles for a user are updated when a TELNET or SSH session is established.

For information about login control, see Configuring Login Controls.

Use the following CLI commands to configure CLI session resources:

CLI Syntax:
```plaintext
config>system>security>profile <name>  
[no] ssh-max-sessions session-limit  
[no] telnet-max-sessions session-limit  
[no] combined-max-session session-limit  
[no] cli-session-group session-group-name
```

2.9.2.8 Configuring Users

Configure access parameters for individual users. For user, define the login name for the user and, optionally, information that identifies the user.

The following displays a user configuration example:

```
A:ALA-1>config>system>security# info
-----------------------------
...  
user "49ers"  
password "$2y$10$pF0ehOg/tCbBMPDJ/kqpu.8af0AoVGY2xsR7WFqyn5fVTnwRzGmOK"  
access console ftp snmp  
restricted-to-home  
console  
member "default"  
member "ghost"  
exit  
exit
...  
-----------------------------
A:ALA-1>config>system>security#  
```

2.9.2.9 Configuring Keychains

The following displays a keychain configuration.

```
A:ALA-1>config>system>security# info
----------------------------------------
A:ALA-1>config>system>security#  
```
2.9.2.10 Copying and Overwriting Users and Profiles

You can copy a profile or user. You can copy a profile or user or overwrite an existing profile or user. The **overwrite** option must be specified or an error occurs if the destination profile or user name already exists.

2.9.2.10.1 User

CLI Syntax:
```
config>system>security# copy {user source-user | profile source-profile} to destination [overwrite]
```

Example:
```
config>system>security# copy user testuser to testuserA
MINOR: CLI User "testuserA" already exists - use overwrite flag.
config>system>security# copy user testuser to testuserA overwrite
config>system>security#
```

The following output displays the copied user configurations:
```
A:ALA-1>config>system>security# info
```

```
A:ALA-12>config>system>security# info

Note: The cannot-change-password flag is not replicated when a copy user command is performed. A new-password-at-login flag is created instead.

A:ALA-12>config>system>security>user# info

password "$2y$10$P0eohOg/tC3Q9mK/kqpu.8af0A0VGY2xsR7WFqynsfV7n0RzGm0K"
access snmp
console
cannot-change-password
exit
snmp
authentication hash md5 e14672e71d3e96e71d3e96e71d3e96e71d3e96e7
privacy none
group "testgroup"
exit

-----------------------------
A:ALA-12>config>system>security>user# exit
A:ALA-12>config>system>security# user testuserA
A:ALA-12>config>system>security# user testuserA
password 
access snmp
console
new-password-at-login
exit
snmp
authentication hash md5 e14672e71d3e96e71d3e96e71d3e96e71d3e96e7
privacy none
group "testgroup"
2.9.2.10.2 Profile

**CLI Syntax:**
```
config>system>security# copy {user source-user | profile source-profile} to destination [overwrite]
```

**Example:**
```
config>system>security# copy profile default to testuser
```

The following output displays the copied profiles:
```
A:ALA-49>config>system>security# info
...
A:ALA-49>config>system>security# info detail
...
profile "default"
 default-action none
 entry 10
 no description
 match "exec"
 action permit
 exit
 entry 20
 no description
 match "exit"
 action permit
 exit
 entry 30
 no description
 match "help"
 action permit
 exit
 entry 40
 no description
 match "logout"
 action permit
 exit
 entry 50
 no description
 match "password"
 action permit
 exit
 entry 60
 no description
 match "show config"
 action deny
 exit
 entry 70
 no description
 match "show"
```
... action permit
exit
entry 80
  no description
  match "enable-admin"
  action permit
exit
profile "testuser"
default-action none
entry 10
  no description
  match "exec"
  action permit
exit
entry 20
  no description
  match "exit"
  action permit
exit
entry 30
  no description
  match "help"
  action permit
exit
entry 40
  no description
  match "logout"
  action permit
exit
entry 50
  no description
  match "password"
  action permit
exit
entry 60
  no description
  match "show config"
  action deny
exit
entry 70
  no description
  match "show"
  action permit
exit
entry 80
  no description
  match "enable-admin"
  action permit
exit
profile "administrative"
default-action permit-all exit
...
----------------------------------------------
A:ALA-12>config>system>security#
2.9.3 RADIUS Configurations

2.9.3.1 Configuring RADIUS Authentication

RADIUS is disabled by default and must be explicitly enabled. The mandatory commands to enable RADIUS on the local router are `radius` and `server server-index address ip-address secret key`.

Also, the system IP address must be configured in order for the RADIUS client to work. See “Configuring a System Interface” of the 7450 ESS, 7750 SR, and 7950 XRS Router Configuration Guide.

The other commands are optional. The server command adds a RADIUS server and configures the RADIUS server's IP address, index, and key values. The index determines the sequence in which the servers are queried for authentication requests.

On the local router, use the following CLI commands to configure RADIUS authentication:

CLI Syntax:
```
config>system>security
radius
 port port
 retry count
 server server-index address ip-address secret key
 timeout seconds
 no shutdown
```

The following displays a RADIUS authentication configuration example:

```
A:ALA-1>config>system>security# info
--
retry 5
timeout 5
server 1 address 10.10.103 secret "test1"
server 2 address 10.10.0.1 secret "test2"
server 3 address 10.10.0.2 secret "test3"
server 4 address 10.10.0.3 secret "test4"
--
A:ALA-1>config>system>security#
```
2.9.3.2 Configuring RADIUS Authorization

In order for RADIUS authorization to function, RADIUS authentication must be enabled first. See Configuring RADIUS Authentication.

In addition to the local configuration requirements, VSAs must be configured on the RADIUS server. See Vendor-Specific Attributes (VSAs).

On the local router, use the following CLI commands to configure RADIUS authorization:

**CLI Syntax:**
```
config>system>security
radius
authorization
```

The following displays a RADIUS authorization configuration example:

```
A:ALA-1>config>system>security# info
--
..._radius
 authorization
 retry 5
 timeout 5
 server 1 address 10.10.103 secret "test1"
 server 2 address 10.10.0.1 secret "test2"
 server 3 address 10.10.0.2 secret "test3"
 server 4 address 10.10.0.3 secret "test4"
 exit
...--
A:ALA-1>config>system>security#
```

2.9.3.3 Configuring RADIUS Accounting

On the local router, use the following CLI commands to configure RADIUS accounting:

**CLI Syntax:**
```
config>system>security
radius
accounting
```

The following displays RADIUS accounting configuration example:

```
A:ALA-1>config>system>security# info
--
...radius
 shutdown
...--
```
authorization
accounting
retry 5
timeout 5
server 1 address 10.10.10.103 secret "test1"
server 2 address 10.10.0.1 secret "test2"
server 3 address 10.10.0.2 secret "test3"
server 4 address 10.10.0.3 secret "test4"
exit

A:ALA-1>config>system>security#

2.9.4 Configuring 802.1x RADIUS Policies

Use the following CLI commands to configure generic authentication parameters for clients using 802.1x EAPOL. Additional parameters are configured per Ethernet port. Refer to the 7450 ESS, 7750 SR, and 7950 XRS Interface Configuration Guide.

To configure generic parameters for 802.1x authentication, enter the following CLI syntax.

**CLI Syntax:**
```
cfg>system>security
dot1x
 radius-plcy policy-name
 server server-index address ip-address secret
 key [port port]
 source-address ip-address
 no shutdown
```

The following displays a 802.1x configuration example:

A:ALA-1>config>system>security# info
----------------------------------------------
dot1x
    radius-plcy "dot1x_plcy" create
    server 1 address 1.1.1.1 port 65535 secret "a"
    server 2 address 1.1.1.2 port 6555 secret "a"
    source-address 1.1.1.255
    no shutdown
...
----------------------------------------------
A:ALA-1>config>system#
2.9.5  TACACS+ Configurations

2.9.5.1  Enabling TACACS+ Authentication

To use TACACS+ authentication on the router, configure one or more TACACS+ servers on the network.

Use the following CLI commands to configure profiles:

CLI Syntax:  config>system>security
tacplus
        server server-index address ip-address secret
        key
        timeout seconds
        no shutdown

The following displays a TACACS+ authentication configuration example:

A:ALA-1>config>system>security>tacplus# info
----------------------------------------------
timeout 5
server 1 address 10.10.0.5 secret "test1"
server 2 address 10.10.0.6 secret "test2"
server 3 address 10.10.0.7 secret "test3"
server 4 address 10.10.0.8 secret "test4"
server 5 address 10.10.0.9 secret "test5"
c----------------------------------------------
A:ALA-1>config>system>security>tacplus#

2.9.5.2  Configuring TACACS+ Authorization

In order for TACACS+ authorization to function, TACACS+ authentication must be enabled first. See Enabling TACACS+ Authentication.

On the local router, use the following CLI commands to configure RADIUS authorization:

CLI Syntax:  config>system>security
tacplus
        authorization
        no shutdown

The following displays a TACACS+ authorization configuration example:

A:ALA-1>config>system>security>tacplus# info
2.9.5.3 Configuring TACACS+ Accounting

On the local router, use the following CLI commands to configure TACACS+ accounting:

CLI Syntax: config>system>security tacplus accounting

The following displays a TACACS+ accounting configuration example:

A:ALA-1>config>system>security>tacplus# info

```
authorization
timeout 5
server 1 address 10.10.0.5 secret "test1"
server 2 address 10.10.0.6 secret "test2"
server 3 address 10.10.0.7 secret "test3"
server 4 address 10.10.0.8 secret "test4"
server 5 address 10.10.0.9 secret "test5"
```

A:ALA-1>config>system>security>tacplus#

2.9.5.4 Enabling SSH

Use the SSH command to configure the SSH server as SSH1, SSH2 or both. The default is SSH2 (SSH version 2). This command should only be enabled or disabled when the SSH server is disabled. This setting should not be changed while the SSH server is running since the actual change only takes place after SSH is disabled or enabled.

CLI Syntax: config>system>security ssh preserve-key no server-shutdown
The following displays a SSH server configuration as both SSH and SSH2 using a host-key:

```
A:sim1>config>system>security>ssh# info
--
preserve-key
version 1-2
--
A:sim1>config>system>security>ssh#
```

### 2.9.6 LDAP Configurations

#### 2.9.6.1 Configuring LDAP Authentication

LDAP is disabled by default and must be explicitly enabled. To use LDAP authentication on the router, configure one or more LDAP servers on the network.

TLS certificates and clients must also be configured. Refer to the “TLS” section of the 7450 ESS, 7750 SR, and 7950 XRS System Management Guide for more information about configuring TLS.

Use the following CLI commands to configure LDAP:

**CLI Syntax:**

```
config>system>security>ldap
[no] public-key-authentication
[no] retry
[no] server
[no] shutdown
[no] timeout
[no] use-default-template
```

```
config>system>security>password
authentication-order [method] exit-on-reject
```

```
config>system>security>ldap
public-key-authentication
server server-index create
 address ip-address port port
 bind-authentication root-dn [password
 password] [hash | hash2]
 ldap-server server-name
 search base-dn
 tls-profile tls-profile-name
```
The following displays an LDAP authentication configuration example:

```
A:SwSim14>config>system>security>ldap#
[no] public-key-authentication
[no] retry
[no] server
[no] shutdown
[no] timeout
[no] use-default-template

*A:SwSim14>config>system>security>password#

authentication-order [local | radius | tacplus | ldap] exit-on-reject

*A:SwSim14>config>system>security>ldap# info

public-key-authentication
server 1 create
address 1.1.1.1
bind-authentication "cn=administrator,cn=users,dc=nacblr2,dc=example,dc=com" pass
word" ldap-server "active-server"
search "dc=sns,dc=example,dc=com"
tls-profile "server-1-profile"
no shutdown
exit
no shutdown

*A:SwSim14>config>system>security>tls# info

client-tls-profile "server-1-profile" create
cipher-list "to-active-server"
trust-anchor-profile "server-1-ca"
no shutdown
exit
```

2.9.6.2 Configuring Redundant Servers

Up to five redundant LDAP servers can be configured. The following examples show configuration of two servers, Server-1 and Server-5.

Configuration of Server-1:

```
A*:SwSim14>config>system>security>ldap# info
public-key-authentication
server 1 create
address 1.1.1.1
```
2.9.6.3 Enabling SSH

SSH must be enabled to use LDAP authentication. See Enabling SSH for more information.

2.9.7 Configuring Login Controls

Configure login control parameters for console, Telnet, and FTP sessions.

The following displays a login control configuration example:

```
A:ALA-1>config>system# info
--
...
 login-control
 ftp
 inbound-max-sessions 5
 exit
 telnet
 inbound-max-sessions 7
 outbound-max-sessions 2
```
exit
delete 1440
pre-login-message "Property of Service Routing Inc. Unauthorized access prohibited."

motd text "Notice to all users: Software upgrade scheduled 3/2 1:00 AM"
exit
no exponential-backoff
...
------------------------------------------------------------
A:ALA-1>config>system#
2.10 Security Configuration Command Reference

2.10.1 Command Hierarchies

- Security Commands
  - LLDP Commands
  - Management Access Filter Commands
  - CLI Script Authorization Commands
  - CPM Filter Commands
  - CPM Queue Commands
  - CPU Protection Commands
  - Distributed CPU Protection Commands
  - Extracted Protocol Traffic Priority Commands
  - Security Password Commands
  - Public Key Infrastructure (PKI) Commands
  - Profile Commands
  - CLI Session Commands
  - RADIUS Commands
  - SSH Commands
  - TACPLUS Commands
  - LDAP Commands
  - User Commands
  - User Template Commands
  - Dot1x Commands
  - Keychain Commands
  - TTL Security Commands
  - gRPC Commands
- Login Control Commands

2.10.1.1 Security Commands

```bash
config
 system
 security
```
---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy {user source-user</td>
<td>profile source-profile} to destination [overwrite]</td>
</tr>
<tr>
<td>[no] ftp-server</td>
<td>Disable FTP server</td>
</tr>
<tr>
<td>hash-control [read-version {1</td>
<td>2</td>
</tr>
<tr>
<td>[no] hash-control</td>
<td>Disable hash control</td>
</tr>
<tr>
<td>[no] per-peer-queuing</td>
<td>Disable per-peer queuing</td>
</tr>
<tr>
<td>source-address</td>
<td>Source address settings</td>
</tr>
<tr>
<td>application app [ip-int-name</td>
<td>ip-address]</td>
</tr>
<tr>
<td>no application app</td>
<td>Disable application</td>
</tr>
<tr>
<td>application6 app ipv6-address</td>
<td>Application6 settings</td>
</tr>
<tr>
<td>no application6</td>
<td>Disable application6</td>
</tr>
<tr>
<td>[no] telnet-server</td>
<td>Disable telnet server</td>
</tr>
<tr>
<td>[no] telnet6-server</td>
<td>Disable telnet6 server</td>
</tr>
<tr>
<td>vprn-network-exceptions number seconds</td>
<td>VPRN network exceptions</td>
</tr>
<tr>
<td>no vprn-network-exceptions</td>
<td>Disable VPRN network exceptions</td>
</tr>
</tbody>
</table>

### 2.10.1.1 LLDP Commands

```
configure
 system
 lldp
 message-fast-tx time
 no message-fast-tx
 message-fast-tx-init count
 no message-fast-tx-init
 notification-interval time
 no notification-interval
 reinit-delay time
 no reinit-delay
 tx-credit-max count
 no tx-credit-max
 tx-hold-multiplier multiplier
 no tx-hold-multiplier
 tx-interval interval
 no tx-interval
```

### 2.10.1.2 Management Access Filter Commands

```
config
 system
 security
 no management-access-filter
 [no] ip-filter
 default-action {permit | deny | deny-host-unreachable}
 entry entry-id
 action {permit | deny | deny-host-unreachable}
 no action
 description description-string
 no description
 _dst-port value [mask]
```
— no dst-port
— [no] log
— protocol protocol-id
— no protocol
— router service name {service-name}
— router {router-instance}
— no router
— src-ip (ip-prefix/mask | ip-prefix netmask)
— no src-ip
— src-port {port-id | cpm | lag lag-id}
— no src-port
— renum old-entry-number new-entry-number
— [no] shutdown
— [no] ipv6-filter
— default-action {permit | deny | deny-host-unreachable}
— [no] entry entry-id
—.action {permit | deny | deny-host-unreachable}
— no action
— description description-string
— no description
— dst-port value [mask]
— no dst-port
— flow-label value
— no flow-label
— [no] log
— next-header next-header
— no next-header
— router service name {service-name}
— router {router-instance}
— no router
— src-ip (ipv6-address | prefix-length)
— no src-ip
— src-port {port-id | cpm | lag lag-id}
— no src-port
— renum old-entry-number new-entry-number
— [no] shutdown
— [no] mac-filter
— default-action {permit | deny}
— [no] entry entry-id
— action {permit | deny}
— no action
— description description-string
— no description
— [no] log
— match frame-type frame-type
— no match
— cfm-opcode (lt | gt | eq) opcode
— cfm-opcode range start end
— no cfm-opcode
— dot1p dot1p-value [dot1p-mask]
— dsap dsap-value [dsap-mask]
— dst-mac ieee-address [ieee-address-mask]
— no dst-mac
— etype 0x0600..0xffff
2.10.1.1.3 CLI Script Authorization Commands

```plaintext
config
 system
 security
 cli-script
 authorization
 cron
 cli-user user-name
 no cli-user
 vsd
 cli-user user-name
 no cli-user
 event-handler
 cli-user user-name
 no cli-user
```

2.10.1.1.4 CPM Filter Commands

```plaintext
config
 system
 security
 [no] cpm-filter
 [no] ip-filter
 [no] entry entry-id
 action [accept | drop | queue queue-id]
 no action
 description description-string
 no description
 log log-id
 no log
 match [protocol protocol-id]
 no match
 dscp dscp-name
```
---
- no dscp
- dst-ip {ip-address/mask | ip-address netmask | ip-prefix-list prefix-list-name}
- no dst-ip
- dst-port tcp/udp port-number [mask]
- dst-port port-list port-list-name
- dst-port range tcp/udp port-number tcp/udp port-number
- no dst-port
- fragment {true | false}
- no fragment
- icmp-code icmp-code
- no icmp-code
- icmp-type icmp-type
- no icmp-type
- ip-option [ip-option-value] [ip-option-mask]
- no ip-option
- multiple-option {true | false}
- no multiple-option
- option-present {true | false}
- no option-present
- port tcp/udp port-number [mask]
- port port-list port-list-name
- port range tcp/udp port-number tcp/udp port-number
- no port
- router {router-instance}
- router service-name {service-name}
- src-ip {ip-address/mask | ip-address netmask | ip-prefix-list prefix-list-name}
- no src-ip
- src-port [src-port-number] [mask]
- src-port tcp/udp port-number [mask]
- src-port port-list port-list-name
- src-port range tcp/udp port-number tcp/udp port-number
- no src-port
- tcp-ack {true | false}
- no tcp-ack
- tcp-syn {true | false}
- no tcp-syn
  - renum old-entry-id new-entry-id
  - [no] shutdown
- [no] ipv6-filter
  - [no] entry entry-id
    - action [accept | drop | queue queue-id ]
    - no action
    - description description-string
    - no description
    - log log-id
    - no log
    - match [next-header next-header]
    - no match
      - dscp dscp-name
— no dscp
— dst-ip ipv6-address/prefix-length
— dst-ip ipv6-prefix-list ipv6-prefix-list-name
— no dst-ip
— dst-port [tcp/udp port-number] [mask]
— dst-port port-list port-list-name
— dst-port range tcp/udp port-number tcp/udp port-number
— no dst-port
— flow-label value
— no flow-label
— fragment {true | false}
— no fragment
— hop-by-hop-opt {true | false}
— no hop-by-hop-opt
— icmp-code icmp-code
— no icmp-code
— icmp-type icmp-type
— no icmp-type
— port tcp/udp port-number [mask]
— port port-list port-list-name
— port range start end
— no port
— router service-name service-name
— router router-instance
— no router
— src-ip [ipv6-address/prefix-length] [ipv6-prefix-list ipv6-prefix-list-name]
— no src-ip
— src-port [src-port-number] [mask]
— no src-port
— tcp-ack {true | false}
— no tcp-ack
— tcp-syn {true | false}
— no tcp-syn
— renum old-entry-id new-entry-id
— [no] shutdown

— [no] mac-filter
— [no] entry entry-id
— — action [accept | drop | queue queue-id]
— — no action
— — description description-string
— — no description
— — log log-id
— — no log
— — match [frame-type frame-type]
— — no match
— — cfm-opcode (lt | gt | eq) opcode
— — cfm-opcode range start end
— — no cfm-opcode
— — dsap dsap-value [dsap-mask]
— — dst-mac ieee-address [ieee-address-mask]
Security

2.10.1.1.5 CPM Queue Commands

```plaintext
config
 system
 security
 [no] cpm-queue
 [no] queue queue-id
 cbs cbs
 [no] cbs
 mbs mbs
 [no] mbs
 rate rate [cir cir]
 [no] rate
```

2.10.1.1.6 CPU Protection Commands

```plaintext
config
 system
 security
 cpu-protection
 ip-src-monitoring
 included-protocols
 [no] dhcp
 [no] gtp
 [no] icmp
 [no] igmp
 link-specific-rate packet-rate-limit
 [no] link-specific-rate
 policy cpu-protection-policy-id [create]
 [no] policy cpu-protection-policy-id
 [no] alarm
 description description-string
 [no] description
 eth-cfm entry entry levels levels opcodes opcodes rate packet-rate-limit
 [no] eth-cfm
 out-profile-rate packet-rate-limit [log-events]
```
— no out-profile-rate
— overall-rate packet-rate-limit
— no overall-rate
— per-source-rate packet-rate-limit
— no per-source-rate
— port-overall-rate packet-rate-limit [action-low-priority]
— no port-overall-rate
— [no] protocol-protection [allow-sham-links][block-pim-tunneled]

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 2 Services and EVPN Guide: VLL, VPLS, PBB, and EVPN, the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services and the 7450 ESS and 7750 SR Multiservice Integrated Service Adapter Guide for command, syntax, and usage information about applying CPU Protection policies to interfaces.

CPU protection policies are applied by default (and customer policies can be applied) to a variety of entities including interfaces and SAPs. Refer to the appropriate guides for command syntax and usage for applying CPU protection policies. Examples of entities that can have CPU protection policies applied to them include:

```
config>router>if>cpu-protection policy-id
config>service>epipe>sap>cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
config>service>epipe>spoke-sdp>cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
config>service>ies>if>cpu-protection policy-id
config>service>ies>if>sap>cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
config>service>template>vpls-sap-template>cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
config>service>vpls>sap>cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
config>service>vpls>video-interface>cpu-protection policy-id
config>service>vprn>if>cpu-protection policy-id
config>service>vprn >if>sap>cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
config>service>vprn>nw-if>cpu-protection policy-id
```
2.10.1.1.7 Distributed CPU Protection Commands

config
  — system
  — security
  — dist-cpu-protection
    — policy policy-name [create]
    — no policy
      — description description-string
      — no description
      — [no] local-monitoring-policer policer-name [create]
        — [no] description description-string
        — exceed-action {discard | low-priority | none}
        — rate {packets {ppi | max} within seconds [initial-delay packets] | kbps {kilobits-per-second | max} [mbs size] [bytes | kilobytes]}
        — no rate
        — [no] log-events [verbose]
      — protocol name [create]
      — no protocol name
        — dynamic-parameters
          — detection-time seconds
          — exceed-action {discard [hold-down seconds] | low-priority [hold-down seconds] | none}
          — log-events [verbose]
          — no log-events
          — rate {packets {ppi | max} within seconds [initial-delay packets] | kbps {kilobits-per-second | max} [mbs size] [bytes | kilobytes]}
          — enforcement {static policer-name | dynamic {mon-policer-name | local-mon-bypass}}
      — static-policer policer-name [create]
      — no static-policer policer-name
        — description description-string
        — no description
        — detection-time seconds
        — no detection-time
        — exceed-action {discard [hold-down seconds] | low-priority [hold-down seconds] | none}
        — log-events [verbose]
        — no log-events
        — rate {packets {ppi | max} within seconds [initial-delay packets] | kbps {kilobits-per-second | max} [mbs size] [bytes | kilobytes]}
        — no rate
config
  — card
    — fp
      — dist-cpu-protection
        — [no] dynamic-enforcement-policer-pool number-of-policers

2.10.1.1.8 Extracted Protocol Traffic Priority Commands

config
  — card
    — fp
      — init-extract-prio-mode {uniform | l3-classify}

2.10.1.1.9 Security Password Commands

config
  — system
    — security
      — password
        — admin-password password [hash | hash2]
        — no admin-password
        — aging days
        — no aging
        — attempts count [time minutes] [lockout minutes]
        — no attempts
        — authentication-order [method-1] [method-2] [method-3] [method-4]
          [exit-on-reject]
        — no authentication-order
        — complexity-rules
          — [no] allow-user-name
          — credits [lowercase credits] [uppercase credits] [numeric
            credits] [special-character credits]
            — no credits
            — minimum-classes minimum
            — no minimum-classes
            — minimum-length length
            — no minimum-length
            — repeated-characters count
            — no repeated-characters
            — required [lowercase count] [uppercase count] [numeric count]
              [special-character count]
            — no required
            — dynsvc-password password [hash | hash2]
            — no dynsvc-password
            — enable-admin-control
            — tacplus-map-to-priv-lvl admin-priv-lvl
            — no tacplus-map-to-priv-lvl
            — health-check [interval interval]
            — no health-check
2.10.1.1.10 Public Key Infrastructure (PKI) Commands

The following commands apply only to the 7450 ESS and 7750 SR:

```
config
 -- system
 -- security
 -- pki
 -- ca-profile name [create]
 -- no ca-profile name
 -- cert-file filename
 -- no cert-file
 -- cmpv2
 -- [no] accept-unprotected-errormsg
 -- [no] accept-unprotected-pkiconf
 -- http-response-timeout timeout
 -- no http-response-timeout
 -- key-list
 -- key password [hash|hash2] reference reference-number
 -- no key reference reference-number
 -- response-signing-cert filename
 -- no response-signing-cert
 -- [no] same-recipnonce-for-pollreq
 -- url url-string [service-id service-id]
 -- no url
 -- certificate-display-format {ascii | utf8}
 -- certificate-expiration-warning hours [repeat repeat-hours]
 -- no certificate-expiration-warning
 -- common-name-list name
 -- [no] cn index type value common-name-value
 -- cri-expiration-warning hours [repeat repeat-hours]
 -- no cri-expiration-warning
 -- maximum-cert-chain-depth level
 -- no maximum-cert-chain-depth
```

**Note:** For information about CMPv6 admin certificate commands listed in the following tree, see the 7450 ESS and 7750 SR Multiservice Integrated Service Adapter Guide.
— clear-ocsp-cache [entry-id]
— crl-update ca ca-profile-name
— display type {cert | key | crl | cert-request} url-string format {pkcs10 | pkcs12 | pkcs7-der | pkcs7-pem | pem | der} [password [32 chars max]]
— export type {cert | key | crl} input filename output url-string format output-format [password [32 chars max]] [pkey filename]
— gen-keypair url-string [size {512 | 1024 | 2048}] [type {rsa | dsa}]
— import type {cert | key | crl} input url-string output filename format input-format [password [32 chars max]]
— reload type {cert | key | cert-key-pair} filename [key-file filename]
— secure-nd-export
— secure-nd-import input url-string format input-format [password password] [key-rollover]

2.10.1.1.11 Profile Commands

    config
    — system
    — security
        — [no] profile user-profile-name
            — default-action {deny-all | permit-all | none | read-only-all}
            — [no] entry entry-id
                — action {deny | permit | read-only}
                — description description-string
                — no description
                — security command-string
                — no security
            — renum old-entry-number new-entry-number
            — ssh-max-sessions session-limit
            — no ssh-max-sessions
            — telnet-max-sessions session-limit
            — no telnet-max-sessions
            — combined-max-sessions session-limit
            — no combined-max-sessions

2.10.1.1.12 CLI Session Commands

    config
    — system
    — security
        — cli-session-group session-group-name [create]
            — ssh-max-sessions session-limit
            — no ssh-max-sessions
            — telnet-max-sessions session-limit
            — no telnet-max-sessions
            — combined-max-sessions session-limit
            — no combined-max-sessions
2.10.1.1.13  RADIUS Commands

```plaintext
config
 — system
 — security
 — [no] radius
 — access-algorithm {direct | round-robin}
 — no access-algorithm
 — [no] accounting
 — accounting-port port
 — no accounting-port
 — [no] authorization
 — [no] interactive-authentication
 — port port
 — no port
 — retry count
 — no retry
 — server server-index address ip-address secret key [hash | hash2]
 — no server server-index
 — [no] shutdown
 — timeout seconds
 — no timeout
 — [no] use-default-template
```

2.10.1.1.14  SSH Commands

```plaintext
config
 — system
 — security
 — ssh
 — client-cipher-list protocol-version version
 — cipher index name cipher-name
 — no cipher index
 — client-mac-list
 — mac index name mac-name
 — no mac index
 — key-re-exchange
 — client
 — [no] mbytes {mbytes | disable}
 — [no] minutes {minutes | disable}
 — [no] shutdown
 — server
 — [no] mbytes {mbytes | disable}
 — [no] minutes {minutes | disable}
 — [no] shutdown
 — [no] preserve-key
 — server-cipher-list protocol-version version
 — cipher index name cipher-name
 — no cipher index
 — server-mac-list
 — mac index name mac-name
```
2.10.1.15 TACPLUS Commands

```
config
 system
 security
 [no] tacplus
 accounting [record-type {start-stop | stop-only}]
 no accounting
 [no] authorization [use-priv-lvl]
 [no] interactive-authentication
 [no] priv-lvl-map
 priv-lvl priv-lvl user-profile-name
 no priv-lvl priv-lvl
 server
 server-index
 address ip-address secret key [hash | hash2]
 [port port]
 no server server-index
 [no] shutdown
 timeout seconds
 no timeout
 [no] use-default-template
```

2.10.1.16 LDAP Commands

```
config
 system
 security
 [no] ldap
 [no] public-key-authentication
 [no] retry value
 no retry
 server
 server-index [create]
 address ip-address [port port]
 no address
 bind-authentication root-dn [password password] [hash | hash2]
 no bind-authentication
 ldap-server server-name
 no ldap-server
 search base-dn
 no search
 [no] shutdown
 tls-profile tls-profile-name
 no tls-profile
 no server
 [no] shutdown
```
2.10.1.1.17 User Commands

```
config
 system
 security
 [no] user user-name
 [no] access [ftp] [snmp] [console] [li] [netconf] [grpc]
 console
 [no] cannot-change-password
 login-exec url-prefix::source-url
 [no] login-exec
 member user-profile-name [user-profile-name...(up to 8 max)]
 [no] member user-profile-name
 [no] new-password-at-login
 home-directory url-prefix [directory] [directory/directory…]
 [no] home-directory
 password [password]
 public-keys
 [no] ecdsa
 [no] ecdsa-key key-id [create]
 description description-string
 [no] description
 key-value public-key-value
 [no] key-value
 rsa
 [no] rsa-key key-id [create]
 description description-string
 [no] description
 key-value public-key-value
 [no] key-value
 [no] restricted-to-home
 snmp
 authentication { [none] | [hash] { md5 key-1 | sha key-1 } }
 privacy { none | des-key key-2 | aes-128-cfb-key key-2 }
 [no] authentication
 group group-name
 [no] group
```
2.10.1.19 Dot1x Commands

```
config
 -- system
 -- security
 -- dot1x
 -- radius-plcy name
 -- retry count
 -- no retry
 -- server server-index address ip-address secret key | [hash | hash2] [auth-port auth-port] [acct-port acct-port] [type server-type]
 -- source-address ip-address
 -- [no] shutdown
 -- timeout seconds
 -- no timeout
 -- [no] shutdown
```

2.10.1.20 Keychain Commands

```
config
 -- system
 -- security
 -- [no] keychain keychain-name
 -- description description-string
 -- no description
 -- direction {uni | bi}
 -- bi
 -- entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm algorithm
 -- no entry
 -- begin-time [date] [hours-minutes] [UTC]
 -- begin-time {now | forever}
 -- no begin-time
 -- option {basic | isis-enhanced}
 -- no option
 -- [no] shutdown
 -- tolerance [seconds | forever]
```
2.10.1.21 TTL Security Commands

```plaintext
config
 — router
 — bgp
 — group
 — ttl-security min-ttl-value
 — neighbor
 — ttl-security min-ttl-value

config
 — router
 — ldp
 — tcp-session-parameters
 — peer-transport
 — ttl-security min-ttl-value

config
 — system
```

---

**Security Commands**

- `node tolerance`
- `node receive`
  - `entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm algorithm`
  - `no entry entry-id`
    - `begin-time [date] [hours-minutes] [UTC]
    - begin-time {now | forever}
  - `no begin-time`
  - `end-time [date] [hours-minutes] [UTC]
  - end-time {now | forever}
  - `no end-time`
  - `[no] shutdown`
  - `tolerance [seconds | forever]
  - `no tolerance`

- `node send`
  - `entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm algorithm`
  - `no entry entry-id`
    - `begin-time [date] [hours-minutes] [UTC]
    - begin-time {now | forever}
  - `no begin-time`
  - `end-time [date] [hours-minutes] [UTC]
  - end-time {now | forever}
  - `no end-time`
  - `[no] shutdown`
  - `tcp-option-number`
    - `receive option-number`
    - `no receive`
    - `send option-number`
    - `no send`
2.10.1.22 gRPC Commands

```plaintext
config
 system
 grpc
 tls-server-profile name
 no tls-server-profile
```

2.10.1.2 Login Control Commands

```plaintext
config
 system
 login-control
 [no] exponential-backoff
 ftp
 inbound-max-sessions number-of-sessions
 no inbound-max-sessions
 idle-timeout {minutes | disable}
 no idle-timeout
 [no] login-banner
 login-scripts
 global file-url
 no global
 per-user user-directory file-url file-name file-name
 no per-user
 motd {url url-prefix: source-url | text motd-text-string}
 no motd
 pre-login-message login-text-string [name]
 no pre-login-message
 ssh
 disable-graceful-shutdown
 inbound-max-sessions
 outbound-max-sessions
 ttl-security
 telnet
 enable-graceful-shutdown
 inbound-max-sessions value
 no inbound-max-sessions
```
2.10.2 Command Descriptions

This section provides the CLI command descriptions. Topics include:

- General Security Commands
- LLDP Commands
- Login, Telnet, SSH and FTP Commands
- Management Access Filter Commands
- Password Commands
- Public Key Infrastructure (PKI) Commands
- Profile Management Commands
- User Management Commands
- CLI Session Management Commands
- RADIUS Client Commands
- TACACS+ Client Commands
- LDAP Client Commands
- Generic 802.1x COMMANDS
- Keychain Authentication
- CLI Script Commands
- CPM Filter Commands
- CPM Queue Commands
- TTL Security Commands
- CPU Security Commands
- Distributed CPU Protection Commands
- Extracted Protocol Traffic Priority Commands
2.10.2.1 General Security Commands

description

Syntax

```plaintext
description description-string
no description
```

Context

- `config>system>security>mgmt-access-filter>ip-filter>entry`
- `config>system>security>mgmt-access-filter>ipv6-filter>entry`
- `config>sys>sec>cpm>ip-filter>entry`
- `config>sys>sec>cpm>ipv6-filter>entry`
- `config>sys>sec>cpm>mac-filter>entry`
- `config>sys>security>keychain>direction>bi>entry`
- `config>system>security>keychain>direction>uni>receive>entry`
- `config>system>security>keychain>direction>uni>send>entry`
- `config>system>security>pki>ca-profile`
- `config>sys>security>cpu-protection>policy`
- `config>system>security>mgmt-access-filter>mac-filter>entry`
- `config>system>security>cpm-filter>mac-filter>entry`
- `config>system>security>user>public-keys>ecdsa>ecdsa-key`
- `config>system>security>user>public-keys>rsa>rsa-key`

Description

This command creates a text description stored in the configuration file for a configuration context.
This command associates a text string with a configuration context to help identify the context in the configuration file.

The no form of the command removes the string.

Default

No description associated with the configuration context.

Parameters

`string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, and so on), the entire string must be enclosed within double quotes.

shutdown

Syntax

```plaintext
[no] shutdown
```

Context

- `config>system>security>mgmt-access-filter>ip-filter`
- `config>system>security>mgmt-access-filter>ipv6-filter`
- `config>sys>sec>cpm>ip-filter`
- `config>system>security>keychain>direction>bi>entry`
- `config>system>security>keychain>direction>uni>receive>entry`
- `config>system>security>keychain>direction>uni>send>entry`
- `config>system>security>pki>ca-profile`
config>sys>sec>cpm>ipv6-filter
config>sys>sec>cpm>mac-filter>entry

**Description**
The `shutdown` command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the `no shutdown` command. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The `no` form of the command puts an entity into the administratively enabled state.

**Default**
`no shutdown`

---

### security

**Syntax**
```
security
```

**Context**
```
config>system
```

**Description**
This command creates the context to configure security settings.

Security commands manage user profiles and user membership. Security commands also manage user login registrations.

### ftp-server

**Syntax**
```
[no] ftp-server
```

**Context**
```
config>system>security
```

**Description**
This command enables FTP servers running on the system.

FTP servers are disabled by default. At system startup, only SSH server are enabled.

The `no` form of the command disables FTP servers running on the system.

### hash-control

**Syntax**
```
hash-control [read-version {1 | 2 | all}] [write-version {1 | 2}]
no hash-control
```

**Context**
```
config>system>security
```

**Description**
Whenever the user executes a `save` or `info` command, the system will encrypt all passwords, MD5 keys, and so on, for security reasons. At present, two algorithms exist.
The first algorithm is a simple, short key that can be copied and pasted in a different location when the user wants to configure the same password. However, because it is the same password and the hash key is limited to the password/key, even the casual observer will notice that it is the same key.

The second algorithm is a more complex key, and cannot be copied and pasted in different locations in the configuration file. In this case, if the same key or password is used repeatedly in different contexts, each encrypted (hashed) version will be different.

**Default**  
all — read-version set to accept both versions 1 and 2

**Parameters**  
read-version {1 | 2 | all} — When the read-version is configured as all, both versions 1 and 2 will be accepted by the system. Otherwise, only the selected version will be accepted when reading configuration or exec files. The presence of incorrect hash versions will abort the script/startup.

write-version {1 | 2} — Select the hash version that will be used the next time the configuration file is saved (or an info command is executed). Be careful to save the read and write version correctly, so that the file can be properly processed after the next reboot or exec.

### per-peer-queuing

**Syntax**  
[no] per-peer-queuing

**Context**  
config>system>security

**Description**  
This command enables CPM hardware queuing per peer. This means that when a peering session is established, the router will automatically allocate a separate CPM hardware queue for that peer.

The **no** form of the command disables CPM hardware queuing per peer.

**Default**  
per-peer-queuing

### source-address

**Syntax**  
source-address

**Context**  
config>system>security

**Description**  
This command specifies the source address that should be used in all unsolicited packets sent by the application.

This feature only applies on inband interfaces and does not apply on the out of band management interface. Packets going out the management interface will keep using that as source IP address. In other words, when the RADIUS server is reachable through both the management interface and a network interface, the management interface is used despite whatever is configured under the source-address statement.
When a source address is specified for the **ptp** application, the port-based 1588 hardware timestamping assist function will be applied to PTP packets matching the IPv4 address of the router interface used to ingress the SR/ESS or IP address specified in this command. If the IP address is removed, then the port-based 1588 hardware timestamping assist function will only be applied to PTP packets matching the IPv4 address of the router interface.

**Application**

**Syntax**

```
application app [ip-int-name | ip-address]
no application app
```

**Context**

```
config>system>security>source-address
```

**Description**

This command specifies the use of the source IP address specified by the **source-address** command.

**Parameters**

- **app** — Specify the application name.
  - **Values**
    - `cflowd`, `dns`, `ftp`, `ntp`, `ldap`, `ping`, `ptp`, `radius`, `sflow`, `snmptap`, `snmp`,
      `ssh`, `syslog`, `telnet`, `traceroute`, `mcreporter`, `icmp-error`

- `ip-int-name | ip-address` — Specifies the name of the IP interface or IP address. If the string contains special characters (#, $, spaces, and so on), the entire string must be enclosed within double quotes.

**Application6**

**Syntax**

```
application6 app ipv6-address
no application6
```

**Context**

```
config>system>security>source-address
```

**Description**

This command specifies the application to use the source IPv6 address specified by the **source-address** command.

**Parameters**

- **app** — Specify the application name.
  - **Values**
    - `cflowd`, `dns`, `ftp`, `ldap`, `ntp`, `ping`, `radius`, `sflow`, `snmptap`, `snmp`, `ssh`,
      `syslog`, `telnet`, `traceroute`, `icmp6-error`

- `ipv6-address` — Specifies the IPv6 address.

**Telnet-server**

**Syntax**

```
[no] telnet-server
```

**Context**

```
config>system>security
```
Description

This command enables Telnet servers running on the system. Telnet servers are off by default. At system startup, only SSH servers are enabled.

Telnet servers in networks limit a Telnet client to three retries to login. The Telnet server disconnects the Telnet client session after three retries.

The no form of the command disables Telnet servers running on the system.

telnet6-server

Syntax

[no] telnet6-server

Context

config>system>security

Description

This command enables Telnet IPv6 servers running on the system and only applies to the 7750 SR and 7950 XRS.

Telnet servers are off by default. At system startup, only SSH server are enabled.

The no form of the command disables Telnet IPv6 servers running on the system.

vprn-network-exceptions

Syntax

vprn-network-exceptions number seconds

no vprn-network-exceptions

Context

config>system>security

Description

This command configures the rate to limit ICMP replies to packets with label TTL expiry received within all VPRN sentences in the system and from all network IP interfaces. This includes labeled user packets, ping and traceroute packets within VPRN.

This feature currently also limits the same packets when received within the context of an LSP shortcut.

This feature does not rate limit MPLS and service OAM packets (vprn-ping, vprn-trace, lsp-ping, lsp-trace, vccv-ping, and vccv-trace).

The no form of the command disables the rate limiting of the reply to these packets.

This feature only applies to the 7750 SR and 7950 XRS.

Default

no vprn-network-exceptions

Parameters

number — 10 to 10,000

seconds — 1 to 60
2.10.2.2 LLDP Commands

lldp

Syntax  lldp  
Context  config>system  
Description  This command enables the context to configure system-wide Link Layer Discovery Protocol parameters.

message-fast-tx

Syntax  message-fast-tx time  
no message-fast-tx  
Context  config>system>lldp  
Description  This command configures the duration of the fast transmission period.  
Parameters  time — Specifies the fast transmission period in seconds.  
  Values  1 to 3600  
  Default  1  

message-fast-tx-init

Syntax  message-fast-tx-init count  
no message-fast-tx-init  
Context  config>system>lldp  
Description  This command configures the number of LLDPDUs to send during the fast transmission period.  
Parameters  count — Specifies the number of LLDPDUs to send during the fast transmission period.  
  Values  1 to 8  
  Default  4  

notification-interval

Syntax  notification-interval time  
no notification-interval  

Context config>system>lldp

Description This command configures the minimum time between change notifications.

Parameters

- **time** — Specifies the minimum time, in seconds, between change notifications.
  
  **Values** 5 to 3600
  
  **Default** 5

reinit-delay

Syntax `reinit-delay time`
`no reinit-delay`

Context config>system>lldp

Description This command configures the time before re-initializing LLDP on a port.

Parameters

- **time** — Specifies the time, in seconds, before re-initializing LLDP on a port.
  
  **Values** 1 to 10
  
  **Default** 2

tx-credit-max

Syntax `tx-credit-max count`
`no tx-credit-max`

Context config>system>lldp

Description This command configures the maximum consecutive LLDPDUs transmitted.

Parameters

- **count** — Specifies the maximum consecutive LLDPDUs transmitted.
  
  **Values** 1 to 100
  
  **Default** 5

tx-hold-multiplier

Syntax `tx-hold-multiplier multiplier`
`no tx-hold-multiplier`

Context config>system>lldp

Description This command configures the multiplier of the tx-interval.
Parameters  

<table>
<thead>
<tr>
<th>multiplier — Specifies the multiplier of the tx-interval.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Values</th>
<th>2 to 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>4</td>
</tr>
</tbody>
</table>

**tx-interval**

**Syntax**

```
tx-interval interval
no tx-interval
```

**Context**

```
config>system>lldp
```

**Description**

This command configures the LLDP transmit interval time.

**Parameters**

<table>
<thead>
<tr>
<th>interval — Specifies the LLDP transmit interval time.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Values</th>
<th>5 to 32768</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>30</td>
</tr>
</tbody>
</table>

### 2.10.2.3 Login, Telnet, SSH and FTP Commands

**exponential-backoff**

**Syntax**

```
[no] exponential-backoff
```

**Context**

```
config>system>login-control
```

**Description**

This command enables the exponential-backoff of the login prompt. The exponential-backoff command is used to deter dictionary attacks, when a malicious user can gain access to the CLI by using a script to try *admin* with any conceivable password.

The **no** form of the command disables exponential-backoff.

<table>
<thead>
<tr>
<th>Default</th>
<th>no exponential-backoff</th>
</tr>
</thead>
</table>

**ftp**

**Syntax**

```
ftp
```

**Context**

```
config>system>login-control
```

**Description**

This command creates the context to configure FTP login control parameters.
idle-timeout

Syntax idle-timeout {minutes | disable}
no idle-timeout

Context config>system>login-control

Description This command configures the idle timeout for FTP, console, or Telnet sessions before the session is terminated by the system.

By default, an idle FTP, console, SSH or Telnet session times out after 30 minutes of inactivity. This timer can be set per session.

The no form of the command reverts to the default value.

Default idle-timeout 30

Parameters

- minutes — The idle timeout in minutes. Allowed values are 1 to 1440. 0 implies the sessions never timeout.
  
  Values 1 to 1440

- disable — When the disable option is specified, a session will never timeout. To re-enable idle timeout, enter the command without the disable option.

inbound-max-sessions

Syntax inbound-max-sessions value
no inbound-max-sessions

Context config>system>login-control>ftp

Description This command configures the maximum number of concurrent inbound FTP sessions.

This value is the combined total of inbound and outbound sessions.

The no form of the command reverts to the default value.

Default inbound-max-sessions 3

Parameters value — The maximum number of concurrent FTP sessions on the node.

Values 0 to 5
Context  config>system>login-control>telnet
        config>system>login-control>ssh

Description  This parameter limits the number of inbound Telnet and SSH sessions. A maximum of 30
telnet and ssh connections can be established to the router. The local serial port cannot be
disabled.

Telnet and SSH maximum sessions can also use the combined total of both inbound
sessions (SSH+Telent). While it is acceptable to continue to internally limit the combined total
of SSH and Telnet sessions to N, either SSH or Telnet sessions can use the inbound
maximum sessions, if so required by the Operator.

The no form of the command reverts to the default value.

Default  inbound-max-sessions 5

Parameters  number-of-sessions — The maximum number of concurrent inbound Telnet sessions,
expressed as an integer.

Values  0 to 50 (default = 5)
        or 0 to N where N is the new total number of SSH+Telent sessions
        if they are scaled

login-control

Syntax  login-control

Context  config>system

Description  This command creates the context to configure the session control for console, Telnet and
FTP.

login-banner

Syntax  [no] login-banner

Context  config>system>login-control

Description  This command enables or disables the display of a login banner. The login banner contains
the SR OS copyright and build date information for a console login attempt.

The no form of the command causes only the configured pre-login-message and a generic
login prompt to display.

login-scripts

Syntax  login-scripts
Context

This command enables the context to configure CLI scripts that execute when a user (authenticated via any method including local user database, TACACS+, or RADIUS) first logs into a CLI session.

global

Syntax  

```
global file-url
no global
```

Context

config>system>login-control>login-scripts

Description

This command enables an operator to define a common CLI script that executes when any user logs into a CLI session. This login exec script is executed when any user (authenticated by any means including local user database, TACACS+, or RADIUS) opens a CLI session. This allows a user, for example, to define a common set of CLI aliases that are made available on the router for all users. This global login exec script is executed before any user-specific login exec files that may be configured.

This CLI script executes in the context of the user who opens the CLI session. Any commands in the script that the user is not authorized to execute will fail.

The no form of this command disables the execution of a global login-script.

Default  

no global

Parameters

`file-url` — The path or directory name.

per-user

Syntax  

```
per-user user-directory dir-url file-name file-name
no per-user
```

Context

config>system>login-control>login-scripts

Description

This command allows users to define their own login scripts that can be executed each time they first login to a CLI session. The command executes the script "file-url / username / file-name" when the user `username` logs into a CLI session (authenticated by any means including local user database, TACACS+, or RADIUS).

For example:

per-user user-directory "cf1:/local/users" file-name "login-script.txt"

would search for the following script when user "admin" logs in and authenticates via RADIUS:

```
cf1:/local/users/admin/login-script.txt
```
The per user login script is executed after any global script executes and before any login-exec script configured against a local user is executed. This allows users, for example, who are authenticated via TACACS+ or RADIUS to define their own login scripts.

This CLI script executes in the context of the user who opens the CLI session. Any commands in the script that the user is not authorized to execute will fail.

The no form of the command disables the execution of any per user login-scripts.

**Default**
no per-user

**Parameters**

- *dir-url* — Specifies the path or directory name.
- *file-name* — Specifies the name of the file (located in the *dir-url* directory) including the extension.

---

## motd

**Syntax**

motd {url url-prefix: source-url | text motd-text-string}

**no motd**

**Context**
config>system>login-control

**Description**

This command creates the message of the day displayed after a successful console login. Only one message can be configured.

The no form of the command removes the message.

**Default**
no motd

**Parameters**

- *url url-prefix: source-url* — When the message of the day is present as a text file, provide both url-prefix and the source-url of the file containing the message of the day. The URL prefix can be local or remote.
- *text motd-text-string* — Specifies the text of the message of the day. The *motd-text-string* must be enclosed in double quotes. Multiple text strings are not appended to one another.

Some special characters can be used to format the message text. The \n character can be used to create multi-line messages. A \n in the message moves to the beginning of the next line by sending ASCII/UTF-8 chars 0xA (LF) and 0xD (CR) to the client terminal. An \r in the message sends the ASCII/UTF-8 char 0xD (CR) to the client terminal.

---

## outbound-max-sessions

**Syntax**

outbound-max-sessions value

**no outbound-max-sessions**
Context  config>system>login-control>telnet
        config>system>login-control>ssh

Description  This parameter limits the number of outbound Telnet and SSH sessions. A maximum of 15 telnet and ssh connections can be established from the router. The local serial port cannot be disabled.

The **no** form of the command reverts to the default value.

Default  outbound-max-sessions 5

Parameters  **value** — Specifies the maximum number of concurrent outbound Telnet sessions, expressed as an integer.

  **Values**  0 to 15

---

**pre-login-message**

Syntax  **pre-login-message** login-text-string [name]
        no pre-login-message

Context  config>system>login-control

Description  This command creates a message displayed prior to console login attempts on the console via Telnet.

Only one message can be configured. If multiple **pre-login-messages** are configured, the last message entered overwrites the previous entry.

It is possible to add the name parameter to an existing message without affecting the current **pre-login-message**.

The **no** form of the command removes the message.

Default  no pre-login-message

Parameters  **login-text-string** — Specifies the login text string up to 900 characters in length. Any printable, 7-bit ASCII characters can be used. If the string contains special characters (#, $, spaces, and so on), the entire string must be enclosed within double quotes. Some special characters can be used to format the message text. The `\n` character can be used to create multi-line messages. A `\n` in the message moves to the beginning of the next line by sending ASCII/UTF-8 chars 0xA (LF) and 0xD (CR) to the client terminal. A `\r` in the message sends the ASCII/UTF-8 char 0xD (CR) to the client terminal.

  **name** — When this keyword is specified, the configured system name is always displayed first in the login message. To remove the name from the login message, the message must be cleared and a new message entered without the name.
ssh

Syntax  ssh

Context  config>system>login-control

Description  This command enables the context to configure the SSH parameters.

disable-graceful-shutdown

Syntax  [no] disable-graceful-shutdown

Context  config>system>login-control>ssh

Description  This command enables graceful shutdown of SSH sessions.

The no form of the command disables graceful shutdown of SSH sessions.

client-cipher-list

Syntax  client-cipher-list protocol-version version

Context  config>system>security>ssh

Description  This command enables configuration the list of allowed ciphers by the SSH client.

Parameters  version — Specifies the SSH version.

Values  1 — Specifies that the SSH server will only accept connections from clients that support SSH protocol version 1
2 — Specifies that the SSH server will accept connections from clients supporting either SSH protocol version 2

cipher

Syntax  cipher index name cipher-name

no cipher index

Context  config>system>security>ssh>client-cipher-list
config>system>security>ssh>server-cipher-list

Description  This command enables configuration of a cipher. Client-ciphers are used when the SR OS is acting as an SSH client. Server-ciphers are used when the SR OS is acting as an SSH server.

Default  no cipher index
**Parameters**  
*index* — Specifies the index of the cipher in the list.

**Values**  
1 to 255

*cipher-name* — Specifies the algorithm for performing encryption or decryption.

**Values**  
For SSHv1:
- Client ciphers: des, 3des, blowfish
- Server ciphers: 3des, blowfish

Table 10 lists the default ciphers used for SSHv1:

### Table 10  SSHv1 Default Ciphers

<table>
<thead>
<tr>
<th>Cipher index value</th>
<th>Cipher name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3des</td>
</tr>
<tr>
<td>20</td>
<td>blowfish</td>
</tr>
<tr>
<td>30</td>
<td>des</td>
</tr>
</tbody>
</table>

**Note:** blowfish and des are not permitted in FIPS-140-2 mode.

For SSHv2:
- Client ciphers: 3des-cbc, blowfish-cbc, cast128-cbc, arcfour, aes128-cbc, aes192-cbc, aes256-cbc, rijndael-cbc, aes128-ctr, aes192-ctr, aes256-ctr

Table 11 lists the default ciphers used for SSHv2:

### Table 11  SSHv2 Default Ciphers

<table>
<thead>
<tr>
<th>Cipher index value</th>
<th>Cipher name</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>aes256-ctr</td>
</tr>
<tr>
<td>192</td>
<td>aes192-ctr</td>
</tr>
<tr>
<td>194</td>
<td>aes128-ctr</td>
</tr>
<tr>
<td>200</td>
<td>aes128-cbc</td>
</tr>
<tr>
<td>205</td>
<td>3des-cbc</td>
</tr>
<tr>
<td>210</td>
<td>blowfish-cbc</td>
</tr>
</tbody>
</table>
Table 11  SSHv2 Default Ciphers (Continued)

<table>
<thead>
<tr>
<th>Cipher index value</th>
<th>Cipher name</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>cast128-cbc</td>
</tr>
<tr>
<td>220</td>
<td>arcfour</td>
</tr>
<tr>
<td>225</td>
<td>aes192-cbc</td>
</tr>
<tr>
<td>230</td>
<td>aes256-cbc</td>
</tr>
<tr>
<td>235</td>
<td>rijndael-cbc</td>
</tr>
</tbody>
</table>

Note: blowfish-cbc, cast128-cbc, arcfour, and rijndael-cbc are not permitted in FIPS-140-2 mode.

client-mac-list

Syntax  client-mac-list
Context  config>system>security>ssh
Description  This command allows the user to configure SSH MAC algorithms for SR OS as client.

mac

Syntax  mac  index  name  mac-name
        no  mac  index
Context  config>system>security>ssh>client-mac-list
         config>system>security>ssh>server-mac-list
Description  This command allows the user to configure SSH MAC algorithms for SR OS as an SSH server or an SSH client.

The no form of the command removes the specified mac index.

Default  no  mac  index
Parameters  index — Specifies the index of the algorithm in the list.
            Values  1 to 255
mac-name — Specifies the algorithm for performing encryption or decryption.
            Values  Table 12 lists the default client/server algorithms used for SSHv2.
key-re-exchange

**Syntax**
key-re-exchange

**Context**
config>system>security>ssh

**Description**
This command enables the key re-exchange context.

client

**Syntax**
client

**Context**
config>system>security>ssh>key-re-exchange

**Description**
This command enables the key re-exchange context for SR OS as an SSH client.

mbytes

**Syntax**
mbytes {value | disable}

**no mbytes**

**Context**
config>system>security>ssh>key-re-exchange>client
config>system>security>ssh>key-re-exchange>server

**Description**
This command allows the user to configure the maximum bytes to be transmitted before a key re-exchange is initiated by the server.

The **no** form of the command reverts to the default value.

---

### Table 12  SSHv2 Default client/server algorithms

<table>
<thead>
<tr>
<th>index</th>
<th>mac-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>hmac-sha2-512</td>
</tr>
<tr>
<td>210</td>
<td>hmac-sha2-256</td>
</tr>
<tr>
<td>215</td>
<td>hmac-sha1</td>
</tr>
<tr>
<td>220</td>
<td>hmac-sha1-96</td>
</tr>
<tr>
<td>225</td>
<td>hmac-md5</td>
</tr>
<tr>
<td>230</td>
<td>hmac-ripemd160</td>
</tr>
<tr>
<td>235</td>
<td>hmac-ripemd160-openssh-com</td>
</tr>
<tr>
<td>240</td>
<td>hmac-md5-96</td>
</tr>
</tbody>
</table>

---
Default: no mbytes

**Parameters**

- **mbytes** — Specifies the number of megabytes, on a SSH session, after which the SSH client will initiate the key-re-exchange.
  - **Values**: 1 to 64000
  - **Default**: 1024

- **disable** — When the **disable** option is specified, a session will never timeout. To re-enable **mbytes**, enter the command without the **disable** option.

**minutes**

**Syntax**

```
minutes {minutes | disable}
```

- **no minutes**

**Context**

config>system>security>ssh>key-re-exchange>client
config>system>security>ssh>key-re-exchange>server

**Description**

This command enables the key-re-exchange context for SR OS as an SSH client.

The **no** form of the command reverts to the default value.

- **Default**: no minutes

- **Parameters**

  - **minutes** — Specifies the time interval after which the SSH client will initiate the key-re-exchange.
    - **Values**: 1 to 1440
    - **Default**: 60

  - **disable** — When the **disable** option is specified, a session will never timeout. To re-enable **minutes**, enter the command without the **disable** option.

**shutdown**

**Syntax**

```
shutdown
no shutdown
```

**Context**

config>system>security>ssh>key-re-exchange>client
config>system>security>ssh>key-re-exchange>server

**Description**

The **shutdown** will stop the key exchange. It sets the minutes and bytes to infinity so there will not be any key exchange during the PDU transmission.

- **Default**: no shutdown
server

Syntax       server
Context      config>system>security>ssh>key-re-exchange
Description  This command enables the key re-exchange context for the SSH server.

preserve-key

Syntax       [no] preserve-key
Context      config>system>security>ssh
Description  After enabling this command, private keys, public keys, and host key file will be saved by the server. It is restored following a system reboot or the ssh server restart.

The no form of the command specifies that the keys will be held in memory by the SSH server and is not restored following a system reboot.

Default      no preserve-key

server-cipher-list

Syntax       server-cipher-list protocol-version version
Context      config>system>security>ssh
Description  This command enables configuration the list of allowed ciphers by the SSH server.
Parameters   version — Specifies the SSH version.

Values       1 — Specifies that the SSH server will only accept connections from clients that support SSH protocol version 1
             2 — Specifies that the SSH server will accept connections from clients supporting either SSH protocol version 2

server-mac-list

Syntax       server-mac-list
Context      config>system>security>ssh
Description  This command allows the user to configure SSH MAC algorithms for SR OS as an SSH server.
server-shutdown

Syntax  [no] server-shutdown
Context  config>system>security>ssh
Description  This command enables the SSH servers running on the system.
Default  At system startup, only the SSH server is enabled.

version

Syntax  version ssh-version
no version
Context  config>system>security>ssh
Description  Specifies the SSH protocol version that will be supported by the SSH server.
Default  no version
Parameters  ssh-version — Specifies the SSH version.
Values  1 — Specifies that the SSH server will only accept connections from clients that support SSH protocol version 1
2 — Specifies that the SSH server will accept connections from clients supporting either SSH protocol version 2
1-2 — Specifies that the SSH server will accept connections from clients supporting either SSH protocol version 1, or SSH protocol version 2 or both.

Note: Values “1” and “1-2” are not permitted in FIPS-140-2 mode.

Default  2

telnet

Syntax  telnet
Context  config>system>login-control
Description  This command creates the context to configure the Telnet login control parameters.
enable-graceful-shutdown

Syntax  [no] enable-graceful-shutdown
Context  config>system>login-control>telnet
Description  This command enables graceful shutdown of telnet sessions.

The no form of the command disables graceful shutdown of telnet sessions.

2.10.2.4 Management Access Filter Commands

management-access-filter

Syntax  [no] management-access-filter
Context  config>system>security
Description  This command creates the context to edit management access filters and to reset match criteria.

Management access filters control all traffic in and out of the CPM. They can be used to restrict management of the router by other nodes outside either specific (sub)networks or through designated ports.

Management filters, as opposed to other traffic filters, are enforced by system software.

The no form of the command removes management access filters from the configuration.

ip-filter

Syntax  [no] ip-filter
Context  config>system>security>mgmt-access-filter
Description  This command enables the context to configure management access IP filter parameters.

ipv6-filter

Syntax  [no] ipv6-filter
Context  config>system>security>mgmt-access-filter
Description  This command enables the context to configure management access IPv6 filter parameters. This command only applies to the 7750 SR and 7950 XRS.
mac-filter

Syntax  [no] mac-filter
Context  config>system>security>mgmt-access-filter
Description  This command configures a management access MAC-filter.

action

Syntax  action {permit | deny | deny-host-unreachable}
no action
Context  config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry
config>system>security>mgmt-access-filter>mac-filter>entry
Description  This command creates the action associated with the management access filter match criteria entry.

The action keyword is required. If no action is defined, the filter is ignored. If multiple action statements are configured, the last one overwrites previous configured actions.

If the packet does not meet any of the match criteria the configured default action is applied.

Parameters  permit — Specifies that packets matching the configured criteria will be permitted.
deny — Specifies that packets matching the configured selection criteria will be denied and that a ICMP host unreachable message will not be issued.
deny-host-unreachable — Specifies that packets matching the configured selection criteria will be denied and that a host unreachable message will not be issued.

The deny-host-unreachable parameter only applies to ip-filter and ipv6-filter.

default-action

Syntax  default-action {permit | deny | deny-host-unreachable}
Context  config>system>security>mgmt-access-filter>ip-filter
config>system>security>mgmt-access-filter>ipv6-filter
config>system>security>mgmt-access-filter>mac-filter
Description  This command creates the default action for management access in the absence of a specific management access filter match.

The default-action is applied to a packet that does not satisfy any match criteria in any of the management access filters. Whenever management access filters are configured, the default-action must be defined.
Parameters  

- **permit** — Specifies that packets not matching the configured selection criteria in any of the filter entries will be permitted.
- **deny** — Specifies that packets not matching the selection criteria be denied and that an ICMP host unreachable message will not be issued.
- **deny-host-unreachable** — Specifies that packets not matching the selection criteria be denied access and that an ICMP host unreachable message will be issued.

The **deny-host-unreachable** only applies to ip-filter and ipv6filter.

**dst-port**

**Syntax**  

```
[no] dst-port value [mask]
```

**Context**  

```
config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry
```

**Description**  

This command configures a source TCP or UDP port number or port range for a management access filter match criterion.

The **no** form of the command removes the source port match criterion.

**Parameters**  

- **value** — Specifies the source TCP or UDP port number as match criteria.
  
  **Values**  
  
  1 to 65535 (decimal)

- **mask** — Specifies the mask used to specify a range of source port numbers as the match criterion.
  
  This 16 bit mask can be configured using the formats described in **Table 13**.

**Table 13 Format Styles to Configure Mask**

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDDDD</td>
<td>63488</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHHHH</td>
<td>0xF800</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBBBBBBBB</td>
<td>0b111110000000000</td>
</tr>
</tbody>
</table>

To select a range from 1024 up to 2047, specify 1024 0xFC00 for value and mask.

**Default**  

65535 (exact match)

**Values**  

1 to 65535 (decimal)
entry

Syntax  \[no\] entry entry-id

Context  config>system>security>mgmt-access-filter>ip-filter
         config>system>security>mgmt-access-filter>ipv6-filter
         config>system>security>mgmt-access-filter>mac-filter

Description  This command is used to create or edit a management access IP(v4), IPv6, or MAC filter entry. Multiple entries can be created with unique entry-id numbers. The OS exits the filter upon the first match found and executes the actions according to the respective action command. For this reason, entries must be sequenced correctly from most to least explicit.

An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword action defined to be considered complete. Entries without the action keyword are considered incomplete and inactive.

The no form of the command removes the specified entry from the management access filter.

Default  No entries are defined.

Parameters  entry-id — Specifies an entry ID uniquely identifies a match criteria and the corresponding action. It is recommended that entries are numbered in staggered increments. This allows users to insert a new entry in an existing policy without having to renumber the existing entries.

Values  1 to 9999

flow-label

Syntax  flow-label value
        no flow-label

Context  config>system>security>mgmt-access-filter>ipv6-filter>entry

Description  This command configures flow label match conditions. Flow labeling enables the labeling of packets belonging to particular traffic flows for which the sender requests special handling, such as non-default quality of service or real-time service. This command only applies to the 7750 SR and 7950 XRS.

Parameters  value — Specifies the flow identifier in an IPv6 packet header that can be used to discriminate traffic flows (See RFC 3595, Textual Conventions for IPv6 Flow Label.)

Values  0 to 1048575

log

Syntax  [no] log
Context config>system>security>mgmt-access-filter>ip-filter>entry
cfg>system>security>mgmt-access-filter>ipv6-filter>entry
cfg>system>security>mgmt-access-filter>mac-filter>entry

Description This command enables match logging. When enabled, matches on this entry will cause the Security event mafEntryMatch to be raised.

Default no log

description

next-header

Syntax next-header
no next-header

Context config>system>security>mgmt-access-filter>ipv6-filter>entry

Description This command specifies the next header to match. The protocol type such as TCP, UDP or OSPF is identified by its respective protocol number. Well-known protocol numbers include ICMP(1), TCP(6), UDP(17). IPv6 Extension headers are identified by the next header IPv6 numbers as per RFC2460. This command only applies to the 7750 SR and 7950 XRS.

Parameters next-header — Specifies for IPv4 MAF the IP protocol field, and for IPv6 the next header type to be used in the match criteria for this Management Access Filter Entry.

Values

- next-header: 0 to 255, protocol numbers accepted in DHB
- keywords: none, crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, drp, igmp, igp, ip, ipv6, ipv6-icmp, ipv6-no-nxt, isis, iso-ip, l2tp, spf-igp, pim, pnni, ptp, rdp, rsvp, stp, tcp, udp, vrrp

protocol

Syntax [no] protocol protocol-id

Context config>system>security>mgmt-access-filter>ip-filter>entry

Description This command configures an IP protocol type to be used as a management access filter match criterion.

The protocol type, such as TCP, UDP, and OSPF, is identified by its respective protocol number. Well-known protocol numbers include ICMP (1), TCP (6), and UDP (17).

The no form the command removes the protocol from the match criteria.

Default No protocol match criterion is specified.

Parameters protocol — Specifies the protocol number for the match criterion.

Values

- 1 to 255 (decimal)
router

**Syntax**
```
router service-name service-name
router (router-instance)
no router
```

**Context**
```
config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry
```

**Description**
This command configures a router name or service ID to be used as a management access filter match criterion.

The `no` form the command removes the router name or service ID from the match criteria.

**Parameters**
- `router-instance` — Specifies one of the following parameters for the router instance:
  - `router-name` — Specifies a router name or CPM router instance, up to 32 characters to be used in the match criteria.
  - `vprn-svc-id` — Specifies a CPM router instance to be used in the match criteria

  **Values**
  - Base | “management” | “vpls-management”

  **Default**
  - Base

- `service-name service-name` — Specifies an existing service name up to 64 characters in length.

renum

**Syntax**
```
renum old-entry-number new-entry-number
```

**Context**
```
config>system>security>mgmt-access-filter>ip-filter
config>system>security>mgmt-access-filter>ipv6-filter
config>system>security>mgmt-access-filter>mac-filter
```

**Description**
This command renumbers existing management access filter entries for an IP(v4), IPv6, or MAC filter to re-sequence filter entries.

The exits on the first match found and executes the actions in accordance with the accompanying `action` command. This may require some entries to be re-numbered differently from most to least explicit.

**Parameters**
- `old-entry-number` — Specifies the entry number of the existing entry.

  **Values**
  - 1 to 9999

  **Default**
  - Base
new-entry-number — Specifies the new entry number that will replace the old entry number.

Values 1 to 9999

shutdown

Syntax [no] shutdown

Context config>system>security>mgmt-access-filter>ip-filter
cfg>system>security>mgmt-access-filter>ipv6-filter
cfg>system>security>mgmt-access-filter>mac-filter

Description This command disables the management-access-filter.

match

Syntax match [frame-type frame-type]
no match

Context config>system>security>mgmt-access-filter>mac-filter>entry

Description This command configures math criteria for this MAC filter entry.

Parameters frame-type — Specifies the type of MAC frame to use as match criteria.

Values 802dot3 | 802dot2-llc | 802dot2-snap | 802dot1ag | ethernet_II

Default 802dot3

cfm-opcode

Syntax cfm-opcode {lt | gt | eq} opcode
cfm-opcode range start end
no cfm-opcode

Context config>system>security>mgmt-access-filter>mac-filter>entry

Description This command specifies the type of opcode checking to be performed.

If the cfm-opcode match condition is configured then a check must be made to see if the Ethertype is either IEEE802.1ag or Y1731. If the Ethertype does not match then the packet is not CFM and no match to the cfm-opcode is attempted.

The CFM (ieee802.1ag or Y1731) opcode can be assigned as a range with a start and an end number or with a (less than lt, greater than gt, or equal to eq) operator.
If no range with a start and an end or operator (lt, gt, eq) followed by an opcode with the value between 0 and 255 is defined then the command is invalid.

Table 14 lists the opcode values.

**Table 14 Opcode Values**

<table>
<thead>
<tr>
<th>CFM PDU or Organization</th>
<th>Acronym</th>
<th>Configurable Numeric Value (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved for IEEE 802.1 0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Continuity Check Message</td>
<td>CCM</td>
<td>1</td>
</tr>
<tr>
<td>Loopback Reply</td>
<td>LBR</td>
<td>2</td>
</tr>
<tr>
<td>Loopback Message</td>
<td>LBM</td>
<td>3</td>
</tr>
<tr>
<td>Linktrace Reply</td>
<td>LTR</td>
<td>4</td>
</tr>
<tr>
<td>Linktrace Message</td>
<td>LTM</td>
<td>5</td>
</tr>
<tr>
<td>Reserved for IEEE 802.1</td>
<td></td>
<td>6 – 31</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>AIS</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>LCK</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>TST</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>APS</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>MCC</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>LMR</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>LMM</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>1DM</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>DMR</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>DMM</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Reserved for ITU</td>
<td></td>
<td>48 – 63</td>
</tr>
</tbody>
</table>
Defined by ITU-T Y.1731 32 - 63
Defined by IEEE 802.1.64 - 255

Default  
no cfm-opcode

Parameters  
opcode — Specifies the opcode checking to be performed.
start — specifies the start number.
Values 0 to 255
da — Specifies the end number.
Values 0 to 255
lt | gt | eq — Specifies comparison operators.

dot1p

Syntax  
dot1p dot1p-value [dot1p-mask]

Context  
config>system>security>mgmt-access-filter>mac-filter>entry>match

Description  
This command configures Dot1p match conditions.

Table 15  
Management Access Filter dot1p Mask Format

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xH</td>
<td>0x4</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBB</td>
<td>0b100</td>
</tr>
</tbody>
</table>

Parameters  
dot1p-value — Specifies the IEEE 802.1p value in decimal.
Values 0 to 7
mask — Specifies the 3-bit mask can be configured using the following formats.
dsap

**Syntax**

dsap dsap-value [dsap-mask]

**Context**

config>system>security>mgmt-access-filter>mac-filter>entry>match

**Description**

This command configures DSAP match conditions.

**Parameters**

dsap-value — Specifies the 8-bit DSAP match criteria value in hexadecimal.

Values

- 0x00 to 0xFF (hex)

mask — Specifies a range of DSAP values to use as the match criteria. This 8 bit mask can be configured using the formats described in Table 16:

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDD</td>
<td>240</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHH</td>
<td>0xF0</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBB</td>
<td>0b11110000</td>
</tr>
</tbody>
</table>

**Table 16 Format Styles**

**dst-mac**

**Syntax**

dst-mac ieee-address [ieee-address-mask]

**Context**

config>system>security>mgmt-access-filter>mac-filter>entry>match

**Description**

This command configures the destination MAC match condition.

**Parameters**

ieee-address — Specifies the MAC address to be used as a match criterion.

Values

- HH:HH:HH:HH:HH:HH or HH-HH-HH-HH-HH-HH-HH-HH where H is a hexadecimal digit

mask — Specifies a 48-bit mask to match a range of MAC address values.

etype

**Syntax**

etype 0x0600xx0xffff

**Context**

config>system>security>mgmt-access-filter>mac-filter>entry>match

**Description**

This command configures the etype match condition.
Context config>system>security>mgmt-access-filter>mac-filter>entry>match

Description Configures an Ethernet type II Ethertype value to be used as a MAC filter match criterion.

The Ethernet type field is a two-byte field used to identify the protocol carried by the Ethernet frame. For example, 0800 is used to identify the IPv4 packets.

The Ethernet type field is used by the Ethernet version-II frames. IEEE 802.3 Ethernet frames do not use the type field. For IEEE 802.3 frames, use the dsap, ssap or snap-pid fields as match criteria.

The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and may not be part of the same match criteria. Refer to the 7450 ESS, 7750 SR, and 7950 XRS Router Configuration Guide for information about MAC Match Criteria Exclusivity Rules fields that are exclusive based on the frame format.

The no form of the command removes the previously entered etype field as the match criteria.

Default no etype

Parameters ethernet-type — Specifies the Ethernet type II frame Ethertype value to be used as a match criterion expressed in hexadecimal.

Values 0x0600 to 0xFFFF

snap-oui

Syntax snap-oui {zero | non-zero}
no snap-oui

Context config>system>security>mgmt-access-filter>mac-filter>entry>match

Description This command configures an IEEE 802.3 LLC SNAP Ethernet Frame OUI zero or non-zero value to be used as a MAC filter match criterion.

The no form of the command removes the criterion from the match criteria.

Default no snap-oui

Parameters zero — Specifies to match packets with the three-byte OUI field in the SNAP-ID set to zero.

non-zero — Specifies to match packets with the three-byte OUI field in the SNAP-ID not set to zero.

snap-pid

Syntax snap-pid snap-pid
no snap-pid

Context
config>system>security>mgmt-access-filter>mac-filter>entry>match

Description
This command configures an IEEE 802.3 LLC SNAP Ethernet Frame PID value to be used as a MAC filter match criterion.

This is a two-byte protocol id that is part of the IEEE 802.3 LLC SNAP Ethernet Frame that follows the three-byte OUI field.

The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and may not be part of the same match criteria. Refer to the 7450 ESS, 7750 SR, and 7950 XRS Router Configuration Guide for information about MAC Match Criteria Exclusivity Rules fields that are exclusive based on the frame format.

Note: The snap-pid match criterion is independent of the OUI field within the SNAP header. Two packets with different three-byte OUI fields but the same PID field will both match the same filter entry based on a snap-pid match criteria.

The no form of the command removes the snap-pid value as the match criteria.

Default
no snap-pid

Parameters
pid-value — Specifies the two-byte snap-pid value to be used as a match criterion in hexadecimal.

Values 0x0000 to 0xFFFF

src-mac

Syntax src-mac ieee-address [ieee-address-mask]
no src-mac

Context
config>system>security>mgmt-access-filter>mac-filter>entry>match

Description
This command configures a source MAC address or range to be used as a MAC filter match criterion.

The no form of the command removes the source mac as the match criteria.

Default
no src-mac

Parameters
ieee-address — Specifies the 48-bit IEEE mac address to be used as a match criterion.

Values HH:HH:HH:HH:HH:HH or HH-HH-HH-HH-HH-HH where H is a hexadecimal digit

ieee-address-mask — Specifies a 48-bit mask that can be configured using the formats listed in Table 17:
To configure so that all packets with a source MAC OUI value of 00-03-FA are subject to a match condition then the entry should be specified as: 003FA000000 0xFFFFFFFF000000

**Default**

0xFFFFFFFFFFFF (exact match)

**Values**

0x00000000000000 to 0xFFFFFFFFFFFF

---

### ssap

**Syntax**

ssap ssap-value [ssap-mask]

no ssap

**Context**

config>system>security>mgmt-access-filter>mac-filter>entry>match

**Description**

This command configures an Ethernet 802.2 LLC SSAP value or range for a MAC filter match criterion.

This is a one-byte field that is part of the 802.2 LLC header of the IEEE 802.3 Ethernet Frame.

The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and may not be part of the same match criterion. Refer to the 7450 ESS, 7750 SR, and 7950 XRS Router Configuration Guide for information about MAC Match Criteria Exclusivity Rules fields that are exclusive based on the frame format.

The **no** form of the command removes the SSAP match criterion.

**Default**

no ssap

**Parameters**

ssap-value — Specifies the 8-bit SSAP match criteria value in hex.

**Values**

0x00 to 0xFF

ssap-mask — Specifies a range of SSAP values to use as the match criteria.

---

### svc-id

**Syntax**

svc-id service-id

no svc-id
Context  config>system>security>mgmt-access-filter>mac-filter>entry>match

Description  This command specifies an existing svc-id to use as a match condition.

Parameters  service-id — Specifies a service-id to match.

Values  
- service-id: 1 to 2147483647
- svc-name: 64 characters maximum

src-port

Syntax  
src-port {port-id | cpm | lag lag-id}
no src-port

Context  
config>system>security>mgmt-access-filter>ip-filter>entry
config>system>security>mgmt-access-filter>ipv6-filter>entry

Description  This command restricts ingress management traffic to either the CPM/CCM Ethernet port or any other logical port (for example LAG) on the device.

When the source interface is configured, only management traffic arriving on those ports satisfy the match criteria.

The no form of the command reverts to the default value.

Default  any interface

Parameters  port-id — Specifies the port ID in formats shown below

Values  
- slot/mda/port[.channel]
- bundle-id bundle-type-slot/mda.bundle-num
  bundle keyword
  type ima, fr, or ppp
  bundle-num 1 to 336
- bpgrp-id bpgrp-type-bpgrp-num
  bpgrp keyword
  type ima or ppp
  bpgrp-num 1 to 2000
- APS-id APS-group-id[.channel]
  APS keyword
  group-id 1 to 128
- ccag-id ccag-id. path-id[cc-type]
  ccag keyword
  id 1 to 8
  path-id a, b
**src-ip**

**Syntax**

```plaintext
[no] src-ip {ip-prefixmask | ip-prefix netmask}
```

**Context**

```
config>system>security>mgmt-access-filter>ip-filter>entry
```

**Description**

This command configures a source IP address range prefix to be used as a management access filter match criterion.

The `no` form of the command removes the source IP address match criterion.

**Default**

No source IP match criterion is specified.

**Parameters**

- **ip-prefix** — Specifies the IP prefix for the IP match criterion in dotted decimal notation.
- **mask** — Specifies the subnet mask length expressed as a decimal integer.
- **Values**
  - 1 to 32 (mask length), 0.0.0.0 to 255.255.255.255 (dotted decimal)

- **netmask** — Specifies the dotted quad equivalent of the mask length.
- **Values**
  - 0.0.0.0 to 255.255.255.255

**src-ip**

**Syntax**

```plaintext
[no] src-ip {ipv6-address | prefix-length}
```

**Context**

```
config>system>security>mgmt-access-filter>ipv6-filter>entry
```

**Description**

This command configures a source IPv6 address range prefix to be used as a management access filter match criterion. This command only applies to the 7750 SR and 7950 XRS.

The `no` form of the command removes the source IPv6 address match criterion.

**Default**

No source IP match criterion is specified.

**Parameters**

- **ipv6-address/prefix-length** — Specifies the IPv6 address for the IPv6 match criterion in dotted decimal notation. An IPv6 IP address is written as eight 4-digit (16-bit) hexadecimal numbers separated by colons. One string of zeros per address can be left out, so that 1010::700:0:217A is the same as 1010:0:0:0:0:700:0:217A.
- **Values**
  - `ipv6-address` x:x:x:x:x:x:x (eight 16-bit pieces)
2.10.2.5 Password Commands

password

Syntax: password

Context: config>system>security

Description: This command creates the context to configure password management parameters.

admin-password

Syntax: admin-password password [hash | hash2]

Syntax: no admin-password

Context: config>system>security>password

Description: This command allows a user (with admin permissions) to configure a password which enables a user to become an administrator.

This password is valid only for one session. When enabled, no authorization to TACACS+ or RADIUS is performed and the user is locally regarded as an admin user.

This functionality can be enabled in two contexts:

config>system>security>password>admin-password

<global> enable-admin

If the admin-password is configured in the config>system>security>password context, then any user can enter the special mode by entering the enable-admin command.

enable-admin is in the default profile. By default, all users are given access to this command.

Once the enable-admin command is entered, the user is prompted for a password. If the password matches, user is given unrestricted access to all the commands.
The minimum length of the password is determined by the `minimum-length` command. The complexity requirements for the password is determined by the `complexity` command.

**Note:** The `password` argument of this command is not sent to the servers. This is consistent with other commands that configure secrets.

The usernames and passwords in the FTP and TFTP URLs will not be sent to the authorization or accounting servers when the `file>copy source-url dest-url` command is executed.

For example:

```
file copy ftp://test:secret@131.12.31.79/test/srcfile cf1:\destfile
```

In this example, the username 'test' and password 'secret' will not be sent to the AAA servers (or to any logs). They will be replaced with ‘****’.

The `no` form of the command removes the admin password from the configuration.

**Default** no admin-password

**Parameters**

- `password` — Configures the password which enables a user to become a system administrator. The maximum length can be up to 20 characters if unhashed, 32 characters if hashed, 54 characters if the `hash2` keyword is specified.

- `hash` — Specifies the key is entered in an encrypted form. If the `hash` or `hash2` parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` or `hash2` parameter specified.

- `hash2` — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the `hash2` encrypted variable cannot be copied and pasted. If the `hash` or `hash2` parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` or `hash2` parameter specified.

**Note:** This command applies to a local user, in addition to users on RADIUS, TACACS, and LDAP.

### enable-admin

**Syntax** enable-admin

**Context** <global>
**Description**  
Refer to the description for the admin-password command. If the admin-password is configured in the config>system>security>password context, then any user can enter the special administrative mode by entering the command.

The enable-admin command is in the default profile. By default, all users are given access to this command.

Once the enable-admin command is entered, the user is prompted for a password. If the password matches, the user is given unrestricted access to all of the commands.

The minimum length of the password is determined by the minimum-length command. The complexity requirements for the password is determined by the complexity command.

To verify that a user is in the enable-admin mode, perform one of the following steps:

- Enter the show users command to show which users are in this mode
- Enter the enable-admin command again at the root prompt and an error message will be returned.

```plaintext
A:ALA-1# show users
===
User Type From Login time Idle time
===
admin Telnet 10.20.30.93 09AUG2006 08:35:23 0d 00:00:00 A
===
Number of users : 2
'A' indicates user is in admin mode
===
A:ALA-1#
A:ALA-1# enable-admin
MINOR: CLI Already in admin mode.
A:ALA-1#
```

**aging**

**Syntax**  
aging days
no aging

**Context**  
config>system>security>password

**Description**  
This command configures the number of days a user password is valid before the user must change their password. This parameter can be used to force the user to change the password at the configured interval.

The no form of the command reverts to the default value.

**Parameters**  
days — Specifies the maximum number of days the password is valid.

**Values**  
1 to 500
Note: This command applies to local users.

attempts

Syntax

attempts count [time minutes1 [lockout minutes2]]
no attempts

Context

config>system>security>password

Description

This command configures a threshold value of unsuccessful login attempts allowed in a specified time frame.

If the threshold is exceeded, the user is locked out for a specified time period.

If multiple attempts commands are entered, each command overwrites the previously entered command.

The no attempts command resets all values to default.

Default

attempts 3 time 5 lockout 10

Parameters

count — Specifies the number of unsuccessful login attempts allowed for the specified time. This is a mandatory value that must be explicitly entered.

Values 1 to 64

minutes — Specifies the period of time, in minutes, that a specified number of unsuccessful attempts can be made before the user is locked out.

Values 0 to 60

minutes — Specifies the lockout period, in minutes, during which the user is not allowed to login.

Values 0 to 1440, or infinite

If the user exceeds the attempted count times in the specified time, then that user is locked out from any further login attempts for the configured lockout time period.

Values 0 to 1440

Values infinite; user is locked out and must wait until manually unlocked before any further attempts.

Note: This command applies to a local user, in addition to users on RADIUS, TACACS, and LDAP.
**authentication-order**

**Syntax**
```
authentication-order [method-1] [method-2] [method-3] [method-4] [exit-on-reject]
no authentication-order
```

**Context**
```
config>system>security>password
```

**Description**
This command configures the sequence in which password authentication, authorization, and accounting is attempted among local passwords, RADIUS, TACACS+, and LDAP.

The authentication order should be from the most preferred authentication method to the least preferred. The presence of all methods in the command line does not guarantee that they are all operational. Specifying options that are not available delays user authentication.

If all (operational) methods are attempted and no authentication for a particular login has been granted, then an entry in the security log documents the failed attempt. Both the attempted login identification and originating IP address are logged with the a timestamp.

The `no` form of the command reverts to the default authentication sequence.

**Default**
```
authentication-order radius tacplus ldap local - The preferred order for password authentication is 1. local passwords, 2. RADIUS, 3. TACACS+, and 4. LDAP.
```

**Parameters**

- **method-1** — Specifies the first password authentication method to attempt.
  - **Values** local, radius, tacplus, ldap

- **method-2** — Specifies the second password authentication method to attempt.
  - **Values** local, radius, tacplus, ldap

- **method-3** — Specifies the third password authentication method to attempt.
  - **Values** local, radius, tacplus, ldap

- **method-4** — Specifies the fourth password authentication method to attempt.
  - **Values** local, radius, tacplus, ldap

- **local** — Specifies the password authentication based on the local password database.

- **radius** — Specifies RADIUS authentication.

- **tacplus** — Specifies TACACS+ authentication.

- **ldap** — Specifies LDAP authentication.

- **exit-on-reject** — When enabled and if one of the AAA methods configured in the authentication order sends a reject, then the next method in the order will not be tried. If the `exit-on-reject` keyword is not specified and if one AAA method sends a reject, the next AAA method will be attempted. If in this process, all the AAA methods are exhausted, it will be considered as a reject.
A rejection is distinct from an unreachable authentication server. When the exit-on-reject keyword is specified, authorization and accounting will only use the method that provided an affirmation authentication; only if that method is no longer readable or is removed from the configuration will other configured methods be attempted. If the local keyword is the first authentication and:

- exit-on-reject is configured and the user does not exist, the user will not be authenticated
- the user is authenticated locally, then other methods, if configured, will be used for authorization and accounting
- the user is configured locally but without console access, login will be denied

**Note:** This command applies to a local user, in addition to users on RADIUS, TACACS, and LDAP.

**complexity-rules**

**Syntax**

```plaintext
complexity-rules
```

**Context**

cfg>system>security>password

**Description**

This command defines a list of rules for configurable password options.

**Note:** This command applies to local users.

**allow-user-name**

**Syntax**

```plaintext
[no] allow-user-name
```

**Context**

cfg>system>security>password>complexity-rules

**Description**

The user name is allowed to be used as part of the password.

The no form of the command does not allow user name to be used as password.

**Default**

no allow-user-name

**credits**

**Syntax**

```plaintext
credits [lowercase credits] [uppercase credits] [numeric credits] [special-character credits]
```

```plaintext
no credits
```
Context config>system>security>password>complexity-rules

Description The maximum credits given for usage of the different character classes in the local passwords.

The no form of the command resets to default.

Default no credits

Parameters credits — Specifies the number of credits that can be used for each characters class.

  Values 0 to 10

minimum-classes

Syntax minimum-classes minimum

no minimum-classes

Context config>system>security>password>complexity-rules

Description Force the use of at least this many different character classes

The no form of the command resets to default.

Default no minimum-classes

Parameters minimum — Specifies the minimum number of classes to be configured.

  Values 2 to 4

minimum-length

Syntax minimum-length length

no minimum-length

Context config>system>security>password>complexity-rules

Description This command configures the minimum number of characters required for locally administered passwords, HMAC-MD5-96, HMAC-SHA-96, and des-keys configured in the system security section.

If multiple minimum-length commands are entered each command overwrites the previous entered command.

The no form of the command reverts to default value.

Default minimum-length 6
Parameters  

value — Specifies the minimum number of characters required for a password.

Values 1 to 8

repeated-characters

Syntax repeated-characters count
no repeated-characters

Context config>system>security>password>complexity-rules

Description The number of times a character can be repeated consecutively.
The no form of the command resets to default.

Default no repeated-characters

Parameters count — Specifies the minimum count of consecutively repeated characters.

Values 2 to 8

required

Syntax required [lowercase count] [uppercase count] [numeric count] [special-character count]
no required

Context config>system>security>password>complexity-rules

Description Force the minimum number of different character classes required.
The no form of the command resets to default.

Default lowercase 0 uppercase 0 numeric 0 special-character 0

Parameters count — Specifies the minimum count of characters classes.

Values 0 to 10

dynsvc-password

Syntax dynsvc-password password [hash | hash2]
no dynsvc-password

Context config>system>security>password

Description This command configures the password which enables the user to configure dynamic services.
Default  no dynsvc-password

Parameters  

password — Configures the password which enables a user to become a system administrator. The maximum length can be up to 20 characters if unhashed, 32 characters if hashed, 54 characters if the hash2 keyword is specified.

hash — Specifies the key is entered in an encrypted form. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the hash2 encrypted variable cannot be copied and pasted. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

Note: This command applies to a local user, in addition to users on RADIUS, TACACS, and LDAP.

enable-admin-control

Syntax  enable-admin-control

Context  config>system>security>password

Description  Enable the user to become a system administrator.

Note: This command applies to users on RADIUS, TACACS, and LDAP.

tacplus-map-to-priv-lvl

Syntax  tacplus-map-to-priv-lvl [admin-priv-lvl]
        no tacplus-map-to-priv-lvl

Context  config>system>security>password>enable-admin-control

Description  When tacplus-map-to-priv-lvl is enabled, and tacplus authorization is enabled with the use-priv-lvl option, typing enable-admin starts an interactive authentication exchange from the node to the TACACS+ server. The start message (service=enable) contains the user-id and the requested admin-priv-lvl. Successful authentication results in the use of a new profile (as configured under config>system>security>tacplus>priv-lvl-map).
health-check

Syntax  [no] health-check [interval interval]
Context  config>system>security>password
Description  This command specifies that RADIUS, TACACS+, and LDAP servers are monitored for 3 seconds each at 30 second intervals. Servers that are not configured will have 3 seconds of idle time. If in this process a server is found to be unreachable, or a previously unreachable server starts responding, a trap will be sent based on the type of the server.

The no form of the command disables the periodic monitoring of the RADIUS, TACACS+, and LDAP servers. In this case, the operational status for the active server will be up if the last access was successful.

Default  health-check interval 30

Parameters  

interval — Specifies the polling interval for RADIUS, TACACS+, and LDAP servers.

Values  6 to 1500
Default  30

history-size

Syntax  history-size size
no history-size

Context  config>system>security>password
Description  Configure how many previous passwords a new password is matched against.

Default  no history

Parameters  size — Specifies how many previous passwords a new password is matched against.

Values  0 to 20
Default  0

minimum-age

Syntax  minimum-age [days days] [hrs hours] [min minutes] [sec seconds]
no minimum-age

Context  config>system>security>password
Description  Configure the minimum required age of a password before it can be changed again.

Default  minimum-age min 10
**Parameters**

- *days* — Specifies the minimum required days of a password before it can be changed again.
  - **Values**: 0 to 1

- *hours* — Specifies the minimum required hours of a password before it can be changed again.
  - **Values**: 0 to 23

- *minutes* — Specifies the minimum required minutes of a password before it can be changed again.
  - **Values**: 0 to 59

- *seconds* — Specifies the minimum required seconds of a password before it can be changed again.
  - **Values**: 0 to 59

**Note**: This command applies to local users.

### minimum-change

**Syntax**

```
minimum-change length
no minimum-change
```

**Context**

```
config>system>security>password
```

**Description**

This command configures the minimum number of characters required to be different in the new password from a previous password. The `no` form of the command reverts to default value.

**Default**

```
minimum-change 5
```

**Parameters**

- *length* — Specifies how many characters must be different in the new password from the old password.
  - **Values**: 1 to 20

**Note**: This command applies to local users.
2.10.2.6 Public Key Infrastructure (PKI) Commands

The commands described in the following section apply to the 7450 ESS and 7750 SR.

**pki**

Syntax: pki

Context: config>system>security

Description: This command enables the context to configure certificate parameters.

Default: none

**ca-profile**

Syntax: ca-profile name [create]

no ca-profile name

Context: config>system>security>pki

Description: This command creates a new ca-profile or enter the configuration context of an existing ca-profile. Up to 128 ca-profiles could be created in the system. A shutdown the ca-profile will not affect the current up and running ipsec-tunnel or ipsec-gw that associated with the ca-profile. But authentication afterwards will fail with a shutdown ca-profile.

Executing a no shutdown command in this context will cause system to reload the configured cert-file and crl-file.

A ca-profile can be applied under the ipsec-tunnel or ipsec-gw configuration.

The no form of the command removes the name parameter from the configuration. A ca-profile can not be removed until all the association(ipsec-tunnel/gw) have been removed.

Parameters:

name — Specifies the name of the ca-profile, a string up to 32 characters.

create — This keyword creates a new ca-profile. The create keyword requirement can be enabled/disabled in the environment>create context.

**cert-file**

Syntax: cert-file filename

no cert-file

Context: config>system>security>pki>ca-profile
This command specifies the filename of a file in cf3:\system-pki\cert as the CA’s certificate of
the ca-profile.

Notes:

• The system will perform following checks against configured cert-file when a no shutdown command is issued:
  – Configured cert-file must be a DER formatted X.509v3 certificate file.
  – All non-optional fields defined in section 4.1 of RFC5280 must exist and conform to
    the RFC 5280 defined format.
  – Check the version field to see if its value is 0x2.
  – Check The Validity field to see that if the certificate is still in validity period.
  – X509 basic constraints extension must exists, and CA Boolean must be True.
  – If Key Usage extension exists, then at least keyCertSign and cRLSign should be
    asserted.
  – If the certificate is not a self-signing certificate, then system will try to look for
    issuer’s CA’s certificate to verify if this certificate is signed by issuer’s CA; but if
    there is no such CA-profile configured, then system will just proceed with a warning
    message.
  – If the certificate is not a self-signing certificate, then system will try to look for
    issuer’s CA’s CRL to verify that it has not been revoked; but if there is no such CA-
    profile configured or there is no such CRL, then system will just proceed with a
    warning message.

If any of above checks fails, then the no shutdown command will fail.

• Changing or removing of cert-file is only allowed when the ca-profile is in a shutdown state.

The no form of the command removes the filename from the configuration.

Parameters

filename — Specifies a local CF card file URL.
Description
This command enables the system to accept both protected and unprotected CMPv2 error message. Without this command, system will only accept protected error messages.

The no form of the command causes the system to only accept protected PKI confirmation message.

Default
no accept-unprotected-errormsg

accept-unprotected-pkiconf

Syntax
[no] accept-unprotected-pkiconf

Context
config>system>security>pki>ca-profile>cmp2

Description
This command enables the system to accept both protected and unprotected CMPv2 PKI confirmation messages. Without this command, the system will only accept protected PKI confirmation message.

The no form of the command causes the system to only accept protected PKI confirmation message.

Default
no accept-unprotected-pkiconf

key-list

Syntax
key-list

Context
config>system>security>pki>ca-profile>cmp2

Description
This command enables the context to configure pre-shared key list parameters.

key

Syntax
key password [hash | hash2] reference reference-number
no key reference reference-number

Context
config>system>security>pki>ca-profile>cmp2>key-list

Description
This command specifies a pre-shared key used for CMPv2 initial registration. Multiples of key commands are allowed to be configured under this context.

The password and reference-number is distributed by the CA via out-of-band means.

The configured password is stored in configuration file in an encrypted form by using the SR OS hash2 algorithm.

The no form of the command removes the parameters from the configuration.
Parameters

- **password** — Specifies a printable ASCII string, up to 64 characters in length.
- **hash** — Specifies the key is entered in an encrypted form. If the **hash** or **hash2** parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the **hash** or **hash2** parameter specified.
- **hash2** — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the **hash2** encrypted variable cannot be copied and pasted. If the **hash** or **hash2** parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the **hash** or **hash2** parameter specified.

- **reference-number** — Specifies a printable ASCII string, up to 64 characters in length.

**url**

**Syntax**

```
url url-string [service-id service-id]
no url
```

**Context**

```
config>system>security>pki>ca-profile>cmp2
```

**Description**

This command specifies HTTP URL of the CMPv2 server. The URL must be unique across all configured ca-profiles.

The URL will be resolved by the DNS server configured (if configured) in the corresponding router context.

If the **service-id** is 0 or omitted, then system will try to resolve the FQDN via DNS server configured in bof.cfg. After resolution, the system will connect to the address in management routing instance first, then base routing instance.

**Note:** If the service is VPRN, then the system only allows HTTP ports 80 and 8080.

**Parameters**

- **url-string** — Specifies the HTTP URL of the CMPv2 server up to 180 characters in length.
- **service-id** — Specifies the service instance that used to reach CMPv2 server.

**Values**

- service-id: 1 to 2147483647
- base-router: 0

**http-response-timeout**

**Syntax**

```
http-response-timeout timeout
no http-response-timeout
```
Context config>system>security>pki>ca-profile>cmp2
Description This command specifies the timeout value for HTTP response that is used by CMPv2.
The no form of the command reverts to the default.
Default http-response-timeout 30
Parameters timeout — Specifies the HTTP response timeout in seconds.
Values 1 to 3600

response-signing-cert
Syntax response-signing-cert filename
  no response-signing-cert
Context config>system>security>pki>ca-profile>cmp2
Description This command specifies a imported certificate that is used to verify the CMP response message if they are protected by signature. If this command is not configured, then CA's certificate will be used.
Default no response-signing-cert
Parameters filename — Specifies the filename of the imported certificate.

same-recipnonce-for-pollreq
Syntax [no] same-recipnonce-for-pollreq
Context config>system>security>pki>ca-profile>cmp2
Description This command enables the system to use same recipNonce as the last CMPv2 response for poll request.
The no form of the command disables system to use same recipNonce as the last CMPv2 response for poll request.
Default no same-recipnonce-for-pollreq

crl-file
Syntax crl-file filename
  no crl-file
Context config>system>security>pki>ca-profile
Description

This command specifies the name of a file in cf3:\system-pki\crl as the Certification Revoke List file of the ca-profile.

Notes:

• The system will perform following checks against configured crl-file when a no shutdown command is issued:
  − A valid cert-file of the ca-profile must be already configured.
  − Configured crl-file must be a DER formatted CRLv2 file.
  − All non-optional fields defined in section 5.1 of RFC5280 must exist and conform to the RFC5280 defined format.
  − Check the version field to see if its value is 0x1.
  − Delta CRL Indicator must not exists (delta CRL is not supported).
  − CRL’s signature must be verified by using the cert-file of ca-profile.
If any of above checks fail, the no shutdown command will fail.
• Changing or removing the crl-file is only allowed when the ca-profile is in a shutdown state.

The no form of the command removes the filename from the configuration.

Parameters

filename — Specifies the name of CRL file stored in cf3:\system-pki\crl.

ocsp

Syntax

ocsp

Context

config>system>security>pki>ca-profile

Description

This command enables the context to configure OCSP parameters.

responder-url

Syntax

responder-url url-string
no responder-url

Context

config>system>security>pki>ca-profile>ocsp

Description

This command specifies HTTP URL of the OCSP responder for the CA, this URL will only be used if there is no OCSP responder defined in the AIA extension of the certificate to be verified.

Default

no responder-url

Parameters

url-string — Specifies the HTTP URL of the OCSP responder
service

Syntax  service service-id
nen service

Context  config>system>security>pki>ca-profile>ocsp

Description  This command specifies the service or routing instance that used to contact OCSP responder. This applies to OCSP responders that either configured in CLI or defined in AIA extension of the certificate to be verified.

The responder-url will also be resolved by using the DNS server configured in the configured routing instance.

In case of VPRN service, system will check if the specified service-id or service-name is an existing VPRN service at the time of CLI configuration. Otherwise the configuration will fail.

Parameters  

Values  service-id: 1 to 2147483647
base-router: 0

certificate-display-format

Syntax  certificate-display-format {ascii | utf8}

Context  config>system>security>pki

Description  This command specifies the display format used for the Certificates and Certificate Revocation Lists.

Default  certificate-display-format ascii

Parameters  

ascii — Specifies the ASCII format to use for the Certificates and Certificate Revocation Lists.

utf8 — Specifies the UTF8 format to use for the Certificates and Certificate Revocation Lists.

certificate-expiration-warning

Syntax  certificate-expiration-warning hours [repeat repeat-hours]

no certificate-expiration-warning

Context  config>system>security>pki

Description  With this command configured, the system will issues two types of warnings related to certificate expiration:
• **BeforeExp** — A warning message issued before certificate expire
• **AfterExp** — A warning message issued when certificate expire

This command specifies when system will issue **BeforeExp** message before a certificate expires. For example, with `certificate-expiration-warning 5`, the system will issue a **BeforeExp** message 5 hours before a certificate expires. An optional `repeat <repeat-hour>` parameter will enable the system to repeat the **BeforeExp** message every hour until the certificate expires.

If the user only wants **AfterExp**, then `certificate-expiration-warning 0` can be used to achieve this.

**BeforeExp** and **AfterExp** warnings can be cleared in following cases:

• The certificate is reloaded by the `admin certificate reload` command. In this case, if the reloaded file is not expired, then **AfterExp** is cleared. And, if the reloaded file is outside of configured warning window, then the **BeforeExp** is also cleared.

• When the `ca-profile/ipsec-gw/ipsec-tunnel/cert-profile` is shutdown, then **BeforeExp** and **AfterExp** of corresponding certificates are cleared.

• When `no certificate-expiration-warning` command is configured, then all existing **BeforeExp** and **AfterExp** are cleared.

• Users may change the configuration of the `certificate-expiration-warning` so that certain certificates are no longer in the warning window. **BeforeExp** of corresponding certificates are cleared.

• If the system time changes so that the new time causes the certificates to no longer be in the warning window, then **BeforeExp** is cleared. If the new time causes an expired certificate to come non-expired, then **AfterExp** is cleared.

**Default**

```plaintext
no certificate-expiration-warning
```

**Parameters**

- `hours` — Specifies the amount of time before a certificate expires when system issues **BeforeExp**.

