Legal notice

Nokia is a registered trademark of Nokia Corporation. Other products and company names mentioned herein may be trademarks or tradenames of their respective owners.

The information presented is subject to change without notice. No responsibility is assumed for inaccuracies contained herein.

© 2017 Nokia.
Contents

About this document ... 4

1 NFM-P system architecture ... 5

 1.1 NFM-P system architecture overview ... 5

 1.2 Network management functions .. 5

 1.3 System components .. 7

 1.4 Component communication .. 10

 1.5 System structure ... 13

 1.6 Security ... 16

 1.7 Fault tolerance .. 19

 1.8 Standards compliance .. 21
About this document

Purpose

The *NSP NFM-P System Architecture Guide* is intended for technology officers, network planners, and system administrators to increase their knowledge of the NFM-P software structure and components. It describes the system structure, software components, and interfaces. In addition, NFM-P fault tolerance, security, and network management are described from an architectural perspective.

Document support

Customer documentation and product support URLs:

- Customer Documentation Welcome Page
- Technical support

How to comment

Documentation feedback
1 NFM-P system architecture

1.1 NFM-P system architecture overview

1.1.1 Introduction

The NFM-P is a network management system that simplifies routine operations and allows the bulk provisioning of network objects. The system is designed using industry standards such as Java, XML/SOAP, WebDAV, and 3GPP. The NFM-P uses open-standard interfaces that allow the system to interoperate with a variety of other network monitoring and management systems.

1.1.2 NFM-P functions

The NFM-P network management functions include the following:

- service and routing configuration using distributed policies and profiles
- equipment, service, and customer inventory reporting
- network performance, accounting, and flow-based statistics collection
- hierarchical alarm correlation between objects
- interoperation with other network systems

1.1.3 Main architecture features

The main features of the NFM-P system architecture include the following:

- the use of open standards to promote interaction with other systems
- distributed resources that spread the processing load across multiple components and efficiently execute network management tasks
- a multi-layer design model with functions in separate modules that interact with OEM products to accommodate increasing network growth and complexity
- web services that provide access to NFM-P applications by effectively exporting XML interfaces over the Internet; the web services permit access to remote components such as web portals, and allow third-party vendors to create customized entry points for NFM-P functions
- component redundancy that provides a high degree of fault tolerance

1.2 Network management functions

1.2.1 Introduction

The NFM-P provides comprehensive network access for operators based on role-based scopes of command and spans of control over types of network objects.
An NFM-P system collects data from managed NEs and collates the data for accounting, performance monitoring, troubleshooting, inventory, and fault management. The system deploys operator commands to the network, and performs functions such as NE discovery and configuration backups.

An NFM-P system is primarily designed to manage proprietary devices. However, you can obtain drivers for managing some devices from other vendors. Drivers can be downloaded from the customer support site, and driver installation and usage documentation is available from the Customer Documentation Welcome Center.

1.2.2 Service management
The NFM-P service management functions allow network operators to provision VLL, VLAN, VPLS, IES, VPRN and mirror services for customers. Each service can be monitored to provide performance, usage, and fault information.

1.2.3 Accounting
The NFM-P collects accounting statistics from managed NEs that can be used to bill subscribers. The statistics are transferred to the NFM-P main and auxiliary servers using FTP or SCP.

1.2.4 Equipment management
The NFM-P maintains an equipment data model and deploys configuration updates to the managed NEs. For example, when an NFM-P operator adds a card to an NE, the data model is updated to include the card, and the card provisioning and configuration commands are sent to the NE. New NEs can be discovered at operator request, or automatically. A newly discovered NE is added to the data model.

1.2.5 Performance management
The NFM-P can monitor services and network resources using performance statistics, OAM diagnostic tools, and data validation, and raises alarms when appropriate.

- The NFM-P uses SNMP to collect NE performance statistics, and receives KPI information from specified NEs for display in the Telemetry application.
- The NFM-P has a comprehensive suite of OAM tools for monitoring service, NE, and transport availability and performance. You can run tests before service activation to ensure that a service functions correctly after activation.
- The NFM-P regularly compares the configuration information on managed NEs with the information in the NFM-P database to ensure synchronization.