  ```plaintext
 Values 0 to 8760
  ```

- `repeat-hours` — Specifies the time the system will repeat **BeforeExp** every repeat-hour.

  ```plaintext
 Values 0 to 8760
  ```

### common-name-list

**Syntax**

```plaintext
common-name-list name
```

**Context**

```plaintext
config>system>security>pki
```

**Description**

This command configures a list of common names (CNs) that will be used to authenticate X.509.3 certificates. If the CN field of the X.509.3 certificate matches any of the CNs in the list, then the certificate can be used.

**Parameters**

- `name` — Specifies the name of the CN list, up to 32 characters maximum.
cn

**Syntax**  
[no] cn index type value common-name-value

**Context**  
config>system>security>pki>common-name-list

**Description**  
This command creates a CN list entry in text or regexp format.

The no form of the command removes the specified entry.

**Parameters**

- index — Specifies the index number of the entry.
- type — Specifies the type of the entry.
  - Values: ip-address, domain-name
- common-name-value — Specifies the IP address or domain name value, up to 255 characters maximum.

crl-expiration-warning

**Syntax**  
crl-expiration-warning hours [repeat repeat-hours]
no crl-expiration-warning

**Context**  
config>system>security>pki

**Description**  
This command specifies when system will issue BeforeExp message before a CRL expires.

For example, with certificate-expiration-warning 5, the system will issue a BeforeExp message 5 hours before a CRL expires. An optional repeat <repeat-hour> parameter will enable the system to repeat the BeforeExp message every hour until the CRL expires.

If the user only wants AfterExp, then certificate-expiration-warning 0 can be used to achieve this.

BeforeExp and AfterExp warnings can be cleared in following cases:

- The CRL is reloaded by the admin certificate reload command. In this case, if the reloaded file is not expired, then AfterExp is cleared. And, if the reloaded file is outside of configured warning window, then the BeforeExp is also cleared.
- When the ca-profile is shutdown, then BeforeExp and AfterExp of corresponding certificates are cleared.
- When no crl-expiration-warning command is configured, then all existing BeforeExp and AfterExp are cleared.
- Users may change the configuration of the crl-expiration-warning so that certain CRL are no longer in the warning window. BeforeExp of corresponding CRL are cleared.
- If the system time changes so that the new time causes the CRL to no longer be in the warning window, then BeforeExp is cleared. If the new time causes an expired CRL to come non-expired, then AfterExp is cleared.

**Default**  
no crl-expiration-warning
Parameters  

- **hours** — Specifies the amount of time before a CRL expires when system issues **BeforeExp**.
- **Values** 0 to 8760

- **repeat-hour** — Specifies that the system will repeat **BeforeExp** every repeat-hour.
- **Values** 0 to 8760

**maximum-cert-chain-depth**

- **Syntax** `maximum-cert-chain-depth level`
- **no** `maximum-cert-chain-depth`
- **Context** `config>system>security>pki`
- **Description** This command defines the maximum depth of certificate chain verification. This number is applied system wide.
- The **no** form of the command reverts to the default.
- **Default** `maximum-cert-chain-depth 7`
- **Parameters** `level` — Specifies the maximum depth level of certificate chain verification, range from 1 to 7. The certificate under verification is not counted in. For example, if this parameter is set to 1, then the certificate under verification must be directly signed by trust anchor CA.
- **Values** 1 to 7

**shutdown**

- **Syntax** `[no] shutdown`
- **Context** `config>system>security>pki>ca-profile>`
- **Description** Use this command to enable or disable the ca-profile. The system will verify the configured cert-file and crl-file. If the verification fails, then the **no shutdown** command will fail.
- The ca-profile in a **shutdown** state cannot be used in certificate authentication.
- **Default** shutdown

**certificate**

- **Syntax** `certificate`
- **Context** admin
Description

This command enables the context to configure X.509 certificate related operational parameters. For information about CMPv6 admin certificate commands, see the 7450 ESS and 7750 SR Multiservice Integrated Service Adapter Guide.

clear-ocsp-cache

Syntax clear-ocsp-cache [entry-id]

Context admin>certificate

Description

This command clears the current OCSP response cache. If optional issuer and serial-number are not specified, then all current cached results are cleared.

Parameters

entry-id — Specifies the local cache entry identifier of the certificate to clear.

Values

1 to 2000

crl-update

Syntax crl-update ca ca-profile-name

Context admin>certificate

Description

This command manually triggers the Certificate Revocation List file (CRL) update for the specified ca-profile.

Using this command requires shutting down the auto-crl-update.

Parameters

ca-profile-name — Specifies the name of the Certificate Authority profile.

display

Syntax display type {type} url-string format {format} [password [32 chars max]]

Context admin>certificate

Description

This command displays the content of an input file in plain text.

Note: When displaying the key file content, only the key size and type are displayed.

The following list summarizes the formats supported by this command:

• System
  – system format
− PKCS #12
− PKCS #7 PEM encoded
− PKCS #7 DER encoded
− RFC4945

• Certificate Request
  − PKCS #10

• Key
  − system format
  − PKCS #12

• CRL
  − system format
  − PKCS #7 PEM encoded
  − PKCS #7 DER encoded
  − RFC4945

Parameters

file-url — Specifies the local CF card url of the input file.

Values

url-string  <local-url> - [99 chars max]
local-url   <cflash-id>/<file-path>
cflash-id   cf1: | cf2: | cf3:

type — Specifies the type of input file, possible values are cert/key/crl/cert-request.

Values
cert, key, crl, cert-request

format — Specifies the format of input file.

Values
pkcs10, pkcs12, pkcs7-der, pkcs7-pem, pem, der

password — Specifies the password to decrypt the input file in case that it is an
encrypted PKCS#12 file, up to 99 characters in length.

export

Syntax

export type {type} input filename output url-string format output-format [password [32
chars max]] [pkey filename]

Context

admin>certificate

Description
This command performs certificate operations.

gen-keypair

Syntax

gen-keypair url-string [size {512 | 1024 | 2048}] [type {rsa | dsa}]
Context  admin>certificate

Description  This command generates a RSA or DSA private key/public key pairs and store them in a local file in cf3:\system-pki\key

Parameters  

url-string — Specifies the name of the key file.

Values

<table>
<thead>
<tr>
<th>url-string</th>
<th>&lt;local-url&gt; - [99 chars max]</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-url</td>
<td>&lt;cflash-id&gt;/&lt;file-path&gt;</td>
</tr>
<tr>
<td>cflash-id</td>
<td>cf1:</td>
</tr>
</tbody>
</table>

size — Specifies the key size in bits.
The minimum key-size is 1024 when running in FIPS-140-2 mode.

Values  512/1024/2048
Default  2048

type — Specifies the type of key.
Default  rsa

gen-local-cert-req

Syntax  gen-local-cert-req keypair url-string subject-dn [subject-dn [domain-name [255 chars max]] [ip-addr ip-address]] file url-string [hash-alg hash-algorithm]

Context  admin>certificate

Description  This command generates a PKCS#10 formatted certificate request by using a local existing key pair file.

Parameters  

url-string — Specifies the name of the keyfile in cf3:\system-pki\key that is used to generate a certificate request.

Values

<table>
<thead>
<tr>
<th>url-string</th>
<th>&lt;local-url&gt; - [99 chars max]</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-url</td>
<td>&lt;cflash-id&gt;/&lt;file-path&gt;</td>
</tr>
<tr>
<td>cflash-id</td>
<td>cf1:</td>
</tr>
</tbody>
</table>

subject-dn — Specifies the distinguish name that is used as the subject in a certificate request, including:

  • C-Country
  • ST-State
  • O-Organization name
  • OU-Organization Unit name
  • CN-common name
This parameter is formatted as a text string including any of the above attributes. The attribute and its value is linked by using "=" and "," is used to separate different attributes.

For example: C=US,ST=CA,O=ALU,CN=SR12

Values attr1=val1,attr2=val2... where: attrN={C|ST|O|OU|CN}, 256 chars max

domain-name — Specifies a domain name string can be specified and included as the dNSName in the Subject Alternative Name extension of the certificate request.

ip-address — Specifies an IPv4 address string can be specified and included as the ipAddress in the Subject Alternative Name extension of the certificate request.

cert-req-file-url — Specifies the certificate URL. This URL could be either a local CF card path and filename to save the certificate request; or an FTP URL to upload the certificate request.

hash-algorithm — Specifies the hash algorithm to be used in a certificate request.

Values sha1, sha224, sha256, sha384, sha512

import

Syntax import type {cert | key | crl} input url-string output filename format input-format [password [32 chars max]]

Context admin>certificate#

Description This command converts an input file(key/certificate/CRL) to a system format file. The following list summarizes the formats supported by this command:

• Certificate
  – PKCS #12
  – PKCS #7 PEM encoded
  – PKCS #7 DER encoded
  – PEM
  – DER

• Key
  – PKCS #12
  – PEM
  – DER

• CRL
  – PKCS #7 PEM encoded
  – PKCS #7 DER encoded
  – PEM
  – DER
**Default** none

**Parameters**

- **input url-string** — Specifies the URL for the input file. This URL could be either a local CF card URL file or a FP URL to download the input file.
- **output url-string** — Specifies the name of output file up to 95 characters in length. The output directory depends on the file type like following:
  - Key: cf3:\system-pki\key
  - Cert: cf3:\system-pki\cert
  - CRL: cf3:\system-pki\CRL

**Values**

- **type** — The type of input file.
  - **Values** cert, key, crl
- **format** — Specifies the format of input file.
  - **Values** pkcs12, pkcs7-der, pkcs7-pem, pem, der
- **password** — Specifies the password to decrypt the input file in case that it is an encrypted PKCS#12 file.

**reload**

**Syntax** reload type {cert | key | cert-key-pair} filename [key-file filename]

**Context** admin>certificate

**Description** This command reloads imported certificate or key file or both at the same time. This command is typically used to update certificate/key file without shutting down ipsec-tunnel/ipsec-gw/cert-profile/ca-profile. Note that type cert and type key will be deprecated in a future release. Use type cert-key-pair instead. Instead of type cert use type key instead.

- If the new file exists and valid, then for each tunnel using it:
  - If the key matches the certificate, then the new file will be downloaded to the MS-ISA to be used the next time. Tunnels currently up are not affected.
  - If the key does not match the certificate:
    - If cert and key configuration is used instead of cert-profile then the tunnel will be brought down.

**Note:** If there are multiple objects with the same type in the input file, only the first object will be extracted and converted.
If cert-profile is used, then cert-profile will be brought down. The next authentication will fail while the established tunnels are not affected.

If the new file does not exist or somehow invalid (bad format, does not contain right extension, and so on), then this command will abort.

In the case of type cert-key-pair, if the new file doesn’t exist or is invalid or cert and key do not match, then this command will abort with an error message.

Default  none

Parameters  
cert — Specifies to reload a certificate file.
key — Specifies to reload a key file.

cert-key-pair — Specifies to reload a certificate file and its key file at the same time.

file-name — Specifies the file name of imported certificate or key.

key-filename — Specifies the key filename. IF the cert-key-pair is enabled, the filename is the imported filename of certificate, key-filename is the imported key file.

secure-nd-export

Syntax  secure-nd-export

Context  admin>certificate

Description  This command exports IPv6 Secure Neighbor Discovery (SeND) certificates to the file cf[1..3]:\system-pki\secureNdKey in PKCS #7 DER format.

secure-nd-import

Syntax  secure-nd-import input url-string format input-format [password password] [key-rollover]

Context  admin>certificate

Description  This command imports IPv6 Secure Neighbor Discovery (SeND) certificates from a file, and saves them to cf[1..3]:\system-pki\secureNdKey in PKCS #7 DER format.

Parameters  
url-string — Specifies the name of an input file up to 99 characters in length.

Values  
local-url <cflash-id>\<file-path>
cflash-id cf1:|cf2:|cf3:

input-format — Specifies the input file format.

Values  pkcs12, pem, or der
password — Specifies the password to decrypt the input file if it is an encrypted PKCS#12 file.

Values 32 characters maximum

2.10.2.7 Profile Management Commands

action

Syntax  
action \{deny \| permit \| read-only\}

Context config>system>security>profile>entry

Description This command configures the action associated with the profile entry.

Parameters deny — Specifies that commands matching the entry command match criteria are to be denied.

permit — Specifies that commands matching the entry command match criteria will be permitted.

match

Syntax match command-string

no match

Context config>system>security>profile>entry

Description This command configures a command or subtree commands in subordinate command levels are specified.

Because the OS exits when the first match is found, subordinate levels cannot be modified with subsequent action commands. More specific action commands should be entered with a lower entry number or in a profile that is evaluated prior to this profile.

All commands below the hierarchy level of the matched command are denied.

The no form of this command removes a match condition

Parameters command-string — Specifies the CLI command or CLI tree level that is the scope of the profile entry.

copy

Syntax copy \{user source-user \| profile source-profile\} to destination [overwrite]
Context config>system>security

Description This command copies a profile or user from a source profile to a destination profile.

Parameters
- source-profile — Specifies the profile to copy. The profile must exist.
- dest-profile — Specifies the copied profile is copied to the destination profile.
- overwrite — Specifies that the destination profile configuration will be overwritten with the copied source profile configuration. A profile will not be overwritten if the overwrite command is not specified.

default-action

Syntax default-action {deny-all | permit-all | none | read-only-all}

Context config>system>security>profile

Description This command specifies the default action to be applied when no match conditions are met.

Parameters
- deny-all — Sets the default of the profile to deny access to all commands.
- permit-all — Sets the default of the profile to permit access to all commands.
- none — Sets the default of the profile to no-action. This option is useful to assign multiple profiles to a user.

For example, if a user is a member of two profiles and the default action of the first profile is permit-all, then the second profile will never be evaluated because the permit-all is executed first. Set the first profile default action to none and if no match conditions are met in the first profile, then the second profile will be evaluated. If the default action of the last profile is none and no explicit match is found, then the default deny-all takes effect.

Note: The permit-all parameter does not change access to security commands. Security commands are only and always available to members of the super-user profile.

entry

Syntax [no] entry entry-id

Context config>system>security>profile

Description This command is used to create a user profile entry.

More than one entry can be created with unique entry-id numbers. Exits when the first match is found and executes the actions according to the accompanying action command. Entries should be sequenced from most explicit to least explicit.
An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword **action** for it to be considered complete.

The **no** form of the command removes the specified entry from the user profile.

**Parameters**

- **entry-id** — Specifies an entry-id that uniquely identifies a user profile command match criteria and a corresponding action. If more than one entry is configured, the **entry-ids** should be numbered in staggered increments to allow users to insert a new entry without requiring renumbering of the existing entries.

  **Values**

  1 to 9999

### profile

**Syntax**

```plaintext
[no] profile user-profile-name
```

**Context**

`config>system>security`

**Description**

This command creates a context to create user profiles for CLI command tree permissions. Profiles are used to either deny or permit user console access to a hierarchical branch or to specific commands.

Once the profiles are created, the **user** command assigns users to one or more profiles. You can define up to 16 user profiles but a maximum of 8 profiles can be assigned to a user. The **user-profile-name** can consist of up to 32 alphanumeric characters.

The **no** form of the command deletes a user profile.

**Default**

`profile default`

**Parameters**

- **user-profile-name** — Specifies the user profile name entered as a character string. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.

### renum

**Syntax**

```plaintext
renum old-entry-number new-entry-number
```

**Context**

`config>system>security>profile`

**Description**

This command renumbers profile entries to re-sequence the entries. Since the OS exits when the first match is found and executes the actions according to accompanying action command, re-numbering is useful to rearrange the entries from most explicit to least explicit.

**Parameters**

- **old-entry-number** — Enter the entry number of an existing entry.

  **Values**

  1 to 9999
new-entry-number — Enter the new entry number.

Values 1 to 9999

2.10.2.8 User Management Commands

access

Syntax  
no access [ftp] [snmp] [console] [li] [netconf] [grpc]

Context config>system>security>user
config>system>security>user-template

Description This command grants a user permission for FTP, SNMP, console, lawful intercept (LI), NETCONF, or gRPC access.

If a user requires access to more than one application, then multiple applications can be specified in a single command. Multiple commands are treated additively.

The no form of this command removes access for a specific application, and denies permission for all management access methods. To deny a single access method, enter the no form of the command followed by the method to be denied, for example, no access FTP denies FTP access.

Default no access

Parameters ftp — Specifies FTP permission.

snmp — Specifies SNMP permission. This keyword is only configurable in the config>system>security>user context.

console — Specifies console access (serial port or Telnet) permission.

li — Specifies CLI command access in the lawful intercept (LI) context (applies to the 7450 ESS and 7750 SR).

netconf — Specifies NETCONF session access for the user defined in the specified user context. When using the Base-R13 SR OS YANG data model, console access is also necessary (not required for the Nokia SR OS YANG data model).

grpc — Specifies gRPC access.

authentication

Syntax authentication {[none] | {[hash] {md5 key-1 | sha key-1}} privacy {none | des-key key-2| aes-128-cfb-key key-2}}

no authentication
Context  config>system>security>user>snmp

Description  This command configures the authentication and encryption method the user must use in order to be validated by the router. SNMP authentication allows the device to validate the managing node that issued the SNMP message and determine if the message has been tampered.

The keys configured in this command must be localized keys (MD5 or DES hash of the configured SNMP engine-ID and a password). The password is not directly entered in this command (only the localized key).

Default  no authentication

Parameters  none — Do not use authentication. If none is specified, then privacy cannot be configured.

hash — When hash is not specified, then non-encrypted characters can be entered. When hash is configured, then all specified keys are stored in an encrypted format in the configuration file. The key must be entered in encrypted form when the hash parameter is used.

md5 key-1 — Use an HMAC-MD5-96 authentication key.

The MD5 authentication key is stored in an encrypted format. The key must be entered as a full 32 hex character string.

sha key-1 — Use an HMAC-SHA-96 authentication key.

The sha authentication key is stored in an encrypted format. The key must be entered as a full 40 hex character string.

privacy none — Do not perform SNMP packet encryption.

Default  privacy none

privacy des-key key-2 — Use DES for SNMP payload encryption and configure the key. The key must be a 32 hex-character string and is stored in an encrypted format.

The des-key parameter is not available in FIPS-140-2 mode.

privacy aes-128-cfb-key key-2 — Use 128 bit CFB mode AES for SNMP payload encryption and configure the key. The key must be a 32 hex-character string and is stored in an encrypted format.

Default  privacy none

group

Syntax  group group-name

no group

Context  config>system>security>user>snmp
Description  This command associates (or links) a user to a group name. The group name must be configured with the `config>system>security>user>snmp>group` command. The `access` command links the group with one or more views, security model (s), security level (s), and read, write, and notify permissions.

Parameters  `group-name` — Enter the group name (between 1 and 32 alphanumeric characters) that is associated with this user. A user can be associated with one group-name per security model.

cannot-change-password

Syntax  `[no] cannot-change-password`

Context  `config>system>security>user>console`

Description  This command allows a user the privilege to change their password for both FTP and console login.

To disable a user’s privilege to change their password, use the `cannot-change-password` form of the command.

**Note:** The `cannot-change-password` flag is not replicated when a user copy is performed. A new-password-at-login flag is created instead.

Default  `no cannot-change-password`

crash

Syntax  `crash`

Context  `config>system>security>user`

Description  This command is used to configure a user's ability to perform a crash dump.

Default  `no crash`

console

Syntax  `console`

Context  `config>system>security>user`

Description  This command creates the context to configure user profile membership for the console (either Telnet or CPM serial port user).

copy

Syntax  `copy {user source-user | profile source-profile} to destination [overwrite]`

Context  `config>system>security`

Description  This command copies a specific user’s configuration parameters to another (destination) user.
The password is set to a carriage return and a new password at login must be selected.

**Parameters**
- `source-user` — Specifies the user to copy. The user must already exist.
- `dest-user` — Specifies that the copied profile is copied to a destination user.
- `overwrite` — Specifies that the destination user configuration will be overwritten with the copied source user configuration. A configuration will not be overwritten if the `overwrite` command is not specified.

### home-directory

**Syntax**
```
home-directory url-prefix [directory] [directory/directory...]
```

**no home-directory**

**Context**
```
config>system>security>user
config>system>security>user-template
```

**Description**
This command configures the local home directory for the user for both console (file commands and '>' redirection) and FTP access.

If the URL or the specified URL/directory structure is not present, then a warning message is issued and the default is assumed.

The **no** form of the command removes the configured home directory.

**Default**
```
no home-directory
```

**Note:** If restrict-to-home has been configured no file access is granted and no home-directory is created. If restrict-to-home is not applied then root becomes the user's home-directory.

**Parameters**
- `local-url-prefix [directory] [directory/directory...]` — Specifies the user's local home directory URL prefix and directory structure up to 190 characters in length.

### profile

**Syntax**
```
profile user-profile-name
```

**no profile**

**Context**
```
config>system>security>user-template
```

**Description**
This command configures the profile for the user based on this template.

**Parameters**
- `user-profile-name` — The user profile name entered as a character string. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.
login-exec

**Syntax**

```plaintext
[no] login-exec url-prefix: source-url
```

**Context**

`config>system>security>user>console`
`config>system>security>user-template>console`

**Description**

This command configures a user’s login exec file which executes whenever the user successfully logs in to a console session.

Only one exec file can be configured. If multiple `login-exec` commands are entered for the same user, each subsequent entry overwrites the previous entry.

The `no` form of the command disables the login exec file for the user.

**Default**

`no login-exec`

**Parameters**

- `url-prefix: source-url` — Enter either a local or remote URL, up to 200 characters in length, that identifies the exec file that will be executed after the user successfully logs in.

member

**Syntax**

```plaintext
member user-profile-name [user-profile-name…..(up to 8 max)]
no member user-profile-name
```

**Context**

`config>system>security>user>console`

**Description**

This command is used to allow the user access to a profile.

A user can participate in up to eight profiles.

The `no` form of this command deletes access user access to a profile.

**Default**

`member default`

**Parameters**

- `user-profile-name` — The user profile name up to 32 characters in length.

new-password-at-login

**Syntax**

```plaintext
[no] new-password-at-login
```

**Context**

`config>system>security>user>console`

**Description**

This command forces the user to change a password at the next console login. The new password applies to FTP but the change can be enforced only by the console, SSH, or Telnet login.

The `no` form of the command does not force the user to change passwords.
Default: no new-password-at-login

password

Syntax: password [password]

Context: config>system>security>user

Description: This command configures the user password for console and FTP access.

The password is stored in an encrypted format in the configuration file when specified. Passwords should be encased in double quotes (" ") at the time of the password creation. The double quote character (" ") is not accepted inside a password. It is interpreted as the start or stop delimiter of a string.

The password can be entered as plain text or a hashed value. SR OS can distinguish between hashed passwords and plain text passwords and take the appropriate action to store the password correctly.

config>system>security>user# password testuser1

The password is hashed by default.

For example:

config>system>security# user testuser1
config>system>security>user$ password xyzabcd1
config>system>security>user# exit

config>system>security# info
-------------------------------------
...
user "testuser1"
  password "$2y$10$pPoehOg/tCbBMPDJ/ kgpu.8af0AoVGY2xrR7WFqyn5fVTnwrzGmOK"
  exit
...
-------------------------------------
config>system>security#

The password command allows you also to enter the password as a hashed value.

For example:

config>system>security# user testuser1
config>system>security>user$ password "$2y$10$pPoehOg/tCbBMPDJ/ kgpu.8af0AoVGY2xrR7WFqyn5fVTnwrzGmOK"
config>system>security>user# exit
config>system>security# info
-------------------------------------
...

The password command allows you also to enter the password as a hashed value.
user "testuser1"
password "$2y$10$PoeheOG/tCbBMPDJ/kqpu.8af0AoVGY2xsR7WPqyn5fVTnwRzGmOK" 
exit
...
-------------------------------------
config>system>security#

**Parameters**

- **password** — This is the password for the user that must be entered by this user during the login procedure. The minimum length of the password is determined by the `minimum-length` command. The maximum length can be up to 20 chars if unhashed, 32 characters if hashed. The complexity requirements for the password is determined by the `complexity` command.

A password value that does not conform to the minimum-length or other password complexity rules can be configured using the `config>system>security>user>password` command, but a warning is provided in the CLI. This allows, for example, an administrator to configure a non-conformant password for a user. A user cannot configure a non-conformant password for themselves using the global `password` command.

All password special characters (#, $, spaces, and so on) must be enclosed within double quotes.

For example: `config>system>security>user# password "south#bay?"`

The question mark character (?) cannot be directly inserted as input during a telnet connection because the character is bound to the `help` command during a normal Telnet/console connection.

To insert a # or ? characters, they must be entered inside a notepad or clipboard program and then cut and pasted into the Telnet session in the password field that is encased in the double quotes as delimiters for the password.

If a **password** is entered without any parameters, a password length of zero is implied: (carriage return).

---

**public-keys**

- **Syntax** `public-keys`
- **Context** `config>system>security>user`
- **Description** This command allows the user to enter the context to configure public keys for SSH.

**ecdsa**

- **Syntax** `ecdsa`
- **Context** `config>system>security>user>public-keys`
- **Description** This command allows the user to enter the context to configure ECDSA public keys.
ecdsa-key

Syntax  
ecdsa-key key-id [create]
no ecdsa-key key-id

Context  
cfg>system>security>user>public-keys>ecdsa

Description  
This command creates an ECDSA public key and associates it with the username. Multiple
public keys can be associated with the user. The key ID is used to identify these keys for the
user.

Parameters  
create — Keyword used to create an ECDSA key. The create keyword requirement can
be enabled/disabled in the environment>create context.

key-id — Specifies the key identifier.

Values  
1 to 32

key-value

Syntax  
key-value public-key-value
no key-value

Context  
cfg>system>security>user>public-keys>ecdsa>ecdsa-key

cfg>system>security>user>public-keys>rsa>rsa-key

Description  
This command configures a value for the RSA or ECDSA public key. The public key must be
enclosed in quotation marks. For RSA, the key is between 768 and 4096 bits. For ECDSA,
the key is between 1 and 1024 bits.

Default  
no key-value

Parameters  
public-key-value — Specifies the public key value up to 800 characters in length for RSA
and up to 255 characters in length for ECDSA.

rsa

Syntax  
rsa

Context  
cfg>system>security>user>public-keys

Description  
This command allows the user to enter the context to configure RSA public keys.

rsa-key

Syntax  
rsa-key key-id [create]
no rsa-key key-id
Context config>system>security>user>public-keys>rsa

Description This command creates an RSA public key and associates it with the username. Multiple public keys can be associated with the user. The key ID is used to identify these keys for the user.

Parameters create — Keyword used to create the RSA key. The create keyword requirement can be enabled/disabled in the environment>create context.

key-id — Specifies the key identifier.

Values 1 to 32

restricted-to-home

Syntax [no] restricted-to-home

Context config>system>security>user
config>system>security>user-template

Description This command prevents users from navigating above their home directories for file access (either by means of CLI sessions with the file command, ‘>’ redirection, or by means of FTP). A user is not allowed to navigate to a directory higher in the directory tree on the home directory device. The user is allowed to create and access subdirectories below their home directory.

If a home-directory is not configured or the home directory is not available, then the user has no file access.

The no form of the command allows the user access to navigate to directories above their home directory.

Default no restricted-to-home

snmp

Syntax snmp

Context config>system>security>user

Description This command creates the context to configure SNMP group membership for a specific user and defines encryption and authentication parameters.

All SNMPv3 users must be configured with the commands available in this CLI node.

The OS always uses the configured SNMPv3 user name as the security user name.
user-template

Syntax  
user-template {tacplus_default | radius_default | ldap-default}

Context config>system>security

Description This command configures default security user template parameters.

Parameters  
tacplus_default — Specifies the default TACACS+ user template. All parameters of the tacplus_default template except the “profile” are actively applied to all TACACS+ users if tacplus use-default-template is enabled. The “profile” parameters are applied to all TACACS+ users if tacplus authorization is enabled (without the use-priv-lvl option) and tacplus use-default-template is enabled.

radius_default — Specifies the default RADIUS user template. The radius_default template is actively applied to a RADIUS user if radius authorization is enabled, radius use-default-template is enabled, and no VSAs are returned with the auth-accept from the RADIUS server.

ldap_default — Specifies the default LDAP user template.

user

Syntax  
[no] user user-name

Context config>system>security

Description This command creates a local user and a context to edit the user configuration.

If a new user-name is entered, the user is created. When an existing user-name is specified, the user parameters can be edited.

When creating a new user and then entering the info command, the system displays a password in the output. This is expected behavior in the hash2 scenario. However, when using that user name, there will be no password required. The user can login to the system and then <ENTER> at the password prompt, the user will be logged in.

Unless an administrator explicitly changes the password, it will be null. The hashed value displayed uses the username and null password field, so when the username is changed, the displayed hashed value will change.

The no form of the command deletes the user and all configuration data. Users cannot delete themselves.

Default none

Parameters  
user-name — Specifies the name of the user up to 32 characters.
2.10.2.9 CLI Session Management Commands

cli-session-group

Syntax: [no] cli-session-group session-group-name [create]

Context: config>system>security

Description: This command is used to configure a session group that can be used to limit the number of CLI sessions available to members of the group.

Parameters: session-group-name — Specifies a particular session group.

ssh-max-sessions

Syntax: ssh-max-sessions session-limit

Syntax: no ssh-max-sessions

Context: config>system>security>cli-session-group
config>system>security>profile

Description: This command is used to limit the number of SSH-based CLI sessions available to all users that are part of a particular profile, or to all users of all profiles that are part of the same cli-session-group.

The no form of this command disables the command and the profile/group limit is not applied on the number of sessions.

Default: no ssh-max-sessions

Parameters: session-limit — Specifies the maximum number of allowed SSH-based CLI sessions.

Values: 0 to 50

telnet-max-sessions

Syntax: telnet-max-sessions session-limit

Syntax: no telnet-max-sessions

Context: config>system>security>cli-session-group
config>system>security>profile

Description: This command is used to limit the number of Telnet-based CLI sessions available to all users that are part of a particular profile, or to all users of all profiles that are part of the same cli-session-group.
The `no` form of this command disables the command and the profile/group limit is not applied on the number of sessions.

**Default**
```
no telnet-max-sessions
```

**Parameters**
```
session-limit — Specifies the maximum number of allowed Telnet-based CLI sessions.
```

**Values**
```
0 to 50
```

### combined-max-sessions

**Syntax**
```
combined-max-sessions session-limit
no combined-max-sessions
```

**Context**
```
config>system>security>cli-session-group
config>system>security>profile
```

**Description**
This command is used to limit the number of combined SSH/TELNET based CLI sessions available to all users that are part of a particular profile, or to all users of all profiles that are part of the same cli-session-group.

The `no` form of this command disables the command and the profile/group limit is not applied to the number of combined sessions.

**Default**
```
no combined-max-sessions
```

**Parameters**
```
session-limit — Specifies the maximum number of allowed combined SSH/TELNET based CLI sessions.
```

**Values**
```
0 to 50
```

### 2.10.2.10 RADIUS Client Commands

#### access-algorithm

**Syntax**
```
access-algorithm {direct | round-robin}
no access-algorithm
```

**Context**
```
config>system>security>radius
```

**Description**
This command indicates the algorithm used to access the set of RADIUS servers.

**Default**
```
access-algorithm direct
```

**Parameters**
```
direct — The first server will be used as primary server for all requests, the second as secondary and so on.
```
round-robin — The first server will be used as primary server for the first request, the second server as primary for the second request, and so on. If the router gets to the end of the list, it starts again with the first server.

accounting

Syntax `[no] accounting`

Context `config>system>security>radius`

Description This command enables RADIUS accounting.

The `no` form of this command disables RADIUS accounting.

Default `no accounting`

accounting-port

Syntax `accounting-port port`

`no accounting-port`

Context `config>system>security>radius`

Description This command specifies a UDP port number on which to contact the RADIUS server for accounting requests.

Default `accounting-port 1813`

Parameters `port` — Specifies the UDP port number.

Values 1 to 65535

Default 1813

authorization

Syntax `[no] authorization`

Context `config>system>security>radius`

Description This command configures RADIUS authorization parameters for the system.

Default `no authorization`
interactive-authentication

**Syntax**  
[no] interactive-authentication

**Context**  
config>system>security>radius

**Description**  
This command enables RADIUS interactive authentication for the system. Enabling interactive-authentication forces RADIUS to fall into challenge/response mode.

**Default**  
no interactive-authentication

port

**Syntax**  
port port
no port

**Context**  
config>system>security>radius

**Description**  
This command configures the TCP port number to contact the RADIUS server. The no form of the command reverts to the default value.

**Default**  
port 1812 (as specified in RFC 2865, Remote Authentication Dial In User Service (RADIUS))

**Parameters**  
port — Specifies the TCP port number to contact the RADIUS server.

**Values**  
1 to 65535

radius

**Syntax**  
[no] radius

**Context**  
config>system>security

**Description**  
This command creates the context to configure RADIUS authentication on the router. Implement redundancy by configuring multiple server addresses for each router.

The no form of the command removes the RADIUS configuration.

retry

**Syntax**  
retry count
no retry

**Context**  
config>system>security>radius
config>system>security>dot1x>radius-plcy
**Description**  
This command configures the number of times the router attempts to contact the RADIUS server for authentication if there are problems communicating with the server.

The *no* form of the command reverts to the default value.

**Default**  
retry 3

**Parameters**  
*count* — Specifies the retry count.

**Values**  
1 to 10

**server**

**Syntax**  
server *index* *address* *ip-address* secret *key* [hash | hash2]  
**no server** *index*

**Context**  
config>system>security>radius

**Description**  
This command adds a RADIUS server and configures the RADIUS server IP address, index, and key values.

Up to five RADIUS servers can be configured at any one time. RADIUS servers are accessed in order from lowest to highest index for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received from a lower indexed server (which implies that the server is not available). If a response from a server is received, no other RADIUS servers are queried. It is assumed that there are multiple identical servers configured as backups and that the servers do not have redundant data.

The *no* form of the command removes the server from the configuration.

**Default**  
no server

**Parameters**  
*index* — Specifies the index for the RADIUS server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from lowest to highest index.

**Values**  
1 to 5

*ip-address* — Specifies the IP address of the RADIUS server. Two RADIUS servers cannot have the same IP address. An error message is generated if the server address is a duplicate.

**Values**  
ipv4-address  
a.b.c.d (host bits must be 0)

ipv6-address  
x::x::x:x:x (eight 16-bit pieces)
x::x::x:x:d.d.d
x: [0..FFFF]H
d: [0..255]D
**key** — Specifies the secret key to access the RADIUS server. This secret key must match the password on the RADIUS server.

**Values**

Up to 64 characters in length.

**hash** — Specifies the key is entered in an encrypted form. If the **hash** or **hash2** parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the **hash** or **hash2** parameter specified.

**hash2** — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the **hash2** encrypted variable cannot be copied and pasted. If the **hash** or **hash2** parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the **hash** or **hash2** parameter specified.

### shutdown

**Syntax**

```plaintext
[no] shutdown
```

**Context**

`config>system>security>radius`

**Description**

This command administratively disables the RADIUS protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The **no** form of the command administratively enables the protocol which is the default state.

**Default**

`no shutdown`

### timeout

**Syntax**

```plaintext
timeout seconds
no timeout
```

**Context**

`config>system>security>radius`

**Description**

This command configures the number of seconds the router waits for a response from a RADIUS server.

The **no** form of the command reverts to the default value.

**Default**

`timeout 3`

**Parameters**

**seconds** — Specifies the number of seconds the router waits for a response from a RADIUS server, expressed as a decimal integer.

**Values**

1 to 90
use-default-template

**Syntax**  
[no] use-default-template

**Context**  
config>system>security>radius

**Description**  
This command specifies whether the RADIUS default user template is actively applied to the RADIUS user if no VSAs are returned with the auth-accept from the RADIUS server. When enabled, the radius_default user-template is actively applied if no VSAs are returned with the auth-accept from the RADIUS server and radius authorization is enabled.

The no form of the command disables the use of the RADIUS default template.

**Default**  
no use-default-template

### 2.10.2.11 TACACS+ Client Commands

**server**

**Syntax**  
server index address ip-address secret key [hash | hash2][port port]  
no server index

**Context**  
config>system>security>tacplus

**Description**  
This command adds a TACACS+ server and configures the TACACS+ server IP address, index, and key values.

Up to five TACACS+ servers can be configured at any one time. TACACS+ servers are accessed in order from lowest index to the highest index for authentication requests.

The **no** form of the command removes the server from the configuration.

**Default**  
No TACACS+ servers are configured.

**Parameters**

- **index** — Specifies the index for the TACACS+ server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from the lowest index to the highest index.
  
  **Values**  
  1 to 5

- **ip-address** — Specifies the IP address of the TACACS+ server. Two TACACS+ servers cannot have the same IP address. An error message is generated if the server address is a duplicate.
  
  **Values**
  ipv4-address a.b.c.d (host bits must be 0)  
  ipv6-address x:x:x:x:x:x:x (eight 16-bit pieces)  
  x:x:x:x:d.d.d
secret key — Specifies the secret key to access the RADIUS server. This secret key must match the password on the RADIUS server.

Values Up to 128 characters in length.

hash — Specifies the key is entered in an encrypted form. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the hash2 encrypted variable cannot be copied and pasted. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

port — Specifies the port ID.

Values 0 to 65535

shutdown

Syntax [no] shutdown

Context config>system>security>tacplus

Description This command administratively disables the TACACS+ protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The no form of the command administratively enables the protocol which is the default state.

Default no shutdown

tacplus

Syntax [no] tacplus

Context config>system>security

Description This command creates the context to configure TACACS+ authentication on the router.

Configure multiple server addresses for each router for redundancy.
The no form of the command removes the TACACS+ configuration.

**accounting**

**Syntax**

```
accounting [record-type {start-stop | stop-only}]
no accounting
```

**Context**

`config>system>security>tacplus`

**Description**

This command configures the type of accounting record packet that is to be sent to the TACACS+ server. The `record-type` parameter indicates whether TACACS+ accounting start and stop packets be sent or just stop packets be sent.

**Default**

no accounting

**Parameters**

- `record-type start-stop` — Specifies that a TACACS+ start packet is sent whenever the user executes a command.
- `record-type stop-only` — Specifies that a stop packet is sent whenever the command execution is complete.

**authorization**

**Syntax**

```
[no] authorization [use-priv-lvl]
```

**Context**

`config>system>security>tacplus`

**Description**

This command configures TACACS+ authorization parameters for the system.

**Default**

no authorization

**Parameters**

- `use-priv-lvl` — Automatically performs a single authorization request to the TACACS+ server for cmd* (all commands) immediately after login, and then use the local profile associated (via the priv-lvl-map) with the priv-lvl returned by the TACACS+ server for all subsequent authorization (except enable-admin). After the initial authorization for cmd*, no further authorization requests will be sent to the TACACS+ server (except enable-admin).

**interactive-authentication**

**Syntax**

```
[no] interactive-authentication
```

**Context**

`config>system>security>tacplus`
Description

This configuration instructs the SR OS to send no username nor password in the TACACS+ start message, and to display the server_msg in the GETUSER and GETPASS response from the TACACS+ server. Interactive authentication can be used to support a One Time Password scheme (e.g. S/Key). An example flow (e.g. with a telnet connection) is as follows:

- The SR OS will send an authentication start request to the TACACS+ server with no username nor password.
- TACACS+ server replies with TAC_PLUS_AUTHEN_STATUS_GETUSER and a server_msg.
- The SR OS displays the server_msg, and collects the user name.
- The SR OS sends a continue message with the user name.
- TACACS+ server replies with TAC_PLUS_AUTHEN_STATUS_GETPASS and a server_msg.
- The SR OS displays the server_msg (which may contain, for example, an S/Key for One Time Password operation), and collects the password.
- The SR OS sends a continue message with the password.
- TACACS+ server replies with PASS or FAIL.

When interactive-authentication is disabled the SR OS will send the username and password in the tacplus start message. An example flow (e.g. with a telnet connection) is as follows:

- TAC_PLUS_AUTHEN_TYPE_ASCII.
  - the login username in the “user” field.
  - the password in the user_msg field (while this is non-standard, it does not cause interoperability problems).
- TACACS+ server ignores the password and replies with TAC_PLUS_AUTHEN_STATUS_GETPASS.
- The SR OS sends a continue packet with the password in the user_msg field.
- TACACS+ server replies with PASS or FAIL.

When interactive-authentication is enabled, tacplus must be the first method specified in the authentication-order configuration.

Default

no interactive-authentication

priv-lvl-map

Syntax  [no] priv-lvl-map

Context  config>system>security>tacplus

Description  This command enables the context to specify a series of mappings between TACACS+ priv-lvl and locally configured profiles for authorization. These mappings are used when the use-priv-lvl option is specified for tacplus authorization.
The **no** form of the command reverts to the default.

**Default**
priv-lvl-map

---

**priv-lvl**

**Syntax**

```
priv-lvl priv-lvl user-profile-name
no priv-lvl priv-lvl
```

**Context**

`config>system>security>tacplus>priv-lvl-map`

**Description**

This command maps a specific TACACS+ priv-lvl to a locally configured profile for authorization. This mapping is used when the `use-priv-lvl` option is specified for TACPLUS authorization.

**Parameters**

- `priv-lvl` — Specifies the privilege level used when sending a TACACS+ ENABLE request.
  - **Values**
    - 0 to 15

- `user-profile-name` — Specifies the user profile for this mapping.

---

**timeout**

**Syntax**

```
timeout seconds
no timeout
```

**Context**

`config>system>security>tacplus`

**Description**

This command configures the number of seconds the router waits for a response from a TACACS+ server.

The **no** form of the command reverts to the default value.

**Default**

`timeout 3`

**Parameters**

- `seconds` — The number of seconds the router waits for a response from a TACACS+ server, expressed as a decimal integer.
  - **Values**
    - 1 to 90

---

**shutdown**

**Syntax**

```
[no] shutdown
```

**Context**

`config>system>security>tacplus`

**Description**

This command administratively disables the TACACS+ protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state.
The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The `no` form of the command administratively enables the protocol which is the default state.

**Default**

no shutdown

---

**use-default-template**

**Syntax**

`[no] use-default-template`

**Context**

`config>system>security>tacplus`

**Description**

This command specifies whether the `tacplus_default` user-template is actively applied to the TACACS+ user. When enabled, the `tacplus_default` user-template is actively applied if tacplus authorization is enabled (without the use-priv-lvl option).

**Default**

use-default-template

---

### 2.10.2.12 LDAP Client Commands

**Idap**

**Syntax**

`[no] ldap`

**Context**

`config>system>security`

**Description**

This command configures LDAP authentication parameters for the system.

The `no` form will de-configure the LDAP client from the SR OS.

**public-key-authentication**

**Syntax**

`[no] public-key-authentication`

**Context**

`config>system>security>ldap`

**Description**

This command enables public key retrieval from the LDAP server. If disabled (in its `no` form), password authentication will be attempted via LDAP.

**Default**

no public-key-authentication
retry

Syntax  
retry value
no retry

Context  
config>system>security>ldap

Description  
This command configures the number of retries for the SR OS in its attempt to reach the current LDAP server before attempting the next server.

The no version of this command will revert to the default value.

Default  
retry 3

Parameters  
value — Specifies the number of retransmissions.

   Values  
   1 to 10

   Default  
   3

server

Syntax  
server server-index [create]
no server server-index

Context  
config>system>security>ldap

Description  
This command configures an LDAP server. Up to five servers can be configured, which can then work in a redundant manner.

The no version of this command removes the server connection.

Parameters  
server-index — Specifies a unique LDAP server connection.

   Values  
   1 to 5

address

Syntax  
address ip-address [port port]
no address

Context  
config>system>security>ldap>server

Description  
This command configures the IPv4 or IPv6 address for the LDAP server.

The no version of this command removes the server address.
Parameters  

**ip-address** — The IP address of the LDAP server.

**Values**

- ipv4-address  
  a.b.c.d (host bits must be 0)
- ipv6-address  
  x:x:x:x:x:x:x (eight 16-bit pieces)
  x:x:x:x:x:d.d.d
  x: [0..FFFF]H
  d: [0..255]D

**port** — Specifies the port ID. The port is the LDAP server listening port; by default it is 389 but if the listening port on LDAP server is changed, this command needs to be configured accordingly.

**Values**

1 to 65535

**Default**

389

**bind-authentication**

**Syntax**

`bind-authentication root-dn [password password] [hash | hash2]`

`no bind-authentication`

**Context**

`config>system>security>ldap>server`

**Description**

This command configures the LDAP binding used to log into LDAP server. A string of domain components (DC) and common names (CN) can be programmed to identify the user in addition to the password field. The password is hashed. For example, “cn=admin,dc=nokia,dc=com” indicates the user admin in domain nokia.com. Table 18 lists the LDAP attributes.

The `no` version of this command removes the bind-authentication.

**Table 18**  

<table>
<thead>
<tr>
<th>Object Class</th>
<th>Naming Attribute Display Name</th>
<th>Naming Attribute LDAP Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>Common-Name</td>
<td>cn</td>
</tr>
<tr>
<td>organizationalUnit</td>
<td>Organizational-Unit-Name</td>
<td>ou</td>
</tr>
<tr>
<td>domain</td>
<td>Domain-Component</td>
<td>dc</td>
</tr>
</tbody>
</table>

**Parameters**

- **root-dn** — Up to 512 characters.
- **password** — Configures the password which enables a user to bind to the LDAP server.
  
  The maximum length is 128 characters.
hash — Specifies that the password is entered in an encrypted form. If the hash or hash2 parameter is not used, the password is assumed to be in an unencrypted, clear text form. For security, all passwords are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

hash2 — Specifies the password is entered in a more complex encrypted form that involves more variables than the password value alone, meaning that the hash2 encrypted variable cannot be copied and pasted. If the hash or hash2 parameter is not used, the password is assumed to be in an unencrypted, clear text form. For security, all passwords are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

ldap-server

**Syntax**

ldap-server *server-name*

no ldap-server

**Context**

config>system>security>ldap

**Description**

This command configures the LDAP server name or description. The no version of this command removes the LDAP server name.

**Parameters**

*server-name* — Specifies the name of the server, up to 32 characters.

search

**Syntax**

search *base-dn*

no search

**Context**

config>system>security>ldap

**Description**

This command configures the LDAP search command. The search *base-dn* tells the server which part of the external directory tree to search. The search DN uses the same LDAP attribute as root-dn. For example, to search a public-key for an SSH generated for a Nokia vendor, one might use "dc=public-key,dc=nokia,dc=com".

The no version of this command remove the search DN; as such, no search will be possible on the LDAP server.

**Parameters**

*base-dn* — Specifies the base domain name used in the search, up to 512 characters.

shutdown

**Syntax**

[no] shutdown

**Context**

config>system>security>ldap
config>system>security>ldap>server

Description
In the ldap context, this command enables or disabled LDAP protocol operations.

In the server context, this command enables or disables the LDAP server. To perform no shutdown, an LDAP server address is required. To change the address, the user first needs to shut down the server.

tls-profile

Syntax

tls-profile

tls-profile-name

no tls-profile

Context
config>system>security>ldap>server

Description
This command attaches a TLS client profile to the LDAP client. The parameter in the TLS profile is used to encrypt the LDAP connection to the server. Each LDAP server can use its own TLS profile.

The no version of this command removes the TLS profile from LDAP and disables the TLS encryption from LDAP.

Parameters
tls-profile-name — Specifies the TLD profile for encryption.

timeout

Syntax

timeout

seconds

no timeout

Context
config>system>security>ldap

Description
The timeout value is the number of seconds that the SR OS will wait for a response from the current server that it is trying to establish a connection with. If the server does not reply within the configured timeout value, the SR OS will increment the retry counter by 1. The SR OS attempts to establish the connection to the current server up to the configured retry value before it moves to the next configured server.

The no version of this command reverts to the default value.

Default
timeout 3

Parameters
seconds — The length of time that the SR OS waits for a response from the server.

Values
1 to 90

Default
3
use-default-template

Syntax  
[no] use-default-template

Context  
config>system>security>ldap

Description  
This command specifies whether or not the default template is to be actively applied to LDAP.

Default  
use-default-template

2.10.2.13 Generic 802.1x COMMANDS

dot1x

Syntax  
[no] dot1x

Context  
config>system>security

Description  
This command creates the context to configure 802.1x network access control on the router.

The **no** form of the command removes the 802.1x configuration.

radius-plcy

Syntax  
[no] radius-plcy

Context  
config>system>security>dot1x

Description  
This command creates the context to configure RADIUS server parameters for 802.1x network access control on the router.

**Note:** The RADIUS server configured under the config>system>security>dot1x>radius-plcy context authenticates clients who get access to the data plane of the router as opposed to the RADIUS server configured under the **config>system>radius** context which authenticates CLI login users who get access to the management plane of the router.

The **no** form of the command removes the RADIUS server configuration for 802.1x.

retry

Syntax  
retry count

no retry
Context  config>system>security> dot1x>radius-plcy
Description  This command configures the number of times the router attempts to contact the RADIUS server for authentication if there are problems communicating with the server.

The no form of the command reverts to the default value.

Default  retry 3
Parameters  count — Specifies the retry count.

Values  1 to 10

server

Syntax  server  server-index  address  ip-address  secret  key  [hash  |  hash2]  [auth-port  auth-port]  [acct-port  acct-port]  [type  server-type]

no server  index

Context  config>system>security> dot1x>radius-plcy
Description  This command adds a Dot1x server and configures the Dot1x server IP address, index, and key values.

Up to five Dot1x servers can be configured at any one time. Dot1x servers are accessed in order from lowest to highest index for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received from a lower indexed server (which implies that the server is not available). If a response from a server is received, no other Dot1x servers are queried. It is assumed that there are multiple identical servers configured as backups and that the servers do not have redundant data.

The no form of the command removes the server from the configuration.

Default  no server
Parameters  server-index — Specifies the index for the Dot1x server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from lowest to highest index.

Values  1 to 5

ip-address — Specifies the IP address of the Dot1x server. Two Dot1x servers cannot have the same IP address. An error message is generated if the server address is a duplicate.

key — Specifies the secret key to access the Dot1x server. This secret key must match the password on the Dot1x server.

Values  Up to 128 characters in length.
hash — Specifies the key is entered in an encrypted form. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the hash2 encrypted variable cannot be copied and pasted. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

acct-port — Specifies the UDP port number on which to contact the RADIUS server for accounting requests.

auth-port — Specifies a UDP port number to be used as a match criteria.

Values 1 to 65535

server-type — Specifies the server type.

Values authorization, accounting, combined

source-address

Syntax source-address ip-address
no source-address

Context config>system>security> dot1x>radius-plcy

Description This command configures the NAS IP address to be sent in the RADIUS packet.

The no form of the command reverts to the default value.

Default By default the System IP address is used in the NAS field.

Parameters ip-address — Specifies the IP prefix for the IP match criterion in dotted decimal notation.

Values 0.0.0.0 to 255.255.255.255

shutdown

Syntax [no] shutdown

Context config>system>security>dot1x
config>system>security>dot1x>radius-plcy

Description This command administratively disables the 802.1x protocol operation. Shutting down the protocol does not remove or change the configuration other than the administrative state.

The operational state of the entity is disabled as well as the operational state of any entities contained within.
The **no** form of the command administratively enables the protocol which is the default state.

**Default**

shutdown

### timeout

**Syntax**

```
timeout seconds
no timeout
```

**Context**

```
config>system>security> dot1x>radius-plcy
```

**Description**

This command configures the number of seconds the router waits for a response from a RADIUS server.

The **no** form of the command reverts to the default value.

**Default**

timeout 3

**Parameters**

- `seconds` — Specifies the number of seconds the router waits for a response from a RADIUS server, expressed as a decimal integer.

  **Values**

  1 to 90

---

### 2.10.2.14 Keychain Authentication

### keychain

**Syntax**

```
[no] keychain keychain-name
```

**Context**

```
config>system>security
```

**Description**

This command enables the context to configure keychain parameters. A keychain must be configured on the system before it can be applied to a session.

The **no** form of the command removes the keychain nodal context and everything under it from the configuration. If the keychain to be removed is in use when the **no** keychain command is entered, the command will not be accepted and an error indicating that the keychain is in use will be printed.

**Default**

none

**Parameters**

- `keychain-name` — Specifies a keychain name which identifies this particular keychain entry.

  **Values**

  An ASCII string up to 32 characters.
direction

Syntax  direction
Context  config>system>security>keychain
Description  This command specifies the data type that indicates the TCP stream direction to apply the keychain.
Default  none

bi

Syntax  bi
Context  config>system>security>keychain>direction
Description  This command configures keys for both send and receive stream directions.
Default  none

uni

Syntax  uni
Context  config>system>security>keychain>direction
Description  This command configures keys for send or receive stream directions.

receive

Syntax  receive
Context  config>system>security>keychain>direction>uni
Description  This command enables the receive nodal context. Entries defined under this context are used to authenticate TCP segments that are being received by the router.

send

Syntax  send
Context  config>system>security>keychain>direction>uni
Description  This command specifies the send nodal context to sign TCP segments that are being sent by the router to another device.
entry

Syntax

```
entry entry-id key [authentication-key | hash-key | hash2-key] [hash | hash2] algorithm
 no entry entry-id
```

Context

```
config>system>security>keychain>direction>bi
config>system>security>keychain>direction>uni>receive
config>system>security>keychain>direction>uni>send
```

Description

This command defines a particular key in the keychain. Entries are defined by an entry-id. A keychain must have valid entries for the TCP Enhanced Authentication mechanism to work.

The `no` form of the command removes the entry from the keychain. If the entry is the active entry for sending, then this will cause a new active key to be selected (if one is available using the youngest key rule). If it is the only possible send key, then the system will reject the command with an error indicating the configured key is the only available send key.

If the key is one of the eligible keys for receiving, it will be removed. If the key is the only possible eligible key, then the command will not be accepted, and an error indicating that this is the only eligible key will be output.

The `no` form of the command deletes the entry.

Default

There are no default entries.

Parameters

- `entry-id` — Specifies an entry that represents a key configuration to be applied to a keychain.
  - **Values**: 0 to 63
- `key` — Specifies a key ID which is used along with `keychain-name` and `direction` to uniquely identify this particular key entry.
- `authentication-key` — Specifies the `authentication-key` that will be used by the encryption algorithm. The key is used to sign and authenticate a protocol packet.
  - **Values**: A key must be 160 bits for algorithm hmac-sha-1-96 and must be 128 bits for algorithm aes-128-cmac-96. If the key given with the entry command amounts to less than this number of bits, then it is padded internally with zero bits up to the correct length.
- `algorithm` — Specifies an enumerated integer that indicates the encryption algorithm to be used by the key defined in the keychain.
  - **Values**:
    - aes-128-cmac-96 — Specifies an algorithm based on the AES standard for TCP authentication.
    - hmac-sha-1-96 — Specifies an algorithm based on SHA-1 for RSVP-TE and TCP authentication.
    - message-digest — MD5 hash used for TCP authentication.
    - hmac-md5 — MD5 hash used for IS-IS and RSVP-TE.
    - password — Specifies a simple password authentication for OSPF,
IS-IS, and RSVP-TE.
hmac-sha-1 — Specifies the sha-1 algorithm for OSPF, IS-IS, and RSVP-TE.
hmac-sha-256 — Specifies the sha-256 algorithm for OSPF and IS-IS.

hash-key | hash2-key — Specifies the hash key. The key can be any combination of ASCII characters up to 33 for the hash-key and 96 characters for the hash2-key in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

hash — Specifies the key is entered in an encrypted form. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form that involves more variables than the key value alone, meaning that the hash2 encrypted variable cannot be copied and pasted. If the hash or hash2 parameter is not used, the key is assumed to be in an unencrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

begin-time

Syntax

begin-time date hours-minutes [UTC]
begin-time {now | forever}
no begin-time

Context

config>system>security>keychain>direction>bi>entry
config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry

Description

This command specifies the calendar date and time after which the key specified by the keychain authentication key is used to sign and/or authenticate the protocol stream.

If no date and time is set, the begin-time is represented by a date and time string with all NULLs and the key is not valid by default.

Default

begin-time forever

Parameters

date hours-minutes — Specifies the date and time for the key to become active.

Values

date: YYYY/MM/DD
hours-minutes: hh:mm[:ss]

now — Specifies the key should become active immediately.

forever — Specifies that the key should always be active.

UTC — Indicates that time is given with reference to Coordinated Universal Time in the
end-time

Syntax

end-time date hours-minutes [UTC]
end-time {now | forever}
no end-time

Context

config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry

Description

This command specifies the calendar date and time after which the key specified by the authentication key is no longer eligible to sign and/or authenticate the protocol stream.

Default

end-time forever

Parameters

date — Specifies the calendar date after which the key specified by the authentication key is no longer eligible to sign and/or authenticate the protocol stream in the YYYY/MM/DD format. When no year is specified the system assumes the current year.

hours-minutes — Specifies the time after which the key specified by the authentication key is no longer eligible to sign and/or authenticate the protocol stream in the hh:mm[:ss] format. Seconds are optional, and if not included, assumed to be 0.

UTC — Indicates that time is given with reference to Coordinated Universal Time in the input.

now — Specifies a time equal to the current system time.

forever — Specifies a time beyond the current epoch.

tolerance

Syntax

tolerance [seconds | forever]
no tolerance

Context

config>system>security>keychain>direction>bi>entry
config>system>security>keychain>direction>uni>receive>entry
config>system>security>keychain>direction>uni>send>entry

Description

This command configures the amount of time that an eligible receive key should overlap with the active send key or to never expire.

Parameters

seconds — Specifies the duration that an eligible receive key overlaps with the active send key.

Values

0 to 4294967294 seconds

forever — Specifies that an eligible receive key overlap with the active send key forever.
option

**Syntax**

```plaintext
option (basic | isis-enhanced)
no option
```

**Context**

- `config>system>security>keychain>direction>bi>entry`
- `config>system>security>keychain>direction>uni>send>entry`

**Description**

This command allows options to be associated with the authentication key.

**Parameters**

- **basic** — Specifies that IS-IS should use RFC 5304 encoding of the authentication information. It is only applicable if used with the IS-IS protocol. All other protocols should ignore this configuration command.
- **isis-enhanced** — Specifies that IS-IS should use RFC 5310 encoding of the authentication information. It is only applicable if used with the IS-IS protocol. All other protocols should ignore this configuration command.

---

tcp-option-number

**Syntax**

```plaintext
tcp-option-number
```

**Context**

`config>system>security>keychain`

**Description**

This command enables the context to configure the TCP option number to be placed in the TCP packet header.

---

receive

**Syntax**

```plaintext
receive option-number
no receive
```

**Context**

`config>system>security>keychain>tcp-option-number`

**Description**

This command configures the TCP option number accepted in TCP packets received.

**Default**

`receive 254`

**Parameters**

- **option-number** — Specifies an enumerated integer that indicates the TCP option number to be used in the TCP header.

**Values**

- 253, 254, 253&254

---

send

**Syntax**

```plaintext
send option-number
no send
```
Context	config>system>security>keychain>tcp-option-number
Description | This command configures the TCP option number accepted in TCP packets sent.
Default | send 254
Parameters | option-number — Specifies an enumerated integer that indicates the TCP option number to be used in the TCP header.
Values | 253, 254

### 2.10.2.15 CLI Script Commands

**cli-script**

- **Syntax** cli-script
- **Context** config>system>security
- **Description** This command enables the context to configure CLI scripts.

**authorization**

- **Syntax** authorization
- **Context** config>system>security>cli-script
- **Description** This command enables the context to authorize CLI script execution.

**cron**

- **Syntax** cron
- **Context** config>system>security>cli-script>authorization
- **Description** This command enables the context to configure authorization for the Cron job-scheduler.

**vsd**

- **Syntax** [no] vsd
- **Context** config>system>security>cli-script>authorization
- **Description** This command enables the context to configure authorization for the VSD server.
The no form of the command removes all authorizations for the VSD server.

**event-handler**

**Syntax**  
event-handler

**Context**  
config>system>security>cli-script>authorization

**Description**  
This command enables the context to configure authorization for the Event Handling System (EHS). EHS allows user-controlled programmatic exception handling by allowing a CLI script to be executed upon the detection of a log event.

**cli-user**

**Syntax**  
cli-user user-name  
no cli-user

**Context**  
config>system>security>cli-script>authorization>event-handler  
config>system>security>cli-script>authorization>cron  
config>system>security>cli-script>authorization>vsd

**Description**  
This command configures The user context under which various types of CLI scripts should execute in order to authorize the script commands. TACACS+ and RADIUS users and authorization are not permitted for cli-script authorization.

The no form of this command configures scripts to execute with no restrictions and without performing authorization.

**Default**  
no cli-user

**Parameters**  
user-name — The name of a user in the local node database. TACACS+ or RADIUS users can not be used. The user configuration should reference a valid local profile for authorization.

### 2.10.2.16 CPM Filter Commands

**cpm-filter**

**Syntax**  
cpm-filter

**Context**  
config>system>security
**Description**  This command enables the context to configure a CPM filter. A CPM filter is a hardware filter done by the P chip on the CPM and CFM that applies to all the traffic going to the CPM or CFM CPU. It can be used to drop, accept packets, as well as allocate dedicated hardware queues for the traffic.

The **no** form of the command disables the CPM filter.

**default-action**

**Syntax**  
**default-action** \{**accept** | **drop**\}

**Context**  
config>system>security>cpm-filter

**Description**  
This command specifies the action to take on the traffic when the filter entry matches. If there are no filter entry defined, the packets received will either be dropped or forwarded based on that default action.

**Default**  
default-action accept

**Parameters**

- **accept** — Specifies that packets matching the filter entry are forwarded.
- **drop** — Specifies that packets matching the filter entry are dropped.

**ip-filter**

**Syntax**  
[**no**] **ip-filter**

**Context**  
config>system>security>cpm-filter

**Description**  
This command enables the context to configure CPM IP filter parameters.

**Default**  
shutdown

**ipv6-filter**

**Syntax**  
[**no**] **ipv6-filter**

**Context**  
config>system>security>cpm-filter

**Description**  
This command enables the context to configure CPM IPv6 filter parameters. This command applies only to the 7750 SR and 7950 XRS.

**Default**  
shutdown
mac-filter

Syntax  
[no] mac-filter

Context  
config>system>security>cpm-filter

Description  
This command enables the context to configure CPM MAC-filter parameters.

Default  
shutdown

drop

entry

Syntax  
entry entry-id

Context  
config>sys>sec>cpm>ip-filter
config>sys>sec>cpm>ipv6-filter
config>sys>sec>cpm>mac-filter

Description  
This command specifies a particular CPM filter match entry. Every CPM filter must have at least one filter match entry. Entries are created and deleted by user.

The default match criteria is match none.

Parameters  
entry-id — Identifies a CPM filter entry as configured on this system.

Values  
1 to 6144 for ip-filter and ipv6-filter
1 to 2048 for mac-filter

action

Syntax  
action [accept | drop | queue queue-id]
no action

Context  
config>sys>sec>cpm>ip-filter>entry
config>sys>sec>cpm>ipv6-filter>entry
config>sys>sec>cpm>mac-filter>entry

Description  
This command specifies the action to take for packets that match this filter entry.

Default  
action drop

Parameters  
accept — Specifies packets matching the entry criteria will be forwarded.
drop — Specifies packets matching the entry criteria will be dropped.
queue queue-id — Specifies packets matching the entry criteria will be forward to the specified CPM hardware queue.
log

Syntax  
`log log-id`

Context  
`config>sys>sec>cpm>ip-filter>entry`
`config>sys>sec>cpm>ipv6-filter>entry`
`config>sys>sec>cpm>mac-filter>entry`

Description  
This command specifies the log in which packets matching this entry should be entered. The value zero indicates that logging is disabled.

The `no` form of the command deletes the log ID.

Parameters  
`log-id` — Specifies the log ID where packets matching this entry should be entered.

match

Syntax  
`match [protocol protocol-id]`
`no match`

Context  
`config>sys>sec>cpm>ip-filter>entry`

Description  
This command enables the context to enter match criteria for the filter entry. When the match criteria have been satisfied the action associated with the match criteria is executed. If more than one match criteria (within one match statement) are configured then all criteria must be satisfied (AND function) before the action associated with the match is executed.

A `match` context may consist of multiple match criteria, but multiple `match` statements cannot be entered per entry.

The `no` form of the command removes the match criteria for the `entry-id`.

Parameters  
`protocol` — Configures an IP protocol to be used as an IP filter match criterion. The protocol type such as TCP or UDP is identified by its respective protocol number.

`protocol-id` — Configures the decimal value representing the IP protocol to be used as an IP filter match criterion. Well known protocol numbers include ICMP(1), TCP(6), UDP(17). The `no` form the command removes the protocol from the match criteria.

Values  
1 to 255 (values can be expressed in decimal, hexadecimal, or binary)
keywords - none, crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, idrp, igmp, igp, ip, ipv6, ipv6-frag, ipv6-icmp, ipv6-no-nxt, ipv6-opts, ipv6-route, isis, iso-ip, l2tp, ospf-igp, pnni, ptp, rdp, rsvp, stp, tcp, udp, vrrp , * — udp/tcp wildcard
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Protocol ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp</td>
<td>1</td>
<td>Internet Control Message</td>
</tr>
<tr>
<td>igmp</td>
<td>2</td>
<td>Internet Group Management</td>
</tr>
<tr>
<td>ip</td>
<td>4</td>
<td>IP in IP (encapsulation)</td>
</tr>
<tr>
<td>tcp</td>
<td>6</td>
<td>Transmission Control</td>
</tr>
<tr>
<td>egp</td>
<td>8</td>
<td>Exterior Gateway Protocol</td>
</tr>
<tr>
<td>igp</td>
<td>9</td>
<td>any private interior gateway (used by Cisco for their IGRP)</td>
</tr>
<tr>
<td>udp</td>
<td>17</td>
<td>User Datagram</td>
</tr>
<tr>
<td>rdp</td>
<td>27</td>
<td>Reliable Data Protocol</td>
</tr>
<tr>
<td>ipv6</td>
<td>41</td>
<td>IPv6</td>
</tr>
<tr>
<td>ipv6-route</td>
<td>43</td>
<td>Routing Header for IPv6</td>
</tr>
<tr>
<td>ipv6-frag</td>
<td>44</td>
<td>Fragment Header for IPv6</td>
</tr>
<tr>
<td>idrp</td>
<td>45</td>
<td>Inter-Domain Routing Protocol</td>
</tr>
<tr>
<td>rsvp</td>
<td>46</td>
<td>Reservation Protocol</td>
</tr>
<tr>
<td>gre</td>
<td>47</td>
<td>General Routing Encapsulation</td>
</tr>
<tr>
<td>ipv6-icmp</td>
<td>58</td>
<td>ICMP for IPv6</td>
</tr>
<tr>
<td>ipv6-no-nxt</td>
<td>59</td>
<td>No Next Header for IPv6</td>
</tr>
<tr>
<td>ipv6-opts</td>
<td>60</td>
<td>Destination Options for IPv6</td>
</tr>
<tr>
<td>iso-ip</td>
<td>80</td>
<td>ISO Internet Protocol</td>
</tr>
<tr>
<td>eigrp</td>
<td>88</td>
<td>EIGRP</td>
</tr>
<tr>
<td>ospf-igp</td>
<td>89</td>
<td>OSPF/IGP</td>
</tr>
<tr>
<td>ether-ip</td>
<td>97</td>
<td>Ethernet-within-IP Encapsulation</td>
</tr>
<tr>
<td>encap</td>
<td>98</td>
<td>Encapsulation Header</td>
</tr>
<tr>
<td>pnni</td>
<td>102</td>
<td>PNNI over IP</td>
</tr>
<tr>
<td>pim</td>
<td>103</td>
<td>Protocol Independent Multicast</td>
</tr>
<tr>
<td>vrrp</td>
<td>112</td>
<td>Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>l2tp</td>
<td>115</td>
<td>Layer Two Tunneling Protocol</td>
</tr>
</tbody>
</table>
**Syntax**

```
match [next-header next-header]
no match
```

**Context**

```
config>sys>sec>cpm>ipv6-filter>entry
```

**Description**

This command specifies match criteria for the IP filter entry. This command applies only the 775 SR and 7950 XRS.

The **no** form of this command removes the match criteria for the **entry-id**.

**Parameters**

- **next-header** — Specifies the next header to match.
  - The protocol type such as TCP / UDP / OSPF is identified by its respective protocol number. Well-known protocol numbers include ICMP(1), TCP(6), UDP(17).

**Values**

- **next-header**: 1 to 42, 45 to 49, 52 to 59, 61 to 255 protocol numbers accepted in DHB
- **keywords**: none, crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, drp, igmp, igrp, ip, ipv6, ipv6-icmp, ipv6-no-nxt, isis, iso-ip, l2tp, spf-igp, pim, pnni, ptp, rdp, rsvp, stp, tcp, udp, vrrp
- * — udp/tcp wildcard

---

**Table 19** IP Protocol Names (Continued)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Protocol ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stp</td>
<td>118</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>ptp</td>
<td>123</td>
<td>Performance Transparency Protocol</td>
</tr>
<tr>
<td>isis</td>
<td>124</td>
<td>ISIS over IPv4</td>
</tr>
<tr>
<td>crtp</td>
<td>126</td>
<td>Combat Radio Transport Protocol</td>
</tr>
<tr>
<td>crudp</td>
<td>127</td>
<td>Combat Radio User Datagram</td>
</tr>
</tbody>
</table>

---

**dscp**

**Syntax**

```
dscp dscp-name
no dscp
```

**Context**

```
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match
config>sys>sec>cpm>mac-filter>entry>match
```
**Description**  
This command configures a DiffServ Code Point (DSCP) name to be used as an IP filter match criterion.

The **no** form of the command removes the DSCP match criterion.

**Default**  
no dscp

**Parameters**
- **dscp-name** — Configures a dscp name that has been previously mapped to a value using the `dscp-name` command. The DiffServ code point may only be specified by its name.

---

**dst-ip**

**Syntax**
- `dst-ip ip-address/mask`
- `dst-ip ip-address netmask`
- `dst-ip ip-prefix-list ip-prefix-list-name`
- `no dst-ip`

**Context**
- `config>sys>sec>cpm>ip-filter>entry>match`
- `config>sys>sec>cpm>ipv6-filter>entry>match`

**Description**  
This command configures a destination IP address range to be used as an IP filter match criterion.

To match on the destination IP address, specify the address and its associated mask, for example, 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 may also be used.

The **no** form of the command removes the destination IP address match criterion.

**Default**  
no dst-ip

**Parameters**
- **ip-address** — Specifies the IP address for the IP match criterion in dotted decimal notation.
  - **Values**  
    - 0.0.0.0 to 255.255.255.255

- **ip-prefix-list** — Creates a list of IPv4 prefixes for match criteria in IPv4 ACL and CPM filter policies.

- **ip-prefix-list-name** — A string of up to 32 characters of printable ASCII characters. If special characters are used, the string must be enclosed within double quotes.

- **mask** — Specifies the subnet mask length expressed as a decimal integer.
  - **Values**  
    - 1 to 32

- **netmask** — Specifies the dotted quad equivalent of the mask length.
  - **Values**  
    - 0.0.0.0 to 255.255.255.255
dst-ip

Syntax  
**dst-ip** [ipv6-address /prefix-length] [ipv6-prefix-list ipv6-prefix-list-name]

no dst-ip

Context  
config>sys>sec>cpm>ipv6-filter>entry>match

Description  
This command configures a destination IPv6 address range to be used as an IPv6 filter match criterion.

To match on the destination IPv6 address, specify the address.

The no form of the command removes the destination IP address match criterion.

This command only applies to the 7750 SR and 7950 XRS.

Default  
no dst-ip

Parameters  
ipv6-address/prefix-length — Specifies the IPv6 address for the IPv6 match criterion in dotted decimal notation. An IPv6 IP address is written as eight 4-digit (16-bit) hexadecimal numbers separated by colons. One string of zeros per address can be left out, so that 1010::700:0:217A is the same as 1010:0:0:0:0:700:0:217A.

Values  
- x:x:x:x:x:x:x (eight 16-bit pieces)
- x:x:x:x:x:d.d.d
  - x: [0 to .FFFF]H
  - d: [0 to 255]D
  - prefix-length: 1 to 128

ipv6-prefix-list — Creates a list of IPv4 prefixes for match criteria in IPv4 ACL and CPM filter policies.

ipv6-prefix-list-name — Specifies a string of up to 32 characters of printable ASCII characters. If special characters are used, the string must be enclosed within double quotes.

dst-port

Syntax  
**dst-port** [tcp/udp port-number] [mask]

dst-port port-list port-list-name

dst-port range tcp/udp port-number tcp/udp port-number

no dst-port

Context  
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Values  
- tcp/udp port-number
- mask
Description: This command specifies the TCP/UDP port or port name to match the destination-port of the packet.

**Note:** An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.

The **no** form of the command removes the destination port match criterion.

**Default**: no dst-port

**Parameters**

- `tcp/udp port-number` — Specifies the destination port number to be used as a match criteria expressed as a decimal integer.
  - **Values**: 0 to 65535 (accepted in decimal hex or binary)

- `port-list-name` — Specifies the port list name to be used as a match criteria for the destination port.

- `mask` — Specifies the 16 bit mask to be applied when matching the destination port.
  - **Values**: `[0x0000..0xFFFF] | [0..65535] | [0b0000000000000000..0b1111111111111111]

**flow-label**

**Syntax**: 

```
flow-label value
no flow-label
```

**Context**: config>sys>sec>cpm>ipv6-filter>entry>match

**Description**: This command configures flow label match conditions. Flow labeling enables the labeling of packets belonging to particular traffic flows for which the sender requests special handling, such as non-default quality of service or real-time service.

**Parameters**

- `value` — Specifies the flow identifier in an IPv6 packet header that can be used to discriminate traffic flows (See RFC 3595, *Textual Conventions for IPv6 Flow Label*.)
  - **Values**: 0 to 1048575

**fragment**

**Syntax**: 

```
fragment {true | false}
no fragment
```

**Context**: config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match
Description

This command specifies fragmented or non-fragmented IP packets as an IP filter match criterion.

**Note:** An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.

This command enables match on existence of IPv6 Fragmentation Extension Header in the IPv6 filter policy. To match first fragment of an IP fragmented packet, specify additional Layer 4 matching criteria in a filter policy entry. The **no** version of this command ignores IPv6 Fragmentation Extension Header presence/absence in a packet when evaluating match criteria of a given filter policy entry.

The **no** form of the command removes the match criterion.

This command enables match on existence of IPv6 Fragmentation Extension Header in the IPv6 filter policy. To match first fragment of an IP fragmented packet, specify additional Layer 4 matching criteria in a filter policy entry. The **no** version of this command ignores IPv6 Fragmentation Extension Header presence/absence in a packet when evaluating match criteria of a given filter policy entry.

**Default**

no fragment

**Parameters**

**true** — Specifies to match on all fragmented IP packets. A match will occur for all packets that have either the MF (more fragment) bit set or have the Fragment Offset field of the IP header set to a non-zero value. For IPv6, packet matches if it contains IPv6 Fragmentation Extension Header.

**false** — Specifies to match on all non-fragmented IP packets. Non-fragmented IP packets are packets that have the MF bit set to zero and have the Fragment Offset field also set to zero. For IPv6, packet matches if it does not contain IPv6 Fragmentation Extension Header.

---

hop-by-hop-opt

**Syntax**

hop-by-hop-opt {true | false}

no hop-by-hop-opt

**Context**

config>sys>sec>cpm>ipv6-filter>entry>match

**Description**

This command enables match on existence of Hop-by-Hop Options Extension Header in the IPv6 filter policy. This command applies to the 7750 SR and 7950 XRS.

The **no** form of this command ignores Hop-by-Hop Options Extension Header presence/absence in a packet when evaluating match criteria of a given filter policy entry.

**Default**

no hop-by-hop-opt
Parameters
true — Match if a packet contains Hop-by-Hop Options Extension Header.
false — Match if a packet does not contain Hop-by-Hop Options Extension Header.

icmp-code

Syntax
icmp-code icmp-code
no icmp-code

Context
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Description
This command configures matching on ICMP code field in the ICMP header of an IP packet as an IP filter match criterion.

Note: An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.

The behavior of the icmp-code value is dependent on the configured icmp-type value, thus a configuration with only an icmp-code value specified will have no effect. To match on the icmp-code, an associated icmp-type must also be specified.

The no form of the command removes the criterion from the match entry.

Default
no icmp-code

Parameters
icmp-code — Specifies the ICMP code values that must be present to match.

Values
0 to 255

icmp-type

Syntax
icmp-type icmp-type
no icmp-type

Context
config>sys>sec>cpm>ip-filter>entry>match
config>sys>sec>cpm>ipv6-filter>entry>match

Description
This command configures matching on ICMP type field in the ICMP header of an IP packet as an IP filter match criterion.

Note: An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.
The no form of the command removes the criterion from the match entry.

**Default**
no icmp-type

**Parameters**
*icmp-type* — Specifies the ICMP type values that must be present to match.

**Values**
0 to 255

---

**ip-option**

**Syntax**

```
ip-option ip-option-value ip-option-mask
no ip-option
```

**Context**
config>sys>sec>cpm>ip-filter>entry>match

**Description**
This command configures matching packets with a specific IP option or a range of IP options in the IP header as an IP filter match criterion.

The option-type octet contains 3 fields:

- 1 bit copied flag (copy options in all fragments)
- 2 bits option class,
- 5 bits option number.

The no form of the command removes the match criterion.

**Default**
no ip-option

**Parameters**

*ip-option-value* — Enter the 8 bit option-type as a decimal integer. The mask is applied as an AND to the option byte, the result is compared with the option-value.

The decimal value entered for the match should be a combined value of the eight bit option type field and not just the option number. Thus to match on IP packets that contain the Router Alert option (option number =20), enter the option type of 148 (10010100).

**Values**
0 to 255

*ip-option-mask* — Specifies a range of option numbers to use as the match criteria.

This 8 bit mask can be configured using the formats described in Table 20:
### multiple-option

**Syntax**
```
multiple-option {true | false}
no multiple-option
```

**Context**
```
config>sys>sec>cpm>ip-filter>entry>match
```

**Description**
This command configures matching packets that contain more than one option fields in the IP header as an IP filter match criterion.

The `no` form of the command removes the checking of the number of option fields in the IP header as a match criterion.

**Default**
no multiple-option

**Parameters**
- `true` — Specifies matching on IP packets that contain more than one option field in the header.
- `false` — Specifies matching on IP packets that do not contain multiple option fields present in the header.

### option-present

**Syntax**
```
option-present {true | false}
no option-present
```

**Context**
```
config>sys>sec>cpm>ip-filter>entry>match
```

**Description**
This command configures matching packets that contain the option field or have an option field of zero in the IP header as an IP filter match criterion.

The `no` form of the command removes the checking of the option field in the IP header as a match criterion.

---

**Table 20** ip-option-mask Formats

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDD</td>
<td>20</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHH</td>
<td>0x14</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBB</td>
<td>0b0010100</td>
</tr>
</tbody>
</table>

**Default**
255 (decimal) (exact match)

**Values**
1 to 255 (decimal)
Default: no option-present

Parameters:
- **true** — Specifies matching on all IP packets that contain the option field in the header. A match will occur for all packets that have the option field present. An option field of zero is considered as no option present.
- **false** — Specifies matching on IP packets that do not have any option field present in the IP header (an option field of zero). An option field of zero is considered as no option present.

**port**

**Syntax**
- `port tcp/udp port-number [mask]`
- `port port-list port-list-name`
- `port range tcp/udp port-number tcp/udp port-number`
- `no port`

**Context**
- `config>system>security>cpm-filter>ip-filter>entry>match`
- `config>system>security>cpm-filter>ipv6-filter>entry>match`

**Description**
This command configures a TCP/UDP source or destination port match criterion in IPv4 and IPv6 CPM filter policies. A packet matches this criterion if packet’s TCP/UDP (as configured by protocol/next-header match) source OR destination port matches either the specified port value or a port in the specified port range or port list.

This command is mutually exclusive with **src-port** and **dst-port** commands.

The **no** form of this command deletes the specified port match criterion.

**Default**
- no port

**Parameters**
- **tcp/udp port-number** — Specifies the source or destination port to be used as a match criterion specified as a decimal integer.
  - **Values**
    - 0 to 65535
- **mask** — Specifies the 16 bit mask to be applied when matching the port.
  - **Values**
    - [0x0000 to 0xFFFF] | [0 to 65535] | [0b0000000000000000 to 0b1111111111111111]
- **range tcp/udp port-number** — Specifies an inclusive range of source or destination port values to be used as match criteria. start of the range and end of the range are expressed as decimal integers.
  - **Values**
    - start, end, port-number: 1 to 65535
- **port-list port-list-name** — Specifies a string of up to 32 characters of printable ASCII characters. If special characters are used, the string must be enclosed within double quotes.
router

**Syntax**

```
router service-name service-name
router router-instance
no router
```

**Context**

```
config>sys>sec>cpm>ip-filter>entry>match
cfgsys>sec>cpm>ipv6-filter>entry>match
```

**Description**

This command specifies a router name or a service-id to be used in the match criteria.

**Default**

no router

**Parameters**

- **router-instance** — Specifies one of the following parameters for the router instance:
  - **router-name** — Specifies a router name up to 32 characters to be used in the match criteria.
  - **service-id** — Specifies an existing service ID to be used in the match criteria.

**Values**

- 1 to 2147483647

- **service-name service-name** — Specifies an existing service name up to 64 characters in length.

src-ip

**Syntax**

```
src-ip [ipv6-address/prefix-length| ip-prefix-list prefix-list-name]
no src-ip
```

**Context**

```
config>sys>sec>cpm>ip-filter>entry>match
```

**Description**

This command specifies the IP address to match the source IP address of the packet.

To match on the source IP address, specify the address and its associated mask, such as 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 may also be used.

The no form of the command removes the source IP address match criterion.

**Default**

no src-ip

**Parameters**

- **ipv6-address/prefix-length** — Specifies the IP address for the match criterion in dotted decimal notation. An IP address is written as eight 4-digit (16-bit) hexadecimal numbers separated by colons. One string of zeros per address can be left out, so that 1010::700:0:217A is the same as 1010:0:0:0:0:700:0:217A.

**Values**

- **ipv4-address** a.b.c.d (host bits must be 0)
- x: [0..FFFF]H
- d: [0..255]D
ip-prefix-list — Creates a list of IPv4 prefixes for match criteria in IPv4 ACL and CPM filter policies.

ip-prefix-list-name — Specifies a string of up to 32 characters of printable ASCII characters. If special characters are used, the string must be enclosed within double quotes.

src-ip

Syntax  src-ip [ip-address/mask | ipv6-prefix-list ipv6-prefix-list-name]

no src-ip

Context  config>sys>sec>cpm>ipv6-filter>entry>match

Description  This command specifies the IPv6 address to match the source IPv6 address of the packet.

To match on the source IP address, specify the address and its associated mask, such as 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 may also be used.

The no form of the command removes the source IP address match criterion.

This command only applies to the 7750 SR and 7950 XRS.

Default  no src-ip

Parameters  ip-address/mask — Specifies the IP address for the match criterion in dotted decimal notation. An IP address is written as eight 4-digit (16-bit) hexadecimal numbers separated by colons. One string of zeros per address can be left out, so that 1010::700:0:217A is the same as 1010:0:0:0:0:700:0:217A.

Values  ipv6-address x::x::x::x[[-interface]]
    x::x::x::x::x::x[[-interface]]
    x: [0..FFFF]H
    d: [0..255]D
    interface: 32 characters maximum, mandatory for link local addresses

mask: Specifies eight 16-bit hexadecimal pieces representing bit match criteria.

Values  x::x::x::x (eight 16-bit pieces)
ipv6-prefix-list — Creates a list of IPv6 prefixes for match criteria in IPv6 ACL and CPM filter policies.

ipv6-prefix-list-name — Specifies a string of up to 32 characters of printable ASCII characters. If special characters are used, the string must be enclosed within double quotes.

src-port

Syntax

\texttt{src-port \textit{tcp/udp} \textit{port-number} [\textit{mask}]}
\texttt{scr-port \textit{port-list} \textit{port-list-name}}
\texttt{scr-port \textit{range} \textit{tcp/udp} \textit{port-number} \textit{tcp/udp} \textit{port-number}}
\texttt{no \textit{src-port}}

Context

config>sys>sec>cpm>ip-filter>entry>match
cfg>sys>sec>cpm>ipv6-filter>entry>match

Description

This command specifies the TCP/UDP port to match the source port of the packet.

Note: An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.

Default

no src-port

Parameters

tcp/udp port-number — Specifies the source port number to be used as a match criteria expressed as a decimal integer.

Values

\begin{itemize}
\item 0 to 65535
\end{itemize}

port-list-name — Specifies the port list name to be used as a match criteria for the destination port.

mask — Specifies the 16 bit mask to be applied when matching the destination port.

Values

\begin{itemize}
\item \{0x0000..0xFFFF\} | \{0..65535\} | \{0b0000000000000000..0b1111111111111111\}
\end{itemize}

tcp-ack

Syntax

\texttt{tcp-ack \{true | false\}}
\texttt{no tcp-ack}

Context

config>sys>sec>cpm>ip-filter>entry>match
cfg>sys>sec>cpm>ipv6-filter>entry>match
Description
This command configures matching on the ACK bit being set or reset in the control bits of the TCP header of an IP or IPv6 packet as an IP filter match criterion.

Note: An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.

The no form of the command removes the criterion from the match entry.

Default
no tcp-ack

Parameters
true — Specifies matching on IP or IPv6 packets that have the ACK bit set in the control bits of the TCP header of an IP or IPv6 packet.
false — Specifies matching on IP or IPv6 packets that do not have the ACK bit set in the control bits of the TCP header of the IP or IPv6 packet.

tcp-syn

Syntax
tcp-syn {true | false}
no tcp-syn

Context
config>sys>sec>cpm>ip-filter>entry>match
cfg>sys>sec>cpm>ipv6-filter>entry>match

Description
This command configures matching on the SYN bit being set or reset in the control bits of the TCP header of an IP or IPv6 packet as an IP filter match criterion.

Note: An entry containing Layer 4 match criteria will not match non-initial (2nd, 3rd, etc) fragments of a fragmented packet since only the first fragment contains the Layer 4 information.

The SYN bit is normally set when the source of the packet wants to initiate a TCP session with the specified destination IP or IPv6 address.

The no form of the command removes the criterion from the match entry.

Default
no tcp-syn

Parameters
true — Specifies matching on IP or IPv6 packets that have the SYN bit set in the control bits of the TCP header.
false — Specifies matching on IP or IPv6 packets that do not have the SYN bit set in the control bits of the TCP header.
renum

**Syntax**

renum old-entry-id new-entry-id

**Context**

config>sys>sec>cpm>ip-filter
config>sys>sec>cpm>ipv6-filter
config>sys>sec>cpm>mac-filter

**Description**

This command renumbers existing IP(IPv4), IPv6, or MAC filter entries to re-sequence filter entries.

This may be required in some cases since the OS exits when the first match is found and execute the actions according to the accompanying action command. This requires that entries be sequenced correctly from most to least explicit.

**Parameters**

old-entry-id — Specifies the entry number of an existing entry.

**Values**

- 1 to 6144 for ip-filter and ipv6-filter
- 1 to 2048 for mac-filter

new-entry-id — Specifies the new entry number to be assigned to the old entry.

**Values**

- 1 to 6144 for ip-filter and ipv6-filter
- 1 to 2048 for mac-filter

shutdown

**Syntax**

[no] shutdown

**Context**

config>sys>sec>cpm>ip-filter
config>sys>sec>cpm>ipv6-filter
config>sys>sec>cpm>mac-filter

**Description**

This command enables IPv4, IPv6 or MAC CPM filter.

The no form of this command disable the filter.

**Default**

shutdown

### 2.10.2.17 CPM Queue Commands

**cpm-queue**

**Syntax**

cpm-queue

**Context**

config>system>security
Description: This command enables the context to configure a CPM queue.

**queue**

**Syntax**

```
queue queue-id
```

**Context**

```
config>system>security>cpm-queue
```

**Description**

This command allows users to allocate dedicated CPM. The first available queue is 33.

**cbs**

**Syntax**

```
cbs cbs
do cbs
```

**Context**

```
config>system>cpm-queue>queue
```

**Description**

This command specifies the amount of buffer that can be drawn from the reserved buffer portion of the queue’s buffer pool.

**Parameters**

`cbs` — Specifies the committed burst size in kbytes.

**mbs**

**Syntax**

```
mbs mbs
do mbs
```

**Context**

```
config>system>security>cpm-queue>queue
```

**Description**

This command specifies the maximum queue depth to which a queue can grow.

**Parameters**

`mbs` — Specifies the maximum burst size in kbytes.

**rate**

**Syntax**

```
rate rate [cir cir]
do rate
```

**Context**

```
config>system>security>cpm-queue>queue
```

**Description**

This command specifies the maximum bandwidth that will be made available to the queue in kilobits per second (kb/s).

**Parameters**

`rate` — Specifies the administrative Peak Information Rate (PIR) for the queue.
`cir` — Specifies the amount of bandwidth committed to the queue.
2.10.2.18 TTL Security Commands

ttl-security

**Syntax**
```
ttl-security min-ttl-value
no ttl-security
```

**Context**
config>router:bgp>group
config>router:bgp>group>neighbor
config>router:ldp>tcp-session-params>peer-transport
config>system>login-control>ssh
config>system>login-control>telnet

**Description**
This command configures TTL security parameters for incoming packets. When the feature is enabled, LDP will accept incoming IP packets from a peer only if the TTL value in the packet is greater than or equal to the minimum TTL value configured for that peer. Per-peer-queueing must be enabled in order for TTL protection to operate.

The **no** form of the command disables TTL security.

**Parameters**
- **min-ttl-value** — Specifies the minimum TTL value for an incoming BGP packet.
  - **Values** 1 to 255

---

**ttl-security**

**Syntax**
```
ttl-security min-ttl-value
no ttl-security
```

**Context**
config>router:ldp>tcp-session-params>peer-transport

**Description**
This command configures TTL security parameters for incoming packets. When the feature is enabled, BGP will accept incoming IP packets from a peer only if the TTL value in the packet is greater than or equal to the minimum TTL value configured for that peer. Per-peer-queueing must be enabled in order for TTL protection to operate.

The **no** form of the command disables TTL security.

**Default**
no ttl-security

**Parameters**
- **min-ttl-value** — Specifies the minimum TTL value for an incoming LDP packet.
  - **Values** 1 to 255

---

**ttl-security**

**Syntax**
```
ttl-security min-ttl-value
```

---
no ttl-security

Context  config>system>login-control>ssh
         config>system>login-control>telnet

Description  This command configures TTL security parameters for incoming packets. When the feature is enabled, SSH/Telnet will accept incoming IP packets from a peer only if the TTL value in the packet is greater than or equal to the minimum TTL value configured for that peer. Per-peer-queueing must be enabled in order for TTL protection to operate.

The no form of the command disables TTL security.

Parameters  min-ttl-value — Specifies the minimum TTL value for an incoming BGP packet.

   Values  1 to 255

2.10.2.19  gRPC Commands

grpc

   Syntax  grpc

   Context  config>system

   Description  This command enters the context to configure gRPC parameters.

tls-server-profile

   Syntax  tls-server-profile name
           no tls-server-profile

   Context  config>system>grpc

   Description  This command adds a configured TLS server profile to the gRPC session. The TLS server is used for encryption of the gRPC session. gRPC will not transmit any PDUs if there is a TLS server profile assigned to it and the TLS connection is down.

   The no form of the command removes the specified TLS server profile from the gRPC session.

   Parameters  name — Specifies the name of the TLS server profile configured under the config>system>security>tls context.
2.10.2.20 CPU Protection Commands

cpu-protection

Syntax cpu-protection
Context config>sys>security
Description This command enters the context to configure CPU protection parameters.

included-protocols

Syntax included-protocols
Context config>sys>security>cpu-protection> ip>included-protocols
Description This context allows configuration of which protocols are included for ip-src-monitoring. This is system-wide configuration that applies to cpu protection globally.

dhcp

Syntax [no] dhcp
Context config>sys>security>cpu-protection> ip>included-protocols
Description This command includes the extracted IPv4 DHCP packets for ip-src-monitoring. IPv4 DHCP packets will be subject to the per-source-rate of CPU protection policies.
Default dhcp (Note this is different from the other protocols)

gtp

Syntax [no] gtp
Context config>sys>security>cpu-protection> ip>included-protocols
Description This command includes the extracted IPV4 GTP packets for ip-src-monitoring. IPV4 GTP packets will be subject to the per-source-rate of CPU protection policies.
Default no gtp
icm

Syntax  [no] icmp
Context  config>sys>security>cpu-protection> ip>included-protocols
Description  This command includes the extracted IPv4 ICMP packets for ip-src-monitoring. IPv4 ICMP packets will be subject to the per-source-rate of CPU protection policies.
Default  no icmp

igmp

Syntax  [no] igmp
Context  config>sys>security>cpu-protection> ip>included-protocols
Description  This command includes the extracted IPv4 IGMP packets for ip-src-monitoring. IPv4 IGMP packets will be subject to the per-source-rate of CPU protection policies.
Default  no igmp

link-specific-rate

Syntax  link-specific-rate packet-rate-limit
no link-specific-rate
Context  config>sys>security>cpu-protection
Description  This command configures a link-specific rate for CPU protection. This limit is applied to all ports within the system. The CPU will receive no more than the configured packet rate for all link level protocols such as LACP from any one port. The measurement is cleared each second and is based on the ingress port.
Default  link-specific-rate 15000
Parameters  packet-rate-limit — Specifies a packet arrival rate limit, in packets per second, for link level protocols.
  Values  1 to 65535, max (no limit)

policy

Syntax  policy cpu-protection-policy-id [create]
no policy cpu-protection-policy-id
Context  config>sys>security>cpu-protection
Description: This command configures CPU protection policies.

The no form of the command deletes the specified policy from the configuration.

Policies 254 and 255 are reserved as the default access and network interface policies, and cannot be deleted. The parameters within these policies can be modified. An event will be logged (warning) when the default policies are modified.

Default: Policy 254 (default access interface policy):

• per-source-rate: max (no limit)
• overall-rate: 6000
• out-profile-rate: 6000
• alarm

Policy 255 (default network interface policy):

• per-source-rate: max (no limit)
• overall-rate: max (no limit)
• out-profile-rate: 3000
• alarm

Parameters:

- cpu-protection-policy-id — Assigns a policy ID to the specific CPU protection policy.

  Values: 1 to 255

- create — Keyword used to create CPU protection policy. The create keyword requirement can be enabled/disabled in the environment>create context.

alarm

Syntax: [no] alarm

Context: config>sys>security>cpu-protection>policy

Description: This command enables the generation of an event when a rate is exceed. The event includes information about the offending source. Only one event is generated per monitor period.

The no form of the command disables the notifications.

Default: no alarm

eth-cfm

Syntax: [no] eth-cfm

Context: config>sys>security>cpu-protection>policy
### Description
Provides the construct under which the different entries within CPU policy can define the match criteria and overall arrival rate of the Ethernet Configuration and Fault Management (ETH-CFM) packets at the CPU.

### entry

**Syntax**

```
entry entry levels levels opcodes opcodes rate packet-rate-limit
no entry
```

**Context**

```
config>sys>security>cpu-protection>eth-cfm>
```

**Description**

Builds the specific match and rate criteria. Up to ten entries may exist in up to four CPU protection policies.

The `no` form of the command reverses the match and rate criteria configured.

**Default**

no entry

**Parameters**

- **rate** — Specifies a packet rate limit in frames per second, where a ‘0’ means drop all.
  - **Values**
    - 1 to 100

- **level** — Specifies a domain level.
  - **Values**
    - all: Wildcard entry level
    - range: 0 to 7: within specified range, multiple ranges allowed
    - number: 0 to 7: specific level number, may be combined with range

- **opcode** — Specifies an operational code that identifies the application.
  - **Values**
    - range: 0 to 255: within specified range, multiple ranges allowed
    - number: 0 to 255: specific level number, may be combined with range

### out-profile-rate

**Syntax**

```
out-profile-rate packet-rate-limit [log-event]
no out-profile-rate
```

**Context**

```
config>sys>security>cpu-protection>policy
```

**Description**

This command applies a packet arrival rate limit for the entire SAP/interface, above which packets will be marked as discard eligible, in other words, out-profile/low-priority/yellow. The rate defined is a global rate limit for the interface regardless of the number of traffic flows. It is a per-SAP/interface rate.

The `no` form of the command sets out-profile-rate parameter back to the default value.
Default

3000 for cpu-protection-policy-id 1-253
6000 for cpu-protection-policy-id 254 (default access interface policy)
3000 for cpu-protection-policy-id 255 (default network interface policy)

Parameters

- `packet-rate-limit` — Specifies a packet arrival rate limit in packets per second.
  - Values 1 to 65535, `max` (max indicates no limit)

- `log-events` — Issues a tmnxCpmProtViolSapOutProf, tmnxCpmProtViolIfOutProf, or tmnxCpmProtViolSdpBindOutProf log event and tracks violating interfaces when the out-profile-rate is exceeded. Supported on CPM3 and above only.

**overall-rate**

**Syntax**

```
overall-rate packet-rate-limit
no overall-rate
```

**Context**

`config>sys>security>cpu-protection>policy`

**Description**

This command applies a maximum packet arrival rate limit (applied per SAP/interface) for the entire SAP/interface, above which packets will be discarded immediately. The rate defined is a global rate limit for the interface regardless of how many traffic flows are present on the SAP/interface. It is a per-SAP/interface rate.

The `no` form of the command sets overall-rate parameter back to the default value.

**Default**

max for cpu-protection-policy-id 1 to 253
6000 for cpu-protection-policy-id 254 (default access interface policy)
max for cpu-protection-policy-id 255 (default network interface policy)

**Parameters**

- `packet-rate-limit` — Specifies a packet arrival rate limit in packets per second.
  - Values 1 to 65535, `max` (the max indicates no limit)

**per-source-rate**

**Syntax**

```
per-source-rate packet-rate-limit
no per-source-rate
```

**Context**

`config>sys>security>cpu-protection>policy`
This command configures a per-source packet arrival rate limit. Use this command to apply a packet arrival rate limit on a per source basis. A source is defined as a unique combination of SAP and MAC source address (mac-monitoring) or SAP and source IP address (ip-src-monitoring). The CPU will receive no more than the configured packet rate from each source (only certain protocols are rate limited for ip-src-monitoring as configured under 'include-protocols' in the cpu protection policy). The measurement is cleared each second.

This parameter is only applicable if the policy is assigned to an interface (some examples include saps, subscriber-interfaces, and spoke-sdps), and the mac-monitor or ip-src-monitor keyword is specified in the cpu-protection configuration of that interface.

The ip-src-monitoring is useful in subscriber management architectures that have routers between the subscriber and the BNG (router). In layer-3 aggregation scenarios, all packets from all subscribers behind the same aggregation router will arrive with the same source MAC address and as such the mac-monitoring functionality can not differentiate traffic from different subscribers.

Default per-source-rate max

Parameters

**packet-rate-limit** — Specifies a per-source packet (per SAP/MAC source address or per SAP/IP source address) arrival rate limit in packets per second.

**Values**

1 to 65535, max (max indicates no limit)

---

**port-overall-rate**

**Syntax**

```
port-overall-rate packet-rate-limit [low-action-priority]
```

```
no port-overall-rate
```

**Context**

config>sys>security>cpu-protection

**Description**

This command configures a per-port overall rate limit for CPU protection.

**Default**

port-overall-rate max

**Parameters**

**packet-rate-limit** — Specifies an overall per-port packet arrival rate limit in packets per second.

**Values**

1 to 65535, max (indicates no limit)

**action-low-priority** — Marks packets that exceed the rate as low-priority (for preferential discard later if there is congestion in the control plane) instead of discarding them immediately.

---

**protocol-protection**

**Syntax**

```
protocol-protection [allow-sham-links] [block-pim-tunneled]
```

```
no protocol-protection
```
Security

**Issue:** 01 3HE 11979 AAAB TQZZA 01 249

**Context**  
config>sys>security>cpu-protection

**Description**  
This command causes the network processor on the CPM to discard all packets received for protocols that are not configured on the particular interface. This helps mitigate DoS attacks by filtering invalid control traffic before it hits the CPU. For example, if an interface does not have IS-IS configured, then protocol protection will discard any IS-IS packets received on that interface.

**Default**  
no protocol-protection

**Parameters**  
allow-sham-links — Allows sham links. As OSPF sham links form an adjacency over the MPLS-VPRN backbone network, when protocol-protection is enabled, the tunneled OSPF packets to be received over the backbone network must be explicitly allowed.

block-pim-tunneled — Blocks extraction and processing of PIM packets arriving at the SR-OS node inside a tunnel (for example, MPLS or GRE) on a network interface. With protocol-protection enabled and tunneled pim blocked, PIM in an mVPN on the egress DR will not switch traffic from the (*,G) to the (S,G) tree.

---

**cpu-protection**

**Syntax**  
cpu-protection policy-id  
no cpu-protection

**Context**  
config>router>interface  
config>service>ies>interface  
config>service>ies>video-interface  
config>service>vpls>video-interface  
config>service>vprn>interface  
config>service>vprn>network-interface  
config>service>vprn>video-interface

**Description**  
Use this command to apply a specific CPU protection policy to the associated interface. For these interface types, the per-source rate limit is not applicable.

If no CPU-protection policy is assigned to an interface, then the default policy is used to limit the overall-rate. The default policy is policy number 254 for access interfaces, 255 for network interfaces and no policy for video interfaces.

The **no** form of the command reverts to the default values.

**Default**  
cpu-protection 254 (for access interfaces)  
cpu-protection 255 (for network interfaces)  
no cpu-protection (for video interfaces)
**cpu-protection**

**Syntax**

```plaintext
cpu-protection policy-id [mac-monitoring] [ip-src-monitoring]
no cpu-protection
```

**Context**

```plaintext
config>subscriber-mgmt>msap-policy
```

**Description**

Use this command to apply a specific CPU protection policy to the associated msap-policy. The specified cpu-protection policy will automatically be applied to any MSAPs that are create using the msap-policy.

If no CPU-protection policy is assigned to a SAP, then a default policy is used to limit the overall-rate according to the default policy. The default policy is policy number 254 for access interfaces, 255 for network interfaces and no policy for video interfaces.

The **no** form of the command reverts to the default values.

**Default**

- cpu-protection 254 (for access interfaces)
- cpu-protection 255 (for network interfaces)

The configuration of no cpu-protection returns the msap-policy to the default policies as shown above.

**Parameters**

- **mac-monitoring** — Enables per SAP + source MAC address rate limiting using the per-source-rate from the associated cpu-protection policy.
- **ip-src-monitoring** — Enables per SAP + IP source address rate limiting for certain protocol packets using the per-source-rate and included-protocols from the associated cpu-protection policy. The ip-src-monitoring is useful in subscriber management architectures that have routers between the subscriber and the BNG (router). In layer-3 aggregation scenarios all packets from all subscribers behind the same aggregation router will arrive with the same source MAC address and as such the mac-monitoring functionality can not differentiate traffic from different subscribers.

**cpu-protection**

**Syntax**

```plaintext
cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]] | [ip-src-monitoring]
no cpu-protection
```

**Context**

```plaintext
config>service>ies>if>sap
config>service>ies>if>spoke-sdp
config>service>ies>sub-if>grp-if>sap
config>service>vprn>if>sap
config>service>vprn>if>spoke-sdp
config>service>vprn>sub-if>grp-if>sap
```
Description

Use this command to apply a specific CPU protection policy to the associated msap-policy. The specified cpu-protection policy will automatically be applied to any MSAPs that are created using the msap-policy.

If no CPU-protection policy is assigned to a SAP, then a default policy is used to limit the overall-rate according to the default policy. The default policy is policy number 254 for access interfaces, 255 for network interfaces and no policy for video interfaces.

The no form of the command reverts to the default values.

Default

cpu-protection 254 (for access interfaces)
cpu-protection 255 (for network interfaces)

The configuration of no cpu-protection returns the msap-policy to the default policies as shown above.

Parameters

mac-monitoring — Enables per SAP + source MAC address rate limiting using the per-source-rate from the associated cpu-protection policy.

ip-src-monitoring — Enables per SAP + IP source address rate limiting for certain protocol packets using the per-source-rate and include-protocols from the associated cpu-protection policy. The ip-src-monitoring is useful in subscriber management architectures that have routers between the subscriber and the BNG (router). In layer-3 aggregation scenarios all packets from all subscribers behind the same aggregation router will arrive with the same source MAC address and as such the mac-monitoring functionality can not differentiate traffic from different subscribers.

eth-cfm-monitoring — Enables the Ethernet Connectivity Fault Management cpu-protection extensions on the associated SAP/SDP/template.

aggregate — applies the rate limit to the sum of the per-peer packet rates.
car — (Committed Access Rate) Ignores Eth-CFM packets when enforcing overall-rate.

cpu-protection

Syntax

cpu-protection policy-id [mac-monitoring] | [eth-cfm-monitoring [aggregate][car]]
no cpu-protection

Context

cfg>service>epipe>sap
cfg>service>epipe>spoke-sdp
cfg>service>ipipe>sap
cfg>service>template>vpls-sap-template
cfg>service>vpls>mesh-sdp
cfg>service>vpls>sap
cfg>service>vpls>spoke-sdp

Description

Use this command to apply a specific CPU protection policy to the associated SAP, SDP or template. If the mac-monitoring keyword is given then per MAC rate limiting should be performed, using the per-source-rate from the associated cpu-protection policy.
If no CPU-protection policy is assigned to a SAP, then a default policy is used to limit the overall-rate according to the default policy. The default policy is policy number 254 for access interfaces, 255 for network interfaces and no policy for video interfaces.

The no form of the command reverts to the default values.

**Default**

- cpu-protection 254 (for access interfaces)
- cpu-protection 255 (for network interfaces)

The configuration of no cpu-protection returns the SAP/SDP/template to the default policies as shown above.

**Parameters**

- `mac-monitoring` — Enables per SAP + source MAC address rate limiting using the per-source-rate from the associated cpu-protection policy.
- `eth-cfm-monitoring` — Enables the Ethernet Connectivity Fault Management cpu-protection extensions on the associated SAP/SDP/template.
- `aggregate` — applies the rate limit to the sum of the per-peer packet rates.
- `car` — (Committed Access Rate) Ignores Eth-CFM packets when enforcing overall-rate.

### 2.10.2.21 Distributed CPU Protection Commands

**dist-cpu-protection**

**Syntax**

```
dist-cpu-protection
```

**Context**

```
config>system>security
```

**Description**

This command enters the CLI context for configuration of the Distributed CPU Protection (DCP) feature.

**policy**

**Syntax**

```
[no] policy policy-name
```

**Context**

```
config>sys>security>dist-cpu-protection
```

**Description**

This command configures one of the maximum 16 Distributed CPU Protection policies. These policies can be applied to objects such as SAPs and network interfaces.

**Parameters**

- `policy-name` — Name of the policy to be configured.
description

Syntax  [no] description string

Context  config>sys>security>dist-cpu-protection>policy

Description  This command allows you to set the description of the CPU Protection Policy.

rate

Syntax  rate kbps kilobits-per-second | max [mbs size] [bytes | kilobytes]
rate packets (ppi | max) within seconds [initial-delay packets]
no rate

Context  config>sys>security>dist-cpu-protection>policy>static-policer
config>sys>security>dist-cpu-protection>policy>local-monitoring-policer
config>sys>security>dist-cpu-protection>policy>protocol>dynamic-parameters

Description  This command configures the rate and burst tolerance for the policer in either a packet rate or a bit rate.

The actual hardware may not be able to perfectly rate limit to the exact configured parameters. In this case, the configured parameters will be adapted to the closest supported rate. The actual (operational) parameters can be seen in CLI, for example, show service id 33 sap 1/1/3:33 dist-cpu-protection detail.

Default  rate packets max within 1 initial delay 0

Parameters  packets | kbps — specifies that the rate is either in units of packets per interval or in units of kilobits per second. The packets option would typically be used for lower rates (for example, for per subscriber DHCP rate limiting) while the kbps option would typically be used for higher rates (for example, per interface BGP rate limiting).

ppi — Specifies packets per interval. 0..255 or max (0 = all packets are non-conformant)
  • rate of max = effectively disable the policer (always conformant)
  • rate of packets 0 = all packets considered non-conformant.

seconds — Specifies the length of the ppi rate measurement interval.

Values    1 to 32767

packets — The number of packets allowed (even at line rate) in an initial burst (or a burst after the policer bucket has drained to zero) in addition to the normal "ppi". This would typically be set to a value that is equal to the number of received packets in several full handshakes/negotiations of the particular protocol.

Values    1 to 255

kilobits-per-second — Specifies the kilobits per second.

Values    1 to 2000000 | max max = This effectively disables the policer (always conformant).
mbs — The tolerance for the kbps rate

Values 0 to 4194304. A configured mbs of 0 will cause all packets to be considered non-conformant.

Default The default mbs sets the mbs to 10 ms of the kbps.

bytes | kilobytes — Specifies that the units of the mbs size parameter are either in bytes or kilobytes.

detection-time

Syntax detection-time seconds

Context config>sys>security>dist-cpu-protection>policy>static-policer

Description When a policer is declared as in an “exceed” state, it will remain as exceeding until a contiguous conformant period of detection-time passes. The detection-time only starts after the exceed-action hold-down is complete. If the policer detects another exceed during the detection count down then a hold-down is once again triggered before the policer re-enters the detection time (that is, the countdown timer starts again at the configured value). During the hold-down (and the detection-time), the policer is considered as in an "exceed" state.

Default detection-time 30

Parameters seconds — Specifies the detection time.

Values 1 to 128000

dynamic-enforcement-policer-pool

Syntax [no] dynamic-enforcement-policer-pool number-of-policers

Context config>card>fp>dist-cpu-protection

Description This command reserves a set of policers for use as dynamic enforcement policers for the Distributed CPU Protection (DCP) feature. Policers are allocated from this pool and instantiated as per-object-per-protocol dynamic enforcement policers after a local monitor is triggered for an object (such as a SAP or Network Interface). Any change to this configured value automatically clears the high water mark, timestamp, and failed allocation counts as seen under “show card x fp y dist-cpu-protection” and in the tmnxFpDcpDynEnfrcPlcrStatTable in the TIMETRA-CHASSIS-MIB. Decreasing this value to below the currently used/allocated number causes all dynamic policers to be returned to the free pool (and traffic returns to the local monitors).

Default 0
Parameters  

\textit{number-of-policers} — specifies the number of policers to be reserved.

\textbf{Values} \ 0, 1000 to 32k

\section*{exceed-action}

\textbf{Syntax}  

\texttt{exceed-action \{discard [hold-down \textit{seconds}] | low-priority [hold-down \textit{seconds}] | none\}}

\textbf{Context}  

\texttt{config>sys>security>dist-cpu-protection>policy>static-policer}
\texttt{config>sys>security>dist-cpu-protection>policy>protocol>dynamic-parameters}

\textbf{Description}  

This command controls the action performed upon the extracted control packets when the configured policer rates are exceeded.

\textbf{Default}  

\texttt{exceed-action none}

\textbf{Parameters}  

\texttt{discard} — Discards packets that are non-conformant.

\texttt{low-priority} — Marks packets that are non-conformant as low-priority (for example, discard eligible or out-profile). If there is congestion in the control plane of the SR OS then unmarked (for example, green, hi-prio or in-profile) control packets are given preferential treatment.

\texttt{hold-down \textit{seconds}} — When this optional parameter is specified, it causes the following “hold-down” behavior.

When the SR OS software detects that an enforcement policer has marked or discarded one or more packets (software may detect this some time after the packets are actually discarded), and an optional \texttt{hold-down \textit{seconds}} value has been specified for the \texttt{exceed-action}, then the policer will be set into a “mark-all” or “drop-all” mode that cause the following:

\begin{itemize}
  \item the policer state to be updated as normal
  \item all packets to be marked (if the action is “low-priority”) or dropped (action = discard) regardless of the results of the policing decisions/actions/state.
\end{itemize}

The \texttt{hold-down} is cleared after approximately the configured time in seconds after it was set. The \texttt{hold-down \textit{seconds}} option should be selected for protocols that receive more than one packet in a complete handshake/negotiation (for example, DHCP, PPP). \texttt{hold-down} is not applicable to a local monitoring policer. The “detection-time” will only start after any \texttt{hold-down} is complete. During the \texttt{hold-down} (and the detection-time), the policer is considered as in an "exceed" state. The policer may re-enter the hold-down state if an exceed packet is detected during the detection-time countdown.

Configuring the \texttt{indefinite} parameter value will cause hold down to remain in place until the operator clears it manually using a tools command \texttt{(tools perform security dist-cpu-protection release-hold-down)} or removes the dist-cpu-protection policy from the object.

Configuring the \texttt{none} parameter value will disable hold down.

\textbf{Values} \ 1 to 10080, indefinite, none
exceed-action

Syntax: exceed-action (discard | low-priority | none)

Context: config>sys>security>dist-cpu-protection>policy>local-monitoring-policer

Description: This command controls the action performed upon the extracted control packets when the configured policer rates are exceeded.

Parameters:
- discard — Discards packets that are non-conformant.
- low-priority — Marks packets that are non-conformant as low-priority (discard eligible or out-profile). If there is congestion in the control plane of the SR OS then unmarked (green, hi-prio or in-profile) control packets are given preferential treatment.
- none — no hold-down

log-events

Syntax: [no] log-events [verbose]

Context: config>sys>security>dist-cpu-protection>policy>static-policer

Description: This command controls the creation of log events related to static-policer status and activity.

Default: log-events

Parameters:
- verbose — (Sends the same events as just "log-events" plus Hold Down Start and Down End events. The optional "verbose" includes some events that are more likely used during debug/tuning/investigations.

local-monitoring-policer

Syntax: [no] local-monitoring-policer policer-name [create]

Context: config>sys>security>dist-cpu-protection>policy>local-monitoring-policer

Description: This command configures a monitoring policer that is used to monitor the aggregate rate of several protocols arriving on an object (for example, SAP). When the local-monitoring-policer is determined to be in a non-conformant state (at the end of a minimum monitoring time of 60 seconds) then the system will attempt to allocate dynamic policers for the particular object for any protocols associated with the local monitor (for example, via the "protocol xyz enforcement" CLI command).

If the system cannot allocate all the dynamic policers within 150 seconds, it will stop attempting to allocate dynamic policers, raise a LocMonExcdAllDynAlloc log event, and go back to using the local monitor. The local monitor may then detect exceeded packets again and make another attempt at allocating dynamic policers.
Once this `policer-name` is referenced by a protocol then this policer will be instantiated for each "object" that is created and references this DDoS policy. If there is no policer free then the object will be blocked from being created.

**Parameters**

`policer-name` — Specifies name of the policy.

**Values**

[32 chars max]

---

### log-events

**Syntax**

```plaintext
[no] log-events [verbose]
```

**Context**

```plaintext
config>sys>security>dist-cpu-protection>police>local-monitoring-policer
```

**Description**

This command controls the creation of log events related to `local-monitoring-policer` status and activity.

**Default**

log-events

**Parameters**

`verbose` — Sends the same events as just "log-events" plus DcpLocMonExcd, DcpLocMonExcdAllDynAlloc, and DcpLocMonExcdAllDynFreed. The optional "verbose" includes some events that are more likely used during debug/tuning/investigations.

---

### protocol

**Syntax**

```plaintext
[no] protocol name [create]
```

**Context**

```plaintext
config>sys>security>dist-cpu-protection>policy
```

**Description**

This command creates the protocol for control in the policy.

Control packets that are both forwarded (which means they could be subject to normal QoS policy policing) and also copied for extraction are not subject to distributed cpu protection (including in the all-unspecified bucket). This includes traffic snooping (for example, PIM in VPLS) as well as control traffic that is flooded in an R-VPLS instance and also extracted to the CPM (ARP, ISIS and VRRP). Centralized per SAP/interface, cpu-protection can be employed to rate limit or mark this traffic if desired.

Explanatory notes for some of the protocols:

- `bfd-cpm`: includes all bfd handled on the CPM including cpm-np type, single hop and multi-hop, and MPLS-TP CC and CV bfd
- `dhcp`: includes dhcp for IPv4 and IPv6
- `eth-cfm`: 802.1ag and includes Y.1731. Eth-cfm packets on port and LAG based facility MEPs are not included (but packets on Tunnel MEPs are).
- `icmp`: includes IPv4 and IPv6 ICMP (including RS/RA/Redirect) except NS/NA Neighbor Discovery packets which are classified as a separate protocol ‘ndis’
- isis: includes isis used for SPBM
- ldp: includes ldp and t-ldp
- mpls-ttl: MPLS packets that are extracted due to an expired mpls ttl field
- ndis: IPv6 NS/NA Neighbor Discovery (not including RS/RA/Redirect which are classified as part of the protocol 'icmp')
- ospf: includes all OSPFv2 and OSPFv3 packets.
- pppoe-pppoa: includes PADx, LCP, PAP/CHAP and NCPs
- all-unspecified: a special ‘protocol’. When configured, this treats all extracted control packets that are not explicitly created in the dist-cpu-protection policy as a single aggregate flow (or "virtual protocol"). It lumps together "all the rest of the control traffic" to allow it to be rate limited as one flow. It includes all control traffic of all protocols that are extracted and sent to the CPM (even protocols that cannot be explicitly configured with the distributed cpu protection feature). Control packets that are both forwarded and copied for extraction are not included. If an operator later explicitly configures a protocol, then that protocol is suddenly no longer part of the "all-unspecified" flow. The "all-unspecified" protocol must be explicitly configured in order to operate.

"no protocol x" means packets of protocol x are not monitored and not enforced (although they do count in the fp protocol queue) on the objects to which this dist-cpu-protection policy is assigned, although the packets will be treated as part of the all-unspecified protocol if the all-unspecified protocol is created in the policy.

**Default**

- none

**Parameters**

- names — Signifies the protocol name.

**Values**

- arp, dhcp, http-redirect, icmp, igmp, mld, ndis, pppoe-pppoa, all-unspecified, mpls-ttl, bfd-cpm, bgp, eth-cfm, isis, ldp, ospf, pim, rsvp.

**enforcement**

**Syntax**

```
{static policer-name | dynamic {mon-policer-name | local-mon-bypass}}
```

**Context**

```
config>sys>security>dist-cpu-protection>policy>protocol
```

**Description**

This command configures the enforcement method for the protocol.

**Default**

- enforcement dynamic local-mon-bypass

**Parameters**

- static — Specifies that the protocol is always enforced using a static-policer. Multiple protocols can reference the same static-policer. Packets of protocols that are statically enforced bypass any local monitors.

- policer name — Specifies the name is a static-policer.
dynamic — Specifies that a specific enforcement policer for this protocol for this SAP/object is instantiated when the associated local-monitoring-policer is determined to be in a non-conformant state (at the end of a minimum monitoring time of 60 seconds to reduce thrashing).

mon-policer-name — Specifies which local-monitoring-policer to use

local-mon-bypass — This parameter is used to not include packets from this protocol in the local monitoring function, and when the local-monitor “trips”, do not instantiate a dynamic enforcement policer for this protocol.

detection-time

Syntax: detection-time seconds

Context: config>sys>security>dist-cpu-protection>policy>protocol>dynamic-parameters

Description: When a dynamic enforcing policer is instantiated, it will remain allocated until at least a contiguous conformant period of detection-time passes.

dynamic-parameters

Syntax: dynamic-parameters

Context: config>sys>security>dist-cpu-protection>policy>protocol

Description: The dynamic-parameters are used to instantiate a dynamic enforcement policer for the protocol when the associated local-monitoring-policer is considered as exceeding its rate parameters (at the end of a minimum monitoring time of 60 seconds).

log-events

Syntax: [no] log-events [verbose]

Context: config>sys>security>dist-cpu-protection>policy>protocol>dynamic-parameters

Description: This command controls the creation of log events related to dynamic enforcement policer status & activity

Default: log-events

Parameters:

verbose — This parameter sends the same events as just “log-events” plus Hold Down Start, Hold Down End, DcpDynamicEnforceAlloc and DcpDynamicEnforceFreed events. This includes the allocation/de-allocation events (typically used for debug/tuning only – could be very noisy even when there is nothing much of concern).
static-policer

Syntax: [no] static-policer policer-name [create]

Context: config>sys>security>dist-cpu-protection>policy

Description: Configures a static enforcement policer that can be referenced by one or more protocols in the policy. Once this policer-name is referenced by a protocol, then this policer will be instantiated for each object (e.g. SAP or network interface) that is created and references this policy. If there is no policer resource available on the associated card/fp then the object will be blocked from being created. Multiple protocols can use the same static-policer.

Parameters: policer-name — Specifies the name of the policy up to 32 characters in length.

2.10.2.22 Extracted Protocol Traffic Priority Commands

init-extract-prio-mode

Syntax: init-extract-prio-mode {uniform | l3-classify}

Context: config>card>fp

Description: This command determines the scheme used to select the initial drop priority of extracted control plane traffic. The initial drop priority of extracted packets can be either low or high priority. The drop priority of the extracted packets can be subsequently altered by mechanisms such as CPU protection. High-priority traffic receives preferential treatment in control plane congestion situations over low-priority traffic.

Default: init-extract-prio-mode uniform

Parameters: uniform — Initializes the drop priority of all extracted control traffic as high priority. Drop priority can then be altered (marked low priority) by distributed CPU protection (DCP) or centralized CPU protection rate-limiting functions in order to achieve protocol and interface isolation.

l3-classify — Initializes the drop priority of Layer 3 extracted control traffic (BGP and OSPF) based on the QoS classification of the packets. This is useful in networks where the DSCP and EXP markings can be trusted as the primary method to distinguish, protect, and isolate good terminating protocol traffic from unknown or potentially harmful protocol traffic instead of using the rate-based DCP and centralized CPU protection traffic marking/coloring mechanisms (for example, out-profile-rate and exceed-action low-priority).

For network interfaces, the QoS classification profile result selects the drop priority (in = high priority, out = low priority) for extracted control traffic, and the default QoS classification maps different DSCP and EXP values to different in/out profile states.
For access interfaces, the QoS classification priority result typically selects the drop priority for extracted control traffic. The default access QoS classification (default-priority) maps all traffic to low. If the queues in the access QoS policy are configured as profile-mode queues (rather than the default priority-mode) extracted traffic will use the QoS classification profile value configured against the associated FC (rather than the priority result) to select the drop priority.

Layer 2 extracted control traffic (ARP or ETH-CFM) and protocols that cannot always be QoS-classified, such as IS-IS, are initialized as low drop priority in order to protect Layer 2 protocol traffic on uniform interfaces (which would typically be subject to centralized CPU protection). Alternately, DCP can be used (by configuring a non-zero rate with exceed-action of low-priority for the all-unspecified protocol) to mark some of this traffic as high priority.
2.11 Security Show, Clear, Debug, Tools, and Admin Command Reference

2.11.1 Command Hierarchies

- Show Commands
- Clear Commands
- Debug Commands
- Tools Commands
- Admin Commands

2.11.1.1 Show Commands

2.11.1.1.1 Security

```
show
 - system
 - security
 - access-group [group-name]
 - authentication [statistics]
 - communities
 - cpm-filter
 - ip-filter [entry entry-id]
 - ipv6-filter [entry entry-id]
 - mac-filter [entry entry-id]
 - cpm-queue queue-id
 - cpu-protection
 - eth-cfm-monitoring [(service-id service-id sap-id sap-id) | (service-id service-id sap-id sap-id:vc-id)]
 - excessive-sources [service-id service-id sap-id sap-id]
 - policy [policy-id] association
 - protocol-protection
 - violators [port] [interface] [sap] [video] [sdp]
 - dist-cpu-protection
 - policy [policy-id] [association detail]
 - keychain keychain-name [detail]
 - management-access-filter
 - ip-filter [entry entry-id]
 - ipv6-filter [entry entry-id]
 - mac-filter [entry entry-id]
 - password-options
```
2.11.1.2 Login Control

show
  — users

2.11.1.2 Clear Commands

clear
  — router
    — authentication
      — statistics [interface ip-int-name | ip-address]
      — radius-proxy-server server-name statistics
    — cpm-filter
      — ip-filter [entry entry-id]
      — ipv6-filter [entry entry-id]
      — mac-filter [entry entry-id]
    — cpu-protection
      — excessive-sources
— protocol-protection
— violators [port] [interface] [sap]
— cpm-queue queue-id

admin
— user
— user
   — clear lockout {name | all}
   — clear password-history {name | all}

2.11.1.3 Debug Commands

dump
— radius [detail] [hex]
— no radius
— [no] ocsp
   — [no] ocsp profile-name

2.11.1.4 Tools Commands

tools
— dump
   — security
      — dist-cpu-protection
         — violators enforcement {sap | interface} card slot-number [fp fp-number]
         — violators local-monitor {sap | interface} card slot-number [fp fp-number]
      — perform
         — security
            — dist-cpu-protection
               — release-hold-down interface interface-name [protocol protocol]
                  [static-policer name]
               — release-hold-down sap sap-id [protocol protocol] [static-policer name]

2.11.1.5 Admin Commands

admin
— user
   — clear lockout {user name | all}
   — clear password-history {user name | all}
2.11.2 Command Descriptions

- Show Commands
- Clear Commands
- Debug Commands
- Tools Commands
- Admin Commands

2.11.2.1 Show Commands

The command outputs in the following section are examples only; actual displays may differ depending on supported functionality and user configuration.

2.11.2.1.1 Security Commands

access-group

Syntax access-group [group-name]

Context show>system>security

Description This command displays SNMP access group information.

Parameters group-name — This command displays information for the specified access group.

Output The following is an example of access group information.

Table 21 describes security access group output fields.

Sample Output

A:ALA-4# show system security access-group

<table>
<thead>
<tr>
<th>group name</th>
<th>security model</th>
<th>security level</th>
<th>read view</th>
<th>write view</th>
<th>notify view</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-ro</td>
<td>snmpv1</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td></td>
</tr>
<tr>
<td>snmp-ro</td>
<td>snmpv2c</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td></td>
</tr>
<tr>
<td>snmp-rw</td>
<td>snmpv1</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td>no-security</td>
</tr>
<tr>
<td>snmp-rw</td>
<td>snmpv2c</td>
<td>none</td>
<td>no-security</td>
<td>no-security</td>
<td>no-security</td>
</tr>
<tr>
<td>snmp-rwa</td>
<td>snmpv1</td>
<td>none</td>
<td>iso</td>
<td>iso</td>
<td>iso</td>
</tr>
</tbody>
</table>
A:ALA-7#

### Table 21 Show System Security Access Group Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>Security model</td>
<td>The security model required to access the views configured in this node.</td>
</tr>
<tr>
<td>Security level</td>
<td>Specifies the required authentication and privacy levels to access the views configured in this node.</td>
</tr>
<tr>
<td>Read view</td>
<td>Specifies the variable of the view to read the MIB objects.</td>
</tr>
<tr>
<td>Write view</td>
<td>Specifies the variable of the view to configure the contents of the agent.</td>
</tr>
<tr>
<td>Notify view</td>
<td>Specifies the variable of the view to send a trap about MIB objects.</td>
</tr>
</tbody>
</table>

**authentication**

**Syntax**

`authentication [statistics]`

**Context**

`show>system>security`

**Description**

This command displays system login authentication configuration and statistics.

**Parameters**

`statistics` — Appends login and accounting statistics to the display.

**Output**

The following is an example of authentication information.

Table 22 describes system security authentication output fields.

**Sample Output**

```
A:ALA-4# show system security authentication
--
Authentication sequence : radius tacplus local ldap exit-on-reject
--
type server address server name
--
radius 192.170.0.30 n/a
A:ALA-7#
```
ldap up 3 3
    192.170.0.10(389)
    my_first_LDAP_server
ldap down 3 3
    0.0.0.0(389)
    n/a
radius admin/oper status : up/down
ldap admin/oper status : up/up
health check : enabled (interval 30 secs)

No. of Servers: 3

A:ALA-4# show system security authentication statistics

A:ALA-4# show system security authentication

Authentication sequence : radius tacplus ldap local

type status timeout (secs) retry count
server address
server name

ldap
    down 3 3
    135.243.194.179:10390
    n/a

ldap admin/oper status : down/down
health check : enabled (interval 30 secs)

No. of Servers: 1

Login Statistics

type conn accepted rejected errors logins logins
server address

135.243.194.179 0 2 7
local n/a 10 8

Authorization Statistics (TACACS+)

server address conn sent rejected errors pkts pkts

Accounting Statistics

server address conn sent rejected errors pkts pkts

A:ALA-4# show system security authentication

Authentication sequence : radius tacplus local ldap exit-on-reject

type status timeout (secs) retry count
<table>
<thead>
<tr>
<th>server address</th>
<th>status</th>
<th>timeout (secs)</th>
<th>retry count</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius 10.10.103</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>radius 10.10.1</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>radius 10.10.2</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>radius 10.10.3</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

radius admin status: up
Tacplus admin status: up
Health check: enabled (interval 30)

No. of Servers: 4

A:ALA-4#
server address     connection errors  sent packets  rejected packets  
-------------------------------------------------------------------
Accounting Statistics
-------------------------------------------------------------------
server address     connection errors  sent packets  rejected packets  
-------------------------------------------------------------------
10.10.10.103       0                0            0
10.10.0.1           0                0            0
10.10.0.2           0                0            0
10.10.0.3           0                0            0
-------------------------------------------------------------------
A:ALA-7#

*A:Dut-C# show system security authentication statistics

-------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>type</th>
<th>status</th>
<th>timeout (secs)</th>
<th>retry count</th>
</tr>
</thead>
<tbody>
<tr>
<td>server address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10.10.10.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10.10.10.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10.10.10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10.10.10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius admin status</td>
<td>up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
tacplus admin status : up
health check : enabled (interval 30)
-------------------------------------------------------------------------------
No. of Servers: 4
-------------------------------------------------------------------------------
Login Statistics
server address     conn accepted  rejected errors logins logins
-------------------------------------------------------------------
local              n/a            4            0
-------------------------------------------------------------------------------
Authorization Statistics (TACACS+)
server address     conn sent rejected errors pkts pkts
-------------------------------------------------------------------------------
Accounting Statistics
server address     conn sent rejected errors pkts pkts
-------------------------------------------------------------------------------
communities

Syntax    communities
Context    show>system>security
Description This command displays SNMP communities.
Output     The following is an example of SNMP communities information.
           Table 23 describes community output fields.

Sample Output
A:ALA-48# show system security communities
==============================================================================
Communities
==============================================================================
community  access view  version  group name

Table 22    Show System Security Authentication Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>The sequence in which authentication is processed.</td>
</tr>
<tr>
<td>Server address</td>
<td>The IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Status</td>
<td>Current status of the RADIUS server.</td>
</tr>
<tr>
<td>Type</td>
<td>The authentication type.</td>
</tr>
<tr>
<td>Timeout (secs)</td>
<td>The number of seconds the router waits for a response from a RADIUS server.</td>
</tr>
<tr>
<td>Retry count</td>
<td>Displays the number of times the router attempts to contact the RADIUS server for authentication if there are problems communicating with the server.</td>
</tr>
<tr>
<td>Connection errors</td>
<td>Displays the number of times a user has attempted to login irrespective of whether the login succeeded or failed.</td>
</tr>
<tr>
<td>Accepted logins</td>
<td>The number of times the user has successfully logged in.</td>
</tr>
<tr>
<td>Rejected logins</td>
<td>The number of unsuccessful login attempts.</td>
</tr>
<tr>
<td>Sent packets</td>
<td>The number of packets sent.</td>
</tr>
<tr>
<td>Rejected packets</td>
<td>The number of packets rejected.</td>
</tr>
</tbody>
</table>
cli-readonly r iso v2c cli-readonly
cli-readwrite rw iso v2c cli-readwrite
public r no-security v1 v2c snmp-ro

No. of Communities: 3

---

### Table 23 Show Communities Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>The community string name for SNMPv1 and SNMPv2c access only.</td>
</tr>
<tr>
<td>Access</td>
<td>r — The community string allows read-only access.</td>
</tr>
<tr>
<td></td>
<td>rw — The community string allows read-write access.</td>
</tr>
<tr>
<td></td>
<td>rwa — The community string allows read-write access.</td>
</tr>
<tr>
<td></td>
<td>mgmt — The unique SNMP community string assigned to the management router.</td>
</tr>
<tr>
<td>View</td>
<td>The view name.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version.</td>
</tr>
<tr>
<td>Group Name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>No of Communities</td>
<td>The total number of configured community strings.</td>
</tr>
</tbody>
</table>

**cpm-filter**

**Syntax**

cpm-filter

**Context**

show>system>security

**Description**

This command displays CPM filters.

**ip-filter**

**Syntax**

ip-filter [entry entry-id]

**Context**

show>system>security>cpm-filter

**Description**

This command displays CPM IP filters.

**Parameters**

- entry-id — Identifies a CPM filter entry as configured on this system.

  **Values**

  1 to 6144
Output  
The following displays IP filter entry information.

Table 24 describes CPM IP filter output fields.

Sample Output

A:ALA-35# show system security cpm-filter ip-filter
-----------------------------------------------------------------------------------------
CPM IP Filters
-----------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Entry-Id</th>
<th>Dropped</th>
<th>Forwarded</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 10.4.101.2 #101</td>
</tr>
<tr>
<td>102</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 10.4.102.2 #102</td>
</tr>
<tr>
<td>103</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 10.4.103.2 #103</td>
</tr>
<tr>
<td>104</td>
<td>25882</td>
<td>0</td>
<td>CPM-Filter 10.4.104.2 #104</td>
</tr>
<tr>
<td>105</td>
<td>25926</td>
<td>0</td>
<td>CPM-Filter 10.4.105.2 #105</td>
</tr>
<tr>
<td>106</td>
<td>25926</td>
<td>0</td>
<td>CPM-Filter 10.4.106.2 #106</td>
</tr>
<tr>
<td>107</td>
<td>25944</td>
<td>0</td>
<td>CPM-Filter 10.4.107.2 #107</td>
</tr>
<tr>
<td>108</td>
<td>25950</td>
<td>0</td>
<td>CPM-Filter 10.4.108.2 #108</td>
</tr>
<tr>
<td>109</td>
<td>25968</td>
<td>0</td>
<td>CPM-Filter 10.4.109.2 #109</td>
</tr>
<tr>
<td>110</td>
<td>25984</td>
<td>0</td>
<td>CPM-Filter 10.4.110.2 #110</td>
</tr>
<tr>
<td>111</td>
<td>26000</td>
<td>0</td>
<td>CPM-Filter 10.4.111.2 #111</td>
</tr>
<tr>
<td>112</td>
<td>26018</td>
<td>0</td>
<td>CPM-Filter 10.4.112.2 #112</td>
</tr>
<tr>
<td>113</td>
<td>26034</td>
<td>0</td>
<td>CPM-Filter 10.4.113.2 #113</td>
</tr>
<tr>
<td>114</td>
<td>26050</td>
<td>0</td>
<td>CPM-Filter 10.4.114.2 #114</td>
</tr>
<tr>
<td>115</td>
<td>26066</td>
<td>0</td>
<td>CPM-Filter 10.4.115.2 #115</td>
</tr>
<tr>
<td>116</td>
<td>26084</td>
<td>0</td>
<td>CPM-Filter 10.4.116.2 #116</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------------------
A:ALA-35#

A:ALA-35# show system security cpm-filter ip-filter entry 101
-----------------------------------------------------------------------------------------
CPM IP Filter Entry
-----------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Entry Id</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>CPM-Filter 10.4.101.2 #101</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------------------
Filter Entry Match Criteria :
-----------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Log Id</th>
<th>Src. IP</th>
<th>Src. Port</th>
<th>Dest. IP</th>
<th>Dest. Port</th>
<th>Protocol</th>
<th>Dscp</th>
<th>ICMP Type</th>
<th>ICMP Code</th>
<th>Fragment</th>
<th>IP-Option</th>
<th>TCP-syn</th>
<th>Match action</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>10.4.101.2/32</td>
<td>0</td>
<td>10.4.101.1/32</td>
<td>0</td>
<td>6</td>
<td>ef</td>
<td>Undefined</td>
<td>Undefined</td>
<td>True</td>
<td>130/255</td>
<td>Off</td>
<td>Drop</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------------------
A:ALA-35#
### Table 24  Show CPM IP Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-Id</td>
<td>Displays information about the specified management access filter entry</td>
</tr>
<tr>
<td>Dropped</td>
<td>Displays the number of dropped events.</td>
</tr>
<tr>
<td>Forwarded</td>
<td>Displays the number of forwarded events.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the CPM filter description.</td>
</tr>
<tr>
<td>Log ID</td>
<td>Displays the log ID where matched packets will be logged.</td>
</tr>
<tr>
<td>Src IP</td>
<td>Displays the source IP address (/netmask or prefix-list)</td>
</tr>
<tr>
<td>Dest. IP</td>
<td>Displays the destination IP address (/netmask).</td>
</tr>
<tr>
<td>Src Port</td>
<td>Displays the source port number (range).</td>
</tr>
<tr>
<td>Dest. Port</td>
<td>Displays the destination port number (range).</td>
</tr>
<tr>
<td>Protocol</td>
<td>Displays the Protocol field in the IP header.</td>
</tr>
<tr>
<td>Dscp</td>
<td>Displays the DSCP field in the IP header.</td>
</tr>
<tr>
<td>Fragment</td>
<td>Displays the 3-bit fragment flags or 13-bit fragment offset field.</td>
</tr>
<tr>
<td>ICMP Type</td>
<td>Displays the ICMP type field in the ICMP header.</td>
</tr>
<tr>
<td>ICMP Code</td>
<td>Displays the ICMP code field in the ICMP header.</td>
</tr>
<tr>
<td>TCP-syn</td>
<td>Displays the SYN flag in the TCP header.</td>
</tr>
<tr>
<td>TCP-ack</td>
<td>Displays the ACK flag in the TCP header.</td>
</tr>
<tr>
<td>Match action</td>
<td>When the criteria matches, displays drop or forward packet.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>In case match action is forward, indicates destination of the matched packet.</td>
</tr>
<tr>
<td>Dropped pkts</td>
<td>Indicates number of matched dropped packets.</td>
</tr>
<tr>
<td>Forwarded pkts</td>
<td>Indicates number of matched forwarded packets.</td>
</tr>
</tbody>
</table>

**ipv6-filter**

**Syntax**

```
ipv6-filter [entry entry-id]
```

**Context**

```
show>system>security>cpm-filter
```

**Description**

This command displays CPM IPv6 filters and only applies to the 7750 SR and 7950 XRS.
Parameters

**entry-id** — Identifies a CPM IPv6 filter entry as configured on this system.

**Values**
1 to 6144

Output

The following displays an example of IPv6 filter entry information.

Table 25 describes CPM IPv6 filter output fields.

The following is an output example on the 7750 SR:

A:ALA-35# show system security cpm-filter ipv6-filter

---

CPM IPv6 Filters
---

<table>
<thead>
<tr>
<th>Entry-Id</th>
<th>Dropped</th>
<th>Forwarded</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::101:2 #101</td>
</tr>
<tr>
<td>102</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::102:2 #102</td>
</tr>
<tr>
<td>103</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::103:2 #103</td>
</tr>
<tr>
<td>104</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::104:2 #104</td>
</tr>
<tr>
<td>105</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::105:2 #105</td>
</tr>
<tr>
<td>106</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::106:2 #106</td>
</tr>
<tr>
<td>107</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::107:2 #107</td>
</tr>
<tr>
<td>108</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::108:2 #108</td>
</tr>
<tr>
<td>109</td>
<td>25880</td>
<td>0</td>
<td>CPM-Filter 11::109:2 #109</td>
</tr>
</tbody>
</table>

---

A:ALA-35#

A:ALA-35# show system security cpm-filter ipv6-filter entry 101

---

CPM IPv6 filter entry
---

**Entry Id : 1**

**Description : CPM-Filter 11::101:2 #101**

---

**Filter Entry Match Criteria :**

**Log Id : n/a**

**Src. IP : 11::101:2**

**Dest. IP : 11::101:1**

**next-header : none**

**ICMP Type : Undefined**

**ICMP Code : Undefined**

**TCP-syn : Off**

**TCP-ack : Off**

**Match action : Drop**

**Dropped pkts : 25880**

**Forwarded pkts : 0**

---

A:ALA-35#

---

**Table 25** Show CPM IPv6 Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-Id</td>
<td>Displays information about the specified management access filter entry</td>
</tr>
</tbody>
</table>
**Table 25**  
Show CPM IPv6 Filter Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>Displays the number of dropped events.</td>
</tr>
<tr>
<td>Forwarded</td>
<td>Displays the number of forwarded events.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the CPM filter description.</td>
</tr>
<tr>
<td>Log ID</td>
<td>Log Id where matched packets will be logged.</td>
</tr>
<tr>
<td>Src IP</td>
<td>Displays Source IP address/(netmask).</td>
</tr>
<tr>
<td>Dest. IP</td>
<td>Displays Destination IP address/(netmask).</td>
</tr>
<tr>
<td>Src Port</td>
<td>Displays Source Port Number (range).</td>
</tr>
<tr>
<td>Dest. Port</td>
<td>Displays Destination Port Number (range).</td>
</tr>
<tr>
<td>next-header</td>
<td>Displays next-header field in the IPv6 header.</td>
</tr>
<tr>
<td>Dscp</td>
<td>Displays Traffic Class field in the IPv6 header.</td>
</tr>
<tr>
<td>ICMP Type</td>
<td>Displays ICMP type field in the icmp header.</td>
</tr>
<tr>
<td>ICMP Code</td>
<td>Displays ICMP code field in the icmp header.</td>
</tr>
<tr>
<td>TCP-syn</td>
<td>Displays the SYN flag in the TCP header.</td>
</tr>
<tr>
<td>TCP-ack</td>
<td>Displays the ACK flag in the TCP header.</td>
</tr>
<tr>
<td>Match action</td>
<td>When criteria matches, displays drop or forward packet.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>In case match action is forward, indicates destination of the matched packet.</td>
</tr>
<tr>
<td>Dropped pkts</td>
<td>Indicating number of matched dropped packets</td>
</tr>
<tr>
<td>Forwarded pkts</td>
<td>Indicating number of matched forwarded packets.</td>
</tr>
</tbody>
</table>

cpm-queue  

**Syntax**  
cpm-queue queue-id  

**Context**  
show>system>security  

**Description**  
This command displays CPM queues.  

**Parameters**  
queue-id — Specifies an integer value that identifies a CPM queue.  

**Values**  
0, 33 to 2000  

**Output**  
The following display CPM IPv6 filter information.
Table 26 describes CPM queue output fields.

Sample Output

A:ALA-35# show system security cpm-queue 1001
===============================================================================
CPM Queue Entry
===============================================================================
Queue Id : 1001
Queue Parameters :
PIR : 10000000 CIR : 1000000
CBS : 4096 MBS : 8192
===============================================================================
A:ALA-35#

Table 26    Show CPM IPv6 Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>Displays the administrative Peak Information Rate (PIR) for the queue.</td>
</tr>
<tr>
<td>CIR</td>
<td>Displays the amount of bandwidth committed to the queue.</td>
</tr>
<tr>
<td>CBS</td>
<td>Displays the amount of buffer drawn from the reserved buffer portion of the queue’s buffer pool.</td>
</tr>
<tr>
<td>MBS</td>
<td>Displays the maximum queue depth to which a queue can grow.</td>
</tr>
</tbody>
</table>

cpu-protection

Syntax cpu-protection
Context show>system>security
Description This command enables the context to display CPU protection information.
Output The following output is an example of ETH CFM monitoring.

Sample Output

show system security cpu-protection eth-cfm-monitoring
===============================================================================
SAP's where the protection policy Eth-CFM rate limit is exceeded
===============================================================================
SAP-Id Service-Id Plcy
1/1/1 3 100
1 SAP('s) found
### SDP's where the protection policy Eth-CFM rate limit is exceeded

<table>
<thead>
<tr>
<th>SDP-Id</th>
<th>Service-Id</th>
<th>Plcy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:3</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>

1 SDP('s) found

```bash
show system security cpu-protection eth-cfm-monitoring service-id 3 sap-id 1/1/1
```

Flows exceeding the Eth-CFM monitoring rate limit

<table>
<thead>
<tr>
<th>Service-Id : 3</th>
<th>SAP-Id : 1/1</th>
<th>Plcy : 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit MAC-Address</td>
<td>Level OpCode</td>
<td>First-Time</td>
</tr>
<tr>
<td>61234 Aggregated</td>
<td>3 20</td>
<td></td>
</tr>
<tr>
<td>03/21/2009 23:32:49</td>
<td>03/21/2009 23:35:19</td>
<td>4000000021</td>
</tr>
<tr>
<td>61234 8f:8f:8f:8f:8f:8f</td>
<td>4 21</td>
<td></td>
</tr>
<tr>
<td>61234 90:90:90:90:90:90</td>
<td>5 22</td>
<td></td>
</tr>
<tr>
<td>61234 91:91:91:91:91:91</td>
<td>6 23</td>
<td></td>
</tr>
<tr>
<td>03/21/2009 23:33:19</td>
<td>03/21/2009 23:36:19</td>
<td>4000000024</td>
</tr>
<tr>
<td>61234 92:92:92:92:92:92</td>
<td>7 24</td>
<td></td>
</tr>
<tr>
<td>max Aggregated</td>
<td>0 25</td>
<td></td>
</tr>
<tr>
<td>0 94:94:94:94:94:94</td>
<td>1 26</td>
<td></td>
</tr>
</tbody>
</table>

9 flows(s) found

```bash
show system security cpu-protection eth-cfm-monitoring service-id 3 sdp-id 1:3
```

Flows exceeding the Eth-CFM monitoring rate limit

<table>
<thead>
<tr>
<th>Service-Id : 3</th>
<th>SDP-Id : 1:3</th>
<th>Plcy : 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit MAC-Address</td>
<td>Level OpCode</td>
<td>First-Time</td>
</tr>
<tr>
<td>61234 8d:8d:8d:8d:8d:8d</td>
<td>2 19</td>
<td></td>
</tr>
</tbody>
</table>
show system security cpu-protection excessive-sources service-id 3 sdp-id 1:3
Sources exceeding the per-source rate limit

MAC-Address First-Time Last-Time Violation-Periods
00:00:00:00:00:01 03/22/2009 00:41:59 03/22/2009 01:53:39 3000000043
00:00:00:00:00:02 03/22/2009 00:43:39 03/22/2009 01:56:59 3000000044
00:00:00:00:00:03 03/22/2009 00:45:19 03/22/2009 02:03:39 3000000046
00:00:00:00:00:04 03/22/2009 00:46:59 03/22/2009 02:06:59 3000000047

5 source(s) found

show system security cpu-protection violators sdp
SDP's where the protection policy overall rate limit is violated

SDP-Id Service-Id Plcy Limit First-Time Last-Time Violation-Periods
1:1 3 100 61234 05/01/2010 01:43:53 06/27/2010 22:37:20 3000000007
1:3 3 100 61234 05/01/2010 01:43:57 06/27/2010 22:37:26 3000000009
1:4 3 max 05/01/2010 01:43:59 06/27/2010 22:37:29 3000000010
1:5 3 100 61234 05/01/2010 01:44:01 06/27/2010 22:37:32 3000000011

5 source(s) found
show system security cpu-protection excessive-sources

SAP's where the protection policy per-source rate limit is exceeded

<table>
<thead>
<tr>
<th>SAP-Id</th>
<th>Service-Id</th>
<th>Plcy Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65534</td>
</tr>
</tbody>
</table>

1 SAP('s) found

SDP's where the protection policy per-source rate limit is exceeded

<table>
<thead>
<tr>
<th>SDP-Id</th>
<th>Service-Id</th>
<th>Plcy Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65534</td>
</tr>
<tr>
<td>1:4</td>
<td>3</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max</td>
</tr>
<tr>
<td>1:5</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65534</td>
</tr>
</tbody>
</table>

3 SDP('s) found

show system security cpu-protection policy association

Associations for CPU Protection policy 100

Description : (Not Specified)

SAP associations

<table>
<thead>
<tr>
<th>Service Id : 3</th>
<th>Type : VPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP 1/1/1</td>
<td>mac-monitoring</td>
</tr>
<tr>
<td>SAP 1/1/2</td>
<td>eth-cfm-monitoring aggr car</td>
</tr>
<tr>
<td>SAP 1/1/3</td>
<td>eth-cfm-monitoring</td>
</tr>
<tr>
<td>SAP 1/1/4</td>
<td></td>
</tr>
</tbody>
</table>

Number of SAP's : 4

SDP associations

<table>
<thead>
<tr>
<th>Service Id : 3</th>
<th>Type : VPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP 1:1</td>
<td>eth-cfm-monitoring aggr car</td>
</tr>
<tr>
<td>SDP 1:3</td>
<td>eth-cfm-monitoring aggr</td>
</tr>
<tr>
<td>SDP 1:5</td>
<td>mac-monitoring</td>
</tr>
<tr>
<td>SDP 17407:4123456789</td>
<td>eth-cfm-monitoring car</td>
</tr>
</tbody>
</table>

Number of SDP's : 4

Interface associations

None

Managed SAP associations

None

Video-Interface associations

None
None

Associations for CPU Protection policy 254

Description: Default (Modifiable) CPU-Protection Policy assigned to Access Interfaces

SAP associations

None

SDP associations

None

Interface associations

Router-Name: Base
ies6If
Router-Name: vprn7
vprn If

Number of interfaces: 2

Managed SAP associations

None

Video-Interface associations

None

Associations for CPU Protection policy 255

Description: Default (Modifiable) CPU-Protection Policy assigned to Network Interfaces

SAP associations

None

SDP associations

Service Id: 3 Type: VPLS
SDP 1:2
SDP 1:4 eth-cfm-monitoring

Service Id: 6 Type: IES
SDP 1:6

Service Id: 7 Type: VPRN
SDP 1:7

Service Id: 9 Type: Epipe
SDP 1:9

Service Id: 300 Type: VPLS
SDP 1:300

Number of SDP's: 6

Interface associations

Router-Name: Base
system

Number of interfaces: 1
Managed SAP associations

None
Video-Interface associations

None

show system security cpu-protection policy 100 association

Associations for CPU Protection policy 100

Description : (Not Specified)

SAP associations

Service Id : 3 Type : VPLS
SAP 1/1/1 mac-monitoring
SAP 1/1/2 eth-cfm-monitoring aggr car
SAP 1/1/3 eth-cfm-monitoring
SAP 1/1/4

Number of SAP's : 4

SDP associations

Service Id : 3 Type : VPLS
SDP 1:1 eth-cfm-monitoring aggr car
SDP 1:3 eth-cfm-monitoring aggr
SDP 1:5 mac-monitoring
SDP 17407:4123456789 eth-cfm-monitoring car

Number of SDP's : 4

Interface associations

None

Managed SAP associations

None

Video-Interface associations

None

A:bksiml30#

show system security cpu-protection violators

Ports where a rate limit is violated

Port-Id Type Limit First-Time Last-Time Violation-Periods

No ports found

Interfaces where the protection policy overall rate limit is violated

Interface-Name Plcy Limit First-Time Last-Time Violation-Periods

No interfaces found
SAP's where the protection policy overall rate limit is violated
===============================================================================
SAP-Id Service-Id
Pclcy Limit First-Time Last-Time Violation-Periods
-------------------------------------------------------------------------------
1/1/1 3
100 61234 05/01/2010 01:43:41 06/27/2010 22:37:02 3000000001
-------------------------------------------------------------------------------
1 SAP('s) found
SDP's where the protection policy overall rate limit is violated
===============================================================================
SDP-Id Service-Id
Pclcy Limit First-Time Last-Time Violation-Periods
-------------------------------------------------------------------------------
1:1 3
100 61234 05/01/2010 01:43:41 06/27/2010 22:37:02 3000000001
1:2 3
255 max 05/01/2010 01:43:43 06/27/2010 22:37:05 3000000002
1:3 3
100 61234 05/01/2010 01:43:45 06/27/2010 22:37:08 3000000003
1:4 3
1:5 3
100 61234 05/01/2010 01:43:49 06/27/2010 22:37:14 3000000005
-------------------------------------------------------------------------------
5 SDP('s) found
Video clients where the protection policy per-source rate limit is violated
===============================================================================
Client IP Address Video-Interface Service-Id
Pclcy Limit First-Time Last-Time Violation-Periods
-------------------------------------------------------------------------------
No clients found
===============================================================================

eth-cfm-monitoring

Syntax

eth-cfm-monitoring [{service-id service-id sap-id sap-id} | {service-id service-id sdp-id
sdp-id:vc-id}]

Context

show>system>security>cpu-protection

Description

This command displays sources exceeding their eth-cfm-monitoring rate limit.

Parameters

service-id — Specifies the service ID.

Values 1 to 2148278317, svc-name up to 64 characters in length

dist-cpu-protection

Syntax
dist-cpu-protection
**Context**
show>card>fp

**Description**
This command displays Distributed CPU Protection parameters and status at the per card and forwarding plane level.

**Output**
Table 27 describes Distributed CPU Protection output fields.

### Table 27  Show Distributed CPU Protection Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card</td>
<td>The card identifier</td>
</tr>
<tr>
<td>Forwarding Plane(FP)</td>
<td>Identifies the instance of the FP (FastPath) chipset. Some cards have a single FP (for example, an IOM3-XP) and some cards can contain multiple FPs (for example, an XCM can house two FPs via its two XMAS).</td>
</tr>
<tr>
<td>Dynamic Enforcement Policer Pool</td>
<td>The configured size of the dynamic-enforcement-policer-pool for this card or FP.</td>
</tr>
<tr>
<td>Dynamic-Policers Currently In Use</td>
<td>The number of policers from the dynamic enforcement policer pool that are currently in use. The policers are allocated from the pool and instantiated as per-object-per-protocol dynamic enforcement policers after a local monitor triggered for an object (such as a SAP or Network Interface).</td>
</tr>
<tr>
<td>Hi-WaterMark Hit Count</td>
<td>The maximum Currently In Use value since it was last cleared (clear card x fp y dist-cpu-protection)</td>
</tr>
<tr>
<td>Hi-WaterMark Hit Time</td>
<td>The time at which the current Hi-WaterMark Hit Count was first recorded.</td>
</tr>
<tr>
<td>Dynamic-Policers Allocation Fail Count</td>
<td>Indicates how many times the system attempted to allocate dynamic enforcement policers but could not get enough the fill the request.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
*A:nodeA# show card 1 fp 1 dist-cpu-protection

Card : 1 Forwarding Plane(FP) : 1

Dynamic Enforcement Policer Pool : 2000

Statistics Information

Dynamic-Policers Currently In Use : 48
Hi-WaterMark Hit Count : 72
Hi-WaterMark Hit Time : 01/03/2013 15:08:42 UTC
Dynamic-Policers Allocation Fail Count : 0

```
dist-cpu-protection

**Syntax**

```bash
dist-cpu-protection [detail]
```

**Context**

```
show>service>id>sap
```

**Description**

This command displays Distributed CPU Protection parameters and status at the per SAP level.

**Parameters**

- `detail` — Specifies to include the adapted operational rate parameters in the CLI output. The adapted Oper. parameters are only applicable if the policer is instantiated (for example, if the associated forwarding plane is operational, or for an interface if there is a physical port configured for the interface, or if the dynamic policers are allocated), otherwise values of 0 kb/s, and so on, are displayed.

**Output**

Distributed CPU Protection Policer Output

*Table 28* describes Distributed CPU Protection Policer Output output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card</td>
<td>The card identifier</td>
</tr>
<tr>
<td>Forwarding Plane(FP)</td>
<td>Identifies the instance of the FP (FastPath) chipset. Some cards have a single FP (for example, an IOM3-XP) and some cards can contain multiple FPs (for example, an XCM can house two FPs via its two XMAs).</td>
</tr>
<tr>
<td>Dynamic Enforcement Policer Pool</td>
<td>The configured size of the dynamic-enforcement-policer-pool for this card or FP.</td>
</tr>
<tr>
<td>Dynamic-Policers Currently In Use</td>
<td>The number of policers from the dynamic enforcement policer pool that are currently in use. The policers are allocated from the pool and instantiated as per-object-per-protocol dynamic enforcement policers after a local monitor triggered for an object (such as a SAP or Network Interface).</td>
</tr>
<tr>
<td>Hi-WaterMark Hit Count</td>
<td>The maximum Currently In Use value since it was last cleared (clear card x fp y dist-cpu-protection)</td>
</tr>
<tr>
<td>Hi-WaterMark Hit Time</td>
<td>The time at which the current Hi-WaterMark Hit Count was first recorded.</td>
</tr>
<tr>
<td>Dynamic-Policers Allocation Fail Count</td>
<td>Indicates how many times the system attempted to allocate dynamic enforcement policers but could not get enough the fill the request.</td>
</tr>
</tbody>
</table>
### Table 29  Show Distributed CPU Protection Policer Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed CPU Protection Policy</td>
<td>The DCP policy assigned to the object.</td>
</tr>
<tr>
<td>Policer-Name</td>
<td>The configured name of the static policer</td>
</tr>
<tr>
<td>Card/FP</td>
<td>The card and FP identifier. FP identifies the instance of the FP (FastPath) chipset. Some cards have a single FP (for example, IOM3-XP) and some cards can contain multiple FPs (for example, an XCM can house two FPs via its two XMAs).</td>
</tr>
<tr>
<td>Policer-State</td>
<td>The state of the policer with the following potential values:</td>
</tr>
<tr>
<td></td>
<td>Exceed - The policer has been detected as non-conformant to the associated DCP policy parameters (e.g. packets exceeded the configured rate and the DCP polling process identified this occurrence)</td>
</tr>
<tr>
<td></td>
<td>Conform - The policer has been detected as conformant to the associated DCP policy parameters (rate)</td>
</tr>
<tr>
<td></td>
<td>not-applicable - Newly created policers or policers that are not currently instantiated. This includes policers configured on linecards that are not in service.</td>
</tr>
<tr>
<td>Protocols Mapped</td>
<td>A list of protocols that are configured to map to the particular policer.</td>
</tr>
</tbody>
</table>
Table 29  Show Distributed CPU Protection Policer Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper. xyz fields</td>
<td>The actual hardware may not be able to perfectly rate limit to the exact configured rate parameters in a DCP policy. In this case the configured rate parameters will be adapted to the closest supported rate. These adapted operational values are displayed in CLI when the <strong>detail</strong> keyword is included in the show command. The adapted Oper. parameters are only applicable if the policer is instantiated (for example, if the associated forwarding plane is operational, or for an interface if there is a physical port configured for the interface, or if the dynamic policers are allocated), otherwise values of 0 kb/s, and so on, are displayed.</td>
</tr>
<tr>
<td>Oper. Kbps</td>
<td>The adapted 'kilobits-per-second' value for DCP 'kbps' rates</td>
</tr>
<tr>
<td>Oper. MBS</td>
<td>The adapted 'mbs size' value for DCP 'kbps' rates</td>
</tr>
<tr>
<td>Oper. Depth</td>
<td>The calculated policer bucket depth in packets (for DCP 'packets' rates) or in bytes (for DCP 'kbps' rates)</td>
</tr>
<tr>
<td>Oper. Packets</td>
<td>The adapted 'ppi' value for DCP 'packets' rates</td>
</tr>
<tr>
<td>Oper. Within</td>
<td>The adapted 'within seconds' value for DCP 'packets' rates</td>
</tr>
<tr>
<td>Oper. Init. Delay</td>
<td>The adapted 'initial-delay packets' value for DCP 'packets' rates</td>
</tr>
<tr>
<td>Exceed-Count</td>
<td>The count of packets exceeding the policing parameters since the given policer was previously declared as conformant or newly instantiated. This counter has the same behavior as the exceed counter in the DCP the log events, they are baselined (reset) when the policer transitions to conformant.</td>
</tr>
<tr>
<td>Detec. Time Remain</td>
<td>The remaining time in the detection-time countdown during which a policer in the exceed state is being monitored to see if it is once again conformant.</td>
</tr>
<tr>
<td>Hold-Down Remain</td>
<td>The remaining time in the hold-down countdown during which a policer is treating all packets as exceeding.</td>
</tr>
<tr>
<td>All Dyn-Plcr Alloc.</td>
<td>Indicates that all the dynamic enforcement policers have been allocated and instantiated for a given local-monitor.</td>
</tr>
<tr>
<td>Dyn-Policer Alloc.</td>
<td>Indicates that a dynamic policer has been instantiated.</td>
</tr>
</tbody>
</table>

Sample Output

*A:nodeA# show service id 33 sap 1/1/3:33 dist-cpu-protection detail*
Service Access Points (SAP) 1/1/3:33

Distributed CPU Protection Policy: test1

Static Policier

<table>
<thead>
<tr>
<th>Policier-Name</th>
<th>Card/FP</th>
<th>Policer-State</th>
<th>Protocols Mapped</th>
<th>Exceed-Count</th>
<th>Detec. Time Remain</th>
<th>Hold-Down Remain.</th>
<th>Operational (adapted) rate parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>1/1</td>
<td>Conform</td>
<td>arp</td>
<td></td>
<td>0 seconds</td>
<td>none</td>
<td>Packets: 5 ppi, Initial Delay: 6 packets, Depth: 0 packets</td>
</tr>
<tr>
<td>dhcp</td>
<td>1/1</td>
<td>Conform</td>
<td>dhcp</td>
<td></td>
<td>0 seconds</td>
<td>none</td>
<td>Kbps: 2343, MBS: 240 kilobytes</td>
</tr>
</tbody>
</table>

Local-Monitoring Policier

<table>
<thead>
<tr>
<th>Policier-Name</th>
<th>Card/FP</th>
<th>Policer-State</th>
<th>Protocols Mapped</th>
<th>Exceed-Count</th>
<th>All Dyn-Plcr Alloc.</th>
<th>Operational (adapted) rate parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-local-mon1</td>
<td>1/1</td>
<td>conform</td>
<td>arp, pppoe-pppoa</td>
<td></td>
<td>False</td>
<td>Packets: 10 ppi, Initial Delay: 8 packets, Depth: 0 packets</td>
</tr>
</tbody>
</table>

Dynamic-Policer (Protocol)

<table>
<thead>
<tr>
<th>Protocol(Dyn-Plcr)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td></td>
</tr>
</tbody>
</table>

*Example commands:
```bash
A:nodaA# show service id 33 sap 1/1/3:34 dist-cpu-protection detail
```
dist-cpu-protection

Syntax  

dist-cpu-protection [detail]

Context  

show>router>interface

Description  

This command displays Distributed CPU Protection parameters and status at the router Interface level.

Parameters  

detail — Specifies to include the adapted operational rate parameters in the CLI output. The adapted Oper. parameters are only applicable if the policer is instantiated (for example, if the associated forwarding plane is operational, or for an interface if there is a physical port configured for the interface, or if the dynamic policers are allocated), otherwise values of 0 kb/s, and so on, are displayed.

Output  

Distributed CPU Protection Policer Output

Table 30 describes Distributed CPU Protection Policer Output output fields.

<table>
<thead>
<tr>
<th>Table 30</th>
<th>Show Distributed CPU Protection Policer Output Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>Distributed CPU Protection Policy</td>
<td>Displays the DCP policy assigned to the object.</td>
</tr>
<tr>
<td>Policer-Name</td>
<td>Displays the configured name of the static policer</td>
</tr>
<tr>
<td>Card/FP</td>
<td>Displays the card and FP identifier. FP identifies the instance of the FP (FastPath) chipset. Some cards have a single FP (for example, IOM3-XP) and some cards can contain multiple FPs (for example, an XCM can house two FPs via its two XMAs).</td>
</tr>
</tbody>
</table>
Security

**Table 30** Show Distributed CPU Protection Policer Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Policer-State</strong></td>
<td>Displays the state of the policer with the following potential values:</td>
</tr>
<tr>
<td></td>
<td><em>Exceed</em> - The policer has been detected as non-conformant to the associated DCP policy parameters (packets exceeded the configured rate and the DCP polling process identified this occurrence)</td>
</tr>
<tr>
<td></td>
<td><em>Conform</em> - The policer has been detected as conformant to the associated DCP policy parameters (rate)</td>
</tr>
<tr>
<td></td>
<td><em>not-applicable</em> - Newly created policers or policers that are not currently instantiated. This includes policers configured on linecards that are not in service.</td>
</tr>
<tr>
<td><strong>Protocols Mapped</strong></td>
<td>Displays a list of protocols that are configured to map to the particular policer.</td>
</tr>
<tr>
<td><strong>Oper. xyz fields</strong></td>
<td>The actual hardware may not be able to perfectly rate limit to the exact configured rate parameters in a DCP policy. In this case the configured rate parameters will be adapted to the closest supported rate. These adapted operational values are displayed in CLI when the <strong>detail</strong> keyword is included in the show command. The adapted Oper. parameters are only applicable if the policer is instantiated (for example, if the associated forwarding plane is operational, or for an interface if there is a physical port configured for the interface, or if the dynamic policers are allocated), otherwise values of 0 kb/s, and so on, are displayed.</td>
</tr>
<tr>
<td></td>
<td><strong>Oper. Kbps</strong> - Displays the adapted ‘kilobits-per-second’ value for DCP ‘kbps’ rates</td>
</tr>
<tr>
<td></td>
<td><strong>Oper. Mbs</strong> - Displays the adapted ‘mbs size’ value for DCP ‘kbps’ rates</td>
</tr>
<tr>
<td></td>
<td><strong>Oper. Depth</strong> - Displays the calculated policer bucket depth in packets (for DCP ‘packets’ rates) or in bytes (for DCP ‘kbps’ rates)</td>
</tr>
<tr>
<td></td>
<td><strong>Oper. Packets</strong> - Displays the adapted ‘ppi’ value for DCP ‘packets’ rates</td>
</tr>
<tr>
<td></td>
<td><strong>Oper. Within</strong> - Displays the adapted ‘within seconds’ value for DCP ‘packets’ rates</td>
</tr>
<tr>
<td></td>
<td><strong>Oper. Init. Delay</strong> - Displays the adapted ‘initial-delay packets’ value for DCP ‘packets’ rates</td>
</tr>
</tbody>
</table>
### Table 30  Show Distributed CPU Protection Policer Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceed-Count</td>
<td>Displays the count of packets exceeding the policing parameters since the given policer was previously declared as conformant or newly instantiated. This counter has the same behavior as the exceed counter in the DCP the log events – they are baselined (reset) when the policer transitions to conformant.</td>
</tr>
<tr>
<td>Detec. Time Remain</td>
<td>Displays the remaining time in the detection-time countdown during which a policer in the exceed state is being monitored to see if it is once again conformant.</td>
</tr>
<tr>
<td>Hold-Down Remain</td>
<td>Displays the remaining time in the hold-down countdown during which a policer is treating all packets as exceeding.</td>
</tr>
<tr>
<td>All Dyn-Plcr Alloc.</td>
<td>Indicates that all the dynamic enforcement policers have been allocated and instantiated for a given local-monitor.</td>
</tr>
<tr>
<td>Dyn-Policer Alloc.</td>
<td>Indicates that a dynamic policer has been instantiated.</td>
</tr>
</tbody>
</table>

### Sample Output

*A:Dut-A# show router interface "test" dist-cpu-protection detail

-----------------------------------------------------------------------------------------------
Interface "test" (Router: Base)
-----------------------------------------------------------------------------------------------
Distributed CPU Protection Policy : dcpuPol

Statistics/Policer-State Information

Static Policer

<table>
<thead>
<tr>
<th>Policer-Name</th>
<th>staticArpPolicer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card/FF</td>
<td>4/1</td>
</tr>
<tr>
<td>Protocols Mapped</td>
<td>arp</td>
</tr>
<tr>
<td>Exceed-Count</td>
<td>10275218</td>
</tr>
<tr>
<td>Detec. Time Remain</td>
<td>29 seconds</td>
</tr>
<tr>
<td>Hold-Down Remain</td>
<td>none</td>
</tr>
<tr>
<td>Operational (adapted) Rate Parameters:</td>
<td></td>
</tr>
<tr>
<td>Oper. Packets</td>
<td>100 ppi</td>
</tr>
<tr>
<td>Oper. Within</td>
<td>1 seconds</td>
</tr>
<tr>
<td>Oper. Initial Delay</td>
<td>none</td>
</tr>
<tr>
<td>Oper. Depth</td>
<td>100 packets</td>
</tr>
</tbody>
</table>

Local-Monitoring Policer

<table>
<thead>
<tr>
<th>Policer-Name</th>
<th>localMonitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card/FF</td>
<td>4/1</td>
</tr>
<tr>
<td>Protocols Mapped</td>
<td>icmp, ospf</td>
</tr>
<tr>
<td>Exceed-Count</td>
<td>8019857</td>
</tr>
<tr>
<td>All Dyn-Plcr Alloc.</td>
<td>True</td>
</tr>
<tr>
<td>Operational (adapted) Rate Parameters:</td>
<td></td>
</tr>
<tr>
<td>Oper. Packets</td>
<td>200 ppi</td>
</tr>
<tr>
<td>Oper. Within</td>
<td>1 seconds</td>
</tr>
<tr>
<td>Oper. Initial Delay</td>
<td>none</td>
</tr>
</tbody>
</table>
Oper. Depth : 0 packets

Dynamic-Policer (Protocol)

Protocol (Dyn-Plcr) : icmp
Card/FP : 4/1  Protocol-State : Exceed
Exceed-Count : 1948137
Detec. Time Remain : 29 seconds  Hold-Down Remain. : none
Dyn-Policer Alloc. : True
Operational (adapted) Rate Parameters:
  Oper. Kbps : 25 kbps  Oper. MBS : 256 bytes
  Oper. Depth : 274 bytes

Protocol (Dyn-Plcr) : ospf
Card/FP : 4/1  Protocol-State : Exceed
Exceed-Count : 1487737
Detec. Time Remain : 29 seconds  Hold-Down Remain. : none
Dyn-Policer Alloc. : True
Operational (adapted) Rate Parameters:
  Oper. Kbps : 25 kbps  Oper. MBS : 256 bytes
  Oper. Depth : 284 bytes

Table 31  Show Distributed CPU Protection Policer Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed CPU Protection Policy</td>
<td>Displays the DCP policy assigned to the object.</td>
</tr>
<tr>
<td>Policer-Name</td>
<td>Displays the configured name of the static policer</td>
</tr>
<tr>
<td>Card/FP</td>
<td>Displays the card and FP identifier. FP identifies the instance of the FP (FastPath) chipset. Some cards have a single FP (for example, IOM3-XP) and some cards can contain multiple FPs (for example, an XCM can house two FPs via its two XMAs).</td>
</tr>
<tr>
<td>Policer-State</td>
<td>Displays the state of the policer with the following potential values:</td>
</tr>
<tr>
<td></td>
<td>Exceed — The policer has been detected as non-conformant to the associated DCP policy parameters (packets exceeded the configured rate and the DCP polling process identified this occurrence).</td>
</tr>
<tr>
<td></td>
<td>Conform — The policer has been detected as conformant to the associated DCP policy parameters (rate).</td>
</tr>
<tr>
<td></td>
<td>not-applicable — Newly created policers or policers that are not currently instantiated. This includes policers configured on linecards that are not in service.</td>
</tr>
<tr>
<td>Protocols Mapped</td>
<td>Displays a list of protocols that are configured to map to the particular policer.</td>
</tr>
</tbody>
</table>
Oper. xyz fields | The actual hardware may not be able to perfectly rate limit to the exact configured rate parameters in a DCP policy. In this case the configured rate parameters will be adapted to the closest supported rate. These adapted operational values are displayed in CLI when the `detail` keyword is included in the `show` command. The adapted Oper. parameters are only applicable if the policer is instantiated (for example, if the associated forwarding plane is operational, or for an interface if there is a physical port configured for the interface, or if the dynamic policers are allocated), otherwise values of 0 kb/s, and so on, are displayed.

Oper. Kbps | Displays the adapted ‘kilobits-per-second’ value for DCP ‘kbps’ rates
Oper. MBS | Displays the adapted ‘mbs size’ value for DCP ‘kbps’ rates
Oper. Depth | Displays the calculated policer bucket depth in packets (for DCP ‘packets’ rates) or in bytes (for DCP ‘kbps’ rates)
Oper. Packets | Displays the adapted ‘ppi’ value for DCP ‘packets’ rates
Oper. Within | Displays the adapted ‘within seconds’ value for DCP ‘packets’ rates
Oper. Init. Delay | Displays the adapted ‘initial-delay packets’ value for DCP ‘packets’ rates

Exceed-Count | Displays the count of packets exceeding the policing parameters since the given policer was previously declared as conformant or newly instantiated. This counter has the same behavior as the exceed counter in the DCP the log events – they are baselined (reset) when the policer transitions to conformant.

Detec. Time Remain | Displays the remaining time in the detection-time countdown during which a policer in the exceed state is being monitored to see if it is once again conformant.

Hold-Down Remain | Displays the remaining time in the hold-down countdown during which a policer is treating all packets as exceeding.

All Dyn-Plcr Alloc. | Indicates that all the dynamic enforcement policers have been allocated and instantiated for a given local-monitor.

Dyn-Policer Alloc. | Indicates that a dynamic policer has been instantiated.
excessive-sources

Syntax  excessive-sources [service-id service-id sap-id sap-id]
Context  show>system>security>cpu-protection
Description  This command displays sources exceeding their per-source rate limit.
Parameters  service-id — Displays information for services exceeding their per-source rate limit.
            sap-id — Displays information for SAPs exceeding their per-source rate limit.

policy

Syntax  policy [policy-id] association
Context  show>system>security>cpu-protection
         show>system>security>dist-cpu-protection
Description  This command displays CPU protection policy information.
Parameters  policy-id — Displays CPU protection policy information for the specified policy ID.
            association — This keyword displays associations for the specified policy ID.

protocol-protection

Syntax  protocol-protection
Context  show>system>security>cpu-protection
Description  This command display all interfaces with non-zero drop counters.

violators

Syntax  violators [port] [interface] [sap] [video] [sdp]
Context  show>system>security>cpu-protection
Description  This command displays all interfaces, ports or SAPs with CPU protection policy violators. It also includes objects (SAPs, interfaces) that exceed the out-profile-rate and have the log-events keyword enabled for the out-profile-rate in the cpu-protection policy associated with the object.
Parameters  port — Displays violators associated with the port.
            interface — Displays violators associated with the interface.
            sap — Displays violators associated with the SAP.
**video** — Displays violators associated with the video entity.  
**sdp** — Displays violators associated with the SDP.

**Output**
The following is an output example of CPU protection violators.

### Sample Output

```plaintext
*A:SecuritySR7>config>sys>security>cpu-protection-policy# show system security cpu-protection violators

Ports where a rate limit is violated

<table>
<thead>
<tr>
<th>Port-Id</th>
<th>Type</th>
<th>Limit</th>
<th>First-Time</th>
<th>Last-Time</th>
<th>Violation-Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No ports found

Interfaces where the protection policy overall rate limit is violated

<table>
<thead>
<tr>
<th>Interface-Name</th>
<th>Router-Name</th>
<th>Plcy Limit</th>
<th>First-Time</th>
<th>Last-Time</th>
<th>Violation-Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>toIx</td>
<td>Base</td>
<td>255</td>
<td>1000</td>
<td>10/02/2012 18:38:23</td>
<td>10/02/2012 18:39:31</td>
</tr>
</tbody>
</table>

1 interface(s) found

SAP's where the protection policy overall rate limit is violated

<table>
<thead>
<tr>
<th>SAP-Id</th>
<th>Service-Id</th>
<th>Plcy Limit</th>
<th>First-Time</th>
<th>Last-Time</th>
<th>Violation-Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No SAP's found

SDP's where the protection policy overall rate limit is violated

<table>
<thead>
<tr>
<th>SDP-Id</th>
<th>Service-Id</th>
<th>Plcy Limit</th>
<th>First-Time</th>
<th>Last-Time</th>
<th>Violation-Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No SDP's found

Video clients where the protection policy per-source rate limit is violated

<table>
<thead>
<tr>
<th>Client IP Address</th>
<th>Video-Interface</th>
<th>Service-Id</th>
<th>Plcy Limit</th>
<th>First-Time</th>
<th>Last-Time</th>
<th>Violation-Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No clients found
```

**mac-filter**

**Syntax**

```plaintext
mac-filter [entry entry-id]
```
Context  show>system>security>cpm-filter

Description  This command displays CPM MAC filters.

Parameters  entry-id — Displays information about the specified entry.

Values  1 to 2048

Output  The following is an output example of CPU MAC filter information.

Sample Output

```
*B:bksim67# show system security cpm-filter mac-filter
CPM Mac Filter (applied)
Entry-Id Dropped Forwarded Description
1 23002 47094

Num CPM Mac filter entries: 1
```

mac-filter

Syntax  `mac-filter [entry entry-id]`

Context  show>system>security>management-access-filter

Description  This command displays management access MAC filters.

Parameters  entry-id — Displays information about the specified entry.

Values  1 to 9999

Output

Sample Output

```
*B:bksim67# show system security management-access-filter mac-filter
Mac Management Access Filter
filter type : mac
Def. Action : permit
Admin Status : enabled (no shutdown)
Entry : 1 Action : deny
FrameType : ethernet_II Svc-Id : Undefined
Src Mac : Undefined
Dest Mac : Undefined
Dot1p : Undefined Ethertype : Disabled
DSAP : Undefined SSAP : Undefined
```
keychain

Syntax   keychain [key-chain] [detail]

Context  show>system>security

Description This command displays keychain information.

Parameters key-chain — Specifies the keychain name to display.
detail — Displays detailed keychain information.

Output The following is an output example of keychain information

Sample Output

*A:ALA-A# show system security keychain test
===============================================================================
Key chain: test
===============================================================================
TCP-Option number send : 254 Admin state : Up
TCP-Option number receive : 254 Oper state : Up
===============================================================================
*A:ALA-A# *A:ALA-A# show system security keychain test detail
===============================================================================
Key chain: test
===============================================================================
Key entries for key chain: test
===============================================================================
Id : 0
Direction : send-receive Algorithm : hmac-sha-1-96
Admin State : Up Valid : Yes
Active : Yes Tolerance : 300
End Time : N/A End Time (UTC) : N/A
===============================================================================
Id : 1
Direction : send-receive Algorithm : aes-128-cmac-96
Admin State : Up Valid : Yes
Active : No Tolerance : 300
===============================================================================
Id : 2
Direction : send-receive Algorithm : aes-128-cmac-96
management-access-filter

**Syntax**
management-access-filter

**Context**
show>system>security

**Description**
This command displays management access filter information for IP and MAC filters.

**ip-filter**

**Syntax**
ip-filter [entry entry-id]

**Context**
show>system>security>mgmt-access-filter

**Description**
This command displays management-access IP filters.

**Parameters**
- **entry-id** — Displays information for the specified entry.
  - **Values**
    - 1 to 9999

**Output**
The following is an output example of MAF IP filter information

Table 32 describes management access filter output fields.

**Sample Output**

```
*A:Dut-F# show system security management-access-filter ip-filter
=== IPv4 Management Access Filter
===
filter type: : ip
Def. Action : permit
Admin Status : enabled (no shutdown)

Entry : 1
Src IP : 192.168.0.0/16
Src interface : undefined
Dest port : undefined
Protocol : undefined
Router : undefined
Action : none
Log : disabled
Matches : 0

*A:Dut-F#
```
Table 32  Show Management Access Filter Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| Def. action   | Permit — Specifies that packets not matching the configured selection criteria in any of the filter entries are permitted.  
                 Deny — Specifies that packets not matching the configured selection criteria in any of the filter entries are denied and that an ICMP host unreachable message will be issued.  
                 Deny-host-unreachable — Specifies that packets not matching the configured selection criteria in the filter entries are denied. |
| Entry         | The entry ID in a policy or filter table.                                    |
| Description   | A text string describing the filter.                                         |
| Src IP        | The source IP address used for management access filter match criteria.     |
| Src interface | The interface name for the next hop to which the packet should be forwarded if it hits this filter entry. |
| Dest port     | The destination port.                                                       |
| Matches       | The number of times a management packet has matched this filter entry.       |
| Protocol      | The IP protocol to match.                                                   |
| Action        | The action to take for packets that match this filter entry.                |

ipv6-filter

**Syntax**  
`ipv6-filter [entry entry-id]`

**Context**  
`show>system>security>mgmt-access-filter`

**Description**  
This command displays management-access IPv6 filters and only applies to the 7750 SR and 7950 XRS.

**Parameters**  
`entry-id` — Specifies the IPv6 filter entry ID to display.

**Values**  
1 to 9999

**Output**  
The following is an output example of MAF IPv6 filter information

**Sample Output**

```
A: Dut-C# show system security management-access-filter ipv6-filter entry 1
===
IPv6 Management Access Filter
```
password-options

Syntax    password-options
Context    show>system>security
Description   This command displays configured password options.
Output      The following is an example of password options information.

Table 33 describes password options output fields.

Sample Output
A:ALA-7# show system security password-options
===============================================================================
<table>
<thead>
<tr>
<th>Password Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days : none</td>
</tr>
<tr>
<td>Time required between password changes : 0d 00:10:00</td>
</tr>
<tr>
<td>Number of invalid attempts permitted per login : 3</td>
</tr>
<tr>
<td>Time in minutes per login attempt : 5</td>
</tr>
<tr>
<td>Lockout period (when threshold breached) : 10</td>
</tr>
<tr>
<td>Authentication order : radius tacplus local</td>
</tr>
<tr>
<td>User password history length : disabled</td>
</tr>
<tr>
<td>Accepted password length : 6..56 characters</td>
</tr>
<tr>
<td>Credits for each character type : none</td>
</tr>
<tr>
<td>Required character types : none</td>
</tr>
<tr>
<td>Minimum number different character types : 0</td>
</tr>
<tr>
<td>Required distance with previous password : 5</td>
</tr>
<tr>
<td>Allow consecutively repeating a character : always</td>
</tr>
<tr>
<td>Allow passwords containing username : yes</td>
</tr>
<tr>
<td>Palindrome allowed : no</td>
</tr>
</tbody>
</table>
===============================================================================
A:ALA-7#
### Table 33  Show Password Options Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days</td>
<td>Displays the number of days a user password is valid before the user must change their password.</td>
</tr>
<tr>
<td>Time required between password changes</td>
<td>Displays the time interval between changed passwords.</td>
</tr>
<tr>
<td>Number of invalid attempts permitted per login</td>
<td>Displays the number of unsuccessful login attempts allowed for the specified time.</td>
</tr>
<tr>
<td>Time in minutes per login attempt</td>
<td>Displays the period of time, in minutes, that a specified number of unsuccessful attempts can be made before the user is locked out.</td>
</tr>
<tr>
<td>Lockout period (when threshold breached)</td>
<td>Displays the number of minutes that the user is locked out if the threshold of unsuccessful login attempts has been exceeded.</td>
</tr>
<tr>
<td>Authentication order</td>
<td>Displays the sequence in which password authentication is attempted among RADIUS, TACACS+, and local passwords.</td>
</tr>
<tr>
<td>User password history length</td>
<td>Displays the size of the password history file to be stored.</td>
</tr>
<tr>
<td>Accepted password length</td>
<td>Displays the minimum length required for local passwords.</td>
</tr>
<tr>
<td>Credits for each character type</td>
<td>Displays the credit for each character type. A credit is obtained for a particular character type; for example, uppercase, lowercase, numeric, or special character. Credits per character type are configurable. Credits can be used towards the minimum length of the password, so a trade-off can be made between a very long, simple password and a short, complex one.</td>
</tr>
<tr>
<td>Required character types</td>
<td>Displays the character types that are required in a password; for example, uppercase, lowercase, numeric, or special character.</td>
</tr>
<tr>
<td>Minimum number different character types</td>
<td>Displays the minimum number of each different character types in a password.</td>
</tr>
<tr>
<td>Required distance with previous password</td>
<td>Displays the minimum Levenshtein distance between a new password and the old password.</td>
</tr>
<tr>
<td>Allow consecutively repeating a character</td>
<td>Displays the number of times the same character is allowed to be repeated consecutively.</td>
</tr>
</tbody>
</table>
per-peer-queuing

**Syntax**

`per-peer-queuing`

**Context**

`show>system>security`

**Description**

This command enables or disables CPMCFM hardware queuing per peer. TTL security only operates when per-peer-queuing is enabled.

**Output**

The following is an example of per peer queuing information.

Table 34 describes per-peer-queuing output fields.

---

### Table 34: Show Per-Peer-Queuing Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Peer Queuing</td>
<td>Displays the status (enabled or disabled) of CPM hardware queuing per peer.</td>
</tr>
<tr>
<td>Total Num of Queues</td>
<td>Displays the total number of hardware queues.</td>
</tr>
<tr>
<td>Num of Queues In Use</td>
<td>Displays the total number of hardware queues in use.</td>
</tr>
</tbody>
</table>

---

Sample Output

A:ALA-48# show system security per-peer-queuing

```

CPM Hardware Queuing

Per Peer Queuing : Enabled
Total Num of Queues: 8192
Num of Queues In Use: 2

A:ALA-48# configure
```
profile

Syntax  profile [user-profile-name]

Context  show>system>security

Description  This command displays user profile information.

If the profile-name is not specified, then information for all profiles are displayed.

Parameters  user-profile-name — Displays information for the specified user profile.

Output  The following is an example of user profile output information.

Table 35 describes user profile output fields.

Sample Output

A:ALA-7# show system security profile administrative
===============================================================================
User Profile
User Profile : administrative
Def. Action : permit-all
-------------------------------------------------------
Entry : 10
Description :
Match Command: configure system security
Action : permit
-------------------------------------------------------
Entry : 20
Description :
Match Command: show system security
Action : permit
-------------------------------------------------------
No. of profiles:
===============================================================================
A:ALA-7#

Table 35  Show User Profile Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Profile</td>
<td>Displays the profile name used to deny or permit user console access to a</td>
</tr>
<tr>
<td></td>
<td>hierarchical branch or to specific commands.</td>
</tr>
<tr>
<td>Def. action</td>
<td>Permit all — Permits access to all commands.  Deny — Denies access to all</td>
</tr>
<tr>
<td></td>
<td>commands.  None — No action is taken.</td>
</tr>
<tr>
<td>Entry</td>
<td>The entry ID in a policy or filter table.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the text string describing the entry.</td>
</tr>
</tbody>
</table>
source-address

Syntax  
source-address

Context  
show>system>security

Description  
This command displays source-address configured for applications.

Output  
The following is an example of source address output information.

Table 36 describes source address output fields.

Sample Output

A:SR-7# show system security source-address
================================================================================
Source-Address applications
--------------------------------------------------------------------------------
Application	IP address/Interface Name	Oper status
telnet        | 10.20.1.7                | Up        
radius        | loopback1                | Up        
================================================================================
A:SR-7#

Table 36  
Show Source Address Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Displays the source-address application.</td>
</tr>
<tr>
<td>IP address</td>
<td>Displays the source address IP address or interface name.</td>
</tr>
<tr>
<td>Interface Name</td>
<td></td>
</tr>
<tr>
<td>Oper status</td>
<td>Up: The source address is operationally up. Down: The source address is operationally down.</td>
</tr>
</tbody>
</table>
ssh

**Syntax**  ssh

**Context**  show>system>security

**Description**  This command displays all the SSH sessions as well as the SSH status and fingerprint. The type of SSH application (CLI, SCP, SFTP or NETCONF) is indicated for each SSH connection.

**Output**  The following is an example of SSH output information.

Table 37 describes SSH output fields

**Sample output**

*A:SwSim14>config>qos>sap-ingress>queue$ show system security ssh

=====================================================================================================  
SSH Server
=====================================================================================================  
Administrative State : Enabled
Operational State : Up
Preserve Key : Disabled
Key-re-exchange : 60 minutes / 1024 MB
SSH Protocol Version 1 : Disabled
SSH Protocol Version 2 : Enabled

Connection Username Version Cipher ServerName Status MAC Key-re-exchange
-----------------------------------------------------------------------------------------------------  
138.120.142.155 admin 2 aes128-ctr cli connected hmac-md5 60 minutes / 1024 MB
10.10.18.2 admin 2 aes128-ctr cli connected hmac-md5 15 minutes / 512 MB
-----------------------------------------------------------------------------------------------------

Number of SSH sessions : 1

---

<table>
<thead>
<tr>
<th><strong>Table 37</strong> Show System Security SSH Options Output Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Label</strong></td>
</tr>
<tr>
<td>------------</td>
</tr>
</tbody>
</table>
| Administrative State | Enabled: Displays that the SSH server is enabled.  
| | Disabled: Displays that the SSH server is disabled. |
| Operational State | Up: Displays that the SSH server is up.  
| | Down: Displays that the SSH server is down. |
| Preserve Key | Enabled: Displays that the preserve-key is enabled.  
| | Disabled: Displays that the preserve-key is disabled. |
### Table 37  Show System Security SSH Options Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-re-exchange</td>
<td>Displays maximum time elapsed and maximum mbytes transmitted before a key re-exchange is initiated.</td>
</tr>
<tr>
<td>SSH protocol version 1</td>
<td>Enabled: Displays that SSH1 is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled: Displays that SSH1 is disabled.</td>
</tr>
<tr>
<td>SSH protocol version 2</td>
<td>Enabled: Displays that SSH2 is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled: Displays that SSH2 is disabled.</td>
</tr>
<tr>
<td>Key fingerprint</td>
<td>The key fingerprint is the server’s identity. Clients trying to connect to the server verify the server's fingerprint. If the server fingerprint is not known, the client may not continue with the SSH session since the server might be spoofed.</td>
</tr>
<tr>
<td>Connection</td>
<td>The IP address of the connected routers (remote client).</td>
</tr>
<tr>
<td>Username</td>
<td>The name of the user.</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number.</td>
</tr>
<tr>
<td>Cipher</td>
<td>3des: A SSHv1 encryption method that allows proprietary information to be transmitted over untrusted networks.</td>
</tr>
<tr>
<td></td>
<td>3des-cbc: A SSHv2 encryption method.</td>
</tr>
<tr>
<td></td>
<td>aes128-cbc: A SSHv2 128-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>aes128-ctr: A SSHv2 128-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>aes192-cbc: A SSHv2 192-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>aes192-ctr: A SSHv2 192-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>aes256-cbc: A SSHv2 256-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>aes256-ctr: A SSHv2 256-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>arcfour: A SSHv2 encryption method.</td>
</tr>
<tr>
<td></td>
<td>des: A SSHv1 encryption method using a private (secret) key.</td>
</tr>
<tr>
<td></td>
<td>blowfish: A SSHv1 encryption method.</td>
</tr>
<tr>
<td></td>
<td>blowfish-cbc: A SSHv2 encryption method.</td>
</tr>
<tr>
<td></td>
<td>cast128-cbc: A SSHv2 1280-bit encryption method.</td>
</tr>
<tr>
<td></td>
<td>rijndael-cbc: A SSHv2 encryption method.</td>
</tr>
<tr>
<td>Server Name</td>
<td>The server name.</td>
</tr>
<tr>
<td>Status</td>
<td>connected: Displays that the SSH connection is connected.</td>
</tr>
<tr>
<td></td>
<td>disconnected: Displays that the SSH connection is disconnected.</td>
</tr>
</tbody>
</table>
**Table 37** Show System Security SSH Options Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>hmac-sha2-512: Displays that the SSH MAC algorithm used is hmac-sha2-512.</td>
</tr>
<tr>
<td></td>
<td>hmac-sha2-256: Displays that the SSH MAC algorithm used is hmac-sha2-256.</td>
</tr>
<tr>
<td></td>
<td>hmac-sha1: Displays that the SSH MAC algorithm used is hmac-sha1.</td>
</tr>
<tr>
<td></td>
<td>hmac-sha1-96: Displays that the SSH MAC algorithm used is hmac-sha1-96.</td>
</tr>
<tr>
<td></td>
<td>hmac-md5: Displays that the SSH MAC algorithm used is hmac-md5.</td>
</tr>
<tr>
<td></td>
<td>hmac-ripemd160: Displays that the SSH MAC algorithm used is hmac-ripemd160.</td>
</tr>
<tr>
<td></td>
<td>hmac-sha2-512: Displays that the SSH MAC algorithm used is hmac-sha2-512.</td>
</tr>
<tr>
<td></td>
<td>hmac-ripemd160-openssh-com: Displays that the SSH MAC algorithm used is hmac-ripemd160-openssh-com.</td>
</tr>
</tbody>
</table>

| Number of SSH sessions | The total number of SSH sessions. |

**user**

**Syntax**
```
user [user-id] [detail]
user [user-id] lockout
```

**Context**
```
show>system>security
```

**Description**
This command displays user registration information.

If no command line options are specified, summary information for all users displays.

**Parameters**
- **user-id** — Displays information for the specified user.
  - **Default** All users
  - **detail** — Displays detailed user information to the summary output.
  - **lockout** — Displays information about any users who are currently locked out.

**Output**
The following is an example of user output information.

Table 38 describes user output fields.
show system security user
===============================================================================
Users
===============================================================================
user id  need user permissions password attempted failed local
new pwd  console ftp snmp expires logins logins conf
===============================================================================
admin  n  y  n  n  never  21  0  y
===============================================================================
show system security user detail
===============================================================================
Users
===============================================================================
user id  need user permissions password attempted failed local
new pwd  console ftp snmp expires logins logins conf
===============================================================================
admin  n  y  n  n  never  21  0  y
===============================================================================
User Configuration Detail
===============================================================================
user id : admin
===============================================================================
console parameters
===============================================================================
new pw required : no  cannot change pw : no
home directory : cf3: \  
restricted to home : no
login exec file :
profile : administrative
===============================================================================
show system security user detail
===============================================================================
Users
===============================================================================
User ID  New User Permissions  Password  Login  Failed  Local  Pwd  console  ftp  li  snmp  netconf  grpc  Expires  Attempt  Logins  Conf
===============================================================================
admin  n  y  y  n  y  y  n  never  9  0  y
===============================================================================
Number of users : 1
===============================================================================
User Configuration Detail
===============================================================================
user id : admin
===============================================================================
console parameters
===============================================================================
new pw required : no  cannot change pw : no
home directory :
restricted to home : no
login exec file :
profile : default
profile : administrative
locked-out : no

snmp parameters

show system security user lockout

Currently Failed Login Attempts

User ID Remaining Login attempts Remaining Lockout Time (min:sec)

jason123 N/A 9:56

Number of users : 1

Table 38  Show System Security User Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>The name of a system user.</td>
</tr>
<tr>
<td>Users</td>
<td></td>
</tr>
<tr>
<td>New Pwd</td>
<td>y — The user must change their password at the next login. n — The user does not need to change their password at the next login.</td>
</tr>
</tbody>
</table>
| User Permissions | console:  
|               | y — The user is authorized for console access. n — The user is not authorized for console access.  
|               | ftp:  
|               | y — The user is authorized for FTP access. n — The user is not authorized for FTP access.  
|               | li:  
|               | y — The user is authorized for LI access. n — The user is not authorized for LI access.  
|               | snmp:  
|               | y — The user is authorized for SNMP access. n — The user is not authorized for SNMP access.  
|               | netconf:  
|               | y — The user is authorized for NETCONF access. n — The user is not authorized for NETCONF access.  
|               | grpc:  
|               | y — The user is authorized for gRPC access. n — The user is not authorized for gRPC access.  |
### Table 38  Show System Security User Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password Expires</td>
<td>The number of days after which the user must change their password.</td>
</tr>
<tr>
<td>Login Attempt</td>
<td>The number of times that the user has attempted to log in, irrespective of whether the login succeeded or failed.</td>
</tr>
<tr>
<td>Failed Logins</td>
<td>The number of unsuccessful login attempts.</td>
</tr>
<tr>
<td>Local Conf</td>
<td>y — Password authentication is based on the local password database.</td>
</tr>
<tr>
<td></td>
<td>n — Password authentication is not based on the local password database.</td>
</tr>
<tr>
<td>Number of users</td>
<td>The total number of listed users.</td>
</tr>
<tr>
<td><strong>User Configuration Detail</strong></td>
<td></td>
</tr>
<tr>
<td>new pw required</td>
<td>yes — The user must change their password at the next login.</td>
</tr>
<tr>
<td></td>
<td>no — The user does not need to change their password at the next login.</td>
</tr>
<tr>
<td>cannot change pw</td>
<td>yes — The user does not have the ability to change their password.</td>
</tr>
<tr>
<td></td>
<td>no — The user has the ability to change their password.</td>
</tr>
<tr>
<td>home directory</td>
<td>The local home directory for the user for both console and FTP access.</td>
</tr>
<tr>
<td>restricted to home</td>
<td>yes — The user is not allowed to navigate to a directory higher in the directory tree on the home directory device.</td>
</tr>
<tr>
<td></td>
<td>no — The user is allowed to navigate to a directory higher in the directory tree on the home directory device.</td>
</tr>
<tr>
<td>login exec file</td>
<td>The user’s login exec file which executes whenever the user successfully logs in to a console session.</td>
</tr>
<tr>
<td>profile</td>
<td>The security profiles associated with the user.</td>
</tr>
<tr>
<td>locked-out</td>
<td>Whether the user is currently locked out, and, if they are locked out, how much time remains before the user can attempt to log into the node again.</td>
</tr>
<tr>
<td><strong>Currently Failed Login Attempts</strong></td>
<td></td>
</tr>
<tr>
<td>Remaining Login Attempts</td>
<td>The number of login attempts remaining before the user is locked out.</td>
</tr>
<tr>
<td>Remaining Lockout Time (min:sec)</td>
<td>The number of minutes and seconds remaining until the lockout expires and the user can attempt to log in again.</td>
</tr>
</tbody>
</table>
With the introduction of the PKI on an SR (SSH Server) the authentication process can be
done via PKI or password. SSH client usually authenticate via PKI and password if PKI is
configured on the client. In this case PKI takes precedence over password in most clients.
All client authentications are logged and display in the show>system>security>user detail.
Table 39 shows the rules where pass and fail attempts are logged.

**Table 39 Pass/Fail Login Attempts**

<table>
<thead>
<tr>
<th>Authentication Order</th>
<th>Client (such as, putty)</th>
<th>Server (such as, SR)</th>
<th>CLI Show System Security Attempts (SR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Private Key Programmed</td>
<td>Public Key Configured</td>
<td>Password Configured</td>
</tr>
<tr>
<td>1. Public Key</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
<tr>
<td>2. Password</td>
<td>Yes</td>
<td>Yes (No match between client and server. Go to password.)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
<tr>
<td>1. Public Key (only)</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes (No match between client and server. Go to password.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increment</td>
</tr>
</tbody>
</table>

**view**

**Syntax**

view [view-name] [detail]

**Context**

show>system>security

**Description**

This command displays the SNMP MIB views.

**Parameters**

- view-name — Specifies the name of the view to display output. If no view name is specified, the complete list of views displays.
- detail — Displays detailed view information.

**Output**

The following is an example of SNMP MIB view information.
Table 40 describes show view output fields.

**Sample Output**

A:ALA-48# show system security view

```
Views

<table>
<thead>
<tr>
<th>View name</th>
<th>oid tree</th>
<th>mask</th>
<th>permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso</td>
<td>1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>read1</td>
<td>1.1.1.1</td>
<td>11111111</td>
<td>included</td>
</tr>
<tr>
<td>write1</td>
<td>2.2.2.2</td>
<td>11111111</td>
<td>included</td>
</tr>
<tr>
<td>testview</td>
<td>1</td>
<td>11111111</td>
<td>included</td>
</tr>
<tr>
<td>testview</td>
<td>1.3.6.1.2</td>
<td></td>
<td>excluded</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.2</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.4</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.5</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.6</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.7</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.31</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.2.1.77</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.4.1.6527.3.1.2.3.7</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>mgmt-view</td>
<td>1.3.6.1.4.1.6527.3.1.2.3.11</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.2</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.4</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.5</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.6</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.7</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.15</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.23</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.31</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.68</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.2.1.77</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.4.1.6527.3.1.2.3.7</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.4.1.6527.3.1.2.3.11</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>vprn-view</td>
<td>1.3.6.1.4.1.6527.3.1.2.20.1</td>
<td></td>
<td>included</td>
</tr>
<tr>
<td>no-security</td>
<td>1</td>
<td>included</td>
<td></td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3</td>
<td>excluded</td>
<td></td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.10.2.1</td>
<td>included</td>
<td></td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.11.2.1</td>
<td>included</td>
<td></td>
</tr>
<tr>
<td>no-security</td>
<td>1.3.6.1.6.3.15.1.1</td>
<td>included</td>
<td></td>
</tr>
<tr>
<td>on-security</td>
<td>2</td>
<td>00000000</td>
<td>included</td>
</tr>
</tbody>
</table>
```

No. of Views: 33

A:ALA-48#

**Table 40 Show View Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>view name</td>
<td>The name of the view. Views control the accessibility of a MIB object within the configured MIB view and subtree.</td>
</tr>
<tr>
<td>oid tree</td>
<td>The object identifier of the ASN.1 subtree.</td>
</tr>
</tbody>
</table>
Table 40  Show View Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask</td>
<td>The bit mask that defines a family of view subtrees.</td>
</tr>
<tr>
<td>permission</td>
<td>Indicates whether each view is included or excluded</td>
</tr>
<tr>
<td>No. of Views</td>
<td>Displays the total number of views.</td>
</tr>
</tbody>
</table>

certificate

Syntax certificate
Context show
Description This command displays certificate information.

ca-profile

Syntax ca-profile
Syntax ca-profile name [association]
Context show>certificate
Description This command shows certificate-authority profile information.
Parameters name — Specifies the name of the Certificate Authority (CA) profile.
association — Displays associated CA profiles.

ocsp-cache

Syntax ocsp-cache [entry-id]
Context show>certificate
Description This command displays the current cached OCSP results. The output includes the following information:
Certificate issuer
Certificate serial number
OCSP result
Cache entry expire time
Parameters  

**entry-id** — Specifies the local cache entry identifier of the certificate that was validated by the OCSP responder.

### statistics

**Syntax**  

```
statistics
```

**Context**  

```
show>certificate
```

**Description**  

This command shows certificate related statistics.

### 2.11.2.1.2 Login Control

#### users

**Syntax**  

```
users
```

**Context**  

```
show
```

**Description**  

Displays console user login and connection information.

**Output**  

The following is an example of user information.

*Table 41 describes show users output fields.*

**Sample Console Users Output**

```
A:ALA-7# show users
==
User Type From Login time Idle time
==
testuser Console -- 21FEB2007 04:58:55 0d 00:00:00 A
--
Number of users : 1
'A' indicates user is in admin mode
==
A:ALA-7#
```

**Table 41**  

**Show Users Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>The user name.</td>
</tr>
<tr>
<td>Type</td>
<td>The user is authorized this access type.</td>
</tr>
<tr>
<td>From</td>
<td>The originating IP address.</td>
</tr>
</tbody>
</table>
## 2.11.2.2 Clear Commands

### statistics

**Syntax**

```
statistics [interface ip-int-name | ip-address]
```

**Context**

clear>router>authentication

**Description**

This command clears authentication statistics.

**Parameters**

- `ip-int-name` — Clears the authentication statistics for the specified interface name. If the string contains special characters (#, $, spaces, and so on), the entire string must be enclosed within double quotes.
- `ip-address` — Clears the authentication statistics for the specified IP address.

### ip-filter

**Syntax**

```
ip-filter [entry entry-id]
```

**Context**

clear>cpm-filter

**Description**

This command clears IP filter statistics.

**Parameters**

- `entry-id` — Specifies a particular CPM IP filter entry.
  
  **Values**
  
  1 to 2048

### ipv6-filter

**Syntax**

```
ipv6-filter [entry entry-id]
```

**Context**

clear>cpm-filter

**Description**

This command clears IPv6 filter statistics.
Parameters  

*entry-id* — Specifies a particular CPM IP filter entry.

**Values**  
1 to 2048

### mac-filter

**Syntax**  
mac-filter [entry entry-id]

**Context**  
clear>cpm-filter

**Description**  
This command clears MAC filter statistics.

**Parameters**  
*entry-id* — Specifies a particular CPM MAC filter entry.

**Values**  
1 to 2048

### ipv6-filter

**Syntax**  
ipv6-filter [entry entry-id]

**Context**  
clear>cpm-filter

**Description**  
This command clears IPv6 filter information and only applies to the 7750 SR and 7950 XRS.

**Parameters**  
*entry-id* — Specifies a particular CPM IPv6 filter entry.

**Values**  
1 to 2048

### 2.11.2.2.1 CPU Protection Commands

### cpu-protection

**Syntax**  
cpu-protection

**Context**  
clear

**Description**  
This command enables the context to clear CPU protection data.

### excessive-sources

**Syntax**  
excessive-sources

**Context**  
clear>cpu-protection

**Description**  
This command clears the records of sources exceeding their per-source rate limit.
protocol-protection

Syntax  protocol-protection
Context  clear>cpu-protection
Description  This command clears the interface counts of packets dropped by protocol protection.

violators

Syntax  violators [port][interface][sap]
Context  clear>cpu-protection
Description  This command clears the rate limit violator record.
Parameters  port — Clears entries for ports.
interface — Clears entries for interfaces.
sap — Clears entries for SAPs.

cpm-queue

Syntax  cpm-queue queue-id
Context  clear
Description  This command clears CPM queue information.
Parameters  queue-id — Specifies the CPM queue ID.
Values  33 to 2000

radius-proxy-server

Syntax  radius-proxy-server server-name statistics
Context  clear>router
Description  This command clears RADIUS proxy server data.
Parameters  server-name — Specifies the proxy server name.
statistics — Clears statistics for the specified server.
2.11.2.3 Debug Commands

radius

Syntax    radius [detail] [hex]
no radius
Context    debug
Description This command enables debugging for RADIUS connections.
The no form of the command disables the debug output.
Parameters detail — Displays detailed output.
hex — Displays the packet dump in hex format.

ocsp

Syntax    [no] ocsp
Context    debug
Description This command enables debug output of OCSP protocol for the CA profile.
The no form of the command disables the debug output.

ca-profile

Syntax    [no] ca-profile profile-name
Context    debug>ocsp
Description This command enables debug output of a specific CA profile.
The no form of the command disables the debug output.