1.2.6 Fault management
The NFM-P performs fault management in response to NE SNMP traps. The system converts traps to status updates and raises alarms when appropriate. GUI clients use visual and auditory cues to alert an operator when an alarm is raised.

The NFM-P immediately forwards fault information as JMS events to XML API clients that subscribe to the appropriate JMS topic, and in response to XML API client XML requests for information.
1.3 System components

1.3.1 Introduction
An NFM-P system includes several components that are described below. Some components are supported only in specific deployment types. See the NSP NFM-P Planning Guide for comprehensive information about the supported deployment configurations.

1.3.2 Main server
A main server is the central Java-based network-management processing engine. A main server can be collocated on one station with a main database, or installed on a separate station. A main server includes third-party components such as an application server, JMS server, web server, protocol stack, and database adapter. Some functions, for example, statistics collection, can be distributed across optional auxiliary servers.

1.3.3 Auxiliary server
An auxiliary server, like a main server, is a Java-based processing engine, but is an optional, scalable component that extends the system ability to perform functions such as statistics, PCMD, or call-trace data collection. An auxiliary server is controlled by a main server, and collects data directly from NEs.

1.3.4 NSP flow collector
An NSP flow collector is an optional, scalable component that collects AA Cflowd statistics directly from NEs and forwards the data to an XML API or third-party application for billing, traffic analysis, or data analytics.

1.3.5 Analytics server
An analytics server uses business intelligence software to analyze raw and aggregated statistics data and create reports about various network conditions and trends. The on-demand and scheduled reports are available from the NFM-P Analytics application.

An analytics server is deployable only in an NFM-P system that includes an auxiliary database, which acts as the analytics data store.

1.3.6 Main database
The main database is a customized relational database that provides persistent storage and serves as a central network data repository. The database can be collocated on one station with a main server, or installed on a separate station.

1.3.7 Auxiliary database
An auxiliary database is an optional, horizontally scalable database that expands the NFM-P storage capacity for demanding operations such as statistics collection.
An auxiliary database can be deployed as a distributed database on a minimum of three separate stations. Load balancing and data replication among the stations provide high performance and robust fault tolerance.
For lab trials, or for live deployments that have moderate scale requirements, a single-station auxiliary database is supported. A single-station auxiliary database can be deployed only with a collocated standalone main server and database. All components can be deployed as a separate VMs on one station, if required.

Note: You can deploy a multi-station auxiliary database only in an NFM-P system that includes one or more auxiliary servers.

1.3.8 Single-user GUI client

A single-user GUI client is a Java-based graphical interface for network operators. Single-user GUI client deployment is supported on multiple platforms.

1.3.9 Client delegate server

A client delegate server supports simultaneous GUI sessions using one client software installation. A client delegate server can host local and remote user sessions, and supports the use of a third-party remote access tool such as a Citrix gateway. Client delegate server deployment is supported on multiple platforms.

A GUI session that is opened through a client delegate server is functionally identical to a single-user client GUI session. The client delegate server locally stores the files that are unique to each user session, such as the client logs and GUI preference files, using a directory structure that includes the RHEL or Windows username.

Figure 1, “Client delegate servers” (p. 9) shows two client delegate servers in an NFM-P management network. Multiple local users log in to a client delegate server directly, and remote users log in through a client delegate server that hosts a third-party access tool, for example, a Citrix gateway. Another local user opens a session on a single-user client station.
If a client delegate server becomes unreachable, the NFM-P raises an alarm and changes the color of the associated session entries in the GUI. The alarm clears when the server is again reachable.

You can use the client software on a client delegate server from the local console. It is recommended that you install a client delegate server, rather than a single-user client, to facilitate the deployment of additional clients.

A main server monitors the registered client delegate servers and displays information about them in the GUI. To register a client delegate server, you specify the client delegate server IP address and installation location during main server installation, upgrade, or configuration.

You can use a client GUI to list the following:
- registered client delegate servers and the availability of each
• active client delegate server sessions
• active client sessions on a specific client delegate server
• active client sessions for a specific NFM-P user

The number of allowed NFM-P client sessions on a client delegate server is configurable as a threshold using the client GUI. If a user tries to open a client session that reaches or exceeds the threshold, the session proceeds and the client delegate server raises an alarm. This threshold-crossing function can help to balance the session load across multiple client delegate servers. You require the Update user permission on the Server package to configure the threshold.