2.11.2.4 Tools Commands

dist-cpu-protection

Syntax    dist-cpu-protection
Context
tools>perform>security
tools>dump>security

Description
This command displays to release Distributed CPU Protection parameters and status at the per card and forwarding plane level.

release-hold-down

Syntax
release-hold-down interface interface-name [protocol protocol] [static-policer name]
release-hold-down sap sap-id [protocol protocol] [static-policer name]

Context
tools>perform>security>dist-cpu-protection

Description
This command is used to release a Distributed CPU Protection (DCP) policer from a hold-down countdown (or indefinite hold-down if configured as such).

Parameters
interface interface-name — Specifies Router interface name.
sap sap-id — Specifies sap identifier.
protocol protocol — Specifies DCP protocol name (for example, arp, dhcp)
static-policer name — Specifies DCP static policer name as defined in the DCP policy.

violators

Syntax
violators enforcement {sap | interface} card slot-number [fp fp-number]
violators local-monitor {sap | interface} card slot-number [fp fp-number]

Context
tools>dump>security>dist-cpu-protection

Description
This command shows the non-conformant enforcement policers and local monitors.

Parameters
sap — Indicates to display the violators associated with SAPs
interface — Indicates to display the violators associated with router interfaces.
enforcement — Shows exceed and hold-down for Static and Dynamic Policers.
local-monitor — Shows state of dynamic policer allocation for Local Monitoring Policers.
card slot-number — The physical slot number for the card.
Values 1 to n (n is platform dependent)
fp fp-number — Identifies the instance of the FP (FastPath) chipset. Some cards have a single FP (for example, an IOM3-XP) and some cards can contain multiple FPs (for example, an XCM can house two FPs via its two XMAs).
Values 1 to 2

Output
Users Output
Table 42 describes show users output fields.

**Table 42 Output Parameters**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The name of the router interface</td>
</tr>
<tr>
<td>Policer/Protocol</td>
<td>The configured name of the static policer (indicated with an [S]) or the DCP protocol name for a dynamic policer (indicated with a [D]).</td>
</tr>
<tr>
<td>[S] / [D]</td>
<td>indicates a static vs dynamic policer</td>
</tr>
<tr>
<td>Hld Rem</td>
<td>The remaining time in the hold-down countdown during which a policer is treating all packets as exceeding.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:Dut-A# tools dump security dist-cpu-protection violators enforcement interface
card 4 fp 1

Distributed Cpu Protection Current Interface Enforcer Policer Violators

Interface Policer/Protocol Hld Rem

Violators on Slot-4 Fp-1

test staticArpPolicer [S] none
 test icmp [D] none
 test ospf [D] none

[S]-Static [D]-Dynamic [M]-Monitor

```

### 2.11.2.5 Admin Commands

**clear lockout**

- **Syntax**: `clear lockout {user name | all}`
- **Context**: `admin>user`
- **Description**: This command is used to clear any lockouts for a specific user, or for all users.
- **Parameters**: `name` — Specifies locked username.
### clear password-history

**Syntax**  
```
clear password-history (user name | all)
```

**Context**  
```
admin>user
```

**Description**  
This command is used to clear old passwords used by a specific user, or for all users.

**Parameters**  
- `name` — Specifies username.
3 SNMP

3.1 SNMP Overview

This section provides an overview of the Simple Network Management Protocol (SNMP).

3.1.1 SNMP Architecture

The Service Assurance Manager (SAM) is comprised of two elements: managers and agents. The manager is the entity through which network management tasks are facilitated. Agents interface managed objects. Managed devices, such as bridges, hubs, routers, and network servers can contain managed objects. A managed object can be a configuration attribute, performance statistic, or control action that is directly related to the operation of a device.

Managed devices collect and store management information and use Simple Network Management Protocol (SNMP). SNMP is an application-layer protocol that provides a message format to facilitate communication between SNMP managers and agents. SNMP provides a standard framework to monitor and manage devices in a network from a central location.

An SNMP manager controls and monitors the activities of network hosts which use SNMP. An SNMP manager can obtain (get) a value from an SNMP agent or store (set) a value in the agent. The manager uses definitions in the management information base (MIB) to perform operations on the managed device such as retrieving values from variables or blocks of data, replying to requests, and processing traps.

Between the SNMP agent and the SNMP manager the following actions can occur:

- The manager can get information from the agent.
- The manager can set the value of a MIB object that is controlled by an agent.
- The agent can send traps to notify the manager of significant events that occur on the router.
3.1.2 Management Information Base

A MIB is a formal specifications document with definitions of management information used to remotely monitor, configure, and control a managed device or network system. The agent’s management information consists of a set of network objects that can be managed with SNMP. Object identifiers are unique object names that are organized in a hierarchical tree structure. The main branches are defined by the Internet Engineering Task Force (IETF). When requested, the Internet Assigned Numbers Authority (IANA) assigns a unique branch for use by a private organization or company. The branch assigned to Nokia (TiMetra) is 1.3.6.1.4.1.6527.

The SNMP agent provides management information to support a collection of IETF specified MIBs and a number of MIBs defined to manage device parameters and network data unique to Nokia’s router.

3.1.3 SNMP Protocol Operations

Between the SNMP agent and the SNMP manager the following actions can occur:

- The manager can get information from the agent.
- The manager can set the value of a MIB object that is controlled by an agent.
- The agent notifies the manager of significant events that occur on the router.

3.1.4 SNMP Versions

The agent supports multiple versions of the SNMP protocol.

- SNMP Version 1 (SNMPv1) is the original Internet-standard network management framework. SNMPv1 uses a community string match for authentication.
- The OS implementation uses SNMPv2c, the community-based administrative framework for SNMPv2. SNMPv2c uses a community string match for authentication.
- In SNMP Version 3 (SNMPv3), USM defines the user authentication and encryption features. View Access Control MIB (VACM) defines the user access control features. The SNMP-COMMUNITY-MIB is used to associate SNMPv1/ SNMPv2c community strings with SNMPv3 VACM access control. SNMPv3 uses a username match for authentication.
3.1.5 Management Information Access Control

By default, the OS implementation of SNMP uses SNMPv3. SNMPv3 incorporates security model and security level features. A security model is the authentication type for the group and the security level is the permitted level of security within a security model. The combination of the security level and security model determines which security mechanism handles an SNMP packet.

To implement SNMPv1 and SNMPv2c configurations, several access groups are predefined. These access groups provide standard read-only, read-write, and read-write-all access groups and views that can simply be assigned community strings. In order to implement SNMP with security features, security models, security levels, and USM communities must be explicitly configured. Optionally, additional views which specify more specific OIDs (MIB objects in the subtree) can be configured.

Access to the management information in an SNMPv1/SNMPv2c agent is controlled by the inclusion of a community name string in the SNMP request. The community defines the sub-set of the agent’s managed objects can be accessed by the requester. It also defines what type of access is allowed: read-only or read-write.

The use of community strings provide minimal security and context checking for both agents and managers that receive requests and initiate trap operations. A community string is a text string that acts like a password to permit access to the agent on the router.

Nokia’s implementation of SNMP has defined three levels of community-named access:

- Read-Only permission — Grants only read access to objects in the MIB, except security objects.
- Read-Write permission — Grants read and write access to all objects in the MIB, except security objects.
- Read-Write-All permission — Grants read and write access to all objects in the MIB, including security objects.

3.1.6 User-Based Security Model Community Strings

User-based security model (USM) community strings associates a community string with an SNMPv3 access group and its view. The access granted with a community string is restricted to the scope of the configured group.
### 3.1.7 Views

Views control the access to a managed object. The total MIB of a router can be viewed as a hierarchical tree. When a view is created, either the entire tree or a portion of the tree can be specified and made available to a user to manage the objects contained in the subtree. Object identifiers (OIDs) uniquely identify managed objects. A view defines the type of operations for the view such as read, write, or notify.

OIDs are organized in a hierarchical tree with specific values assigned to different organizations. A view defines a subset of the agent’s managed objects controlled by the access rules associated with that view.

The following system-provisioned views are available through the `config>system>security>snmp# view` context, which are particularly useful when configuring SNMPv1 and SNMPv2c:

- **“iso” view**—intended for administrative-type access to the entire supported object tree (except Lawful Interception)
- **“no-security” view**—similar to “iso” view, but removes access to several security areas of the object tree (such as SNMP communities, user and profile configuration, SNMP engine ID, and so on). The “no-security” view is generally recommended over the “iso” view to reduce access to security objects.
- **“li-view” view**—provides access to a small set of Lawful Interception related objects
- **“mgmt-view” view**—provides access to IF-MIB and a few other basics
- **“vprn-view” view**—used to limit access to objects associated with a specific VPRN (for example, the Per-VPRN Logs and SNMP Access feature)

The Nokia SNMP agent associates SNMPv1 and SNMPv2c community strings with a SNMPv3 view.

### 3.1.8 Access Groups

Access groups associate a user group and a security model to the views the group can access. An access group is defined by a unique combination of a group name, security model (SNMPv1, SNMPv2c, or SNMPv3), and security level (no-authorization-no-privacy, authorization-no-privacy, or privacy).

An access group, in essence, is a template which defines a combination of access privileges and views. A group can be associated to one or more network users to control their access privileges and views.
When configuring access groups, the “no-security” view is generally recommended over the “iso” view in order to restrict access to security objects.

A set of system-provisioned access groups and system-created communities are available in SR OS. The system-provisioned groups and communities that begin with “cli-” are only used for internal CLI management purposes and are not exposed to external SNMP access.

Additional access parameters must be explicitly configured if the preconfigured access groups and views for SNMPv1 and SNMPv2c do not meet your security requirements.

3.1.9 Users

By default, authentication and encryption parameters are not configured. Authentication parameters which a user must use in order to be validated by the router can be modified. SNMP authentication allows the device to validate the managing node that issued the SNMP message and determine if the message has been tampered with.

User access and authentication privileges must be explicitly configured. In a user configuration, a user is associated with an access group, which is a collection of users who have common access privileges and views (see Access Groups).

3.1.10 Per-VPRN Logs and SNMP Access

Configuration of VPRN-specific logs (with VPRN-specific syslog destinations, SNMP trap, notification groups, and so on) is supported in addition to the global logs configured under `config>log`. The event streams for VPRN logs contain only events that are associated with the particular VPRN.

Each VPRN service can be configured with a set of SNMP v1/v2c community strings. These communities are mapped to the default “snmp-vprn” and “snmp-vprn-ro” views, which limit SNMP access to objects associated with a specific VPRN. For example, walking the ifTable (IF-MIB) using the community configured for VPRN 5 will return counters and status for VPRN 5.
3.1.11 Per-SNMP Community Source IP Address Validation

SNMPv1 and SNMPv2c requests can be validated against per-snmp-community whitelists (src-access-list) of configured source IPv4 and IPv6 addresses. Source IP address lists can be configured and then associated with an SNMP community.

SNMPv1 and SNMPv2c requests that fail the source IP address and community validation checks are discarded and are logged as SNMP event 2003 authenticationFailure (suppressed by default under "event-control").
3.2 SNMP Versions

SNMPv1 and SNMPv2c do not provide security, authentication, or encryption. Without authentication, a non-authorized user could perform SNMP network management functions and eavesdrop on management information as it passes from system to system. Many SNMPv1 and SNMPv2c implementations are restricted read-only access, which, in turn, reduces the effectiveness of a network monitor in which network control applications cannot be supported.

To implement SNMPv3, an authentication and encryption method must be assigned to a user in order to be validated by the router. SNMP authentication allows the router to validate the managing node that issued the SNMP message and determine if the message was tampered with.

Figure 14 depicts the configuration requirements to implement SNMPv1/SNMPv2c, and SNMPv3.
Figure 14   SNMPv1 and SNMPv2c Configuration and Implementation Flow

Start

SNMPv3?

Yes

Yes

Use Predefined Access Group Configuration?

No

No

Configure Community String with R, RW, RWA Access (SNMPv1 & SNMPv2cONLY)

Configure Views

Configure Access Groups

Configure USM Community

Exit

Configure Views

Configure Access Groups

Configure SNMP Users

al_0203
3.3 Configuration Notes

This section describes SNMP configuration restrictions.

3.3.1 General

• To avoid management systems attempting to manage a partially booted system, SNMP will remain in a shut down state if the configuration file fails to complete during system startup. While shutdown, SNMP gets and sets are not processed. However, notifications are issued if an SNMP trap group has been configured.

In order to enable SNMP, the portions of the configuration that failed to load must be initialized properly. Start SNMP with the `config>system>snmp>no shutdown` CLI command.

• Use caution when changing the SNMP engine ID. If the SNMP engine ID is changed in the `config>system>snmp>engineID engine-id context, the current configuration must be saved and a reboot must be executed. If not, the previously configured SNMP communities and logger trap-target notify communities will not be valid for the new engine ID.
3.4 Configuring SNMP with CLI

This section provides information about configuring SNMP with CLI.

3.4.1 SNMP Configuration Overview

This section describes how to configure SNMP components which apply to SNMPv1 and SNMPv2c, and SNMPv3 on the router.

3.4.1.1 Configuring SNMPv1 and SNMPv2c

Nokia routers are based on SNMPv3. To use the routers with SNMPv1 and/or SNMPv2c, SNMP community strings must be configured. Three pre-defined access methods are available when SNMPv1 or SNMPv2c access is required. Each access method (r, rw, or rwa) is associated with an SNMPv3 access group that determines the access privileges and the scope of managed objects available. The community command is used to associate a community string with a specific access method and the required SNMP version (SNMPv1 or SNMPv2c). The access methods are:

- Read-Only — Grants read only access to the entire management structure with the exception of the security area.
- Read-Write — Grants read and write access to the entire management structure with the exception of the security area.
- Read-Write-All — Grants read and write access to the entire management structure, including security.

If the predefined access groups do not meet your access requirements, then additional access groups and views can be configured. The usm-community command is used to associate an access group with an SNMPv1 or SNMPv2c community string.

SNMP trap destinations are configured in the config>log>snmp-trap-group context.

3.4.1.2 Configuring SNMPv3

The OS implements SNMPv3. If security features other than the default views are required, then the following parameters must be configured:
• Configure views
• Configure access groups
• Configure SNMP users

### 3.4.2 Basic SNMP Security Configuration

This section provides information to configure SNMP parameters and provides examples of common configuration tasks. The minimal SNMP parameters are:

For SNMPv1 and SNMPv2c:

- Configure community string parameters.

For SNMPv3:

- Configure view parameters
- Configure SNMP group
- Configure access parameters
- Configure user with SNMP parameters

The following displays SNMP default views, access groups, and attempts parameters.

```
A:ALA-1>config>system>security>snmp# info detail
--
 view iso subtree 1
 mask ff type included
 exit
 view no-security subtree 1
 mask ff type included
 exit
 view no-security subtree 1.3.6.1.6.3
 mask ff type excluded
 exit
 view no-security subtree 1.3.6.1.6.3.10.2.1
 mask ff type included
 exit
 view no-security subtree 1.3.6.1.6.3.11.2.1
 mask ff type included
 exit
 view no-security subtree 1.3.6.1.6.3.15.1.1
 mask ff type included
 exit
 access group snmp-ro security-model snmpv1 security-level no-auth-no-privacy read no-security notify no-security
 access group snmp-ro security-model snmpv2c security-level no-auth-no-privacy read no-security notify no-security
 access group snmp-rw security-model snmpv1 security-level no-auth-no-privacy
```
privacy read no-security write no-security notify no-security
access group snmp-rw security-model snmpv2c security-level no-auth-no-
privacy read no-security write no-security notify no-security
access group snmp-rwa security-model snmpv1 security-level no-auth-no-
privacy read iso write iso notify iso
access group snmp-rwa security-model snmpv2c security-level no-auth-no-
privacy read iso write iso notify iso
access group snmp-trap security-model snmpv1 security-level no-auth-
o-privacy notify iso
access group snmp-trap security-model snmpv2c security-level no-auth-
o-privacy notify iso
attempts 20 time 5 lockout 10

3.4.3 Configuring SNMP Components

3.4.3.1 Configuring a Community String

SNMPv1 and SNMPv2c community strings are used to define the relationship between an SNMP manager and agent. The community string acts like a password to permit access to the agent. The access granted with a community string is restricted to the scope of the configured group.

One or more of these characteristics associated with the string can be specified:

• Read-only, read-write, and read-write-all permission for the MIB objects accessible to the community.
• The SNMP version, SNMPv1 or SNMPv2c.

Default access features are pre-configured by the agent for SNMPv1/SNMPv2c.

Use the following CLI syntax to configure community options:

```
config>system>security>snmp
community community-string access-permissions [version SNMP version]
```

The following displays an SNMP community configuration example:

```
*A:cses-Al3>config>system>security>snmp# info
--
community "uTdc9j48PBRkxn5DcSjchk" hash2 rwa version both
community "Lla.RtAyRW2" hash2 r version v2c
community "r0a159kR0fg" hash2 r version both
--
*A:cses-Al3>config>system>security>snmp#
```
3.4.3.2 Configuring View Options

Use the following CLI syntax to configure view options:

**CLI Syntax:**
```
config>system>security>snmp
view view-name subtree oid-value
mask mask-value [type {included|excluded}]
```

The following displays a view configuration example:

```
*A:cses-A13>config>system>security>snmp# info

view "testview" subtree "1"
 mask ff
exit
view "testview" subtree "1.3.6.1.2"
 mask ff type excluded
exit
community "uTdc9j48PBRkxn5DcSjchk" hash2 rwa version both
community "Lla.RtAyRW2" hash2 r version v2c
community "r0a159kTOFg" hash2 r version both

*A:cses-A13>config>system>security>snmp#
```

3.4.3.3 Configuring Access Options

The **access** command creates an association between a user group, a security model and the views that the user group can access. Access must be configured unless security is limited to the preconfigured access groups and views for SNMPv1 and SNMPv2. An access group is defined by a unique combination of the group name, security model and security level.

Use the following CLI syntax to configure access features:

**CLI Syntax:**
```
config>system>security>snmp
access group group-name security-model security-model
security-level security-level [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]
```

The following displays an access configuration with the view configurations.

```
*A:cses-A13>config>system>security>snmp# info

view "testview" subtree "1"
 mask ff
exit
view "testview" subtree "1.3.6.1.2"
 mask ff type excluded

*A:cses-A13>config>system>security>snmp#
```
exit

access group "test" security-model usm security-level auth-no-pr
ivacy read "testview" write "testview" notify "testview"
community "uTdc9j48PBKxn5DcSk" hash2 rwa version both
community "Lla.RtAyRW2" hash2 r version v2c
community "r0a159xKt0fg" hash2 r version both

-----------------------------------------------
*A:cses-A13>config>system>security>snmp#

Use the following CLI syntax to configure user group and authentication parameters:

**CLI Syntax:**
```
config>system>security# user user-name
 access [ftp] [snmp] [console]
 snmp
 authentication [none] | [hash]{md5 key | sha key}
 privacy {none | des-key | aes-128-cfb-key key}
 group group-name
```

The following displays a user's SNMP configuration example.
```
A:ALA-1>config>system>security# info

user "testuser"
access snmp
snmp
 authentication hash md5 e14672e71d3e96e7a1e19472527ee969 privacy none
group testgroup
exit
exit
...

A:ALA-1>config>system>security#
```

### 3.4.3.4 Configuring USM Community Options

User-based security model (USM) community strings associate a community string with an SNMPv3 access group and its view. The access granted with a community string is restricted to the scope of the configured group.

By default, the OS implementation of SNMP uses SNMPv3. However, to implement SNMPv1 and SNMPv2c, USM community strings must be explicitly configured.

Use the following CLI syntax to configure USM community options:

**CLI Syntax:**
```
config>system>security>snmp
 usm-community community-string group group-name
```

The following displays a SNMP community configuration example:
The group **grouptest** was configured in the **config>system>security>snmp>access** CLI context.

### 3.4.3.5 Configuring Other SNMP Parameters

Use the following CLI syntax to modify the system SNMP options:

**CLI Syntax:**
```
config>system>snmp
engineID engine-id
general-port port
packet-size bytes
no shutdown
```

The following example displays the system SNMP default values:

```
A:ALA-104>config>system>snmp# info detail

shutdown
engineID "0000xxxx000000000xxxxx00"
packet-size 1500
general-port 161

A:ALA-104>config>system>snmp#
```
3.5 SNMP Configuration Command Reference

3.5.1 Command Hierarchies

- SNMP System Commands
- SNMP Security Commands

3.5.1.1 SNMP System Commands

config
  — system
    — snmp
      — engineID engine-id
      — no engineID
      — general-port port
      — no general-port
      — packet-size bytes
      — no packet-size
      — streaming
        — [no] shutdown
      — [no] shutdown

3.5.1.2 SNMP Security Commands

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services for information about configuring SNMP in a VPRN service.

config
  — system
    — security
      — snmp
        — access group group-name security-model security-model security-level security-level [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]
        — no access group group-name [security-model security-model] [security-level security-level] [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]
        — attempts [count] [ time minutes1] [ lockout minutes2]
        — no attempts
The following commands configure user-specific SNMP features. Refer to the Security section for CLI syntax and command descriptions.

```plaintext
cfg
 — system
 — security
 [no] user user-name
 [no] snmp
 — authentication [none] | [hash] md5 key-1 | sha key-1
 — privacy [none] | des-key | aes-128-cfb-key key-2
 — authentication group-name
 [no] group group-name
```

### 3.5.2 Command Descriptions

- SNMP System Commands
- SNMP Security Commands

#### 3.5.2.1 SNMP System Commands

**engineID**

<table>
<thead>
<tr>
<th><strong>Syntax</strong></th>
<th>[no] <strong>engineID</strong> engine-id</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Context</strong></td>
<td>config&gt;system&gt;snmp</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>This command sets the SNMP engineID to uniquely identify the SNMPv3 node. By default, the engineID is generated using information from the system backplane.</td>
</tr>
</tbody>
</table>
If SNMP engine ID is changed in the `config>system>snmp> engineID engine-id` context, the current configuration must be saved and a reboot must be executed. If not, the previously configured SNMP communities and logger trap-target notify communities will not be valid for the new engine ID.

Note: In conformance with IETF standard RFC 2274, *User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)*, hashing algorithms which generate SNMPv3 MD5 or SHA security digest keys use the engineID. Changing the SNMP engineID invalidates all SNMPv3 MD5 and SHA security digest keys and may render the node unmanageable.

When a chassis is replaced, use the engine ID of the first system and configure it in the new system to preserve SNMPv3 security keys. This allows management stations to use their existing authentication keys for the new system.

Ensure that the engine IDs are not used on multiple systems. A management domain can only have one instance of each engineID.

The no form of the command reverts to the default setting.

**Default**
The engine ID is system generated.

**Parameters**
- `engine-id` — Specifies an identifier from 10 to 64 hexadecimal digits (5 to 32 octet number), uniquely identifying this SNMPv3 node. This string is used to access this node from a remote host with SNMPv3.

**general-port**

**Syntax**
- `general-port port-number`
- `no general-port`

**Context**
`config>system>snmp`

**Description**
This command configures the port number used by this node to receive SNMP request messages and to send replies. SNMP notifications generated by the agent are sent from the port specified in the `config>log>snmp-trap-group>trap-target` CLI command.

The no form of the command reverts to the default value.

**Default**
general-port 161

**Parameters**
- `port-number` — Specifies port number used to send SNMP traffic other than traps.

**Values**
1 to 65535
packet-size

Syntax    packet-size bytes
no packet-size

Context config>system>snmp

Description This command configures the maximum SNMP packet size generated by this node.

The no form of this command restores the default value.

Default packet-size 1500

Parameters bytes — Specifies the SNMP packet size in bytes.

Values 484 to 9216

snmp

Syntax snmp

Context config>system

Description This command creates the context to configure SNMP parameters.

streaming

Syntax streaming

Context config>system>snmp

Description This command enables the proprietary SNMP request/response bundling and TCP-based transport mechanism for optimizing network management of the router nodes. In higher latency networks, synchronizing router MIBs from network management via streaming takes less time than synchronizing via classic SNMP UDP requests. Streaming operates on TCP port 1491 and runs over IPv4 or IPv6.

shutdown

Syntax [no] shutdown

Context config>system>snmp>streaming

Description This command administratively disables proprietary SNMP request/response bundling and TCP-based transport mechanism for optimizing network management of the router nodes.

The no form of the command administratively re-enables SNMP request/response bundling and TCP-based transport mechanism.
Default shutdown

shutdown

Syntax [no] shutdown

Context config>system>snmp

Description This command administratively disables SNMP agent operations. System management can then only be performed using the command line interface (CLI). Shutting down SNMP does not remove or change configuration parameters other than the administrative state. This command does not prevent the agent from sending SNMP notifications to any configured SNMP trap destinations. SNMP trap destinations are configured under the `config>log>snmp-trap-group` context.

This command is automatically invoked in the event of a reboot when the processing of the configuration file fails to complete or when an SNMP persistent index file fails while the `bof persist on` command is enabled.

The `no` form of the command administratively enables SNMP which is the default state.

Default no shutdown

3.5.2.2 SNMP Security Commands

access group

Syntax [no] access group group-name security-model security-model security-level security-level [context context-name [prefix-match]] [read view-name-1] [write view-name-2] [notify view-name-3]

Context config>system>security>snmp

Description This command creates an association between a user group, a security model, and the views that the user group can access. Access parameters must be configured unless security is limited to the preconfigured access groups and views for SNMPv1 and SNMPv2. An access group is defined by a unique combination of the group name, security model and security level.

Access groups are used by the usm-community command.

Access must be configured unless security is limited to SNMPv1/SNMPv2c with community strings (see the `community`).

Default access group configurations cannot be modified or deleted.
To remove the user group with associated, security model(s), and security level(s), use:

```
no access group group-name
```

To remove a security model and security level combination from a group, use:

```
no access group group-name security-model {snmpv1 | snmpv2c | usm} security-level {no-auth-no-privacy | auth-no-privacy | privacy}
```

**Parameters**

- **group-name** — Specify a unique group name up to 32 characters.
- **security-model {snmpv1 | snmpv2c | usm}** — Specifies the security model required to access the views configured in this node. A group can have multiple security models. For example, one view may only require SNMPv1/ SNMPv2c access while another view may require USM (SNMPv3) access rights.
- **security-level {no-auth-no-privacy | auth-no-privacy | privacy}** — Specifies the required authentication and privacy levels to access the views configured in this node.
- **security-level no-auth-no-privacy** — Specifies that no authentication and no privacy (encryption) is required. When configuring the user’s authentication, select the `none` option.
- **security-level auth-no-privacy** — Specifies that authentication is required but privacy (encryption) is not required. When this option is configured, both the `group` and the `user` must be configured for authentication.
- **security-level privacy** — Specifies that both authentication and privacy (encryption) is required. When this option is configured, both the `group` and the user must be configured for authentication. The user must also be configured for `privacy`.
- **context-name** — Specifies a set of SNMP objects that are associated with the context-name.
  - The `context-name` is treated as either a full context-name string or a context name prefix depending on the keyword specified (`exact` or `prefix`).
  - **prefix-match** — Specifies the context name `prefix-match` keywords, `exact` or `prefix`. This parameter applies only to the 7750 SR.
    - The VPRN context names begin with a vprn prefix. The numerical value is associated with the service ID that the VPRN was created with and identifies the service in the service domain. For example, when a new VPRN service is created such as `config>service>vprn 2345 customer 1`, a VPRN with context name vprn2345 is created.
    - The `exact` keyword specifies that an exact match between the context name and the prefix value is required. For example, when context vprn2345 exact is entered, matches for only vprn2345 are considered.
    - The `prefix` keyword specifies that only a match between the prefix and the starting portion of context name is required. If only the `prefix` keyword is specified, simple wildcard processing is used. For example, when context vprn prefix is entered, all vprn contexts are matched.
  - **Default** `exact`
view-name — Specifies the keyword and variable of the view to read the MIB objects. This command must be configured for each view to which the group has read access.

Default none

view-name — Specifies the keyword and variable of the view to configure the contents of the agent. This command must be configured for each view to which the group has write access.

Values Up to 32 characters

view-name — specifies keyword and variable of the view to send a trap about MIB objects. This command must be configured for each view to which the group has notify access.

Values none

attempts

Syntax attempts [count] [time minutes1] [lockout minutes2]

no attempts

Context config>system>security>snmp

Description This command configures a threshold value of unsuccessful SNMP connection attempts allowed in a specified time frame. The command parameters are used to counter denial of service (DoS) attacks through SNMP.

If the threshold is exceeded, the host is locked out for the lockout time period.

If multiple attempts commands are entered, each command overwrites the previously entered command.

The no form of the command restores the default values, in which 20 failed SNMP attempts are allowed in a 5 minute period with a 10 minute lockout for the host if exceeded.

Default attempts 20 time 5 lockout 10

Parameters count — Specifies the number unsuccessful SNMP attempts allowed for the specified time.

Values 1 to 64

minutes1 — Specifies period of time, in minutes, that a specified number of unsuccessful attempts can be made before the host is locked out.

Values 0 to 60

minutes2 — Specifies the lockout period in minutes where the host is not allowed to login. When the host exceeds the attempted count times in the specified time, then that host is locked out from any further login attempts for the configured time period.

Values 0 to 1440
community

Syntax  

    community community-string [hash | hash2] access-permissions [version SNMP-version] 
    [src-access-list list-name]

    no community community-string [hash | hash2]

Context  

    config>system>security>snmp

Description  

    This command creates SNMP community strings for SNMPv1 and SNMPv2c access. This 
    command is used in combination with the predefined access groups and views. To create 
    custom access groups and views and associate them with SNMPv1 or SNMPv2c access use 
    the usm-community command.

    When configured, community implies a security model for SNMPv1 and SNMPv2c only.

    For SNMPv3 security, the access group command must be configured.

    The no form of the command removes the specified community string.

Parameters  

    community-string — Configures the SNMPv1 and/or SNMPv2c community string.

    Values

    community-string — 32 characters maximum
    hash-key — 33 characters maximum
    hash2-key — 96 characters maximum

    hash — Specifies the key is entered in an encrypted form. If the hash or hash2 
    parameter is not used, the key is assumed to be in an unencrypted, clear text form. 
    For security, all keys are stored in encrypted form in the configuration file with the 
    hash or hash2 parameter specified

    hash2 — Specifies the key is entered in a more complex encrypted form that involves 
    more variables than the key value alone, meaning that the hash2 encrypted variable 
    cannot be copied and pasted. If the hash or hash2 parameter is not used, the key is 
    assumed to be in an unencrypted, clear text form. For security, all keys are stored in 
    encrypted form in the configuration file with the hash or hash2 parameter specified.

    access-permissions — Configures the access permissions for objects in the MIB.

    r — Grants only read access to objects in the MIB, except security objects, using the 
    internal "snmp-ro" access group and the "no-security" snmp view.

    rw — Grants read and write access to all objects in the MIB, using the internal "snmp- 
    rw" access group and the "no-security" snmp view.

    rwa — Grants read and write access to all objects in the MIB, including security, 
    using the internal snmp-rwa access group and the iso snmp view.

    mgmt — Assigns a unique SNMP community string for SNMP access via the 
    management router instance. This community uses the internal snmp-mgmt access 
    group and the mgmt snmp view.

    vpls-mgmt — Assigns a unique SNMP community string for SNMP access via the 
    vpls-management router instance. This community uses the internal snmp-vpls-
    mgmt access group and mgmt-view snmp view.
**version** \{v1 | v2c | both\} — Configures the scope of the community string to be for SNMPv1, SNMPv2c, or both SNMPv1 and SNMPv2c access.

**Default** both

**list-name** — Configures the community to reference a specific src-access-list, which will be used to validate the source IP address of all received SNMP requests that use this community. Multiple community, usm-community, or VPRN SNMP community instances can reference the same src-access-list.

### mask

**Syntax**

```
mask mask-value [type {included | excluded}]
```

**no mask**

**Context**

```
config>system>security>snmp(view view-name
```

**Description**

The mask value and the mask type, along with the oid-value configured in the view command, determines the access of each sub-identifier of an object identifier (MIB subtree) in the view.

Each bit in the mask corresponds to a sub-identifier position. For example, the most significant bit for the first sub-identifier, the next most significant bit for the second sub-identifier, and so on. If the bit position on the sub-identifier is available, it can be included or excluded.

For example, the MIB subtree that represents MIB-II is 1.3.6.1.2.1. The mask that catches all MIB-II would be 0xfc or 0b11111100.

Only a single mask may be configured per view and OID value combination. If more than one entry is configured, each subsequent entry overwrites the previous entry.

Per RFC 2575, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP), each MIB view is defined by two sets of view subtrees, the included view subtrees, and the excluded view subtrees. Every such view subtree, both the included and the excluded ones, are defined in this table. To determine if a particular object instance is in a particular MIB view, compare the object instance’s object identifier (OID) with each of the MIB view’s active entries in this table. If none match, then the object instance is not in the MIB view. If one or more match, then the object instance is included in, or excluded from, the MIB view according to the value of vacmViewTreeFamilyType in the entry whose value of vacmViewTreeFamilySubtree has the most sub-identifiers.

The no form of this command removes the mask from the configuration.

**Parameters**

**mask-value** — The mask value associated with the OID value determines whether the sub-identifiers are included or excluded from the view. (Default: all 1s)

The mask can be entered either:

- In hex. For example, 0xfc.
- In binary. For example, 0b11111100.
**type** — Specifies to include or exclude MIB subtree objects.

- **Values**
  - included - All MIB subtree objects that are identified with a 1 in the mask are available in the view.
  - excluded - All MIB subtree objects that are identified with a 1 in the mask are denied access in the view.

- **Default** included

---

**snmp**

- **Syntax** snmp
- **Context** config>system>security
- **Description** This command creates the context to configure SNMPv1, SNMPv2, and SNMPv3 parameters.

---

**src-access-list**

- **Syntax**
  - src-access-list *list-name*
  - no src-access-list *list-name*
- **Context** config>system>security>snmp
- **Description** This command is used to identify a list of source IP addresses that can be used to validate SNMPv1 and SNMPv2c requests once the list is associated with one or more SNMPv1 and SNMPv2c communities.

An src-address-list referenced by one or more community instances is used to verify the source IP addresses of an SNMP request using the community regardless of which VPRN/VRF interface (or 'Base' interface) the request arrived on. For example, if an SNMP request arrives on an interface in vprn 100 but the request is referencing a community, then the source IP address in the packet would be validated against the src-address-list configured for the community. This occurs regardless of whether the request is destined to a VPRN interface address and the VPRN has SNMP access enabled, or the request is destined to the base system address via GRT leaking. If the request's source IP address does not match the ip-address of any of the src-hosts contained in the list, then the request will be discarded and logged as an SNMP authentication failure.
Using src-access-list validation can have an impact on the time it takes for an SR OS node to reply to an SNMP request. It is recommended to keep the lists short, including only the addresses that are needed, and to place SNMP managers that send the highest volume of requests, such as the NSP NFM-P, at the top of the list.

A maximum of 16 source access lists can be configured. Each source access list can contain a maximum of 16 source hosts.

The no form of this command removes the named src-access-list. You cannot remove an src-access-list that is referenced by one or more community instances.

**Parameters**

- `list-name` — Configures the name or key of the src-access-list. The list-name parameter must begin with a letter (a-z or A-Z).

### src-host

**Syntax**

```plaintext
src-host host-name address ip-address
no src-host host-name
```

**Context**

config>system>security>snmp>src-access-list

**Description**

This command is used to configure a source IP address entry that can be used to validate SNMPv1 and SNMPv2c requests.

The no form of this command removes the specified entry.

**Parameters**

- `host-name` — Configures the name of the src-host entry.
- `ip-address` — Configures an allowed source address for SNMP requests. This can be an IPv4 or IPv6 address.

**Values**

- `ipv4-address`: a.b.c.d
- `ipv6-address`: x:x:x:x:x:x
- `x:x:x:x:d.d.d.d`
- `x: [0..FFFF]H`
- `d: [0..255]D`

### usm-community

**Syntax**

```plaintext
usm-community community-string group group-name [src-access-list list-name]
no usm-community community-string
```

**Context**

config>system>security>snmp

**Description**

This command is used to associate a community string with an SNMPv3 access group and its view. The access granted with a community string is restricted to the scope of the configured group.
Nokia’s SR OS implementation of SNMP uses SNMPv3. In order to implement SNMPv1 and SNMPv2c configurations, several access groups are predefined. In order to implement SNMP with security features (Version 3), security models, security levels, and USM communities must be explicitly configured. Optionally, additional views which specify more specific OIDs (MIB objects in the subtree) can be configured.

The no form of this command removes a community string.

**Parameters**
- **community-string** — Specifies the SNMPv1/SNMPv2c community string to determine the SNMPv3 access permissions to be used.
- **group** — Specifies the group that governs the access rights of this community string. This group must be configured first in the `config>system>security>snmp>access group` context.
- **list-name** — Specifies the usm-community to reference a specific src-access-list that will be used to validate the source IP address of all received SNMP requests that use this usm-community. Multiple community, usm-community, or vprn snmp community instances can reference the same src-access-list.

**view**

**Syntax**
```
view view-name subtree oid-value
no view view-name [subtree oid-value]
```

**Context**
```
config>system>security>snmp
```

**Description**
This command configures a view. Views control the accessibility of a MIB object within the configured MIB view and subtree. Object identifiers (OIDs) uniquely identify MIB objects in the subtree. OIDs are organized hierarchically with specific values assigned by different organizations.

Once the subtree (OID) is identified, a mask can be created to select the portions of the subtree to be included or excluded for access using this particular view. See the `mask` command. The view(s) configured with this command can subsequently be used in read, write, and notify commands which are used to assign specific access group permissions to created views and assigned to particular access groups.

Multiple subtrees can be added or removed from a view name to tailor a view to the requirements of the user access group.

The `no view view-name` command removes a view and all subtrees.

The `no view view-name subtree oid-value` removes a sub-tree from the view name.

**Default**
No views are defined.

**Parameters**
- **view-name** — Specifies a character view name up to 32 characters in length.
oid-value — Specifies the object identifier (OID) value for the view-name. This value, for example, 1.3.6.1.6.3.11.2.1, combined with the mask and include and exclude statements, configures the access available in the view.

It is possible to have a view with different subtrees with their own masks and include and exclude statements. This allows for customizing visibility and write capabilities to specific user requirements.
3.6 SNMP Show Command Reference

3.6.1 Command Hierarchies

3.6.1.1 Show Commands

show
  — snmp
    — counters
    — streaming
      — counters
    — system
      — information
      — security
        — access-group [group-name]
        — authentication [statistics]
        — password-options
        — per-peer-queuing
        — profile [profile-name]
        — snmp
          — community [community-string]
          — src-access-list [list-name]
        — ssh
        — user [user-id] [detail]
        — view [view-name] [detail]

3.6.2 Command Descriptions

The command outputs in the following section are examples only; actual displays may differ depending on supported functionality and user configuration.

3.6.2.1 Show Commands

counters

<table>
<thead>
<tr>
<th>Syntax</th>
<th>counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>show&gt;snmp</td>
</tr>
</tbody>
</table>
**Description**  
This command displays SNMP counters information. SNMP counters will continue to increase even when SNMP is shut down. Some internal modules communicate using SNMP packets.

**Output**  
The following example displays SNMP counter information.

Table 43 describes the SNMP counters output fields.

**Sample Output**
```
A:ALA-1# show snmp counters
--
SNMP counters:
--
in packets : 463
--
in gets : 93
in getnexts: 0
in sets : 370
out packets: 463
--
out get responses : 463
out traps : 0
variables requested: 33
variables set : 497
--
A:ALA-1#
```

**Table 43  Show Counters Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in packets</td>
<td>Displays the total number of messages delivered to SNMP from the transport service.</td>
</tr>
<tr>
<td>in gets</td>
<td>Displays the number of SNMP get request PDUs accepted and processed by SNMP.</td>
</tr>
<tr>
<td>in getnexts</td>
<td>Displays the number of SNMP get next PDUs accepted and processed by SNMP.</td>
</tr>
<tr>
<td>in sets</td>
<td>Displays the number of SNMP set request PDUs accepted and processed by SNMP.</td>
</tr>
<tr>
<td>out packets</td>
<td>Displays the total number of SNMP messages passed from SNMP to the transport service.</td>
</tr>
<tr>
<td>out get responses</td>
<td>Displays the number of SNMP get response PDUs generated by SNMP.</td>
</tr>
<tr>
<td>out traps</td>
<td>Displays the number of SNMP Trap PDUs generated by SNMP.</td>
</tr>
<tr>
<td>variables requested</td>
<td>Displays the number of MIB objects requested by SNMP.</td>
</tr>
</tbody>
</table>
**streaming**

**Syntax**
```
streaming
```

**Context**
```
show>snmp
```

**Description**
This command enables the context to display streaming counters information.

**counters**

**Syntax**
```
counters
```

**Context**
```
show>snmp>streaming
```

**Description**
This command displays counters information for the proprietary SNMP streaming protocol.

**Output**
The following is an example of SNMP streaming counters information.

*Sample Output*

```
*A:Dut-B# show snmp streaming counters
==
STREAMING counters:
==
in getTables : 772
in getManys : 26
--
out responses : 848
==
```

**Table 43**  
Show Counters Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables set</td>
<td>Displays the number of MIB objects set by SNMP as the result of receiving valid SNMP set request PDUs.</td>
</tr>
</tbody>
</table>

**Table 44**  
Show Streaming Counters Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in getTables</td>
<td>Displays the number of GetTable request packets received.</td>
</tr>
<tr>
<td>in getManys</td>
<td>Displays the number of GetMany request packets received.</td>
</tr>
<tr>
<td>out responses</td>
<td>Displays the number of response packets sent.</td>
</tr>
</tbody>
</table>
information

**Syntax**  
`information`

**Context**  
`show>system`

**Description**  
This command lists the SNMP configuration and statistics.

**Output**  
The following displays an example of system information.

*Table 45* describes system information output fields.

**Sample Output**

The following is an output example of the 7950 XRS:

```plaintext
*A:7950 XRS-20# show system information
===
System Information
===
System Name : 7950 XRS-20
System Type : 7950 XRS-20
Chassis Topology : Standalone
System Version : C-10.0.B1-103
System Contact :
System Location :
System Coordinates :
System Active Slot : A
System Up Time : 19 days, 18:43:59.66 (hr:min:sec)
SNMP Port : 161
SNMP Engine ID : 0000197f0000ac9fff000000
SNMP Engine Boots : 1
SNMP Max Message Size : 1500
SNMP Admin State : Disabled
SNMP Oper State : Disabled
SNMP Index Boot Status : Not Persistent
SNMP Sync State : N/A
Tel/Tel6/SSH/FTP Admin : Enabled/Disabled/Enabled/Disabled
Tel/Tel6/SSH/FTP Oper : Up/Down/Up/Down
BOF Source : cf3:
Image Source : primary
Config Source : primary
Last Booted Config File: ftp://*:*@kandhcp214/cftptboot/bksimgrp11/images/bksim3106/bksim3106.cfg
Last Boot Cfg Version : WED MAY 23 11:58:26 2012 UTC
Last Boot Config Header: # TiMOS-C-14.0.B1-217 cpm/
x86_64 Nokia 7950 XRS Copyright (c) 2000-2016 Nokia. # All rights reserved. All use subject to applicable license agreements. # Built on Wed Jul 13 19:09:32 PDT 2016 by builder in /rel14.0/b1/B1-217/panos/main
Last Boot Index Version: N/A
Last Boot Index Header : # TiMOS-C-0.0.I3339 cpm/i386 Nokia 7950 XRS Copyright (c) 2000-2016 Nokia. # All rights reserved. All use subject to applicable license agreements.
```

**Table 45**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>7950 XRS-20</td>
</tr>
<tr>
<td>System Type</td>
<td>7950 XRS-20</td>
</tr>
<tr>
<td>Chassis Topology</td>
<td>Standalone</td>
</tr>
<tr>
<td>System Version</td>
<td>C-10.0.B1-103</td>
</tr>
<tr>
<td>System Contact</td>
<td></td>
</tr>
<tr>
<td>System Location</td>
<td></td>
</tr>
<tr>
<td>System Coordinates</td>
<td></td>
</tr>
<tr>
<td>System Active Slot</td>
<td>A</td>
</tr>
<tr>
<td>System Up Time</td>
<td>19 days, 18:43:59.66 (hr:min:sec)</td>
</tr>
<tr>
<td>SNMP Port</td>
<td>161</td>
</tr>
<tr>
<td>SNMP Engine ID</td>
<td>0000197f0000ac9fff000000</td>
</tr>
<tr>
<td>SNMP Engine Boots</td>
<td>1</td>
</tr>
<tr>
<td>SNMP Max Message Size</td>
<td>1500</td>
</tr>
<tr>
<td>SNMP Admin State</td>
<td>Disabled</td>
</tr>
<tr>
<td>SNMP Oper State</td>
<td>Disabled</td>
</tr>
<tr>
<td>SNMP Index Boot Status</td>
<td>Not Persistent</td>
</tr>
<tr>
<td>SNMP Sync State</td>
<td>N/A</td>
</tr>
<tr>
<td>Tel/Tel6/SSH/FTP Admin</td>
<td>Enabled/Disabled/Enabled/Disabled</td>
</tr>
<tr>
<td>Tel/Tel6/SSH/FTP Oper</td>
<td>Up/Down/Up/Down</td>
</tr>
<tr>
<td>BOF Source</td>
<td>cf3:</td>
</tr>
<tr>
<td>Image Source</td>
<td>primary</td>
</tr>
<tr>
<td>Config Source</td>
<td>primary</td>
</tr>
<tr>
<td>Last Booted Config File</td>
<td>ftp://<em>:</em>@kandhcp214/cftptboot/bksimgrp11/images/bksim3106/bksim3106.cfg</td>
</tr>
<tr>
<td>Last Boot Cfg Version</td>
<td>WED MAY 23 11:58:26 2012 UTC</td>
</tr>
<tr>
<td>Last Boot Config Header</td>
<td># TiMOS-C-14.0.B1-217 cpm/x86_64 Nokia 7950 XRS</td>
</tr>
<tr>
<td></td>
<td>Copyright (c) 2000-2016 Nokia. # All rights</td>
</tr>
<tr>
<td>Last Boot Index Version</td>
<td>N/A</td>
</tr>
<tr>
<td>Last Boot Index Header</td>
<td># TiMOS-C-0.0.I3339 cpm/i386 Nokia 7950 XRS</td>
</tr>
<tr>
<td></td>
<td>Copyright (c) 2000-2016 Nokia. # All rights</td>
</tr>
</tbody>
</table>
Table 45  Show System Information Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>Displays the name configured for the device.</td>
</tr>
<tr>
<td>System Type</td>
<td>Indicates the SR OS platform type (for example, 7750 SR-12).</td>
</tr>
<tr>
<td>Chassis Topology</td>
<td>Indicates the inter-chassis topology mode in which the system is operating. Standalone indicates that the system is comprised of a single physical router chassis. Extended (XRS-40) on a 7950 XRS-based system indicates that two router chassis are connected together in a back-to-back topology with no additional switch fabric chassis. An extended chassis topology is comprised of two XRS-20 chassis and is also known as an XRS-40 system.</td>
</tr>
<tr>
<td>System Contact</td>
<td>Displays the text string that identifies the contact name for the device.</td>
</tr>
</tbody>
</table>
### Table 45  Show System Information Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Location</td>
<td>Displays the text string that identifies the location of the device.</td>
</tr>
<tr>
<td>System Coordinates</td>
<td>Displays the text string that identifies the system coordinates for the device location. For example, &quot;37.390 -122.0550&quot; is read as latitude 37.390 north and longitude 122.0550 west.</td>
</tr>
<tr>
<td>System Up Time</td>
<td>Displays the time since the last reboot.</td>
</tr>
<tr>
<td>SNMP Port</td>
<td>Displays the port which SNMP sends responses to management requests.</td>
</tr>
<tr>
<td>SNMP Engine ID</td>
<td>Displays the ID for either the local or remote SNMP engine to uniquely identify the SNMPv3 node.</td>
</tr>
<tr>
<td>SNMP Max Message Size</td>
<td>Displays the maximum size SNMP packet generated by this node.</td>
</tr>
<tr>
<td>SNMP Admin State</td>
<td>Enabled — Indicates that SNMP is administratively enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Indicates that administratively disabled.</td>
</tr>
<tr>
<td>SNMP Oper State</td>
<td>Enabled — Indicates that operationally enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Indicates that operationally disabled.</td>
</tr>
<tr>
<td>SNMP Index Boot Status</td>
<td>Persistent — Indicates that persistent indexes at the last system reboot was enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Indicates that persistent indexes at the last system reboot was disabled.</td>
</tr>
<tr>
<td>SNMP Sync State</td>
<td>Displays the state when the synchronization of configuration files between the primary and secondary CPMs finish.</td>
</tr>
<tr>
<td>Telnet/SSH/FTP Admin</td>
<td>Displays the administrative state of the Telnet, SSH, and FTP sessions.</td>
</tr>
<tr>
<td>Telnet/SSH/FTP Oper</td>
<td>Displays the operational state of the Telnet, SSH, and FTP sessions.</td>
</tr>
<tr>
<td>BOF Source</td>
<td>Displays the boot location of the BOF.</td>
</tr>
</tbody>
</table>
**Table 45**  
Show System Information Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| Image Source                 | primary — Specifies whether the image was loaded from the primary location specified in the BOF.  
                                            secondary — Specifies whether the image was loaded from the secondary location specified in the BOF.  
                                            tertiary — Specifies whether the image was loaded from the tertiary location specified in the BOF.                                                   |
| Config Source                | primary — Specifies whether the configuration was loaded from the primary location specified in the BOF.  
                                            secondary — Specifies whether the configuration was loaded from the secondary location specified in the BOF.  
                                            tertiary — Specifies whether the configuration was loaded from the tertiary location specified in the BOF.                                                   |
| Last Booted Config File      | Displays the URL and filename of the configuration file used for the most recent boot.                                                                 |
| Last Boot Cfg Version        | Displays the version of the configuration file used for the most recent boot.                                                                     |
| Last Boot Config Header      | Displays header information of the configuration file used for the most recent boot.                                                               |
| Last Boot Index Version      | Displays the index version used in the most recent boot.                                                                                         |
| Last Boot Index Header       | Displays the header information of the index used in the most recent boot.                                                                      |
| Last Saved Config            | Displays the filename of the last saved configuration.                                                                                           |
| Time Last Saved              | Displays the time the configuration was most recently saved.                                                                                     |
| Changes Since Last Save      | Yes — Indicates that the configuration changed since the last save.  
                                            No — Indicates that the configuration has not changed since the last save.                                                                 |
| Time Last Modified           | Displays the time of the last modification.                                                                                                       |
| Max Cfg/BOF Backup Rev       | Indicates the maximum number of backup revisions maintained for a configuration file. This value also applies to the number of revisions maintained for the BOF file. |
| Cfg-OK Script                | URL — Indicates the location and name of the CLI script file executed following successful completion of the boot-up configuration file execution.  
                                            N/A — Indicates that no CLI script file is executed.                                                                                           |
access-group

**Syntax**

access-group group-name

**Context**

show>system>security

**Description**

This command displays access-group information.

**Output**

The following is an example of access group information.

Table 46 describes the access-group output fields.

**Sample Output**

A:ALA-1# show system security access-group
===============================================================================
Access Groups
===============================================================================

Table 45  Show System Information Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cfg-OK Script Status</td>
<td>Successful/Failed — Indicates the results from the execution of the CLI script file specified in the Cfg-OK Script location. Not used — Indicates that no CLI script file was executed.</td>
</tr>
<tr>
<td>Cfg-Fail Script</td>
<td>URL — Displays the location and name of the CLI script file executed following a failed boot-up configuration file execution. Not used — Indicates that no CLI script file was executed.</td>
</tr>
<tr>
<td>Cfg-Fail Script Status</td>
<td>Successful/Failed — Displays the results from the execution of the CLI script file specified in the Cfg-Fail Script location. Not used — Indicates that the CLI script file was executed.</td>
</tr>
<tr>
<td>Management IP address</td>
<td>Displays the Management IP address of the node.</td>
</tr>
<tr>
<td>DNS Server</td>
<td>Displays the DNS address of the node.</td>
</tr>
<tr>
<td>DNS Domain</td>
<td>Displays the DNS domain name of the node.</td>
</tr>
<tr>
<td>BOF Static Routes</td>
<td>To — Displays the static route destination. Next Hop — Displays the next hop IP address used to reach the destination. Metric — Displays the priority of this static route versus other static routes. None — Indicates that no static routes are configured.</td>
</tr>
</tbody>
</table>
### Table 46  Show System Security Access-Group Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name</td>
<td>The access group name.</td>
</tr>
<tr>
<td>Security model</td>
<td>The security model required to access the views configured in this node.</td>
</tr>
<tr>
<td>Security level</td>
<td>Specifies the required authentication and privacy levels to access the views configured in this node.</td>
</tr>
<tr>
<td>Read view</td>
<td>Specifies the view to read the MIB objects.</td>
</tr>
<tr>
<td>Write view</td>
<td>Specifies the view to configure the contents of the agent.</td>
</tr>
<tr>
<td>Notify view</td>
<td>Specifies the view to send a trap about MIB objects.</td>
</tr>
<tr>
<td>No. of access groups</td>
<td>The total number of configured access groups.</td>
</tr>
</tbody>
</table>

**authentication**

**Syntax**

```
authentication [statistics]
```
Context    show>system>security

Description This command displays authentication information.

Output The following displays an example of authentication information.

Table 47 describes the authentication output fields.

Sample Output

A:ALA-49>show>system>security# authentication
===============================================================================
Authentication sequence : radius tacplus local
===============================================================================

<table>
<thead>
<tr>
<th>type</th>
<th>server address</th>
<th>status</th>
<th>timeout (secs)</th>
<th>retry count</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius</td>
<td>10.10.10.103</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>radius</td>
<td>10.10.10.1</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>radius</td>
<td>10.10.10.2</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>radius</td>
<td>10.10.10.3</td>
<td>up</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

radius admin status : up
tacplus admin status : up
health check : enabled (interval 30)
No. of Servers: 4
===============================================================================
A:ALA-49>show>system>security#

Table 47 Show Authentication Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>Displays the authentication order in which password authentication, authorization, and accounting is attempted among RADIUS, TACACS+, and local passwords.</td>
</tr>
<tr>
<td>server address</td>
<td>Displays the address of the RADIUS, TACACS+, or local server.</td>
</tr>
<tr>
<td>status</td>
<td>Displays the status of the server.</td>
</tr>
<tr>
<td>type</td>
<td>Displays the type of server.</td>
</tr>
<tr>
<td>timeout (secs)</td>
<td>Displays the number of seconds the server will wait before timing out.</td>
</tr>
<tr>
<td>retry count</td>
<td>Displays the number of attempts to retry contacting the server.</td>
</tr>
<tr>
<td>radius admin status</td>
<td>Displays the administrative status of the RADIUS protocol operation.</td>
</tr>
</tbody>
</table>
**password-options**

**Syntax**

```plaintext
password-options
```

**Context**

```plaintext
show>system>security
```

**Description**

This command displays password options.

**Output**

The following displays password option information.

Table 48 describes password-options output fields.

**Sample Output**

```
A:ALA-48>show>system>security# password-options
===
Password Options
===
Password aging in days : 365
Number of invalid attempts permitted per login : 5
Time in minutes per login attempt : 5
Lockout period (when threshold breached) : 20
Authentication order : radius tacplus local
Configured complexity options :
Minimum password length : 8
===
A:ALA-48>show>system>security#
```

**Table 48**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password aging in days</td>
<td>Number of days a user password is valid before the user must change his password.</td>
</tr>
</tbody>
</table>
**per-peer-queuing**

**Syntax**

```
per-peer-queuing
```

**Context**

```
show>system>security
```

**Description**

This command displays the number of queues in use by the Qchip, which in turn is used by PPQ, CPM filter, SAP, and so on.

**Output**

The following displays per peer queuing information.

*Table 49* describes the per-peer-queuing output fields.

**Sample Output**

```
A:ALA-48>show>system>security# per-peer-queuing
CPM Hardware Queuing
Per Peer Queuing : Enabled
Total Num of Queues : 8192
Num of Queues In Use : 0
```

```
A:ALA-48>show>system>security#
```
profile

Syntax  profile [profile-name]

Context  show>system>security

Description  This command displays user profiles for CLI command tree permissions.

Parameters  profile-name — Specify the profile name to display information about a single user profile. If no profile name is displayed, the entire list of profile names are listed.

Output  The following displays an example of profile information.

Table 49 describes the profile output fields.

Sample Output

A:ALA-48>config>system>snmp# show system security profile
===============================================================================
<table>
<thead>
<tr>
<th>User Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Profile : test</td>
</tr>
<tr>
<td>Def. Action : none</td>
</tr>
<tr>
<td>Entry : 1</td>
</tr>
<tr>
<td>Description :</td>
</tr>
<tr>
<td>Match Command :</td>
</tr>
<tr>
<td>Action : unknown</td>
</tr>
<tr>
<td>User Profile : default</td>
</tr>
<tr>
<td>Def. Action : none</td>
</tr>
<tr>
<td>Entry : 10</td>
</tr>
<tr>
<td>Description :</td>
</tr>
<tr>
<td>Match Command : exec</td>
</tr>
<tr>
<td>Action : permit</td>
</tr>
<tr>
<td>Entry : 20</td>
</tr>
<tr>
<td>Description :</td>
</tr>
</tbody>
</table>

Table 49  Show per-peer-queuing Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Peer Queuing</td>
<td>Displays whether per-peer-queuing is enabled or disabled. When enabled, a peering session is established and the router will automatically allocate a separate CPM hardware queue for that peer. When disabled, no hardware queuing per peer occurs.</td>
</tr>
<tr>
<td>Total Num of Queues</td>
<td>Displays the total number of CPM hardware queues.</td>
</tr>
<tr>
<td>Num of Queues In Use</td>
<td>Displays the number of CPM hardware queues that are in use.</td>
</tr>
</tbody>
</table>
Match Command: exit
Action : permit

Entry : 30
Description :
Match Command: help
Action : permit

Entry : 80
Description :
Match Command: enable-admin
Action : permit

User Profile : administrative
Def. Action : permit-all

Entry : 10
Description :
Match Command: configure system security
Action : permit

Entry : 20
Description :
Match Command: show system security
Action : permit

No. of profiles: 3

A:ALA-48>config>system>snmp#

Table 50  Show Profile Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Profile</td>
<td>default — Displays the action to be given to the user profile if none of the entries match the command. administrative — Specifies the administrative state for this profile.</td>
</tr>
<tr>
<td>Def. Action</td>
<td>none — No action is given to the user profile when none of the entries match the command. permit-all — The action to be taken when an entry matches the command.</td>
</tr>
<tr>
<td>Entry</td>
<td>10 - 80 — Displays an entry which represents the configuration for a system user.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string describing the entry.</td>
</tr>
</tbody>
</table>
Table 50  Show Profile Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Match Command**| administrative — Enables the user to execute all commands.  
|                  | configure system security — Enables the user to execute the **config system security** command.  
|                  | enable-admin — Enables the user to enter a special administrative mode by entering the **enable-admin** command.  
|                  | exec — Enables the user to execute (exec) the contents of a text file as if they were CLI commands entered at the console.  
|                  | exit — Enables the user to execute the **exit** command.  
|                  | help — Enables the user to execute the **help** command.  
|                  | logout — Enables the user to execute the **logout** command.  
|                  | password — Enables the user to execute the **password** command.  
|                  | show config — Enables the user to execute the **show config** command.  
|                  | show — Enables the user to execute the **show** command.  
|                  | show system security — Enables the user to execute the show system security command.                                                                                                                      |
| **Action**       | permit — Enables the user access to all commands.  
|                  | deny-all — Denies the user access to all commands.                                                                                                                                                           |

snmp

**Syntax**  
```
snmp
```

**Context**  
```
show>system>security
```

**Description**  
This command enables the context to show SNMP information.

community

**Syntax**  
```
community [community-string]
```

**Context**  
```
show>system>security>snmp
```

**Description**  
This command lists SNMP communities and characteristics. Including the **community-name** parameter modifies the output to include all details for the specified community, including the source IP address list and validation failure counters.
Table 51 describes the community output fields.

Sample Output

Note: The system-created communities that begin with “cli-” are only used for internal CLI management purposes and are not exposed to external SNMP access.

A:ALA-1# show system security snmp community
==============================================================================
<table>
<thead>
<tr>
<th>community</th>
<th>access</th>
<th>view</th>
<th>version</th>
<th>group</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>cli-li-readwrite</td>
<td>n/a</td>
<td>li-view</td>
<td>v2c</td>
<td>cli-li-readwrite</td>
<td></td>
</tr>
<tr>
<td>cli-readonly</td>
<td>r</td>
<td>iso</td>
<td>v2c</td>
<td>cli-readonly</td>
<td></td>
</tr>
<tr>
<td>cli-readwrite</td>
<td>rw</td>
<td>iso</td>
<td>v2c</td>
<td>cli-readwrite</td>
<td></td>
</tr>
<tr>
<td>my-private1</td>
<td>rw</td>
<td>iso</td>
<td>v1</td>
<td>v2c</td>
<td>snmp-rwa</td>
</tr>
<tr>
<td>my-public2</td>
<td>r</td>
<td>no-security</td>
<td>v1</td>
<td>v2c</td>
<td>snmp-ro</td>
</tr>
<tr>
<td>test-123</td>
<td>rwa</td>
<td>n/a</td>
<td>v2c</td>
<td>snmp-trap</td>
<td></td>
</tr>
</tbody>
</table>
==============================================================================
No. of Communities: 6
==============================================================================
A:ALA-1#

A:ALA-1# show system security snmp community "my-public2"
==============================================================================
<table>
<thead>
<tr>
<th>community</th>
<th>access</th>
<th>view</th>
<th>version</th>
<th>group</th>
<th>authFailures</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-public2</td>
<td>r</td>
<td>no-security</td>
<td>v1</td>
<td>v2c</td>
<td>snmp-ro</td>
</tr>
<tr>
<td>my-list1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
==============================================================================
A:ALA-1#

Table 51 Show Community Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>Displays the community string name for SNMPv1 and SNMPv2c access only.</td>
</tr>
</tbody>
</table>
**src-access-list**

**Syntax**  
src-access-list [list-name]

**Context**  
show>system>security>snmp

**Description**  
This command displays source access lists and the hosts for each. Including the list-name parameter modifies the output show only the specified src-access-list.

**Output**  
The following example displays SR access list information.

*Table 52* describes the source access list output fields.

**Sample Output**  
A:ALA-1# show system security snmp src-access-list

```
Source Access Lists
List Name
 HostName Host Address

L1
```

---

**Table 51**  
**Show Community Output Fields (Continued)**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Displays access information.</td>
</tr>
<tr>
<td></td>
<td>r — The community string allows read-only access.</td>
</tr>
<tr>
<td></td>
<td>rw — The community string allows read-write access.</td>
</tr>
<tr>
<td></td>
<td>rwa — The community string allows read-write access.</td>
</tr>
<tr>
<td></td>
<td>mgmt — The unique SNMP community string assigned to the management router.</td>
</tr>
<tr>
<td></td>
<td>vpls-mgmt — The unique SNMP community string assigned for vpls management.</td>
</tr>
<tr>
<td>View</td>
<td>Displays the view name.</td>
</tr>
<tr>
<td>Version</td>
<td>Displays the SNMP version.</td>
</tr>
<tr>
<td>Group Name</td>
<td>Displays the access group name.</td>
</tr>
<tr>
<td>src-access-list</td>
<td>Displays the name of the list of source IP addresses that are</td>
</tr>
<tr>
<td></td>
<td>allowed to use the community, as configured using the community</td>
</tr>
<tr>
<td></td>
<td>configuration command.</td>
</tr>
<tr>
<td>authFailures</td>
<td>Displays the number of SNMP requests that have failed validation using this</td>
</tr>
<tr>
<td></td>
<td>community.</td>
</tr>
<tr>
<td>No of Communities</td>
<td>Displays the total number of configured community strings.</td>
</tr>
</tbody>
</table>
**ssh**

**Syntax**  
`ssh`

**Context**  
`show>system>security`

**Description**  
This command displays all the SSH sessions as well as the SSH status and fingerprint.

**Output**  
The following shows an example of SSH information.

Table 53 describes SSH output fields.

**Sample output**

```
A:ALA-7# show system security ssh
```
SSH is enabled

Connection Encryption Username
-----------------------------------------------------
192.168.5.218 3des admin
-----------------------------------------------------
Number of SSH sessions : 1

A:ALA-7#
A:ALA-49>config>system>security# show system security ssh
SSH is disabled
A:ALA-49>config>system>security#

**Table 53**  Show SSH Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH status</td>
<td>SSH is enabled — Displays that SSH server is enabled.</td>
</tr>
<tr>
<td></td>
<td>SSH is disabled — Displays that SSH server is disabled.</td>
</tr>
<tr>
<td>Key fingerprint</td>
<td>The key fingerprint is the server’s identity. Clients trying to connect to</td>
</tr>
<tr>
<td></td>
<td>the server verify the server’s fingerprint. If the server fingerprint is</td>
</tr>
<tr>
<td></td>
<td>not known, the client may not continue with the SSH session since the server</td>
</tr>
<tr>
<td></td>
<td>might be spoofed.</td>
</tr>
<tr>
<td>Connection</td>
<td>The IP address of the connected router(s) (remote client).</td>
</tr>
<tr>
<td>Encryption</td>
<td>des — Data encryption using a private (secret) key.</td>
</tr>
<tr>
<td></td>
<td>3des — An encryption method that allows proprietary information to be</td>
</tr>
<tr>
<td></td>
<td>transmitted over untrusted networks.</td>
</tr>
<tr>
<td>Username</td>
<td>The name of the user.</td>
</tr>
<tr>
<td>Number of SSH sessions</td>
<td>The total number of SSH sessions.</td>
</tr>
</tbody>
</table>

**user**

**Syntax**  
users [user-id] [detail]

**Context**  
show>system>security

**Description**  
This command displays user information.

**Output**  
The following shows an example of user information.

*Table 54* describes user information output fields.
**Table 54  Show User Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td>Displays the name of a system user.</td>
</tr>
<tr>
<td>Need New PWD</td>
<td>Yes — Specifies that the user must change his password at the next login.</td>
</tr>
<tr>
<td></td>
<td>No — Specifies that the user is not forced to change his password at the next login.</td>
</tr>
<tr>
<td>User Permission</td>
<td>Console — Specifies whether the user is permitted console or Telnet access.</td>
</tr>
<tr>
<td></td>
<td>FTP — Specifies whether the user is permitted FTP access.</td>
</tr>
<tr>
<td></td>
<td>SNMP — Specifies whether the user is permitted SNMP access.</td>
</tr>
<tr>
<td>Password expires</td>
<td>Displays the date on which the current password expires.</td>
</tr>
<tr>
<td>Attempted logins</td>
<td>Displays the number of times the user has attempted to login irrespective of whether the login succeeded or failed.</td>
</tr>
<tr>
<td>Failed logins</td>
<td>Displays the number of unsuccessful login attempts.</td>
</tr>
<tr>
<td>Local Conf.</td>
<td>Y — Indicates that password authentication is based on the local password database.</td>
</tr>
<tr>
<td></td>
<td>N — Indicates that password authentication is not based on the local password database.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
A:ALA-1# show system security user
===
User id need user permissions password expires attempted logins failed logins local conf

admin n y n n never 2 0 y
testuser n n n y never 0 0 y

Number of users : 2
```

**Syntax**  
```
view [view-name] [detail]
```

**Context**  
```
show>system>security
```

**Description**  
This command lists one or all views and permissions in the MIB-OID tree.
The following displays an example of system security views.

Table 55 describes system security view output fields.

### Sample Output

A:ALA-1# show system security view

```
Views

view name oid tree mask permission

iso 1 included
no-security 1 included
no-security 1.3.6.1.6.3 excluded
no-security 1.3.6.1.6.3.10.2.1 included
no-security 1.3.6.1.6.3.11.2.1 included
no-security 1.3.6.1.6.3.15.1.1 included

No. of Views: 6
```

A:ALA-1#

A:ALA-1# show system security view no-security detail

```
Views

view name oid tree mask permission

no-security 1 included
no-security 1.3.6.1.6.3 excluded
no-security 1.3.6.1.6.3.10.2.1 included
no-security 1.3.6.1.6.3.11.2.1 included
no-security 1.3.6.1.6.3.15.1.1 included

No. of Views: 5
```

A:ALA-1#

### Table 55  Show System Security View Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View name</td>
<td>Displays the name of the view. Views control the accessibility of a MIB object within the configured MIB view and subtree.</td>
</tr>
</tbody>
</table>
### Table 55  Show System Security View Output Fields  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OID tree</td>
<td>Displays the Object Identifier (OID) value. OIDs uniquely identify MIB objects in the subtree.</td>
</tr>
<tr>
<td>Mask</td>
<td>Displays the mask value and the mask type, along with the oid-value configured in the view command, determines the access of each sub-identifier of an object identifier (MIB subtree) in the view.</td>
</tr>
<tr>
<td>Permission</td>
<td>Included — Specifies to include MIB subtree objects. Excluded — Specifies to exclude MIB subtree objects.</td>
</tr>
<tr>
<td>No. of Views</td>
<td>Displays the total number of configured views.</td>
</tr>
<tr>
<td>Group name</td>
<td>Displays the access group name.</td>
</tr>
</tbody>
</table>
4 NETCONF

4.1 NETCONF Overview

NETCONF is a standardized IETF configuration management protocol published in RFC 6241, *Network Configuration Protocol (NETCONF)*. It is secure, connection-oriented, and runs on top of the SSHv2 transport protocol as specified in RFC 6242, *Using the NETCONF Configuration Protocol over Secure Shell (SSH)*. NETCONF can be used as an alternative to CLI or SNMP for managing an SR OS.

NETCONF is an XML-based protocol used to configure network devices. It uses RPC messaging for communication between a NETCONF client and the NETCONF server running on the SR OS. An RPC message and configuration data is encapsulated within an XML document. These XML documents are exchanged between a NETCONF client and a NETCONF server in a request/response type of interaction. The SR OS NETCONF interface supports both configuration and retrieval of operational information. Figure 15 shows a NETCONF RPC request.

*Figure 15  NETCONF RPC Request*

NETCONF can be conceptually partitioned into four layers as described in RFC 6241. Figure 16 shows the NETCONF layers.
Figure 16  NETCONF Layers (RFC 6241)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Configuration Data</td>
</tr>
<tr>
<td>Operations</td>
<td>&lt;get&gt; &lt;get-config&gt; &lt;edit-config&gt;...</td>
</tr>
<tr>
<td>Messages</td>
<td>&lt;rpc&gt;/ &lt;rpc-reply&gt;</td>
</tr>
<tr>
<td>Secure Transport</td>
<td>SSH / TLS /...</td>
</tr>
</tbody>
</table>
4.2 NETCONF in SR OS

NETCONF can be used on an SR OS router to perform router management operations including:

- Changing the configuration of the router (<edit-config> operation)
- Reading the configuration of the router (<get-config> operation, equivalent to the info command in the CLI)
- Reading operational status and data (and associated configuration information) (<get> operation, equivalent to the show commands in the CLI)

NETCONF is not used for notifications on an SR OS router; for example, log events, syslog, or SNMP notifications (traps).

The equivalent of some admin commands are available via the SR OS NETCONF interface:

- admin save can be done using the <copy-config> operation
- admin rollback commands are supported using a CLI content layer <cli-action> RPC

The bof, debug, tools, clear, and other general CLI operational commands (for example, telnet or ping) are not supported via NETCONF on an SR OS.

The SR OS NETCONF server advertises base capability 1.1 (in addition to 1.0).

SR OS supports both a CLI content layer and an XML-based content layer for NETCONF.

4.2.1 YANG Data Models

The SR OS NETCONF XML content layer supports two similar proprietary configuration data models. Each configuration data model is described in a set of YANG modules. A unique set of XML namespaces is used for each of the two data models.

The YANG modules for the first configuration data model (Alcatel-Lucent Base-R13 SR OS YANG modules) have the following attributes:

- The names of the modules and sub-modules are alu-conf-*-r13 (for example, alu-conf-log-r13). Note the –r13 suffix at the end of the names.
• The Alcatel-Lucent Base-R13 models consist of a set of modules with groupings that are all used by a single top-level configuration module called alu-conf-r13. All configuration data in the Alcatel-Lucent Base-R13 models sits in the urn:alcatel-lucent.com:sros:ns:yang:conf-r13 XML namespace.

• The modules cannot be used with the <candidate> datastore.

• Although the Base-R13 modules were first introduced in SR OS Release 13.0, they do not just contain objects from Release 13.0. For example, features from any later release are also configurable using versions of the Base-R13 modules that are distributed with that release.

The YANG modules for the second configuration data model (Nokia SR OS YANG modules) have the following attributes:

• The names of the modules are nokia-conf (for example, nokia-conf-log). They have no –r13 suffix in the names.

• The Nokia SR OS YANG models are divided into a single top-level configuration module (nokia-conf), a single top-level state module (nokia-state), a set of submodules (for example, nokia-conf-system), and a set of nokia-types-* modules. All configuration data in the Nokia SR OS YANG models sit in the urn:nokia.com:sros:ns:yang:sr:conf XML namespace. All state data in the Nokia SR OS YANG models sits in the urn:nokia.com:sros:ns:yang:sr:state XML namespace.

• The modules can be used with the <candidate> datastore.

The two configuration data models are not interchangeable. An XML request based on the Alcatel-Lucent Base-R13 YANG modules will not work if applied to a router using the urn:nokia.com:sros:ns:yang:sr:conf namespace (and vice versa).

All configuration modules and types modules are advertised in the SR OS NETCONF server <hello>. Submodules are not advertised in the <hello>.

The proprietary configuration YANG data models both closely align to the SR OS CLI configuration tree structure and commands.

The bof, admin, tools, debug, or clear branches of the CLI do not have equivalent YANG data models.
4.2.2 Transport and Sessions

SSH transport for NETCONF is supported on TCP port 830 with IPv4 or IPv6 in the Base routing instance. NETCONF SSH sessions (such as CLI, SCP and sFTP sessions) are subject to any configurable and non-configurable session limits; for example, inbound-max-sessions. Both the SSH server and NETCONF protocol must be enabled in the router configuration in order to use NETCONF. NETCONF sessions can be disconnected using the `admin disconnect` command. See the CLI section for details.

NETCONF sessions do not time out automatically and are not subject to the CLI session timeout. Operators can disconnect sessions manually if they need to.

A client establishing a NETCONF session must log into the router so user accounts must exist for NETCONF on the SR OS. An access type 'netconf' is provided. For access to the Base-R13 SR OS YANG data model, both `console` and `netconf` access must be configured for the user. For access to the Nokia SR OS YANG data model, only `netconf` access is necessary.

Only authentication via the local user database is supported for NETCONF users and sessions (no RADIUS or TACACS+ authentication).

Command authorization is not supported for the Nokia SR OS YANG data model. Once a NETCONF session is established and the user is authenticated then all configuration data is available via the Nokia SR OS YANG data model.

Command authorization is supported for the Alcatel-Lucent Base-R13 SR OS YANG modules. Also, access to various CLI config and show commands (via the CLI content layer) is controlled through the profile assigned to the user that is used to authenticate the underlying SSH session.

Access to LI commands using the Alcatel-Lucent Base-R13 SR OS YANG modules is based on the `access li` configuration setting for the user.

If a NETCONF request attempts to execute a CLI command which is outside the scope of its access profile, an error response will be sent.

**Example** - A user request, with `show` command, that is not in the scope of the user’s access profile.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <oper-data-format-cli-block>
 <cli-show>system security profile</cli-show>
 </oper-data-format-cli-block>
 </filter>
 </get>
</rpc>
```
4.2.3 Datastores and URLs

SR OS supports the <running> datastore, the <candidate> datastore, the <startup> datastore, and <url> tags.

Note: <url> is not a datastore in itself.

Support for the <candidate> datastore capability is advertised via the SR OS NETCONF server <hello> using the urn:ietf:params:netconf:capability:candidate:1.0 capability string.

All configuration changes (using <edit-config>) made to the <running> datastore via NETCONF take immediate operational effect. Configuration changes to the <candidate> datastore take effect after a successful <commit> operation.

The <startup> datastore and <url> tags can only be used with <copy-config> and <delete-config> and are not supported with any other operations (including <edit-config>, <get-config>, <get>, <validate>, etc).

The :startup capability is advertised in the SR OS NETCONF server <hello>:
<capability>urn:ietf:params:netconf:capability:startup:1.0</capability>
The `<url>` tag supports the same options as CLI `<file-url>`: local urls (CF) and remote urls (ftp and tftp).

The :url capability is advertised in the SR OS NETCONF server `<hello>`:

```xml
```

The following examples show the format of each URL scheme:

- `<target><url>ftp://name:passwd@a.b.c.d/usr/myfiles/myfile.cfg</url></target>`
- `<target><url>tftp://name:passwd@a.b.c.d/usr/myfiles/myfile.cfg</url></target>`
- `<target><url>file:///cf3:/myfiles/myfile.cfg</url></target>`
- `<target><url>cf3:/myfiles/myfile.cfg</url></target>`

**Note:** The examples use “///” for the file URL. Also, the `file://localhost/...` format is not supported.

The `<startup>` datastore is identified by following the bof primary-config/secondary-config/tertiary-config paths as configured by the operator. The `<startup>` datastore is effectively an alias for a URL (a special URL used for system startup) with some extra resiliency (primary/secondary/tertiary).

The BOF is not considered part of any configuration datastore.

Debug configuration (such as debug mirrors, or anything saved with `admin debug-save`) is not considered part of any configuration datastore.

Lawful Interception configuration information is contained in the `<running>` datastore but is not saved in the `<startup>` datastore. The equivalent of the CLI `li save` command is available in an `<edit-config>` using the Alcatel-Lucent Base-R13 SR OS YANG modules.

Configuration changes done via NETCONF are subject to CLI rollback (`revert`, `save`, and so on) and are included in the configuration when the operator performs an `admin save` in the CLI.

Only the data model described by Nokia SR OS YANG modules can be used with the `<candidate>` datastore. The data model described by the Alcatel-Lucent Base-R13 SR OS YANG modules is not applicable to the `<candidate>` datastore but does work with the `<running>` datastore. All `<edit-config>` requests to the candidate datastore must use the `urn:nokia.com:sros:ns:yang:sr:conf` namespace.
The candidate datastore supports the XML content layer only. Requests/replies to/from the candidate datastore cannot contain the CLI content layer.

4.2.4 NETCONF Operations and Capabilities

The following base protocol operations are supported:

- `<get>`
- `<get-config>`
- `<edit-config>`
- `<copy-config>` and `<delete-config>`
- `<lock>`
- `<unlock>`
- `<close-session>`
- `<kill-session>`

The following optional capabilities from RFC 6241 are supported:

- Writable-Running Capability
- Candidate Configuration Capability
  - `<commit>` operation
  - `<discard-changes>` operation
- Validate Capability
  - `<validate>` operation
- Distinct Startup Capability
- URL Capability

The following capability from RFC 6243 is supported:

- With-defaults Capability

The `<edit-config>` operation's `<error-option>` is not supported. SR OS implements the stop-on-error behavior by default. The continue-on-error and rollback-on-error are not supported.

One rpc request can only contain one operation.

Table 56 shows supported NETCONF operations.
4.2.4.1 <get>

The CLI content layer <get> operation is supported with both configuration and state data returned in a <get> reply. An XML content layer <get> operation, supported with both configurations and state data, being returned in a <get> reply as per the NOKIA SR OS YANG data model only.

A <get> request is first analyzed for syntax errors before any execution starts. If a syntax error is found then a single global <rpc-error> for the entire request is sent in the reply.

Responses are provided for each item in the request until the first item with an error is found. The item with an error has a <response> tag containing some error information, followed by an <rpc-error> tag (and sub-tags). The reply is then returned and subsequent items are not executed.
The `<rpc-error>` for an individual item (i.e. for a non-syntax error) is after the `</response>` information and not inside the `<response>`.

Example — `<get>` request with a non-syntax error in the 2nd item:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <oper-data-format-cli-block>
 <cli-show>router interface "system"</cli-show>
 <cli-show>router mpls lsp</cli-show>
 <cli-show>system security ssh</cli-show>
 </oper-data-format-cli-block>
 </filter>
 </get>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:alcatel-lucent.com:sros:ns:yang:cli-content-layer-r13">
 <oper-data-format-cli-block>
 <item>
 <cli-show>router interface "system"</cli-show>
 <response>
 ====================================
 Interface Table (Router: Base)
 ====================================
 Interface-Name Adm Opr(v4/v6) Mode Port/SapId PfxState

 system Up Up/Down Network system
 144.23.63.5/32 n/a
 Interfaces : 1

 </response>
 </item>
 <item>
 <cli-show>router mpls lsp</cli-show>
 <response>
 MINOR: CLI MPLS is not configured.
 </response>
 </item>
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <err-element>cli-show</err-element>
 </error-info>
 <error-message>
 command failed - 'show router mpls lsp'
 </error-message>
 </rpc-error>
 </oper-data-format-cli-block>
 </data>
</rpc-reply>
```
4.2.4.2 <get-config>

The <get-config> operation returns non-default configuration by default for the Alcatel-Lucent Base-R13 SR OS YANG modules (the 'trim' mode as per RFC 6243).

The <get-config> operation returns data nodes that were set by a client to their default values for the NOKIA SR OS modules (the 'explicit' mode as per RFC 6243).

4.2.4.3 <edit-config>

The following values for the <test-option> parameter under <edit-config> are supported:

- test-then-set
- set
- test-only

4.2.4.4 <copy-config> and <delete-config>

The <copy-config> and <delete-config> base protocol operations are supported for specific combinations of source and target datastores.

The <copy-config> operation is supported for the following combinations of sources and targets:

- <source>=<url> and <target>=<startup> (as long as both are not remote urls)
- <source>=<startup> and <target>=<url> (as long as both are not remote urls)
- <source>=<running> and <target>=<url>
  - Equivalent of “admin save <file-url>”
  - An index file is also saved if “persist on” is configured in the bof
- <source>=<running> and <target>=<startup>
  - Equivalent of “admin save”
An index file is also saved if “persist on” is configured in the bof.

The `<running>` datastore cannot be a `<target>` for a `<copy-config>`.

The `<candidate>` datastore cannot be a `<target>` or a `<source>` for a `<copy-config>`.

Remote URL to remote URL copies are not supported. For example, if primary-image is a remote URL, then a `<startup>` to copy will fail with an error.

The `<copy-config>` operation uses the CLI Content Layer format. The format of the source and target is block CLI.

The `<delete-config>` operation is supported for the following targets:

- `<url>`
- `<startup>`

The `<delete-config>` operation is not allowed on the `<running>` or `<candidate>` datastores.

### 4.2.4.5 `<lock>`

Taking the `<candidate>` datastore’s lock is equivalent to doing a CLI exclusive transaction.

Although the NETCONF protocol allows specifying a target datastore for a lock operation, the SR OS only implements a single lock:

- taking the running datastore’s lock locks both the running and candidate datastores (creating a single lock)
- taking the candidate datastore’s lock locks both the running and candidate datastores (creating a single lock)

When either the running datastore’s lock or the candidate datastore’s lock is taken by a NETCONF session:

- no NETCONF session can take the `<running>` datastore lock
- no NETCONF session can take the `<candidate>` datastore lock
- no other NETCONF session can do an `<edit-config>` on the running datastore
- no other NETCONF session can do an `<edit-config>` on the candidate datastore
- no other NETCONF session can do a `<commit>` on the candidate datastore
- no other NETCONF session can do a `<discard-changes>` on the candidate datastore
• the CLI becomes read-only
• **rollback revert** is blocked
• SNMP set requests fail on objects that are part of the `urn:nokia.com:sros:ns:yang:sr:conf-*` namespace

A datastore’s lock is unlocked when disconnecting a NETCONF session (either from the CLI using Ctrl-c, or by performing a `<kill-session>` or `<close-session>` operation). Upon disconnecting a NETCONF session that had acquired a datastore’s lock, SR OS:

• releases the lock
• discards the “uncommitted” changes (if any)

**Note:** The behavior is different if the disconnected NETCONF session had the "implicit" lock (see the `<edit-config>` with XML Content Layer section). In that case, the SR OS keeps the "uncommitted" changes in the `<candidate>` datastore.

Timeouts of locks are not supported. No specific admin/tools commands are provided to release the lock, but the session that holds the lock can be administratively disconnected using the CLI to release the lock.

From the CLI, the operator can configure whether users that belong to a specific profile have permission to lock NETCONF sessions; see the NETCONF Configuration Command Reference.

Using CLI `show` commands, the operator can determine if either the `<running>` datastore’s lock or the `<candidate>` datastore’s lock is currently taken and which session has the lock; see the NETCONF Show Command Reference.

### 4.2.4.6 `<unlock>`

Because there is a single lock per datastore regardless of what the scope of that lock is, the following applies.

• The `<running>` datastore’s lock is unlocked by using the `<unlock>` command only on the `<running>` datastore. An error results and the lock stays if a different datastore is used with the `<unlock>` operation.
• The `<candidate>` datastore’s lock is unlocked by using the `<unlock>` command only on the `<candidate>` datastore. An error results and the lock stays if a different datastore is used with the `<unlock>` operation.
Performing an `<unlock>` operation on the candidate datastore discards all pending (not committed) candidate datastore changes.

4.2.4.7 `<commit>`

The `<commit>` command has the following characteristics:

- It represents the equivalent of the CLI command `candidate commit`.
- When a `<commit>` operation fails, only the first error is returned.
- When the SR OS cannot commit all the changes in the candidate datastore, the SR OS keeps the `<running>` datastore unchanged; that is, no partial commit takes place.
- When a NETCONF session is disconnected (using Ctrl-c or `<kill-session>`) in the middle of a `<commit>` operation, SR OS keeps the running datastore unchanged.
- The persistency of changes made via a `<commit>` operation is operator-controlled. A copy of the running datastore to the startup datastore is not automatically performed after each `<commit>` operation.
- When some changes exist in the candidate datastore (prior to being committed to the running datastore), there are some impacts to:
  - a CLI user trying to make some immediate changes, as the SR OS blocks all CLI immediate configurations
  - an SNMP set request, as SR OS blocks it and returns an error
  - an `<edit-config>` to the running datastore, as SR OS blocks all `<edit-config>` requests to the running datastore and returns an error

4.2.4.8 `<discard-changes>`

The `<discard-changes>` operation causes the `<candidate>` datastore to revert back to match the `<running>` datastore and releases the "implicit" lock. From the CLI, the operator can do the equivalent of a `<discard-changes>` operation which releases the implicit lock as well (see 4.10).

4.2.4.9 `<validate>`

The validate capability is supported in the following ways:
The validate: 1.1 and 1.0 capabilities are advertised in the NETCONF server's <hello>:
- <capability>urn:ietf:params:netconf:capability:validate:1.0</capability>

The <validate> operation is supported for an XML content layer request but not for a CLI content layer request. Detection of a <config-format-cli-block> or <oper-data-format-cli-block> tag in a <validate> request will result in an "operation not supported" error response.

A <validate> operation is supported for a selection of config (<source><config>) for both the <candidate> datastore and the <running> datastore, which only returns 'OK'. The <validate> request is not supported for URL sources or the <startup> datastore.

A <validate> operation checks mainly the syntax. Only the first error is returned.

### 4.2.5 Data Model, Datastore and Operation Combinations

Table 57 shows the which operations are supported by data model and datastore combination.

<table>
<thead>
<tr>
<th>Operation</th>
<th>R13 Modules</th>
<th>Nokia Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;running&gt;</td>
<td>&lt;candidate&gt;</td>
</tr>
<tr>
<td>&lt;edit-config&gt;</td>
<td>supported</td>
<td>not supported</td>
</tr>
<tr>
<td>&lt;get-config&gt;</td>
<td>supported</td>
<td>not supported</td>
</tr>
<tr>
<td>&lt;get&gt;*</td>
<td>retrieves CLI content layer state data (no XML content layer)</td>
<td>retrieves configuration and state data (XML format only)</td>
</tr>
</tbody>
</table>

* - Note that datastore is not applicable for a <get> operation

### 4.2.6 General NETCONF Behavior

Pressing Ctrl-c in a NETCONF session will immediately terminate the session.

The SR OS NETCONF implementation does support XML namespaces (xmlns).
If an invalid namespace is specified within the client's hello message, no error will be returned as the NETCONF server is still waiting for the client to send a valid <hello/>. Further NETCONF requests (without sending a proper hello message) even though correct, SR OS returns an error in that case mentioning “Common base capability not found.”

In the <rpc> element, the allowed XML namespaces are:

- the standard NETCONF "urn:ietf:params:xml:ns:netconf:base:1.0" namespace
- the SR OS "urn:alcatel-lucent.com:sros:ns:yang:conf-r13" namespace
- the SR OS “urn:nokia.com:sros:ns:yang:sr:conf” namespace

In the <rpc> element, prefixes are accepted and have to be specified with a valid URI. If an incorrect URI is declared with a prefix, then SR OS detects the invalid URI and sends an <rpc-error> response.

If any other XML namespace is declared (or assigned to a prefix) in the RPC tag, then the SR OS returns an error.

Any prefix declarations in the rest of the request are ignored and unused. The SR OS NETCONF server puts the correct NETCONF namespace declaration ("urn:ietf:params:xml:ns:netconf:base:1.0") in all replies.

An <edit-config> request must specify which data model (Alcatel-Lucent Base-r13 or Nokia SR OS) is being used in the top level <configure> element.

- The SR OS accepts a request with only a single namespace at the top <configure> element. For example:

  ```xml
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
 <system>

 </system>
 </configure>
  ```

  Or:

  ```xml
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <system>

 </system>
 </configure>
  ```

- The NETCONF client can declare those two namespaces with prefixes at the <rpc> tag itself and use the corresponding prefixes later in the request's <configure/> block.

- The SR OS returns an error if the request contains one or more incorrect namespaces.

**Example 1** — the standard NETCONF namespace “urn:ietf:params:xml:ns:netconf:base:1.0” is used more than once in the <rpc> element:

Reply (no error message):


Example 2 — an allowed non-default NETCONF base namespace is used in the <rpc> element:

Example 3 — an invalid NETCONF namespace is declared in the <rpc> element:

```
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 <get-config>
 <source><running/></source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <router>
 <interface>
 <interface-name>system</interface-name>
 <shutdown>false</shutdown>
 </interface>
 </router>
 </configure>
 </filter>
 </get-config>
</rpc>
```

Reply (the SR OS returns an error):

```
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>unknown-element</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-element>rpc</bad-element>
 </error-info>
 </rpc-error>
</rpc-reply>
```
Example 4 — a non-default NETCONF namespace/prefix declared in any child tag overrides the one declared under rpc tag:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:alu="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source> <running/> </source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <router>
 <interface xmlns:alu="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <alu:interface-name>"system"</alu:interface-name>
 </interface>
 </router>
 </configure>
 </filter>
 </get-config>
</rpc>
```

Reply (non-standard namespace/prefix used in tag is ignored):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:alu="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <router-instance>Base</router-instance>
 <interface>
 <interface-name>system</interface-name>
 <shutdown>false</shutdown>
 </interface>
 </configure>
 </data>
</rpc-reply>
```

The chunked framing mechanism is supported (in addition to the EOM mechanism). As per RFC 6242, Section 4.1 - Framing Protocol, “[...] If the :base:1.1 capability is advertised by both peers, the chunked framing mechanism (see Section 4.2) is used for the remainder of the NETCONF session. Otherwise, the end-of-message-based mechanism (see Section 4.3) is used.”

Example 5 — Chunked message:

## Example 6 — Chunked message:


Handling of default data (for example, 'info' vs 'info detail') uses the mechanisms detailed in RFC 6243. The SR OS NETCONF server supports the 'trim' method as the default for the Alcatel-Lucent Base-R13 SR OS YANG modules. It supports the 'explicit' method as the default for the NOKIA SR OS Yang modules and also supports the 'report-all' method and advertises that in the <hello>:

<capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=trim&amp;also-supported=explicit,report-all</capability>

A user can save a rollback checkpoint (for example, prior to doing an <edit-config> or a series of <edit-config>) and perform a rollback revert if needed later using the <cli-action> RPC.

The set of supported actions are as follows:

- admin>rollback compare [to checkpoint2]
- admin>rollback compare checkpoint1 to checkpoint2
- admin>rollback delete checkpoint | rescue
- admin>rollback save [comment comment] [rescue]
• `admin>rollback revert checkpoint` | `rescue [now]`
• `admin>rollback view [checkpoint | rescue]`

**Example 7** — Two rollback items with responses:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <cli-action>
 <admin>rollback compare active-cfg to 1</admin>
 <admin>rollback compare</admin>
 </cli-action>
</rpc>
```

**Reply:**

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:alcatel-lucent.com:sros:ns:yang:cli-content-layer-r13">
 <cli-action>
 <item>
 <admin>rollback compare active-cfg to 1</admin>
 <response>
 0.150 s
 0.450 s
 configure
 router
 mpls
 shutdown
 interface "system"
 no shutdown
 exit
 lsp "test"
 shutdown
 exit
 exit
 rsvp
 shutdown
 interface "system"
 no shutdown
 exit
 exit
 exit
 exit
 exit
 Finished in 0.720 s
 </response>
 </item>
 <item>
 <admin>rollback compare</admin>
 <response>
 0.160 s
 0.070 s
 configure
 router
 </response>
 </item>
 </cli-action>
 </data>
</rpc-reply>
```
Example 8 — Syntax error in the request resulting in global rpc-error reply:

```
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="103" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <cli-action>
 <admin>rollback compare active-cfg to 1</admin>
 <admin>rollback compare flee-fly</admin>
 </cli-action>
</rpc>
```

Reply:

```
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="103" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <err-element>admin</err-element>
 </error-info>
 </rpc-error>
</rpc-reply>
```
Example 9 — Error processing the request:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <cli-action>
 <admin>rollback compare active-cfg to 1</admin>
 <admin>rollback compare 1 to flee-fly</admin>
 </cli-action>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="103" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:alcatel-lucent.com:sros:ns:yang:cli-content-layer-r13">
 <cli-action>
 <item>
 <admin>rollback compare active-cfg to 1</admin>
 <response>
 0.160 s
 0.180 s
 --
 configure
 router
 - mpls
 - shutdown
 interface "system"
 - no shutdown
 - exit
 - exit
 - rsvp
 - shutdown
 interface "system"
 - no shutdown
 - exit
 - exit
 exit
 --
 Finished in 0.460 s
 </response>
 </item>
 <item>
 <admin>rollback compare 1 to flee-fly</admin>
 <response>
 </response>
 <rpc-error>
 </rpc-error>
 </cli-action>
 </data>
</rpc-reply>
```
Example 10 — Error in the 2nd item of the request, resulting in no 3rd item in the reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="104" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <cli-action>
 <admin>rollback compare active-cfg to 1</admin>
 <admin>rollback compare 1 to xyz</admin>
 <admin>rollback compare active-cfg to 1</admin>
 </cli-action>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="104" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:alcatel-lucent.com:sros:ns:yang:cli-content-layer-r13">
 <cli-action>
 <item>
 <admin>rollback compare active-cfg to 1</admin>
 <response>
 0.170 s
 1.350 s
 </response>
 </item>
 </cli-action>
 </data>
</rpc-reply>
```

---

```bash
configure
 router
 - mpls
 - shutdown
 - interface "system"
 - no shutdown
 - exit
 - exit
 - exit
```
exit
exit
----------------------------------------------
Finished in 1.640 s

</response>
</item>
</item>
<admin>rollback compare 1 to xyz</admin>
$response>
</response>
</rpc-reply>

4.2.6.1 System-Provisioned Configuration (SPC) Objects

There is a set of configuration objects that are provisioned (added to the <running> datastore) automatically by SR OS; for example, log-id 99.

Some of these objects can be deleted/removed by a user (Deletable SPC Objects).

• In the CLI these are removed by specifying the keyword no, which is then visible in an info command or in a saved config (admin save); for example, no log-id 99.

• The Deletable SPC Objects can be removed or recreated via NETCONF <edit-config> requests, but they are not visible in a <get-config> response in the “urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13” namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules) when they are:
  – set to their default values (including all child leaves and objects)
  – removed or deleted

• The Deletable SPC Objects are visible in a <get-config> response in the “urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13” namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules) if a child leaf or object is changed away from the default value; for example, changing log-99 to time-format local.
• The Deletable SPC objects are not visible in a <get-config> response in the "urn:nokia.com:sros:ns:yang:sr:conf" namespace (the Nokia SR OS YANG modules) if the child leaves are all at default values.

• The list of Deletable SPC Objects is as follows:

```plaintext
Config system security profile default
Config system security profile default entry 10-100
Config system security profile administrative
Config system security profile administrative entry 10-112
Config system security user "admin"
Config system security user console member "default"
Config system security ssh access group xyz (a set of access groups)
Config system security ssh client-cipher-list protocol-version 1 cipher 200-210
Config system security ssh client-cipher-list protocol-version 2 cipher 190-235
Config system security ssh server-cipher-list protocol-version 1 cipher 200-205
Config system security ssh server-cipher-list protocol-version 2 cipher 190-235
Config log filter 1001
Config log filter 1001 entry 10
Config log log-id 99 & 100
```

Some SPC objects cannot be deleted (Non-Deletable SPC Objects).

• Although these objects cannot be deleted, some of them contain leaves that can be modified.

• The Non-Deletable SPC Objects are not visible in a <get-config> response in the "urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13" namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules) when they are set to their default values (including all child leaves and objects).

• The Non-Deletable SPC Objects are visible in a <get-config> response in the "urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13" namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules) if a child leaf or object is changed away from the default value; for example, setting the card-type.

• The Non-Deletable SPC objects are not visible in a <get-config> response in the "urn:nokia.com:sros:ns:yang:sr:conf" namespace (the Nokia SR OS YANG modules) if the child leaves are all at default values.

• The list of Non-Deletable SPC Objects is as follows:

```plaintext
Config system security user-template {tacplus_default|radius_default}
Config system security snmp view iso ...
Config system security snmp view li-view ...
Config system security snmp view mgmt-view ...
Config system security snmp view vprn-view ...
Config system security snmp view no-security-view ...
Config log event-control ...
Config filter log 101
Config qos ... various default policies can’t be deleted
Config qos queue-group-templates ... these can’t be deleted
Config card <x>
Config router network-domains network-domain "default"
Config oam-pm bin-group 1
Config call-trace trace-profile "default"
```
Some Non-Deletable SPC Objects are visible in a <get-config> request in the “urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13” namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules), even if they are set to default values:

Config system security cpu-protection policy 254 and 255
Config router interface "system"
Config service customer 1
4.3 Establishing a NETCONF Session

The following example shows a client on a Linux PC initiating a connection to an SR OS NETCONF server. The SSH session must be invoked using an SSH subsystem (as recommended in RFC 6242):

```
ssh -s my_username@a.b.c.d -p 830 netconf
```

The following example shows an exchange of hello messages which include advertisement of capabilities.

From the SR OS server:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
 <capability>urn:ietf:params:netconf:capability:startup:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=trim&also-supported=explicit,report-all</capability>
 <capability>urn:nokia.com:sros:ns:yang:conf-aa-r13?module=nokia-conf-aa-r13&revision=2016-12-21</capability>
 <capability>urn:nokia.com:sros:ns:yang:conf-aaa-r13?module=nokia-conf-aaa-r13&revision=2016-12-21</capability>
 <capability>urn:nokia.com:sros:ns:yang:conf-system?module=nokia-conf-system&revision=2016-07-06</capability>
 ...
```

```
<capability>urn:nokia.com:sros:ns:yang:conf-system?module=nokia-conf-system&revision=2016-07-06</capability>
```
A NETCONF client can reply with a hello message like the following:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 </capabilities>
</hello>
```
4.4 XML Content Layer

XML is the default content layer format for the SR OS NETCONF server. When using the XML format at the NETCONF content layer, configuration changes and configuration information retrieved are expressed as XML tags.

4.4.1 <get> with XML Content Layer

A <get> operation with an XML content layer is supported with the <candidate> datastore only. A <get> request retrieves both the configuration and state data from the “urn:nokia.com:sros:ns:yang:sr:conf” namespace (the Nokia SR OS YANG modules) only. If any nodes from the configure tree are included in a <get> request filter, then at minimum the <configure> tag must contain a namespace. If the namespace is not specified, the SR OS returns an error.

Example 1: The <configure> tag contains a namespace

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
 <python/>
 </configure>
 </filter>
 </get>
</rpc>
```

Reply: no errors

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
 <python xmlns="urn:nokia.com:sros:ns:yang:sr:conf-python">
 <python-script>
 <script-name>testing</script-name>
 <shutdown>false</shutdown>
 <protection/>
 </python-script>
 <python-script>
 <script-name>tested</script-name>
 <protection/>
 </python-script>
 </python>
 </configure>
 </data>
</rpc-reply>
```
Example 2: The <configure> tag does not contain a namespace

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <configure>
 <python xmlns="urn:nokia.com:sros:ns:yang:sr:conf-python">
 </python>
 </configure>
 </filter>
 </get>
</rpc>
```

Reply: SR OS errors

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>unknown-element</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-element>configure</bad-element>
 </error-info>
 <error-message>
 Element is not valid in the specified context.
 </error-message>
 </rpc-error>
</rpc-reply>
```

Example 3: The <state> tag contains a namespace

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <state xmlns="urn:nokia.com:sros:ns:yang:sr:state">
 </state>
 </filter>
 </get>
</rpc>
```

Reply: No errors

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <state xmlns="urn:nokia.com:sros:ns:yang:sr:state">
 </state>
 </data>
</rpc-reply>
```
Example 4: The <state> tag does not contain a namespace

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <state/>
 </filter>
 </get>
</rpc>
```

Reply: SR OS errors

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>bad-element</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-element>state</bad-element>
 </error-info>
 <error-message>
 Element is not valid in the specified context.
 </error-message>
 </rpc-error>
</rpc-reply>
```

4.4.2 <edit-config> with XML Content Layer

An <edit-config> operation is supported with the <running> datastore and the <candidate> datastore.

The <edit-config> requests to the <candidate> datastore can only write XML-formatted content.