The following restrictions apply to client delegate servers.
• The installation of only one client delegate server on a station is supported.
• You cannot change a single-user client to a client delegate server.
• A client delegate server connects to one release of main server; multiple main servers to which the client delegate server connects must be at the same release.
• Depending on the platform type, specific deployment requirements and restrictions may apply; see the NSP NFM-P Installation and Upgrade Guide for information.

1.3.10 XML API clients

An XML API client is a software application that you create and implement to automate GUI client tasks, or to retrieve data for post-processing, for example, rolling up statistics data into a billing application. XML API clients may be as diverse as simple CLI scripts and third-party applications. An XML API client is platform-independent, because only Java messages are exchanged with the NFM-P.

The NFM-P supports the following XML API client types:
• XML/SOAP clients that use the XML API to perform general network management; XML schema files provide the data object definitions and describe the object attributes and methods; see the NSP NFM-P XML API Developer Guide for more information
• 3GPP CORBA or XML/SOAP clients that use the 3GPP OSS interface to perform LTE management; IRPs provide the 3GPP data object definitions; see the NSP NFM-P Wireless OSS Interface Developer Guide for more information

1.3.11 Subcomponents

All subcomponents, for example, Java modules, database software, and web server software, are represented by license files in the following directory on a main server:

/opt/nsp/nfmp/server/nms/distribution/licenses

1.4 Component communication

1.4.1 Introduction

The NFM-P component interfaces use industry-standard protocols for communication between servers, databases, NEs, and clients, as shown in Figure 2, "NFM-P component communication"
All NFM-P components communicate with all other NFM-P components using IPv4 exclusively; however, an NFM-P system can communicate with and manage a network using IPv4 and IPv6 concurrently.

1.4.2 Servers and managed NEs

Main and auxiliary servers send messages to the managed network in the form of SNMP, FTP, secure FTP, and SCP commands. A main server also sends CLI commands using Telnet or SSH.

- A main server uses SNMP to monitor and manage network performance, and to identify network problems. Main servers deploy configuration changes to NEs using SNMP. Auxiliary servers poll MIB performance statistics on the NEs, or collect PCMD or call-trace data. The NEs use asynchronous SNMP messages called traps to notify the NFM-P of events. UDP streaming is used by NEs for operations such as forwarding PCMD records to the NFM-P.
- The CLI of a managed NE is accessible from the client GUI using Telnet or SSH.
- FTP and SCP are transport-layer protocols for transferring files between systems. The NFM-P
uses the protocols to back up NE configuration data, collect NE accounting statistics, and download software to NEs.

1.4.3 Main server and clients

Client interfaces provide access to an NFM-P system and the managed network through a main server.

A main server and clients communicate in the following ways:

- GUI clients send requests to the server EJB session beans using Java RMI.
- The GUI client update function uses HTTP or HTTPS for client software updates and file downloads.
- NFM-P application clients use HTTP or HTTPS to communicate with the web service on a main server.
- A web-based GUI client communicates through a browser using JNLP.
- XML API clients send requests for processing by a main server, and subscribe to JMS topics to receive real-time event notifications. The messages between a main server and an XML API client are in XML/SOAP format, and are sent over HTTP or HTTPS. The JMS and the XML publisher service on a main server run in separate JVMs to support multiple concurrent client connections. See the *NSP NFM-P XML API Developer Guide* for more information about the messaging between XML API clients and main servers.
- 3GPP OSS clients send CORBA or SOAP/XML requests over HTTP or HTTPS for processing by a main server. See the *NSP NFM-P Wireless OSS Interface Developer Guide* for information about the messaging between 3GPP OSS clients and main servers.

1.4.4 Main server and database

A main server communicates with a main database instance using a JDBC session over TCP. JDBC is a Java API for interworking with SQL relational databases.

1.4.5 Main server and auxiliary servers

A main server includes a mechanism for sending requests to auxiliary servers. An auxiliary server notifies the main server after it finishes processing a request. If the main server fails to send a request, or all auxiliary servers are unresponsive to a request, the main server raises an alarm.