The <edit-config> requests that specify the running datastore as a target while using the "urn:nokia.com:sros:ns:yang:sr:conf" namespace (the Nokia SR OS YANG modules) result in an error response.
Example 1: using the <running> datastore with the urn:nokia.com:sros:ns:yang:sr:conf” namespace

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target><running/></target>
 <config>
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
 <python>
 <python-script>
 <script-name>testing</script-name>
 </python-script>
 </python>
 </configure>
 </config>
 </edit-config>
</rpc>
```

Reply: with SR OS errors

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-not-supported</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-element>running</bad-element>
 </error-info>
 <error-message>
 Writing to running datastore not supported in the specified namespace
 </error-message>
 </rpc-error>
</rpc-reply>
```

There is an internal “implicit” lock that has a scope of all configuration commands in the SR OS (not just the “urn:nokia.com:sros:ns:yang:sr:conf” namespace). The following actions take/release the “implicit” lock:

- The first NETCONF <edit-config> on a <candidate> datastore triggers the “implicit” lock
- The completion of a NETCONF <commit> releases the “implicit” lock
- A CLI admin command can release the “implicit” lock. For more information, see 4.10
- The NETCONF <discard-changes> command is supported in the SR OS which releases the “implicit” lock as well

The following scenarios are impacted when an “implicit” lock is taking place:
A NETCONF session attempting an `<edit-config>` (on either the Alcatel-Lucent Base-R13 SR OS data model or the Nokia SR OS data model) is blocked and the SR OS replies with an error (the `<error-info>` element includes the `<session-id>` of the lock owner).

A CLI command (on either the Alcatel-Lucent Base-R13 configuration set or the Nokia SR OS data model) is blocked and the SR OS returns an error.

A SNMP set request (on objects that are part of the "urn:nokia.com:sros:ns:yang:sr:conf" namespace only) is blocked and the SR OS returns an error.

One or more `<edit-config>` requests can be performed on the candidate datastore before the changes are committed or discarded.

NETCONF `<edit-config>` and `<commit>` operations impact the configuration of the router and, as with some CLI or SNMP configuration changes, additional actions or steps may need to occur before certain configuration changes take operational effect. Some examples include:

- Configuration changes that require a `shutdown` and then `no shutdown` to be performed by an operator in order to take operational effect also need this explicit `shutdown` and then `no shutdown` to be performed via NETCONF (in separate edit-configs/commits) in order to take operational effect after those configuration items are changed. Some examples include:
  - changes to Autonomous System or Confederation value require a BGP `shutdown` and then `no shutdown`
  - changes to VPRN Max-routes requires a `shutdown` and then `no shutdown` on the VPRN service
  - changes to OSPF/ISIS export-limit require a `shutdown` and then `no shutdown` on OSPF/ISIS

- Configuration changes to an msap-policy that normally require a `tools perform subscriber-mgmt eval-msap` command to take operational effect on subscribers that are already active. NETCONF can be used to change the msap-policy configuration, but if it must have the configuration changes applied to the active subscribers then the operator must run the `eval-msap tools` command.

The supported `<edit-config>` operation attribute values are listed in Table 58.

**Table 58**  
**<edit-config> Operation Attribute Values**

<table>
<thead>
<tr>
<th>Command</th>
<th>Notes</th>
</tr>
</thead>
</table>
**Table 58**  
<edit-config> Operation Attribute Values (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge (Base-R13 SR OS modules)</td>
<td>• For a merge operation, the operations and tags specified in an &lt;edit-config&gt; request are order-aware and order-dependent, and the sequence of merge operations must follow the required sequence of the equivalent CLI commands. The &lt;edit-config&gt; request is processed and executed in a top-down order. The same leaf can be enabled and disabled multiple times in the request and the final result is whatever was last specified for that leaf in the &lt;edit-config&gt; request.</td>
</tr>
</tbody>
</table>
| remove (Base-R13 SR OS modules) | • A <remove> operation is not supported for boolean leaves. For example, any of the following example commands will return an error:
  - <shutdown operation="remove"/>
  - <shutdown operation="remove">false</shutdown>
  - <interface operation="remove">
    <interface-name>abc</interface-name>
    <shutdown>true</shutdown>
  </interface>
  (For this last case <shutdown operation="merge">true</shutdown> could be used instead to make the request valid.)
  • A <remove> operation is the equivalent of no command in the CLI. This no command is applied whether the default for command is enabled (command), disabled (no command), or a specific value. The <remove> operation is not aware of the default value of the object or leaf being removed.
  • A <remove> operation for a leaf where the request also specifies a value for the leaf, will result in an error. |
### <edit-config> Operation Attribute Values (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete</td>
<td>• A <code>&lt;delete&gt;</code> operation for a leaf or a presence container will not return an error if the item is already deleted.</td>
</tr>
<tr>
<td>(Base-R13 SR OS modules)</td>
<td>• An error is returned if attempting to delete a list node that does not exist.</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;delete&gt;</code> operation for a container without presence will return an error.</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;delete&gt;</code> operation is not supported for boolean leaves. For example, any of the following example commands will return an error:</td>
</tr>
<tr>
<td></td>
<td>– <code>&lt;shutdown operation=&quot;delete&quot;/&gt;</code></td>
</tr>
<tr>
<td></td>
<td>– <code>&lt;shutdown operation=&quot;delete&quot;&gt;false&lt;/shutdown&gt;</code></td>
</tr>
<tr>
<td></td>
<td>– <code>&lt;interface operation=&quot;delete&quot;&gt;</code></td>
</tr>
<tr>
<td></td>
<td><code>&lt;interface-name&gt;abc&lt;/interface-name&gt;</code></td>
</tr>
<tr>
<td></td>
<td><code>&lt;shutdown&gt;true&lt;/shutdown&gt;</code></td>
</tr>
<tr>
<td></td>
<td>&lt;/interface&gt;</td>
</tr>
<tr>
<td></td>
<td>(For this last case <code>&lt;shutdown operation=&quot;merge&quot;&gt;true&lt;/shutdown&gt;</code> could be used instead to make the request valid.)</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;delete&gt;</code> operation is the equivalent of no command in the CLI. This no command is applied whether the default for command is enabled (command), disabled (no command), or a specific value. The <code>&lt;delete&gt;</code> operation is not aware of the default value of the object/leaf being deleted.</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;delete&gt;</code> operation on a node will ignore any values provided for that node (it will not check if that value is configured or valid), and it will ignore any data below that node (it will not check if that data exists or is valid).</td>
</tr>
</tbody>
</table>

create	• A `<create>` operation for a leaf or a presence container will not return an error if the item is being set to the same value.
(Base-R13 SR OS modules)	• An error is returned if attempting to create a list node that already exists.
	• A `<create>` operation for a container without presence will result in an “OK” response (no error) but will be silently ignored.
	• For a `<create>` operation, the operations and tags specified in an `<edit-config>` request are order-aware and order-dependent, and the sequence of create operations must follow the required sequence of the equivalent CLI commands. The `<edit-config>` request is processed and executed in a top-down order. The same leaf can be enabled and disabled multiple times in the request and the final result is whatever was last specified for that leaf in the `<edit-config>` request.

| replace                  | • not supported                                                                                                                                                                                   |
| (Base-R13 SR OS modules) |

### Table 58  
**<edit-config>** Operation Attribute Values (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge (Nokia SR OS modules)</td>
<td>• supported</td>
</tr>
<tr>
<td>remove (Nokia SR OS modules)</td>
<td>• A <code>&lt;remove&gt;</code> operation removes the deleted configuration and returns it to the default value.</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;remove&gt;</code> operation automatically removes all child objects of a deleted object (leaves, lists, containers, and so on).</td>
</tr>
<tr>
<td></td>
<td>• Explicit shutdown of the object being removed (or any child) is not required and results in an error if a merge operation is specified on a tag that inherits a <code>&lt;remove&gt;</code> operation.</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;remove&gt;</code> operation is allowed on non-preservation containers. The non-preservation container and all of its children are removed (for example, a non-preservation container with no child nodes, is not displayed in a <code>&lt;get&gt;</code> or <code>&lt;get-config&gt;</code> reply).</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;remove&gt;</code> operation is allowed on an object where all child branches and dependencies are automatically removed (but the <code>&lt;remove&gt;</code> operation fails if any outside objects refer to the object being removed).</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;remove&gt;</code> operation is allowed on a <code>&lt;shutdown/&gt;</code> leaf (which returns it to its default value).</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;remove&gt;</code> operation is allowed on a non-boolean leaf.</td>
</tr>
<tr>
<td></td>
<td>• Upon specifying a <code>&lt;remove&gt;</code> operation on a node where none of its children belong to the urn:nokia.com:sros:ns:yang:conf namespace (the Nokia SR OS YANG modules), the SR OS does not return an error and completes the node removal.</td>
</tr>
<tr>
<td></td>
<td>• A <code>&lt;remove&gt;</code> operation for a leaf where the request also specifies a value for the leaf, results in an error.</td>
</tr>
</tbody>
</table>
### Table 58  <edit-config> Operation Attribute Values (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Notes</th>
</tr>
</thead>
</table>
| delete (Nokia SR OS modules) | • The SR OS returns an error if a <delete> operation is performed on a list that does not specify a key (that is, an attempt to delete all members of a list).  
  • The SR OS returns an error if a <delete> operation is performed on a leaf or presence container that is already deleted (or has the default value and the default-handling is trim).  
  • The SR OS may return an error and may not complete the deletion operation when a <delete> operation is performed on a node where any of its children do not belong to the urn:nokia.com:sros:ns:yang:sr:conf namespace (the Nokia SR OS YANG modules).  
  • A <delete> operation removes the deleted configuration and returns it to the default value.  
  • A <delete> operation automatically deletes all child objects of a deleted object (leaves, lists, containers, and so on).  
  • Explicit shutdown of the object being deleted (or any of its children) is not required and results in an error if a merge operation is specified on a tag that inherits a <delete> operation.  
  • A <delete> operation is allowed on non-presence containers. The non-presence container and all of its children are deleted (for example, a non-presence container with no child nodes is not displayed in a <get> or <get-config> reply).  
  • A <delete> operation is allowed on an object where all child branches and dependencies are automatically deleted (but the <delete> operation fails if any outside objects refer to the object being deleted).  
  • A <delete> operation is allowed on a <shutdown/> leaf (which returns it to its default value).  
  • A <delete> operation is allowed on a non-boolean leaf.  
  • Upon specifying a <delete> operation on a node where none of its children belong to the urn:nokia.com:sros:ns:yang:sr:conf namespace (the Nokia SR OS YANG modules), the SR OS does not return an error and completes the node deletion.  
  • A <delete> operation for a leaf where the request also specifies a value for the leaf, will result in an error. |
| create (Nokia SR OS modules) | • When a <create> operation for a leaf or presence container is performed, the SR OS returns an error if the leaf or presence container is being set to the same value (unless the default-handling is trim and the value being set is the default value). |
| replace (Nokia SR OS modules) | • Not supported |
The `<edit-config>` operation’s `<default-operation>` parameter is supported with the following values:

- merge
- none

  - In the urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13 namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules), an operation of “none” on a leaf node (inherited or direct) causes that leaf statement to be ignored. No error will be returned if the leaf does not exist in the data model.
  
  - In the urn:nokia.com:sros:ns:yang:sr:conf namespace (the Nokia SR OS YANG modules), an operation of "none" (inherited or direct) on a leaf node that does not exist in the data model causes the SR OS to return an error with an `<error-tag>` value of data-missing.

For `<delete>` and `<remove>` operations in the Nokia SR OS namespace, the SR OS NETCONF server will recursively “unwind” any children of the node being deleted or removed first before removing the node itself. The ‘deepest’ child branch of the request is examined first and any leaves are processed, after which the server works backwards out of the deepest branches back up to the object where the delete operation was specified.

For urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13 namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules), if child branches of an object are required to be removed before deleting the object in the CLI, then the equivalent delete request in a NETCONF `<edit-config>` request must contain all those children if they exist. For example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target><running/></target>
 <config>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <service>
 <vpls operation="delete">
 <service-id>11</service-id>
 <interface>
 <ip-int-name>test</ip-int-name>
 <shutdown operation="merge">true</shutdown>
 </interface>
 <shutdown operation="merge">true</shutdown>
 </vpls>
 </service>
 </configure>
 </config>
 </edit-config>
</rpc>
```
In the example above, the SR OS will first shut down the test interface, then delete the interface, then shut down the VPLS, and then finally remove it.

**Note:** In the urn:alcatel-lucent.com:sros:ns:yang:conf-* namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules), the "operation="merge" is required in the shutdown nodes; otherwise the inherited operation is delete, which is not supported on boolean leaves.

In the example above, if other children of vpls 11 exist in the config besides the interface test specified in the delete request above, and those children are required in the CLI to be deleted before removing vpls 11, then the deletion request above will fail. All configured children must be specified in the delete request.

The following applies to the urn:nokia.com:sros:ns:yang:conf namespace (the Nokia SR OS YANG modules).

- The SR OS returns an error if an explicitly defined `<edit-config>` operation (such as "delete") is specified on a "key" leaf.
- The "operation" attribute is inherited from the parent node if not explicitly specified (same as namespaces). If no parent node is available, then the "default-operation" value is used. In other words, the "operation" attribute has a "scope" that it applies to the nested nodes until it is redefined. The following scenarios simplify the "operation" inheritance, where the first line in each scenario represents the operation value of the parent node and the following lines represent the possible operation values for the child nodes and the SR OS behavior in each case:
  1. Create
     - Create/Merge: The SR OS processes request (request succeeds/fails based on operation’s behavior)
     - Delete/Remove: The SR OS returns an error
  2. Merge
     - Create/Merge/Delete/Remove: The SR OS processes request (request succeeds/fails based on operation’s behavior)
  3. Delete/Remove
     - Create/Merge: The SR OS returns an error
     - Delete/Remove: The SR OS processes request (request succeeds/fails based on operation’s behavior)
4.4.3  <get-config> with XML Content Layer

A <get-config> operation is supported with the <running> datastore and the <candidate> datastore.

The <get-config> requests on the <candidate> datastore return only XML-formatted content.

On a <candidate> datastore, if no filter is specified, SR OS returns the Nokia SR OS configurations only.

On the <running> datastore, if no filter is specified, SR OS returns both the Alcatel-Lucent Base-R13 configurations and the Nokia SR OS configurations.

On the <running> datastore, to return configurations from the Alcatel-Lucent Base-R13 configurations only (or the Nokia SR OS configurations only), the user must specify at least a top-level tag and a namespace in the filter. If the namespace is not specified, SR OS returns an error.

The following applies to the urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13 namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules):

• <get-config> requests that specify a non-existing list node or presence container will result in a reply that contains no data for those list nodes or containers. An <rpc-error> is not sent in this case.

The following applies to the urn:nokia.com:sros:ns:yang:sr:conf namespace (the Nokia SR OS YANG modules):

• <get-config> requests that specify a non-existing list node or presence container result in an <rpc-error> response
• <get-config> requests that specify a list without specifying a key result in an <rpc-error> response

Using the 'report-all' value with the <with-defaults> tag (RFC 6243) in an XML-content layer <get-config>, returns the equivalent of the CLI command info detail (the returned data includes attributes that are set to their default values).

Example 1: use of <with-defaults> with a value of "report-all"

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <candidate/>
 </source>
 <filter>
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
```
<system>
    <security>
        <cpm-filter>
            <ipv6-filter>
                <shutdown>true</shutdown>
            </ipv6-filter>
        </cpm-filter>
    </security>
</system>
</configure>
</filter>
    report-all
</with-defaults>
</get-config>
</rpc>
]]>]]>

Reply: returns even attributes with default values

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <data>
        <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
            <system xmlns="urn:nokia.com:sros:ns:yang:sr:conf-system">
                <security>
                    <cpm-filter>
                        <ipv6-filter>
                            <shutdown>true</shutdown>
                        </ipv6-filter>
                    </cpm-filter>
                </security>
            </system>
        </configure>
    </data>
</rpc-reply>
]]>]]>

Example 2: without using <with-defaults>

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <get-config>
        <source>
            <candidate/>
        </source>
        <filter>
            <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
                <system>
                    <security>
                        <cpm-filter>
                            <ipv6-filter>
                                <shutdown>true</shutdown>
                            </ipv6-filter>
                        </cpm-filter>
                    </security>
                </system>
            </configure>
        </filter>
    </get-config>
</rpc>
<get-config>
</rpc>
]]>]]>

Reply: Attributes with default values are not returned

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <data>
    <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
      <system>
        <security>
          <cpm-filter>
            <ipv6-filter>
              </ipv6-filter>
          </cpm-filter>
        </security>
      </system>
    </configure>
  </data>
</rpc-reply>
]]>]]>

Subtree filtering for basic subtree selection is supported for XML content layer <get-config> requests. Post-filtering of the selected subtrees is not supported.

In the urn:alcatel-lucent.com:sros:ns:yang:conf-*-r13 namespace (the Alcatel-Lucent Base-R13 SR OS YANG modules), the subtree filtering behaves as follows.

- Attribute match expressions (section 6.2.2 of RFC 6241) are not supported. See details below about content match nodes.
- Only containers are supported as selection nodes (section 6.2.4 of RFC 6241). Empty leaf nodes or list name nodes are not supported as selection nodes.
  - Nodes that represent lists must also include content match nodes for all keys of the list; for example, <configure><router><interface><interface-name>abc</interface-name>.
  - A selection node that is a list but does not have a key specified is not supported; for example, <configure><router><interface/> is not supported. An alternative is to request the parent containment node that contains the desired list node; for example, <configure><router> instead of <configure><router><interface/>.
- Content match nodes (section 6.2.5 of RFC 6241) are only supported for key leaves; for example, <configure><router><interface><interface-name>abc</interface-name>.
  - Content match nodes that are leaves but are not also keys will result in an error (not silently ignored).

Example 3 — A non key leaf is specified (for example, shutdown)
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <get-config>
    <source><running/></source>
    <filter>
      <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
        <router>
          <interface>
            <interface-name>abc</interface-name>
            <shutdown>false</shutdown>
          </interface>
        </router>
      </configure>
    </filter>
  </get-config>
</rpc>

Reply: SR OS errors

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <rpc-error>
    <error-type>protocol</error-type>
    <error-tag>operation-not-supported</error-tag>
    <error-severity>error</error-severity>
    <error-info>
      <bad-element>shutdown</bad-element>
    </error-info>
    <error-message>
      Leaf element specified which is not a key.
    </error-message>
  </rpc-error>
</rpc-reply>

Multiple key leafs for the same key cannot be requested inside the same instance of the
list name node; for example, <interface-name>abc</interface-name> <interface-name>def</interface-name>. Each key value must be inside its own instance of the
list name node; for example, <interface> <interface-name>abc</interface-name> </interface> <interface> <interface-name>def</interface-name> </interface>.

Example 4 — A valid <get-config> request (content match on a list key):

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <get-config>
    <source><running/></source>
    <filter>
      <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
        <router>
          <interface>
            <interface-name>abc</interface-name>
          </interface>
        </router>
      </configure>
    </filter>
  </get-config>
</rpc>
Example 5 — A valid <get-config> request (selection node that is a container):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><running/></source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <router/>
 </configure>
 </filter>
 </get-config>
</rpc>
```

The reply will contain all the configuration for all child nodes of config>router

Example 6 — An invalid <get-config> request (list name node - invalid selection node):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><running/></source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <router>
 <interface>
 </interface>
 </configure>
 </filter>
 </get-config>
</rpc>
```
Example 7 — An invalid <get-config> request (empty leaf node - invalid selection node):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <system>
 <security>
 <ftp-server/>
 </security>
 </system>
 </configure>
 </filter>
 </get-config>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info/>
 <error-message>command failed - 'configure router interface'</error-message>
 </rpc-error>
</rpc-reply>
```
Example 8 — An invalid <get-config> request (key repeated in the same instance of the list node):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><running/></source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <router>
 <interface>
 <interface-name>abc</interface-name>
 <interface-name>def</interface-name>
 </interface>
 </router>
 </configure>
 </filter>
 </get-config>
</rpc>
```

Reply: SR OS errors

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <err-element>get-config</err-element>
 </error-info>
 <error-message>command failed - 'configure router interface "abc" "def"'</error-message>
 </rpc-error>
</rpc-reply>
```

The full configuration (equivalent to the CLI command 'admin display-config') can be obtained via a <get-config> request:
• A — when the <filter> tag is not present
  For example:
  ```xml
 <?xml version="1.0" encoding="UTF-8"?>
 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><running/></source>
 </get-config>
 </rpc>
  ```

  ```xml
 <?xml version="1.0" encoding="UTF-8"?>
 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><candidate/></source>
 </get-config>
 </rpc>
  ```

• B — when only the <configure> tag is present inside a <filter> tag
  For example:
  ```xml
 <?xml version="1.0" encoding="UTF-8"?>
 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><running/></source>
 <filter>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13"/>
 </filter>
 </get-config>
 </rpc>
  ```

  ```xml
 <?xml version="1.0" encoding="UTF-8"?>
 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><candidate/></source>
 <filter>
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf"/>
 </filter>
 </get-config>
 </rpc>
  ```
4.5 XML Content Layer Examples

The following examples can be used after a NETCONF session has been established including the exchange of the <hello> messages.

The following is an example of a <get-config> request on the <running> datastore to check on whether netconf is shut down or not on the router:

```xml
```

Reply:

```xml
```

The following is an example for a <get-config> request on the <candidate> datastore to get the full configurations of the system, qos and log branches:

```xml
```
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <data>
    <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
      <system>
        <contact>tester</contact>
        <name>r2-node</name>
        <location>over-here</location>
        <lldp>
          <shutdown>false</shutdown>
        </lldp>
        ...
      </system>
      <qos>
        <sap-ingress>
          <policy-id>1</policy-id>
          <policy-name>default</policy-name>
          <description>Default SAP ingress QoS policy.</description>
          <sub-insert-shared-pccrule>
            <sub-insert-shared-pccrule>
              <dynamic-policer>
                <range>
                  <parent/>
                </range>
                ...
              </dynamic-policer>
              <range>
                <parent/>
              </range>
            </sub-insert-shared-pccrule>
          </sub-insert-shared-pccrule>
        </sap-ingress>
        ...
      </qos>
    </configure>
  </data>
</rpc-reply>
The following is an example of an <edit-config> request on the <running> datastore to create a basic VPRN service:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <configure xmlns="urn:alcatel-lucent.com:sros:ns:yang:conf-r13">
 <service>
 <vprn operation="create">
 <service-id>200</service-id>
 <customer>1</customer>
 </vprn>
 </service>
 </configure>
 </config>
 </edit-config>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc-reply>
```

The following is an example of an <edit-config> request on the <candidate> datastore to create a basic epipe service:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target><candidate/></target>
 <config>
 <configure xmlns="urn:nokia.com:sros:ns:yang:sr:conf">
 <service>
 <epipe>
 <service-id>444</service-id>
 <customer>1</customer>
 <service-mtu>1514</service-mtu>
 </epipe>
 </service>
 </configure>
 </config>
 </edit-config>
</rpc>
```
Reply:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ok/>
</rpc-reply>
4.6 CLI Content Layer

When using the CLI format at the NETCONF content layer, configuration changes and configuration information retrieved are expressed as untagged (non-XML) CLI commands; for example, CLI script.

The script must be correctly ordered and has the same dependencies and behavior as CLI. The location of CR/LF (ENTER) within the CLI for an <edit-config> is significant and affects the processing of the CLI commands, such as what CLI branch is considered the “working context”. In the following two examples, the “working context” after the commands are issued are different.

**Example 1:**

exit all [<-ENTER]
configure system time zone EST [<-ENTER]

**Example 2:**

exit all [<-ENTER]
configure [<-ENTER]
    system [<-ENTER]
        time [<-ENTER]
            zone EST [<-ENTER]

After example 1, the CLI working context is the root and immediately sending ‘dst-zone CEST’ would return an error. After example 2, the CLI working context is config>system>time and sending ‘dst-zone CEST’ would work as expected.

Configuration changes done via NETCONF trigger the same “change” log events (for example, tmnxConfigCreate) as a normal CLI user doing the same changes.

The <with-defaults> tag (RFC 6243, *With-defaults capability for NETCONF*) is not supported in a CLI content layer request.

The operator can get a full configuration including defaults for a CLI Content Layer using an empty <cli-info-detail>. The full configuration (equivalent to the CLI command `admin display-config [detail]`) can be obtained via a <get-config> request in a CLI Content Layer format with an empty <cli-info> or <cli-info-detail> tag inside a <config-format-cli-block>. <report-all> is not supported.

Post-processing commands are ignored: "| match" (pipe match), "| count" (pipe count) and ">" (redirect to file) and CLI ranges are not supported for any command; for example, show card [1..5].
4.7 CLI Content Layer Examples

The following examples can be used after a NETCONF session has been established including the exchange of the `<hello>` messages.

The following shows an example of a configuration change request and response.

**Note:** The `exit all` command is not required at the beginning of the CLI block; it is automatically assumed by the SR OS NETCONF server.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="104" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target><running/></target>
 <config>
 <config-format-cli-block>
 configure system
 time zone EST
 location over-here
 exit all
 </config-format-cli-block>
 </config>
 </edit-config>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="104" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc-reply>
```

The following is an example of a `<get-config>` request and response to retrieve configuration information:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <config-format-cli-block>
 <cli-info-router>
 <cli-info login-control>
 </cli-info-detail>
 </config-format-cli-block>
 </filter>
 </get-config>
</rpc>
```
The following example shows a <get-config> request and response to retrieve full configuration information.
Note: The <cli-info-detail/> request can be used to get the full configuration, including default settings.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <config-format-cli-block>
 <cli-info/>
 </config-format-cli-block>
 </filter>
 </get-config>
</rpc>
```

Reply:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:alcatel-lucent.com:sros:ns:yang:cli-content-layer-r13">
 <config-format-cli-block>
 <item>
 <cli-info/>
 </item>
 </config-format-cli-block>
 </data>
</rpc-reply>
```
The following is an example of a <get> request and the response to it:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <oper-data-format-cli-block>
 <cli-show>system security ssh</cli-show>
 </oper-data-format-cli-block>
 </filter>
 </get>
</rpc-reply>
]]>]]>
```
Reply:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <data xmlns="urn:alcatel-lucent.com:sros:ns:yang:cli-content-layer-r13">
    <oper-data-format-cli-block>
      <item>
        <cli-show>system security ssh</cli-show>
        <response>
          ================================================================================
          SSH Server
          ================================================================================
          Administrative State    : Enabled
          Operational State       : Up
          Preserve Key            : Enabled
          SSH Protocol Version 1  : Disabled
          SSH Protocol Version 2  : Enabled
          ================================================================================
          Connection Version Cipher Username ServerName Status
          -----------------------------------------------------------------------------
          135.121.143.254 admin aes128-cbc netconf connected
          Number of SSH sessions : 1
          ================================================================================
          </response>
        </item>
      </oper-data-format-cli-block>
    </data>
  </rpc-reply>
4.8 NETCONF Configuration Command Reference

This section provides the NETCONF configuration command reference. Topics in this section include:

- Command Hierarchies
- Configuration Commands

4.8.1 Command Hierarchies

4.8.1.1 NETCONF System Commands

```
cfg
 | system
 | netconf
 | capabilities
 | | candidate
 | | writable-running
 | | shutdown
 | yang-modules
 | | base-r13-modules
 | | nokia-modules
```

4.8.1.2 NETCONF Security Commands

```
cfg
 | system
 | security
 | profile profile-id
 | netconf
 | base-op-authorization
 | | kill-session
 | | lock
```
4.8.2 Configuration Commands

4.8.2.1 NETCONF System Commands

shutdown

Syntax       [no] shutdown
Context      config>system>netconf
Description  This command disables the NETCONF server. The shutdown command is blocked if there are any active NETCONF sessions. Use the admin disconnect command to disconnect all NETCONF sessions before shutting down the NETCONF service.

candidate

Syntax       [no] candidate
Context      config>system>netconf>capabilities
Description  This command enables or disables support of the candidate datastore in the SR OS NETCONF server. If the candidate is disabled then requests that reference the candidate datastore return an error, and when a NETCONF client establishes a new session the candidate capability is not advertised in the SR OS <hello>. This command also controls support of the <commit> and <discard-changes> operations.

Default      candidate

writable-running

Syntax       [no] writable-running
Context      config>system>netconf>capabilities
Description  This command enables or disables support of the writable-running capability in the SR OS NETCONF server. If writable-running is disabled then requests that reference the running datastore as a target return an error, and when a NETCONF client establishes a new session the writable-running capability is not advertised in the SR OS <hello>.

Default      writable-running
base-r13-modules

Syntax [no] base-r13-modules
Context config>system>netconf>yang-modules
Description This command enables or disables support of the Base-R13 YANG modules in the SR OS NETCONF server. If the base-r13-modules are disabled then requests that reference the Base-R13 modules return an error, and when a NETCONF client establishes a new session the Base-R13 modules are not advertised in the SR OS <hello>.
Default base-r13-modules

nokia-modules

Syntax [no] nokia-modules
Context config>system>netconf>yang-modules
Description This command enables or disables support of the Nokia YANG modules in the SR OS NETCONF server. If the nokia-modules are disabled then requests that reference the Nokia modules return an error, and when a NETCONF client establishes a new session the Nokia modules are not advertised in the SR OS <hello>.
Default nokia-modules

4.8.2.2 NETCONF Security Commands

netconf

Syntax netconf
Context config>system>security>profile
Description This command authorizes netconf capability for the user.

base-op-authorization

Syntax base-op-authorization
Context config>system>security>profile>netconf
Description This command enables the context where permission to use various NETCONF operations is controlled.
kill-session

Syntax  [no] kill-session

Context  config>system>security>profile>netconf>base-op-authorization

Description  This operation authorizes a user associated with the profile to send a kill session NETCONF operation. This kill session operation allows a NETCONF client to kill another NETCONF session, but not the session in which the operation is requested.

Default  no kill-session

lock

Syntax  [no] lock

Context  config>system>security>profile>netconf>base-op-authorization

Description  This operation authorizes a user associated with the profile to send a lock NETCONF operation. This lock operation allows a NETCONF client to lock the running datastore or the candidate datastore.

Default  no lock
4.9  NETCONF Show Command Reference

4.9.1  Command Hierarchies

4.9.1.1  Show Commands

```
show
 — system
 — netconf
 — counters
```

4.9.2  Command Descriptions

4.9.2.1  Show Commands

Command outputs shown in this section are examples only; actual displays may differ depending on supported functionality and user configuration.

4.9.2.1.1  NETCONF System Commands

```
netconf
```

**Syntax**  
netconf

**Context**  
show>system

**Description**  
This command displays NETCONF SSH sessions.

**Output**  
The following displays NETCONF information.  
*Table 59* describes the NETCONF output fields.
Table 59  Show System NETCONF Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| Administrative State         | Enabled — Displays that NETCONF is enabled.  
                              | Disabled — Displays that NETCONF is disabled.                               |
| Operational State            | Up — Displays that NETCONF is operational.  
                              | Down — Displays that NETCONF is not operational.                           |
| Connection                   | The IP address of the connected router(s) (remote client).                  |
| Username                     | The name of the user.                                                       |
| Session ID                   | The NETCONF session ID.                                                    |
| Status                       | Connected or not connected.                                                |
| Number of NETCONF sessions   | Total NETCONF sessions                                                     |
| Running Locked?              | Yes — Displays that the <running> datastore is locked.                     |
|                              | No — Displays that the <running> datastore is not locked.                  |
| Candidate Locked?            | Yes — Displays that the <candidate> datastore is locked.                   |
|                              | No — Displays that the <candidate> datastore is not locked.                |

Sample Output

```
show system netconf

NETCONF Server

Administrative State : Enabled
Operational State : Up

Connection Username Session Status Running Locked? Candidate Locked?

135.224.26.145 admin 17 connected no no
135.224.26.145 admin 15 connected no no

Number of NETCONF sessions : 2

```

counters

Syntax  counters
Context  show>system>netconf
Description  This command displays NETCONF counters.
Output

The following displays NETCONF counter information.

Table 60 describes the NETCONF counter output fields.

Sample Output

# show system netconf counters

```
NETCONF counters:
Rx Messages
 in gets : 23
 in get-configs : 19
 in edit-configs : 35
 in copy-configs : 0
 in delete-configs : 0
 in validates : 0
 in close-sessions : 0
 in kill-sessions : 0
 in locks : 0
 in unlocks : 0
 in commits : 2
 in discards : 1
Rx Total : 80

Tx Messages
 out rpc-errors : 4
Tx Total : 9
```

Failed requests due to lock being taken by other netconf sessions

```
 failed edit-configs: 1
 failed locks : 0
```

Table 60  NETCONF Counters Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Messages</td>
<td>Types and numbers of received messages</td>
</tr>
<tr>
<td>RX Total</td>
<td>Total of all received messages</td>
</tr>
<tr>
<td>TX Messages</td>
<td>Types and numbers of sent messages</td>
</tr>
<tr>
<td>TX Total</td>
<td>Total of all sent messages</td>
</tr>
<tr>
<td>failed edit-configs</td>
<td>Number of failed &lt;edit-config&gt; requests due to a lock (including implicit ones) being taken by other netconf sessions</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>failed locks</td>
<td>Number of failed <code>&lt;lock&gt;</code> requests due to a lock (including implicit ones) being taken by other netconf sessions</td>
</tr>
</tbody>
</table>
4.10 NETCONF Admin Command Reference

4.10.1 Command Hierarchies

4.10.1.1 Admin Commands

admin
  — system
    — candidate
      — discard-changes datastore-type

4.10.2 Command Descriptions

4.10.2.1 Admin Commands

Command outputs shown in this section are examples only; actual displays may differ depending on supported functionality and user configuration.

discard-changes

Syntax  discard-changes datastore-type
Context  admin>system>candidate
Description  This operation discards uncommitted changes on the <candidate> datastore.
Parameters  datastore-type — Specifies the datastore type.
Values      global
5 Event and Accounting Logs

5.1 Logging Overview

The two primary types of logging supported in the OS are event logging and accounting logs.

Event logging controls the generation, dissemination and recording of system events for monitoring status and troubleshooting faults within the system. The OS groups events into four major categories or event sources.

- Security events — Events that pertain to attempts to breach system security.
- Change events — Events that pertain to the configuration and operation of the node.
- Main events — Events that pertain to applications that are not assigned to other event categories/sources.
- Debug events — Events that pertain to trace or other debugging information.

The following are events within the OS and have the following characteristics:

- A time stamp in UTC or local time.
- The generating application.
- A unique event ID within the application.
- The VRF-ID.
- A subject identifying the affected object.
- A short text description.

Event control assigns the severity for each application event and whether the event should be generated or suppressed. The severity numbers and severity names supported in the OS conform to ITU standards M.3100 X.733 & X.21 and are listed in Table 61.

<table>
<thead>
<tr>
<th>Severity Number</th>
<th>Severity Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cleared</td>
</tr>
<tr>
<td>2</td>
<td>indeterminate (info)</td>
</tr>
<tr>
<td>3</td>
<td>critical</td>
</tr>
</tbody>
</table>

Table 61 Event Severity Levels
Events that are suppressed by event control will not generate any event log entries. Event control maintains a count of the number of events generated (logged) and dropped (suppressed) for each application event. The severity of an application event can be configured in event control.

An event log within the OS associates the event sources with logging destinations. Examples of logging destinations include, the console session, a specific telnet or SSH session, memory logs, file destinations, SNMP trap groups and syslog destinations. A log filter policy can be associated with the event log to control which events will be logged in the event log based on combinations of application, severity, event ID range, VRF ID, and the subject of the event.

The OS accounting logs collect comprehensive accounting statistics to support a variety of billing models. The routers collect accounting data on services and network ports on a per-service class basis. In addition to gathering information critical for service billing, accounting records can be analyzed to provide insight about customer service trends for potential service revenue opportunities. Accounting statistics on network ports can be used to track link utilization and network traffic pattern trends. This information is valuable for traffic engineering and capacity planning within the network core.

Accounting statistics are collected according to the parameters defined within the context of an accounting policy. Accounting policies are applied to customer Service Access Points (SAPs) and network ports. Accounting statistics are collected by counters for individual service queues defined on the customer’s SAP or by the counters within forwarding class (FC) queues defined on the network ports.

The type of record defined within the accounting policy determines where a policy is applied, what statistics are collected and time interval at which to collect statistics.

The supported destination for an accounting log is a compact flash system device. Accounting data is stored within a standard directory structure on the device in compressed XML format. It is recommended that accounting logs be configured on the cf1: or cf2: devices only. Accounting log files are not recommended on the cf3: device (cf3: is intended to be used primarily for software images and configuration related files).

<table>
<thead>
<tr>
<th>Severity Number</th>
<th>Severity Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>major</td>
</tr>
<tr>
<td>5</td>
<td>minor</td>
</tr>
<tr>
<td>6</td>
<td>warning</td>
</tr>
</tbody>
</table>
5.2 Log Destinations

Both event logs and accounting logs use a common mechanism for referencing a log destination. Routers support the following log destinations:

- Console
- Session
- Memory Logs
- Log Files
- SNMP Trap Group
- Syslog

Only a single log destination can be associated with an event log or with an accounting log. An event log can be associated with multiple event sources, but it can only have a single log destination.

A file destination is the only type of log destination that can be configured for an accounting log.

5.2.1 Console

Sending events to a console destination means the message will be sent to the system console. The console device can be used as an event log destination.

5.2.2 Session

A session destination is a temporary log destination which directs entries to the active telnet or SSH session for the duration of the session. When the session is terminated, for example, when the user logs out, the “to session” configuration is removed. Event logs configured with a session destination are stored in the configuration file but the “to session” part is not stored. Event logs can direct log entries to the session destination.
5.2.3 Memory Logs

A memory log is a circular buffer. When the log is full, the oldest entry in the log is replaced with the new entry. When a memory log is created, the specific number of entries it can hold can be specified, otherwise it will assume a default size. An event log can send entries to a memory log destination.

5.2.4 Log Files

Log files can be used by both event logs and accounting logs and are stored on the compact flash devices in the file system. It is recommended that event and accounting logs be configured on the cf1: or cf2: devices only. Log files are not recommended on the cf3: device (cf3: is intended to be used primarily for software images and configuration related files).

A log file is identified with a single log file ID, but a log file will generally be composed of a number individual files in the file system. A log file is configured with a rollover parameter, expressed in minutes, which represents the length of time an individual log file should be written to before a new file is created for the relevant log file ID. The rollover time is checked only when an update to the log is performed. Thus, complying to this rule is subject to the incoming rate of the data being logged. For example, if the rate is very low, the actual rollover time may be longer than the configured value.

The retention time for a log file specifies the amount of time the file should be retained on the system based on the creation date and time of the file.

When a log file is created, only the compact flash device for the log file is specified. Log files are created in specific subdirectories with standardized names depending on the type of information stored in the log file.

Event log files are always created in the \log directory on the specified compact flash device. The naming convention for event log files is:

\texttt{log \textit{eeff}-\textit{timestamp}}

where:

\begin{itemize}
  \item \textit{ee} is the event log ID
  \item \textit{ff} is the log file destination ID
  \item \textit{timestamp} is the timestamp when the file is created in the form of \texttt{yyyyymmd}-\texttt{hhmmss}
\end{itemize}

where:
yyy is the four-digit year (for example, 2007)

mm is the two digit number representing the month (for example, 12 for December)

dd is the two digit number representing the day of the month (for example, 03 for the 3rd of the month)

hh is the two digit hour in a 24-hour clock (for example, 04 for 4 a.m.)

mm is the two digit minute (for example, 30 for 30 minutes past the hour)

ss is the two digit second (for example, 14 for 14)

Accounting log files are created in the `\act-collect` directory on a compact flash device (specifically `cf1` or `cf2`). The naming convention for accounting log files is nearly the same as for log files except the prefix `act` is used instead of the prefix `log`. The naming convention for accounting logs is:

```
act aaff-timestamp.xml.gz
```

where:

aa is the accounting policy ID

ff is the log file destination ID

`timestamp` is the timestamp when the file is created in the form of `yyyyymmdd-hhmmss` where:

```
yyy is the four-digit year (for example, 2007)

mm is the two digit number representing the month (for example, 12 for December)

dd is the two digit number representing the day of the month (for example, 03 for the 3rd of the month)

hh is the two digit hour in a 24-hour clock (for example, 04 for 4 a.m.)

mm is the two digit minute (for example, 30 for 30 minutes past the hour)

ss is the two digit second (for example, 14 for 14 seconds)
```

Accounting logs are .xml files created in a compressed format and have a .gz extension.

The `\act-collect` directory is where active accounting logs are written. When an accounting log is rolled over, the active file is closed and archived in the `\act` directory before a new active accounting log file created in `\act-collect`. 
When creating a new log file on a Compact Flash disk card, the system will check the amount of free disk space and that amount must be greater than or equal to the lesser of 5.2 MB or 10% of the Compact Flash disk capacity.

### 5.2.5 SNMP Trap Group

An event log can be configured to send events to SNMP trap receivers by specifying an SNMP trap group destination.

An SNMP trap group can have multiple trap targets. Each trap target can have different operational parameters.

A trap destination has the following properties:

- The IP address of the trap receiver.
- The UDP port used to send the SNMP trap.
- SNMP version (v1, v2c, or v3) used to format the SNMP notification.
- SNMP community name for SNMPv1 and SNMPv2c receivers.
- Security name and level for SNMPv3 trap receivers.

For SNMP traps that will be sent out-of-band through the Management Ethernet port on the SF/CPM, the source IP address of the trap is the IP interface address defined on the Management Ethernet port. For SNMP traps that will be sent in-band, the source IP address of the trap is the system IP address of the router.

Each trap target destination of a trap group receives the identical sequence of events as defined by the log ID and the associated sources and log filter applied.

### 5.2.6 Syslog

An event log can be configured to send events to one syslog destination. Syslog destinations have the following properties:

- Syslog server IP address.
- The UDP port used to send the syslog message.
- The Syslog Facility Code (0 to 23) (default 23 - local 7).
- The Syslog Severity Threshold (0 to 7) - events exceeding the configured level will be sent.
Because syslog uses eight severity levels whereas the router uses six internal severity levels, the severity levels are mapped to syslog severities. Table 62 displays the severity level mappings to syslog severities.

### Table 62  Router to Syslog Severity Level Mappings

<table>
<thead>
<tr>
<th>SR OS Event Severity</th>
<th>Syslog Severity Numerical Code</th>
<th>Syslog Severity Name</th>
<th>Syslog Severity Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>0</td>
<td>emergency</td>
<td>System is unusable</td>
</tr>
<tr>
<td>critical (3)</td>
<td>1</td>
<td>alert</td>
<td>Action must be taken immediately</td>
</tr>
<tr>
<td>major (4)</td>
<td>2</td>
<td>critical</td>
<td>Critical conditions</td>
</tr>
<tr>
<td>minor (5)</td>
<td>3</td>
<td>error</td>
<td>Error conditions</td>
</tr>
<tr>
<td>warning (6)</td>
<td>4</td>
<td>warning</td>
<td>Warning conditions</td>
</tr>
<tr>
<td>--</td>
<td>5</td>
<td>notice</td>
<td>Normal but significant condition</td>
</tr>
<tr>
<td>cleared (1)</td>
<td>6</td>
<td>info</td>
<td>Informational messages</td>
</tr>
<tr>
<td>indeterminate (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>7</td>
<td>debug</td>
<td>Debug-level messages</td>
</tr>
</tbody>
</table>

The general format of an SR OS syslog message is as follows (see RFC 3164, *The BSD Syslog Protocol*). The '<' and '>' are informational delimiters to make reading and understanding the format easier and they do not appear in the actual syslog message except as part of the 'PRI':

```
<PRI> <HEADER><MSG>
```

where:

- `<PRI>` (the "<" and ">" are included in the syslog message) is the configured facility*severity (as described in the 7450 ESS, 7750 SR, and 7950 XRS System Management Guide and RFC3164).
- `<HEADER>` is "MMM DD HH:MM:SS <source IP addr>" (without the quotes). There are always 2 characters for the day (DD). Single digit days are preceded with a space character.
- `<MSG>` is `<log-prefix>: <seq> <router-name> <application>-<severity>-<Event Name>-<Event ID> [<subject>]: <message>
```

where:

- `<log-prefix>` is an optional 32 characters of text (default = 'TMNX') as configured in the log-prefix command.
• `<seq>` is the log event sequence number (always preceded by a colon and a space char)
• `<router-name>` is vprn1, vprn2, … | Base | management | vpls-management
• `<subject>` may be empty resulting in []:
• `
` is the standard ASCII new line character (hex 0A)

Examples (from different nodes):

default log-prefix (TMNX):

no log-prefix:

log-prefix "test":

5.3 Event Logs

Event logs are the means of recording system generated events for later analysis. Events are messages generated by the system by applications or processes within the router.

Figure 17 depicts a function block diagram of event logging.

Figure 17 Event Logging Block Diagram

```
EVENT SOURCES     EVENT CONTROL     LOG MANAGER

Main               Log Manager
Security           Filter Policy
Change             Log Destination
Debug

Log Destination
- Console
- Session
- Memory
- File
- Trap Group
- Syslog

= Different Events  = Event with Severity Marked
```

5.3.1 Event Sources

In Figure 17, the event sources are the main categories of events that feed the log manager.
• Security — The security event source is all events that affect attempts to breach system security such as failed login attempts, attempts to access MIB tables to which the user is not granted access or attempts to enter a branch of the CLI to which access has not been granted. Security events are generated by the SECURITY application and the authenticationFailure event in the SNMP application.

• Change — The change activity event source is all events that directly affect the configuration or operation of the node. Change events are generated by the USER application. The Change event stream also includes the tmnxConfigModify (#2006), tmnxConfigCreate (#2007), tmnxConfigDelete (#2008) and tmnxStateChange (#2009) change events from the SYSTEM application.

• Debug — The debug event source is the debugging configuration that has been enabled on the system. Debug events are generated by the DEBUG application.

• Main — The main event source receives events from all other applications within the router.

Examples of applications within the system include IP, MPLS, OSPF, CLI, services, and so on. The following example displays a partial sample of the show log applications command output which displays all applications.

*A:ALA-48# show log applications
==================================
Log Event Application Names
==================================
Application Name

...
BGP
CCAG
CFLOWD
CHASSIS
...
MPLS
MSDP
NTP
...
USER
VRRP
VRTR
==================================
*A:ALA-48#
5.3.2 Event Control

Event control pre-processes the events generated by applications before the event is passed into the main event stream. Event control assigns a severity to application events and can either forward the event to the main event source or suppress the event. Suppressed events are counted in event control, but these events will not generate log entries as it never reaches the log manager.

Simple event throttling is another method of event control and is configured similarly to the generation and suppression options. See Simple Logger Event Throttling.

Events are assigned a default severity level in the system, but the application event severities can be changed by the user.

Application events contain an event number and description that explains why the event is generated. The event number is unique within an application, but the number can be duplicated in other applications.

The following example, generated by querying event control for application generated events, displays a partial list of event numbers and names.

```
router# show log event-control
 Log Events
 Application
 ID# Event Name     P   g/s Logged Dropped
 show   
  BGP:   
  2001 bgpEstablished MI  gen  1    0
  2002 bgpBackwardTransition WA  gen  7    0
  2003 tSgpMaxPrefix90 WA  gen  0    0
  ...  
  CCAG:  
  CFL0WD:  
  2001 cflowdCreated MI  gen  1    0
  2002 cflowdCreateFailure MA  gen  0    0
  2003 cflowdDeleted MI  gen  0    0
  ...  
  CHASSIS:  
  2001 cardFailure MA  gen  0    0
  2002 cardInserted MI  gen  4    0
  2003 cardRemoved MI  gen  0    0
  ...  
  DEBUG:  
  L  2001 traceEvent MI  gen  0    0
  DOTIX:  
  FILTER:  
  2001 filterPBRPacketsDropped MI  gen  0    0
```
5.3.3 Log Manager and Event Logs

Events that are forwarded by event control are sent to the log manager. The log manager manages the event logs in the system and the relationships between the log sources, event logs and log destinations, and log filter policies.

An event log has the following properties:

• A unique log ID — The log ID is a short, numeric identifier for the event log. A maximum of 15 logs can be configured at a time.

• One or more log sources — The source stream or streams to be sent to log destinations can be specified. The source must be identified before the destination can be specified. The events can be from the main event stream, events in the security event stream, or events in the user activity stream.

• One event log destination — A log can only have a single destination. The destination for the log ID destination can be one of console, session, syslog, snmp-trap-group, memory, or a file on the local file system.

• An optional event filter policy — An event filter policy defines whether to forward or drop an event or trap-based on match criteria.

5.3.4 Event Filter Policies

The log manager uses event filter policies to allow fine control over which events are forwarded or dropped based on various criteria. Like other filter policies in the SR OS, filter policies have a default action. The default actions are either:

• Forward
• Drop
Filter policies also include a number of filter policy entries that are identified with an entry ID and define specific match criteria and a forward or drop action for the match criteria.

Each entry contains a combination of matching criteria that define the application, event number, router, severity, and subject conditions. The entry’s action determines how the packets should be treated if they have met the match criteria.

Entries are evaluated in order from the lowest to the highest entry ID. The first matching event is subject to the forward or drop action for that entry.

Valid operators are displayed in Table 63:

Table 63 Valid Filter Policy Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
<tr>
<td>lt</td>
<td>less than</td>
</tr>
<tr>
<td>lte</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>gt</td>
<td>greater than</td>
</tr>
<tr>
<td>gte</td>
<td>greater than or equal to</td>
</tr>
</tbody>
</table>

A match criteria entry can include combinations of:

- Equal to or not equal to a given system application.
- Equal to, not equal to, less than, less than or equal to, greater than or greater than or equal to an event number within the application.
- Equal to, not equal to, less than, less than or equal to, greater than or greater than or equal to a severity level.
- Equal to or not equal to a router name string or regular expression match.
- Equal to or not equal to an event subject string or regular expression match.
5.3.5 Event Log Entries

Log entries that are forwarded to a destination are formatted in a way appropriate for the specific destination whether it be recorded to a file or sent as an SNMP trap, but log event entries have common elements or properties. All application generated events have the following properties:

- A time stamp in UTC or local time.
- The generating application.
- A unique event ID within the application.
- A router name identifying the VRF-ID that generated the event.
- A subject identifying the affected object.
- A short text description.

The general format for an event in an event log with either a memory, console or file destination is as follows.

```plaintext
nnnn YYYY/MM/DD HH:MM:SS.SSS TZONE <severity>: <application> #<event_id> <router-name> <subject> <message>
```

The following is an event log example:

```
252 2013/05/07 16:21:00.761 UTC WARNING: SNMP #2005 Base my-interface-abc "Interface my-interface-abc is operational"
```

The specific elements that compose the general format are described in Table 64.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnnn</td>
<td>The log entry sequence number.</td>
</tr>
<tr>
<td>YYYY/MM/DD</td>
<td>The UTC date stamp for the log entry.</td>
</tr>
<tr>
<td></td>
<td>YYYY — Year</td>
</tr>
<tr>
<td></td>
<td>MM — Month</td>
</tr>
<tr>
<td></td>
<td>DD — Date</td>
</tr>
<tr>
<td>HH:MM:SS.SSS</td>
<td>The UTC time stamp for the event.</td>
</tr>
<tr>
<td></td>
<td>HH — Hours (24 hour format)</td>
</tr>
<tr>
<td></td>
<td>MM — Minutes</td>
</tr>
<tr>
<td></td>
<td>SS.SSS — Seconds</td>
</tr>
</tbody>
</table>
5.3.6 Simple Logger Event Throttling

Simple event throttling provides a mechanism to protect event receivers from being overloaded when a scenario causes many events to be generated in a very short period of time. A throttling rate, # events/# seconds, can be configured. Specific event types can be configured to be throttled. Once the throttling event limit is exceeded in a throttling interval, any further events of that type cause the dropped events counter to be incremented. Dropped events counts are displayed by the `show>log>event-control` context. Events are dropped before being sent to one of the logger event collector tasks. There is no record of the details of the dropped events and therefore no way to retrieve event history data lost by this throttling method.

A particular event type can be generated by multiple managed objects within the system. At the point this throttling method is applied the logger application has no information about the managed object that generated the event and cannot distinguish between events generated by object “A” from events generated by object “B”. If the events have the same event-id, they are throttled regardless of the managed object that generated them. It also does not know which events may eventually be logged to destination log-id <n> from events that will be logged to destination log-id <m>.

<table>
<thead>
<tr>
<th>Table 64 Log Entry Field Descriptions (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>TZONE</td>
</tr>
<tr>
<td><severity></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><application></td>
</tr>
<tr>
<td><event_id></td>
</tr>
<tr>
<td><router></td>
</tr>
<tr>
<td><subject></td>
</tr>
<tr>
<td><message></td>
</tr>
</tbody>
</table>
Throttle rate applies commonly to all event types. It is not configurable for a specific event-type.

A timer task checks for events dropped by throttling when the throttle interval expires. If any events have been dropped, a TIMETRA-SYSTEM-MIB::tmnxTrapDropped notification is sent.

5.3.7 Default System Log

Log 99 is a pre-configured memory-based log which logs events from the main event source (not security, debug, and so on). Log 99 exists by default.

The following example displays the log 99 configuration.

```
ALA-1>config>log# info detail
#------------------------------------------
echo "Log Configuration "
#------------------------------------------
...
  snmp-trap-group 7
  exit
...
  log-id 99
    description "Default system log"
    no filter
    from main
    to memory 500
    no shutdown
    exit
#------------------------------------------
ALA-1>config>log#
```

5.3.8 Event Handling System

The Event Handling System (EHS) is a tool that allows operator-defined behavior to be configured on the router. EHS adds user-controlled programmatic exception handling by allowing a CLI script to be executed upon the detection of a log event (the 'trigger'). Regexp style expression matching is available on various fields in the log event to give flexibility in the trigger definition.

EHS handler objects are used to tie together:

- trigger events (typically log events that match some configurable criteria)
- a set of actions to perform (typically one or more CLI scripts)
EHS, along with CRON, makes use of the generic SR OS CLI script-control functions for scripts. Any command available in CLI (with some limited exceptions such as 'candidate' commands) can be executed in a script as the result of an EHS handler being triggered. Figure 18 illustrates the relationships between the different configurable objects used by EHS (and CRON).

Figure 18 EHS Object Relationships

Complex rules can be configured to match on log events as a trigger for an EHS handler.

When a log event is generated in SR OS it will be subject to discard via suppression and throttling (**config>log>event-control**) before it is evaluated as a trigger for EHS:

- EHS will not trigger on log events that are suppressed through **config>log>event-control**
- EHS will not trigger on log events that are throttled by the logger

EHS will trigger on log events that are dropped by user configured log filters that are assigned to individual logs (**config>log>filter**). The EHS event trigger logic occurs before the distribution of log event streams into individual logs.
A triggering log event’s common parameters and varbinds are passed in to the triggered EHS script and can be used within the EHS script as passed in (dynamic) variables. Passed in (dynamic) variables are:

• the common event parameters appid, name, eventid, severity, subject, and gentime.
• the predefined varbinds in a log event's message.

For example, the following are the passed in (dynamic) variables for an event:

• appid
• eventid
• severity
• subject
• gentime
• event_varbind_1
• event_varbind_2
 ...
 ...
• event_varbind_N

Note:

• For more information about showing event parameters, see the show commands in Log Configuration Command Reference.
• Refer to the 7450 ESS, 7750 SR, and 7950 XRS Log Events Guide for any event's predefined varbinds
• The passed in event's gentime is always UTC
• The event's sequence number is not passed in to the script

An EHS script has the ability to define local (static) variables and use some basic .if and .set commands inside the script. The use of variables with .if and .set commands within an EHS script adds more logic to EHS scripting and allows the reuse of a single EHS script for more than one trigger or action.

Both imported and local variables can be used within the EHS script either as part of the CLI commands or as part of the .if or .set commands.

The following applies to both CLI commands and .if or .set commands.

• Using $X, without using single or double quotes, replaces the variable X with its string or integer value.
• Using "X", with double quotes, means the literal string X.
• Using "$X", with double quotes, replaces the variable X with its string or integer value.
• Using 'X', with single quotes, means the literal string X.
• Using ‘$X’, with single quotes, does not replace the variable X with its value but means the literal string $X.

In summary:

• All characters within single quotes are interpreted as a string character.
• All characters within double quotes are interpreted as regular characters except for $, which replaces the variable with its value (for example, shell expansion inside a string).

Some supported shell command scenarios are (the following are pseudo commands):

• .if $string_variable==string_value_or_string_variable {
 CLI_commands_set1
 .} else {
 CLI_commands_set2
 .} endif
• .if ($string_variable==string_value_or_string_variable) {
 CLI_commands_set1
 .} else {
 CLI_commands_set2
 .} endif
• .if $integer_variable==integer_value_or_integer_variable {
 CLI_commands_set1
 .} else {
 CLI_commands_set2
 .} endif
• .if ($integer_variable==integer_value_or_integer_variable) {
 CLI_commands_set1
 .} else {
 CLI_commands_set2
 .} endif
• .if $string_variable!=string_value_or_string_variable {

`CLI_commands_set1

} else {

CLI_commands_set2

} endif

• if ($string_variable!=string_value_or_string_variable) {

CLI_commands_set1

} else {

CLI_commands_set2

} endif

• if ($integer_variable!=integer_value_or_integer_variable) {

CLI_commands_set1

} else {

CLI_commands_set2

} endif

• if ($integer_variable!=integer_value_or_integer_variable) {

CLI_commands_set1

} else {

CLI_commands_set2

} endif

• .set $string_variable = string_value_or_string_variable
• .set ($string_variable = string_value_or_string_variable)
• .set $integer_variable = integer_value_or_integer_variable
• .set ($integer_variable = integer_value_or_integer_variable)

where:

• `CLI_commands_set1` is a set of one or more CLI commands
• `CLI_commands_set2` is a set of one or more CLI commands
• `string_variable` is a local (static) string variable
• `string_value_or_string_variable` is a string value/variable
• `integer_variable` is a local (static) integer variable
• `integer_value_or_integer_variable` is an integer value/variable
Note:

- A limit of 100 local (static) variables per EHS script is imposed. Exceeding this limit may result in an error and partial execution of the script.
- When a set statement is used to set a string_variable to a string_value, the string_value can be any non-integer value not surrounded by single/double quotes or it can be surrounded by single/double quotes.
- A "." preceding a directive (for example, if, set...and so on) is always expected to start a new line.
- An end of line is always expected after {
- A CLI command is always expected to start a new line.
- Passed in (dynamic) variables are always read only inside an EHS script and cannot be overwritten using a set statement.
- .if commands support == and != operators only.
- .if and .set commands support addition, subtraction, multiplication, and division of integers.
- .if and .set commands support addition of strings which means "concatenation" of strings.

Valid Examples:

- configure service epipe $serviceID
 where $serviceID is either a local (static) integer variable or passed in (dynamic) integer variable.

- echo srcAddr is $srcAddr
 where $srcAddr is a passed in (dynamic) string variable.

- .set $ipAddr = "10.0.0.1"
 where $ipAddr is a local (static) string variable.

- .set $ipAddr = $srcAddr
 where $srcAddr is a passed in (dynamic) string variable.

 $ipAddr is a local (static) string variable.

- .set ($customerID = 50)
 where $customerID is a local (static) integer variable.

- .set ($totalPackets = $numIngrPackets + $numEgrPackets)
 where $totalPackets, $numIngrPackets, $numEgrPackets are local (static) integer variables.

- .set ($portDescription = $portName + $portLocation)
 where $portDescription, $portName, $portLocation are local (static) string variables.
• if ($srcAddr == "CONSOLE") {
 CLI_commands_set1
 } else {
 CLI_commands_set2
 } endif
 where $srcAddr is a passed in (dynamic) string variable
 CLI_commands_set1 is a set of one or more CLI commands
 CLI_commands_set2 is a set of one or more CLI commands

• .if ($customerId == 10) {
 CLI_commands_set1
 } else {
 CLI_commands_set2
 } endif
 where $customerId is a passed in (dynamic) integer variable
 CLI_commands_set1 is a set of one or more CLI commands
 CLI_commands_set2 is a set of one or more CLI commands

• .if ($numIngrPackets == $numEgrPackets) {
 CLI_commands_set1
 } else {
 CLI_commands_set2
 } endif
 where $numIngrPackets and $numEgrPackets are local (static) integer variables
 CLI_commands_set1 is a set of one or more CLI commands
 CLI_commands_set2 is a set of one or more CLI commands

Invalid Examples:

• .set $srcAddr = "10.0.0.1"
 where $srcAddr is a passed in (dynamic) string variable
 Reason: passed in variables are read only inside an EHS script.

• .set ($ipAddr = '$numIngrPackets' + $numEgrPackets)
 where $ipAddr is a local (static) string variable
 $numIngrPackets and $numEgrPackets are local (static) integer variables
 Reason: variable types do not match, cannot assign a string to an integer.

• .set ($numIngrPackets = $ipAddr + $numEgrPackets)
where $ipAddr$ is a local (static) string variable
$numIngrPackets$ and $numEgrPackets$ are local (static) integer variables
Reason: variable types do not match, cannot concatenate a string to an integer.

• .set $ipAddr = "10.0.0.1"
where $ipAddr$ is a local (static) string variable
Reason: when double quotes are used, they have to surround the entire string.

• .if ($totalPackets == "10.1.1.1") {
 .} endif
where $totalPackets$ is a local (static) integer variables
Reason: cannot compare an integer variable to a string value.

• .if ($ipAddr == 10) {
 .} endif
where $ipAddr$ is a local (static) string variable
Reason: cannot compare a string variable to an integer value.

• .if ($totalPackets == $ipAddr) {
 where $totalPackets$ is a local (static) integer variables
 $ipAddr$ is a local (static) string variable
 Reason: cannot compare an integer variable to a string variable.

EHS debounce

EHS bounce is the ability to trigger an action (for example an EHS script), if an event happens (N) times within a specific time window (S).

N = [2..15]

S = [1..604800]

Note:

• Triggering happens with the Nth event not at the end of S
• There is no sliding window (for example a trigger at Nth event, N+1 event, and so on), as N is reset after a trigger and count is restarted
• When EHS debouncing/dampening is used, the varbinds passed in to an EHS script at script triggering time are from the Nth event occurrence (the Nth triggering event)
• If S is not specified then the SR OS will continue to trigger every Nth event

For example:
When linkDown occurs N times in S sec, an EHS script is triggered to shut down the port.
5.4 Customizing Syslog Messages Using Python

Log events in SR OS can be customized by a Python script before they are sent to a syslog server. The log events that are subject to Python processing are selected via log filters. This allows only a preferred subset of log messages to be customized (Figure 19).

Figure 19 Interaction between the Logger and the Python Engine

This section discusses syslog-specific aspects of Python processing. Refer to the “Python Script Support for ESM” section of the 7450 ESS and 7750 SR Triple Play Guide for an introduction to Python.
When an event is dispatched to the log manager in SR OS, the log manager asynchronously passes the event context data and varbinds to the Python engine, that is, the logger task is not waiting for feedback from Python. Varbinds are variable bindings that represent the variable number of values that are included in the event. Each varbind consists of a triplet (OID, type, value). Along with other system-level variables, the Python engine constructs a syslog message and sends it to the syslog destination. During this process, the operator can modify the format of the syslog message or leave it intact, as if it was generated by the syslog process within the log manager.

The tasks of the Python engine in a syslog context are as follows:

- assembles custom syslog messages (including PRI, HEADER and MSG fields) based on the received event context data, varbinds specific to the event, system-level data, and the configuration parameters (syslog server IP address, syslog facility, log-prefix and the destination UDP port)
- reformats timestamps in a syslog message
- sends the original or modified message to the syslog server
- drops the message

5.4.1.1 Python Syslog APIs

Python APIs are used to assemble a syslog message which, in SR OS, has the following generic format:

```
PRI> <HEADER><MSG>
```

where:

- `<PRI>` (the “<” and “>” are included in the syslog message) is the configured facility x 8+severity (as described in the 7450 ESS, 7750 SR, and 7950 XRS System Management Guide and RFC 3164)
- `<HEADER>` is MMM DD HH:MM:SS <hostname>. There are always two characters for the day (DD). Single digit days are preceded with a space character.
- `<MSG>` is <log-prefix>: <seq> <router-name> <application>-<severity>-<Event Name>-<Event ID> [<subject>]: <message>

where:

- `<log-prefix>` is an optional set of 32 characters (default = 'TMNX') as configured in the log-prefix command
• `<seq>` is the log event sequence number. It always preceded by a colon and a space character.
• `<router-name>` is the name of the router, for example, vprn1, vprn2, Base, management, vpls-management
• `<subject>` is the topic and can be empty, resulting in `[]`:
• `
` is the standard ASCII new line character (hex 0A)

Table 65 describes Python information that can be used to manipulate syslog messages.

Table 65 Manipulating Python Syslog Messages

<table>
<thead>
<tr>
<th>Imported Nokia (ALC) Modules</th>
<th>Access Rights</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>event (from alc import event)</td>
<td>—</td>
<td>The method used to retrieve generic event information.</td>
</tr>
<tr>
<td>syslog (from alc import syslog)</td>
<td>—</td>
<td>The method used to retrieve syslog-specific parameters.</td>
</tr>
<tr>
<td>system (from alc import system)</td>
<td>—</td>
<td>The method used to retrieve system-specific information. Currently, the only parameter retrieved is the system name.</td>
</tr>
</tbody>
</table>

Events use the following format as they are written into memory, file, console, and system:
nnn YYYY/MM/DD HH:MM:SS.SS <severity>:<application> # <event_id> <router-name> <subject> <message>
The event-related information received in the context data from the log manager is retrieved via the following Python methods:

- `event.sequence` (RO): The sequence number of the event (nnnn).
- `event.routerName` (RO): The router name, for example, BASE, VPRN1, and so on.
- `event.application` (RO): The application generating the event, for example, NA.
- `event.severity` (RO): The severity of the event. This is configurable in SR OS (CLEARED [1], INFO [2], CRITICAL [3], MAJOR [4], MINOR [5], WARNING [6]).
- `event.eventId` (RO): The event ID, for example, 2012.
- `event.eventName` (RO): The event Name, for example, tmnxNatPIBlocAllocationLsn.
- `event.subject` (RO): An optional field, for example, [NAT].
For example, assume that the syslog format is:

```
<PRI><timestamp> <hostname> <log-prefix>: <sequence> <router-name> <appid>-```

Table 65  
Manipulating Python Syslog Messages  
(Continued)

<table>
<thead>
<tr>
<th>Imported Nokia (ALC) Modules</th>
<th>Access Rights</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>event.message</td>
<td>RO</td>
<td>The event-specific message, for example, &quot;{2} Map 192.168.20.29 [2001-2005] MDA 1/2 -- 276824064 classic-lsn-sub %3 vprn1 10.10.10.101 at 2015/08/31 09:20:15&quot;.</td>
</tr>
<tr>
<td>syslog.hostName</td>
<td>RO</td>
<td>The IP address of the SR OS node sending the syslog message. This is used in the Syslog HEADER.</td>
</tr>
<tr>
<td>syslog.logPrefix</td>
<td>RO</td>
<td>The log prefix which is configurable and optional, for example, TMNX:</td>
</tr>
<tr>
<td>syslog.severityToPRI(event.severity)</td>
<td>—</td>
<td>The Python method used to derive the PRI field in syslog header based on event severity and a configurable syslog facility.</td>
</tr>
<tr>
<td>syslog.severityToName(event.severity)</td>
<td>—</td>
<td>An SR OS event severity to syslog severity name. For more information, see the 5.2.6 section.</td>
</tr>
<tr>
<td>syslog.timestampToUnix(timestamp)</td>
<td>—</td>
<td>The Python method that takes a timestamp in the format if YYYY/MM/DD HH:MM:SS and converts it into a UNIX-based format (seconds since Jan 01 1970 – UTC).</td>
</tr>
<tr>
<td>syslog.set(newSyslogPdu)</td>
<td>—</td>
<td>The Python method used to send the syslog message in the newSyslogPdu. This variable must be constructed manually via string manipulation. In the absence of the command, the SR OS assembles the default syslog message (as if Python was not configured) and sends it to the syslog server, assuming that the message is not explicitly dropped.</td>
</tr>
<tr>
<td>syslog.drop()</td>
<td>—</td>
<td>The Python method used to drop a syslog message. This method must be called before the syslog.set&lt;newSyslogPdu method.</td>
</tr>
<tr>
<td>system.name</td>
<td>RO</td>
<td>The Python method used to retrieve the system name</td>
</tr>
</tbody>
</table>

System Methods

Syslog Methods

Access Rights

Comments

Comments

Comments

Comments

Comments

Comments

Comments

Comments

Comments
Then the following is an example of the syslogPdu constructed via Python:

```
syslogPdu = "<" + syslog.severityToPRI(event.severity) + "">" \\
+ event.timestamp + "" \\
+ syslog.hostname + "" \\
+ syslog.logPrefix + "": " \\
+ event.sequence + "" \\
+ event.routerName + "" \\
+ event.application + "-" \\
+ syslog.severityToName(event.severity) + "-" \\
+ event.eventName + "-" \\
+ event.eventId + "[" \\
+ event.subject + "]: " + event.message
```

### 5.4.1.2 Timestamp Format Manipulation

Certain logging environments require customized formatting of the timestamp. Nokia provides a timestamp conversion method in the alu.syslog Python module to convert a timestamp from the format YYYY/MM/DD hh:mm:ss into a UNIX-based timestamp format (seconds since Jan 01 1970 – UTC).

For example, an operator can use the following Python method to convert a timestamp from the YYYY/MM/DD hh:mm:ss.ss or YYYY/MM/DD hh:mm:ss (no centiseconds) format into either the UNIX timestamp format or the MMM DD hh:mm:ss format.

```python
from alc import event
from alc import syslog
from alc import system

#input format: YYYY/MM/DD hh:mm:ss.ss or YYYY/MM/DD hh:mm:ss
#output format 1: MMM DD hh:mm:ss
#output format 2: unixTimestamp (TBD)
def timeFormatConversion(timestamp, format):
 if format not in range(1, 2):
 raise NameError('Unexpected format, expected: ' + str(format))
 try:
 dat, tim = timestamp.split(' ')
 except:
 raise NameError('Unexpected timestamp format, expected: ' + 'YYYY/MM/DD hh:mm:ss got: ' + timestamp)
 try:
 YYYY, MM, DD = dat.split('/')
 YYYY/MM/DD hh:mm:ss got: ' + timestamp)
 except:
 raise NameError('Unexpected timestamp format, expected: ' + 'YYYY/MM/DD hh:mm:ss got: ' + timestamp)
 try:
 hh, mm, ss = tim.split(':')
 ss = ss.split('.')[[0]]
 # just in case that the time format is hh:mm:ss
 except:
 raise NameError('Unexpected timestamp format, expected: ' + 'YYYY/MM/DD hh:mm:ss got: ' + timestamp)
 if not (1970 <= int(YYYY) <= 2100 and
 1 <= int(MM) <= 12 and
 1 <= int(DD) <= 31 and
```
The timeFormatConversion method can accept the event.timestamp value in the format:

/YYYY/MM/DD HH:MM:SS.SS

and return a new timestamp in the format determined by the format parameter:

1 ? MMM DD HH:MM:SS
2 ? Unix based time format

This method accepts the input format in either of the two forms YYYY/MM/DD HH:MM:SS.SS or YYYY/MM/DD HH:MM:SS and simply ignores the centisecond part in the former form.

### 5.4.2 Python Processing Efficiency

Python retrieves event-related variables from the log manager, as opposed to retrieving pre-assembled syslog messages. This eliminates the need for string parsing of the syslog message to manipulate it constituent parts increasing the speed of Python processing.

To further improve processing performance, Nokia recommends performing string manipulation via the Python native string method, when possible.
5.4.3 Python Backpressure

A Python task assembles syslog messages based on the context information received from the logger and sends them to the syslog server independent of the logger. If the Python task is congested due to a high volume of received data, the backpressure should be sent to the ISA so that the ISA stops allocating NAT resources. This behavior matches the current behavior in which NAT resources allocation is blocked if that logger is congested.

5.4.4 Event Selection for Python Processing

Events destined for Python processing are configured through a log ID that references a Python policy. The selection of the events are performed via a filter associated with this log ID. The remainder of the events destined to the same syslog server can bypass Python processing by redirecting them to a different log ID. The following example clarifies this point:

1. Creating the Python policy

   A: dut-a# configure python python-policy PyForLogEvents create
   *A: dut-a>config>python>py-policy$
   [no] description - Configure the description of this policy
   [no] dhcp - Configure scripts to handle dhcp messages jritter
   [no] dhcp6 - Configure scripts to handle dhcp6 messages
   [no] diameter - Configure scripts to handle diameter messages
   [no] gtpv1-c - Configure scripts to handle GTPv1-C messages
   [no] gtpv2-c - Configure scripts to handle GTPv2-C messages
   [no] pppoe - Configure scripts to handle PPPoE messages
   [no] radius - Configure scripts to handle RADIUS messages
   [no] vsd - Configure scripts to handle VSD messages
   [no] syslog - Configure a script to handle outgoing syslog messages
   *A: dut-a>config>python>py-policy$ syslog
   - syslog script <name>
   - no syslog
   <name> :[32 chars max]

   The detailed Python policy description is explained in the "Python Script Support for ESM" section in the 7450 ESS and 7750 SR Triple Play Guide.

2. Log filters identify the events that are subject to Python processing

   A: dut-a>config>log# info
   ________________________________________________________________
   filter 6
   default-action drop
   entry 1
   action forward
   match
     application eq "nat"
   number eq 2012
3. Syslog destination

syslog 1
  address 192.168.1.1
  exit

4. Applying Python syslog policy to selected events via filter 6:

log-id 33  Note: Process log events with id of 2012 with Python before sending them to syslog server.
filter 6
  from main
to syslog 1
  python-policy "PyForLogEvents"
  no shutdown
  exit
log-id 34  Note: Log events that are not processed by Python.
filter 7
  from main
to syslog 1
  no shutdown
  exit

In the example above, the configuration-only event 2012 from application "nat" will be sent to log-id 33. All other events are forwarded to the same syslog destination via log-id 34, without any modification. As a result, all events (modified via log-id 33 and unmodified via log-id 34) are sent to the syslog 1 destination.

This configuration may cause reordering of syslog messages at the syslog 1 destination due to slight delay of messages processed by Python.

5.4.5 Modifying a Log File

The following displays the current log configuration:

ALA-12>config>log>log-id# info
----------------------------------------------
... 
log-id 2  
description "This is a test log file."  
filter 1  
from main security  
to file 1  
exit  
...  
----------------------------------------------
ALA-12>config>log>log-id#

The following displays an example to modify log file parameters:

Example: config# log  
config>log# log-id 2  
config>log>log-id# description "Chassis log file."  
config>log>log-id# filter 2  
config>log>log-id# from security  
config>log>log-id# exit  

The following displays the modified log file configuration:

A:ALA-12>config>log# info  
----------------------------------------------  
...  
log-id 2  
description "Chassis log file."  
filter 2  
from security  
to file 1  
exit  
...  
----------------------------------------------
A:ALA-12>config>log#

5.4.6 Deleting a Log File

The log ID must be shutdown first before it can be deleted. In a previous example, file 1 is associated with log-id 2.

A:ALA-12>config>log# info  
----------------------------------------------  
file-id 1  
description "LocationTest."  
location cf1:  
rollover 600 retention 24  
exit  
...  
log-id 2  
description "Chassis log file."  
filter 2  
from security
to file 1
exit
...
----------------------------------------------
A:ALA-12>config>log#

The following displays an example to delete a log file:

Example:config# log
config>log# log-id 2
config>log>log-id# shutdown
config>log>log-id# exit
config>log# no log-id 2

5.4.7 Modifying a File ID

The following displays the current log configuration:

A:ALA-12>config>log# info
------------------------------------------
file-id 1
  description "This is a log file."
  location cf1:
  rollover 600 retention 24
exit
------------------------------------------
A:ALA-12>config>log#

The following displays an example to modify log file parameters:

Example:config# log
config>log# file-id 1
config>log>file-id# description "LocationTest."
config>log>file-id# rollover 2880 retention 500
config>log>file-id# exit

The following displays the file modifications:

A:ALA-12>config>log# info
------------------------------------------
... 
file-id 1
  description "LocationTest."
  rollover 2880 retention 500
exit
... 
------------------------------------------
A:ALA-12>config>log#
The following displays an example to modify log file parameters:

```
Example: config# log
 config>log# file-id 1
 config>log>file-id# description "LocationTest."
 config>log>file-id# location cf2:
 config>log>file-id# rollover 2880 retention 500
 config>log>file-id# exit
```

The following displays the file modifications:

```
A:ALA-12>config>log# info
--
...
 file-id 1
 description "LocationTest."
 location cf2:
 rollover 2880 retention 500
 exit
...
--
A:ALA-12>config>log#
```

### 5.4.8 Modifying a Syslog ID

The following displays an example of the syslog ID modifications:

```
Example: config# log
 config>log# syslog 1
 config>log>syslog$ description "Test syslog."
 config>log>syslog# address 10.10.0.91
 config>log>syslog# facility mail
 config>log>syslog# level info
```

The following displays the syslog configuration:

```
A:ALA-12>config>log# info
--
...
 syslog 1
 description "Test syslog."
 address 10.10.10.91
 facility mail
 level info
 exit
...
--
A:ALA-12>config>log#
```
5.4.9 Modifying an SNMP Trap Group

The following displays the current SNMP trap group configuration:

```
A:ALA-12>config>log# info
--
... snmp-trap-group 10
 trap-target 10.10.104.5 "snmpv3" notify-community "coummunitystring"
 exit
...--
A:ALA-12>config>log#
```

The following displays an example of the command usage to modify an SNMP trap group:

```
Example: config# log
config>log# snmp-trap-group 10
config>log# snmp-trap-group# no trap-target 10.10.104:5
config>log# snmp-trap-group# snmp-trap-group# trap-target 10.10.0.91:1 snmpv2c notify-community "com1"
```

The following displays the SNMP trap group configuration:

```
A:ALA-12>config>log# info
--
... snmp-trap-group 10
 trap-target 10.10.0.91:1 "snmpv2c" notify-community "com1"
 exit
...--
A:ALA-12>config>log#
```

5.4.10 Deleting an SNMP Trap Group

The following displays the SNMP trap group configuration:

```
A:ALA-12>config>log# info
--
... snmp-trap-group 10
 trap-target 10.10.0.91:1 "snmpv2c" notify-community "com1"
 exit
...--
A:ALA-12>config>log#
```
The following displays an example to delete a trap target and an SNMP trap group.

Example:
```bash
config>log# snmp-trap-group 10
config>log>snmp-trap-group# no trap-target 10.10.0.91:1
config>log>snmp-trap-group# exit
config>log# no snmp-trap-group 10
```

### 5.4.11 Modifying a Log Filter

The following output displays the current log filter configuration:

```
ALA-12>config>log# info
#--
echo "Log Configuration "
#--

filter 1
 default-action drop
 description "This is a sample filter."
 entry 1
 action forward
 match
 application eq "mirror"
 severity eq critical
 exit
 exit

```

The following displays an example of the log filter modifications:

```
Example:config# log
config>log# filter 1
config>log>filter# description "This allows <n>."
config>log>filter# default-action forward
config>log>filter# entry 1
config>log>filter>entry$ action drop
config>log>filter>entry# match
config>log>filter>entry>match# application eq user
config>log>filter>entry>match# number eq 2001
config>log>filter>entry>match# no severity
config>log>filter>entry>match# exit

```

The following displays the log filter configuration:

```
A:ALA-12>config>log>filter# info
#--

```
5.4.12 Modifying Event Control Parameters

The following displays the current event control configuration:

A:ALA-12>config>log# info
----------------------------------------------
... event-control "bgp" 2014 generate critical
----------------------------------------------
A:ALA-12>config>log#

The following displays an example of an event control modification:

Example: config# log
config>log# event-control bgp 2014 suppress

The following displays the log filter configuration:

A:ALA-12>config>log# info
----------------------------------------------
... event-control "bgp" 2014 suppress
----------------------------------------------
A:ALA-12>config>log#

The following displays the current event control configuration:

A:ALA-12>config>log# info
----------------------------------------------
... event-control "ospf" 2014 generate critical
----------------------------------------------
A:ALA-12>config>log#
The following displays an example of an event control modification:

Example: config# log
    config>log# event-control ospf 2014 suppress

The following displays the log filter configuration:

    A:ALA-12>config>log# info
    ----------------------------------------------
    ... 
    event-control "ospf" 2014 suppress
    ... 
    ----------------------------------------------
    A:ALA-12>config>log#

## 5.4.13 Returning to the Default Event Control Configuration

The **no** form of the **event-control** command returns modified values back to the default values.

Use the following CLI syntax to modify event control parameters:

```
config>log
 no event-control application [event-name | event-number]
```

The following displays an example of the command usage to return to the default values:

Example: config# log
    config>log# no event-control "bgp" 2001
    config>log# no event-control "bgp" 2002
    config>log# no event-control "bgp" 2014

    A:ALA-12>config>log# info detail
    #------------------------------------------
    # echo "Log Configuration"
    #------------------------------------------
    event-control "bgp" 2001 generate minor
    event-control "bgp" 2002 generate warning
    event-control "bgp" 2003 generate warning
    event-control "bgp" 2004 generate critical
    event-control "bgp" 2005 generate warning
    event-control "bgp" 2006 generate warning
    event-control "bgp" 2007 generate warning
event-control *bgp* 2008 generate warning
event-control *bgp* 2009 generate warning
event-control *bgp* 2010 generate warning
event-control *bgp* 2011 generate warning
event-control *bgp* 2012 generate warning
event-control *bgp* 2013 generate warning
event-control *bgp* 2014 generate warning
event-control *bgp* 2015 generate critical
event-control *bgp* 2016 generate warning

A:ALA-12>config>log#
5.5 Accounting Logs

Before an accounting policy can be created a target log file must be created to collect the accounting records. The files are stored in system memory on compact flash (cf1: or cf2:) in a compressed (tar) XML format and can be retrieved using FTP or SCP.

A file ID can only be assigned to either one event log ID or one accounting log.

5.5.1 Accounting Records

An accounting policy must define a record name and collection interval. Only one record name can be configured per accounting policy. Also, a record name can only be used in one accounting policy.

The record name, sub-record types, and default collection period for service and network accounting policies are shown in Table 66. Table 68 (fields per policer stat-mode are given in the stat-mode command descriptions in the Quality of Service Guide), Table 69, and Table 70 provide field descriptions.

Table 66 Accounting Record Name and Collection Periods

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record Types</th>
<th>Accounting Object</th>
<th>Platform</th>
<th>Default Collection Period (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-ingress-octets</td>
<td>sio</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>service-egress-octets</td>
<td>seo</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>service-ingress-packets</td>
<td>sip</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>service-egress-packets</td>
<td>sep</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>network-ingress-octets</td>
<td>nio</td>
<td>Network port</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>network-egress-octets</td>
<td>neo</td>
<td>Network port</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>network-egress-packets</td>
<td>nep</td>
<td>Network port</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>network-ingress-packets</td>
<td>nio</td>
<td>Network port</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>compact-service-ingress-octets</td>
<td>ctSio</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>combined-service-ingress</td>
<td>cmSipo</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
</tbody>
</table>
### Table 66  Accounting Record Name and Collection Periods (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record Types</th>
<th>Accounting Object</th>
<th>Platform</th>
<th>Default Collection Period (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combined-network-ing-egr-octets</td>
<td>cmNio &amp; cmNeo</td>
<td>Network port</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>combined-service-ing-egr-octets</td>
<td>cmSio &amp; cmSeo</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>complete-network-ingr-egress</td>
<td>cpNipo &amp; cpNepo</td>
<td>Network port</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>complete-service-ingress-egress</td>
<td>cpSipo &amp; cpSepo</td>
<td>SAP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>combined-sdp-ingress-egress</td>
<td>cmSdpipo and cmSdpepo</td>
<td>SDP and SDP binding</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>complete-sdp-ingress-egress</td>
<td>cmSdpipo, cmSdpepo, cpSdpipo and cpSdpepo</td>
<td>SDP and SDP binding</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>complete-subscriber-ingress-egress</td>
<td>cpSBipo &amp; cpSBepo</td>
<td>Subscriber profile</td>
<td>7750 SR</td>
<td>5</td>
</tr>
<tr>
<td>aa-protocol</td>
<td>aaProt</td>
<td>AA ISA Group</td>
<td>7750 SR</td>
<td>15</td>
</tr>
<tr>
<td>aa-application</td>
<td>aaApp</td>
<td>AA ISA Group</td>
<td>7750 SR</td>
<td>15</td>
</tr>
<tr>
<td>aa-app-group</td>
<td>aaAppGrp</td>
<td>AA ISA Group</td>
<td>7750 SR</td>
<td>15</td>
</tr>
<tr>
<td>aa-subscriber-protocol</td>
<td>aaSubProt</td>
<td>Special study AA subscriber</td>
<td>7750 SR</td>
<td>15</td>
</tr>
<tr>
<td>aa-subscriber-application</td>
<td>aaSubApp</td>
<td>Special study AA subscriber</td>
<td>7750 SR</td>
<td>15</td>
</tr>
<tr>
<td>custom-record-aa-sub</td>
<td>aaSubCustom</td>
<td>AA subscriber</td>
<td>All</td>
<td>15</td>
</tr>
<tr>
<td>combined-mpls-lsp-egress</td>
<td>mplsLspEgr</td>
<td>LSP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>combined-mpls-lsp-ingress</td>
<td>mplsLspIn</td>
<td>LSP</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>saa</td>
<td>saa png trc hop</td>
<td>SAA or SAA test</td>
<td>All</td>
<td>5</td>
</tr>
<tr>
<td>complete-ethernet-port</td>
<td>enet</td>
<td>Ethernet port</td>
<td>All</td>
<td>15</td>
</tr>
</tbody>
</table>
When creating accounting policies, one service accounting policy and one network accounting policy can be defined as default. If statistics collection is enabled on a SAP or network port and no accounting policy is applied, then the respective default policy is used. If no default policy is defined, then no statistics are collected unless a specifically defined accounting policy is applied.

Each accounting record name is composed of one or more sub-records which is in turn composed of multiple fields.

Refer to the Application Assurance Statistics Fields Generated per Record table in the *Multiservice Integrated Services Adapter Guide* for fields names for Application Assurance records.

The availability of the records listed in Table 67 depends on the specific platform functionality and user configuration.

### Table 67  Accounting Record Name Details

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-ingress-octets (sio) ¹</td>
<td>sio</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>Queueld</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>

Service-egress-octets (seo) ¹	seo	svc	Svclid
		sap	SapId
		qid	Queueld
		iof	InProfileOctetsForwarded
		iod	InProfileOctetsDropped
		oof	OutOfProfileOctetsForwarded
		ood	OutOfProfileOctetsDropped
### Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-ingress-packets (sip)</td>
<td>sip</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncoloredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td>Service-egress-packets (sep)</td>
<td>sep</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td>Network-ingress-octets (nio)</td>
<td>nio</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network-egress-octets (neo)</td>
<td>neo</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Network-ingress-packets (nip)</td>
<td>nip</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td>Network Egress Packets (nep)</td>
<td>nep</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td>Compact-service-ingress-octets (ctSio)</td>
<td>ctSio</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined-service-ingress (cmSipo)</td>
<td>cmSipo</td>
<td>svc</td>
<td>SvclId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncoloredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
</tbody>
</table>
Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined-network-ing-egr-octets (cmNio &amp; cmNeo)</td>
<td>cmNio</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>cmNeo</td>
<td>port</td>
<td>PortId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>qid</td>
<td>QueueId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
<td></td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined-service-ingr-egr-octets (cmSio &amp; CmSeo)</td>
<td>cmSio</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td>cmSeo</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>
## Table 67  Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-network-ingr-egr</td>
<td>cpNipo</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td>(cpNipo &amp; cpNepo)</td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td>cpNepo</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>
### Table 67  
**Accounting Record Name Details (Continued)**

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-service-ingress-egress (cpSipo &amp; cpSepo)</td>
<td>cpSipo</td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pid</td>
<td>PolicerId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncoloredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncoloredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apo</td>
<td>AllPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aoo</td>
<td>AllOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apd</td>
<td>AllPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aod</td>
<td>AllOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apf</td>
<td>AllPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aof</td>
<td>AllOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hpf</td>
<td>HighPriorityPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hof</td>
<td>HighPriorityOctetsForwarded</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-service-ingress-egress (cpSipo &amp; cpSepo)</td>
<td>cpSipo</td>
<td>lpf</td>
<td>LowPriorityPacketsForwarded</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td>lof</td>
<td>LowPriorityOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td>cpSepo</td>
<td></td>
<td>svc</td>
<td>Svclid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>Complete-sdp-ingress-egress (cpSdípio &amp; cpSdppepo)</td>
<td>cpSdípio</td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td>cpSdppepo</td>
<td></td>
<td>sdp</td>
<td>SdpID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined-sdp-ingress-egress</td>
<td>cmSdpipo</td>
<td>svc</td>
<td>SvclID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdpiID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td>cmSdpepo</td>
<td></td>
<td>svc</td>
<td>SvclID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdpiID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-sdp-ingress-egress (cmSdpipo &amp; cmsdpepo) (cpSdpipo &amp; cpSdpepo)</td>
<td>cmSdpipo</td>
<td>svc</td>
<td>SvclID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdplD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td></td>
<td>cmSdpepo</td>
<td>svc</td>
<td>SvclID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdp</td>
<td>SdplD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td>cpSdpipo</td>
<td>sdp</td>
<td>SdplD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpd</td>
<td>TotalPacketsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tod</td>
<td>TotalOctetsDropped</td>
</tr>
<tr>
<td></td>
<td>cpSdpepo</td>
<td>sdp</td>
<td>SdplD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tpf</td>
<td>TotalPacketsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tof</td>
<td>TotalOctetsForwarded</td>
</tr>
<tr>
<td>Complete-subscriber-ingress-egress (cpSBipo &amp; cpSBepo) (cpSBipooc &amp; cpSBepooc)</td>
<td>SubscriberInformation</td>
<td>subld</td>
<td>SubscriberId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subProfile</td>
<td>SubscriberProfile</td>
</tr>
<tr>
<td></td>
<td>Sla-Information</td>
<td>svc</td>
<td>SvclD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sap</td>
<td>SapId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slaProfile</td>
<td>SlaProfile</td>
</tr>
</tbody>
</table>
Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-subscriber-ingress-egress (cpSBipo &amp; cpSBepo)</td>
<td>cpSBipo</td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td>(cpSBipooc &amp; cpSBepooc)</td>
<td></td>
<td>hpo</td>
<td>HighPktsOffered</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpo</td>
<td>LowPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncolouredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hoo</td>
<td>OfferedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loo</td>
<td>LowOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apo</td>
<td>AllPktsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aoo</td>
<td>AllOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncolouredOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4pf</td>
<td>IPv4PktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6pf</td>
<td>IPv6PktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4pd</td>
<td>IPv4PktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6pd</td>
<td>IPv6PktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4of</td>
<td>IPv4OctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6of</td>
<td>IPv6OctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4od</td>
<td>IPv4OctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6od</td>
<td>IPv6OctetsDropped</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-subscriber-ingress-egress (cpSBipo &amp; cpSBepo)</td>
<td>cpSBepo</td>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td>(cpSBipooc &amp; cpSBepooc)</td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4pf</td>
<td>IPv4PktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6pf</td>
<td>IPv6PktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4pd</td>
<td>IPv4PktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6pd</td>
<td>IPv6PktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4of</td>
<td>IPv4OctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6of</td>
<td>IPv6OctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v4od</td>
<td>IPv4OctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v6od</td>
<td>IPv6OctetsDropped</td>
</tr>
</tbody>
</table>
### Table 67  Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-subscriber-ingress-egress</td>
<td>cpSBipooc 3</td>
<td>cid</td>
<td>OverrideCounterId</td>
</tr>
<tr>
<td>(cpSBipo &amp; cpSBepo)</td>
<td></td>
<td>apo</td>
<td>AllPktsOffered</td>
</tr>
<tr>
<td>(cpSBipooc &amp; cpSBepooc)</td>
<td></td>
<td>hpd</td>
<td>HighPktsDropped</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td>lpd</td>
<td>LowPktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aoo</td>
<td>AllOctetsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hod</td>
<td>DroppedHiPrioOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lod</td>
<td>LowOctetsDropped</td>
</tr>
<tr>
<td>cSBipooc 3</td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opf</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ucp</td>
<td>UncolouredPacketsOffered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uco</td>
<td>UncolouredOctetsOffered</td>
</tr>
<tr>
<td>cpSBepooc 3</td>
<td></td>
<td>cid</td>
<td>OverrideCounterId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipf</td>
<td>InProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ofp</td>
<td>OutOfProfilePktsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opd</td>
<td>OutOfProfilePktsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ipd</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oof</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ood</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
</tbody>
</table>
### Accounting Record Name Details (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>saa</td>
<td>saa</td>
<td>tmd</td>
<td>TestMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>own</td>
<td>OwnerName</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tst</td>
<td>TestName</td>
</tr>
<tr>
<td></td>
<td></td>
<td>png</td>
<td>PingRun subrecord</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rid</td>
<td>RunIndex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trr</td>
<td>TestRunResult</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mnr</td>
<td>MinRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxr</td>
<td>MaxRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avr</td>
<td>AverageRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rss</td>
<td>RttSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pbr</td>
<td>ProbeResponses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spb</td>
<td>SentProbes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mnt</td>
<td>MinOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxt</td>
<td>MaxOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avt</td>
<td>AverageOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tss</td>
<td>OutTtSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mni</td>
<td>MinInTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxi</td>
<td>MaxInTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avi</td>
<td>AverageInTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iss</td>
<td>InTtSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ojt</td>
<td>OutJitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ijt</td>
<td>InJitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rjt</td>
<td>RtJitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prt</td>
<td>ProbeTimeouts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prf</td>
<td>ProbeFailures</td>
</tr>
<tr>
<td>Record Name</td>
<td>Sub-Record</td>
<td>Field</td>
<td>Field Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>saa (Continued)</td>
<td>trc</td>
<td>rid</td>
<td>RunIndex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trr</td>
<td>TestRunResult</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lgp</td>
<td>LastGoodProbe</td>
</tr>
<tr>
<td></td>
<td>hop</td>
<td>hop</td>
<td>TraceHop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hid</td>
<td>HopIndex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mnr</td>
<td>MinRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxr</td>
<td>MaxRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avr</td>
<td>AverageRtt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rss</td>
<td>RttSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pbr</td>
<td>ProbeResponses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spb</td>
<td>SentProbes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mnt</td>
<td>MinOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxt</td>
<td>MaxOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avt</td>
<td>AverageOutTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tss</td>
<td>OutTtSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mni</td>
<td>MinInTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxi</td>
<td>MaxInTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avi</td>
<td>AverageInTt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iss</td>
<td>InTtSumOfSquares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ojt</td>
<td>OutJitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ijt</td>
<td>InJitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rjt</td>
<td>RtJitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prt</td>
<td>ProbeTimeouts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prf</td>
<td>ProbeFailures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tat</td>
<td>TraceAddressType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tav</td>
<td>TraceAddressValue</td>
</tr>
</tbody>
</table>
Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-ethernet-port (enet)</td>
<td>enet</td>
<td>port</td>
<td>PortId</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to</td>
<td>EtherStatsOctets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tp</td>
<td>EtherStatsPkts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de</td>
<td>EtherStatsDropEvents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tbcp</td>
<td>EtherStatsBroadcastPkts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mcp</td>
<td>EtherStatsMulticastPkts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cae</td>
<td>EtherStatsCRCAlignErrors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>up</td>
<td>EtherStatsUndersizePkts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>op</td>
<td>EtherStatsOversizePkts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fgm</td>
<td>EtherStatsFragments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>jab</td>
<td>EtherStatsJabbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>col</td>
<td>EtherStatsCollisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p64o</td>
<td>EtherStatsPkts64Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p127o</td>
<td>EtherStatsPkts65to127Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p255o</td>
<td>EtherStatsPkts128to255Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p511o</td>
<td>EtherStatsPkts256to511Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p1023o</td>
<td>EtherStatsPkts512to1023Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p1518o</td>
<td>EtherStatsPkts1024to1518Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>po1518o</td>
<td>EtherStatsPktsOver1518Octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ae</td>
<td>Dot3StatsAlignmentErrors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fe</td>
<td>Dot3StatsFCSErrors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>scf</td>
<td>Dot3StatsSingleCollisionFrames</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mcf</td>
<td>Dot3StatsMultipleCollisionFrames</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sqe</td>
<td>Dot3StatsSQETestErrors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dt</td>
<td>Dot3StatsDeferredTransmissions</td>
</tr>
</tbody>
</table>
Table 67  Accounting Record Name Details  (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Sub-Record</th>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Complete-ethernet-port (enet)  
(Continued) | enet (Continued) | lcc   | Dot3StatsLateCollisions                  |
|             |            | exc   | Dot3StatsExcessiveCollisions             |
|             |            | imt   | Dot3StatsInternalMacTransmitErrors       |
|             |            | cse   | Dot3StatsCarrierSenseErrors              |
|             |            | ftl   | Dot3StatsFrameTooLongs                   |
|             |            | imre  | Dot3StatsInternalMacReceiveErrors        |
|             |            | se    | Dot3StatsSymbolErrors                    |
|             |            | ipf   | Dot3InPauseFrames                        |
|             |            | opf   | Dot3OutPauseFrames                       |

Notes:

1. The number of octets in an ATM sap excludes the Header Error Control (HEC) byte, thus meaning each packet/cell has only 52 bytes instead of the usual 53.
2. For a SAP in AAL5 SDU mode, packet counters refer to the number of SDU. For a SAP in N-to-1 cell mode, packet counters refer to the number of cells.
3. If override counters on the HSMDA are configured (see the 7450 ESS, 7750 SR, and 7950 XRS Quality of Service Guide).
4. Not used to identify stats from HSMDA due to MDA architecture. If the statistics are from HSMDA: apo, aoo else lpo/hpo, loo/hoo.

Table 68, Table 69, and Table 70 provide field descriptions.

Table 68  Policer Stats Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pid</td>
<td>PolicerId</td>
</tr>
<tr>
<td>statmode</td>
<td>PolicerStatMode</td>
</tr>
<tr>
<td>aod</td>
<td>AllOctetsDropped</td>
</tr>
<tr>
<td>aof</td>
<td>AllOctetsForwarded</td>
</tr>
<tr>
<td>aoo</td>
<td>AllOctetsOffered</td>
</tr>
<tr>
<td>apd</td>
<td>AllPacketsDropped</td>
</tr>
<tr>
<td>Field</td>
<td>Field Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>apf</td>
<td>AllPacketsForwarded</td>
</tr>
<tr>
<td>apo</td>
<td>AllPacketsOffered</td>
</tr>
<tr>
<td>hod</td>
<td>HighPriorityOctetsDropped</td>
</tr>
<tr>
<td>hof</td>
<td>HighPriorityOctetsForwarded</td>
</tr>
<tr>
<td>hoo</td>
<td>HighPriorityOctetsOffered</td>
</tr>
<tr>
<td>hpd</td>
<td>HighPriorityPacketsDropped</td>
</tr>
<tr>
<td>hpf</td>
<td>HighPriorityPacketsForwarded</td>
</tr>
<tr>
<td>hpo</td>
<td>HighPriorityPacketsOffered</td>
</tr>
<tr>
<td>iod</td>
<td>InProfileOctetsDropped</td>
</tr>
<tr>
<td>iof</td>
<td>InProfileOctetsForwarded</td>
</tr>
<tr>
<td>ioo</td>
<td>InProfileOctetsOffered</td>
</tr>
<tr>
<td>ipd</td>
<td>InProfilePacketsDropped</td>
</tr>
<tr>
<td>ipf</td>
<td>InProfilePacketsForwarded</td>
</tr>
<tr>
<td>ipo</td>
<td>InProfilePacketsOffered</td>
</tr>
<tr>
<td>lod</td>
<td>LowPriorityOctetsDropped</td>
</tr>
<tr>
<td>lof</td>
<td>LowPriorityOctetsForwarded</td>
</tr>
<tr>
<td>loo</td>
<td>LowPriorityOctetsOffered</td>
</tr>
<tr>
<td>lpd</td>
<td>LowPriorityPacketsDropped</td>
</tr>
<tr>
<td>lpf</td>
<td>LowPriorityPacketsForwarded</td>
</tr>
<tr>
<td>lpo</td>
<td>LowPriorityPacketsOffered</td>
</tr>
<tr>
<td>opd</td>
<td>OutOfProfilePacketsDropped</td>
</tr>
<tr>
<td>opf</td>
<td>OutOfProfilePacketsForwarded</td>
</tr>
<tr>
<td>ooo</td>
<td>OutOfProfilePacketsOffered</td>
</tr>
<tr>
<td>oof</td>
<td>OutOfProfileOctetsDropped</td>
</tr>
<tr>
<td>ooo</td>
<td>OutOfProfileOctetsForwarded</td>
</tr>
<tr>
<td>xpd</td>
<td>ExceedProfilePktsDropped</td>
</tr>
</tbody>
</table>
### Table 68  Policer Stats Field Descriptions (Continued)

<table>
<thead>
<tr>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>xpf</td>
</tr>
<tr>
<td>xpo</td>
</tr>
<tr>
<td>xod</td>
</tr>
<tr>
<td>xof</td>
</tr>
<tr>
<td>xoo</td>
</tr>
<tr>
<td>ppd</td>
</tr>
<tr>
<td>ppf</td>
</tr>
<tr>
<td>ppo</td>
</tr>
<tr>
<td>pod</td>
</tr>
<tr>
<td>pof</td>
</tr>
<tr>
<td>poo</td>
</tr>
<tr>
<td>uco</td>
</tr>
<tr>
<td>ucp</td>
</tr>
<tr>
<td>v4po</td>
</tr>
<tr>
<td>v4oo</td>
</tr>
<tr>
<td>v6po</td>
</tr>
<tr>
<td>v6oo</td>
</tr>
<tr>
<td>v4pf</td>
</tr>
<tr>
<td>v6pf</td>
</tr>
<tr>
<td>v4pd</td>
</tr>
<tr>
<td>v6pd</td>
</tr>
<tr>
<td>v4of</td>
</tr>
<tr>
<td>v6of</td>
</tr>
<tr>
<td>v4od</td>
</tr>
<tr>
<td>v6od</td>
</tr>
</tbody>
</table>

* Enhanced Subscriber Management (ESM) only.
Table 69  Queue Group Record Types

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qgone</td>
<td>PortQueueGroupOctetsNetworkEgress</td>
</tr>
<tr>
<td>qgosi</td>
<td>PortQueueGroupOctetsServiceIngress</td>
</tr>
<tr>
<td>qgose</td>
<td>PortQueueGroupOctetsServiceEgress</td>
</tr>
<tr>
<td>qgpne</td>
<td>PortQueueGroupPacketsNetworkEgress</td>
</tr>
<tr>
<td>qgpsi</td>
<td>PortQueueGroupPacketsServiceIngress</td>
</tr>
<tr>
<td>qgpse</td>
<td>PortQueueGroupPacketsServiceEgress</td>
</tr>
<tr>
<td>fpqgosi</td>
<td>ForwardingPlaneQueueGroupOctetsServiceIngress</td>
</tr>
<tr>
<td>fpqgoni</td>
<td>ForwardingPlaneQueueGroupOctetsNetworkIngress</td>
</tr>
<tr>
<td>fpqgpsi</td>
<td>ForwardingPlaneQueueGroupPacketsServiceIngress</td>
</tr>
<tr>
<td>fpqgpni</td>
<td>ForwardingPlaneQueueGroupPacketsNetworkIngress</td>
</tr>
</tbody>
</table>

Table 70  Queue Group Record Type Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data port</td>
<td>Port (used for port based Queue Groups)</td>
</tr>
<tr>
<td>member-port</td>
<td>LAGMemberPort (used for port based Queue Groups)</td>
</tr>
<tr>
<td>data slot</td>
<td>Slot (used for Forwarding Plane based Queue Groups)</td>
</tr>
<tr>
<td>forwarding-plane</td>
<td>ForwardingPlane (used for Forwarding Plane based Queue Groups)</td>
</tr>
<tr>
<td>queue-group</td>
<td>QueueGroupName</td>
</tr>
<tr>
<td>instance</td>
<td>QueueGroupInstance</td>
</tr>
<tr>
<td>qid</td>
<td>QueueId</td>
</tr>
<tr>
<td>pid</td>
<td>PolicerId</td>
</tr>
<tr>
<td>statmode</td>
<td>PolicerStatMode</td>
</tr>
<tr>
<td>aod...ucp</td>
<td>same as above</td>
</tr>
</tbody>
</table>
5.5.2 Accounting Files

When a policy has been created and applied to a service or network port, the accounting file is stored on the compact flash in a compressed XML file format. The router creates two directories on the compact flash to store the files. The following output displays a directory named act-collect that holds accounting files that are open and actively collecting statistics. The directory named act stores the files that have been closed and are awaiting retrieval.

```
ALA-1>file cf1:\# dir act*
12/19/2006 06:08a <DIR> act-collect
12/19/2006 06:08a <DIR> act

ALA-1>file cf1:\act-collect\ # dir
Directory of cf1:\act-collect#

12/23/2006 01:46a <DIR> .
12/23/2006 12:47a <DIR> ..
12/23/2006 01:46a 112 act1111-20031223-014658.xml.gz
12/23/2006 01:38a 197 act1212-20031223-013800.xml.gz
```

Accounting files always have the prefix act followed by the accounting policy ID, log ID and timestamp. The accounting log file naming and log file destination properties like rollover and retention are discussed in more detail in Log Files.

5.5.3 Design Considerations

The router has ample resources to support large scale accounting policy deployments. When preparing for an accounting policy deployment, verify that data collection, file rollover, and file retention intervals are properly tuned for the amount of statistics to be collected.

If the accounting policy collection interval is too brief there may be insufficient time to store the data from all the services within the specified interval. If that is the case, some records may be lost or incomplete. Interval time, record types, and number of services using an accounting policy are all factors that should be considered when implementing accounting policies.

The rollover and retention intervals on the log files and the frequency of file retrieval must also be considered when designing accounting policy deployments. The amount of data stored depends on the type of record collected, the number of services that are collecting statistics, and the collection interval that is used. For example, with a 1Gb CF and using the default collection interval, the system is expected to hold 48 hours' worth of billing information.
5.5.4 Reporting and Time-Based Accounting

SR OS on the 7750 SR platform has support for volume accounting and time-based accounting concepts, and provides an extra level of intelligence at the network element level in order to provide service models such as “prepaid access” in a scalable manner. This means that the network element gathers and stores per-subscriber accounting information and compares it with “pre-defined” quotas. Once a quota is exceeded, the pre-defined action (such as re-direction to a web portal or disconnect) is applied.

5.5.5 Overhead Reduction in Accounting: Custom Record

Custom records can be used to decrease accounting messaging overhead as follows:

- User Configurable Records
- Changed Statistics Only
- Configurable Accounting Records
- Significant Change Only Reporting

5.5.5.1 User Configurable Records

Users can define a collection of fields that make up a record. These records can be assigned to an accounting policy. These are user-defined records rather than being limited to pre-defined record types. The operator can select what queues and the counters within these queues that need to be collected. Refer to the predefined records containing a given field for XML field name of a custom record field.
5.5.5.2 Changed Statistics Only

A record is only generated if a significant change has occurred to the fields being written in a given the record. This capability applies to both ingress and egress records regardless on the method of delivery (such as RADIUS and XML). The capability also applies to Application Assurance records; however without an ability to specify different significant change values and per-field scope (for example, all fields of a custom record are collected if any activity was reported against any of the statistics that are part of the custom record).

5.5.5.3 Configurable Accounting Records

5.5.5.3.1 XML Accounting Files for Service and ESM-Based Accounting

The `custom-record` command in the `config>log>accounting-policy` context provide the flexibility to reduce the volume of data generated, network operators can define the record that needs to be collected. This can eliminate queues or selected counters within these queues that are not relevant for billing.

ESM-based accounting applies to the 7750 SR only.

Record headers including information such as service-ID, SAP-ID, and so on, will always be generated.

5.5.5.3.2 RADIUS Accounting in Networks Using ESM

The `custom-record` command in the `config>subscr-mgmt>radius-accounting-policy` context provide the flexibility to include individual counters in RADIUS accounting messages. See the CLI tree for commands and syntax. This functionality applies to the 7750 SR only.

5.5.5.4 Significant Change Only Reporting

Another way to decrease accounting messaging related to overhead is to include only “active” objects in a periodical reporting. An “active object” in this context is an object which has seen a “significant” change in corresponding counters. A significant change is defined in terms of a cumulative value (the sum of all reference counters).
This concept is applicable to all methods used for gathering accounting information, such as an XML file and RADIUS, as well as to all applications using accounting, such as service-acct, ESM-acct, and Application Assurance.

Accounting records are reported at the periodical intervals. This periodic reporting is extended with an internal filter which omits periodical updates for objects whose counter change experienced lower changes than a defined (configurable) threshold.

Specific to RADIUS accounting the **significant-change** command does not affect ACCT-STOP messages. ACCT-STOP messages will be always sent, regardless the amount of change of the corresponding host.

For Application Assurance records, a significant change of 1 in any field of a customized record (send a record if any field changed) is supported. When configured, if any statistic field records activity, an accounting record containing all fields will be collected.

### 5.5.6 Immediate Completion of Records

#### 5.5.6.1 Record Completion for XML Accounting

For ESM RADIUS accounting, an accounting stop message is sent when:

- A subscriber/subscriber-host is deleted.
- An SLA profile instance (non-HSMDA) or subscriber instance (HSMDA) is changed.

A similar concept is also used for XML accounting. In case the accounted object is deleted or changed, the latest information will be written in the XML file with a “final” tag indication in the record header. This functionality applies to the 7750 SR only.

### 5.5.7 AA Accounting per Forwarding Class

This feature allows the operator to report on protocol/application/app-group volume usage per forwarding class by adding a bitmap information representing the observed FC in the XML accounting files. In case the accounted object is deleted or changed, the latest information will be written in the XML file with a “final” tag indication in the record header.
5.6 Configuration Notes

This section describes logging configuration restrictions.

- A file or filter cannot be deleted if it has been applied to a log.
- File IDs, syslog IDs, or SNMP trap groups must be configured before they can be applied to a log ID.
- A file ID can only be assigned to *either* one log ID *or* one accounting policy.
- Accounting policies must be configured in the `config>log` context before they can be applied to a service SAP or service interface, or applied to a network port.
- The `snmp-trap-id` must be the same as the `log-id`. 
5.7 Configuring Logging with CLI

This section provides information to configure logging with the command line interface.

5.7.1 Log Configuration Overview

Configure logging parameters to save information in a log file or direct the messages to other devices. Logging does the following:

- Provides you with logging information for monitoring and troubleshooting.
- Allows the selection of the types of logging information to be recorded.
- Allows the assignment of a severity to the log messages.
- Allows the selection of source and target of logging information.

5.7.2 Log Types

Logs can be configured in the following contexts:

- Log file — Log files can contain log event message streams or accounting/billing information. Log file IDs are used to direct events, alarms or traps and debug information to their respective targets.
- SNMP trap groups — SNMP trap groups contain an IP address and community names which identify targets to send traps following specified events.
- Syslog — Information can be sent to a syslog host that is capable of receiving selected syslog messages from a network element.
- Event control — Configures a particular event or all events associated with an application to be generated or suppressed.
- Event filters — An event filter defines whether to forward or drop an event or trap based on match criteria.
- Accounting policies — An accounting policy defines the accounting records that will be created. Accounting policies can be applied to one or more service access points (SAPs).
- Event logs — An event log defines the types of events to be delivered to its associated destination.
- Event throttling rate — Defines the rate of throttling events.
5.7.3 Basic Log Configuration

The most basic log configuration must have the following:

- Log ID or accounting policy ID
- A log source
- A log destination

The following displays a log configuration example for the 7750 SR.

```
A:ALA-12>config>log# info
#--
echo "Log Configuration "
#--
event-control "bgp" 2001 generate critical
 file-id 1
 description "This is a test file-id."
 location cf1:
 exit
file-id 2
 description "This is a test log."
 location cf1:
 exit
snmp-trap-group 7
 trap-target 11.22.33.44 "snmpv2c" notify-community "public"
 exit
log-id 2
 from main
 to file 2
 exit
#--
A:ALA-12>config>log#
```

5.7.4 Common Configuration Tasks

The following sections describe basic system tasks that must be performed.

5.7.4.1 Configuring an Event Log

A event log file contains information used to direct events, alarms, traps, and debug information to their respective destinations. One or more event sources can be specified. File IDs, SNMP trap groups, or syslog IDs must be configured before they can be applied to an event log ID.

Use the following CLI syntax to configure a log file:
config>log
  log-id log-id
  description description-string
  filter filter-id
  from \{[main] [security] [change] [debug-trace]\}
  to console
  to file file-id
  to memory [size]
  to session
  to snmp [size]
  to syslog syslog-id
  time-format \{local | utc\}
  no shutdown

The following displays a log file configuration example:

ALA-12>config>log>log-id# info
-------------------------------
... 
log-id 2
  description "This is a test log file."
  filter 1
    from main security
    to file 1
exit
... 
-------------------------------
ALA-12>config>log>log-id#

5.7.4.2 Configuring a File ID

To create a log file a file ID is defined, specifies the target CF drive, and the rollover and retention interval period for the file. The rollover interval is defined in minutes and determines how long a file will be used before it is closed and a new log file is created. The retention interval determines how long the file will be stored on the CF before it is deleted.

When creating new log files in a compact flash disk card, the minimum amount of free space is the MINIMUM of 10% of Compact Flash disk capacity OR 5 Mb (5,242,880 = 5 * 1024 * 1024).

The following displays a log file configuration example:

A:ALA-12>config>log# info
---------------------------------------
file-id 1
  description "This is a log file."
  location cf1:
  rollover 600 retention 24
5.7.4.3 Configuring an Accounting Policy

Before an accounting policy can be created, a target log file must be created to collect the accounting records. The files are stored in system memory of compact flash (cf1: or cf2:) in a compressed (tar) XML format and can be retrieved using FTP or SCP. See Configuring an Event Log and Configuring a File ID.

Accounting policies must be configured in the `config>log` context before they can be applied to a service SAP or service interface, or applied to a network port.

The default accounting policy statement cannot be applied to LDP nor RSVP statistics collection records.

An accounting policy must define a record type and collection interval. Only one record type can be configured per accounting policy.

When creating accounting policies, one service accounting policy and one network accounting policy can be defined as default. If statistics collection is enabled on a SAP or network port and no accounting policy is applied, then the respective default policy is used. If no default policy is defined, then no statistics are collected unless a specifically defined accounting policy is applied.

By default, the subscriber host volume accounting data are based on the 14-byte Ethernet DLC header, 4-byte or 8-byte VLAN Tag (optional), 20-byte IP header, IP payload, and the 4-byte CRC (everything except the preamble and inter-frame gap). See Figure 20. This default can be altered by the `packet-byte-offset` configuration option.

**Figure 20** Subscriber Host Volume Accounting Data

<table>
<thead>
<tr>
<th>Destination MAC</th>
<th>Source MAC</th>
<th>802.1Q tag (optional)</th>
<th>802.1Q tag (optional)</th>
<th>Ethertype (Ethernet II) or length (IEEE 802.3)</th>
<th>Payload</th>
<th>CRC/FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 octets</td>
<td>6 octets</td>
<td>(4 octets)</td>
<td>(4 octets)</td>
<td>2 octets</td>
<td>46-1500 octets</td>
<td>4 octets</td>
</tr>
</tbody>
</table>

The following displays an accounting policy configuration example:

```
A:ALA-12>config>log# info
accounting-policy 4
description "This is the default accounting policy."
record complete-service-ingress-egress
default
```
5.7.4.4 Configuring Event Control

The following displays an example of an event control configuration:

```
A:ALA-12>config>log# info
#--
| echo "Log Configuration"
#--
| throttle-rate 500 interval 10
| event-control "oam" 2001 generate throttle
| event-control "ospf" 2001 suppress
| event-control "ospf" 2003 generate cleared
| event-control "ospf" 2014 generate critical
| ..
|--
A:ALA-12>config>log>filter#
```

5.7.4.5 Configuring a Log Filter

The following displays a log filter configuration example:

```
A:ALA-12>config>log# info
#--
| echo "Log Configuration"
#--
| file-id 1
| description "This is our log file."
| location cf1:
| rollover 600 retention 24
| exit
| filter 1
| default-action drop
| description "This is a sample filter."
| entry 1
| action forward
| match
| application eq "mirror"
| severity eq critical
| exit
| exit
|...
| log-id 2
```
shutdown
description "This is a test log file."
filter 1
from main security
to file 1
exit
...

------------------------------------------
A:ALA-12>config>log#

5.7.4.6 Configuring an SNMP Trap Group

The associated log-id does not have to configured before a snmp-trap-group can
be created, however, the snmp-trap-group must exist before the log-id can be
configured to use it.

The following displays a basic SNMP trap group configuration example:

A:ALA-12>config>log# info
...

snmp-trap-group 2
trap-target 10.10.10.104:5 "snmpv3" notify-community "coummunitystring"
exit
...

log-id 2
description "This is a test log file."
filter 1
from main security
to file 1
exit
...

A:ALA-12>config>log#

The following displays a SNMP trap group, log, and interface configuration
examples:

A:SetupCLI>config>log# snmp-trap-group 44
A:SetupCLI>config>log>snmp-trap-group# info
----------------------------------------------
trap-target "xyz-test" address xx.xx.x.x snmpv2c notify-community "xyztesting"
trap-target "test2" address xx.xx.xx.x snmpv2c notify-community "xyztesting"
----------------------------------------------

*A:SetupCLI>config>log>log-id# info
----------------------------------------------
from main
to snmp
----------------------------------------------
*A:SetupCLI>config>router# interface xyz-test
*A:SetupCLI>config>router>if# info
----------------------------------------------
address xx.xx.xx.x/24
5.7.4.6.1 Setting the Replay Parameter

For this example the replay parameter was set by a SNMP SET request for the trap-target address 10.10.10.3 which is bound to port-id 1/1/1.

A:SetupCLI>config>log>snmp-trap-group 44
A:SetupCLI>config>log>snmp-trap-group# info
----------------------------------------------
trap-target "xyz-test" address 10.10.10.3 snmpv2c notify-community "xyztesting" replay
trap-target "test2" address 20.20.20.5 snmpv2c notify-community "xyztesting"
----------------------------------------------
A:SetupCLI>config>log>snmp-trap-group#

In the following output, the **Replay** field changed from disabled to enabled.

A:SetupCLI>config>log>snmp-trap-group# show log snmp-trap-group 44
===============================================================================
SNMP Trap Group 44
===============================================================================
Description : none
-------------------------------------------------------------------------------
Name : xyz-test
Address : 10.10.10.3
Port : 162
Version : v2c
Community : xyztesting
Sec. Level : none
Replay : enabled
Replay from : n/a
Last replay : never
-------------------------------------------------------------------------------
Name : test2
Address : 20.20.20.5
Port : 162
Version : v2c
Community : xyztesting
Sec. Level : none
Replay : disabled
Replay from : n/a
Last replay : never
===============================================================================
A:SetupCLI>config>log>snmp-trap-group#

Since no events are waiting to be replayed, the log displays as before.

A:SetupCLI>config>log>snmp-trap-group# show log log-id 44
===============================================================================
Event Log 44
===============================================================================

port 1/1/1
----------------------------------------------
*A:SetupCLI>config>router>if#
SNMP Log contents  [size=100  next event=3819  (wrapped)]

3818 2008/04/22 23:35:39.89 UTC WARNING: SYSTEM #2009 Base IP
"Status of vRtrIfTable: router Base (index 1) interface xyz-test (index 35) changed
administrative state: inService, operational state: inService"

3817 2008/04/22 23:35:39.89 UTC WARNING: SNMP #2005 Base xyz-test
"Interface xyz-test is operational"

3816 2008/04/22 23:35:39.89 UTC WARNING: SNMP #2005 Base 1/1/1
"Interface 1/1/1 is operational"

3815 2008/04/22 23:35:39.71 UTC WARNING: SYSTEM #2009 Base CHASSIS
"Status of Mda 1/1 changed administrative state: inService, operational state:
inService"

3814 2008/04/22 23:35:38.88 UTC MINOR: CHASSIS #2002 Base Mda 1/2
"Class MDA Module : inserted"

3813 2008/04/22 23:35:38.88 UTC MINOR: CHASSIS #2002 Base Mda 1/1

5.7.4.6.2  Shutdown In-Band Port

A shutdown on the in-band port that the trap-target address is bound to causes the
route to that particular trap target to be removed from the route table. When the
SNMP module is notified of this event, it marks the trap-target as inaccessible and
saves the sequence-id of the first SNMP notification that will be missed by the trap-
target.

Example: config>log>snmp-trap-group# exit all
#configure port 1/1/1 shutdown
#
#tools perform log test-event
#

The Replay from field is updated with the sequence-id of the first event that will be
replayed when the trap-target address is added back to the route table.

*A:SetupCLI# show log snmp-trap-group 44

SNMP Trap Group 44

Name : xyz-test
Address : 10.10.10.3
Port : 162
Version : v2c
Community : xyztesting
Sec. Level : none
Replay : enabled
Replay from : event #3819
Last replay : never

Name : test2
Address : 20.20.20.5
Port : 162
Version : v2c
Community : xyztesting
Sec. Level : none
Replay : disabled
Replay from : n/a
Last replay : never

A display of the event log indicates which trap targets are not accessible and waiting for notification replay and the sequence ID of the first notification that will be replayed.

Note: If there are more missed events than the log size, the replay will actually start from the first available missed event.

*A:SetupCLI# show log log-id 44

Event Log 44

SNMP Log contents [size=100 next event=3821 (wrapped)]
Cannot send to SNMP target address 10.10.10.3.
Waiting to replay starting from event #3819

3820 2008/04/22 23:41:28.00 UTC INDETERMINATE: LOGGER #2011 Base Event Test
"Test event has been generated with system object identifier tmnxModelSR12Reg.
System description: TmOS-B-0.0.private both/i386 Nokia 7750 SR Copyright (c)
2000-2016 Nokia. All rights reserved. All use subject to applicable license agreements. Built on Tue Apr 22 14:41:18 PDT 2008 by test123 in /test123/ws/panos/ main"

3819 2008/04/22 23:41:20.37 UTC WARNING: MC_REDUNDANCY #2022 Base operational state of peer chan*
"The MC-Ring operational state of peer 2.2.2.2 changed to outOfService."

3818 2008/04/22 23:35:39.89 UTC WARNING: SYSTEM #2009 Base IP
"Status of vRtrIfTable: router Base (index 1) interface xyz-test (index 35) changed administrative state: inService, operational state: inService"

3823 2008/04/22 23:41:49.82 UTC WARNING: SNMP #2005 Base xyz-test
"Interface xyz-test is operational"
5.7.4.6.3 No Shutdown Port

A no shutdown command executed on the in-band port to which the trap-target address is bound will cause the route to that trap target to be re-added to the route table. When the SNMP trap module is notified of this event, it resends the notifications that were missed while there was no route to the trap-target address.

Example: configure# port 1/1/1 no shutdown
#
# tools perform log test-event

After the notifications have been replayed the Replay from field indicates n/a because there are no more notifications waiting to be replayed and the Last replay field timestamp has been updated.

*A:SetupCLI# show log snmp-trap-group 44
SNMP Trap Group 44
Description : none
Name : xyz-test
Address : 10.10.10.3
Port : 162
Version : v2c
Community : xyztesting
Sec. Level : none
Replay : enabled
Replay from : n/a
Last replay : 04/22/2008 18:52:36
Name : test2
Address : 20.20.20.5
Port : 162
Version : v2c
Community : xyztesting
Sec. Level : none
Replay : disabled
Replay from : n/a
Last replay : never
*A:SetupCLI#

A display of the event log shows that it is no longer waiting to replay notifications to one or more of its trap target addresses. An event message has been written to the logger that indicates the replay to the trap-target address has happened and displays the notification sequence ID of the first and last replayed notifications.

*A:SetupCLI# show log log-id 44
SNMP Log contents [size=100 next event=3827 (wrapped)]
5.7.4.7 Configuring a Syslog Target

Log events cannot be sent to a syslog target host until a valid syslog ID exists.

The following displays a syslog configuration example:

A:ALA-12>config-log# info
----------------------------------------------
... 
  syslog 1
    description "This is a syslog file."
    address 10.10.10.104
    facility user
    level warning
    exit
... 
----------------------------------------------
A:ALA-12>config-log#

5.7.4.7.1 Configuring an Accounting Custom Record

A:ALA-48>config-subscr-mgmt>acct-plcy# info
----------------------------------------------
... 
  custom-record
    queue 1
      i-counters
        high-octets-discarded-count
        low-octets-discarded-count
        in-profile-octets-forwarded-count
        out-profile-octets-forwarded-count
      exit
      e-counters
        in-profile-octets-forwarded-count
        in-profile-octets-discarded-count
----------------------------------------------
A:ALA-48>config-subscr-mgmt>acct-plcy#
The following is an example custom record configuration.

```
A:ALA-48>config>subscr-mgmt>acct-plcy#

The following is an example custom record configuration.

Dut-C>config>log>acct-policy>cr# info

--
| aa-specific |
| aa-sub-counters |
| short-duration-flow-count |
| medium-duration-flow-count |
| long-duration-flow-count |
| total-flow-duration |
| total-flows-completed-count |
| exit |
| from-aa-sub-counters |
| flows-admitted-count |
| flows-denied-count |
| flows-active-count |
| packets-admitted-count |
| octets-admitted-count |
| packets-denied-count |
| octets-denied-count |
| max-throughput-octet-count |
| max-throughput-packet-count |
| max-throughput-timestamp |
| forwarding-class |
| exit |
| to-aa-sub-counters |
| flows-admitted-count |
| flows-denied-count |
| flows-active-count |
| packets-admitted-count |
| octets-admitted-count |
| packets-denied-count |
| octets-denied-count |
| max-throughput-octet-count |
| max-throughput-packet-count |
| max-throughput-timestamp |
| forwarding-class |
| exit |
| exit |
```
significant-change 1
ref-aa-specific-counter any
5.8 Log Configuration Command Reference

This section provides the log configuration command reference.

5.8.1 Command Hierarchies

- Log Configuration Command Reference
  - Log Configuration Commands
  - Accounting Policy Commands
  - Custom Record Commands
  - File ID Commands
  - Event Filter Commands
  - Event Handling System (EHS) Commands
  - Event Trigger Commands
  - Log ID Commands
  - SNMP Trap Group Commands
  - Syslog Commands
  - Show Commands
  - Clear Command

5.8.1.1 Log Configuration Commands

```
config log
 — app-route-notifications
 — cold-start-wait seconds
 — no cold-start-wait
 — route-recovery-wait seconds
 — no route-recovery-wait
 — event-control application-id [event-name | event-number] [generate [severity-level] [throttle] [specific-throttle-rate events-limit interval seconds | disable-specific-throttle]
 — event-control application-id [event-name | event-number] suppress
 — no event-control application [event-name | event-number]
 — [no] event-damping
 — route-preference primary {inband | outband} secondary {inband | outband | none}
 — no route-preference
 — throttle-rate events [interval seconds]
 — no throttle-rate
```
5.8.1.2 Accounting Policy Commands

```
config
 log
 collection-interval minutes
 no collection-interval
 accounting-policy acct-policy-id
 no accounting-policy acct-policy-id
 auto-bandwidth
 default
 description description-string
 description
 include-router-info
 include-system-info
 record record-name
 record
 shutdown
 to file log-file-id
```

5.8.1.3 Custom Record Commands

```
config
 log
 accounting-policy acct-policy-id [interval minutes]
 no accounting-policy acct-policy-id
 collection-interval minutes
 no collection-interval
 custom-record
 aa-specific
 aa-sub-counters [all]
 no aa-sub-counters
 long-duration-flow-count
 medium-duration-flow-count
 short-duration-flow-count
 total-flow-duration
 total-flows-completed-count
 from-aa-sub-counters [all]
 no from-aa-sub-counters
 all
 flows-active-count [all]
 flows-admitted-count
 flows-denied-count
 forwarding-class
 max-throughput-octet-count
 max-throughput-packet-count
 max-throughput-packet-count
 octets-admitted-count
 octets-denied-count
 packets-admitted-count
 packets-denied-count
```
---
to-aa-sub-counters [all]
to-aa-sub-counters
  --- all
  --- [no] flows-active-count [all]
  --- [no] flows-admitted-count
  --- [no] flows-denied-count
  --- [no] forwarding-class
  --- [no] max-throughput-octet-count
  --- [no] max-throughput-packet-count
  --- [no] max-throughput-packet-count
  --- [no] octets-admitted-count
  --- [no] octets-denied-count
  --- [no] packets-admitted-count
  --- [no] packets-denied-count
  --- [no] override-counter override-counter-id
---
e-counters [all]
  --- no e-counters
  --- [no] in-profile-octets-discarded-count
  --- [no] in-profile-octets-forwarded-count
  --- [no] in-profile-packets-discarded-count
  --- [no] in-profile-packets-forwarded-count
  --- [no] out-profile-octets-discarded-count
  --- [no] out-profile-octets-forwarded-count
  --- [no] out-profile-packets-discarded-count
  --- [no] out-profile-packets-forwarded-count
  --- i-counters [all]
  --- no i-counters
  --- [no] in-profile-octets-discarded-count
  --- [no] in-profile-octets-forwarded-count
  --- [no] in-profile-packets-discarded-count
  --- [no] in-profile-packets-forwarded-count
  --- [no] out-profile-octets-discarded-count
  --- [no] out-profile-octets-forwarded-count
  --- [no] out-profile-packets-discarded-count
  --- [no] out-profile-packets-forwarded-count
---
queue queue-id
  --- e-counters [all]
  --- no e-counters
  --- [no] in-profile-octets-discarded-count
  --- [no] in-profile-octets-forwarded-count
  --- [no] in-profile-packets-discarded-count
  --- [no] in-profile-packets-forwarded-count
  --- [no] out-profile-octets-discarded-count
  --- [no] out-profile-octets-forwarded-count
  --- [no] out-profile-packets-discarded-count
  --- [no] out-profile-packets-forwarded-count
  --- i-counters [all]
  --- no i-counters
  --- [no] all-octets-offered-count
  --- [no] all-packets-offered-count
  --- [no] high-octets-discarded-count
  --- [no] high-octets-offered-count
  --- [no] high-packets-discarded-count
  --- [no] high-packets-offered-count
— [no] in-profile-octets-forwarded-count
— [no] in-profile-packets-forwarded-count
— [no] low-octets-discarded-count
— [no] low-packets-discarded-count
— [no] low-octets-offered-count
— [no] low-packets-offered-count
— [no] out-profile-octets-forwarded-count
— [no] out-profile-packets-forwarded-count
— [no] uncoloured-octets-offered-count
— [no] uncoloured-packets-offered-count

— ref-aa-specific-counter any
— no ref-aa-specific-counter
— ref-override-counter ref-override-counter-id
— ref-override-counter all
— no ref-override-counter
— e-counters [all]
  — no e-counters
    — [no] in-profile-octets-discarded-count
    — [no] in-profile-octets-forwarded-count
    — [no] in-profile-packets-discarded-count
    — [no] in-profile-packets-forwarded-count
    — [no] out-profile-octets-discarded-count
    — [no] out-profile-octets-forwarded-count
    — [no] out-profile-packets-discarded-count
    — [no] out-profile-packets-forwarded-count

— i-counters [all]
— no i-counters
  — [no] all-octets-offered-count
  — [no] all-packets-offered-count
  — [no] high-octets-discarded-count
  — [no] high-octets-offered-count
  — [no] high-packets-discarded-count
  — [no] high-packets-offered-count
  — [no] in-profile-octets-forwarded-count
  — [no] in-profile-packets-forwarded-count
  — [no] low-octets-discarded-count
  — [no] low-octets-offered-count
  — [no] low-packets-discarded-count
  — [no] low-packets-offered-count
  — [no] out-profile-octets-forwarded-count
  — [no] out-profile-packets-forwarded-count
  — [no] uncoloured-octets-offered-count
  — [no] uncoloured-packets-offered-count

— ref-queue queue-id
— ref-queue all
— no ref-queue
  — e-counters [all]
  — no e-counters
    — [no] in-profile-octets-discarded-count
    — [no] in-profile-octets-forwarded-count
    — [no] in-profile-packets-discarded-count
    — [no] in-profile-packets-forwarded-count
    — [no] out-profile-octets-discarded-count
    — [no] out-profile-octets-forwarded-count
5.8.1.4 File ID Commands

```plaintext
config
 log
 [no] file-id log-file-id
 description description-string
 no description
 location cflash-id [backup-cflash-id]
 rollover minutes [retention hours]
 no rollover
```

5.8.1.5 Event Filter Commands

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services for information about configuring log filters in a VPRN service.

```plaintext
config
 log
 [no] filter filter-id
 default-action {drop | forward}
 no default-action
 description description-string
 no description
 [no] entry entry-id
 action {drop | forward}
```
5.8.1.6 Event Handling System (EHS) Commands

```
config
 log event-handling
 [no] handler event-handler-name
 action-list
 [no] entry entry-id
 description description-string
 no description
 min-delay [delay]
 no min-delay
 [no] script-policy script-policy-name [owner owner-name]
 no script-policy
 description description-string
 no description
 [no] shutdown
```

5.8.1.7 Event Trigger Commands

```
config
 log event-trigger
 [no] event application-id event-name-id
 description description-string
 no description
 no shutdown
 [no] trigger-entry entry-id
 debounce occurrences [within seconds]
```
5.8.1.8 Log ID Commands

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services for information about configuring logs in a VPRN service.

```plaintext
config
 log
 [no] log-id log-id
 description description-string
 [no] description
 filter filter-id
 [no] filter
 from {main | security | change | debug-trace}
 [no] from
 python-policy policy-name
 [no] python-policy
 [no] shutdown
 time-format {local | utc}
 to console
 to file log-file-id
 to memory [size]
 to session
 to snmp [size]
 to syslog syslog-id
```

5.8.1.9 SNMP Trap Group Commands

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services for information about configuring SNMP trap groups in a VPRN service.

```plaintext
config
 log
 [no] snmp-trap-group log-id
 description description-string
 [no] description
```
5.8.1.10 Syslog Commands

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services for information about configuring syslogs in a VPRN service.

```
config
 log
 [no] syslog syslog-id
 address ip-address
 no address
 description description-string
 no description
 facility syslog-facility
 no facility
 level {emergency | alert | critical | error | warning | notice | info | debug}
 no level
 log-prefix log-prefix-string
 no log-prefix
 port port
 no port
```

5.8.2 Command Descriptions

- Generic Commands
- File ID Commands
- Log Filter Commands
- Log Filter Entry Commands
- Log Filter Entry Match Commands
- Event Handling System (EHS) Commands
- Event Trigger Commands
- Syslog Commands
- SNMP Trap Groups
- Accounting Policy Commands
5.8.2.1 Generic Commands

description

Syntax

\[ \text{description } \textit{string} \]
\[ \text{no description} \]

Context

- config>log>filter
- config>log>filter>entry
- config>log>log-id
- config>log>accounting-policy
- config>log>event-handling>handler
- config>log>event-handling>handler>action-list>entry
- config>log>event-trigger>event
- config>log>event-trigger>event>trigger-entry
- config>log>file-id
- config>log>syslog
- config>log>snmp-trap-group

Description

This command creates a text description stored in the configuration file for a configuration context. The \textit{description} command associates a text string with a configuration context to help identify the content in the configuration file.

The \textit{no} form of the command removes the string from the configuration.

Default

No text description is associated with this configuration. The string must be entered.

Parameters

- \textit{string} — The description can contain a string of up to 80 characters composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, and so on), the entire string must be enclosed within double quotes.

shutdown

Syntax

\[ \text{[no]} \text{ shutdown} \]

Context

- config>log>log-id
- config>log>accounting-policy
- config>log>event-handling>handler
- config>log>event-trigger>event

Description

This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The \textit{no} form of this command administratively enables an entity.
**5.8.2.2 Log Configuration Commands**

**app-route-notifications**

**Syntax**: `app-route-notifications`

**Context**: `config>log`

**Description**: Specific system applications in SR OS can take action based on a route to certain IP destinations being available. This CLI branch contains configuration related to these route availability notifications. A delay can be configured between the time that a route is determined as available in the CPM, and the time that the application is notified of the available route. For example, this delay may be used to increase the chances that other system modules (such as IOMs/XCMs/MDAs/XMAs) are fully programmed with the new route before the application takes action. Currently, the only application that acts upon these route available or route changed notifications with their configurable delays is the SNMP replay feature, which receives notifications of route availability to the SNMP trap receiver destination IP address.

**cold-start-wait**

**Syntax**: `cold-start-wait seconds`  
`no cold-start-wait`

**Context**: `config>log>app-route-notifications`

**Description**: The time delay that must pass before notifying specific CPM applications that a route is available after a cold reboot.

**Default**: no cold-start-wait 0

**Parameters**

- `seconds` — time delay in seconds

  **Values**: 1 to 300
route-recovery-wait

Syntax  
route-recovery-wait seconds
no route-recovery-wait

Context  
config>log>app-route-notifications

Description  
The time delay that must pass before notifying specific CPM applications after the recovery or change of a route during normal operation.

Default  
no route-recovery-wait 0

Parameters  
seconds — time delay in seconds

Values  
1 to 100

event-control

Syntax  
event-control application-id [event-name | event-number] [generate] [severity-level] [throttle] [specific-throttle-rate events-limit interval seconds] [disable-specific-throttle]
event-control application-id [event-name | event-number] suppress
no event-control application [event-name | event-number]

Context  
config>log

Description  
This command is used to specify that a particular event or all events associated with an application is either generated or suppressed.

Events are generated by an application and contain an event number and description explaining the cause of the event. Each event has a default designation which directs it to be generated or suppressed.

Events are generated with a default severity level that can be modified by using the severity-level option.

Events that are suppressed by default are typically used for debugging purposes. Events are suppressed at the time the application requests the event’s generation. No event log entry is generated regardless of the destination. While this feature can save processor resources, there may be a negative effect on the ability to troubleshoot problems if the logging entries are squelched. In reverse, indiscriminate application may cause excessive overhead.

The rate of event generation can be throttled by using the throttle parameter.

The no form of the command reverts the parameters to the default setting for events for the application or a specific event within the application. The severity, generate, suppress, and throttle options will also be reset to the initial values.

Default  
Each event has a set of default settings. To display a list of all events and the current configuration use the event-control command.
**Parameters**

application-id — The application whose events are affected by this event control filter.

**Values**

A valid application name. To display a list of valid application names, use the `show log applications` command.

Some examples of valid applications are:

**Default**

None, this parameter must be explicitly specified.

event-name | event-number — To generate, suppress, or revert to default for a single event, enter the specific number or event short name. If no event number or name is specified, the command applies to all events in the application. To display a list of all event short names use the `event-control` command.

**Default**

none

**Values**

A valid event name or event number.

generate — Specifies that logger event is created when this event occurs. The generate keyword can be used with two optional parameters, severity-level and throttle.

**Default**

generate

severity-name — An ASCII string representing the severity level to associate with the specified generated events

**Default**

The system assigned severity name

**Values**

One of: cleared, indeterminate, critical, major, minor, warning.

throttle — Specifies whether or not events of this type will be throttled. By default, event throttling is on for most event types.

suppress — This keyword indicates that the specified events will not be logged. If the suppress keyword is not specified then the events are generated by default. For example on the 7750 SR, `event-control bgp suppress` will suppress all BGP events. If a log event is a raising event for a Facility Alarm, and the associated Facility Alarm is raised, then changing the log event to `suppress` clears the associated Facility Alarm.

**Default**

generate

**Values**

specific-throttle-rate events-limit — The log event throttling rate can be configured independently for each log event using this keyword. This specific-throttle-rate overrides the globally configured throttle rate (`configure>log>throttle-rate`) for the specific log event.

**Values**

1 to 20000

interval seconds — specifies the number of seconds that the specific throttling intervals lasts.

**Values**

1 to 1200

disable-specific-throttle — Specifies to disable the specific-throttle-rate.
event-damping

Syntax [no] event-damping

Context config>log

Description This command allows the user to set the event damping algorithm to suppress QoS or filter change events.

Note: While this event damping is original behavior for some modules such as service manager, QoS, and filters, it can result in the NMS system database being out of sync because of missed change events. On the other hand, if the damping is disabled (no event-damping), it may take much longer to exec a large CLI configuration file after system bootup.

route-preference

Syntax route-preference primary {inband | outband} secondary {inband | outband | none} no route-preference

Context config>log

Description This command specifies the primary and secondary routing preference for traffic generated for SNMP notifications and syslog messages. If the remote destination is not reachable through the routing context specified by primary route preference then the secondary routing preference will be attempted.

The no form of the command reverts to the default values.

Default no route-preference

Parameters primary — Specifies the primary routing preference for traffic generated for SNMP notifications and syslog messages.

Default outband

secondary — Specifies the secondary routing preference for traffic generated for SNMP notifications and syslog messages. The routing context specified by the secondary route preference will be attempted if the remote destination was not reachable by the primary routing preference, specified by primary route preference. The value specified for the secondary routing preference must be distinct from the value for primary route preference.

Default inband

inband — Specifies that the logging utility will attempt to use the base routing context to send SNMP notifications and syslog messages to remote destinations.

outband — Specifies that the logging utility will attempt to use the management routing context to send SNMP notifications and syslog messages to remote destinations.
none — Specifies that no attempt will be made to send SNMP notifications and syslog messages to remote destinations.

throttle-rate

Syntax  throttle-rate events [interval seconds]
no throttle-rate

Context  config>log

Description  This command configures the number of events and interval length to be applied to all event types that have throttling enabled by the event-control command and do not have a specific-throttle-rate configured.

Default  throttle-rate 2000 interval 1

Parameters  

- **events** — Specifies the number of log events that can be logged within the specified interval for a specific event. Once the limit has been reached, any additional events of that type will be dropped, for example, the event drop count will be incremented. At the end of the throttle interval if any events have been dropped a trap notification will be sent.

  - **Values** 1 to 20000
  - **Default** 2000

- **interval seconds** — Specifies the number of seconds that an event throttling interval lasts.

  - **Values** 1 to 1200
  - **Default** 1

5.8.2.3 File ID Commands

file-id

Syntax  [no] file-id file-id

Context  config>log

Description  This command creates the context to configure a file ID template to be used as a destination for an event log or billing file.

This command defines the file location and characteristics that are to be used as the destination for a log event message stream or accounting/billing information. The file defined in this context is subsequently specified in the to command under log-id or accounting-policy to direct specific logging or billing source streams to the file destination.
A file ID can only be assigned to either one log-id or one accounting-policy. It cannot be reused for multiple instances. A file ID and associated file definition must exist for each log and billing file that must be stored in the file system.

A file is created when the file ID defined in this command is selected as the destination type for a specific log or accounting record. Log files are collected in a "log" directory. Accounting files are collected in an “act” directory.

The file names for a log are created by the system as summarized in Table 71.

### Table 71 Log File Names

<table>
<thead>
<tr>
<th>File Type</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log File</td>
<td>loglff-timestamp</td>
</tr>
<tr>
<td>Accounting File</td>
<td>actaaff-timestamp</td>
</tr>
</tbody>
</table>

Where:

- *ll* is the log-id
- *aa* is the accounting policy-id
- *ff* is the file-id
- The *timestamp* is the actual timestamp when the file is created. The format for the timestamp is `yyyyymmdd-hhmmss` where:
  - *yyyy* is the year (for example, 2006)
  - *mm* is the month number (for example, 12 for December)
  - *dd* is the day of the month (for example, 03 for the 3rd of the month)
  - *hh* is the hour of the day in 24 hour format (for example, 04 for 4 a.m.)
  - *mm* is the minutes (for example, 30 for 30 minutes past the hour)
  - *ss* is the number of seconds (for example, 14 for 14 seconds)
- The accounting file is compressed and has a gz extension.

When initialized, each file will contain:

- *The log-id* description.
- *The* time the file was opened.
- *The reason* the file was created.
- If the event log file was closed properly, the sequence number of the last event stored on the log is recorded.

If the process of writing to a log file fails (for example, the compact flash card is full) and if a backup location is not specified or fails, the log file will not become operational even if the compact flash card is replaced. Enter either a **clear log** command or a **shutdown/no shutdown** command to reinitialize the file.
If the primary location fails (for example, the compact flash card fills up during the write process), a trap is sent and logging continues to the specified backup location. This can result in truncated files in different locations.

The \texttt{no} form of the command removes the \texttt{file-id} from the configuration. A \texttt{file-id} can only be removed from the configuration if the file is not the designated output for a log destination. The actual file remains on the file system.

**Default**

No default file IDs are defined.

**Parameters**

\texttt{file-id} — The file identification number for the file, expressed as a decimal integer.

**Values**

\texttt{1 to 99}

---

**location**

**Syntax** \texttt{location cflash-id [backup-cflash-id]}

**no location**

**Context** config>log>file file-id

**Description**

This command specifies the primary and optional backup location where the log or billing file will be created.

The \texttt{location} command is optional. If the location command not explicitly configured, log files will be created on cf1: and accounting files will be created on cf2: without overflow onto other devices. Generally, cf3: is reserved for system files (configurations, images, and so on).

When multiple location commands are entered in a single file ID context, the last command overwrites the previous command.

When the location of a file ID that is associated with an active log ID is changed, the log events are not immediately written to the new location. The new location does not take effect until the log is rolled over either because the rollover period has expired or a \texttt{clear log log-id} command is entered to manually rollover the log file.

When creating files, the primary location is used as long as there is available space. If no space is available, an attempt is made to delete unnecessary files that are past their retention date.

If sufficient space is not available an attempt is made to remove the oldest to newest closed log or accounting files. After each file is deleted, the system attempts to create the new file.

A medium severity trap is issued to indicate that a compact flash is either not available or that no space is available on the specified flash and that the backup location is being used.

A high priority alarm condition is raised if none of the configured compact flash devices for this file ID are present or if there is insufficient space available. If space does becomes available, then the alarm condition will be cleared.
Use the no form of this command to revert to default settings.

**Default**

Log files are created on cf1: and accounting files are created on cf2:

**Parameters**

cflash-id — Specify the primary location.

**Values** cflash-id:cf1:, cf2:, cf3:

backup-cflash-id — Specify the secondary location.

**Values** cflash-id: cf1:, cf2:, cf3:

### rollover

**Syntax**

rollover minutes [retention hours]

no rollover

**Context**

config>log>file-id

**Description**

This command configures how often an event or accounting log is rolled over or partitioned into a new file.

An event or accounting log is actually composed of multiple, individual files. The system creates a new file for the log based on the **rollover** time, expressed in minutes.

The **retention** option, expressed in hours, allows you to modify the default time to keep the file in the system. The retention time is based on the rollover time of the file.

When multiple rollover commands for a file-id are entered, the last command overwrites the previous command.

**Default**

rollover 1440 retention 12

**Parameters**

minutes — The rollover time, in minutes.

**Values** 5 to 10080

retention hours — The retention period in hours, expressed as a decimal integer. The retention time is based on the time creation time of the file. The file becomes a candidate for removal once the creation datestamp + rollover time + retention time is less than the current timestamp.

**Default**

12

**Values** 1 to 500
5.8.2.4 Log Filter Commands

filter

Syntax  [no] filter filter-id
Context  config>log
Description  This command creates a context for an event filter. An event filter specifies whether to forward or drop an event or trap based on the match criteria.

Filters are configured in the filter filter-id context and then applied to a log in the log-id log-id context. Only events for the configured log source streams destined to the log ID where the filter is applied are filtered.

Any changes made to an existing filter, using any of the sub-commands, are immediately applied to the destinations where the filter is applied.

The no form of the command removes the filter association from log IDs which causes those logs to forward all events.

Default  No event filters are defined.

Parameters  filter-id — The filter ID uniquely identifies the filter.

  Values  1 to 1000

default-action

Syntax  default-action {drop | forward}
  no default-action
Context  config>log>filter filter-id
Description  The default action specifies the action that is applied to events when no action is specified in the event filter entries or when an event does not match the specified criteria.

When multiple default-action commands are entered, the last command overwrites the previous command.

The no form of the command reverts the default action to the default value (forward).

Default  default-action forward

Parameters  drop — The events which are not explicitly forwarded by an event filter match are dropped.

  forward — The events which are not explicitly dropped by an event filter match are forwarded.
5.8.2.5 Log Filter Entry Commands

action

Syntax  
action \{drop | forward\}

no action

Context  
config>log>filter filter-id>entry entry-id

Description  
This command specifies a drop or forward action associated with the filter entry. If neither drop nor forward is specified, the default-action will be used for traffic that conforms to the match criteria. This could be considered a No-Op filter entry used to explicitly exit a set of filter entries without modifying previous actions.

Multiple action statements entered will overwrite previous actions.

The no form of the command removes the specified action statement.

Default  
Action specified by the default-action command will apply.

Parameters  
drop — Specifies packets matching the entry criteria will be dropped.

forward — Specifies packets matching the entry criteria will be forwarded.

target

Syntax  

Context  
config>log>filter filter-id

Description  
This command is used to create or edit an event filter entry. Multiple entries may be created using unique entry-id numbers. The TiMOS implementation exits the filter on the first match found and executes the action in accordance with the action command.

Comparisons are performed in an ascending entry ID order. When entries are created, they should be arranged sequentially from the most explicit entry to the least explicit. Matching ceases when a packet matches an entry. The entry action is performed on the packet, either drop or forward. To be considered a match, the packet must meet all the conditions defined in the entry.

An entry may not have any match criteria defined (in which case, everything matches) but must have at least the keyword action for it to be considered complete. Entries without the action keyword will be considered incomplete and are rendered inactive.

The no form of the command removes the specified entry from the event filter. Entries removed from the event filter are immediately removed from all log-id’s where the filter is applied.
Event and Accounting Logs

Default
No event filter entries are defined. An entry must be explicitly configured.

Parameters
entry-id — The entry ID uniquely identifies a set of match criteria corresponding action within a filter. Entry ID values should be configured in staggered increments so you can insert a new entry in an existing policy without renumbering the existing entries.

Values
1 to 999

5.8.2.6 Log Filter Entry Match Commands

match

Syntax
[no] match

Context
config>log>filter filter-id>entry entry-id

Description
This command creates context to enter/edit match criteria for a filter entry. When the match criteria is satisfied, the action associated with the entry is executed.

If more than one match parameter (within one match statement) is specified, then all the criteria must be satisfied (AND functional) before the action associated with the match is executed.

Use the application command to display a list of the valid applications.

Match context can consist of multiple match parameters (application, event-number, severity, subject), but multiple match statements cannot be entered per entry.

The no form of the command removes the match criteria for the entry-id.

Default
No match context is defined.

application

Syntax
application {eq | neq} application-id
no application

Context
config>log>filter filter-id>entry entry-id>match

Description
This command adds an OS application as an event filter match criterion.

An OS application is the software entity that reports the event. Applications include IP, MPLS, OSPF, CLI, SERVICES and so on. Only one application can be specified. The latest application command overwrites the previous command.

The no form of the command removes the application as a match criterion.
Default  no application

Parameters  
- **eq** | **neq** — Specifies the operator match type. Valid operators are listed in Table 72.

### Table 72  Valid Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
</tbody>
</table>

**application-id** — The application name string.

**Values**  application_assurance, aps, atm, bgp, cflowd, chassis, debug, dhcp, dhcps, diameter, dynsvc, efm_oam, elmi, ering, eth_cfm, etun, fiter, gsmp, igh, igmp, igmp_snooping, ip, ipsec, isis, l2tp, lag, ldp, li, lldp, logger, mcpath, mc_redundancy, mirror, mld, mld_snooping, mpls, mpls_tp, msdp, nat, ntp, open_flow, ospf, pim, pim_snooping, port, ppp, pppoe, ptp, radius, rip, rip_ng, route_policy, rsvp, security, smtp, stp, svcmgr, system, user, video, vrrp, vrtr, wlan_gw, wpp

**message**

**Syntax**  
message {eq | neq} pattern pattern [regexp]

no message

**Context**  config>log>filter>entry>match

**Description**  This command adds system messages as a match criterion.

The no form of the command removes messages as a match criterion.

**Parameters**  
- **eq** — Determines if the matching criteria should be equal to the specified value.
- **neq** — Determines if the matching criteria should not be equal to the specified value.
- **pattern** — Specifies a message up to 400 characters in length to be used in the match criteria.
- **regexp** — Specifies the type of string comparison to use to determine if the log event matches the value of message command parameters. When the regexp keyword is not specified, the default matching algorithm used is a basic substring match.

**number**

**Syntax**  
number {eq | neq | lt | lte | gt | gte} event-id

no number
Event and Accounting Logs

Context  config>log>filter filter-id>entry entry-id>match

Description  This command adds an SR OS application event number as a match criterion.

SR OS event numbers uniquely identify a specific logging event within an application.

Only one **number** command can be entered per event filter entry. The latest **number** command overwrites the previous command.

The **no** form of the command removes the event number as a match criterion.

Default  no event-number

Parameters  eq | neq | lt | lte | gt | gte — Specifies the type of match. Valid operators are listed in Table 73.

Table 73  Valid Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
<tr>
<td>lt</td>
<td>less than</td>
</tr>
<tr>
<td>lte</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>gt</td>
<td>greater than</td>
</tr>
<tr>
<td>gte</td>
<td>greater than or equal to</td>
</tr>
</tbody>
</table>

**event-id** — The event ID, expressed as a decimal integer.

Values  1 to 4294967295

router

Syntax  router {eq | neq} router-instance [regexp]

no router

Context  config>log>filter>entry>match

Description  This command specifies the log event matches for the router.

Parameters  eq — Determines if the matching criteria should be equal to the specified value.

neq — Determines if the matching criteria should not be equal to the specified value.

**router-instance** — Specifies a router name up to 32 characters in length to be used in the match criteria.
regexp — Specifies the type of string comparison to use to determine if the log event matches the value of router command parameters. When the regexp keyword is specified, the string in the router command is a regular expression string that will be matched against the subject string in the log event being filtered.

severity

Syntax severity {eq | neq | lt | lte | gt | gte} severity-level

no severity

Context config>log>filter>entry>match

Description This command adds an event severity level as a match criterion. Only one severity command can be entered per event filter entry. The latest severity command overwrites the previous command.

The no form of the command removes the severity match criterion.

Default no severity

Parameters eq | neq | lt | lte | gt | gte — Specifies the match type. Valid operators are listed in Table 74.

Table 74 Valid Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
<tr>
<td>lt</td>
<td>less than</td>
</tr>
<tr>
<td>lte</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>gt</td>
<td>greater than</td>
</tr>
<tr>
<td>gte</td>
<td>greater than or equal to</td>
</tr>
</tbody>
</table>

severity-name — Specifies the ITU severity level name. Table 75 lists severity names and corresponding numbers per ITU standards M.3100 X.733 & X.21 severity levels.
subject

Syntax  
\textbf{subject} \{eq | neq\} \textbf{subject} \{regexp\}
\textbf{no subject}

Context  
config>log>filter filter-id>entry entry-id>match

Description  
This command adds an event subject as a match criterion.

The subject is the entity for which the event is reported, such as a port. In this case the port-id string would be the subject. Only one \textbf{subject} command can be entered per event filter entry. The latest \textbf{subject} command overwrites the previous command.

The \textbf{no} form of the command removes the subject match criterion.

Default  
no subject

Parameters  
eq | neq — Specifies the match type. Valid operators are listed in Table 76.

\textbf{Table 75}  
ITU Severity Information

<table>
<thead>
<tr>
<th>Severity Number</th>
<th>Severity Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cleared</td>
</tr>
<tr>
<td>2</td>
<td>indeterminate (info)</td>
</tr>
<tr>
<td>3</td>
<td>critical</td>
</tr>
<tr>
<td>4</td>
<td>major</td>
</tr>
<tr>
<td>5</td>
<td>minor</td>
</tr>
<tr>
<td>6</td>
<td>warning</td>
</tr>
</tbody>
</table>

Values  
cleared, intermediate, critical, major, minor, warning

\textbf{Table 76}  
Valid Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>equal to</td>
</tr>
<tr>
<td>neq</td>
<td>not equal to</td>
</tr>
</tbody>
</table>

\textbf{subject} — Specifies a string used as the subject match criterion.
**regexp** — Specifies the type of string comparison to use to determine if the log event matches the value of `subject` command parameters. When the `regexp` keyword is specified, the string in the `subject` command is a regular expression string that will be matched against the subject string in the log event being filtered. When the `regexp` keyword is not specified, the `subject` command string is matched exactly by the event filter.

### 5.8.2.7 Event Handling System (EHS) Commands

**event-handling**

- **Syntax**: `event-handling`
- **Context**: `config>log`
- **Description**: This command enables the context to configure event handling within the Event Handler System (EHS).

**handler**

- **Syntax**: `[no] handler event-handler-name`
- **Context**: `config>log>event-handling`
- **Description**: This command configures an EHS handler. The **no** form of the command removes the specified EHS handler.
- **Parameters**:
  
  - `event-handler-name` — Specifies the name of the EHS handler. Can be up to 32 characters maximum.

**action-list**

- **Syntax**: `action-list`
- **Context**: `config>log>event-handling>handler`
- **Description**: This command enables the context to configure the EHS handler action list.

**entry**

- **Syntax**: `[no] entry entry-id`
Context config>log>event-handling>handler>action-list

Description This command configures an EHS handler action-list entry. A handler can have multiple actions where each action, for example, could request the execution of a different script. When the handler is triggered it will walk through the list of configured actions.

The no form of the command removes the specified EHS handler action-list entry.

Parameters entry-id — Specifies the identifier of the EHS handler entry.

  Values 1 to 1500

min-delay

Syntax min-delay [delay]
no min-delay

Context config>log>event-handling>handler>action-list>entry

Description This command specifies the minimum delay in seconds between subsequent executions of the action specified in this entry. This is useful, for example, to ensure that a script doesn't get triggered to execute too often.

Default no min-delay

Parameters delay — Specifies the unit in seconds.

  Values 1 to 604800

script-policy

Syntax script-policy policy-name [owner policy-owner]
no script-policy

Context config>log>event-handling>handler>action-list>entry

Description This command configures the script policy parameters to use for this EHS handler action-list entry. The associated script is launched when the handler is triggered.

Default no script policy

Parameters policy-name — Specifies the script policy name. Can be up to 32 characters maximum.

  owner policy-owner — Specifies the script policy owner. Can be up to 32 characters maximum.

  Default “TiMOS CLI”
### 5.8.2.8 Event Trigger Commands

**event-trigger**

**Syntax**
```
event-trigger
```

**Context**
```
config>log
```

**Description**
This command enables the context to configure log events as triggers for Event Handling System (EHS) handlers.

**event**

**Syntax**
```
[no] event application-id event-name-id
```

**Context**
```
config>log>event-trigger
```

**Description**
This command configures a specific log event as a trigger for one or more EHS handlers. Further matching criteria can be applied to only trigger certain handlers with certain instances of the log event.

The no form of the command removes the specified trigger event.

**Parameters**
- **application-id** — Specifies the type of application that triggers the event.
  - **Values**: application_assurance, aps, atm, bgp, calltrace, cflowd, chassis, debug, dhcp, dhcpv6, diameter, dynsvc, efm_oam, elmi, ering, eth_cfm, etun, filter, gsmp, gmp, igh, igmp, igmp_snooping, ip, ipsec, isis, l2tp, lag, ldp, li, lldp, Imp, logger, mmethod, mc_redundancy, mirror, mld, mld_snooping, mpls, mpls_tp, msdp, nat, ntp, oam, open-flow, ospf, pim, pim_snooping, port, ppp, pppoe, radius, rip, rip-ng, route_policy, rsvp, security, snmp, stp, svcmgr, system, user, video, vrrp, vrrt, wlan_gw, wpp
- **event-name-id** — Specifies the name or numerical identifier of the event.
  - **Values**: 0 to 4294967295 | **event-name**: 32 characters max

**trigger-entry**

**Syntax**
```
[no] trigger-entry entry-id
```

**Context**
```
config>log>event-trigger>event
```

**Description**
This command configures an instance of a trigger for an EHS handler. A trigger entry binds a set of matching criteria for a log event to a particular handler. If the log event occurs in the system and matches the criteria configured in the associated log filter then the handler will be executed.
The no form of the command removes the specified trigger entry.

**Parameters**

- **entry-id** — Specifies the identifier of the EHS event trigger entry.
  - **Values** 1 to 1500

**debounce**

**Syntax**

```
debounce occurrences [within seconds]
no debounce
```

**Context**

config>log>event-trigger>event>trigger-entry

**Description**

This command configures when to trigger, for example after one or more event occurrences. The number of occurrences of an event can be bounded by a time window or left open.

**Default**

no debounce

**Parameters**

- **occurrences** — specifies the number of times an event must occur for EHS to trigger a response
  - **Values** 2 to 15
- **within seconds** — specifies the time window within which a specific event must occur a number of times equivalent to the specified occurrences for EHS to trigger a response
  - **Values** 1 to 604800

**event-handler**

**Syntax**

```
{event-handler event-handler}
no event-handler
```

**Context**

config>log>event-trigger>event>trigger-entry

**Description**

This command configures the event handler to be used for this trigger entry.

**Parameters**

- **event-handler** — Specifies the name of the event handler up to 32 characters in length.

**log-filter**

**Syntax**

```
log-filter filter-id
no log-filter
```

**Context**

config>log>event-trigger>event>trigger-entry
### Description
This command configures the log filter to be used for this trigger entry. The log filter defines the matching criteria that must be met in order for the log event to trigger the handler execution. The log filter is applied to the log event and, if the filtering decision results in a ‘forward’ action, then the handler is triggered.

It is typically unnecessary to configure match criteria for ‘application’ or ‘number’ in the log filter used for EHS since the particular filter is only applied for a specific log event application and number, as configured under `config>log>event-trigger`.

### Parameters
- **filter-id** — Specifies the identifier of the filter.
  - **Values** 1 to 1500

### 5.8.2.9 Syslog Commands

#### syslog

**Syntax**

```
[no] syslog syslog-id
```

**Context**

`config>log`

**Description**

This command creates the context to configure a syslog target host that is capable of receiving selected syslog messages from this network element.

A valid `syslog-id` must have the target syslog host address configured.

A maximum of 10 syslog-id’s can be configured.

No log events are sent to a syslog target address until the syslog-id has been configured as the log destination (to) in the log-id node.

The syslog ID configured in the `configure/service/vprn` context has a local VPRN scope and only needs to be unique within the specific VPRN instance. The same ID can be reused under a different VPRN service or in the global log context under `config>log`.

**Parameters**

- **syslog-id** — The syslog ID number for the syslog destination, expressed as a decimal integer.
  - **Values** 1 to 10

#### address

**Syntax**

```
address ip-address
no address
```

**Context**

`config>log>syslog`
Description
This command adds the syslog target host IP address to/from a syslog ID.

This parameter is mandatory. If no **address** is configured, syslog data cannot be forwarded to the syslog target host.

Only one address can be associated with a syslog-id. If multiple addresses are entered, the last address entered overwrites the previous address.

The same syslog target host can be used by multiple log IDs.

The **no** form of the command removes the syslog target host IP address.

Default
no address

Parameters

**ip-address** — Specifies the IP address of the syslog target host in dotted decimal notation. An IPv6-address applies only to the 7750 SR.

**Values**
- **ipv4-address** a.b.c.d
- **ipv6-address** x:x:x:x:x:x:x[-interface]
x:x:x:x:x:d.d.d.d[-interface]
x: [0..FFFF]H
d: [0..255]D

interface: 32 characters maximum, mandatory for link local addresses

ipv6-address x:x:x:x:x:x:x[-interface]
x:x:x:x:x:d.d.d.d[-interface]
x: [0..FFFF]H
d: [0..255]D

interface: 32 characters maximum, mandatory for link local addresses

facility

Syntax

```plaintext
facility syslog-facility
no facility
```

Context

```plaintext
config>log>syslog
```

Description

This command configures the facility code for messages sent to the syslog target host.

Multiple syslog IDs can be created with the same target host but each syslog ID can only have one facility code. If multiple facility codes are entered, the last **facility-code** entered overwrites the previous facility-code.

If multiple facilities need to be generated for a single syslog target host, then multiple **log-id** entries must be created, each with its own filter criteria to select the events to be sent to the syslog target host with a given facility code.
The **no** form of the command reverts to the default value.

**Default**  
facility local7

**Parameters**  
**syslog-facility** — Specifies a syslog facility name which represents a specific numeric facility code. The code must be entered in accordance with the syslog RFC. However, the software does not validate if the facility code configured is appropriate for the event type being sent to the syslog target host.

**Values**  
kernel, user, mail, systemd, auth, syslogd, printer, netnews, uucp, cron, authpriv, ftp, ntp, logaudit, logalert, cron2, local0, local1, local2, local3, local4, local5, local6, local7

Valid responses per RFC3164, *The BSD syslog Protocol*, are listed in Table 77.
### Table 77  Syslog Protocol Valid Responses

<table>
<thead>
<tr>
<th>Numerical Code</th>
<th>Facility Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kernel</td>
</tr>
<tr>
<td>1</td>
<td>user</td>
</tr>
<tr>
<td>2</td>
<td>mail</td>
</tr>
<tr>
<td>3</td>
<td>systemd</td>
</tr>
<tr>
<td>4</td>
<td>auth</td>
</tr>
<tr>
<td>5</td>
<td>syslogd</td>
</tr>
<tr>
<td>6</td>
<td>printer</td>
</tr>
<tr>
<td>7</td>
<td>net-news</td>
</tr>
<tr>
<td>8</td>
<td>uucp</td>
</tr>
<tr>
<td>9</td>
<td>cron</td>
</tr>
<tr>
<td>10</td>
<td>auth-priv</td>
</tr>
<tr>
<td>11</td>
<td>ftp</td>
</tr>
<tr>
<td>12</td>
<td>ntp</td>
</tr>
<tr>
<td>13</td>
<td>log-audit</td>
</tr>
<tr>
<td>14</td>
<td>log-alert</td>
</tr>
<tr>
<td>15</td>
<td>cron2</td>
</tr>
<tr>
<td>16</td>
<td>local0</td>
</tr>
<tr>
<td>17</td>
<td>local1</td>
</tr>
<tr>
<td>18</td>
<td>local2</td>
</tr>
<tr>
<td>19</td>
<td>local3</td>
</tr>
<tr>
<td>20</td>
<td>local4</td>
</tr>
<tr>
<td>21</td>
<td>local5</td>
</tr>
<tr>
<td>22</td>
<td>local6</td>
</tr>
<tr>
<td>23</td>
<td>local7</td>
</tr>
</tbody>
</table>

**Values** 0 to 23
### log-prefix

**Syntax**
```
log-prefix log-prefix-string
no log-prefix
```

**Context**
```
config>log>syslog
```

**Description**
This command adds the string prepended to every syslog message sent to the syslog host.

RFC3164, *The BSD Syslog Protocol*, allows an alphanumeric string (tag) to be prepended to the content of every log message sent to the syslog host. This alphanumeric string can, for example, be used to identify the node that generates the log entry. The software appends a colon (:) and a space to the string and it is inserted in the syslog message after the date stamp and before the syslog message content.

Only one string can be entered. If multiple strings are entered, the last string overwrites the previous string. The alphanumeric string can contain lowercase (a-z), uppercase (A-Z) and numeric (0 to 9) characters.

The no form of the command removes the log prefix string.

**Default**
```
no log-prefix
```

**Parameters**

- `log-prefix-string` — Specifies an alphanumeric string up to 32 characters in length. Spaces and colons (:) cannot be used in the string.

### level

**Syntax**
```
level syslog-level
no level
```

**Context**
```
config>log>syslog
```

**Description**
This command configures the syslog message severity level threshold. All messages with severity level equal to or higher than the threshold are sent to the syslog target host.

Only a single threshold level can be specified. If multiple levels are entered, the last level entered will overwrite the previously entered commands.

The no form of the command reverts to the default value.

**Default**
```
level info
```

**Parameters**

- `value` — Specifies the threshold severity level name.

  **Values**
  
emergency, alert, critical, error, warning, notice, info, debug
### Table 78: Level Parameter Value Descriptions

<table>
<thead>
<tr>
<th>Router severity level</th>
<th>Numerical Severity (highest to lowest)</th>
<th>Configured Severity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>emergency</td>
<td></td>
<td>system is unusable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>alert</td>
<td>action must be taken immediately</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>critical</td>
<td>critical condition</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>error</td>
<td>error condition</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>warning</td>
<td>warning condition</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>notice</td>
<td>normal but significant condition</td>
</tr>
<tr>
<td>1 cleared</td>
<td>6</td>
<td>info</td>
<td>informational messages</td>
</tr>
<tr>
<td>2 indeterminate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>debug</td>
<td>debug-level messages</td>
</tr>
</tbody>
</table>

### port

**Syntax**  
`port value`  
`no port`  

**Context**  
`config>log>syslog`  

**Description**  
This command configures the UDP port that will be used to send syslog messages to the syslog target host.

The port configuration is needed if the syslog target host uses a port other than the standard UDP syslog port 514.

Only one port can be configured. If multiple `port` commands are entered, the last entered port overwrites the previously entered ports.

The `no` form of the command reverts to default value.

**Default**  
`no port`

**Parameters**  
`value` — Specifies the value that is the configured UDP port number used when sending syslog messages.

**Values**  
`1 to 65535`
5.8.2.10   SNMP Trap Groups

snmp-trap-group

Syntax  [no] snmp-trap-group log-id

Context  config>log

Description  This command creates the context to configure a group of SNMP trap receivers and their
operational parameters for a given log-id.

A group specifies the types of SNMP traps and specifies the log ID which will receive the
group of SNMP traps. A trap group must be configured in order for SNMP traps to be sent.

To suppress the generation of all alarms and traps see the event-control command. To
suppress alarms and traps that are sent to this log-id, see the filter command. Once alarms
and traps are generated they can be directed to one or more SNMP trap groups. Logger
events that can be forwarded as SNMP traps are always defined on the main event source.

The no form of the command deletes the SNMP trap group.

Default  There are no default SNMP trap groups.

Parameters  log-id — Specifies the log ID value of a log configured in the log-id context. Alarms and
traps cannot be sent to the trap receivers until a valid log-id exists.

   Values   1 to 99

trap-target

Syntax  trap-target name [address ip-address] [port port] [snmpv1 | snmpv2c | snmpv3] notify-
community communityName | snmpv3SecurityName [security-level {no-auth-no-
privacy | auth-no-privacy | privacy}] [replay]

no trap-target name

Context  config>log>snmp-trap-group

Description  This command configures a trap receiver and configures the operational parameters for the
trap receiver. A trap reports significant events that occur on a network device such as errors
or failures.

Before an SNMP trap can be issued to a trap receiver, the log-id, snmp-trap-group and at
least one trap-target must be configured.

The trap-target command is used to add/remove a trap receiver from an snmp-trap-group.
The operational parameters specified in the command include:

  • The IP address of the trap receiver
• The UDP port used to send the SNMP trap
• SNMP version
• SNMP community name for SNMPv1 and SNMPv2c receivers.
• Security name and level for SNMPv3 trap receivers.

A single `snmp-trap-group log-id` can have multiple trap-receivers. Each trap receiver can have different operational parameters.

An address can be configured as a trap receiver more than once as long as a different port is used for each instance.

To prevent resource limitations, only configure a maximum of 10 trap receivers.

**Note:** If the same `trap-target name port` parameter value is specified in more than one SNMP trap group, each trap destination should be configured with a different `notify-community` value. This allows a trap receiving an application, such as NMS, to reconcile a separate event sequence number stream for each router event log when multiple event logs are directed to the same IP address and port destination.

The **no** form of the command removes the SNMP trap receiver from the SNMP trap group.

**Default**

No SNMP trap targets are defined.

**Parameters**

- `name` — Specifies the name of the trap target up to 28 characters in length.
- `ip-address` — Specifies the IP address of the trap receiver in dotted decimal notation.

Only one IP address destination can be specified per trap destination group. `ipv6` applies to the 7750 SR only.

**Values**

- `ipv4-address` a.b.c.d (host bits must be 0)
- `ipv6-address` x:x::x:x::x::x::x:[interface]
  x:x::x::x::d.d.d::interface
t: [0..FFFF]H
d: [0..255]D
interface: 32 characters maximum, mandatory for link local addresses

- `port` — Specifies the destination UDP port used for sending traps to the destination, expressed as a decimal integer. Only one port can be specified per `trap-target` statement. If multiple traps need to be issued to the same address then multiple ports must be configured.

**Default**

162

**Values**

1 to 65535
snmpv1 | snmpv2c | snmpv3 — Specifies the SNMP version format to use for traps sent to the trap receiver.

The keyword snmpv1 selects the SNMP version 1 format. When specifying snmpv1, the notify-community must be configured for the proper SNMP community string that the trap receiver expects to be present in alarms and traps messages. If the SNMP version is changed from snmpv3 to snmpv1, then the notify-community parameter must be changed to reflect the community string rather than the security-name that is used by snmpv3.

The keyword snmpv2c selects the SNMP version 2c format. When specifying snmpv2c, the notify-community must be configured for the proper SNMP community string that the trap receiver expects to be present in alarms and traps messages. If the SNMP version is changed from snmpv3 to snmpv2c, then the notify-community parameter must be changed to reflect the community string rather than the security-name that is used by snmpv3.

The keyword snmpv3 selects the SNMP version 3 format. When specifying snmpv3, the notify-community must be configured for the SNMP security-name. If the SNMP version is changed from snmpv1 or snmpv2c to snmpv3, then the notify-community parameter must be changed to reflect the security-name rather than the community string used by snmpv1 or snmpv2c.

Pre-existing conditions are checked before the snmpv3SecurityName is accepted. These are:

- The user name must be configured.
- The v3 access group must be configured.
- The v3 notification view must be configured.

Default: snmpv3

Values: snmpv1, snmpv2c, snmpv3

community | security-name — Specifies the community string for snmpv1 or snmpv2c or the snmpv3 security-name. If the notify-community is not configured, then no alarms or traps will be issued for the trap destination. If the SNMP version is modified, the notify-community must be changed to the proper form for the SNMP version.

community-name — Specifies the community string as required by the snmpv1 or snmpv2c trap receiver. The community string can be an ASCII string up to 31 characters in length.

security-name — Specifies the security-name as defined in the config>system> security>user context for SNMP v3. The security-name can be an ASCII string up to 31 characters in length.

security-level {no-auth-no-privacy | auth-no-privacy | privacy} — Specifies the required authentication and privacy levels required to access the views configured on this node when configuring an snmpv3 trap receiver.

The keyword no-auth-no-privacy specifies no authentication and no privacy (encryption) are required.

The keyword auth-no-privacy specifies authentication is required but no privacy (encryption) is required. When this option is configured the security-name must be configured for authentication.
The keyword **privacy** specifies both authentication and privacy (encryption) is required. When this option is configured the **security-name** must be configured for **authentication** and **privacy**.

**Default** **no-auth-no-privacy**. This parameter can only be configured if SNMPv3 is also configured.

**Values** **no-auth-no-privacy, auth-no-privacy, privacy**

**replay** — Enables the replay of missed events to target. If replay is applied to an SNMP trap target address, the address is monitored for reachability. Reachability is determined by whether or not there is a route in the routing table by which the target address can be reached. Before sending a trap to a target address, the SNMP module asks the PIP module if there is either an in-band or out-of-band route to the target address. If there is no route to the SNMP target address, the SNMP module saves the sequence-id of the first event that will be missed by the trap target. When the routing table changes again so that there is now a route by which the SNMP target address can be reached, the SNMP module replays (for example, retransmits) all events generated to the SNMP notification log while the target address was removed from the route table.

**Note:** Due to route table change convergence time, it is possible that one or more events may be lost at the beginning or end of a replay sequence. The cold-start-wait and route-recovery-wait timers under the **config>log>app-route-notifications** context can help reduce the probability of lost events.

**filter**

**Syntax**

```
filter filter-id
no filter
```

**Context**

```
config>log>log-id log-id
```

**Description**

This command adds an event filter policy with the log destination.

The **filter** command is optional. If an event filter is not configured, all events, alarms and traps generated by the source stream will be forwarded to the destination.

An event filter policy defines (limits) the events that are forwarded to the destination configured in the log-id. The event filter policy can also be used to select the alarms and traps to be forwarded to a destination **snmp-trap-group**.

The application of filters for debug messages is limited to application and subject only.

Accounting records cannot be filtered using the **filter** command.

Only one filter ID can be configured per log destination.

The **no** form of the command removes the specified event filter from the **log-id**.
Event and Accounting Logs

**Default**

No filter

**Parameters**

`filter-id` — Specifies the event filter policy ID is used to associate the filter with the `log-id` configuration. The event filter policy ID must already be defined in `config>log>filter filter-id`.

- **Values**: `1 to 1000`

**from**

**Syntax**

```
from ([main] [security] [change] [debug-trace])
```

**No from**

**Context**

`config>log>log-id log-id`

**Description**

This command selects the source stream to be sent to a log destination.

One or more source streams must be specified. The source of the data stream must be identified using the `from` command before you can configure the destination using the `to` command. The `from` command can identify multiple source streams in a single statement (for example: `from main change debug-trace`).

Only one `from` command may be entered for a single `log-id`. If multiple `from` commands are configured, then the last command entered overwrites the previous `from` command.

The `no` form of the command removes all previously configured source streams.

- **Default**
  - No from

**Parameters**

`main` — Instructs all events in the main event stream to be sent to the destination defined in the `to` command for this destination `log-id`. The main event stream contains the events that are not explicitly directed to any other event stream. To limit the events forwarded to the destination, configure filters using the `filter` command.

`security` — Instructs all events in the security event stream to be sent to the destination defined in the `to` command for this destination `log-id`. The security stream contains all events that affect attempts to breach system security such as failed login attempts, attempts to access MIB tables to which the user is not granted access or attempts to enter a branch of the CLI to which access has not been granted. To limit the events forwarded to the destination, configure filters using the `filter` command.

`change` — Instructs all events in the user activity stream to be sent to the destination configured in the `to` command for this destination `log-id`. The change event stream contains all events that directly affect the configuration or operation of this node. To limit the events forwarded to the change stream destination, configure filters using the `filter` command.

`debug-trace` — Instructs all debug-trace messages in the debug stream to be sent to the destination configured in the `to` command for this destination `log-id`. Filters applied to debug messages are limited to application and subject.
**log-id**

**Syntax**

```plaintext
[no] log-id log-id
```

**Context**

config>log

**Description**

This command creates a context to configure destinations for event streams.

The `log-id` context is used to direct events, alarms/traps, and debug information to respective destinations.

A maximum of 15 logs can be configured.

Before an event can be associated with this log-id, the `from` command identifying the source of the event must be configured.

Only one destination can be specified for a `log-id`. The destination of an event stream can be an in-memory buffer, console, session, snmp-trap-group, syslog, or file.

Use the `event-control` command to suppress the generation of events, alarms, and traps for all log destinations.

An event filter policy can be applied in the log-id context to limit which events, alarms, and traps are sent to the specified log-id.

Log-IDs 99 and 100 are created by the agent. Log-ID 99 captures all log messages. Log-ID 100 captures log messages with a severity level of major and above.

**Note:** Log-ID 99 provides valuable information for the admin-tech file. Removing or changing the log configuration may hinder debugging capabilities. It is strongly recommended not to alter the configuration for Log-ID 99.

The `no` form of the command deletes the log destination ID from the configuration.

**Default**

no log-id

**Parameters**

`log-id` — Specifies log ID number, expressed as a decimal integer.

**Values**

1 to 100

**to console**

**Syntax**

```plaintext
to console
```

**Context**

config>log>log-id

**Description**

This command specifies a log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the events selected for the log ID to be directed to the console. If the console is not connected, then all the entries are dropped.
The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

**Default** No destination is specified.

**to file**

**Syntax** to file log-file-id

**Context** config>log>log-id

**Description** This command specifies a log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the events selected for the log ID to be directed to a specified file.

The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

When the **file-id** location parameter is modified, log files are not written to the new location until a rollover occurs or the log is manually cleared. A rollover can be forced by using the **clear>log** command. Subsequent log entries are then written to the new location. If a rollover does not occur or the log not cleared, the old location remains in effect.

**Default** No destination is specified.

**Parameters**

- **log-file-id** — Instructs the events selected for the log ID to be directed to the log-file-id. The characteristics of the log-file-id referenced here must have already been defined in the **config>log>file log-file-id context**.

  **Values** 1 to 99

**to memory**

**Syntax** to memory [size]

**Context** config>log>log-id

**Description** This command specifies a log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the events selected for the log ID to be directed to a memory log. A memory file is a circular buffer. Once the file is full, each new entry replaces the oldest entry in the log.
The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

**Default**

- **to memory 100**

**Parameters**

- **size** — Indicates the number of events that can be stored in the memory.
  
    **Default** 100

    **Values** 50 to 3000

---

### to session

**Syntax**

```
to session
```

**Context**

`config>log>log-id`

**Description**

This command specifies a log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the events selected for the log ID to be directed to the current console or telnet session. This command is only valid for the duration of the session. When the session is terminated the “to session” configuration is removed. A log ID with a **session** destination is saved in the configuration file but the “to session” part is not stored.

The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

**Default** none

---

### to snmp

**Syntax**

```
to snmp [size]
```

**Context**

`config>log>log-id`

**Description**

This is one of the commands used to specify the log ID destination. This parameter is mandatory when configuring a log destination. This command instructs the alarms and traps to be directed to the **snmp-trap-group** associated with **log-id**.

A local circular memory log is always maintained for SNMP notifications sent to the specified snmp-trap-group for the **log-id**.

The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.
The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

**Default**  
`to snmp 100`

**Parameters**  
`size` — Specifies the number of events stored in this memory log.  
  
  **Values**  
  50 to 3000  

**to syslog**

**Syntax**  
`to syslog syslog-id`

**Context**  
`config>log>log-id`

**Description**  
This is one of the commands used to specify the log ID destination. This parameter is mandatory when configuring a log destination.

This command instructs the alarms and traps to be directed to a specified syslog. To remain consistent with the standards governing syslog, messages to syslog are truncated to 1k bytes.

The source of the data stream must be specified in the **from** command prior to configuring the destination with the **to** command.

The **to** command cannot be modified or re-entered. If the destination or maximum size of an SNMP or memory log needs to be modified, the log ID must be removed and then re-created.

**Default**  
none

**Parameters**  
`syslog-id` — Instructs the events selected for the log ID to be directed to the `syslog-id`.  
  
  The characteristics of the `syslog-id` referenced here must have been defined in the `config>log>syslog syslog-id` context.  
  
  **Values**  
  1 to 10

**python-policy**

**Syntax**  
`python-policy policy-name`

`no python-policy`

**Context**  
`config>log>log-id`

**Description**  
This command associates the Python script with the events sent to this log ID. The Python policy can be associated with the log only if the destination in the log ID is set **to syslog**.

For information about Python policy configuration, refer to the Python Script Support for ESM in the *7450 ESS and 7750 SR Triple Play Guide*.
The no form of this command disables Python processing of the events in this log ID.

Default: no python-policy

Parameters:
- policy-name — Specifies a Python policy name up to 32 characters in length

**time-format**

- **Syntax**: time-format {local | utc}
- **Context**: config>log>log-id
- **Description**: This command specifies whether the time should be displayed in local or Coordinated Universal Time (UTC) format.
- **Default**: utc
- **Parameters**:
  - local — Specifies that timestamps are written in the system’s local time.
  - utc — Specifies that timestamps are written using the UTC value. This was formerly called Greenwich Mean Time (GMT) and Zulu time.

### 5.8.2.11 Accounting Policy Commands

**accounting-policy**

- **Syntax**: accounting-policy policy-id [interval minutes]
  - no accounting-policy policy-id
- **Context**: config>log
- **Description**: This command creates an access or network accounting policy. An accounting policy defines the accounting records that are created.

Access accounting policies are policies that can be applied to one or more SAPs. Changes made to an existing policy, using any of the sub-commands, are applied immediately to all SAPs where this policy is applied.

If an accounting policy is not specified on a SAP, then accounting records are produced in accordance with the access policy designated as the default. If a default access policy is not specified, then no accounting records are collected other than the records for the accounting policies that are explicitly configured.

Only one policy can be regarded as the default access policy. If a policy is configured as the default policy, then a no default command must be used to allow the data that is currently being collected to be written before a new access default policy can be configured.
Network accounting policies are policies that can be applied to one or more network ports or SONET/SDH channels. Any changes made to an existing policy, using any of the subcommands, will be applied immediately to all network ports or SONET/SDH channels where this policy is applied.

If no accounting policy is defined on a network port, accounting records will be produced in accordance with the default network policy as designated with the default command. If no network default policy is created, then no accounting records will be collected other than the records for the accounting policies explicitly configured. Default accounting policies cannot be explicitly applied. For example, for accounting-policy 10, if default is set, then that policy cannot be used:

*A:75>config>service>vpl>spoke-sdp# accounting-policy 10

Only one policy can be regarded as the default network policy. If a policy is configured as the default policy, then a no default command must be used to allow the data that is currently being collected to be written before a new network default policy can be configured.

The no form of the command deletes the policy from the configuration. The accounting policy cannot be removed unless it is removed from all the SAPs, network ports or channels where the policy is applied.

**Default**

No default accounting policy is defined.

**Parameters**

- policy-id — The policy ID that uniquely identifies the accounting policy, expressed as a decimal integer.

  **Values**

  1 to 99

**collection-interval**

**Syntax**

collection-interval minutes

no collection-interval

**Context**

config>log>accounting-policy

**Description**

This command configures the accounting collection interval.

**Parameters**

- minutes — Specifies the interval between collections, in minutes.

  **Values**

  1 to 120

  A range of 1 to 4 is only allowed when the record type is set to SAA.

**auto-bandwidth**

**Syntax**

[no] auto-bandwidth

**Context**

config>log>accounting-policy
**Description**
In the configuration of an accounting policy this designates the accounting policy as the one used for auto-bandwidth statistics collection.

**Default**
no auto-bandwidth

### default

**Syntax**
[no] default

**Context**
config>log>accounting-policy

**Description**
This command configures the default accounting policy to be used with all SAPs that do not have an accounting policy.

If no access accounting policy is defined on a SAP, accounting records are produced in accordance with the default access policy. If no default access policy is created, then no accounting records will be collected other than the records for the accounting policies that are explicitly configured.

If no network accounting policy is defined on a network port, accounting records will be produced in accordance with the default network policy. If no network default policy is created, then no accounting records will be collected other than the records for the accounting policies explicitly configured.

Only one access accounting policy ID can be designated as the default access policy. Likewise, only one network accounting policy ID can be designated as the default network accounting policy.

The record name must be specified prior to assigning an accounting policy as default.

If a policy is configured as the default policy, then a **no default** command must be issued before a new default policy can be configured.

The **no** form of the command removes the default policy designation from the policy ID. The accounting policy will be removed from all SAPs or network ports that do not have this policy explicitly defined.

### include-router-info

**Syntax**
[no] include-router-info

**Context**
config>log>accounting-policy

**Description**
This command allows operator to optionally include router information at the top of each accounting file generated for a given accounting policy.

When the no form of this command is selected, the optional router information is not include at the top of the file.
include-system-info

Syntax  [no] include-system-info
Context  config>log>accounting-policy
Description  This command allows the operator to optionally include router information at the top of each accounting file generated for a given accounting policy.

When the no version of this command is selected, optional router information is not included at the top of the file.

Default  no include-system-info

record

Syntax  [no] record record-name
Context  config>log>accounting-policy
Description  This command adds the accounting record type to the accounting policy to be forwarded to the configured accounting file. A record name can only be used in one accounting policy. To obtain a list of all record types that can be configured, use the show log accounting-records command.

Note: aa, video and subscriber records are not applicable to the 7950 XRS.

A:ALA-49# show log accounting-records
=================================================================================================
Accounting Policy Records
=================================================================================================
<table>
<thead>
<tr>
<th>Record</th>
<th>Record Name</th>
<th>Def. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>service-ingress-octets</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>service-egress-octets</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>service-ingress-packets</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>service-egress-packets</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>network-ingress-octets</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>network-egress-octets</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>network-ingress-packets</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>network-egress-packets</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>compact-service-ingress-octets</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>combined-service-egress</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>combined-network-ing-egr-octets</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>combined-service-ing-egr-octets</td>
<td>5</td>
</tr>
</tbody>
</table>
To configure an accounting policy for access ports, select a service record (for example, service-ingress-octets). To change the record name to another service record then the record command with the new record name can be entered and it will replace the old record name.
When configuring an accounting policy for network ports, a network record should be selected. When changing the record name to another network record, the record command with the new record name can be entered and it will replace the old record name.

If the change required modifies the record from network to service or from service to network, then the old record name must be removed using the no form of this command.

Only one record may be configured in a single accounting policy. For example, if an accounting-policy is configured with a `access-egress-octets` record, in order to change it to `service-ingress-octets`, use the `no record` command under the accounting-policy to remove the old record and then enter the `service-ingress-octets` record.

**Note:** Collecting excessive statistics can adversely affect the CPU utilization and take up large amounts of storage space.

The no form of the command removes the record type from the policy.

**Default**

no record

**Parameters**

`record-name` — Specifies the accounting record name. Table 79 lists the accounting record names available and the default collection interval.

| Table 79 Default Collection Interval for Accounting Records |
|---------------------------------|-----------------|----------------|
| Record Type | Accounting Record Name | Default Interval |
| 1            | service-ingress-octets | 5              |
| 2            | service-egress-octets  | 5              |
| 3            | service-ingress-packets| 5              |
| 4            | service-egress-packets | 5              |
| 5            | network-ingress-octets | 15             |
| 6            | network-egress-octets  | 15             |
| 7            | network-ingress-packets| 15             |
| 8            | network-egress-packets | 15             |
| 9            | compact-service-ingress-octets | 5 |
| 10           | combined-service-ingress | 5        |
| 11           | combined-network-ing-egr-octets | 15 |
| 12           | combined-service-ing-egr-octets | 5 |
| 13           | complete-service-ingress-egress | 5 |

**Default**

no record

**Parameters**

`record-name` — Specifies the accounting record name. Table 79 lists the accounting record names available and the default collection interval.
### Table 79  Default Collection Interval for Accounting Records (Continued)

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Accounting Record Name</th>
<th>Default Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>combined-sdp-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>complete-sdp-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>complete-subscriber-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>aa-protocol</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>aa-application</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>aa-app-group</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>aa-subscriber-protocol</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>aa-subscriber-application</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>custom-record-subscriber</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>custom-record-service</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>custom-record-service</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>custom-record-aa-sub</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>queue-group-octets</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>queue-group-packets</td>
<td>15</td>
</tr>
<tr>
<td>28</td>
<td>combined-queue-group</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>combined-mpls-lsp-ingress</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>combined-mpls-lsp-egress</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>combined-ldp-lsp-egress</td>
<td>5</td>
</tr>
<tr>
<td>32</td>
<td>saa</td>
<td>5</td>
</tr>
<tr>
<td>33</td>
<td>complete-pm</td>
<td>5</td>
</tr>
<tr>
<td>34</td>
<td>video</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>kpi-system</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>kpi-bearer-mgmt</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>kpi-bearer-traffic</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>kpi-ref-point</td>
<td>5</td>
</tr>
<tr>
<td>39</td>
<td>kpi-path-mgmt</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>kpi-iom-3</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>kci-system</td>
<td>5</td>
</tr>
</tbody>
</table>
**Syntax**  
`to file file-id`

**Context**  
`config>log>accounting-policy`

**Description**  
This command specifies the destination for the accounting records selected for the accounting policy.

**Default**  
No destination is specified.

**Parameters**  
`file-id` — Specifies the destination for the accounting records selected for this destination.

- The characteristics of the file ID must have already been defined in the `config>log>file` context. A file ID can only be used once.
- The file is generated when the file policy is referenced. This command identifies the type of accounting file to be created. The file definition defines its characteristics.
- If the `to` command is executed while the accounting policy is in operation, then it becomes active during the next collection interval.

**Values**  
1 to 99

---

**Table 79**  
Default Collection Interval for Accounting Records (Continued)

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Accounting Record Name</th>
<th>Default Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>kci-bearer-mgmt</td>
<td>5</td>
</tr>
<tr>
<td>43</td>
<td>kci-path-mgmt</td>
<td>5</td>
</tr>
<tr>
<td>44</td>
<td>complete-kpi</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>complete-kci</td>
<td>5</td>
</tr>
<tr>
<td>46</td>
<td>kpi-bearer-group</td>
<td>5</td>
</tr>
<tr>
<td>47</td>
<td>kpi-ref-path-group</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>kpi-kci-bearer-mgmt</td>
<td>5</td>
</tr>
<tr>
<td>49</td>
<td>kpi-kci-path-mgmt</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>kpi-kci-system</td>
<td>5</td>
</tr>
<tr>
<td>51</td>
<td>complete-kpi-kci</td>
<td>5</td>
</tr>
<tr>
<td>52</td>
<td>aa-performance</td>
<td>15</td>
</tr>
<tr>
<td>53</td>
<td>complete-ethernet-port</td>
<td>15</td>
</tr>
<tr>
<td>54</td>
<td>extended-service-ingress-egress</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>complete-network-ing-egr</td>
<td>15</td>
</tr>
</tbody>
</table>
5.8.2.11.1 Accounting Policy Custom Record Commands

collection-interval

Syntax  

collection-interval minutes
no collection-interval

Context  
config>log>acct-policy

Description  
This command configures the accounting collection interval.

The no form of the command returns the value to the default.

Default  
collection-interval 5

Parameters  

minutes — Specifies the collection interval in minutes.

Values  
5 to 120

custom-record

Syntax  

[no] custom-record

Context  
config>log>acct-policy

Description  
This command enables the context to configure the layout and setting for a custom accounting record associated with this accounting policy.

The no form of the command reverts the configured values to the defaults.

aa-specific

Syntax  

[no] aa-specific

Context  
config>log>acct-policy>cr

Description  
This command enables the context to configure information for this custom record.

The no form of the command

aa-sub-counters

Syntax  

aa-sub-counters [all]
no aa-sub-counters

Context  
config>log>acct-policy>cr>aa
### Description
This command enables the context to configure subscriber counter information. This command only applies to the 7750 SR.

The **no** form of the command

### Parameters
all — Specifies all counters.

---

**long-duration-flow-count**

### Syntax
`long-duration-flow-count`

### Context
`config>log>acct-policy>cr>aa>aa-sub-cntr`

### Description
This command includes the long duration flow count. This command only applies to the 7750 SR.

The **no** form of the command excludes the long duration flow count in the AA subscriber's custom record.

### Default
no long-duration-flow-count

---

**medium-duration-flow-count**

### Syntax
`[no] medium-duration-flow-count`

### Context
`config>log>acct-policy>cr>aa>aa-sub-cntr`

### Description
This command includes the medium duration flow count in the AA subscriber's custom record. This command only applies to the 7750 SR.

The **no** form of the command excludes the medium duration flow count.

### Default
no medium-duration-flow-count

---

**short-duration-flow-count**

### Syntax
`[no] short-duration-flow-count`

### Context
`config>log>acct-policy>cr>aa>aa-sub-cntr`

### Description
This command includes the short duration flow count in the AA subscriber's custom record. This command only applies to the 7750 SR.

The **no** form of the command excludes the short duration flow count.

### Default
no short-duration-flow-count
total-flow-duration

Syntax  
[no] total-flow-duration

Context  
config>log>acct-policy>cr>aa>aa-sub-cntr

Description  
This command includes the total flow duration flow count in the AA subscriber’s custom record. This command only applies to the 7750 SR.

The **no** form of the command excludes the total flow duration flow count.

---

total-flows-completed-count

Syntax  
[no] total-flows-completed-count

Context  
config>log>acct-policy>cr>aa>aa-sub-cntr

Description  
This command includes the total flows completed count in the AA subscriber’s custom record. This command only applies to the 7750 SR.

The **no** form of the command excludes the total flow duration flow count.

---

from-aa-sub-counters

Syntax  
[no] from-aa-sub-counters

Context  
config>log>acct-policy>cr>aa

Description  
This command enables the context to configure Application Assurance “from subscriber” counter parameters. This command only applies to the 7750 SR.

The **no** form of the command excludes the “from subscriber” count.

---

all

Syntax  
all

Context  
config>log>acct-policy>cr>aa>aa-from-sub-cntr
config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description  
This command include all counters and only applies to the 7750 SR.

---

flows-active-count

Syntax  
[no] flows-active-count
Context config>log>acct-policy>cr>aa>aa-from-sub-cntr
       config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description This command includes the active flow count and only applies to the 7750 SR.

The no form of the command excludes the active flow count in the AA subscriber's custom record.

Default no flows-active-count

flows-admitted-count

Syntax [no] flows-admitted-count

Context config>log>acct-policy>cr>aa>aa-from-sub-cntr
       config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description This command includes the admitted flow count and only applies to the 7750 SR.

The no form of the command excludes the flow's admitted count in the AA subscriber's custom record.

Default no flows-admitted-count

flows-denied-count

Syntax [no] flows-denied-count

Context config>log>acct-policy>cr>aa>aa-from-sub-cntr
       config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description This command includes the flow's denied count in the AA subscriber's custom record and only applies to the 7750 SR.

The no form of the command excludes the flow's denied count.

Default no flows-denied-count

forwarding-class

Syntax [no] forwarding-class

Context config>log>acct-policy>cr>aa>aa-from-sub-cntr
       config>log>acct-policy>cr>aa>aa-to-sub-cntr

Description This command enables the collection of a Forwarding Class bitmap information added to the XML aa-sub and router level accounting records, and only applies to the 7750 SR.
Default  no forwarding-class

max-throughput-octet-count

Syntax  [no] max-throughput-octet-count
Context  config>log>acct-policy>cr>aa>aa-from-sub-cntr
         config>log>acct-policy>cr>aa>aa-to-sub-cntr
Description  This command includes the maximum throughput as measured in the octet count. This command only applies to the 7750 SR.
             The no form of the command excludes the maximum throughput octet count.

max-throughput-packet-count

Syntax  [no] max-throughput-packet-count
Context  config>log>acct-policy>cr>aa>aa-from-sub-cntr
         config>log>acct-policy>cr>aa>aa-to-sub-cntr
Description  This command includes the maximum throughput as measured in the packet count. This command only applies to the 7750 SR.
             The no form of the command excludes the maximum throughput packet count.

max-throughput-timestamp

Syntax  [no] max-throughput-timestamp
Context  config>log>acct-policy>cr>aa>aa-from-sub-cntr
         config>log>acct-policy>cr>aa>aa-to-sub-cntr
Description  This command includes the timestamp of the maximum throughput. This command only applies to the 7750 SR.
             The no form of the command excludes the timestamp.

coctets-admitted-count

Syntax  [no] octets-admitted-count
Context  config>log>acct-policy>cr>aa>aa-from-sub-cntr
         config>log>acct-policy>cr>aa>aa-to-sub-cntr
**octets-denied-count**

- **Syntax**: `[no] octets-denied-count
- **Context**: `config>log>acct-policy>cr>aa>aa-from-sub-cntr
  config>log>acct-policy>cr>aa>aa-to-sub-cntr
- **Description**: This command includes the denied octet count in the AA subscriber's custom record and only applies to the 7750 SR.
  The **no** form of the command excludes the denied octet count.
- **Default**: `no octets-denied-count`

**packets-admitted-count**

- **Syntax**: `[no] packets-admitted-count
- **Context**: `config>log>acct-policy>cr>aa>aa-from-sub-cntr
  config>log>acct-policy>cr>aa>aa-to-sub-cntr
- **Description**: This command includes the admitted packet count in the AA subscriber's custom record and only applies to the 7750 SR.
  The **no** form of the command excludes the admitted packet count.
- **Default**: `no packets-admitted-count`

**packets-denied-count**

- **Syntax**: `[no] packets-denied-count
- **Context**: `config>log>acct-policy>cr>aa>aa-from-sub-cntr
  config>log>acct-policy>cr>aa>aa-to-sub-cntr
- **Description**: This command includes the denied packet count in the AA subscriber's custom record and only applies to the 7750 SR.
  The **no** form of the command excludes the denied packet count.
- **Default**: `no packets-denied-count`
**to-aa-sub-counters**

**Syntax**

```
 to-aa-sub-counters
 no to-aa-sub-counters
```

**Context**

```
 config>log>acct-policy>cr>aa
```

**Description**

This command enables the context to configure Application Assurance “to subscriber” counter parameters and only applies to the 7750 SR.

The `no` form of the command excludes the “to subscriber” count.

**override-counter**

**Syntax**

```
[no] override-counter override-counter-id
```

**Context**

```
 config>log>acct-policy>cr
```

**Description**

This command enables the context to configure override counter (HSMDA) parameters. This command only applies to the 7750 SR.

The `no` form of the command removes the ID from the configuration.

**Parameters**

`override-counter-id` — Specifies the override counter ID.

**Values**

1 to 8

**queue**

**Syntax**

```
[no] queue queue-id
```

**Context**

```
 config>log>acct-policy>cr
```

**Description**

This command specifies the queue-id for which counters will be collected in this custom record. The counters that will be collected are defined in egress and ingress counters.

The `no` form of the command reverts to the default value.

**Parameters**

`queue-id` — Specifies the queue-id for which counters will be collected in this custom record.

**e-counters**

**Syntax**

```
[no] e-counters
```

**Context**

```
 config>log>acct-policy>cr>override-cntr
 config>log>acct-policy>cr>queue
```
config>log>acct-policy>cr>ref-override-cntr
config>log>acct-policy>cr>ref-queue

**Description**
This command configures egress counter parameters for this custom record.
The **no** form of the command reverts to the default value.

**i-counters**

**Syntax**
```
i-counters [all]
no i-counters
```

**Context**
config>log>acct-policy>cr>override-cntr
config>log>acct-policy>cr>ref-override-cntr
config>log>acct-policy>cr>ref-queue

**Description**
This command configures ingress counter parameters for this custom record.
The **no** form of the command

**Parameters**
- **all** — Specifies all ingress counters should be included.

**in-profile-octets-discarded-count**

**Syntax**
```
[no] in-profile-octets-discarded-count
```

**Context**
config>log>acct-policy>cr>oc>e-count
config>log>acct-policy>cr>roc>e-count
config>log>acct-policy>cr>queue>e-count
config>log>acct-policy>cr>ref-queue>e-count

**Description**
This command includes the in-profile octets discarded count.
The **no** form of the command excludes the in-profile octets discarded count.

**in-profile-octets-forwarded-count**

**Syntax**
```
[no] in-profile-octets-forwarded-count
```

**Context**
config>log>acct-policy>cr>oc>e-count
config>log>acct-policy>cr>roc>e-count
config>log>acct-policy>cr>queue>e-count
config>log>acct-policy>cr>ref-queue>e-count

**Description**
This command includes the in-profile octets forwarded count.
The **no** form of the command excludes the in-profile octets forwarded count.
in-profile-packets-discarded-count

Syntax

[no] in-profile-packets-discarded-count

Context

config>log>acct-policy>cr>oc>e-count
config>log>acct-policy>cr>roc>e-count
config>log>acct-policy>cr>queue>e-count
config>log>acct-policy>cr>ref-queue>e-count

Description

This command includes the in-profile packets discarded count.

The no form of the command excludes the in-profile packets discarded count.

in-profile-packets-forwarded-count

Syntax

[no] in-profile-packets-forwarded-count

Context

config>log>acct-policy>cr>oc>e-count
config>log>acct-policy>cr>roc>e-count
config>log>acct-policy>cr>queue>e-count
config>log>acct-policy>cr>ref-queue>e-count

Description

This command includes the in-profile packets forwarded count.

The no form of the command excludes the in-profile packets forwarded count.

out-profile-octets-discarded-count

Syntax

[no] out-profile-octets-discarded-count

Context

config>log>acct-policy>cr>oc>e-count
config>log>acct-policy>cr>roc>e-count
config>log>acct-policy>cr>queue>e-count
config>log>acct-policy>cr>ref-queue>e-count

Description

This command includes the out of profile packets discarded count.

The no form of the command excludes the out of profile packets discarded count.

out-profile-octets-forwarded-count

Syntax

[no] out-profile-octets-forwarded-count

Context

config>log>acct-policy>cr>oc>e-count
config>log>acct-policy>cr>roc>e-count
config>log>acct-policy>cr>queue>e-count
config>log>acct-policy>cr>ref-queue>e-count
Description: This command includes the out of profile octets forwarded count. The `no` form of the command excludes the out of profile octets forwarded count.

### out-profile-packets-discarded-count

**Syntax:** `[no] out-profile-packets-discarded-count`

**Context:**
- `config>log>acct-policy>cr>oc>e-count`
- `config>log>acct-policy>cr>roc>e-count`
- `config>log>acct-policy>cr>queue>e-count`
- `config>log>acct-policy>cr>ref-queue>e-count`

**Description:** This command includes the out of profile packets discarded count. The `no` form of the command excludes the out of profile packets discarded count.

### out-profile-packets-forwarded-count

**Syntax:** `[no] out-profile-packets-forwarded-count`

**Context:**
- `config>log>acct-policy>cr>oc>e-count`
- `config>log>acct-policy>cr>roc>e-count`
- `config>log>acct-policy>cr>queue>e-count`
- `config>log>acct-policy>cr>ref-queue>e-count`

**Description:** This command includes the out of profile packets forwarded count. The `no` form of the command excludes the out of profile packets forwarded count.

### all-octets-offered-count

**Syntax:** `[no] all-octets-offered-count`

**Context:**
- `config>log>acct-policy>cr>oc>i-count`
- `config>log>acct-policy>cr>roc>i-count`
- `config>log>acct-policy>cr>queue>i-count`
- `config>log>acct-policy>cr>ref-queue>i-count`

**Description:** This command includes all octets offered in the count. The `no` form of the command excludes the octets offered in the count.