1.4.6 Main server and NSP flow collectors

An NSP flow collector sends an initial XML API request to retrieve the network object model from a main server, and subsequently receives JMS event notifications about updates to the objects in the model. An NSP flow collector uses FTP or SFTP to forward statistics data to an XML API or third-party application.

1.4.7 Main server and analytics servers

An analytics server issues SQL queries to a main or auxiliary database, and uses REST calls for communication with main servers.
1.4.8 **NFM-P integration with external systems**

The NFM-P can be integrated with external network management systems for purposes such as alarm forwarding. Depending on the external system type, you can use client GUI contextual menu option to open a session on the external system. See the *NSP NFM-P Integration Guide* for information.

1.5 **System structure**

1.5.1 **Introduction**

An NFM-P system has a readily adaptable, modular structure that incorporates a relational data model and employs distributed processing.

1.5.2 **Framework**

The NFM-P system elements are created using proprietary and third-party software, and are logically organized in a framework that has the following layers:

- resource
- integration
- business
- presentation
- client

The following figure shows the multi-layer model and the elements in each layer.
Resource layer

The resource layer includes the network of managed NEs, the NFM-P database, and optionally, one or more auxiliary servers, an auxiliary database, and one or more analytics servers. The available resources include NE configurations and software images, customer service configurations, and statistics data.

Integration layer

The integration layer buffers resource-layer elements from the business layer. This layer contains the mediators, which communicate with equipment in the managed network, and the database adapter. The mediator components translate messages from the business layer into the SNMP, FTP, secure FTP, and CLI commands that are sent to the managed network. Messages that are received from the network are processed by the mediator components and passed to the business layer. The database adapter translates business logic requests into JDBC commands, and translates JDBC responses into Java business model objects.
Business layer
The business layer contains the logic and data model for NFM-P functions. The business logic processes client requests, SNMP traps from managed NEs, and internal server events, and performs the appropriate actions on the managed network, clients, and data model, which maintains information about network objects and their relationships. To support the business layer, an application server provides Java EE services.

Presentation layer
The presentation layer buffers the application logic from the client layer. This layer contains several components. The web server receives SOAP/XML messages from XML API clients and passes them to the business layer. The application server handles EJB method invocations received from the GUI clients and returns the responses generated by the business-layer logic. The application server also forwards JMS event notification messages from the business layer to GUI and XML API clients.

Client layer
The client layer comprises the GUI, XML API, and web-based clients. The GUI client Java VM sends EJB RMs to a main server. The XML API clients send XML/SOAP or 3GPP CORBA messages to a main server. Web clients use JNLP for portal access.

1.5.3 Server data model
The server data model represents the physical and logical elements of the network, such as equipment, customers, services, and statistics. The model also describes the relationships between objects, so allows operators to perform high-level operations that are propagated to child objects, as required. The object associations enable effective central management of large, complex networks.

The NFM-P maintains in the data model a representation of the current managed network state, and incorporates changes as they occur. Changes that are initiated by NEs include event notifications such as fault traps and state changes; changes that are initiated by clients include object creation, deletion, and configuration updates. The changes are applied to the model, saved in the NFM-P database, deployed to the network as required, and reported to clients.

1.5.4 Distributed server architecture
The NFM-P server functions can be distributed across multiple physical or virtual stations in a standalone or redundant configuration.

A main server is the network management engine that monitors the managed network and processes GUI and XML API client requests. A main server also directs the operation of the associated auxiliary servers and distributes the processing load, as required. The GUI and XML API clients interact only with the currently active main server.

Auxiliary components in a redundant NFM-P system respond to processing requests only from the current primary main server. Depending on the system configuration, if the main servers change roles because of a failure or deliberate operator action, an auxiliary server begins to take requests from the new primary main server, or remains idle as the main server directs the requests to other auxiliary servers.
A main server sends new or updated operating information such as the NFM-P license capacity, redundancy status, or database credentials, to each required auxiliary component as the information becomes available.

1.6 Security

1.6.1 Introduction

A distributed system such as the NFM-P requires security at the session and other communication layers. A GUI or XML API client must provide user credentials for access to the NFM-P.

The interfaces between a main server and all other NFM-P components are secured using SSL/TLS, with the exception of the interfaces to the main and auxiliary databases.