**Default:** `no all-octets-offered-count`
all-packets-offered-count

Syntax    [no] all-packets-offered-count
Context   config>log>acct-policy>cr>oc>i-count
          config>log>acct-policy>cr>roc>i-count
          config>log>acct-policy>cr>queue>i-count
          config>log>acct-policy>cr>ref-queue>i-count
Description This command includes all packets offered in the count.

The **no** form of the command excludes the packets offered in the count.

Default  no all-packets-offered-count

high-octets-discarded-count

Syntax    [no] high-octets-discarded-count
Context   config>log>acct-policy>cr>oc>i-count
          config>log>acct-policy>cr>roc>i-count
          config>log>acct-policy>cr>queue>i-count
          config>log>acct-policy>cr>ref-queue>i-count
Description This command includes the high octets discarded count.

The **no** form of the command excludes the high octets discarded count.

Default  no high-octets-discarded-count

high-octets-offered-count

Syntax    [no] high-octets-offered-count
Context   config>log>acct-policy>cr>oc>i-count
          config>log>acct-policy>cr>roc>i-count
          config>log>acct-policy>cr>queue>i-count
          config>log>acct-policy>cr>ref-queue>i-count
Description This command includes the high octets offered count.

The **no** form of the command excludes the high octets offered count.

high-packets-discarded-count

Syntax    [no] high-packets-discarded-count
**Context**
- config>log>acct-policy>cr>oc>i-count
- config>log>acct-policy>cr>roc>i-count
- config>log>acct-policy>cr>queue>i-count
- config>log>acct-policy>cr>ref-queue>i-count

**Description**
This command includes the high packets discarded count.

The **no** form of the command excludes the high packets discarded count.

**Default**
no high-packets-discarded-count

---

**Context**
- config>log>acct-policy>cr>oc>i-count
- config>log>acct-policy>cr>roc>i-count
- config>log>acct-policy>cr>queue>i-count
- config>log>acct-policy>cr>ref-queue>i-count

**Description**
This command includes the high packets offered count.

The **no** form of the command excludes the high packets offered count.

**Default**
no high-packets-offered-count

---

**Context**
- config>log>acct-policy>cr>oc>i-count
- config>log>acct-policy>cr>roc>i-count
- config>log>acct-policy>cr>queue>i-count
- config>log>acct-policy>cr>ref-queue>i-count

**Description**
This command includes the in profile octets forwarded count.

The **no** form of the command excludes the in profile octets forwarded count.

**Default**
no in-profile-octets-forwarded-count

---

**Context**
- config>log>acct-policy>cr>oc>i-count
- config>log>acct-policy>cr>roc>i-count

**Description**
This command includes the in profile packets forwarded count.

**Default**
no in-profile-packets-forwarded-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

**Description**
This command includes the in profile packets forwarded count.

The **no** form of the command excludes the in profile packets forwarded count.

**Default**
no in-profile-packets-forwarded-count

---

**low-octets-discarded-count**

**Syntax**

[no] low-octets-discarded-count

**Context**
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

**Description**
This command includes the low octets discarded count.

The **no** form of the command excludes the low octets discarded count.

**Default**
no low-octets-discarded-count

---

**low-packets-discarded-count**

**Syntax**

[no] low-packets-discarded-count

**Context**
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count

**Description**
This command includes the low packets discarded count.

The **no** form of the command excludes the low packets discarded count.

**Default**
no low-packets-discarded-count

---

**low-octets-offered-count**

**Syntax**

[no] low-octets-offered-count

**Context**
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
### Description
This command includes the low octets discarded count.

The **no** form of the command excludes the low octets discarded count.

---

**low-packets-offered-count**

**Syntax**

```
[no] low-packets-offered-count
```

**Context**

```
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
```

**Description**
This command includes the low packets discarded count.

The **no** form of the command excludes the low packets discarded count.

---

**out-profile-octets-forwarded-count**

**Syntax**

```
[no] out-profile-octets-forwarded-count
```

**Context**

```
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
```

**Description**
This command includes the out of profile octets forwarded count.

The **no** form of the command excludes the out of profile octets forwarded count.

**Default**

```
no out-profile-octets-forwarded-count
```

---

**out-profile-packets-forwarded-count**

**Syntax**

```
[no] out-profile-packets-forwarded-count
```

**Context**

```
config>log>acct-policy>cr>oc>i-count
config>log>acct-policy>cr>roc>i-count
config>log>acct-policy>cr>queue>i-count
config>log>acct-policy>cr>ref-queue>i-count
```

**Description**
This command includes the out of profile packets forwarded count.

The **no** form of the command excludes the out of profile packets forwarded count.

**Default**

```
no out-profile-packets-forwarded-count
```
uncoloured-octets-offered-count

Syntax  [no] uncoloured-octets-offered-count
Context  config>log>acct-policy>cr>queue>i-count
         config>log>acct-policy>cr>ref-queue>i-count
Description  This command includes the uncoloured octets offered in the count.
The no form of the command excludes the uncoloured octets offered in the count.

uncoloured-packets-offered-count

Syntax  [no] uncoloured-packets-offered-count
Context  config>log>acct-policy>cr>queue>i-count
         config>log>acct-policy>cr>ref-queue>i-count
Description  This command includes the uncolored packets offered count.
The no form of the command excludes the uncoloured packets offered count.

ref-aa-specific-counter

Syntax  ref-aa-specific-counter any
        no ref-aa-specific-counter
Context  config>log>acct-policy>cr
Description  This command enables the use of significant-change so only those aa-specific records which
              have changed in the last accounting interval are written.
              The no form of the command disables the use of significant-change so all aa-specific records
              are written whether or not they have changed within the last accounting interval.
Parameters  any — Indicates that a record is collected as long as any field records activity when non-
             zero significant-change value is configured.

ref-override-counter

Syntax  ref-override-counter ref-override-counter-id
        ref-override-counter all
        no ref-override-counter
Context  config>log>acct-policy>cr
Description  This command configures a reference override counter.
The `no` form of the command reverts to the default value.

**Default**  
no ref-override-counter

---

**ref-queue**

**Syntax**  
ref-queue queue-id  
ref-queue all  
no ref-queue  

**Context**  
config>log>acct-policy>cr  

**Description**  
This command configures a reference queue.  
The `no` form of the command reverts to the default value.

**Default**  
no ref-queue

---

**significant-change**

**Syntax**  
significant-change delta  
no significant-change  

**Context**  
config>log>acct-policy>cr  

**Description**  
This command configures the significant change required to generate the record.

**Parameters**  
*delta* — Specifies the delta change (significant change) that is required for the custom record to be written to the xml file.

**Values**  
0 to 4294967295 (For custom-record-aa-sub only values 0 or 1 are supported.)
5.9 Log Command Reference

5.9.1 Command Hierarchies

- Show Commands
- Clear Command

5.9.1.1 Show Commands

Refer to the 7450 ESS, 7750 SR, and 7950 XRS Layer 3 Services Guide: Internet Enhanced Services and Virtual Private Routed Network Services for information about log show routines for VPRN services.

```
show
 — log
 — accounting-policy [acct-policy-id] [access | network]
 — accounting-records
 — applications
 — event-control [application-id [event-name | event-number]]
 — event-handling
 — handler [handler-name]
 — handler detail
 — information
 — scripts
 — event-parameters [application-id [event-name | event-number]]
 — file-id [log-file-id]
 — filter-id [filter-id]
 — log-collector
 — log-id [log-id] [severity severity-level] [application application] [sequence from-seq [to-seq]] [count count] [router router-instance [expression] [subject subject] [regexp] [ascending | descending] [message format [msg-regexp]]
 — snmp-trap-group [log-id]
 — syslog [syslog-id]
```

5.9.1.2 Clear Command

```
clear
 — log log-id
 — log
 — log-id log-id
 — event-handling
 — handler event-handler-name
```
5.9.2 Command Descriptions

- Show Commands
- Clear Commands

5.9.2.1 Show Commands

The command output in the following section are examples only; actual displays may differ depending on supported functionality and user configuration.

accounting-policy

Syntax    accounting-policy [acct-policy-id] [access | network]
Context    show>log
Description This command displays accounting policy information.
Parameters policy-id — Specifies the policy ID that uniquely identifies the accounting policy, expressed as a decimal integer.

Values 1 to 99
access — Specifies to only display access accounting policies.

output network — Specifies to only display network accounting policies.

Output The following is an example of accounting policy information.

Table 80 describes accounting policy output fields.

Sample Output

A:ALA-1# show log accounting-policy
==============================================================================
Accounting Policies
==============================================================================
<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Def</th>
<th>Admin Op</th>
<th>Intvl</th>
<th>File Record Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>State</td>
<td>State</td>
<td>Id</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>----------</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>network-ingress-packets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>network-ingress-octets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>complete-service-ingress-egress</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>----------</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>----------</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>

Values 1 to 99
access — Specifies to only display access accounting policies.

network — Specifies to only display network accounting policies.

Output The following is an example of accounting policy information.

Table 80 describes accounting policy output fields.
A:ALA-1#

A:ALA-1# show log accounting-policy 10

Accounting Policies

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Def</th>
<th>Admin Oper</th>
<th>Intvl</th>
<th>File Record Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>State</td>
<td>State</td>
<td>Id</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>access</td>
<td>Yes</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

Description : (Not Specified)

This policy is applied to:
- Svc Id: 100 SAP : 1/1/8:0 Collect-Stats
- Svc Id: 101 SAP : 1/1/8:1 Collect-Stats
- Svc Id: 102 SAP : 1/1/8:2 Collect-Stats
- Svc Id: 103 SAP : 1/1/8:3 Collect-Stats
- Svc Id: 104 SAP : 1/1/8:4 Collect-Stats
- Svc Id: 105 SAP : 1/1/8:5 Collect-Stats
- Svc Id: 106 SAP : 1/1/8:6 Collect-Stats
- Svc Id: 107 SAP : 1/1/8:7 Collect-Stats
- Svc Id: 108 SAP : 1/1/8:8 Collect-Stats
- Svc Id: 109 SAP : 1/1/8:9 Collect-Stats

A:ALA-1#

A:ALA-1# show log accounting-policy network

Accounting Policies

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Def</th>
<th>Admin Oper</th>
<th>Intvl</th>
<th>File Record Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>State</td>
<td>State</td>
<td>Id</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>network</td>
<td>No</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2</td>
<td>network</td>
<td>Yes</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

A:ALA-1#

A:ALA-1# show log accounting-policy access

Accounting Policies

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Def</th>
<th>Admin Oper</th>
<th>Intvl</th>
<th>File Record Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>State</td>
<td>State</td>
<td>Id</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>access</td>
<td>Yes</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

A:ALA-1#
### Table 80 Show Accounting Policy Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy ID</td>
<td>The identifying value assigned to a specific policy.</td>
</tr>
<tr>
<td>Type</td>
<td>Identifies accounting record type forwarded to the configured accounting file. Access — Indicates that the policy is an access accounting policy.</td>
</tr>
<tr>
<td></td>
<td>Network — Indicates that the policy is a network accounting policy.</td>
</tr>
<tr>
<td></td>
<td>None — Indicates no accounting record types assigned.</td>
</tr>
<tr>
<td>Def</td>
<td>Yes — Indicates that the policy is a default access or network policy. Up — Indicates that the policy is administratively enabled.</td>
</tr>
<tr>
<td></td>
<td>No — Indicates that the policy is not a default access or network policy. Down — Indicates that the policy is administratively disabled.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative state of the policy. Up — Indicates that the policy is administratively enabled. Down — Indicates that the policy is administratively disabled.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state of the policy. Up — Indicates that the policy is operationally up. Down — Indicates that the policy is operationally down.</td>
</tr>
<tr>
<td>Intvl</td>
<td>Displays the interval, in minutes, in which statistics are collected and written to their destination. The default depends on the record name type.</td>
</tr>
<tr>
<td>File ID</td>
<td>The log destination.</td>
</tr>
<tr>
<td>Record Name</td>
<td>The accounting record name which represents the configured record type.</td>
</tr>
<tr>
<td>This policy is applied to</td>
<td>Specifies the entity where the accounting policy is applied.</td>
</tr>
</tbody>
</table>

---

**accounting-records**

**Syntax**

accounting-records

**Context**

show>log

**Description**

This command displays accounting policy record names.

**Output**

Accounting Records Output
Table 81 describes accounting records output fields.

**Table 81  Accounting Policy Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record #</td>
<td>The record ID that uniquely identifies the accounting policy, expressed as a decimal integer.</td>
</tr>
<tr>
<td>Record Name</td>
<td>The accounting record name.</td>
</tr>
<tr>
<td>Def. Interval</td>
<td>The default interval, in minutes, in which statistics are collected and written to their destination.</td>
</tr>
</tbody>
</table>

**Sample Output**

Note: aa, video and subscriber records are not applicable to the 7950 XRS.

```
A:ALA-1# show log accounting-records
==
Accounting Policy Records
==
Record # Record Name Def. Interval
1 service-ingress-octets 5
2 service-egress-octets 5
3 service-ingress-packets 5
4 service-egress-packets 5
5 network-ingress-octets 15
6 network-egress-octets 15
7 network-ingress-packets 15
8 network-egress-packets 15
9 compact-service-ingress-octets 5
10 combined-service-ingress 5
11 combined-network-ing-egr-octets 15
12 combined-service-ing-eegr-octets 5
13 complete-service-ingress-eegr 5
14 combined-sdp-ingress-eegr 5
15 complete-sdp-ingress-eegr 5
16 complete-subscriber-ingress-eegr 5
17 aa-protocol 15
18 aa-application 15
19 aa-app-group 15
20 aa-subscriber-protocol 15
21 aa-subscriber-application 15
22 aa-subscriber-app-group 15
```

A:ALA-1#
applications

Syntax  applications
Context  show>log
Description  This command displays a list of all application names that can be used in event-control and filter commands.

Output  The following is an example of log application information.

Sample Output

*A:7950 XRS-20# show log applications
===================================
Log Event Application Names
===================================
Application Name
-----------------------------------
BGP
...
CHASSIS
...
IGMP
...
LDP
LI
...
MIRROR
...
MPLS
...
OSPF
PIM
...
PORT
...
SYSTEM
...
USER
...
VRTR
...
===================================
A:ALA-1#

event-control

Syntax  event-control [application [event-name | event-number]]
Context  show>log
Description  This command displays event control settings for events including whether the event is suppressed or generated and the severity level for the event.
If no options are specified all events, alarms and traps are listed.

**Parameters**

*application-id* — Only displays event control for the specified application.

**Default**
All applications.

**Values**
bgp, cflowd, chassis, debug, igmp, lldp, mirror, ospf, pim, port, snmp, system, user, vrtr

*event-name* — Only displays event control for the named application event.

**Default**
All events for the application.

*event-number* — Only displays event control for the specified application event number.

**Default**
All events for the application.

**Output**
The following is an example of event control information.

Table 82 describes the output fields for the event control.

**Table 82**  Event-Control Output Field Descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>The application name.</td>
</tr>
<tr>
<td>ID#</td>
<td>The event ID number within the application.</td>
</tr>
<tr>
<td>L ID#</td>
<td>An &quot;L&quot; in front of an ID represents event types that do not generate an associated SNMP notification. Most events do generate a notification, only the exceptions are marked with a preceding “L”.</td>
</tr>
<tr>
<td>Event Name</td>
<td>The event name.</td>
</tr>
<tr>
<td>P</td>
<td>CL — The event has a cleared severity or priority.</td>
</tr>
<tr>
<td></td>
<td>CR — The event has critical severity or priority.</td>
</tr>
<tr>
<td></td>
<td>IN — The event has indeterminate severity or priority.</td>
</tr>
<tr>
<td></td>
<td>MA — The event has major severity or priority.</td>
</tr>
<tr>
<td></td>
<td>MI — The event has minor severity or priority.</td>
</tr>
<tr>
<td></td>
<td>WA — The event has warning severity or priority.</td>
</tr>
<tr>
<td>g/s</td>
<td>gen — The event will be generated or logged by event control.</td>
</tr>
<tr>
<td></td>
<td>sup — The event will be suppressed or dropped by event control.</td>
</tr>
<tr>
<td></td>
<td>thr — Specifies that throttling is enabled.</td>
</tr>
<tr>
<td>Logged</td>
<td>The number of events logged or generated.</td>
</tr>
<tr>
<td>Dropped</td>
<td>The number of events dropped/suppressed.</td>
</tr>
</tbody>
</table>
Sample Output

The following is a sample output:

```
A:gal171# show log event-control
```

<table>
<thead>
<tr>
<th>Application</th>
<th>ID#</th>
<th>Event Name</th>
<th>P</th>
<th>g/s</th>
<th>Logged</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP:</td>
<td>2001</td>
<td>bgpEstablished</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>bgpBackwardTransition</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>tBgpMaxPrefix90</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>tBgpMaxPrefix100</td>
<td>CR</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2005</td>
<td>sendNotification</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2006</td>
<td>receiveNotification</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2007</td>
<td>bgpInterfaceDown</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2008</td>
<td>bgpConnNoKA</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2009</td>
<td>bgpConnNoOpenRcvd</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2010</td>
<td>bgpRejectConnBadLocAddr</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2011</td>
<td>bgpRemoteEndClosedConn</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2012</td>
<td>bgpPeerNotFound</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2013</td>
<td>bgpConnMgrTerminated</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2014</td>
<td>bgpTerminated</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2015</td>
<td>bgpNoMemoryPeer</td>
<td>CR</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2016</td>
<td>bgpVariableRangeViolation</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2017</td>
<td>bgpCfgViol</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CFLOWD:</td>
<td>2001</td>
<td>cflowdCreated</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>cflowdCreateFailure</td>
<td>MA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>cflowdDeleted</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>cflowdStateChanged</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>cflowdCleared</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>cflowdFlowCreateFailure</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>cflowdFlowFlushFailure</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>cflowdFlowUnsuppProto</td>
<td>MI</td>
<td>sup</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CCAG:</td>
<td>2001</td>
<td>cardFailure</td>
<td>MA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHASSIS:</td>
<td>2002</td>
<td>cardInserted</td>
<td>MI</td>
<td>gen</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>cardRemoved</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>cardWrong</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>EnvTemperatureTooHigh</td>
<td>MA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEBUG:</td>
<td>L 2001</td>
<td>traceEvent</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DOT1X:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILTER:</td>
<td>2001</td>
<td>filterPBRPacketsDropped</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IGMP:</td>
<td>2001</td>
<td>vRtrIgmpIfRxQueryVerMismatch</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>vRtrIgmpIfCModeRxQueryMismatch</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IGMP_SNOOping:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP:</td>
<td>L 2001</td>
<td>clearRTMError</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2002</td>
<td>ipEtherBroadcast</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L 2003</td>
<td>ipDuplicateAddress</td>
<td>MI</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Event and Accounting Logs

**Event and Accounting Logs**

**Issue:** 01 3HE 11979 AAAB TQZZA 01 601

**L 2004** ipArpInfoOverwritten MI gen 0 0

**L 2005** fibAddFailed MA gen 0 0

**L 2006** qosNetworkPolicyMallocFailed MA gen 0 0

**L 2007** ipArpBadInterface MI gen 0 0

**L 2008** ipArpDuplicateIpAddress MI gen 0 0

**L 2009** ipArpDuplicateMacAddress MI gen 0 0

**ISIS:**

2001 vRtrIsisDatabaseOverload WA gen 0 0
2002 vRtrIsisManualAddressDrops WA gen 0 0
2003 vRtrIsisCorruptedLSPDetected WA gen 0 0
2004 vRtrIsisMaxSeqExceedAttempt WA gen 0 0
2005 vRtrIsisIDLenMismatch WA gen 0 0
2006 vRtrIsisMaxAreaAddrsMismatch WA gen 0 0

**USER:**

L 2001 cli_user_login MI gen 2 0
L 2002 cli_user_logout MI gen 1 0
L 2003 cli_user_login_failed MI gen 0 0
L 2004 cli_user_login_max_attempts MI gen 0 0
L 2005 ftp_user_login MI gen 0 0
L 2006 ftp_user_logout MI gen 0 0
L 2007 ftp_user_login_failed MI gen 0 0
L 2008 ftp_user_login_max_attempts MI gen 0 0
L 2009 cli_user_io MI sup 0 48
L 2010 snmp_user_set MI sup 0 0
L 2011 cli_config_io MI gen 4357 0

**VRRP:**

2001 vrrpTrapNewMaster MI gen 0 0
2002 vrrpTrapAuthFailure MI gen 0 0
2003 tmnxVrrpIPListMismatch MI gen 0 0
2004 tmnxVrrpIPListMismatchClear MI gen 0 0
2005 tmnxVrrpMultipleOwners MI gen 0 0
2006 tmnxVrrpBecameBackup MI gen 0 0
L 2007 vrrpPacketDiscarded MI gen 0 0

**VRTR:**

2001 tmnxVRtrMidRouteTCA MI gen 0 0
2002 tmnxVRtrHighRouteTCA MI gen 0 0
2003 tmnxVRtrHighRouteCleared MI gen 0 0
2004 tmnxVRtrIllegalLabelTCA MA gen 0 0
2005 tmnxVRtrMcastMidRouteTCA MI gen 0 0
2006 tmnxVRtrMcastMaxRoutesTCA MI gen 0 0
2007 tmnxVRtrMcastMaxRoutesCleared MI gen 0 0
2008 tmnxVRtrMaxArpEntriesTCA MA gen 0 0
2009 tmnxVRtrMaxArpEntriesCleared MI gen 0 0
2011 tmnxVRtrMaxRoutes MI gen 0 0

```
A:ALA-1#

A:ALA-1# show log event-control ospf
```

---

**Log Events**

**A:ALA-1# show log event-control ospf**

---

**Application**

<table>
<thead>
<tr>
<th>ID#</th>
<th>Event Name</th>
<th>P</th>
<th>g/s</th>
<th>Logged</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>ospfVirtIfStateChange</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>ospfNbrStateChange</td>
<td>WA</td>
<td>gen</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>ospfVirtNbrStateChange</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>ospfIfConfigError</td>
<td>WA</td>
<td>gen</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
event-handling

Syntax  event-handling

Context  show>log

Description  This command enables the context to display Event Handling System (EHS) information.

handler

Syntax  handler [handler-name]

handler detail

Context  show>log>event-handling

Description  This command enters the context to display EHS handler information.

Parameters  handler-name — Specifies the name of a specific handler up to 32 characters in length.
**detail** — Keyword to list details of all handlers.

**Output**
The following is an example of handler information.

**Table 83** describes handler output fields.

### Sample Output

```plaintext
A:node1>show>log>event-handling# handler
Event Handling System - Handler List

<table>
<thead>
<tr>
<th>Handler</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h-sample</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>h-main</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>h-backup</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
</tbody>
</table>

*A:7950 XRS-20# show log event-handling handler "h-sample"

Event Handling System - Handlers

Handler : h-sample
Description : (Not Specified)
Admin State : up Oper State : up

Handler Action-List Entry

Entry-id : 10
Description : (Not Specified)
Admin State : up Oper State : up
Script

Policy Name : sp-sample
Policy Owner : TiMOS CLI
Min Delay : 0
Last Exec : 05/24/2015 19:03:31

Handler Action-List Entry Execution Statistics

Enqueued : 4
Err Launch : 0
Err Adm Status : 0
Total : 4
```

**Table 83**  
**Handler Output Field Descriptions**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handler</td>
<td>The name of the handler.</td>
</tr>
<tr>
<td>Description</td>
<td>The handler description string.</td>
</tr>
</tbody>
</table>
### Table 83  Handler Output Field Descriptions (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>The administrative state of the handler.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the handler.</td>
</tr>
</tbody>
</table>

**Handler Action-List Entry**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-id</td>
<td>The action-list entry identifier.</td>
</tr>
<tr>
<td>Description</td>
<td>The action-list entry description string.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the action-list entry.</td>
</tr>
<tr>
<td>Policy Name</td>
<td>The name of the related script policy.</td>
</tr>
<tr>
<td>Policy Owner</td>
<td>The owner of the related script policy.</td>
</tr>
<tr>
<td>Last Exec</td>
<td>The timestamp of the last successful execution of the action-list entry.</td>
</tr>
</tbody>
</table>

**Handler Action-List Entry Execution Statistics**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enqueued</td>
<td>The number of times the action-list entry was successfully passed on to the SR OS sub-system or module that will attempt to process and execute the action. For a script-policy entry, this indicates that the script request has been enqueued but does not necessarily indicate that the script has successfully launched or completed. For status and information about the script, use the <code>show&gt;system&gt;script-control</code> command.</td>
</tr>
<tr>
<td>Err Launch</td>
<td>The number of times the action-list entry was not successfully handed over to the next SR OS sub-system or module in the processing chain. This can be caused by a variety of conditions including a full script request input queue.</td>
</tr>
<tr>
<td>Err Adm Status</td>
<td>The number of times the action-list entry was not executed because the entry was administratively disabled.</td>
</tr>
<tr>
<td>Total</td>
<td>The total number of times that the action-list entry attempted execution.</td>
</tr>
</tbody>
</table>

### Description

This command displays general information about EHS, as well as handler and trigger statistics.
### Sample output

---

**Event Handling System - Event Trigger Statistics**

<table>
<thead>
<tr>
<th>Application Name</th>
<th>Event Id</th>
<th>Total</th>
<th>Success</th>
<th>ErrNoEntry</th>
<th>AdmStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Entry:

<table>
<thead>
<tr>
<th>FilMatch</th>
<th>Trigger</th>
<th>Debounce</th>
<th>FilFail</th>
<th>ErrAdmSta</th>
<th>ErrFilter</th>
<th>ErrHandler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SUM: 0 0 0 0 0 0

---

**EVENTS PROCESSED**

<table>
<thead>
<tr>
<th>Total</th>
<th>Success</th>
<th>ErrNoEntry</th>
<th>AdmStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

---

**Event Handling System - Event Handler Statistics**

<table>
<thead>
<tr>
<th>Handler</th>
<th>Total</th>
<th>Success</th>
<th>ErrNoEntry</th>
<th>AdmStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-handler-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Entry:

<table>
<thead>
<tr>
<th>Id</th>
<th>Launch</th>
<th>MinDelay</th>
<th>ErrLaunch</th>
<th>ErrAdmSta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SUMMARY: 0 0 0 0

---

**HANDLERS SUMMARY**

<table>
<thead>
<tr>
<th>Total</th>
<th>Success</th>
<th>ErrNoEntry</th>
<th>AdmStatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
scripts

Syntax   scripts
Context  show>log>event-handling
Description This command displays handler configuration and script run queue information.
Output   Show Scripts Output

Sample output

===============================================================================
Event Handling System - Script Policy Association
===============================================================================
No Matching Entries Found
===============================================================================
Event Handling System - Script Association
===============================================================================
No Matching Entries Found
===============================================================================
Event Handling System - Script Launched List
===============================================================================
<table>
<thead>
<tr>
<th>Run #</th>
<th>Script owner</th>
<th>Script name</th>
<th>Script state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No Matching Entries
===============================================================================

event-parameters

Syntax   event-parameters [application-id [event-name | event-number]]
Context  show>log
Description This command displays an event's (or all events) common parameters and specific
parameters. This allows a user to know what parameters can be passed from a triggering
event to the triggered EHS script.
Parameters application-id — Displays event parameters for the specified application.
  Default  All applications.
  The following are some sample applications:
  Values application_assurance, aps, atm, bfd, bgp, calltrace, ccag, cflowd, 
  chassis, cpmhwfilter, cpmhwqueue, debug, dhcp, dhcpfs, diameter, 
  dot1x, dynsvc, efm_oam, elmi, ering, eth_cfm, etun, filter, fpe, gsmp, 
  gmpls, gtungrp, icl, igh, igmp, igmp_snooping, ip, ipfix, ipsec, 
  ipsec_cpm, isis, l2tp, lag, ldap, ldap, li, ldp, imp, logger, mcac,
mcpath, mc_redundancy, mirror, mld, mld_snooping, mpls, mpls_tp, mrp, msdp, nat, ntp, oam, open_flow, ospf, pcep, pim, pim_snooping, port, ppp, ptp, pxc, python, qos, radius, rip, rip_ng, route_next_hop, route_policy, rpki, rsvp, security, sflow, snmp, stp, subscr_mgmt, sub_host_trk, svcmgr, system, tip, tls, user, user_db, video, vrrp, vrf, wlan_gw, wpp

event-name — Displays event parameters for the named application event up to 32 characters in length.

Default All events for the application.

event-number — Displays event parameters for the specified application event number.

Default All events for the application.

Values 0 — 4294967295

Output The following displays log event parameter information.

Sample output

# show log event-parameters "oam" 2001
=======================================================================
Common Event Parameters
appid
name
eventid
severity
subject
gentime
Event Specific Parameters
tmnxOamPingCtlOwnerIndex
tmnxOamPingCtlTestIndex
tmnxOamPingCtlTgtAddrType
tmnxOamPingCtlTgtAddress
tmnxOamPingResultsTestRunIndex
tmnxOamPingResultsOperStatus
tmnxOamPingResultsMinRtt
tmnxOamPingResultsMaxRtt
tmnxOamPingResultsAverageRtt
tmnxOamPingResultsRttSumOfSquares
tmnxOamPingResultsRttOFSumSquares
tmnxOamPingResultsMtuResponseSize
tmnxOamPingResultsSvcPing
tmnxOamPingResultsProbeResponses
tmnxOamPingResultsSentProbes
tmnxOamPingResultsLastGoodProbe
tmnxOamPingCtlTestMode
tmnxOamPingHistoryIndex
=======================================================================

file-id

Syntax file-id [log-file-id]
**Context**  
show>log

**Description**  
This command displays event file log information.

If no command line parameters are specified, a summary output of all event log files is displayed.

Specifying a file ID displays detailed information on the event file log.

**Parameters**  
log-file-id — Displays detailed information on the specified event file log.

**Output**  
The following shows log file summary information.

Table 84 describes the output fields for a log file summary.

**Table 84**  
Log File Summary Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file-id</td>
<td>The log file ID.</td>
</tr>
<tr>
<td>rollover</td>
<td>The rollover time for the log file which is how long in between partitioning of the file into a new file.</td>
</tr>
<tr>
<td>retention</td>
<td>The retention time for the file in the system which is how long the file should be retained in the file system.</td>
</tr>
</tbody>
</table>
| admin location | The primary flash device specified for the file location.  
one — indicates no specific flash device was specified. |
| backup location | The secondary flash device specified for the file location if the admin location is not available.  
one — Indicates that no backup flash device was specified. |
| oper location | The actual flash device on which the log file exists.     |
| file-id    | The log file ID.                                                             |
| rollover   | The rollover time for the log file which is how long in between partitioning of the file into a new file. |
| retention  | The retention time for the file in the system which is how long the file should be retained in the file system. |
| file name  | The complete pathname of the file associated with the log ID.                |
| expired    | Indicates whether or not the retention period for this file has passed.     |
| state      | in progress — Indicates the current open log file.  
complete — Indicates the old log file. |

**Sample Output**
A:ALA-1# show log file-id
-----------------------------------------------
File Id List
-----------------------------------------------
file-id rollover retention admin backup oper
location location location location
-----------------------------------------------
1 60 4 cf1: cf2: cf1: cf1:
2 60 3 cf1: cf3: cf1: cf1:
3 1440 12 cf1: none cf1: cf1:
10 1440 12 cf1: none none cf1:
11 1440 12 cf1: none none none
15 1440 12 cf1: none none none
20 1440 12 cf1: none none none

A:ALA-1#

A:ALA-1# show log file-id 10
-----------------------------------------------
File Id List
-----------------------------------------------
file-id rollover retention admin backup oper
location location location location
-----------------------------------------------
10 1440 12 cf3: cf2: cf1: cf1:
Description : Main
-----------------------------------------------
File Id 10 Location cf1:
-----------------------------------------------
file name expired state
-----------------------------------------------
cf1:\log\log0302-20060501-012205 yes complete
cf1:\log\log0302-20060501-014049 yes complete
cf1:\log\log0302-20060501-015344 yes complete
cf1:\log\log0302-20060501-015547 yes in progress
-----------------------------------------------
A:ALA-1#

filter-id

Syntax  

```plaintext
filter-id [filter-id]
```

Context  

show>log

Description  

This command displays event log filter policy information.

Parameters  

```plaintext
filter-id — Displays detailed information on the specified event filter policy ID.
```

Values  

```plaintext
1 — 65535
```

Output  

The following displays event filter log information.

Table 85 describes the output fields for event log filter summary information.
**Sample Output**

*A:*ALA-48>config>log# show log filter-id

```
===
Log Filters
===
Filter Applied Default Description
Id Action
1 no forward
5 no forward
10 no forward
1001 yes drop Collect events for Serious Errors Log
===
*A:*ALA-48>config>log#
```

**Sample Output**

*A:*ALA-48>config>log# show log filter-id 1001

```
===
Log Filter
===
Filter-id : 1001 Applied : yes Default Action: drop
Description : Collect events for Serious Errors Log
===
Log Filter Match Criteria
===
Entry-id : 10 Action : forward
Application :
Event Number : 0 Operator : off
Severity : major Operator : greaterThanOrEqual
Subject :
Match Type : exact string
Router :
Match Type : exact string
Description : Collect only events of major severity or higher
===
*A:*ALA-48>config>log#
```

---

**Table 85**  
**Event Log Filter Summary Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Id</td>
<td>The event log filter ID.</td>
</tr>
<tr>
<td>Applied</td>
<td>no — The event log filter is not currently in use by a log ID. yes — The event log filter is currently in use by a log ID.</td>
</tr>
<tr>
<td>Default Action</td>
<td>drop — The default action for the event log filter is to drop events not matching filter entries. forward — The default action for the event log filter is to forward events not matching filter entries.</td>
</tr>
<tr>
<td>Description</td>
<td>The description string for the filter ID.</td>
</tr>
</tbody>
</table>
Event Log Filter Detailed Output

Table 86 describes the output fields for detailed event log filter information.

**Table 86 Event Log Filter Detail Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter-id</td>
<td>The event log filter ID.</td>
</tr>
<tr>
<td>Applied</td>
<td>no — The event log filter is not currently in use by a log ID. yes — The</td>
</tr>
<tr>
<td></td>
<td>event log filter is currently in use by a log ID.</td>
</tr>
<tr>
<td>Default Action</td>
<td>drop — The default action for the event log filter is to drop events not</td>
</tr>
<tr>
<td></td>
<td>matching filter entries. forward — The default action for the event log</td>
</tr>
<tr>
<td></td>
<td>filter is to forward events not matching filter entries.</td>
</tr>
<tr>
<td>Description</td>
<td>The description string for the filter ID.</td>
</tr>
<tr>
<td>(Filter-id)</td>
<td></td>
</tr>
</tbody>
</table>

Table 87 describes the output fields for log filter match criteria information.

**Table 87 Log Filter Match Criteria Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-id</td>
<td>The event log filter entry ID.</td>
</tr>
<tr>
<td>Action</td>
<td>default — There is no explicit action for the event log filter entry and</td>
</tr>
<tr>
<td></td>
<td>the filter's default action is used on matching events. drop — The action</td>
</tr>
<tr>
<td></td>
<td>for the event log filter entry is to drop matching events. forward — The</td>
</tr>
<tr>
<td></td>
<td>action for the event log filter entry is to forward matching events.</td>
</tr>
<tr>
<td>Description</td>
<td>The description string for the event log filter entry.</td>
</tr>
<tr>
<td>(Entry-id)</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>The event log filter entry application match criterion.</td>
</tr>
<tr>
<td>Event Number</td>
<td>The event log filter entry application event ID match criterion.</td>
</tr>
</tbody>
</table>
**Table 87  Log Filter Match Criteria Output Fields**  (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| Severity | cleared — The log event filter entry application event severity cleared match criterion.  
|         | indeterminate — The log event filter entry application event severity indeterminate match criterion.  
|         | critical — The log event filter entry application event severity critical match criterion.  
|         | major — The log event filter entry application event severity cleared match criterion.  
|         | minor — The log event filter entry application event severity minor match criterion.  
|         | warning — The log event filter entry application event severity warning match criterion.  
| Subject | Displays the event log filter entry application event ID subject string match criterion.  
| Router  | Displays the event log filter entry application event ID router router-instance string match criterion.  
| Operator | There is an operator field for each match criteria: application, event number, severity, and subject.  
|         | equal — Matches when equal to the match criterion.  
|         | greaterThan — Matches when greater than the match criterion.  
|         | greaterThanOrEqual — Matches when greater than or equal to the match criterion.  
|         | lessThan — Matches when less than the match criterion.  
|         | lessThanOrEqual — Matches when less than or equal to the match criterion.  
|         | notEqual — Matches when not equal to the match criterion.  
|         | off — No operator specified for the match criterion.  

---

**log-collector**

**Syntax**  
log-collector

**Context**  
show>log

**Description**  
Show log collector statistics for the main, security, change and debug log collectors.

**Output**  
The following displays log collector information.

*Table 88* describes log-collector output fields.
Sample Output

A:ALA-1# show log log-collector
===============================================================================
Log Collectors
===============================================================================
Main Logged : 1224 Dropped : 0
  Dest Log Id: 99 Filter Id: 0 Status: enabled Dest Type: memory
  Dest Log Id: 100 Filter Id: 1001 Status: enabled Dest Type: memory
Security Logged : 3 Dropped : 0
Change Logged : 3896 Dropped : 0
Debug Logged : 0 Dropped : 0
===============================================================================
A:ALA-1#

Table 88  Show Log-Collector Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| <Collector Name> | Main — The main event stream contains the events that are not explicitly directed to any other event stream.  
  Security — The security stream contains all events that affect attempts to breach system security such as failed login attempts, attempts to access MIB tables to which the user is not granted access or attempts to enter a branch of the CLI to which access has not been granted.  
  Change — The change event stream contains all events that directly affect the configuration or operation of this node.  
  Debug — The debug-trace stream contains all messages in the debug stream. |
| Dest. Log ID   | Specifies the event log stream destination.                                 |
| Filter ID      | The value is the index to the entry which defines the filter to be applied to this log’s source event stream to limit the events output to this log’s destination. If the value is 0, then all events in the source log are forwarded to the destination. |
| Status         | Enabled — Logging is enabled.  
  Disabled — Logging is disabled. |
Table 88  Show Log-Collector Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest. Type</td>
<td>Console — A log created with the console type destination displays events to the physical console device. Events are displayed to the console screen whether a user is logged in to the console or not.</td>
</tr>
<tr>
<td></td>
<td>Session — A user logged in to the console device or connected to the CLI via a remote telnet or SSH session can also create a log with a destination type of 'session'. Events are displayed to the session device until the user logs off.</td>
</tr>
<tr>
<td></td>
<td>Syslog — Log events are sent to a syslog receiver.</td>
</tr>
<tr>
<td></td>
<td>SNMP traps — Events defined as SNMP traps are sent to the configured SNMP trap destinations and are logged in NOTIFICATION-LOG-MIB tables.</td>
</tr>
<tr>
<td></td>
<td>File — All selected log events will be directed to a file on one of the compact flash disks.</td>
</tr>
<tr>
<td></td>
<td>Memory — All selected log events will be directed to an in-memory storage area.</td>
</tr>
</tbody>
</table>

**log-id**

**Syntax**

```
log-id [log-id] [severity severity-level] [application application] [sequence from-seq [to-seq]] [count count] [router router-instance [expression]] [message message [regular-expression]] [subject subject [regexp]] [ascending | descending] [message format [msg-regexp]]
```

**Context**

```
show>log
```

**Description**

This command displays an event log summary with settings and statistics or the contents of a specific log file, SNMP log, or memory log.

If the command is specified with no command line options, a summary of the defined system logs is displayed. The summary includes log settings and statistics.

If the log ID of a memory, SNMP, or file event log is specified, the command displays the contents of the log. Additional command line options control what and how the contents are displayed.

Contents of logs with console, session or syslog destinations cannot be displayed. The actual events can only be viewed on the receiving syslog or console device.
Parameters

**log-id** — Displays the contents of the specified file log or memory log ID. The log ID must have a destination of an SNMP or file log or a memory log for this parameter to be used.

**Default** Displays the event log summary

**Values** 1 to 99

**severity-level** — Displays only events with the specified and higher severity.

**Default** All severity levels

**Values** cleared, indeterminate, critical, major, minor, warning

**application** — Displays only events generated by the specified application.

**Default** All applications

The following values are examples of applications:

**Values** bgp, cflowd, chassis, dhcp, debug, filter, igmp, ip, isis, lag, ldp, lldp, logger, mirror, mpls, oam, ospf, pim, port, ppp, rip, route_policy, rsvp, security, snmp, stp, svcmgr, system, user, vrrp, vrtr, ospf_ng, ntp

**expression** — Specifies to use a regular expression as match criteria for the router instance string.

**from-seq** [**to-seq**] — Displays the log entry numbers from a particular entry sequence number (**from-seq**) to another sequence number (**to-seq**). The **to-seq** value must be larger than the **from-seq** value.

If the **to-seq** number is not provided, the log contents to the end of the log is displayed unless the **count** parameter is present in which case the number of entries displayed is limited by the **count**.

**Default** All sequence numbers

**Values** 1 to 4294967295

**count** — Limits the number of log entries displayed to the **number** specified.

**Default** All log entries

**Values** 1 to 4294967295

**router-instance** — Specifies a router name up to 32 characters in length to be used in the display criteria.

**format** — Specifies a message string up to 400 characters in length to be used in the display criteria.

**msg-regexp** — Specifies to use a regular expression as parameters with the specified message string.

**subject** — Displays only log entries matching the specified text **subject** string. The subject is the object affected by the event, for example the port-id would be the subject for a link-up or link-down event.

**regexp** — Specifies to use a regular expression as parameters with the specified **subject** string.
ascending | descending — Specifies sort direction. Logs are normally shown from the newest entry to the oldest in descending sequence number order on the screen. When using the ascending parameter, the log will be shown from the oldest to the newest entry.

**Output**
The following displays log ID information.

*Table 89* describes the log ID field output.

**Sample Output**

```
A:ALA-1# show log log-id
--
<table>
<thead>
<tr>
<th>Log Source</th>
<th>Filter Admin Oper Logged Dropped Dest Dest Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>Id State State Type Id</td>
</tr>
<tr>
<td>1</td>
<td>none up down 52 0 file 10 N/A</td>
</tr>
<tr>
<td>2</td>
<td>C none up up 41 0 syslog 1 N/A</td>
</tr>
<tr>
<td>99</td>
<td>M none up up 2135 0 memory 500</td>
</tr>
</tbody>
</table>
--
A:ALA-1#
```

**Sample Memory or File Event Log Contents Output**

```
A:gal171# show log log-id 99
--
| Description : Default System Log |
| Memory Log contents [size=500 next event=70 (not wrapped)] |
| 69 2007/01/25 18:20:40.00 UTC CRITICAL: SYSTEM #2029 Base Redundancy |
| "The active CPM card A is operating in singleton mode. There is no standby CPM card ." |
| 68 2007/01/25 17:48:38.16 UTC WARNING: SYSTEM #2006 Base LOGGER |
| "New event throttle interval 10, configuration modified" |
| 67 2007/01/25 00:34:53.97 UTC CRITICAL: SYSTEM #2029 Base Redundancy |
| "The active CPM card A is operating in singleton mode. There is no standby CPM card ." |
| 66 2007/01/24 22:59:22.00 UTC CRITICAL: SYSTEM #2029 Base Redundancy |
| "The active CPM card A is operating in singleton mode. There is no standby CPM card ." |
| 65 2007/01/24 02:08:47.92 UTC CRITICAL: SYSTEM #2029 Base Redundancy |
| "The active CPM card A is operating in singleton mode. There is no standby CPM card ." |
| ... |
A:gal171
```
A:NS061550532>config>log>snmp-trap-group# show log log-id 1
===============================================================================
Event Log 1
===============================================================================
SNMP Log contents  [size=100 next event=3  (not wrapped)]
Cannot send to SNMP target address 10.1.1.1.
Waiting to replay starting from event #2

14 2000/01/05 00:54:09.11 UTC WARNING: MPLS #2007 Base VR 1: "Instance is in administrative state: inService, operational state: inService"

13 2000/01/05 00:54:09.11 UTC WARNING: MPLS #2008 Base VR 1: "Interface linkToIxia is in administrative state: inService, operational state: inService"
....
A:NS061550532>config>log>snmp-trap-group#

Table 89 Log-Id Output Field Descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Id</td>
<td>An event log destination.</td>
</tr>
<tr>
<td>Source</td>
<td>no — The event log filter is not currently in use by a log ID. yes — The</td>
</tr>
<tr>
<td></td>
<td>event log filter is currently in use by a log ID.</td>
</tr>
<tr>
<td>Filter ID</td>
<td>The value is the index to the entry which defines the filter to be applied</td>
</tr>
<tr>
<td></td>
<td>to this log's source event stream to limit the events output to this log's</td>
</tr>
<tr>
<td></td>
<td>destination. If the value is 0, then all events in the source log are</td>
</tr>
<tr>
<td></td>
<td>forwarded to the destination.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up — Indicates that the administrative state is up. Down — Indicates that</td>
</tr>
<tr>
<td></td>
<td>the administrative state is down.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up — Indicates that the operational state is up. Down — Indicates that the</td>
</tr>
<tr>
<td></td>
<td>operational state is down.</td>
</tr>
<tr>
<td>Logged</td>
<td>The number of events that have been sent to the log source(s) that were</td>
</tr>
<tr>
<td></td>
<td>forwarded to the log destination.</td>
</tr>
<tr>
<td>Dropped</td>
<td>The number of events that have been sent to the log source(s) that were</td>
</tr>
<tr>
<td></td>
<td>not forwarded to the log destination because they were filtered out by the</td>
</tr>
<tr>
<td></td>
<td>log filter.</td>
</tr>
</tbody>
</table>
**Table 89** Log-Id Output Field Descriptions (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest. Type</td>
<td>Console — All selected log events are directed to the system console. If the console is not connected, then all entries are dropped.</td>
</tr>
<tr>
<td></td>
<td>Syslog — All selected log events are sent to the syslog address.</td>
</tr>
<tr>
<td></td>
<td>SNMP traps — Events defined as SNMP traps are sent to the configured SNMP trap destinations and are logged in NOTIFICATION-LOG-MIB tables.</td>
</tr>
<tr>
<td></td>
<td>File — All selected log events will be directed to a file on one of the CPM's compact flash disks.</td>
</tr>
<tr>
<td></td>
<td>Memory — All selected log events will be directed to an in-memory storage area.</td>
</tr>
<tr>
<td>Dest ID</td>
<td>The event log stream destination.</td>
</tr>
<tr>
<td>Size</td>
<td>The allocated memory size for the log.</td>
</tr>
<tr>
<td>Time format</td>
<td>The time format specifies the type of timestamp format for events sent to logs where log ID destination is either syslog or file.</td>
</tr>
<tr>
<td></td>
<td>When the time format is UTC, timestamps are written using the Coordinated Universal Time value.</td>
</tr>
<tr>
<td></td>
<td>When the time format is local, timestamps are written in the system's local time.</td>
</tr>
</tbody>
</table>

**snmp-trap-group**

**Syntax**

```
snmp-trap-group [log-id]
```

**Context**

```
show>log
```

**Description**

This command displays SNMP trap group configuration information.

**Parameters**

- `log-id` — Displays only SNMP trap group information for the specified trap group log ID.

  **Values**

  1 to 99

**Output**

The following displays SNMP trap group information.

*Table 90* describes SNMP trap group output fields.

**Sample Output**

```
A:SetupCL|>config>log>snmp-trap-group# show log snmp-trap-group 44
===
SNMP Trap Group 44
===
Description : none
```
### SNMP Trap Group Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-ID</td>
<td>The log destination ID for an event stream.</td>
</tr>
<tr>
<td>Address</td>
<td>The IP address of the trap receiver.</td>
</tr>
<tr>
<td>Port</td>
<td>The destination UDP port used for sending traps to the destination, expressed as a decimal integer.</td>
</tr>
<tr>
<td>Version</td>
<td>Specifies the SNMP version format to use for traps sent to the trap receiver. Valid values are snmpv1, snmpv2c, snmpv3.</td>
</tr>
<tr>
<td>Community</td>
<td>The community string required by snmpv1 or snmpv2c trap receivers.</td>
</tr>
<tr>
<td>Security-Level</td>
<td>The required authentication and privacy levels required to access the views on this node.</td>
</tr>
<tr>
<td>Replay</td>
<td>Indicates whether or not the replay parameter has been configured, enabled or disabled, for the trap-target address.</td>
</tr>
<tr>
<td>Replay from</td>
<td>Indicates the sequence ID of the first missed notification that will be replayed when a route is added to the routing table by which trap-target address can be reached. If no notifications are waiting to be replayed this field shows n/a.</td>
</tr>
<tr>
<td>Last Replay</td>
<td>Indicates the last time missed events were replayed to the trap-target address. If no events have ever been replayed this field shows never.</td>
</tr>
</tbody>
</table>
syslog

**Syntax**
```shell
syslog [syslog-id]
```

**Context**
```shell
show>log
```

**Description**
This command displays syslog event log destination summary information or detailed information on a specific syslog destination.

**Parameters**
- **syslog-id** — Displays detailed information on the specified syslog event log destination.
  - **Values**: 1 to 10

**Output**
The following displays syslog information.

Table 91 describes the syslog output fields.

### Sample Output

```bash
*A:ALA-48>config>log# show log syslog
===
Syslog Target Hosts
===
<table>
<thead>
<tr>
<th>Id</th>
<th>Ip Address</th>
<th>Port</th>
<th>Sev Level</th>
<th>Below Level Drop</th>
<th>Facility</th>
<th>Pfx Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>unknown</td>
<td>514</td>
<td>info</td>
<td></td>
<td>local7</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>unknown</td>
<td>514</td>
<td>info</td>
<td></td>
<td>local7</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>unknown</td>
<td>514</td>
<td>info</td>
<td></td>
<td>local7</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>unknown</td>
<td>514</td>
<td>info</td>
<td></td>
<td>local7</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```bash
*A:ALA-48>config>log#
```

```bash
*A:AL-MV-SR>config>log# show log syslog 1
===
Syslog Target 1
===
| IP Address : 192.168.15.22 | Port : 514 |
| Log-ids : none | Prefix : Sr12 |
| Facility : local1 | Severity Level : info |
| Below Level Drop : 0 | Description : Linux Station Springsteen |
```

```bash
*A:AL-MV-SR>config>log#
```
### 5.9.2.2 Clear Commands

**log**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>log log-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>clear</td>
</tr>
<tr>
<td>Description</td>
<td>The <code>clear log log-id</code> command has been deprecated and replaced by the <code>clear log log-id log-id</code> command. The <code>clear log log-id</code> command continues to be supported, but it is recommended to use the <code>clear log log-id log-id</code> command instead.</td>
</tr>
<tr>
<td>Parameters</td>
<td>log-id — Specifies the event log ID to be initialized or rolled over.</td>
</tr>
<tr>
<td>Values</td>
<td>1 to 100</td>
</tr>
</tbody>
</table>

**Table 91  Show Log Syslog Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog ID</td>
<td>The syslog ID number for the syslog destination.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the syslog target host.</td>
</tr>
<tr>
<td>Port</td>
<td>The configured UDP port number used when sending syslog messages.</td>
</tr>
<tr>
<td>Facility</td>
<td>The facility code for messages sent to the syslog target host.</td>
</tr>
<tr>
<td>Severity Level</td>
<td>The syslog message severity level threshold.</td>
</tr>
<tr>
<td>Below Level Dropped</td>
<td>A count of messages not sent to the syslog collector target because the severity level of the message was above the configured severity. The higher the level, the lower the severity.</td>
</tr>
<tr>
<td>Prefix Present</td>
<td>Yes — A log prefix was prepended to the syslog message sent to the syslog host. No — A log prefix was not prepended to the syslog message sent to the syslog host.</td>
</tr>
<tr>
<td>Description</td>
<td>A text description stored in the configuration file for a configuration context.</td>
</tr>
<tr>
<td>LogPrefix</td>
<td>The prefix string prepended to the syslog message.</td>
</tr>
<tr>
<td>Log-id</td>
<td>Events are directed to this destination.</td>
</tr>
</tbody>
</table>
**log-id**

**Syntax**

```
log-id log-id
```

**Context**

`clear>log`

**Description**

Reinitializes/rolls over the specified memory/file event log ID. Memory logs are reinitialized and cleared of contents. File logs are manually rolled over by this command.

This command is only applicable to event logs that are directed to file destinations and memory destinations.

SNMP, syslog, console, or session logs are not affected by this command.

**Parameters**

`log-id` — Specifies the event log ID to be initialized or rolled over.

**Values**

1 to 100

---

**event-handling**

**Syntax**

```
event-handling
```

**Context**

`clear>log`

**Description**

This command enables the context to clear Event Handling System (EHS) information.

**handler**

**Syntax**

```
handler event-handler-name
```

**Context**

`clear>log>event-handling`

**Description**

This command clears the counters in the `show log event-handling handler event-handler-name` output. It does affect the global or aggregate counters shown using the `information` command.

**Parameters**

`event-handler-name` — Specifies the name of the event handler, up to 32 characters in length.

---

**information**

**Syntax**

```
information
```

**Context**

`clear>log>event-handling`

**Description**

This command clears handler statistics in the `show log event-handling information` output.
6 sFlow

6.1 sFlow Overview

Some Layer 2 network deployments collect statistics on physical Ethernet ports and
on Layer 2 interfaces at a high-frequency using a push model to, among others,
monitor traffic, diagnose network issues, and/or provide billing. SR OS supports
cflowd and XML accounting; however, those mechanisms are either Layer 3-specific,
or focus on providing statistics at extremely large scale (thus use a pull model and
cannot support high-frequency counter updates). To meet the statistics collection
requirements of such Layer 2 deployments, SR OS supports sFlow statistics export
using sFlow version 5.

The following list gives the main caveats for sFlow support:

• sFlow data sources require multi-core line cards (IOM3 and later), enabling
  sFlow on a card that is not a multi-core is not blocked and can be detected by
  SNMP trap/log generated by sFlow

• To meet high-frequency export of counters, sFlow implementation is targeted for
  low per-port VLL/VPLS SAP scale only. The configuration is blocked if the per-
  port VLL/VPLS SAP limit exceeds sFlow limit. Contact your Nokia representative
  for per-platform scaling limits applicable.
6.2 sFlow Features

This section describes sFlow functionality supported in SR OS.

6.2.1 sFlow Counter Polling Architecture

When sFlow is enabled on an SR OS router, the system takes upon a role of an sFlow network device as described in sFlow protocol version 5. A single sFlow agent can be configured for counter polling (flow sampling is not supported). There is no support for sub-agents.

The sFlow agent sends sFlow data to an operator-configured sFlow receiver. A single receiver is supported with configurable primary and backup IPv4 or IPv6 UDP destination sockets for redundancy (each sFlow packet exported is duplicated to both sockets when both are configured). The receiver's UDP sockets can be reachable either in-band or out-of-band (default) and must both be IPv4 or IPv6. An operator can also set the maximum size of the sFlow datagrams. Operators are expected to set this value to avoid IP fragmentation (Datagrams exceeding the specified size are fragmented before handed to IP layer).

The sFlow agent manages all sFlow data sources in the system. SR OS supports sFlow data that are physical ports. When a port is configured as an sFlow data source, counters for that port and all VPLS and ePipe SAPs on that port are collected and exported using sFlow (see later on section for record format). Flow data sources can only be configured when an sFlow receiver is configured. To remove the sFlow receiver, all sFlow data sources must first be deconfigured at the port level.

Each data source is processed at a 15-second, non-configurable interval. If multiple data sources exist on a line card, the line card distributes the processing of each data source within a 15 second interval to avoid sFlow storms. When a timer expires to trigger a data source processing, data is collected for the physical port and for all VLL and VPLS SAPs on that port and exported using sFlow version 5 records as described in later subsections of this document. Each port and all SAP records for a given data source for a given interval are collected and sent with the counter sequence number and the timestamp value (the time value corresponds to the time counters were actually collected by a line card). The timestamp value uses line card's sysUpTime value, which is synchronized with CPM time automatically by the system. A line card sends the counters to a CPM card, where sFlow UDP datagrams are created, sequenced with the CPM sequence number and sent to the receiver. If no UDP sockets are configured, no errors are generated because data is not sent. If no UDP sockets are reachable, the created UDP sFlow datagrams are dropped.
Note: Line cards will reset the counter record sequence numbers if, as a result of configuration or operational change, the return statistics no longer provide continuity with the previous interval. This may occur when:

- The card hard or soft resets
- The MDA resets
- The sFlow agent counter map changes

Note: The CPM will reset the sFlow datagram sequence numbers if, as a result of configuration or operational change, the sFlow datagram to be sent no longer provides continuity with the previous datagram. The following lists examples of when this takes place:

- HA switch
- CTL reboot
- Creation of an sFlow receiver

### 6.2.2 sFlow Support on Logical Ethernet Ports

sFlow data sources operate in a context of physical Ethernet port. To enable sFlow on Ethernet logical ports and their SAPs, an operator must explicitly enable sFlow on every physical Ethernet port that is a member of the given logical port. Currently only LAG logical ports are supported (including MC-LAG).

Note: sFlow configuration does not change automatically when a port is added or removed to or from a LAG.

For SAPs on a LAG, egress statistics will increment based on ports used by each SAP on LAG egress while ingress statistics will increment based on ports used by each SAP on LAG ingress unless LAG features like, for example, per-fp-ingress-queuing or per-fp-sap-optimization result in SAP statistics collection against a single LAG port.

If logical-level view is required, for example, per LAG statistics, a receiver is expected to perform data correlation based on per-physical port interface and SAP records exported for the given logical port's physical ports and their SAPs. sFlow data records contain information that allows physical ports/SAP records correlation to a logical port. See sFlow Record Formats.
6.2.3 sFlow SAP Counter Map

To allow per SAP sFlow statistics export, operators must configure ingress and egress sFlow counter maps. The counter maps are required, because SR OS systems support more granular per policer/queue counters and not IF-MIB counters per VLL/VPLS SAPs. In an absence of a map configured, 0’s will be returned in corresponding statistics records.

A single ingress and a single egress counter map are supported. The maps specify which ingress and which egress SAP QoS policy queue/policer statistics map to sFlow unicast, multicast, and broadcast counters returned in an sFlow SAP record. Multiple queues and/or policers can map to each of unicast, multicast, broadcast counters. A single queue/policer can only map to one type of traffic. Queues, policers configured in a SAP QoS policy but not configured in an sFlow map or vice-versa are ignored when sFlow statistics are collected.

6.2.4 sFlow Record Formats

Table 92 describes sFlow record used and exported:

<table>
<thead>
<tr>
<th>Record</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow Datagram Header (SAP and port)</td>
<td>Datagram version</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Agent Address</td>
<td>Active CPM IPv4 address (from BoF)</td>
</tr>
<tr>
<td></td>
<td>Sub-agent ID</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sequence number</td>
<td>CPM inserted sFlow datagram sequence number</td>
</tr>
<tr>
<td></td>
<td>SysUptime</td>
<td>sysUptime when the counters for records included in the datagram were collected by the line card</td>
</tr>
<tr>
<td></td>
<td>NumSamples</td>
<td>Number of counter records in the datagram</td>
</tr>
</tbody>
</table>

Note: Correlation of records must allow for small difference in timestamp values returned for member ports or SAP on a LAG because all ports run independent timestamps.
<table>
<thead>
<tr>
<th>Record</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter header (SAP and Port)</td>
<td>Enterprise</td>
<td>0 (standard sFlow)</td>
</tr>
<tr>
<td></td>
<td>sFlow Sample Type</td>
<td>4 (Expanded counter sample)</td>
</tr>
<tr>
<td></td>
<td>Sample Length</td>
<td>sFlow packet size excluding header</td>
</tr>
<tr>
<td></td>
<td>Sequence number</td>
<td>Line card-inserted sequence number</td>
</tr>
<tr>
<td></td>
<td>Source ID Type</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Source ID Index</td>
<td>tmnxPortId of the physical port (sFlow data source)</td>
</tr>
<tr>
<td></td>
<td>Counter records</td>
<td>Count of counter records in the datagram</td>
</tr>
<tr>
<td>Ethernet Interface Counters (EIC) – port (Ethernet Layer)</td>
<td>Enterprise</td>
<td>Statistics returned are based on dot3StatsEntry in EtherLike-MIB.mib. Statistics support may depend on hardware type.</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>Flow data length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alignment Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCS Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single Collision Frames</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple Collision Frames</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SQE Test Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deferred Transmissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late Collisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excessive Collisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Mac Transmit Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carrier Sense Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frame Too Longs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Mac Receive Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symbol Errors</td>
</tr>
</tbody>
</table>
**Table 92  sFlow Record Fields (Continued)**

<table>
<thead>
<tr>
<th>Record</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Interface Counters (GIC) – port/SAP</td>
<td>Enterprise</td>
<td>0 (standard sFlow)</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>1 (GIC)</td>
</tr>
<tr>
<td></td>
<td>Flow data length</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>ifIndex</td>
<td>Port: ifIndex (tmnxPortId) of phys port SAP: SapEncapValue - part of SAP SNMP key</td>
</tr>
<tr>
<td></td>
<td>ifType</td>
<td>Port: 6 (EthernetCsmacd) SAP: 1 (Other)</td>
</tr>
</tbody>
</table>
|        | ifSpeed | Port: Port speed value SAP:  
  • top 32 bits: svcId for SAP (TIMETRA-SAP.mib)  
  • lower 32 bits: sapPortId (TIMETRA-SAP.mib)  
  The values plus ifIndex in the record are SAP SNMP key.  
  SapPortId is LAG’s tmnxPortId for SAPs on a LAG and port’s tmnxPortId for SAPs on physical port |
|        | ifDirection | Derived from MAU MIB (0 = unknown, 1 = full duplex, 2 = half duplex, 3 = in, 4 = out) |
|        | ifAdminStatus | 0 (down) 1 (up) |
|        | ifOperStatus | 0 (down) 1 (up) |
|        | Input Octets | Statistics return for port are based on ifEntry or ifXEntry in IF-MIB.mib as applicable. Statistics returned for SAPs are sum of counters based on the sFlow ingress/egress counter map configured. |
|        | Input Packets |  |
|        | Input Multicast packets |  |
|        | Input Broadcast packets |  |
|        | Input Discarded packets |  |
### Table 92  sFlow Record Fields (Continued)

<table>
<thead>
<tr>
<th>Record</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Interface Counters (GIC) – port/ SAP (Continued)</td>
<td>Input Errors</td>
<td>Statistics return for port are based on ifEntry or ifXEntry in IF-MIB.mib as applicable. Statistics returned for SAPs are sum of counters based on the sFlow ingress/ egress counter map configured.</td>
</tr>
<tr>
<td></td>
<td>Input Unknown Protocol Packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Octets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Multicast packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Broadcast packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Discarded packets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Errors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Promiscuous Mode</td>
<td>0 (FALSE)</td>
</tr>
</tbody>
</table>

**Notes:**

- 0 is returned for statistics that are not supported by a given hardware type.
- If required, CPM executes rollover logic to convert internal 64-bit counters to a 32-bit sFlowd counter returned.
6.3 sFlow Command Reference

The commands listed in this section apply to the 7950 XRS, 7750 SR-12e, and 7750 SR-7/12 platforms.

6.3.1 Command Hierarchies

- System Commands
- Show Commands

To enable sFlow collection, an operator must enable sFlow on physical Ethernet ports in addition to the following configuration. Refer to the Ethernet Port Commands section in the 7450 ESS, 7750 SR, and 7950 XRS Interface Configuration Guide Interface Configuration Guide for the CLI required to enable sFlow on physical ports.

6.3.1.1 System Commands

```
config
 — sflow
 — egress-counter-map {policer policer-id | queue queue-id} traffic-type {unicast | multicast | broadcast} [create]
 — no egress-counter-map {policer policer-id | queue queue-id }
 — ingress-counter-map { policer policer-id | queue queue-id } traffic-type { unicast | multicast | broadcast } [create]
 — no ingress-counter-map { policer policer-id | queue queue-id }
 — receiver receiver-name [create]
 — no receiver
 — ip-addr-primary ip-address[:port]
 — no ip-addr-primary
 — ip-addr-backup ip-address[:port]
 — no ip-addr-backup
 — max-data-size bytes
```

6.3.1.2 Show Commands

```
show
 — sflow
```
6.4 sFlow Configuration Command Descriptions

This section provides the sFlow configuration command descriptions.

6.4.1 Command Descriptions

The topics in this section include:

- System Commands
- Show Commands

6.4.1.1 System Commands

The following commands apply to the 7950 XRS, 7750 SR-12e, and 7750 SR-7/12 platforms.

sflow

Syntax  sflow
Context  config>sflow
Description  This command enables context to configured sflow agent parameters.

egress-counter-map

Syntax  egress-counter-map policer policer-id traffic-type {unicast | multicast | broadcast} [create]
        egress-counter-map queue queue-id traffic-type {unicast | multicast | broadcast} [create]
        no egress-counter-map policer policer-id
        no egress-counter-map queue queue-id
Context  config>sflow
Description  This command configures the egress counter map for sFlow. The map must be configured so sFlow agent understands how to interpret data collected against SAP queues and policers. Multiple queues and policers can be mapped to the same traffic-type using separate line entries.
The no form of this command deletes a SAP policy queue/policer from the map.

**Parameters**

- **policer-id** — Specifies the policer ID in a SAP egress QoS policy. If the SAP policy does not have a policer with the specified ID, the map entry will be ignored for this SAP.
  - **Values** 1 to 8

- **queue-id** — Specifies the queue ID in a SAP egress QoS policy. If the SAP policy does not have a queue with the specified ID, the map entry will be ignored for this SAP.
  - **Values** 1 to 8

### ingress-counter-map

**Syntax**

```
ingress-counter-map policer policer-id traffic-type {unicast | multicast | broadcast} [create]
ingress-counter-map queue queue-id traffic-type {unicast | multicast | broadcast} [create]
o ingress-counter-map policer policer-id
no ingress-counter-map queue queue-id
```

**Context** `config>sflow`

**Description**

This command configures the ingress counter map for sFlow. The map must be configured so sFlow agent understands how to interpret data collected against SAP queues and policers. Multiple queues/policers can be mapped to the same `traffic-type` using separate line entries.

The no form of this command deletes a SAP policy queue/policer from the map.

**Default**

No mapping is created by default.

**Parameters**

- **policer-id** — Specifies the policer ID in a SAP ingress QoS policy. If the SAP policy does not have a policer with the specified ID, the map entry will be ignored for this SAP.
  - **Values** 1 to 32

- **queue-id** — Specifies the queue ID in a SAP ingress QoS policy. If the SAP policy does not have a queue with the specified ID, the map entry will be ignored for this SAP.
  - **Values** 1 to 32

### receiver

**Syntax**

```
receiver receiver-name [create]
no receiver
```

**Context** `config>sflow`

**Description**

This command creates an sFlow receiver context or enters existing sFlow receiver context for the sFlow agent.
The no form of this command deletes an existing sFlow receiver context.

Default
No receivers are created by default.

Parameters
receiver-names — String of up to 127 characters.

### ip-addr-primary

**Syntax**

```
ip-addr-primary ip-address[:port]
```

```
no ip-addr-primary
```

**Context**

```
config>sflow>receiver
```

**Description**

This command configures primary IPv4 or IPv6 destination address for the sFlow agent to send sFlow datagrams to. Optionally a destination port can also be configured (by default port 6343 is used).

The no form of this command deletes primary sFlow receiver destination.

**Default**

no ip-addr-primary

**Parameters**

- `ip-address` — Specifies the IPv4 or IPv6 address to send the sFlow datagrams.
  
  **Values**
  
  a.b.c.d (IPv4)
x:x:x:x:x:x:x:x (IPv6)
[x:x:x:x:x:x:x] (IPv6)
x - [0..FFFF]H

- `port` — Specifies the UDP destination port to send the sFlow datagrams.
  
  **Values**
  
  1 to 65535

### ip-addr-backup

**Syntax**

```
ip-addr-backup ip-address[:port]
```

```
no ip-addr-backup
```

**Context**

```
config>sflow>receiver
```

**Description**

This command configures back-up IPv4 or IPv6 destination address for the sFlow agent to send sFlow datagrams to. Optionally a destination port can also be configured (by default port 6343 is used).

The no form of this command deletes backup sFlow receiver destination.

**Default**

no ip-addr-backup
**Parameters**  
*ip-address* — Specifies the IPv4 or IPv6 address to send the sFlow datagrams to.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.b.c.d (IPv4)</td>
</tr>
<tr>
<td>x:x:x:x:x:x:x (IPv6)</td>
</tr>
<tr>
<td>[x:x:x:x:x:x:x:x] (IPv6)</td>
</tr>
<tr>
<td>x - [0 to FFFF]H</td>
</tr>
</tbody>
</table>

*port* — Specifies the UDP destination port to send the sFlow datagrams to.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 65535</td>
</tr>
</tbody>
</table>

**max-data-size**

**Syntax**  
`max-data-size bytes`

**Context**  
`config>sflow>receiver`

**Description**  
This configures the maximum data size for sFlow UDP datagrams sent to the collector.

To restore default configuration, execute `max-data-size 1400`.

**Default**  
`max-data-size 1400`

**Parameters**  
*bytes* — Specifies the data size.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 to 1500</td>
</tr>
</tbody>
</table>
6.5 sFlow Show Command Descriptions

This section provides the sFlow show command descriptions.

6.5.1 Command Descriptions

The commands described in this section apply to the 7950 XRS, 7750 SR-12e, and 7750 SR-7/12 platforms.

The command outputs in this section are examples only; actual displays may differ depending on supported functionality and user configuration.

6.5.1.1 Show Commands

sflow

<table>
<thead>
<tr>
<th>Syntax</th>
<th>sflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>show&gt;sflow</td>
</tr>
<tr>
<td>Description</td>
<td>This command displays the primary and backup receiver statistics, the mapping configuration and a summary of how many ports and SAPs have sFlow enabled.</td>
</tr>
</tbody>
</table>

Table 93 describes the show sflow output fields.

Output

The following is an example of Sflow information.

Sample Output

*B:bkvm10# show sflow
===============================================================================
sFlow Status
===============================================================================
Receiver : pat
Max Data Size : 312
IP Addr Primary : 138.120.142.163:6343
Packets Sent : 2572
Packet Errors : 2
IP Addr Backup : N/A
Packets Sent : 0
Packet Errors : 0
Last Packet Sent : No Pkts sent

Counter Pollers

<table>
<thead>
<tr>
<th>Port</th>
<th>No. of SAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/2</td>
<td>3</td>
</tr>
<tr>
<td>1/2/1</td>
<td>0</td>
</tr>
</tbody>
</table>

No. of sFlow counter pollers: 2

Counter Mappings

<table>
<thead>
<tr>
<th>Direction</th>
<th>Policer/Queue</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>egress</td>
<td>queue 1</td>
<td>unicast</td>
</tr>
<tr>
<td>egress</td>
<td>queue 5</td>
<td>multicast</td>
</tr>
<tr>
<td>egress</td>
<td>queue 8</td>
<td>broadcast</td>
</tr>
<tr>
<td>ingress</td>
<td>policer 1</td>
<td>unicast</td>
</tr>
<tr>
<td>ingress</td>
<td>policer 6</td>
<td>multicast</td>
</tr>
<tr>
<td>ingress</td>
<td>policer 12</td>
<td>broadcast</td>
</tr>
</tbody>
</table>

No. of sFlow counter mappings: 6

Table 93 Show sFlow Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow Status</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td>Displays the configured name for the sFlow receiver.</td>
</tr>
<tr>
<td>Max Data Size</td>
<td>The configured maximum data size for sFlow UDP packets.</td>
</tr>
<tr>
<td>IP Addr Primary</td>
<td>The primary IP address and destination port for sFlow receiver.</td>
</tr>
<tr>
<td>IP Addr Backup</td>
<td>The backup IP address and destination port for sFlow receiver.</td>
</tr>
<tr>
<td>Packets Sent</td>
<td>The number of packets sent successfully to the primary or backup receiver destination, since the destination was configured, CPM card HA switchover, or system reboot.</td>
</tr>
<tr>
<td>Packet Errors</td>
<td>The number of packets that could not be sent to the primary or backup receiver destination because of an error, since the destination was configured, CPM card HA switchover, or system reboot. An example of an error is destination IP not reachable.</td>
</tr>
<tr>
<td>Last Packet Sent</td>
<td>Displays the date and time of the last packet sent.</td>
</tr>
</tbody>
</table>
### Table 93  Show Sflow Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Counter Pollers</strong></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>Displays the port on which sFlow is enabled.</td>
</tr>
<tr>
<td>No. of SAPs</td>
<td>The number of SAPs on the port with sFlow enabled.</td>
</tr>
<tr>
<td>No. of sFlow counter pollers</td>
<td>The number of sFlow counter pollers.</td>
</tr>
<tr>
<td><strong>Counter Mappings</strong></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Displays the direction of traffic (ingress or egress) the map entry applies to.</td>
</tr>
<tr>
<td>Policer/Queue</td>
<td>Displays the policer or queue instance being mapped by sFlow map.</td>
</tr>
<tr>
<td>Traffic type</td>
<td>Displays the type of sFlow traffic statistics (unicast, multicast or broadcast) that the policer/queue maps to.</td>
</tr>
<tr>
<td>No. of sFlow counter mappings</td>
<td>The number of entries in the sFlow ingress and egress counter map.</td>
</tr>
</tbody>
</table>
7 Telemetry

7.1 Telemetry Overview

Telemetry is a network monitoring and fault management framework. It is driven by natural network growth (network volume increases) and the need to use fresh data obtained from the network to make fast networking decisions such as traffic optimization and preventive troubleshooting.

Unlike legacy monitoring platforms such as SNMP, Telemetry does not only rely on collectors to continuously pull data from the network elements. Instead, network devices push and stream data (such as statistics) continuously to collectors based on subscriptions. Collectors can then filter, analyze, store, and make decisions using the collected data from the network devices. Figure 21 illustrates this process.

Figure 21 Telemetry Application
7.2 About Telemetry

Telemetry uses the proprietary NOKIA SR OS YANG data models to stream data that is encoded as Google Protocol Buffers (gPB) messages. Google Remote Procedure Call (gRPC) is the transport used to subscribe to the SR OS device and receive streamed telemetry data. SR OS supports gPB version 3.0.0-b2.

7.2.1 gRPC in Telemetry

The gRPC transport method uses HTTP/2 bidirectional streaming between the gRPC client (the collector) and the gRPC server (the SR OS device). A gRPC session is a single connection from the gRPC client to the gRPC server over the TCP/TLS port. A gRPC session can be used by:

• a gRPC client to send a telemetry subscription request to the gRPC server
• a gRPC server to send asynchronous telemetry data to the gRPC collector

A gRPC channel is a single RPC call.

The gRPC version supported on the SR OS gRPC server is 1.0.1.

The SR OS gRPC encryption and authentication follows the basic conventions described in the OpenConfig gnmi-authentication.md published on github.com (version 0.1.0 from Oct 5, 2016).

TLS encryption is used for added security. The following summarizes the process of encryption and authentication:

• SR OS device authentication
  – The gRPC clients do not share gRPC sessions. Each gRPC client should initially start a separate gRPC session.
  – When a gRPC session is established, the gRPC server certificates are verified by the gRPC client to ensure every gRPC server is authenticated by the gRPC client.
  – When gRPC is shutdown on the gRPC server and a gRPC client is trying to establish a gRPC session, the gRPC client will get an error for every sent RPC.
  – When a gRPC session is established, gRPC is shutdown on the gRPC server, all active RPCs are gracefully terminated, and an error is returned for every active RPC.

• TLS encryption
- The gRPC session should be in an encrypted state before it can be used.
- If the gRPC client and gRPC server are unable to negotiate an encrypted gRPC session, the gRPC session fails and the gRPC server sends an error.
- Fallback from an encrypted to an unencrypted gRPC session is not allowed.

  For information on how to configure TLS with gRPC, see the TLS chapter.

**User authentication**

- Each RPC sent by the gRPC client carries a user/password.
- For the first RPC on the gRPC session, the gRPC server tries to authenticate the user via the specified authentication order; for instance, local user database, RADIUS, or TACACS+.

  For example, if TACACS+ is first in the authentication order, the gRPC server sends a request to the TACACs+ server to authenticate the gRPC user.

- For the subsequent RPCs on that same authenticated gRPC session, the user/password are re-authenticated only if changed.
- When there is no user/password provided with the RPC, the gRPC server returns an error.
- If the RPC user is changed, then any active subscriber RPCs on that same gRPC session are terminated by the gRPC server.
- If the RPC password is changed, then the active gRPC session will continue to exist until a different user/password is sent in a subsequent RPC, or the gRPC session is terminated.
- Each telemetry message is carried over an encrypted gRPC session which was previously encrypted; the session is not re-encrypted.

**Figure 22** shows the telemetry protocol stack.

**Figure 22**  **Telemetry Stack**
The gRPC service runs on port 57400 by default on the SR OS. The service is not configurable.

A single gRPC server supports concurrent gRPC sessions and channels.

- There is a maximum of eight concurrent gRPC sessions for all of the gRPC clients.
- There is a maximum of 225 concurrent gRPC channels for all of the gRPC clients. Because each RPC is a unique channel, the maximum number of subscriptions for all the gRPC clients on a single SR OS device is 225.

Closing a gRPC channel terminates an active Telemetry subscription. A gRPC session that is used by the disconnected subscription is not to be terminated. Closing the entire gRPC session terminates all active Telemetry subscriptions on the disconnected gRPC session.

A Telemetry subscription can be administratively terminated from the CLI. An active gRPC session that is used by the terminated subscription is not terminated. See gRPC Command Reference for command details.

Figure 23 shows a gRPC service using the TLS architecture.
### 7.2.2 Operations Layer

This section summarizes support for subscription requests and subscription responses.

SR OS Telemetry follows the OpenConfig gnmi.proto published on github.com (version 0.3.1, from April 20th, 2017). This model defines the relationship and behavior between the gRPC client and server.

SR OS Telemetry follows the basic conventions described in the OpenConfig gnmi-specification.md published on github.com (version 0.2.2 from March 7th, 2017).

A subscription is initiated from the gRPC client by sending a "Subscribe" RPC that contains a "SubscribeRequest" message to the gRPC server. A "prefix" can be specified to be used with all paths specified in the "SubscribeRequest". If a "prefix" is present then it is logically appended to the start of every "path" to provide a full "path".

A subscription contains:

- a path list of one or more paths. The following conditions apply.
  - A path represents the data tree as a series of repeated strings/elements. Each element represents a data tree node name and its associated attributes.
  - A path should be syntactically valid within the set of schema modules that the gRPC server supports.
  - The path list cannot be modified throughout the lifetime of the subscription.
  - If the subscription path is to a container node, then all children leafs of that container node are considered to be subscribed to.
  - Any specified path must be unique within the list (paths cannot be repeated within the list). An error is returned if the same path is used more than one time in a single subscription.
  - A specified path does not need to pre-exist within the current data tree on the gRPC server. In the case that a particular path does not exist, the gRPC server continues to monitor for the existence of the path, and transmits telemetry updates if the path exist in the future.
  - The gRPC server does not send any data for a non-existing path. For instance, if a path is non-existing at the time of subscription creation or if the path was deleted after the subscription is established.
  - The maximum number of paths per all subscriptions on a single SR OS device is 14400. A path using a wildcard is still considered a single path.

- a subscription mode. The following conditions apply.
- SAMPLE mode is supported for each path, where the gRPC server sends notifications at the specified sampling interval.
- Using “TARGET_DEFINED” mode still means “SAMPLE” mode.

- A sample interval:
  - A sample_interval is supported for each path. A sample interval of 0 means 10 seconds by default. If a sample_interval of less than 10 seconds is specified, the gRPC server returns an error. A sample interval is specified in nanoseconds.

Figure 24 illustrates the SR OS support of a subscription request.

Figure 24  Subscription Request

When a subscription is successfully initiated on the gRPC server, SubscribeResponse message are sent from the gRPC server to the gRPC client. One set of messages is sent with every sample_interval. The SubscribeResponse message contains update notifications as per the subscription's path list.

A sync_response notification is sent one time, after the gRPC server sends all of the updates for the subscribed-to paths. The sync_response must be set to “true” for the gRPC client to consider the stream has synched one time. A sync_response is used to signal the gRPC client that it has a full view of the subscribed-to data.

The gRPC server sends an error if required. The error contains a description of the context of the error.

An update notification contains:

- a timestamp of the statistics collection time, represented in nanoseconds
- a prefix:
  - If a prefix is present, then it is logically appended to the start of every path to provide the full path.
The presence of a prefix in the SubscriptionResponse message is not related to the presence of a prefix in the original SubscriptionRequest message. The prefix in the SubscriptionResponse message is optimized by the gRPC server.

- a list of update path and value pairs
  - A path represents the data tree path as a series of repeated strings or elements, where each element represents a data tree node name and its associated attributes. See the Schema Paths section for more information.
  - The TypedValue message represents the data tree node’s value where encoding is always “JSON”.

**Figure 25** illustrates the SR OS support of a subscription response.

### 7.2.3 Schema Paths

Telemetry subscriptions include a set of schema paths used to identify which data nodes are of interest to the collector.

The paths in Telemetry Subscribe RPC requests follow the basic conventions described in the *OpenConfig gnmi-path-conventions.md* published on github.com (version 0.2.0 from February 24th, 2017).

A path consists of a set of path segments often shown with a ‘/’ character as a delimiter. For example: `configure/router[router-instance=Base]/interface[interface-name=my-interface1]/description`.

These paths are encoded as a set of individual string segments in gnmi.proto (without any ‘/’ characters). For example, `"configure", "router[router-instance=Base]", "interface[interface-name=my-interface1]", "description"`
A path selects an entire subtree of the data model and includes all descendants of
the node indicated in the path. The following table summarizes the types of paths that
are supported in SR OS telemetry:

Table 94  Schema Paths

<table>
<thead>
<tr>
<th>Path example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/configure/router[router-instance=Base]/interface[interface-name=abc]</td>
<td>Selects all config leafs of interface abc and all descendants.</td>
</tr>
<tr>
<td>/configure/router[router-instance=Base]/interface[interface-name=abc]/description</td>
<td>Selects only the description leaf of interface abc.</td>
</tr>
<tr>
<td>/state/router[router-instance=Base]/interface[interface-name=*]</td>
<td>Selects all state information for all Base router interfaces. Wildcard in a single segment of a path.</td>
</tr>
<tr>
<td>/configure/router[router-instance=Base]/interface[interface-name=*]/description</td>
<td>Selects the description leaf for all Base router interfaces. Wildcard in a single segment of a path.</td>
</tr>
<tr>
<td>/</td>
<td>The root path. This selects all config and state data from all models (in all namespaces) supported on the router. Encoded as &quot;&quot; in gRPC/gPB.</td>
</tr>
</tbody>
</table>

The following items describe types of telemetry paths that are not supported in SR OS:

- Wildcards for entire path segments are not supported.
  For example, /state/service/*/oper-status
- If a wildcard is used for any key of a list, then a wildcard must be used for all the keys of that list. In a single path segment, all the keys must either have specific values or all the keys must have wildcards. A mix of wildcards and specific values for different parts of a list key is not supported.
  For example:
  Supported:
  /a/b[key1=*][key2=*]/c[key1=foo]
  /a/b[key1=foo][key2=bar]/c[key1=*]
  Not supported:
  /a/b[key1=foo][key2=*]
- Functions such as 'current()', 'last()' and mathematical operators, such as stat<5 or octets>3 are not supported in paths. The '|' (OR operator, used to select multiple paths) is not supported.
• Wildcards in multiple segments of a path are supported.
  For example: /state/card[slot-number=\*]/mda[mda-slot=\*]
• The ‘//’ wildcard pattern is not supported.
  For example: /state//oper-status
7.3 Telemetry Examples

This section contains examples of Telemetry subscription requests and responses. The following examples are dumps of protobuf messages from a Python API. Formats may vary across different implementations.

Example 1 — Subscribe to a single path

2017-06-05 17:06:13,189 - SENT::SubscribeRequest
subscribe {
  subscription {
    path {
      element: "state"
      element: "router[router-instance=Base]"
      element: "interface[interface-name=test]"
      element: "statistics"
      element: "ip"
      element: "in-packets"
    }
    mode: SAMPLE
    sample_interval: 10000000000
  }
}

2017-06-05 17:06:13,190 - RCVD::SubscribeResponse
2017-06-05 17:06:23,492 - RCVD::Subscribe
2017-06-05 17:06:23,492 - update {
  timestamp: 1496675183491595139
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=test]"
    element: "statistics"
    element: "ip"
  }
  update {
    path {
      element: "in-packets"
    }
    json_val: "0"
  }
}

2017-06-05 17:06:23,494 - RCVD::Subscribe
2017-06-05 17:06:23,494 - sync_response: true

2017-06-05 17:06:23,494 - RCVD::Subscribe
2017-06-05 17:06:23,494 - sync_response: true

2017-06-05 17:06:33,589 - RCVD::Subscribe
2017-06-05 17:06:33,589 - update {
  timestamp: 1496675213491595139
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=test]"
    element: "statistics"
  }
}

2017-06-05 17:06:33,589 - RCVD::Subscribe
2017-06-05 17:06:33,589 - sync_response: true

2017-06-05 17:06:33,589 - RCVD::Subscribe
2017-06-05 17:06:33,589 - sync_response: true
Example 2 — Subscribe to a single path with wild card

2017-06-05 17:08:29,055 - SENT::SubscribeRequest
subscribe {
  subscription {
    path {
      element: "state"
      element: "router[router-instance=Base]"
      element: "interface[interface-name=*]"
      element: "statistics"
      element: "ip"
      element: "in-packets"
    }
    mode: SAMPLE
    sample_interval: 3000000000
  }
}

2017-06-05 17:08:29,056 - RCVD::SubscribeResponse
2017-06-05 17:08:59,133 - RCVD::Subscribe
2017-06-05 17:08:59,133 - update {
  timestamp: 1496675339132056575
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=system]"
    element: "statistics"
    element: "ip"
  }
  update {
    path {
      element: "in-packets"
    }
    val {
      json_val: "0"
    }
  }
}

2017-06-05 17:08:59,135 - RCVD::Subscribe
2017-06-05 17:08:59,135 - update {
  timestamp: 1496675339133006678
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=to_node_B]"
  }
  update {
    path {
      element: "in-packets"
    }
    val {
      json_val: "0"
    }
  }
}
element: "statistics"
  element: "ip"
}
update {
  path {
    element: "in-packets"
  }
  val {
    json_val: "0"
  }
}

2017-06-05 17:08:59,135 - RCVD::Subscribe
2017-06-05 17:08:59,135 - update {
  timestamp: 1496675339133006678
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=to_node_D]"
    element: "statistics"
    element: "ip"
  }
  update {
    path {
      element: "in-packets"
    }
    val {
      json_val: "0"
    }
  }
}

2017-06-05 17:08:59,136 - RCVD::Subscribe
2017-06-05 17:08:59,136 - sync_response: true

2017-06-05 17:09:29,139 - RCVD::Subscribe
2017-06-05 17:09:29,139 - update {
  timestamp: 1496682569121314
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=system]"
    element: "statistics"
    element: "ip"
  }
  update {
    path {
      element: "in-packets"
    }
    val {
      json_val: "0"
    }
  }
}

2017-06-05 17:09:29,142 - RCVD::Subscribe
2017-06-05 17:09:29,142 - update {
  timestamp: 1496682569124342
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
element: "interface[interface-name=to_node_B]"
  element: "statistics"
  element: "ip"
}
update {
  path {
    element: "in-packets"
  }
  val {
    json_val: "0"
  }
}

2017-06-05 17:09:29,145 - RCVD::Subscribe
2017-06-05 17:09:29,145 - update {
  timestamp: 1496682569127344
  prefix {
    element: "state"
    element: "router[router-instance=Base]"
    element: "interface[interface-name=to_node_D]"
    element: "statistics"
    element: "ip"
  }
  update {
    path {
      element: "in-packets"
    }
    val {
      json_val: "0"
    }
  }
}

....

Example 3: Subscribe to more than one path

2017-01-24 12:54:18,228 - SENT::SubscribeRequest
subscribe {
  subscription {
    path {
      element: "state"
      element: "router[router-instance=Base]"
      element: "interface[interface-name=to_node_B]"
    }
    mode: SAMPLE
    sample_interval: 30000000000
  }
  subscription {
    path {
      element: "state"
      element: "router[router-instance=Base]"
      element: "mpls"
      element: "statistics"
      element: "lsp-egress-stats[lsp-name=lsp_to_dest_f]"
    }
    mode: SAMPLE
    sample_interval: 30000000000
  }
}
Example 4: Subscribe to a list with wild card

2017-01-24 13:45:30,947 - SENT::SubscribeRequest
subscribe {
subscription {
    path {
        element: "state"
        element: "router[router-instance=Base]"
        element: "interface[interface-name=*]"
    }
    mode: SAMPLE
    sample_interval: 30000000000
}
}

Example 5: Subscribe to path where the object did not exist before subscription

2017-01-24 13:53:50,165 - SENT::SubscribeRequest
subscribe {
subscription {
    path {
        element: "state"
        element: "router[router-instance=Base]"
        element: "interface[interface-name=to_node_B]"
    }
    mode: SAMPLE
    sample_interval: 30000000000
}
}
2017-01-24 13:54:20,169 - RCVD::Subscribe
2017-01-24 13:54:50,174 - RCVD::Subscribe
    timestamp: 1485262490169309451
    prefix {
        element: "state"
        element: "router[router-instance=Base]"
        element: "interface[interface-name=to_node_B]"
    }
    update {
        ...
        ...
    }
}

Example 6: Subscribe to a path where the object existed before subscription then got deleted after subscription

2017-01-24 14:00:41,292 - SENT::SubscribeRequest
subscribe {
    subscription {
        path {
            element: "state"
            element: "router[router-instance=Base]"
            element: "interface[interface-name=to_node_B]"
        }
        mode: SAMPLE
        sample_interval: 30000000000
    }
}

2017-01-24 14:00:41,294 - RCVD::SubscribeResponse
2017-01-24 14:01:11,295 - RCVD::Subscribe
2017-01-24 14:01:11,295 - update {
    timestamp: 1485262871290064704
    prefix {
        element: "state"
        element: "router[router-instance=Base]"
        element: "interface[interface-name=to_node_B]"
    }
    update {
        ...
        ...
    }
}
2017-01-24 14:01:11,359 - RCVD::Subscribe
2017-01-24 14:01:11,359 - sync_response: true

2017-01-24 14:01:41,293 - RCVD::Subscribe
2017-01-24 14:02:11,296 - RCVD::Subscribe
7.4  gRPC Command Reference

The commands listed in this section apply to the 7950 XRS, 7750 SR-12e, and 7750 SR-7/12 platforms.

7.4.1 Command Hierarchies

7.4.1.1 System Commands

```
config
 system
 grpc
 max-msg-size number
 no max-msg-size
 no shutdown
 tls-server-profile name
 no tls-server-profile
```

7.4.1.2 QoS Commands

```
config
 router
 sgt-qos
 application
 grpc
 dscp dscp-value
```
7.5 Telemetry Configuration Command Descriptions

This section provides Telemetry configuration command descriptions.

7.5.1 Command Descriptions

The topics in this section include:

- System Commands
- QoS Commands

7.5.1.1 System Commands

grpc

<table>
<thead>
<tr>
<th>Syntax</th>
<th>grpc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;system</td>
</tr>
<tr>
<td></td>
<td>config&gt;router&gt;sgt-qos&gt;application</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables the context to configure gRPC parameters.</td>
</tr>
</tbody>
</table>

max-msg-size

<table>
<thead>
<tr>
<th>Syntax</th>
<th>max-msg-size number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no max-msg-size</td>
</tr>
<tr>
<td>Context</td>
<td>config&gt;system&gt;grpc</td>
</tr>
<tr>
<td>Description</td>
<td>This command configures the maximum gRPC rx message size</td>
</tr>
<tr>
<td>Default</td>
<td>max-msg-size 512</td>
</tr>
<tr>
<td>Parameters</td>
<td>number — Specifies the maximum message size in MB.</td>
</tr>
<tr>
<td>Values</td>
<td>1 to 1024</td>
</tr>
</tbody>
</table>
shutdown

Syntax       no shutdown
Context      config>system>grpc
Description   This command disables the gRPC server. The **shutdown** command is not blocked if there are active gRPC sessions. Shutting down gRPC will terminate all active gRPC sessions.

tls-server-profile

Syntax       tls-server-profile name
              no tls-server-profile
Context      config>system>grpc
Description   This command provides the TLS profile name to use for the gRPC server.
Parameters    name — Specifies the tls-server profile name up to 32 characters in length.

7.5.1.2 QoS Commands

dscp

Syntax       dscp {dscp-value | dscp-name}
Context      config>router>sgt-qos>application>grpc
Description   This command configures a DiffServ Code Point (DSCP) name to be used for gRPC.
Parameters    dscp-value — Represents the gRPC traffic class.
              dscp-name — Represents the gRPC traffic class.
7.6 gRPC Show, Admin Command Reference

This section provides the gRPC show and admin command descriptions.

7.6.1 Command Hierarchies

- Show Commands
- Admin Commands

7.6.1.1 Show Commands

```
show
 — system
 — telemetry
 — grpc
 — subscription
 — subscription subscription-id [paths]

show
 — router
 — sgt-qos
 — application
 — grpc
 — dscp
```

7.6.1.2 Admin Commands

```
admin
 — system
 — telemetry
 — grpc
 — subscription subscription-id cancel
 — subscription cancel-all

admin
 — disconnect {grpc}
```
7.6.2 Command Descriptions

- Show Commands
- Admin Commands

7.6.2.1 Show Commands

grpc

Syntax grpc

Context show>system

Description This command displays the gRPC server status.

Output The following output displays gRPC server information.

Table 95 describes gRPC fields.

Sample Output

===============================================================================
gRPC Server
===============================================================================
Administrative State : Disabled
Operational State : Down
===============================================================================

Table 95 Show System gRPC output Fields

<table>
<thead>
<tr>
<th>Labels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gRPC Server</td>
<td></td>
</tr>
<tr>
<td>Administrative State</td>
<td>Enabled — Displays that gRPC is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Displays that gRPC is disabled.</td>
</tr>
<tr>
<td>Operational State</td>
<td>Up — Displays that gRPC is operational.</td>
</tr>
<tr>
<td></td>
<td>Down — Displays that gRPC is not operational.</td>
</tr>
</tbody>
</table>

subscription

Syntax subscription subscription-id [paths]
subscription

Context  show>system>telemetry>grpc

Description  This command displays the active telemetry gRPC subscriptions.

Parameters  subscription-id — A unique subscription ID or number that is assigned by the SR OS gRPC server to each active telemetry subscription.

Output  The following output describes the telemetry gRPC subscription fields.

Sample Output

# /show system telemetry grpc subscription

===============================================================================
<table>
<thead>
<tr>
<th>Telemetry gRPC subscriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription-id</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>192.168.110.252</td>
</tr>
<tr>
<td>192.168.110.252</td>
</tr>
<tr>
<td>No. of gRPC Telemetry subscriptions: 2</td>
</tr>
</tbody>
</table>

# /show system telemetry grpc subscription 2

===============================================================================
<table>
<thead>
<tr>
<th>Telemetry gRPC subscription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription-id : 2</td>
</tr>
<tr>
<td>User : admin</td>
</tr>
<tr>
<td>Destination : 192.168.110.252</td>
</tr>
<tr>
<td>Port : 54309</td>
</tr>
</tbody>
</table>

# /show system telemetry grpc subscription 2 paths

===============================================================================
<table>
<thead>
<tr>
<th>Telemetry gRPC subscription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription-id : 2</td>
</tr>
<tr>
<td>User : admin</td>
</tr>
<tr>
<td>Destination : 192.168.110.252</td>
</tr>
<tr>
<td>Port : 54309</td>
</tr>
<tr>
<td>Paths</td>
</tr>
<tr>
<td>Path : /configure</td>
</tr>
<tr>
<td>Sample interval : 5000 ms</td>
</tr>
<tr>
<td>Finished samples : 15</td>
</tr>
<tr>
<td>Deferred samples : 13</td>
</tr>
<tr>
<td>Total collection time : 13607 ms</td>
</tr>
<tr>
<td>Min collection time : 832 ms</td>
</tr>
<tr>
<td>Avg collection time : 907 ms</td>
</tr>
<tr>
<td>Max collection time : 933 ms</td>
</tr>
</tbody>
</table>
### Telemetry

---

Path: `/state`
- Sample interval: 10000 ms
- Finished samples: 13
- Deferred samples: 0
- Total collection time: 54904 ms
- Min collection time: 4040 ms
- Avg collection time: 4223 ms
- Max collection time: 4296 ms

---

Path: `/state/router[router-instance=Base]/interface[interface-name=system]`
- Sample interval: 2000 ms
- Finished samples: 43
- Deferred samples: 29
- Total collection time: 935 ms
- Min collection time: 15 ms
- Avg collection time: 21 ms
- Max collection time: 30 ms

---

No. of paths: 3

---

#### grpc

**Syntax**
```
syntax grpc
```

**Context**
```
show>router>sgt-qos>application
```

**Description**
This command displays the gRPC router status.

#### dscp

**Syntax**
```
syntax dscp
```

**Context**
```
show>router>sgt-qos>application>grpc
```

**Description**
This command shows the configured DiffServ Code Point (DSCP) name/value for gRPC.

### 7.6.2.2 Admin Commands

#### subscription

**Syntax**
```
syntax subscription subscription-id cancel
```

**Context**
```
admin>system>telemetry>grpc
```

**Description**
This command cancels an active Telemetry subscription.
subscription cancel-all

**Syntax**
```
subscription cancel-all
```

**Context**
```
admin>system>telemetry>grpc
```

**Description**
This command cancels all active Telemetry subscriptions.

disconnect

**Syntax**
```
disconnect {grpc}
```

**Context**
```
admin
```

**Description**
This command disconnects all active gRPC sessions.
8 TLS

8.1 TLS Overview

Transport Layer Security (TLS) is used for two primary purposes:

- authentication of an end device (client or server) using a digital signature (DS)
  TLS uses PKI for device authentication. DSs are used to authenticate the client or the server. The server typically sends a certificate with a DS to the client.
  In certain situations, the server can request a certificate from the client to authenticate it. The client has a certificate (called a Trust Anchor) from the certificate authority (CA) which is used to authenticate server certificate and its DS. After the client provides a digitally signed certificate to the server and both parties are authenticated, the encryption PDUs can then be transmitted.
  When SR OS is acting as a server and it requests a certificate from the client, the client must provide the certificate. If the client fails to provide a certificate for authentication, SR OS will terminate the TLS session. The server TLS settings can be configured to not request certificates, in which case the client is not obligated to send the server a certificate for authentication.

- encryption and authentication of application PDUs
  After the clients and server have been successfully authenticated, the cipher suite is negotiated between the server and clients, and the PDUs will be encrypted based on the agreed cipher protocol.
8.2 TLS Server Interaction with Applications

TLS is a standalone configuration. The user must configure TLS server profiles with certificates and trust anchors, and then assign the TLS server profiles to the appropriate applications. When a TLS server profile is assigned to an application, the application should not send any clear text PDUs until the TLS handshake has been successfully completed and the encryption ciphers have been negotiated between the TLS server and the TLS client.

After successful negotiation and handshake, the TLS will be operationally up, and the TLS will notify the application which will begin transmitting PDUs. These PDUs will be encrypted using TLS based on the agreed ciphers. If, at any point, the TLS becomes operationally down, the application should stop transmitting PDUs.

For example, a TLS connection with the gMI application would operate as follows:

1. A TLS server profile is assigned to the gMI application.
2. gMI stops sending clear text PDUs because a TLS server profile has been assigned and TLS is not ready to encrypt.
3. The TLS server begins the handshake.
4. Authentication occurs at the TLS layer.
5. The TLS server and TLS client negotiate ciphers.
6. SALTs are negotiated for the symmetric key. A SALT is a seed for creating AES encryption keys.
7. When negotiations are successfully completed, the handshake finishes and gMI is notified.
8. TLS becomes operationally up, and gMI can resume transmitting PDUs. Until TLS becomes operationally up, gMI PDUs arriving from the client are dropped on ingress.

8.2.1 TLS Application Support

Table 96 lists the applications that support TLS.

<table>
<thead>
<tr>
<th>Application</th>
<th>TLS Server Supported</th>
<th>TLS Client Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>GRPC</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
8.3 TLS Handshake

Figure 26 shows the TLS handshake.

Figure 26  TLS Handshake

Table 97 further describes the steps in the TLS handshake.

Table 97  TLS Handshake Step Descriptions

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The TLS handshake begins with the client Hello message. This message includes the cipher list that the client wishes to use and negotiate, among other information.</td>
</tr>
<tr>
<td>2</td>
<td>The TLS server sends back a server Hello message, along with the first common cipher found on both the client cipher list and the server cipher list. This agreed cipher will be used for data encryption.</td>
</tr>
<tr>
<td>3</td>
<td>The TLS server continues by sending a server certificate message, where the server provides a certificate to the client so that the client can authenticate the server identity. The public key of this certificate (RSA key) can also be used for encryption of the symmetric key seed that will be used by the client and server to create the symmetric encryption key. This occurs only if the PKI is using RSA for asymmetric encryption.</td>
</tr>
<tr>
<td>4</td>
<td>Server key exchange is not supported by SR OS. SR OS only uses RSA keys; Diffie-Hellman key exchange is not supported.</td>
</tr>
</tbody>
</table>
After a successful handshake, TLS will be operationally up, and applications can then use it for application encryption.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The server can optionally be configured to request a certificate from the client to authenticate the client.</td>
</tr>
<tr>
<td>6</td>
<td>If the server has requested a certificate, the client should provide a certificate using a client certificate message. If the client does not provide a certificate, the server will drop the TLS session.</td>
</tr>
<tr>
<td>7</td>
<td>The client uses the server public RSA key that was included in the server certificate to encrypt a seed used for creating the symmetric key. This seed is used by the client and server to create the identical symmetric key for encrypting and decrypting the data plane traffic.</td>
</tr>
<tr>
<td>8</td>
<td>The client sends a cipher spec to switch encryption to this symmetric key.</td>
</tr>
<tr>
<td>9</td>
<td>The client successfully finishes the handshake.</td>
</tr>
<tr>
<td>10</td>
<td>The server sends a cipher spec to switch encryption to this symmetric key.</td>
</tr>
<tr>
<td>11</td>
<td>The server successfully finishes the handshake.</td>
</tr>
</tbody>
</table>
8.4 TLS Client Certificate

TLS protocol is used for authentication, and as such, the server can ask to authenticate the client via PKI. If the server requests authentication from the client, the client must provide an X.509v3 certificate to the server so that it can be authenticated via the digital signature of its client. SR OS allows the configuration of an X.509v3 certificate for TLS clients. When the server requests a certificate via the server's Hello message, the client will transmit its certificate to the server using a client certificate message.
8.5 TLS Symmetric Key Rollover

SR OS supports key rollover via HelloRequest messages as detailed in RFC 5246, section 7.4.1.1. Some applications have a longer live time than other applications, in which case SR OS can use a timer that prompts the HelloRequest negotiation for the symmetric key rollover. This timer is configurable using CLI.

If an application does not support the HelloRequest message, the `no tls-re-negotiate-timer` command should be configured under the `config>system>security>tls` context. For example, the GRPC application does not support HelloRequest messages.

When `no tls-re-negotiate-timer` is configured, the HelloRequest message is not generated, and symmetric keys are not renegotiated.
8.6 Supported TLS Ciphers

As shown in Figure 26, TLS negotiates the supported ciphers between the client and the server.

The client sends the supported cipher suites in the client Hello message and the server compares them with the server cipher list. The top protocol on both lists is chosen and returned from the server within the server Hello message.

The 7750 SR supports the following ciphers as a TLS client or TLS server:

- tls-rsa-with-null-md5
- tls-rsa-with-null-sha
- tls-rsa-with-null-sha256
- tls-rsa-with3des-ede-cbc-sha
- tls-rsa-with-aes128-cbc-sha
- tls-rsa-with-aes256-cbc-sha
- tls-rsa-with-aes128-cbc-sha256
- tls-rsa-with-aes256-cbc-sha256
8.7 **SR OS Certificate Management**

SR OS implements a centralized certificate management protocol that can be used by TLS and IPSec. Refer to the *7450 ESS and 7750 SR Multiservice Integrated Service Adapter Guide* for information about the configuration of the certificates and the corresponding protocols, such as OCSP, CMPv2, and CRL.

The main certificate configurations are:

- certificate configuration and management, configured using the `admin>certificate` commands
- PKI configuration (including creating a CA profile), configured using the `config>system>security>pki` commands

The two main configuration sub-trees for certificates are displayed below. See *Public Key Infrastructure (PKI) Commands* for more information.

**CLI Syntax:**

```
admin>certificate
 clear-ocsp-cache
cmpv2
crl-update
display
export
gen-keypair
gen-local-cert-req
import
reload

config>system>security>pki
 [no] ca-profile
certificate-display-format
 [no] certificate-expiration-warning
 [no] crl-expiration-warning
 [no] maximum-cert-chain-depth
```

**8.7.1 Certificate Profile**

The certificate profile is available for both the TLS server and the TLS client. The `cert-profile` command is configured for the server or client to transmit the provider certificate and its DS to the peer so that the peer can authenticate it via the trust-anchor and CA certificate.
Multiple provider certificates can be configured on SR OS; however, SR OS currently uses the smallest index as the active provider certificate, and will only send the certificate to the peer.

8.7.2 TLS Server Authentication of the Client Certificate CN Field

If the client provides a certificate upon request by the server, SR OS checks the certificate’s common name (CN) field against local CN configurations. The CN is validated via the client IPv4/IPv6 address or FQDN.

If `cn-authentication` is not enabled, SR OS will not authenticate via the CN field and will only rely on certificate signature authentication.

8.7.3 CN Regexp Format

CN entries are configured by using the `config>system>security>pki>common-name-list` command. Entries should use regular expression (regexp), FQDN, or the IP address.

For information about regexp, refer to the 7450 ESS, 7750 SR, and 7950 XRS Basic System Configuration Guide, “CLI Usage”.
8.8 Operational Guidelines

8.8.1 Server Authentication Behavior

Following the Hello messages, the server sends its certificate in a certificate message if it is to be authenticated. If required, a ServerKeyExchange message may also be sent. Refer to RFC 5246, section 7.3, for more information about the authentication behavior on the LDAP server.

The `trust-anchor-profile` command determines whether or not the server must be authenticated by the client.

CLI Syntax:  
```
config>system>security>tls
 client-tls-profile ldap create
 [no] trust-anchor-profile
```

Note: If the `trust-anchor-profile` is configured and the `ca-certificate` or `ca-profile` is missing from this `trust-anchor-profile`, the TLS connection will fail and an "unknown_ca" error will be generated, as per RFC 5246 section 7.2.2.

One of the following two configurations can be used to establish server connectivity.

a. If `trust-anchor-profile` is configured under the TLS `client-tls-profile` context, the server must be authenticated via the `trust-anchor-profile` command before a trusted connection is established between the server and the client.

b. If there is no `trust-anchor-profile` under the `client-tls-profile` context, the trusted connection can be established without server authentication. The RSA key of the certificate will be used for public key encryption, requiring basic certificate checks to validate the certificate. These basic checks are:
   - time validity—the certificate is checked to ensure that it is neither expired nor not yet valid
   - certificate type—the certificate is not a CA certificate
   - keyUsage extension—if present, this must contain a digital signature and key encryption
   - host verification—the IP address or DNS name of the server is looked up, if available (for LDAP, only the IP address is used), in the common name (cn) or subjectAltName extension. This is to verify that the certificate was issued to that server and not to another.
8.8.2 Client TLS Profile and Trust Anchor Behavior and Scale

SR OS allows the creation of client TLS profiles, which can be assigned to applications such as LDAP to encrypt the application layer.

The `client-tls-profiles` command is used for negotiating and authenticating the server. After the server is authenticated via the trust anchor profile (configured using the `trust-anchor-profile` command) of a client TLS profile, it negotiates the ciphers and authentication algorithms to be used for encryption of the data.

The client TLS profile must be assigned to an application for it to start encrypting. Up to 16 client TLS profiles can be configured. Because each of these client TLS profiles needs a trust anchor profile to authenticate the server, up to 16 trust anchor profiles can be configured. A trust anchor profile holds up to 8 trust anchors (configured using the `trust-anchor` command), which each hold a CA profile (`ca-profile`).

A CA profile is a container for installing CA certificates (`ca-certificates`). These CA certificates are used to authenticate the server certificate. When the client receives the server certificate, it reads through the trust anchor profile CA certificates and tries to authenticate the server certificate against each CA certificate. The first CA certificate that authenticates the server is used.
8.9 LDAP Redundancy and TLS

LDAP supports up to five redundant (backup) servers, as shown in Figure 27 and the configuration examples below. Depending on the timeout and retry configurations, if an LDAP server is determined to be out of service or operationally down, SR OS will switch to the redundant servers. SR OS will select the LDAP server with the next largest configured server index.

Figure 27 LDAP and TLS Redundancy

Configuration of Server-1:

```
A*:SwSim14>config>system>security>ldap# info
 public-key-authentication
 server 1 create
 address 1.1.1.1
 ldap-server "active-server"
 tls-profile "server-1-profile"

A*:SwSim14>config>system>security>tls# info
 client-tls-profile "server-1-profile" create
 cipher-list "to-active-server"
 trust-anchor-profile "server-1-ca"
 no shutdown
 exit
```

Configuration of Server-5 (backup):

```
A*:SwSim14>config>system>security>ldap# info
 public-key-authentication
 server 5 create
 address 5.5.5.1
```
Each LDAP server can have its own TLS profile, each of which can have its own configuration of trust-anchor and cipher-list. For security reasons, the LDAP servers may be in different geographical areas and, as such, each will be assigned its own server certificate and trust anchor. The design is open to allow the user to mix and match all components.
8.10 Basic TLS Configuration

Basic TLS server configuration must have the following:

- a cipher list created using the `config>system>security>tls>server-cipher-list` command, and assigned to the TLS server profile using the `config>system>security>tls>server-tls-profile>cipher-list` command
- a certificate profile created using the `config>system>security>tls>cert-profile` command, and assigned to the TLS server profile using the `config>system>security>tls>server-tls-profile>cert-profile` command

Basic TLS client configuration must have a cipher list created using the `config>system>security>tls>client-cipher-list` command, and assigned to the TLS client profile using the `config>system>security>tls>client-tls-profile>cipher-list` command.

TLS imports the trust anchor certificate for (TLS) peer certificate authentication and public key retrieval.

The following displays the CLI syntax for TLS:

**CLI Syntax:**

```
config>system>security>tls
 cert-profile profile-name [create]
 no cert-profile profile-name
 client-cipher-list name [create]
 no client-cipher-list name
 client-tls-profile name [create]
 no client-tls-profile name
 server-cipher-list name [create]
 no server-cipher-list name
 server-tls-profile name [create]
 no server-tls-profile name
 trust-anchor-profile name [create]
 no trust-anchor-profile name
```

The following displays a TLS configuration example.

```
config>system>security>tls# info
--
trust-anchor-profile "server-1-ca" create
 trust-anchor "tls-server-1-ca"
exit
client-cipher-list "to-active-server" create
cipher 1 name tls-rsa-with-aes256-cbc-sha256
cipher 2 name tls-rsa-with-aes128-cbc-sha256
cipher 3 name tls-rsa-with-aes256-cbc-sha256
exit
client-tls-profile "server-1-profile" create
```
cipher-list "to-active-server"
trust-anchor-profile "server-1-ca"
no shutdown
exit
--------------------------------------------------
8.11 Common Configuration Tasks

8.11.1 Configuring a Server TLS Profile

The following displays the CLI syntax for a server TLS profile.

**CLI Syntax:***
```
cfg>system>security>tls
server-tls-profile name [create]
no server-tls-profile name
authenticate-client
 trust-anchor-profile ca-profile-name
 no trust-anchor-profile
cert-profile name
no cert-profile
cipher-list name
no cipher-list
[no] shutdown
tls-re-negotiate-timer [0 to 65000]	no tls-re-negotiate-timer
```

8.11.2 Configuring a Client TLS Profile

The following displays the CLI syntax for a client TLS profile, which also configures the server authentication behavior:

**CLI Syntax:***
```
cfg>system>security>tls
client-tls-profile name [create]
no client-tls-profile name
trust-anchor-profile name
no trust-anchor-profile
```

8.11.3 Configuring a TLS Client or TLS Server Certificate

The following displays the CLI syntax for TLS certificate management:

**CLI Syntax:***
```
cfg>system>security>tls
cert-profile profile-name [create]
no cert-profile profile-name
 entry entry-id [create]
 no entry entry-id
```
.cert cert-filename
no cert
key key-filename
no key
[no] send-chain
[no] ca-profile name

[no] shutdown
client-tls-profile name [create]
no client-tls-profile name
cert-profile name
no cert-profile
server-tls-profile name [create]
no server-tls-profile name
cert-profile name
no cert-profile

8.11.4 Configuring a TLS Trust Anchor

The following displays the CLI syntax for a TLS trust anchor:

**CLI Syntax:**
```
config>system>security>pki
[no] ca-profile
certificate-display-format
[no] certificate-expiration-warning hours
[no] crl-expiration-warning
[no] maximum-cert-chain-depth
```
```
config>system>security>tls
[no] trust-anchor-profile
[no] client-tls-profile
[no] cipher-list
[no] shutdown
[no] trust-anchor-profile-profile
```

The following displays a TLS trust anchor configuration example:

```
*B:SeGW-1>config>system>security>pki# info
--
ca-profile "tls-server-1-ca" create
cert-file "tls-1-Root-CERT"
crl-file "tls-1-CRL-CERT"
no shutdown
exit
--

*A:SwSim8>config>system>security>tls# info
--
trust-anchor-profile "server-1-ca" create
trust-anchor "tls-server-1-ca"
```

exit
client-tls-profile "server-1-profile" create
cipher-list "to-active-server"
  trust-anchor-profile "server-1-ca"
  no shutdown
exit
8.12 TLS Command Reference

8.12.1 Command Hierarchies

- Security TLS Commands
- LDAP TLS Profile Commands
- Admin Commands

8.12.1.1 Security TLS Commands

```
config
 system
 security
 tls
 cert-profile profile-name [create]
 no cert-profile profile-name
 entry entry-id [create]
 no entry entry-id
 cert cert-filename
 no cert
 key key-filename
 no key
 [no] send-chain
 [no] ca-profile name
 [no] shutdown
 client-cipher-list name [create]
 no client-cipher-list name
 cipher index name cipher-suite-code
 no cipher index
 client-tls-profile name [create]
 no client-tls-profile name
 cert-profile name
 no cert-profile
 cipher-list name
 no cipher-list
 [no] shutdown
 trust-anchor-profile name
 no trust-anchor-profile
 server-cipher-list name [create]
 no server-cipher-list name
 cipher index name cipher-suite-code
 no cipher index
 server-tls-profile name [create]
 no server-tls-profile name
 authenticate-client
```
8.12.1.2 LDAP TLS Profile Commands

config
  — system
    — security
      — ldap
        — server server-index [create]
        — no server server-index
          — tls-profile tls-profile-name
          — no tls-profile

8.12.1.3 Admin Commands

admin
  — certificate
    — reload type {cert | key | cert-key-pair} filename protocol protocol [key-file filename]

8.12.2 Command Descriptions

This section provides the CLI command descriptions.

8.12.2.1 Security TLS Commands

tls

Syntax  tls
### Context
config>system>security

### Description
This command configures TLS parameters.

## cert-profile

**Syntax**
```
cert-profile profile-name [create]
no cert-profile profile-name
```

**Context**
config>system>security>tls

**Description**
This command configures TLS certificate profile information. The certificate profile contains the certificates that are sent to the TLS peer (server or client) to authenticate itself. It is mandatory for the TLS server to send this information. The TLS client may optionally send this information upon request from the TLS server.

The **no** form of the command deletes the specified TLS certificate profile.

**Parameters**
- `profile-name` — Specifies the name of the TLS certificate profile, up to 32 characters in length.
- `create` — Keyword used to create the TLS certificate profile.

## entry

**Syntax**
```
entry entry-id [create]
no entry entry-id
```

**Context**
config>system>security>tls>cert-profile

**Description**
This command configures an entry for the TLS certificate profile. A certificate profile may have up to eight entries. Currently, TLS uses the entry with the smallest ID number when responding to server requests.

The **no** form of the command deletes the specified entry.

**Parameters**
- `entry-id` — Specifies the identification number of the TLS certificate profile entry.
- `Values` 1 to 8
- `create` — Keyword used to create the TLS certificate profile entry.

## cert

**Syntax**
```
cert cert-filename
no cert
```

**Context**
config>system>security>tls>cert-profile>entry
Description
This command specifies the file name of an imported certificate for the cert-profile entry. The no form of the command removes the certificate.

Default
no cert

Parameters
 cert-filename — Specifies the file name of the TLS certificate, up to 95 characters in length.

key

Syntax
key key-filename
no key

Context
config>system>security>tls>cert-profile>entry

Description
This command specifies the file name of an imported key for the cert-profile entry. The no form of the command removes the key.

Default
no key

Parameters
 key-filename — Specifies the file name of the key.

send-chain

Syntax
[no] send-chain

Context
config>system>security>tls>cert-profile>entry

Description
This command enables the sending of certificate authority (CA) certificates, and enters the context to configure send-chain information.

By default, the system only sends the TLS server certificate or TLS client certificate specified by the cert command. If CA certificates are to be sent using send-chain, they must be in the chain of certificates specified by the config>system>security>pki>ca-profile command. The specification of the send-chain is not necessary for a working TLS profile if the TLS peer has the CA certificate used to sign the server or client certificate in its own trust anchor.

For example, given a TLS client running on SR OS, the ROOT CA certificate resides on the TLS server, but the subsequent SUB-CA certificate needed to complete the chain resides within SR OS. The send-chain command allows these SUB-CA certificates to be sent from SR OS to the peer to be authenticated using the ROOT CA certificate that resides on the peer.

The no form of the command disables the send-chain.

Default
no send-chain
ca-profile

Syntax  
[no] ca-profile name

Context  
config>system>security>tls>cert-profile>entry>send-chain

Description  
This command enables a certificate authority (CA) certificate in the specified CA profile to be sent to the peer. Up to seven configurations of this command are permitted in the same entry.

The no form of the command disables the transmission of a CA certificate from the specified CA profile.

Parameters  
name — Specifies the name of the certificate authority profile, up to 32 characters in length.

shutdown

Syntax  
[no] shutdown

Context  
config>system>security>tls>cert-profile

Description  
This command disabled the certificate profile. When the certificate profile is disabled, it will not be sent to the TLS server.

The no form of the command enables the certificate profile and allows it to be sent to the TLS server.

Default  
shutdown

client-cipher-list

Syntax  
client-cipher-list name [create]  
no client-cipher-list name

Context  
config>system>security>tls

Description  
This command creates a cipher list that the client sends to the server in the client Hello message. It is a list of ciphers that are supported and preferred by the SR OS to be used in the TLS session. The server matches this list against the server cipher list. The most preferred cipher found in both lists is chosen.

Parameters  
name — Specifies the name of the client cipher list, up to 32 characters in length.  
create — Keyword used to create the client cipher list.
cipher

Syntax  cipher  index  name  cipher-suite-code
no cipher  index

Context  config>system>security>tls>client-cipher-list
config>system>security>tls>server-cipher-list

Description  This command configures the cipher suite to be negotiated by the server and client.

Parameters  index  —  Specifies the index number. The index number provides the location of the cipher in the negotiation list, with the lower index numbers being higher in the negotiation list and the higher index numbers being at the bottom of the list.

Values  1 to 255

cipher-suite-code  —  Specifies the cipher suite code.

Values  
tls-rsa-with-null-md5
tls-rsa-with-null-sha
tls-rsa-with-null-sha256
tls-rsa-with-3des-ede-cbc-sha
tls-rsa-with-aes128-cbc-sha
tls-rsa-with-aes256-cbc-sha
tls-rsa-with-aes128-cbc-sha256
tls-rsa-with-aes256-cbc-sha256

client-tls-profile

Syntax  client-tls-profile  name  [create]
no client-tls-profile  name

Context  config>system>security>tls

Description  This command configures the TLS client profile to be assigned to applications for encryption.

Parameters  name  —  Specifies the name of the client TLS profile, up to 32 characters in length.

create  —  Keyword used to create the client TLS profile.

cipher-list

Syntax  cipher-list  name
no cipher-list

Context  config>system>security>tls>client-tls-profile
Description
This command assigns the cipher list to be used by the TLS client profile for negotiation in the client Hello message.

Parameters
name — Specifies the name of the cipher list.

shutdown

Syntax
[no] shutdown

Context
config>system>security>tls>client-tls-profile
config>system>security>tls>server-tls-profile

Description
This command administratively enables or disables the TLS profile. If the TLS profile is shut down, the TLS operational status will be down. Therefore, if the TLS profile is shut down, any application using TLS should not attempt to send any PDUs.

trust-anchor-profile

Syntax
trust-anchor-profile name
no trust-anchor-profile

Context
config>system>security>tls>client-tls-profile
config>system>security>tls>server-tls-profile>authenticate-client

Description
This command assigns the trust anchor used by this TLS profile to authenticate the server or client.

The no form of the command removes the configured trust anchor profile.

Parameters
name — Specifies the name of the trust anchor profile.

server-cipher-list

Syntax
server-cipher-list name [create]
no server-cipher-list name

Context
config>system>security>tls

Description
This command creates the cipher list that is compared against cipher lists sent by the client to the server in the client hello message. The list contains all ciphers that are supported and desired by SR OS for use in the TLS session. The first common cipher found in both the server and client cipher lists will be chosen. As such, the most desired ciphers should be added at the top of the list.

The no form of the command removes the cipher list.

Parameters
name — Specifies the name of the server cipher list, up to 32 characters in length.
server-tls-profile

Syntax

server-tls-profile name [create]
no server-tls-profile name

Context
config>system>security>tls

Description
This command creates a TLS server profile. This profile can be used by applications that support TLS for encryption. The applications should not send any PDUs until the TLS handshake has been successful.

The no form of the command removes the TLS server profile.

Parameters
name — Specifies the name of the TLS server profile, up to 32 characters in length.
create — Keyword used to create the TLS server profile.

authenticate-client

Syntax
authenticate-client

Context
config>system>security>tls>server-tls-profile

Description
This command enters the context to configure client authentication parameters.

cert-profile

Syntax
cert-profile name
no cert-profile

Context
config>system>security>tls>client-tls-profile

Description
This command assigns a TLS certificate profile to be used by the TLS client profile. This certificate is sent to the server for authentication of the client and public key.

The no form of the command removes the TLS certificate profile assignment.

Parameters
name — Specifies the name of the TLS certificate profile, up to 32 characters in length.

cert-profile

Syntax
cert-profile name
no cert-profile
Cipher-list

**Syntax**
cipher-list *name*

no cipher-list

**Context**
cfg-system-security-tls-server-tls-profile

**Description**
This command assigns a cipher list to be used by the TLS server profile. This cipher list is used to find matching ciphers with the cipher list that is received from the client.

The no form of the command removes the cipher list.

**Parameters**

*name* — Specifies the name of the cipher list, up to 32 characters in length.

Tls-re-negotiate-timer

**Syntax**
tls-re-negotiate-timer *timer-min*

no tls-re-negotiate-timer

**Context**
cfg-system-security-tls-server-tls-profile

**Description**
This command configures the timed interval after which the server is triggered to send a Hello request message to all clients and force a renegotiation of the symmetric encryption key. When an interval of 0 is configured, the server will never send a hello request message.

**Default**
Tls-re-negotiate-timer 0

**Parameters**

*timer-min* — Specifies the interval, in minutes, after which the server is triggered to send a Hello request message.

**Values**
0 to 65000

Trust-anchor-profile

**Syntax**
trust-anchor-profile *name* [create]

no trust-anchor-profile *name*

**Context**
cfg-system-security-tls
**trust-anchor**

**Syntax**

\[ \text{trust-anchor } ca-profile-name \]

**Context**

config>system>security>tls>trust-anchor-profile

**Description**

This command configures a trust anchor with a CA profile used by the TLS profile. Up to eight CA profiles can be configured under the trust anchor. TLS will read the CA profiles one by one to try to authenticate the server certificate.

**Parameters**

- **ca-profile-name** — Specifies the name of the TLS trust anchor, up to 32 characters in length.

**8.12.2.2 LDAP TLS Profile Commands**

**server**

**Syntax**

\[ \text{server server-index [create]} \]
\[ \text{no server server-index} \]

**Context**

config>system>security>ldap

**Description**

This command adds or removes an LDAP server.

**Parameters**

- **server-index** — Specifies the server index.
  - **Values**
    - 1 to 5
  - **create** — Keyword used to create the server index.
This command assigns a TLS profile to the LDAP application. When a TLS profile is assigned, the LDAP application will send encrypted PDUs from the client to the LDAP server. If TLS is operationally down, the LDAP application should not send any PDUs.

Parameters

tls-profile-name — Specifies the name of the TLS client transport profile.

8.12.2.3 Admin Commands

reload

Syntax

reload type {cert | key | cert-key-pair} filename protocol protocol [key-file filename]

Context

admin>certificate

Description

This command manually reloads the certificate or key cache.

Parameters

type — Specifies what item will be reloaded.

cert — Specifies that a certificate cache will be reloaded.

key — Specifies that a key cache will be reloaded.

cert-key-pair — Specifies that a paired certificate and key cache will be reloaded.

filename — Up to 95 characters.

protocol — Specifies which protocol the certificate will be reloaded for.

Values

ipsec, tls
8.13 TLS Show Command Reference

8.13.1 Command Hierarchies

- Show Commands

8.13.1.1 Show Commands

show
  — system
    — security
      — tls
        — cert-profile name association
        — cert-profile [name]
        — cert-profile name entry entry
        — client-tls-profile [client-tls-profile]
        — client-tls-profile client-tls-profile association
        — server-tls-profile [server-tls-profile]
        — server-tls-profile server-tls-profile association
        — trust-anchor-profile [trust-anchor-profile]
        — trust-anchor-profile trust-anchor-profile association

8.13.2 Command Descriptions

- Show Commands

8.13.2.1 Show Commands

The command outputs in the following section are examples only; actual displays may differ depending on supported functionality and user configuration.

tls

Syntax   tls
Context  show>system>security
Description This command enables the context to display TLS-related information.
cert-profile

Syntax

- `cert-profile` [name]
- `cert-profile name association`
- `cert-profile name entry entry`

Context

`show>system>security>tls`

Description

This command displays information about server and client profiles that are using this certificate profile.

Parameters

- `entry` — Specifies a certificate profile entry number for which to display information.
  - **Values** 1 to 8
- `name` — Specifies the name of a certificate profile for which to display information.

client-tls-profile

Syntax

- `client-tls-profile` [client-tls-profile]
- `client-tls-profile client-tls-profile association`

Context

`show>system>security>tls`

Description

This command displays TLS client profile information.

Parameters

- `client-tls-profile` — Specifies the client TLS profile, up to 32 characters maximum.

Output

The following output is an example of TLS client profile information.

Sample Output

```
*A:Dut-C> show system security tls client-tls-profile
###
Client Profile Information
###
Name AdminState OperState

ctp up up
ctp-alt1 up up
ctp-alt2 up up

*A:Dut-C> show system security tls client-tls-profile *ctp*
###
Client Profile Entry *ctp*
###
Cipher List Name : cl_all
Trust Anchor Profile Name : tap
```

server-tls-profile

Syntax

server-tls-profile [server-tls-profile]
server-tls-profile server-tls-profile association

Context show>system>security>tls

Description This command displays TLS server profile information.

Parameters server-tls-profile — Specifies the name of a TLS server profile for which to display information, up to 32 characters maximum.

trust-anchor-profile

Syntax

trust-anchor-profile [trust-anchor-profile]
trust-anchor-profile trust-anchor-profile association

Context show>system>security>tls

Description This command displays information about server and client profiles that are using the specified TLS trust anchor profile.

Parameters trust-anchor-profile — Specifies the trust anchor profile, up to 32 characters maximum.

Output

The following output is an example of trust anchor profile information.

Sample Output

*A:Dut-C> show system security tls trust-anchor-profile
===============================================================================
Trust Anchor Profile Information
===============================================================================
<table>
<thead>
<tr>
<th>Name</th>
<th>CA Profiles Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>tap</td>
<td>0</td>
</tr>
<tr>
<td>tap-alt1</td>
<td>0</td>
</tr>
<tr>
<td>tap-alt2</td>
<td>0</td>
</tr>
<tr>
<td>tap-empty</td>
<td>0</td>
</tr>
</tbody>
</table>

*A:Dut-C> show system security tls trust-anchor-profile "tap"
===============================================================================
CA-profile List for Trust Anchor "tap"
===============================================================================
<table>
<thead>
<tr>
<th>CA Profile Name</th>
<th>AdminState</th>
<th>OperState</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainA_l1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>revChainA_l1</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

*A:Dut-C>show>tls#
9 Facility Alarms

9.1 Facility Alarms Overview

Facility Alarms provide a useful tool for operators to easily track and display the basic status of their equipment facilities. Facility Alarm support is intended to cover a focused subset of router states that are likely to indicate service impacts (or imminent service impacts) related to the overall state of hardware assemblies (cards, fans, links, and so on).

In the CLI, for brevity, the keyword or command `alarm` is used for commands related to Facility Alarms. This chapter may occasionally use the term `alarm` as a short form for `facility alarm`.

The CLI display for `show` routines allows the system operator to easily identify current facility alarm conditions and recently cleared facility alarms without searching event logs or monitoring various card and port show commands to determine the health of basic equipment in the system such as cards and ports.

The SR OS alarm model is based on RFC 3877, *Alarm Management Information Base (MIB)*, (which evolved from the IETF Disman drafts).
9.2 Facility Alarms vs. Log Events

Facility Alarms are different than log events. Facility Alarms have a state (at least two states: active and clear) and a duration, and can be modeled with state transition events (raised, cleared). A log event occurs when the state of some object in the system changes. Log events notify the operator of a state change (for example, a port going down, an IGP peering session coming up, and so on). Facility alarms show the list of hardware objects that are currently in a bad state. Facility alarms can be examined at any time by an operator, whereas log events can be sent by a router asynchronously when they occur (for example, as an SNMP notification or trap, or a syslog event).

While log events provide notifications about a large number of different types of state changes in SR OS, facility alarms are intended to cover a focused subset of router states that are likely to indicate service impacts (or imminent service impacts) related to the overall state of hardware assemblies (cards, fans, links, and so on).

The facility alarm module processes log events in order to generate the raised and cleared state for the facility alarms. If a raising log event is suppressed under event-control, then the associated facility alarm will not be raised. If a clearing log event is suppressed under event-control, then it is still processed for the purpose of clearing the associated facility alarm. If a log event is a raising event for a Facility Alarm, and the associated Facility Alarm is raised, then changing the log event to suppress will clear the associated Facility Alarm.

Log event filtering, throttling and discarding of log events during overload do not affect facility alarm processing. In all cases, non-suppressed log events are processed by the facility alarm module before they are discarded.

Figure 28 illustrates the relationship of log events, facility alarms and the LEDs.
Facility Alarms are different and independent functionality from other uses of the term alarm in SR OS such as:

- Log events that use the term **alarm** (tmnxEqPortSonetAlarm)
- **configure card fp hi-bw-mcast-src [alarm]**
- **configure mcast-management multicast-info-policy bundle channel source-override video analyzer alarms**
- **configure port ethernet report-alarm**
- **configure system thresholds no memory-use-alarm**
- **configure system thresholds rmon no alarm**
- **configure system security cpu-protection policy alarm**
9.3 Facility Alarm Severities and Alarm LED Behavior

The Alarm LEDs on the CPM/CCM reflects the current status of the Facility Alarms:

• The Critical Alarm LED is lit if there is 1 or more active Critical Facility Alarms
• Similarly with the Major and Minor alarm LEDs
• The OT Alarm LED is not controlled by the Facility Alarm module

The supported alarm severities are as follows:

• Critical (with an associated LED on the CPM/CCM)
• Major (with an associated LED on the CPM/CCM)
• Minor (with an associated LED on the CPM/CCM)
• Warning (no LED)

Facility alarms inherit their severity from the raising log event.

A raising log event for a facility alarm configured with a severity of indeterminate or cleared will result in the facility alarm not being raised. But, a clearing log event is processed in order to clear facility alarms, regardless of the severity of the clearing log event.

Changing the severity of a raising log event only affects subsequent occurrences of that log event and facility alarms. Facility alarms that are already raised when their raising log event severity is changed maintain their original severity.
9.4 Facility Alarm Hierarchy

Facility Alarms for children objects is not raised for failure of a parent object. For example, when an MDA or XMA fails (or is shutdown) there is not a set of port facility alarms raised.

When a parent facility alarm is cleared, children facility alarms that are still in occurrence on the node appears in the active facility alarms list. For example, when a port fails there is a port facility alarm, but if the MDA or XMA is later shutdown the port alarm is cleared (and a card alarm will be active for the MDA or XMA). If the MDA or XMA comes back into service, and the port is still down, then a port alarm becomes active once again.

The supported facility alarm hierarchy is as follows (parent objects that are down cause alarms in all children to be masked):

- CPM -> Compact Flash
- CCM -> Compact Flash
- IOM/IMM -> MDA -> Port -> Channel
- XCM -> XMA -> Port
- MCM -> MDA -> Port -> Channel

**Note:** A masked facility alarm is not the same as a cleared facility alarm. The cleared facility alarm queue does not display entries for previously raised facility alarms that are currently masked. If the masking event goes away, then the previously raised facility alarms will once again be visible in the active facility alarm queue.
9.5 Facility Alarm List

Table 98 and Table 99 show the supported Facility Alarms.

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Sample Details String</th>
<th>Clearing Log Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2001-1</td>
<td>tmnxEqCardFailure</td>
<td>Class MDA Module: failed, reason: Mda 1 failed startup tests</td>
<td>tmnxEqCardInserted</td>
</tr>
<tr>
<td>7-2003-1</td>
<td>tmnxEqCardRemoved</td>
<td>Class CPM Module: removed</td>
<td>tmnxEqCardInserted</td>
</tr>
<tr>
<td>7-2004-1</td>
<td>tmnxEqWrongCard</td>
<td>Class IOM Module: wrong type inserted</td>
<td>tmnxEqCardInserted</td>
</tr>
<tr>
<td>7-2005-1</td>
<td>tmnxEqTempTooHigh</td>
<td>Chassis 1: temperature too high</td>
<td>tmnxEqCardInserted</td>
</tr>
<tr>
<td>7-2011-1</td>
<td>tmnxEqPowerSupplyRemoved</td>
<td>Power supply 1, power lost</td>
<td>tmnxEqPowerSupplyInserted</td>
</tr>
<tr>
<td>7-2017-1</td>
<td>tmnxEqSyncIfTimingHoldover</td>
<td>Synchronous Timing interface in holdover state</td>
<td>tmnxEqSyncIfTimingHoldoverInserted</td>
</tr>
<tr>
<td>7-2019-1</td>
<td>tmnxEqSyncIfTimingRef1Alarm with attribute tmnxEqSyncIfTimingNotifyAlarm == 'los(1)'</td>
<td>Synchronous Timing interface, alarm los on reference 1</td>
<td>tmnxEqSyncIfTimingRef1AlarmClear</td>
</tr>
<tr>
<td>7-2019-2</td>
<td>tmnxEqSyncIfTimingRef1Alarm with attribute tmnxEqSyncIfTimingNotifyAlarm == 'oof(2)'</td>
<td>Synchronous Timing interface, alarm oof on reference 1</td>
<td>same as 7-2019-1</td>
</tr>
<tr>
<td>7-2019-3</td>
<td>tmnxEqSyncIfTimingRef1Alarm with attribute tmnxEqSyncIfTimingNotifyAlarm == 'oopir(3)'</td>
<td>Synchronous Timing interface, alarm oopir on reference 1</td>
<td>same as 7-2019-1</td>
</tr>
<tr>
<td>7-2021-x</td>
<td>same as 7-2019-x but for ref2</td>
<td>same as 7-2019-x but for ref2</td>
<td>same as 7-2019-x but for ref2</td>
</tr>
<tr>
<td>7-2030-x</td>
<td>same as 7-2019-x but for the BITS input</td>
<td>same as 7-2019-x but for the BITS input</td>
<td>same as 7-2019-x but for the BITS input</td>
</tr>
<tr>
<td>7-2033-1</td>
<td>tmnxEqChassisUpgradeInProgress</td>
<td>Class CPM Module: software upgrade in progress</td>
<td>tmnxEqChassisUpgradeInProgress</td>
</tr>
<tr>
<td>Facility Alarm</td>
<td>Facility Alarm Name/Raising Log Event</td>
<td>Sample Details String</td>
<td>Clearing Log Event</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7-2073-x</td>
<td>same as 7-2019-x but for the BITS2 input</td>
<td>same as 7-2019-x but for the BITS2 input</td>
<td>same as 7-2019-x but for the BITS2 input</td>
</tr>
<tr>
<td>7-2092-1</td>
<td>tmnxEqPowerCapacityExceeded</td>
<td>The system has reached maximum power capacity &lt;x&gt; watts</td>
<td>tmnxEqPowerCapacityExceededClear</td>
</tr>
<tr>
<td>7-2094-1</td>
<td>tmnxEqPowerLostCapacity</td>
<td>The system can no longer support configured devices. Power capacity dropped to &lt;x&gt; watts</td>
<td>tmnxEqPowerLostCapacityClear</td>
</tr>
<tr>
<td>7-2096-1</td>
<td>tmnxEqPowerOverloadState</td>
<td>The system has reached critical power capacity. Increase available power now</td>
<td>tmnxEqPowerOverloadStateClear</td>
</tr>
<tr>
<td>7-2138-1</td>
<td>tmnxEqPhysChassPowerSupOvrTmp</td>
<td>Power supply 2 over temperature</td>
<td>tmnxEqPhysChassPowerSupOvrTmpClr</td>
</tr>
<tr>
<td>7-2140-1</td>
<td>tmnxEqPhysChassPowerSupAcFail</td>
<td>Power supply 1 AC failure</td>
<td>tmnxEqPhysChassPowerSupAcFailClr</td>
</tr>
<tr>
<td>7-2142-1</td>
<td>tmnxEqPhysChassPowerSupDcFail</td>
<td>Power supply 2 DC failure</td>
<td>tmnxEqPhysChassPowerSupDcFailClr</td>
</tr>
<tr>
<td>7-2144-1</td>
<td>tmnxEqPhysChassPowerSupInFail</td>
<td>Power supply 1 input failure</td>
<td>tmnxEqPhysChassPowerSupInFailClr</td>
</tr>
<tr>
<td>7-2146-1</td>
<td>tmnxEqPhysChassPowerSupOutFail</td>
<td>Power supply 1 output failure</td>
<td>tmnxEqPhysChassPowerSupOutFailClr</td>
</tr>
<tr>
<td>7-2148-1</td>
<td>tmnxEqPhysChassisFanFailure</td>
<td>Fan 2 failed</td>
<td>tmnxEqPhysChassisFanFailureClear</td>
</tr>
<tr>
<td>7-2161-1</td>
<td>tmnxEqBpEpromFail</td>
<td>The active CPM is no longer able to access any of backplane EPROMs due to a hardware defect</td>
<td>tmnxEqBpEpromFailClr</td>
</tr>
<tr>
<td>7-2163-1</td>
<td>tmnxEqBpEpromWarning</td>
<td>The active CPM is no longer able to access one backplane EPROM due to a hardware defect but a redundant EPROM is present and accessible.</td>
<td>tmnxEqBpEpromWarningClear</td>
</tr>
<tr>
<td>7-4001-1</td>
<td>tmnxInterChassisCommsDown</td>
<td>Control communications disrupted between the Active CPM and the chassis</td>
<td>tmnxInterChassisCommsUp</td>
</tr>
</tbody>
</table>
Table 98  Facility Alarm, Facility Alarm Name, Raising Log Event, Sample Details String and Clearing Log Event  (Continued)

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Sample Details String</th>
<th>Clearing Log Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-4003-1</td>
<td>tmnxCpmIcPortDown</td>
<td>CPM Interconnect Port is not operational. Error code = invalid-connection</td>
<td>tmnxCpmIcPortUp</td>
</tr>
<tr>
<td>7-4007-1</td>
<td>tmnxCpmANoLocalIcPort</td>
<td>CPM A can not reach the chassis using its local CPM interconnect ports</td>
<td>tmnxCpmALocalIcPort Avail</td>
</tr>
<tr>
<td>7-4008-1</td>
<td>tmnxCpmBNoLocalIcPort</td>
<td>CPM B can not reach the chassis using its local CPM interconnect ports</td>
<td>tmnxCpmBLocalIcPort Avail</td>
</tr>
<tr>
<td>7-4017-1</td>
<td>tmnxSfmIcPortDown</td>
<td>SFM interconnect Port is not operational. Error code = invalid-connection to Fabric 10 IcPort 2</td>
<td>tmnxSfmIcPortUp</td>
</tr>
<tr>
<td>59-2004-1</td>
<td>linkDown</td>
<td>Interface intf-towards-node-B22 is not operational</td>
<td>linkUp</td>
</tr>
<tr>
<td>64-2091-1</td>
<td>tmnxSysLicenseInvalid</td>
<td>Error - &lt;reason&gt; record. &lt;hw&gt; will reboot the chassis &lt;timeRemaining&gt;</td>
<td>None</td>
</tr>
<tr>
<td>64-2092-1</td>
<td>tmnxSysLicenseExpiresSoon</td>
<td>The license installed on &lt;hw&gt; expires &lt;timeRemaining&gt;</td>
<td>None</td>
</tr>
</tbody>
</table>
### Table 99  Facility Alarm Name/Raising Log Event, Cause, Effect and Recovery

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2001-1</td>
<td>tmnxEqCardFailure</td>
<td>Generated when one of the cards in a chassis has failed. The card type may be IOM (or XCM), MDA (or XMA), SFM, CCM, CPM, Compact Flash, and so on. The reason is indicated in the details of the log event or alarm, and also available in the tmnxCrgrassNotifyCard FailureReason attribute included in the SNMP notification.</td>
<td>The effect is dependent on the card that has failed. IOM (or XCM) or MDA (or XMA) failure will cause a loss of service for all services running on that card. A fabric failure can impact traffic to and from all cards. 7750 SR, 7450 ESS — If the IOM/IMM fails then the two associated MDAs for the slot will also go down. 7950 XRS — If one out of two XMAs fails in a XCM slot then the XCM will remain up. If only one remaining operational XMA within a XCM slot fails, then the XCM will go into a booting operational state.</td>
<td>Before taking any recovery steps collect a tech-support file, then try resetting (clear) the card. If unsuccessful, try removing and re-inserting the card. If that does not work then replace the card.</td>
</tr>
<tr>
<td>7-2003-1</td>
<td>tmnxEqCardRemoved</td>
<td>Generated when a card is removed from the chassis. The card type may be IOM (or XCM), MDA (or XMA), SFM, CCM, CPM, Compact Flash, and so on.</td>
<td>The effect is dependent on the card that has been removed. IOM (or XCM) or MDA (or XMA) removal will cause a loss of service for all services running on that card. A fabric removal can impact traffic to and from all cards.</td>
<td>Before taking any recovery steps collect a tech-support file, then try re-inserting the card. If unsuccessful, replace the card.</td>
</tr>
</tbody>
</table>
### Table 99 Facility Alarm Name/Raising Log Event, Cause, Effect and Recovery (Continued)

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2004-1</td>
<td>tmnxEqWrong Card</td>
<td>Generated when the wrong type of card is inserted into a slot of the chassis. Even though a card may be physically supported by the slot, it may have been administratively configured to allow only certain card types in a particular slot location. The card type may be IOM (or XCM), MDA (or XMA), SFM, CCM, CPM, Compact Flash, and so on.</td>
<td>The effect is dependent on the card that has been incorrectly inserted. Incorrect IOM (or XCM) or MDA (or XMA) insertion will cause a loss of service for all services running on that card.</td>
<td>Insert the correct card into the correct slot, and ensure the slot is configured for the correct type of card.</td>
</tr>
<tr>
<td>7-2005-1</td>
<td>tmnxEnvTemp TooHigh</td>
<td>Generated when the temperature sensor reading on an equipment object is greater than its configured threshold.</td>
<td>This could be causing intermittent errors and could also cause permanent damage to components.</td>
<td>Remove or power down the affected cards, or improve the cooling to the node. More powerful fan trays may also be required.</td>
</tr>
</tbody>
</table>
### Facility Alarms

#### Table 99 Facility Alarm Name/Raising Log Event, Cause, Effect and Recovery (Continued)

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
</table>
| 7-2011-1       | tmnxEqPowerSupplyRemoved              | Generated when:  
- one of the power supplies is removed from the chassis  
- low input voltage is detected. The operating voltage range for the 7750 SR-7/12 and the 7450 ESS-7/12 is -40 to -72 VDC. The alarm is raised if the system detects that the voltage of the power supply has dropped to -42.5 VDC. | Reduced power can cause intermittent errors and could also cause permanent damage to components. | Re-insert the power supply or raise the input voltage to above -42.5 VDC |
| 7-2017-1       | tmnxEqSyncIfTimingHoldover            | Generated when the synchronous equipment timing subsystem transitions into a holdover state. | Any node-timed ports will have very slow frequency drift limited by the central clock oscillator stability. The oscillator meets the holdover requirements of a Stratum 3 and G.813 Option 1 clock. | Address issues with the central clock input references. |
### Table 99 Facility Alarm Name/Raising Log Event, Cause, Effect and Recovery (Continued)

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2019-1</td>
<td>tmnxEqSyncIf TimingRef1Alarm with attribute tmnxSyncIfTimingNotifyAlarm == 'los(1)'</td>
<td>Generated when an alarm condition on the first timing reference is detected. The type of alarm (los, oof, and so on) is indicated in the details of the log event or alarm, and is also available in the tmnxSyncIfTimingNotifyAlarm attribute included in the SNMP notification. The SNMP notification will have the same indices as those of the tmnxCpmCardTable.</td>
<td>Timing reference 1 cannot be used as a source of timing into the central clock.</td>
<td>Address issues with the signal associated with timing reference 1.</td>
</tr>
<tr>
<td>7-2019-2</td>
<td>tmnxEqSyncIf TimingRef1Alarm with attribute tmnxSyncIfTimingNotifyAlarm == 'oof(2)'</td>
<td>The same cause as 7-2019-1.</td>
<td>The same effect as 7-2019-1.</td>
<td>Address issues with the signal associated with timing reference 1.</td>
</tr>
<tr>
<td>7-2019-3</td>
<td>tmnxEqSyncIf TimingRef1Alarm with attribute tmnxSyncIfTimingNotifyAlarm == 'oopir(3)'</td>
<td>The same cause as 7-2019-1.</td>
<td>The same effect as 7-2019-1.</td>
<td>Address issues with the signal associated with timing reference 1.</td>
</tr>
<tr>
<td>7-2021-x</td>
<td>same as 7-2019-x but for ref2</td>
<td>The same cause as 7-2019-x but for the second timing reference</td>
<td>The same as 7-2019-x but for the second timing reference.</td>
<td>The same as 7-2019-x but for the second timing reference</td>
</tr>
<tr>
<td>7-2030-x</td>
<td>same as 7-2019-x but for the BITS input</td>
<td>The same cause as 7-2019-x but for the BITS timing reference</td>
<td>The same as 7-2019-x but for the BITS timing reference</td>
<td>The same as 7-2019-x but for the BITS timing reference</td>
</tr>
</tbody>
</table>
### Table 99  Facility Alarm Name/Raising Log Event, Cause, Effect and Recovery  (Continued)

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2033-1</td>
<td>tmnxChassisUpgradeInProgress</td>
<td>The tmnxChassisUpgradeInProgress notification is generated only after a CPM switchover occurs and the new active CPM is running new software, while the IOMs or XCMs are still running old software. This is the start of the upgrade process. The tmnxChassisUpgradeInProgress notification will continue to be generated every 30 minutes while at least one IOM or XCM is still running older software.</td>
<td>A software mismatch between the CPM and IOM or XCM is generally fine for a short duration (during an upgrade) but may not allow for correct long term operation.</td>
<td>Complete the upgrade of all IOMs or XCMs.</td>
</tr>
<tr>
<td>7-2073-x</td>
<td>same as 7-2019-x but for the BITS2 input</td>
<td>The same as 7-2019-x but for the BITS 2 timing reference</td>
<td>The same as 7-2019-x but for the BITS 2 timing reference</td>
<td>The same as 7-2019-x but for the BITS 2 timing reference</td>
</tr>
<tr>
<td>7-2092-1</td>
<td>tmnxEqPowerCapacityExceeded</td>
<td>Generated when a device needs power to boot, but there is not enough power capacity to support the device.</td>
<td>A non-powered device will not boot until the power capacity is increased to support the device.</td>
<td>Add a new power supply to the system, or change the faulty power supply with a working one.</td>
</tr>
<tr>
<td>7-2094-1</td>
<td>tmnxEqPowerLostCapacity</td>
<td>Generated when a power supply fails or is removed which puts the system in an overloaded situation.</td>
<td>Devices are powered off in order of lowest power priority until the available power capacity can support the powered devices.</td>
<td>Add a new power supply to the system, or change the faulty power supply with a working one.</td>
</tr>
<tr>
<td>7-2096-1</td>
<td>tmnxEqPowerOverloadState</td>
<td>Generated when the overloaded power capacity can not support the power requirements and there are no further devices that can be powered off.</td>
<td>The system runs a risk of experiencing brownouts while the available power capacity does not meet the required power consumption.</td>
<td>Add power capacity or manually shutdown devices until the power capacity meets the power needs.</td>
</tr>
<tr>
<td>Facility Alarm</td>
<td>Facility Alarm Name/Raising Log Event</td>
<td>Cause</td>
<td>Effect</td>
<td>Recovery</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>7-2138-1</td>
<td>tmnxEqPhysChassPowerSupOvrTmp</td>
<td>Generated when the temperature sensor reading on a power supply module is greater than its configured threshold.</td>
<td>This could be causing intermittent errors and could also cause permanent damage to components.</td>
<td>Remove or power down the affected power supply module or improve the cooling to the node. More powerful fan trays may also be required. The power supply itself may be faulty so replacement may be necessary.</td>
</tr>
<tr>
<td>7-2140-1</td>
<td>tmnxEqPhysChassPowerSupAcFail</td>
<td>Generated when an AC failure is detected on a power supply.</td>
<td>Reduced power can cause intermittent errors and could also cause permanent damage to components.</td>
<td>First try re-inserting the power supply. If unsuccessful, replace the power supply.</td>
</tr>
<tr>
<td>7-2142-1</td>
<td>tmnxEqPhysChassPowerSupDcFail</td>
<td>Generated when an DC failure is detected on a power supply.</td>
<td>Reduced power can cause intermittent errors and could also cause permanent damage to components.</td>
<td>First try re-inserting the power supply. If unsuccessful, then replace the power supply.</td>
</tr>
<tr>
<td>7-2144-1</td>
<td>tmnxEqPhysChassPowerSupPlnFail</td>
<td>Generated when an input failure is detected on a power supply.</td>
<td>Reduced power can cause intermittent errors and could also cause permanent damage to components.</td>
<td>First try re-inserting the power supply. If that doesn't work, then replace the power supply.</td>
</tr>
<tr>
<td>7-2146-1</td>
<td>tmnxEqPhysChassPowerSupOutFail,</td>
<td>Generated when an output failure is detected on a power supply.</td>
<td>Reduced power can cause intermittent errors and could also cause permanent damage to components.</td>
<td>First try re-inserting the power supply. If that doesn't work, then replace the power supply.</td>
</tr>
<tr>
<td>7-2148-1</td>
<td>tmnxEqPhysChassFanFailure</td>
<td>Generated when one of the fans in a fan tray has failed.</td>
<td>This could cause the temperature to rise and result in intermittent errors and potentially permanent damage to components.</td>
<td>Replace the fan tray immediately, improve the cooling to the node, or reduce the heat being generated in the node by removing cards or powering down the node.</td>
</tr>
</tbody>
</table>
### Table 99 Facility Alarm Name/Raising Log Event, Cause, Effect and Recovery (Continued)

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2161-1</td>
<td>tmnxEqBpEpromFail</td>
<td>The tmnxEqBpEpromFail alarm is generated when the active CPM is no longer able to access any of backplane EPROMs due to a hardware defect.</td>
<td>The active CPM is at risk of failing to initialize after node reboot due to not being able to access the BP EPROM to read the chassis type.</td>
<td>The system does not self-recover and Nokia Support has to be contacted for further instructions.</td>
</tr>
<tr>
<td>7-2163-1</td>
<td>tmnxEqBpEpromWarning</td>
<td>The tmnxEqBpEpromWarning alarm is generated when the active CPM is no longer able to access one backplane EPROM due to a hardware defect but a redundant EPROM is present and accessible.</td>
<td>There is no effect on system operation.</td>
<td>No recovery action required.</td>
</tr>
<tr>
<td>7-4001-1</td>
<td>tmnxInterChassisCommsDown</td>
<td>The tmnxInterChassisCommsDown alarm is generated when the active CPM cannot reach the far-end chassis.</td>
<td>The resources on the far-end chassis are not available. This event for the far-end chassis means that the CPM, SFM, and XCM cards in the far-end chassis will reboot and remain operationally down until communications are re-established.</td>
<td>Ensure that all CPM interconnect ports in the system are properly cabled together with working cables.</td>
</tr>
<tr>
<td>7-4003-1</td>
<td>tmnxCpmicPortDown</td>
<td>The tmnxCpmicPortDown alarm is generated when the CPM interconnect port is not operational. The reason may be a cable connected incorrectly, a disconnected cable, a faulty cable, or a misbehaving CPM interconnect port or card.</td>
<td>At least one of the control plane paths used for inter-chassis CPM communication is not operational. Other paths may be available.</td>
<td>A manual verification and testing of each CPM interconnect port is required to ensure fully functional operation. Physical replacement of cabling may be required.</td>
</tr>
</tbody>
</table>
The tmnxCpmANoLocalIcPort alarm is generated when the CPM cannot reach the other chassis using its local CPM interconnect ports. Another control communications path may still be available between the CPM and the other chassis via the mate CPM in the same chassis. If that alternative path is not available then complete disruption of control communications to the other chassis will occur and the tmnxInterChassisCommsDown alarm is raised.

A tmnxCpmANoLocalIcPort alarm on the active CPM indicates that a further failure of the local CPM interconnect ports on the standby CPM will cause complete disruption of control communications to the other chassis and the tmnxInterChassisCommsDown alarm is raised.

A tmnxCpmANoLocalIcPort alarm on the standby CPM indicates that a CPM switchover may cause temporary disruption of control communications to the other chassis while the rebooting CPM comes back into service.

Ensure that all CPM interconnect ports in the system are properly cabled together with working cables.

<table>
<thead>
<tr>
<th>Facility Alarm</th>
<th>Facility Alarm Name/Raising Log Event</th>
<th>Cause</th>
<th>Effect</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-4007-1</td>
<td>tmnxCpmANoLocalIcPort</td>
<td>The tmnxCpmANoLocalIcPort alarm is generated when the CPM cannot reach the other chassis using its local CPM interconnect ports.</td>
<td>Another control communications path may still be available between the CPM and the other chassis via the mate CPM in the same chassis. If that alternative path is not available then complete disruption of control communications to the other chassis will occur and the tmnxInterChassisCommsDown alarm is raised. A tmnxCpmANoLocalIcPort alarm on the active CPM indicates that a further failure of the local CPM interconnect ports on the standby CPM will cause complete disruption of control communications to the other chassis and the tmnxInterChassisCommsDown alarm is raised. A tmnxCpmANoLocalIcPort alarm on the standby CPM indicates that a CPM switchover may cause temporary disruption of control communications to the other chassis while the rebooting CPM comes back into service.</td>
<td>Ensure that all CPM interconnect ports in the system are properly cabled together with working cables.</td>
</tr>
<tr>
<td>7-4008-1</td>
<td>tmnxCpmBNoLocalIcPort</td>
<td>The same as 7-4007-1.</td>
<td>The same as 7-4007-1.</td>
<td>The same as 7-4007-1.</td>
</tr>
<tr>
<td>7-4009-1</td>
<td>tmnxCpmALocalIcPortAvail</td>
<td>The tmnxCpmALocalIcPortAvail notification is generated when the CPM re-establishes communication with the other chassis using its local CPM interconnect ports.</td>
<td>A new control communications path is now available between the CPM_A and the other chassis,</td>
<td></td>
</tr>
</tbody>
</table>
The linkDown Facility Alarm is supported for the objects listed in Table 100 (note that all objects may not be supported on all platforms):
### Table 100  linkDown Facility Alarm Support

<table>
<thead>
<tr>
<th>Object</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Ports</td>
<td>Yes</td>
</tr>
<tr>
<td>Sonet Section, Line and Path (POS)</td>
<td>Yes</td>
</tr>
<tr>
<td>TDM Ports (E1, T1, DS3) including CES MDAs/CMAs</td>
<td>Yes</td>
</tr>
<tr>
<td>TDM Channels (DS3 channel configured in an STM-1 port)</td>
<td>Yes</td>
</tr>
<tr>
<td>ATM Ports</td>
<td>Yes</td>
</tr>
<tr>
<td>Ethernet LAGs</td>
<td>No</td>
</tr>
<tr>
<td>APS groups</td>
<td>No</td>
</tr>
<tr>
<td>Bundles (MLPPP, IMA, and so on)</td>
<td>No</td>
</tr>
<tr>
<td>ATM channels, Ethernet VLANs, Frame Relay DLCIs</td>
<td>No</td>
</tr>
</tbody>
</table>
9.6 Configuring Logging with CLI

This section provides information to configure logging using the command line interface.

9.6.1 Basic Facility Alarm Configuration

The most basic facility alarm configuration must have the following:

- Log ID or accounting policy ID
- A log source
- A log destination

The following displays an alarm configuration example.

A:ALA-12>config>system# alarms
#------------------------------------------
   no shutdown
   exit
------------------------------------------

9.6.2 Common Configuration Tasks

9.6.2.1 Configuring the Maximum Number of Alarms to Clear

The number of alarms to clear can be configured using the command listed below.

Use the following CLI syntax to configure a log file:

**CLI Syntax:**

```plaintext
config>system
 alarms
 max-cleared max-alarms
```

The following displays facility alarm configuration example:

ALA-12>config>system# alarms
------------------------------------------
... max-cleared 100
exit
...
----------------------------------
9.7 Facility Alarms Configuration Command Reference

9.7.1 Command Hierarchies

• Facility Alarm Configuration Commands

9.7.1.1 Facility Alarm Configuration Commands

```
config
 — system
 — alarms
 — max-cleared max-alarms
 — [no] shutdown
```

9.7.2 Command Descriptions

9.7.2.1 Generic Commands

alarms

```
Syntax alarms
Context config>system
Description This command enters the context to configure facility alarm parameters. Alarm support is intended to cover a focused subset of router states that are likely to indicate service impacts (or imminent service impacts) related to the overall state of hardware assemblies (cards, fans, links, and so on).
```

max-cleared

```
Syntax max-cleared max-alarms
Context config>system>alarms
```
Description  This command configures the maximum number of cleared alarms that the system will store and display.

Default  max-cleared 500

Parameters  
  max-alarms — Specifies the maximum number of cleared alarms.

### shutdown

**Syntax**  [no] shutdown

**Context**  config>system>alarms

**Description**  This command enables or disables the Facility Alarm functionality. When enabled, the Facility Alarm sub-system tracks active and cleared facility alarms and controls the Alarm LEDs on the CPMs/CFMs. When Facility Alarm functionality is enabled, the alarms are viewed using the show system alarms command(s).

**Default**  no shutdown
9.8 Facility Alarms Show Command Reference

9.8.1 Command Hierarchies

• Show Commands

9.8.1.1 Show Commands

show
  — system
    — alarms [cleared] [severity severity-level] [count count] [newer-than days]

9.8.2 Command Descriptions

9.8.2.1 Show Commands

The command outputs in the following section are examples only; actual displays may differ depending on supported functionality and user configuration.

alarms

Syntax        alarms [cleared] [severity severity-level] [count count] [newer-than days]
Context       show>system
Description   This command displays facility alarms on the system. Alarm support is intended to cover a focused subset of router states that are likely to indicate service impacts (or imminent service impacts) related to the overall state of hardware assemblies (cards, fans, links, and so on).
Output        The following is an example of alarm fields.
              Table 101 describes the alarms output fields.

Sample Output
Table 101  Show Facility Alarms Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Alarm index number.</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Date and time string for the alarm.</td>
</tr>
<tr>
<td>Severity</td>
<td>Severity level of the alarm.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Alarm identifier.</td>
</tr>
<tr>
<td>Resource</td>
<td>Facility associated with the alarm.</td>
</tr>
<tr>
<td>Details</td>
<td>Description of the alarm.</td>
</tr>
</tbody>
</table>

A:Dut-A# show system alarms
===============================================================================
Alarms [Critical:1 Major:2 Minor:0 Warning:0 Total:3]
===============================================================================
Index Date/Time Severity Alarm Resource Details
-------------------------------------------------------------------------------
8  2011/04/01 18:36:43.80 MAJOR 7-2011-1 Power Supply 1 Power supply 1, power lost
7  2011/04/01 18:35:57.00 MAJOR 7-2005-1 Chassis 1 Chassis 1: temperature too high
6  2011/04/01 18:35:24.80 CRITICAL 7-2006-1 Fan 1 Fan 1 failed
===============================================================================

Cleared alarms table:
A:Dut-A# show system alarms cleared
===============================================================================
Cleared Alarms [Size:500 Total:5 (not wrapped)]
===============================================================================
Index Date/Time Severity Alarm Resource Details
-------------------------------------------------------------------------------
5  2011/04/01 18:11:55.00 MAJOR 7-2005-1 Chassis 1 Clear Chassis temperature too high alarm
3  2011/04/01 18:11:54.50 CRITICAL 7-2051-1 Power Supply 1 Clear Power Supply failure
2  2011/04/01 18:11:54.40 CRITICAL 7-2050-1 Power Supply 1 Clear Power Supply failure
4  2011/04/01 18:11:54.10 MINOR 7-2004-1 Fan 1 Clear Fan wrong type failure
1  2011/04/01 18:11:54.00 CRITICAL 7-2007-1 Power Supply 1 Clear Power Supply failure
===============================================================================

Table 101

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Alarm index number.</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Date and time string for the alarm.</td>
</tr>
<tr>
<td>Severity</td>
<td>Severity level of the alarm.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Alarm identifier.</td>
</tr>
<tr>
<td>Resource</td>
<td>Facility associated with the alarm.</td>
</tr>
<tr>
<td>Details</td>
<td>Description of the alarm.</td>
</tr>
</tbody>
</table>
10 Standards and Protocol Support

Note: The information presented is subject to change without notice. Nokia assumes no responsibility for inaccuracies contained herein.

Access Node Control Protocol (ANCP)

draft-ietf-ancp-protocol-02, Protocol for Access Node Control Mechanism in Broadband Networks
RFC 5851, Framework and Requirements for an Access Node Control Mechanism in Broadband Multi-Service Networks

Application Assurance (AA)

3GPP Release 12 (ADC rules over Gx interfaces)
RFC 3507, Internet Content Adaptation Protocol (ICAP)

Asynchronous Transfer Mode (ATM)

AF-ILMI-0065.000, Integrated Local Management Interface (ILMI) Version 4.0
AF-PHY-0086.001, Inverse Multiplexing for ATM (IMA) Specification Version 1.1
AF-TM-0121.000, Traffic Management Specification Version 4.1
AF-TM-0150.00, Addendum to Traffic Management v4.1 optional minimum desired cell rate indication for UBR
GR-1113-CORE, Asynchronous Transfer Mode (ATM) and ATM Adaptation Layer (AAL) Protocols Generic Requirements, Issue 1
GR-1248-CORE, Generic Requirements for Operations of ATM Network Elements (NEs), Issue 3
ITU-T I.432.1, B-ISDN user-network interface - Physical layer specification: General characteristics (02/99)
ITU-T I.610, B-ISDN operation and maintenance principles and functions (11/95)
RFC 1626, Default IP MTU for use over ATM AAL5
RFC 2684, Multiprotocol Encapsulation over ATM Adaptation Layer 5

Bidirectional Forwarding Detection (BFD)

RFC 5880, Bidirectional Forwarding Detection (BFD)
RFC 5881, Bidirectional Forwarding Detection (BFD) IPv4 and IPv6 (Single Hop)
RFC 5883, Bidirectional Forwarding Detection (BFD) for Multihop Paths
RFC 7130, Bidirectional Forwarding Detection (BFD) on Link Aggregation Group (LAG) Interfaces

Border Gateway Protocol (BGP)

draft-hares-idr-update-attrib-low-bits-fix-01, Update Attribute Flag Low Bits Clarification
draft-ietf-idr-add-paths-guidelines-08, Best Practices for Advertisement of Multiple Paths in IBGP
draft-ietf-idr-best-external-03, Advertisement of the best external route in BGP
draft-ietf-idr-bgp-flowspec-oid-03, Revised Validation Procedure for BGP Flow Specifications
draft-ietf-idr-bgp-gr-notification-01, Notification Message support for BGP Graceful Restart
draft-ietf-idr-bgp-optimal-route-reflection-10, BGP Optimal Route Reflection (BGP-ORR)
draft-ietf-idr-error-handling-03, Revised Error Handling for BGP UPDATE Messages
draft-ietf-idr-flowspec-interfaceset-03, Applying BGP flowspec rules on a specific interface set
draft-ietf-idr-link-bandwidth-03, BGP Link Bandwidth Extended Community
draft-ietf-sidr-origin-validation-signaling-04, BGP Prefix Origin Validation State Extended Community
draft-uttaro-idr-bgp-persistence-03, Support for Long-lived BGP Graceful Restart
RFC 1772, Application of the Border Gateway Protocol in the Internet
RFC 1997, BGP Communities Attribute
RFC 2385, Protection of BGP Sessions via the TCP MD5 Signature Option
RFC 2439, BGP Route Flap Damping
RFC 2545, Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing
RFC 2858, Multiprotocol Extensions for BGP-4
RFC 2918, Route Refresh Capability for BGP-4
RFC 3107, Carrying Label Information in BGP-4
RFC 3392, Capabilities Advertisement with BGP-4
RFC 4271, A Border Gateway Protocol 4 (BGP-4)
RFC 4360, BGP Extended Communities Attribute
RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs)
RFC 4456, BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)
RFC 4486, Subcodes for BGP Cease Notification Message
RFC 4659, BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN
RFC 4684, Constrained Route Distribution for Border Gateway Protocol/ MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)
RFC 4724, Graceful Restart Mechanism for BGP (helper mode)
RFC 4760, Multiprotocol Extensions for BGP-4
RFC 4798, Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)
RFC 4893, BGP Support for Four-octet AS Number Space
RFC 5004, Avoid BGP Best Path Transitions from One External to Another
RFC 5065, Autonomous System Confederations for BGP
RFC 5291, Outbound Route Filtering Capability for BGP-4
RFC 5396, Textual Representation of Autonomous System (AS) Numbers (asplain)
RFC 5575, Dissemination of Flow Specification Rules
RFC 5668, 4-Octet AS Specific BGP Extended Community
RFC 6810, The Resource Public Key Infrastructure (RPKI) to Router Protocol
RFC 6811, Prefix Origin Validation
RFC 6996, Autonomous System (AS) Reservation for Private Use
RFC 7311, The Accumulated IGP Metric Attribute for BGP
RFC 7607, Codification of AS 0 Processing
RFC 7674, Clarification of the Flowspec Redirect Extended Community
RFC 7752, North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP
RFC 7911, Advertisement of Multiple Paths in BGP

**Circuit Emulation**

RFC 4553, Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)
RFC 5086, Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)
RFC 5287, Control Protocol Extensions for the Setup of Time-Division Multiplexing (TDM) Pseudowires in MPLS Networks

**Ethernet**

IEEE 802.1AB, Station and Media Access Control Connectivity Discovery
IEEE 802.1ad, Provider Bridges
IEEE 802.1aq, Connectivity Fault Management
IEEE 802.1ah, Provider Backbone Bridges
IEEE 802.1ak, Multiple Registration Protocol
IEEE 802.1aq, Shortest Path Bridging
IEEE 802.1ax, Link Aggregation
IEEE 802.1D, MAC Bridges
IEEE 802.1p, Traffic Class Expediting
IEEE 802.1Q, Virtual LANs
IEEE 802.1s, Multiple Spanning Trees
IEEE 802.1w, Rapid Reconfiguration of Spanning Tree
IEEE 802.1X, Port Based Network Access Control
IEEE 802.3ab, 1000BASE-T
IEEE 802.3ac, VLAN Tag
IEEE 802.3ad, Link Aggregation
IEEE 802.3ae, 10 Gb/s Ethernet
IEEE 802.3ah, Ethernet in the First Mile
IEEE 802.3ba, 40 Gb/s and 100 Gb/s Ethernet
IEEE 802.3i, Ethernet
IEEE 802.3u, Fast Ethernet
IEEE 802.3x, Ethernet Flow Control
IEEE 802.3z, Gigabit Ethernet
ITU-T G.8031/Y.1342, Ethernet Linear Protection Switching
ITU-T G.8032/Y.1344, Ethernet Ring Protection Switching
ITU-T Y.1731, OAM functions and mechanisms for Ethernet based networks

**Ethernet VPN (EVPN)**

draft-ietf-bess-evpn-ac-df-01, AC-Influenced Designated Forwarder Election for EVPN
draft-ietf-bess-evpn-etree-11, E-TREE Support in EVPN & PBB-EVPN
draft-ietf-bess-evpn-overlay-04, A Network Virtualization Overlay Solution using EVPN
draft-ietf-bess-evpn-prefix-advertisement-02, IP Prefix Advertisement in EVPN
draft-ietf-bess-evpn-proxy-arp-nd-02, Operational Aspects of Proxy-ARP/ND in EVPN Networks
draft-ietf-bess-evpn-vpls-seamless-integ-00, (PBB-)EVPN Seamless Integration with (PBB-)VPLS
draft-ietf-bess-evpn-vpws-14, Virtual Private Wire Service support in Ethernet VPN
draft-rabadan-bess-evpn-pref-df-02, Preference-based EVPN DF Election
draft-snr-bess-pbb-evpn-isid-cmacflush-01, PBB-EVPN ISID-based CMAC-Flush
RFC 7432, BGP MPLS-Based Ethernet VPN
RFC 7623, Provider Backbone Bridging Combined with Ethernet VPN (PBB-EVPN)

Frame Relay

ANSI T1.617 Annex D, DSS1 - Signalling Specification For Frame Relay Bearer Service
FRF.1.2, PVC User-to-Network Interface (UNI) Implementation Agreement
FRF.12, Frame Relay Fragmentation Implementation Agreement
FRF.16.1, Multilink Frame Relay UNI/NNI Implementation Agreement
FRF.5, Frame Relay/ATM PVC Network Interworking Implementation
FRF2.2, PVC Network-to-Network Interface (NNI) Implementation Agreement
ITU-T Q.933 Annex A, Additional procedures for Permanent Virtual Connection (PVC) status management

Generalized Multiprotocol Label Switching (GMPLS)

draft-ietf-ccamp-rsvp-te-srlg-collect-04, RSVP-TE Extensions for Collecting SRLG Information
RFC 3471, Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description
RFC 4204, Link Management Protocol (LMP)
RFC 4872, RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery
RFC 5063, Extensions to GMPLS Resource Reservation Protocol (RSVP) Graceful Restart (helper mode)

Intermediate System to Intermediate System (IS-IS)

draft-ginsberg-isis-mi-bis-01, IS-IS Multi-Instance (single topology)
draft-ietf-isis-mi-02, IS-IS Multi-Instance
draft-kaplan-isis-ext-eth-02, Extended Ethernet Frame Size Support
RFC 1195, Use of OSI IS-IS for Routing in TCP/IP and Dual Environments
RFC 2973, IS-IS Mesh Groups
RFC 3359, Reserved Type, Length and Value (TLV) Codepoints in Intermediate System to Intermediate System
RFC 3719, Recommendations for Interoperable Networks using Intermediate System to Intermediate System (IS-IS)
RFC 3787, Recommendations for Interoperable IP Networks using Intermediate System to Intermediate System (IS-IS)
RFC 4971, Intermediate System to Intermediate System (IS-IS) Extensions for Advertising Router Information
RFC 5120, M-ISIS: Multi Topology (MT) Routing in IS-IS
RFC 5130, A Policy Control Mechanism in IS-IS Using Administrative Tags
RFC 5301, Dynamic Hostname Exchange Mechanism for IS-IS
RFC 5302, Domain-wide Prefix Distribution with Two-Level IS-IS
RFC 5303, Three-Way Handshake for IS-IS Point-to-Point Adjacencies
RFC 5304, IS-IS Cryptographic Authentication
RFC 5305, IS-IS Extensions for Traffic Engineering TE
RFC 5306, Restart Signaling for IS-IS (helper mode)
RFC 5307, IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
RFC 5308, Routing IPv6 with IS-IS
RFC 5309, Point-to-Point Operation over LAN in Link State Routing Protocols
RFC 5310, IS-IS Generic Cryptographic Authentication
RFC 6213, IS-IS BFD-Enabled TLV
RFC 6232, Purge Originator Identification TLV for IS-IS
RFC 6233, IS-IS Registry Extension for Purges
RFC 6329, IS-IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging
RFC 7775, IS-IS Route Preference for Extended IP and IPv6 Reachability
RFC 7794, IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability

Internet Protocol (IP) — Fast Reroute

draft-ietf-rtgwg-lfa-manageability-08, Operational management of Loop Free Alternates
RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates
RFC 7431, Multicast-Only Fast Reroute
RFC 7490, Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)
Internet Protocol (IP) — General

draft-grant-tacacs-02, The TACACS+ Protocol
RFC 768, User Datagram Protocol
RFC 793, Transmission Control Protocol
RFC 854, Telnet Protocol Specifications
RFC 1350, The TFTP Protocol (revision 2)
RFC 2347, TFTP Option Extension
RFC 2348, TFTP Blocksize Option
RFC 2349, TFTP Timeout Interval and Transfer Size Options
RFC 2428, FTP Extensions for IPv6 and NATs
RFC 2784, Generic Routing Encapsulation (GRE)
RFC 4250, The Secure Shell (SSH) Protocol Assigned Numbers
RFC 4251, The Secure Shell (SSH) Protocol Architecture
RFC 4252, The Secure Shell (SSH) Authentication Protocol (publickey, password)
RFC 4253, The Secure Shell (SSH) Transport Layer Protocol
RFC 4254, The Secure Shell (SSH) Connection Protocol
RFC 4632, Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan
RFC 5082, The Generalized TTL Security Mechanism (GTSM)
RFC 5656, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer (ECDSA)
RFC 6398, IP Router Alert Considerations and Usage (MLD)
RFC 6528, Defending against Sequence Number Attacks

Internet Protocol (IP) — Multicast

cisco-ipmulticast/pim-autorp-spec01, Auto-RP: Automatic discovery of Group-to-RP mappings for IP multicast (version 1)
draft-dolganow-bess-mvpn-expl-track-01, Explicit Tracking with Wild Card Routes in Multicast VPN
draft-ietf-idmr-traceroute-ipm-07, A "traceroute" facility for IP Multicast
draft-ietf-l2vpn-vpls-pim-snooping-07, Protocol Independent Multicast (PIM) over Virtual Private LAN Service (VPLS)
RFC 1112, Host Extensions for IP Multicasting
RFC 2236, Internet Group Management Protocol, Version 2
RFC 2365, Administratively Scoped IP Multicast
RFC 2375, IPv6 Multicast Address Assignments
RFC 2710, Multicast Listener Discovery (MLD) for IPv6
RFC 3306, Unicast-Prefix-based IPv6 Multicast Addresses
RFC 3376, Internet Group Management Protocol, Version 3
RFC 3446, Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)
RFC 3590, Source Address Selection for the Multicast Listener Discovery (MLD) Protocol
RFC 3618, Multicast Source Discovery Protocol (MSDP)
RFC 3810, Multicast Listener Discovery Version 2 (MLDv2) for IPv6
RFC 3956, Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address
RFC 4541, Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches
RFC 4604, Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast
RFC 4607, Source-Specific Multicast for IP
RFC 4608, Source-Specific Protocol Independent Multicast in 232/8
RFC 4610, Anycast-RP Using Protocol Independent Multicast (PIM)
RFC 4611, Multicast Source Discovery Protocol (MSDP) Deployment Scenarios
RFC 5059, Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)
RFC 5186, Internet Group Management Protocol Version 3 (IGMPv3) / Multicast Listener Discovery Version 2 (MLDv2) and Multicast Routing Protocol Interaction
RFC 5186, Internet Group Management Protocol Version 3 (IGMPv3) / Multicast Listener Discovery Version 2 (MLDv2) and Multicast Routing Protocol Interaction
RFC 5384, The Protocol Independent Multicast (PIM) Join Attribute Format
RFC 5496, The Reverse Path Forwarding (RPF) Vector TLV
RFC 6037, Cisco Systems’ Solution for Multicast in MPLS/BGP IP VPNs
RFC 6512, Using Multipoint LDP When the Backbone Has No Route to the Root
RFC 6513, Multicast in MPLS/BGP IP VPNs
RFC 6514, BGP Encodings and Procedures for Multicast in MPLS/IP VPNs
RFC 6515, IPv4 and IPv6 Infrastructure Addresses in BGP Updates for Multicast VPNs
RFC 6516, IPv6 Multicast VPN (MVPN) Support Using PIM Control Plane and Selective Provider Multicast Service Interface (S-PMSI) Join Messages
RFC 6625, Wildcards in Multicast VPN Auto-Discover Routes
RFC 6826, Multipoint LDP In-Band Signaling for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Path

RFC 7246, Multipoint Label Distribution Protocol In-Band Signaling in a Virtual Routing and Forwarding (VRF) Table Context

RFC 7385, IANA Registry for P-Multicast Service Interface (PMSI) Tunnel Type Code Points

RFC 7716, Global Table Multicast with BGP Multicast VPN (BGP-MVPN) Procedures

**Internet Protocol (IP) — Version 4**

RFC 791, Internet Protocol

RFC 792, Internet Control Message Protocol

RFC 826, An Ethernet Address Resolution Protocol

RFC 951, Bootstrap Protocol (BOOTP)

RFC 1034, Domain Names - Concepts and Facilities

RFC 1035, Domain Names - Implementation and Specification

RFC 1519, Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy

RFC 1534, Interoperation between DHCP and BOOTP

RFC 1542, Clarifications and Extensions for the Bootstrap Protocol

RFC 1812, Requirements for IPv4 Routers

RFC 1918, Address Allocation for Private Internets

RFC 2003, IP Encapsulation within IP

RFC 2131, Dynamic Host Configuration Protocol

RFC 2132, DHCP Options and BOOTP Vendor Extensions

RFC 2401, Security Architecture for Internet Protocol

RFC 3021, Using 31-Bit Prefixes on IPv4 Point-to-Point Links

RFC 3046, DHCP Relay Agent Information Option (Option 82)

RFC 3768, Virtual Router Redundancy Protocol (VRRP)

RFC 4884, Extended ICMP to Support Multi-Part Messages (ICMPv4 and ICMPv6 Time Exceeded)

**Internet Protocol (IP) — Version 6**

RFC 1981, Path MTU Discovery for IP version 6

RFC 2460, Internet Protocol, Version 6 (IPv6) Specification

RFC 2464, Transmission of IPv6 Packets over Ethernet Networks

RFC 2473, Generic Packet Tunneling in IPv6 Specification
RFC 2529, Transmission of IPv6 over IPv4 Domains without Explicit Tunnels
RFC 3122, Extensions to IPv6 Neighbor Discovery for Inverse Discovery Specification
RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
RFC 3587, IPv6 Global Unicast Address Format
RFC 3596, DNS Extensions to Support IP version 6
RFC 3633, IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6
RFC 3646, DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
RFC 3736, Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6
RFC 3971, SEcure Neighbor Discovery (SEND)
RFC 3972, Cryptographically Generated Addresses (CGA)
RFC 4007, IPv6 Scoped Address Architecture
RFC 4193, Unique Local IPv6 Unicast Addresses
RFC 4291, Internet Protocol Version 6 (IPv6) Addressing Architecture
RFC 4443, Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification
RFC 4861, Neighbor Discovery for IP version 6 (IPv6)
RFC 4862, IPv6 Stateless Address Autoconfiguration (router functions)
RFC 4890, Recommendations for Filtering ICMPv6 Messages in Firewalls
RFC 4941, Privacy Extensions for Stateless Address Autoconfiguration in IPv6
RFC 5007, DHCPv6 Leasequery
RFC 5095, Deprecation of Type 0 Routing Headers in IPv6
RFC 5798, Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6 (IPv6)
RFC 5952, A Recommendation for IPv6 Address Text Representation
RFC 6092 Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6 Internet Service (Internet Control and Management, Upper-Layer Transport Protocols, UDP Filters, IPsec and Internet Key Exchange (IKE), TCP Filters)
RFC 6106, IPv6 Router Advertisement Options for DNS Configuration
RFC 6164, Using 127-Bit IPv6 Prefixes on Inter-Router Links
RFC 8021, Generation of IPv6 Atomic Fragments Considered Harmful

Internet Protocol Security (IPsec)
draft-ietf-ipsec-isakmp-mode-cfg-05, The ISAKMP Configuration Method
draft-ietf-ipsec-isakmp-xauth-06, Extended Authentication within ISAKMP/Oakley (XAUTH)

RFC 2401, Security Architecture for the Internet Protocol
RFC 2403, The Use of HMAC-MD5-96 within ESP and AH
RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH
RFC 2405, The ESP DES-CBC Cipher Algorithm With Explicit IV
RFC 2406, IP Encapsulating Security Payload (ESP)
RFC 2407, IPsec Domain of Interpretation for ISAKMP (IPsec DoI)
RFC 2408, Internet Security Association and Key Management Protocol (ISAKMP)
RFC 2409, The Internet Key Exchange (IKE)
RFC 2410, The NULL Encryption Algorithm and Its Use With IPsec
RFC 3526, More Modular Exponential (MODP) Diffie-Hellman group for Internet Key Exchange (IKE)
RFC 3566, The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec
RFC 3602, The AES-CBC Cipher Algorithm and Its Use with IPsec
RFC 3706, A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers
RFC 3947, Negotiation of NAT-Traversal in the IKE
RFC 3948, UDP Encapsulation of IPsec ESP Packets
RFC 4210, Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)
RFC 4211, Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)
RFC 4301, Security Architecture for the Internet Protocol
RFC 4303, IP Encapsulating Security Payload
RFC 4307, Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)
RFC 4308, Cryptographic Suites for IPsec
RFC 4434, The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)
RFC 4868, Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec
RFC 4945, The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2 and PKIX
RFC 5019, The Lightweight Online Certificate Status Protocol (OCSP) Profile for High-Volume Environments
RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
RFC 5998, An Extension for EAP-Only Authentication in IKEv2
RFC 6712, Internet X.509 Public Key Infrastructure -- HTTP Transfer for the Certificate Management Protocol (CMP)

RFC 6960, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

RFC 7296, Internet Key Exchange Protocol Version 2 (IKEv2)

RFC 7321, Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH)

RFC 7383, Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation

RFC 7383, Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation

RFC 7468, Textual Encodings of PKIX, PKCS, and CMS Structures

**Label Distribution Protocol (LDP)**

draft-ietf-mpls-ldp-ip-pw-capability-09, Controlling State Advertisements Of Non-negotiated LDP Applications

draft-pdutta-mpls-ldp-adj-capability-00, LDP Adjacency Capabilities

draft-pdutta-mpls-ldp-v2-00, LDP Version 2

draft-pdutta-mpls-mldp-up-redundancy-00, Upstream LSR Redundancy for Multipoint LDP Tunnels

draft-pdutta-mpls-multi-ldp-instance-00, Multiple LDP Instances

draft-pdutta-mpls-tldp-hello-reduce-04, Targeted LDP Hello Reduction

RFC 3037, LDP Applicability

RFC 3478, Graceful Restart Mechanism for Label Distribution Protocol (helper mode)

RFC 5036, LDP Specification

RFC 5283, LDP Extension for Inter-Area Label Switched Paths (LSPs)

RFC 5443, LDP IGP Synchronization

RFC 5561, LDP Capabilities

RFC 5919, Signaling LDP Label Advertisement Completion

RFC 6388, Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths

RFC 6512, Using Multipoint LDP When the Backbone Has No Route to the Root

RFC 6826, Multipoint LDP in-band signaling for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths

RFC 7032, LDP Downstream-on-Demand in Seamless MPLS

RFC 7552, Updates to LDP for IPv6
Layer Two Tunneling Protocol (L2TP) Network Server (LNS)

draft-mammoliti-l2tp-accessline-avp-04, Layer 2 Tunneling Protocol (L2TP) Access Line Information Attribute Value Pair (AVP) Extensions
RFC 2661, Layer Two Tunneling Protocol "L2TP"
RFC 2809, Implementation of L2TP Compulsory Tunneling via RADIUS
RFC 3438, Layer Two Tunneling Protocol (L2TP) Internet Assigned Numbers: Internet Assigned Numbers Authority (IANA) Considerations Update
RFC 3931, Layer Two Tunneling Protocol - Version 3 (L2TPv3)
RFC 4719, Transport of Ethernet Frames over Layer 2 Tunneling Protocol Version 3 (L2TPv3)
RFC 4951, Fail Over Extensions for Layer 2 Tunneling Protocol (L2TP) "failover"

Management

draft-ietf-snmpv3-update-mib-05, Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)
draft-ietf-isis-wg-mib-06, Management Information Base for Intermediate System to Intermediate System (IS-IS)
draft-ietf-mbone-msdp-mib-01, Multicast Source Discovery protocol MIB
draft-ietf-mls-ldp-mib-07, Definitions of Managed Objects for the Multiprotocol Label Switching, Label Distribution Protocol (LDP)
draft-ietf-mls-lsr-mib-06, Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base Using SMIv2
draft-ietf-mls-te-mib-04, Multiprotocol Label Switching (MPLS) Traffic Engineering Management Information Base
draft-ietf-ospf-mib-update-08, OSPF Version 2 Management Information Base
draft-ietf-vrrp-unified-mib-06, Definitions of Managed Objects for the VRRP over IPv4 and IPv6 (IPv6)
ianaaddressfamilynumbers-mib, IANA-ADDRESS-FAMILY-NUMBERS-MIB
ianagmplstc-mib, IANA-GMPLS-TC-MIB
ianaiftype-mib, IANAIfType-MIB
ianairerouteprotocol-mib, IANA-RPTPROTO-MIB
IEEE8021-CFM-MIB, IEEE P802.1ag(TM) CFM MIB
IEEE8021-PAE-MIB, IEEE 802.1X MIB
IEEE8023-LAG-MIB, IEEE 802.3ad MIB
LLDP-MIB, IEEE P802.1AB(TM) LLDP MIB
RFC 1157, A Simple Network Management Protocol (SNMP)
RFC 1212, Concise MIB Definitions
RFC 1213, Management Information Base for Network Management of TCP/IP-based Internets: MIB-II
RFC 1215, A Convention for Defining Traps for use with the SNMP
RFC 1724, RIP Version 2 MIB Extension
RFC 1901, Introduction to Community-based SNMPv2
RFC 2021, Remote Network Monitoring Management Information Base Version 2 using SMIv2
RFC 2115, Management Information Base for Frame Relay DTEs Using SMIv2
RFC 2206, RSVP Management Information Base using SMIv2
RFC 2213, Integrated Services Management Information Base using SMIv2
RFC 2494, Definitions of Managed Objects for the DS0 and DS0 Bundle Interface Type
RFC 2514, Definitions of Textual Conventions and OBJECT-IDENTITIES for ATM Management
RFC 2515, Definitions of Managed Objects for ATM Management
RFC 2570, SNMP Version 3 Framework
RFC 2571, An Architecture for Describing SNMP Management Frameworks
RFC 2572, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 2573, SNMP Applications
RFC 2574, User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 2575, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)
RFC 2578, Structure of Management Information Version 2 (SMIv2)
RFC 2579, Textual Conventions for SMIv2
RFC 2580, Conformance Statements for SMIv2
RFC 2787, Definitions of Managed Objects for the Virtual Router Redundancy Protocol
RFC 2819, Remote Network Monitoring Management Information Base
RFC 2856, Textual Conventions for Additional High Capacity Data Types
RFC 2863, The Interfaces Group MIB
RFC 2864, The Inverted Stack Table Extension to the Interfaces Group MIB
RFC 2933, Internet Group Management Protocol MIB
RFC 3014, Notification Log MIB
RFC 3164, The BSD syslog Protocol
RFC 3165, Definitions of Managed Objects for the Delegation of Management Scripts
RFC 3231, Definitions of Managed Objects for Scheduling Management Operations
RFC 3273, Remote Network Monitoring Management Information Base for High Capacity Networks
RFC 3417, Transport Mappings for the Simple Network Management Protocol (SNMP) (SNMP over UDP over IPv4)
RFC 3419, Textual Conventions for Transport Addresses
RFC 3498, Definitions of Managed Objects for Synchronous Optical Network (SONET) Linear Automatic Protection Switching (APS) Architectures
RFC 3584, Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework
RFC 3592, Definitions of Managed Objects for the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Interface Type
RFC 3593, Textual Conventions for MIB Modules Using Performance History Based on 15 Minute Intervals
RFC 3635, Definitions of Managed Objects for the Ethernet-like Interface Types
RFC 3637, Definitions of Managed Objects for the Ethernet WAN Interface Sublayer
RFC 3877, Alarm Management Information Base (MIB)
RFC 3895, Definitions of Managed Objects for the DS1, E1, DS2, and E2 Interface Types
RFC 3896, Definitions of Managed Objects for the DS3/E3 Interface Type
RFC 4001, Textual Conventions for Internet Network Addresses
RFC 4022, Management Information Base for the Transmission Control Protocol (TCP)
RFC 4113, Management Information Base for the User Datagram Protocol (UDP)
RFC 4220, Traffic Engineering Link Management Information Base
RFC 4273, Definitions of Managed Objects for BGP-4
RFC 4292, IP Forwarding Table MIB
RFC 4293, Management Information Base for the Internet Protocol (IP)
RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
RFC 4631, Link Management Protocol (LMP) Management Information Base (MIB)
RFC 4878, Definitions and Managed Objects for Operations, Administration, and Maintenance (OAM) Functions on Ethernet-Like Interfaces
RFC 5102, Information Model for IP Flow Information Export
RFC 6424, Mechanism for Performing Label Switched Path Ping (LSP Ping) over MPLS Tunnels
RFC 6425, Detecting Data Plane Failures in Point-to-Multipoint Multiprotocol Label Switching (MPLS) - Extensions to LSP Ping
RFC 7420, Path Computation Element Communication Protocol (PCEP) Management Information Base (MIB) Module
SFLOW-MIB, sFlow MIB Version 1.3 (Draft 5)

**Multiprotocol Label Switching — Transport Profile (MPLS-TP)**

RFC 5586, MPLS Generic Associated Channel
RFC 5921, A Framework for MPLS in Transport Networks
RFC 5960, MPLS Transport Profile Data Plane Architecture
RFC 6370, MPLS Transport Profile (MPLS-TP) Identifiers
RFC 6378, MPLS Transport Profile (MPLS-TP) Linear Protection
RFC 6426, MPLS On-Demand Connectivity and Route Tracing
RFC 6427, MPLS Fault Management Operations, Administration, and Maintenance (OAM)
RFC 6428, Proactive Connectivity Verification, Continuity Check and Remote Defect indication for MPLS Transport Profile
RFC 6478, Pseudowire Status for Static Pseudowires
RFC 7213, MPLS Transport Profile (MPLS-TP) Next-Hop Ethernet Addressing

**Multiprotocol Label Switching (MPLS)**

RFC 3031, Multiprotocol Label Switching Architecture
RFC 3032, MPLS Label Stack Encoding
RFC 3443, Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks
RFC 4023, Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE)
RFC 4182, Removing a Restriction on the use of MPLS Explicit NULL
RFC 5332, MPLS Multicast Encapsulations
RFC 5884, Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs)
RFC 6790, The Use of Entropy Labels in MPLS Forwarding
RFC 7510, Encapsulating MPLS in UDP

Network Address Translation (NAT)
draft-ietf-behave-address-format-10, IPv6 Addressing of IPv4/IPv6 Translators
draft-ietf-behave-v6v4-xlate-23, IP/ICMP Translation Algorithm
draft-miles-behave-l2nat-00, Layer2-Aware NAT
draft-nishitani-cgn-02, Common Functions of Large Scale NAT (LSN)
RFC 4787, Network Address Translation (NAT) Behavioral Requirements for Unicast UDP
RFC 5382, NAT Behavioral Requirements for TCP
RFC 5508, NAT Behavioral Requirements for ICMP
RFC 6146, Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers
RFC 6333, Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion
RFC 6334, Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite
RFC 6887, Port Control Protocol (PCP)
RFC 6888, Common Requirements For Carrier-Grade NATs (CGNs)
RFC 7915, IP/ICMP Translation Algorithm

Network Configuration Protocol (NETCONF)
RFC 6020, YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)
RFC 6241, Network Configuration Protocol (NETCONF)
RFC 6242, Using the NETCONF Protocol over Secure Shell (SSH)
RFC 6243, With-defaults Capability for NETCONF

Open Shortest Path First (OSPF)
draft-ietf-ospf-ospfv3-lsa-extend-13, OSPFv3 LSA Extendibility
RFC 1586, Guidelines for Running OSPF Over Frame Relay Networks
RFC 1765, OSPF Database Overflow
RFC 2328, OSPF Version 2
RFC 3101, The OSPF Not-So-Stubby Area (NSSA) Option
RFC 3509, Alternative Implementations of OSPF Area Border Routers
RFC 3623, Graceful OSPF Restart Graceful OSPF Restart (helper mode)
RFC 3630, Traffic Engineering (TE) Extensions to OSPF Version 2
RFC 4203, OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
RFC 4222, Prioritized Treatment of Specific OSPF Version 2 Packets and Congestion Avoidance
RFC 4552, Authentication/Confidentiality for OSPFv3
RFC 4576, Using a Link State Advertisement (LSA) Options Bit to Prevent Looping in BGP/MPLS IP Virtual Private Networks (VPNs)
RFC 4577, OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)
RFC 5185, OSPF Multi-Area Adjacency
RFC 5187, OSPFv3 Graceful Restart (helper mode)
RFC 5243, OSPF Database Exchange Summary List Optimization
RFC 5250, The OSPF Opaque LSA Option
RFC 5309, Point-to-Point Operation over LAN in Link State Routing Protocols
RFC 5340, OSPF for IPv6
RFC 5709, OSPFv2 HMAC-SHA Cryptographic Authentication
RFC 5838, Support of Address Families in OSPFv3
RFC 6987, OSPF Stub Router Advertisement
RFC 7684, OSPFv2 Prefix/Link Attribute Advertisement
RFC 7770, Extensions to OSPF for Advertising Optional Router Capabilities

OpenConfig
gnmi.proto, gRPC Network Management Interface (gNMI), version 0.3.1 (Subscribe RPC)

OpenFlow
ONF OpenFlow Switch Specification Version 1.3.1 (OpenFlow-hybrid switches)

Path Computation Element Protocol (PCEP)
draft-alvarez-pce-path-profiles-04, PCE Path Profiles
draft-ietf-pce-segment-routing-08, PCEP Extensions for Segment Routing
draft-ietf-pce-stateful-pce-14, PCEP Extensions for Stateful PCE
RFC 5440, Path Computation Element (PCE) Communication Protocol (PCEP)

Point-to-Point Protocol (PPP)
RFC 1332, The PPP Internet Protocol Control Protocol (IPCP)
RFC 1377, *The PPP OSI Network Layer Control Protocol (OSINLCP)*
RFC 1661, *The Point-to-Point Protocol (PPP)*
RFC 1662, *PPP in HDLC-like Framing*
RFC 1877, *PPP Internet Protocol Control Protocol Extensions for Name Server Addresses*
RFC 1989, *PPP Link Quality Monitoring*
RFC 1990, *The PPP Multi-link Protocol (MP)*
RFC 1994, *PPP Challenge Handshake Authentication Protocol (CHAP)*
RFC 2153, *PPP Vendor Extensions*
RFC 2516, *A Method for Transmitting PPP Over Ethernet (PPPoE)*
RFC 2615, *PPP over SONET/SDH*
RFC 2686, *The Multi-Class Extension to Multi-Link PPP*
RFC 2878, *PPP Bridging Control Protocol (BCP)*
RFC 4638, *Accommodating a Maximum Transit Unit/Maximum Receive Unit (MTU/MRU) Greater Than 1492 in the Point-to-Point Protocol over Ethernet (PPPoE)*
RFC 5072, *IP Version 6 over PPP*

**Policy Management and Credit Control**

3GPP TS 29.212 Release 11, *Policy and Charging Control (PCC); Reference points (Gx support as it applies to wireline environment (BNG))*
RFC 3588, *Diameter Base Protocol*
RFC 4006, *Diameter Credit-Control Application*

**Pseudowire**

draft-ietf-l2vpn-vpws-iw-oam-04, *OAM Procedures for VPWS Interworking*
MFA Forum 12.0.0, *Multiservice Interworking - Ethernet over MPLS*
MFA Forum 13.0.0, *Fault Management for Multiservice Interworking v1.0*
MFA Forum 16.0.0, *Multiservice Interworking - IP over MPLS*
MFA Forum 9.0.0, *The Use of Virtual trunks for ATM/MPLS Control Plane Interworking*
RFC 3916, *Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)*
RFC 3985, *Pseudo Wire Emulation Edge-to-Edge (PWE3)*
RFC 4385, *Pseudo Wire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN*
RFC 4446, *IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)*
RFC 4447, *Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)*

RFC 4448, *Encapsulation Methods for Transport of Ethernet over MPLS Networks*

RFC 4619, *Encapsulation Methods for Transport of Frame Relay over Multiprotocol Label Switching (MPLS) Networks*

RFC 4717, *Encapsulation Methods for Transport Asynchronous Transfer Mode (ATM) over MPLS Networks*

RFC 4816, *Pseudowire Emulation Edge-to-Edge (PWE3) Asynchronous Transfer Mode (ATM) Transparent Cell Transport Service*

RFC 5085, *Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires*

RFC 5659, *An Architecture for Multi-Segment Pseudowire Emulation Edge-to-Edge*

RFC 5885, *Bidirectional Forwarding Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification (VCCV)*

RFC 6073, *Segmented Pseudowire*

RFC 6310, *Pseudowire (PW) Operations, Administration, and Maintenance (OAM) Message Mapping*

RFC 6391, *Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network*

RFC 6575, *Address Resolution Protocol (ARP) Mediation for IP Interworking of Layer 2 VPNs*

RFC 6718, *Pseudowire Redundancy*

RFC 6829, *Label Switched Path (LSP) Ping for Pseudowire Forwarding Equivalence Classes (FECs) Advertised over IPv6*

RFC 6870, *Pseudowire Preferential Forwarding Status bit*

RFC 7023, *MPLS and Ethernet Operations, Administration, and Maintenance (OAM) Interworking*

RFC 7267, *Dynamic Placement of Multi-Segment Pseudowires*

**Quality of Service (QoS)**

RFC 2430, *A Provider Architecture for Differentiated Services and Traffic Engineering (PASTE)*

RFC 2474, *Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers*

RFC 2598, *An Expedited Forwarding PHB*

RFC 3140, *Per Hop Behavior Identification Codes*

RFC 3260, *New Terminology and Clarifications for Diffserv*
Remote Authentication Dial In User Service (RADIUS)

RFC 2865, Remote Authentication Dial In User Service (RADIUS)
RFC 2866, RADIUS Accounting
RFC 2867, RADIUS Accounting Modifications for Tunnel Protocol Support
RFC 2868, RADIUS Attributes for Tunnel Protocol Support
RFC 2869, RADIUS Extensions
RFC 3162, RADIUS and IPv6
RFC 4818, RADIUS Delegated-IPv6-Prefix Attribute
RFC 5176, Dynamic Authorization Extensions to RADIUS
RFC 6911, RADIUS attributes for IPv6 Access Networks
RFC 6929, Remote Authentication Dial-In User Service (RADIUS) Protocol Extensions

Resource Reservation Protocol — Traffic Engineering (RSVP-TE)

draft-newton-mpls-te-dynamic-overbooking-00, A Diffserv-TE Implementation Model to dynamically change booking factors during failure events
RFC 2702, Requirements for Traffic Engineering over MPLS
RFC 2747, RSVP Cryptographic Authentication
RFC 2961, RSVP Refresh Overhead Reduction Extensions
RFC 3097, RSVP Cryptographic Authentication -- Updated Message Type Value
RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels
RFC 3477, Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)
RFC 3564, Requirements for Support of Differentiated Services-aware MPLS Traffic Engineering
RFC 3906, Calculating Interior Gateway Protocol (IGP) Routes Over Traffic Engineering Tunnels
RFC 4090, Fast Reroute Extensions to RSVP-TE for LSP Tunnels
RFC 4124, Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering
RFC 4125, Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
RFC 4127, Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
RFC 4561, Definition of a Record Route Object (RRO) Node-Id Sub-Object
RFC 4875, Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)
RFC 4950, ICMP Extensions for Multiprotocol Label Switching
RFC 5151, Inter-Domain MPLS and GMPLS Traffic Engineering -- Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions
RFC 5712, MPLS Traffic Engineering Soft Preemption
RFC 5817, Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks

Routing Information Protocol (RIP)
RFC 1058, Routing Information Protocol
RFC 2080, RIPng for IPv6
RFC 2082, RIP-2 MD5 Authentication
RFC 2453, RIP Version 2

Segment Routing (SR)
draft-gredler-idr-bgp-ls-segment-routing-ext-03, BGP Link-State extensions for Segment Routing
draft-ietf-isis-segment-routing-extensions-04, IS-IS Extensions for Segment Routing
draft-ietf-mpls-spring-lsp-ping-02, Label Switched Path (LSP) Ping/Trace for Segment Routing Networks Using MPLS Dataplane
draft-ietf-ospf-segment-routing-extensions-04, OSPF Extensions for Segment Routing

Synchronous Optical Networking (SONET)/Synchronous Digital Hierarchy (SDH)
ANSI T1.105.03, Jitter Network Interfaces
ANSI T1.105.06, Physical Layer Specifications
ANSI T1.105.09, Network Timing and Synchronization
ITU-T G.703, Physical/electrical characteristics of hierarchical digital interfaces
ITU-T G.707, Network node interface for the synchronous digital hierarchy (SDH)
ITU-T G.813, Timing characteristics of SDH equipment slave clocks (SEC)
ITU-T G.823, *The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy*

ITU-T G.824, *The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy*

ITU-T G.825, *The control of jitter and wander within digital networks which are based on the synchronous digital hierarchy (SDH)*

ITU-T G.841, *Types and Characteristics of SDH Networks Protection Architecture, issued in October 1998 and as augmented by Corrigendum 1, issued in July 2002*

ITU-T G.957, *Optical interfaces for equipments and systems relating to the synchronous digital hierarchy*

**Time Division Multiplexing (TDM)**

ANSI T1.403, *DS1 Metallic Interface Specification*

ANSI T1.404, *DS3 Metallic Interface Specification*

**Timing**


ITU-T G.781, *Synchronization layer functions, issued 09/2008*

ITU-T G.813, *Timing characteristics of SDH equipment slave clocks (SEC), issued 03/2003*

ITU-T G.8261, *Timing and synchronization aspects in packet networks, issued 04/2008*

ITU-T G.8262, *Timing characteristics of synchronous Ethernet equipment slave clock (EEC), issued 08/2007*

ITU-T G.8264, *Distribution of timing information through packet networks, issued 10/2008*

ITU-T G.8265.1, *Precision time protocol telecom profile for frequency synchronization, issued 10/2010*

ITU-T G.8275.1, *Precision time protocol telecom profile for phase/time synchronization with full timing support from the network, issued 07/2014*

Two-Way Active Measurement Protocol (TWAMP)

RFC 5357, A Two-Way Active Measurement Protocol (TWAMP) (server, unauthenticated mode)
RFC 5938, Individual Session Control Feature for the Two-Way Active Measurement Protocol (TWAMP)
RFC 6038, Two-Way Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical Size Features

Virtual Private LAN Service (VPLS)

RFC 4761, Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling
RFC 4762, Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling
RFC 5501, Requirements for Multicast Support in Virtual Private LAN Services
RFC 6074, Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)
RFC 7041, Extensions to the Virtual Private LAN Service (VPLS) Provider Edge (PE) Model for Provider Backbone Bridging
RFC 7117, Multicast in Virtual Private LAN Service (VPLS)

Voice and Video

DVB BlueBook A86, Transport of MPEG-2 TS Based DVB Services over IP Based Networks
ITU-T G.1020 Appendix I, Performance Parameter Definitions for Quality of Speech and other Voiceband Applications Utilizing IP Networks - Mean Absolute Packet Delay Variation & Markov Models
ITU-T G.107, The E Model - A computational model for use in planning
ITU-T P.564, Conformance testing for voice over IP transmission quality assessment models
RFC 3550 Appendix A.8, RTP: A Transport Protocol for Real-Time Applications (estimating the interarrival jitter)
RFC 4585, Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)
RFC 4588, RTP Retransmission Payload Format
Wireless Local Area Network (WLAN) Gateway

3GPP TS 23.402, *Architecture enhancements for non-3GPP accesses* (S2a roaming based on GPRS)
Customer Document and Product Support

Customer Documentation
Customer Documentation Welcome Page

Technical Support
Product Support Portal

Documentation Feedback
Customer Documentation Feedback