You can protect the session credentials and messages using mechanisms and protocols that include the following:

- HTTPS, as the application-layer transport for XML API and GUI clients
- SSH, SCP, and SNMPv3 with USM or VACM, at the application layer for communication between a main server and the managed network
- NAT, at the network layer, between the following:
 - main server and single-user GUI client or client delegate server
 - main or auxiliary server and XML API client
 - main or auxiliary server and managed network
- IP validation, at the network layer, between the main or other server components and each main database

The following figure shows the NFM-P components and the security mechanisms.
1.6.2 Session management

Effective session management requires authentication, authorization, and accounting, or AAA. Authentication is the verification of user credentials. Authorization is the assignment of access privileges to users. Accounting is the recording of user actions. An NFM-P operator can configure AAA functions using the local NFM-P security mechanisms, a third-party server, or both.

- Local NFM-P authentication is performed using a local database of users and a local security scheme.
- Supported third-party authentication servers are RADIUS, TACACS+, LDAP, SAM-L, and CSA, which run on separate platforms, and have separate user lists and administration processes.

NFM-P user accounts consist of a user name, password, and an associated user group, scope of command, and span of control. User groups define user authorization levels, and control the level of access to objects such as equipment, customers, services, and alarms. A system administrator can limit the type of user access per managed NE; for example, allowing FTP access but denying console, Telnet, or SNMP access.

Client sessions

All client sessions require authentication.

- The client GUI EJB sessions are secured by the session username and password.
- Each XML API client message is authenticated using cached information from an authorization server.
- JMS messages are secured by the XML API client user name and password.
Database sessions
A main database is accessible through a connection that is secured by a user name and password. After each database update in response to a GUI or XML API client request, the client activity log records the request information, which includes the name of the associated NFM-P user.

Secure communication between a main server and database is available using the IP validation function, which is typically configured on a main database station during an installation or upgrade.

Managed NE sessions
A main or auxiliary server opens CLI, FTP, SFTP and SCP sessions on managed NEs. A managed NE uses a local security database, or a third-party service such as RADIUS or TACACS+, to perform AAA functions.

SNMPv3 message authentication and authorization are handled by the USM and VACM mechanisms, which define the user authorization permissions. Older SNMP versions are authenticated using community strings. Each SNMP message is individually authenticated.

1.6.3 Network transport security
Transport-layer security is available to the network protocols that carry messages between NFM-P components.

Main server and clients
Communication between a main server and clients is performed using XML/SOAP, EJB, or JMS messages.
- XML API clients use HTTP or HTTPS to send XML/SOAP messages.
- GUI clients use the EJB interface
- JMS, which is used by GUI and XML API clients, can be secured using SSL.

Servers and managed NEs
A managed NE communicates with a main or auxiliary server using SNMP, FTP, SCP, or UDP. When SNMPv3 is used, an SHA or MD5 authentication key is included in each message and checked against the shared encryption key.

SSH provides the security for a CLI session between a GUI client and a managed NE.

RSA encryption is available for communication between auxiliary servers and managed NEs. Contact customer support for information.

Firewall support
The NFM-P supports firewalls on all server interfaces; for example, between a main server and the auxiliary servers and GUI or XML API clients, and between a main or auxiliary server and the managed network. See the NSP NFM-P Planning Guide for firewall and reserved TCP port information.
1.7 Fault tolerance

1.7.1 Introduction

Fault tolerance provides system reliability by maintaining availability in the event of a component failure. NFM-P fault tolerance includes high availability using component redundancy. Deploying redundant NFM-P hardware and software components ensures that there is no single point of NFM-P system failure.

Redundant physical network interfaces and points of network entry ensure that there is no single point of failure between the NFM-P system and the managed network. Redundant network paths, for example, in-band and out-of-band management, can help to prevent the isolation of a main server from the network in the event of a routing failure.

See the “NFM-P system redundancy” chapter of the NSP NFM-P System Administrator Guide for more information.

1.7.2 Main server and database redundancy

A redundant NFM-P system consists of a primary main server and primary main database that actively manage the network, and a second main server and database in warm standby mode. A main server and database can be collocated on one station, or distributed on separate stations. The following figure shows a distributed NFM-P system deployed in a redundant configuration.

Figure 5 Redundant NFM-P system
Main server redundancy

Main server redundancy is achieved using clustering technology provided by a JBOSS application server on each main server. The primary and standby main servers regularly poll each other to monitor availability. Traps from the managed network are always sent to both main servers in order to avoid delays in the event that a main server fails.

If the primary server loses visibility of the standby server, it notifies the GUI clients. If the standby server loses visibility of the primary server, the standby server attempts to become the primary server by connecting to the primary database.

NFM-P database redundancy

NFM-P database redundancy uses Oracle Data Guard Replication in real-time apply mode to keep the standby database synchronized with data changes in the primary database. The supported fault-recovery operations are database switchovers and database failovers. A switchover is a manual operation that switches the primary and standby database roles. A failover is an automatic operation that forces the standby database to become the primary database when a primary main database failure is detected.

The primary main server regularly polls each main database. If the primary or standby database is unavailable, the main server notifies the GUI clients. If both main servers lose contact with the primary main database, a failover occurs and the standby main database becomes the primary.

1.7.3 Auxiliary servers and NFM-P redundancy

Auxiliary servers are passively redundant. They do not cause or initiate main server or database redundancy activities, but if a Preferred auxiliary server ceases to respond to requests from the primary main server and a Reserved auxiliary server is available, the main server directs the current and subsequent requests to the Reserved auxiliary server until the Preferred auxiliary server is available.

An auxiliary server communicates only with the current primary server and database. After an NFM-P redundancy activity such as a database failover, the primary main server directs the auxiliary servers to communicate with the current primary component instead of the former primary component.

1.7.4 NSP flow collectors and NFM-P redundancy

NSP flow collectors can be configured to transfer the collected statistics files to redundant destinations. For a higher degree of fault tolerance, you can configure two or more NSP flow collectors to collect statistics from the same set of NEs and transfer the statistics files to redundant destinations. Such a configuration ensures that the statistics collection and transfer continue uninterrupted in the event that an NSP flow collector and a transfer destination fail.

1.7.5 Analytics servers and NFM-P redundancy

You can deploy multiple analytics servers in an active/active configuration that eliminates the single point of failure in the event that a server fails. The use of multiple analytics servers also allows load balancing of client requests among the servers.

A main server that provides web client access to the NFM-P Analytics application monitors the reachability of each analytics server. The main server directs client requests to other analytics servers.
servers in the event that one server fails. A load-balancing scheme in the main server configuration determines how the main server distributes client requests among the available servers.

The redundancy function is active when the main server configuration includes multiple analytics servers, regardless of whether load balancing is enabled.

For additional fault tolerance, an analytics server configuration can also include the IP addresses of multiple auxiliary database stations in an auxiliary database cluster. If the auxiliary database is unreachable using one IP address, the other addresses are tried in sequence until communication with the auxiliary database is established.

1.8 Standards compliance

1.8.1 Description

The NFM-P system uses industry standards and open-standard interfaces that allow the system to interoperate with a variety of other network monitoring and management systems. The following table lists the NFM-P compliance with various standards:

Table 1 NFM-P standards compliance

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project IRPs for CORBA R8 and SOAP/XML R8 Solution Sets</td>
</tr>
<tr>
<td>draft-grant-tacacs-02.txt</td>
<td>TACACS+ client</td>
</tr>
<tr>
<td>draft-ylonen-ssh-protocol-00.txt</td>
<td>SSH</td>
</tr>
<tr>
<td>EJB</td>
<td>Java EE Enterprise Java Session Bean version 2.3</td>
</tr>
<tr>
<td>HTML5</td>
<td>HyperText Markup Language 5, for NFM-P applications</td>
</tr>
<tr>
<td>HTTP(S)</td>
<td>HyperText Transfer Protocol (Secure) version 1.1</td>
</tr>
<tr>
<td>ITU-T X.721</td>
<td>SMI</td>
</tr>
<tr>
<td>ITU-T X.734</td>
<td>Event report management function</td>
</tr>
<tr>
<td>Java SE</td>
<td>Java Standard Edition version 8</td>
</tr>
<tr>
<td>JBOSS EAP</td>
<td>Java Bean Open Source Software Enterprise Application Platform version 6</td>
</tr>
<tr>
<td>JMS</td>
<td>Java Message Service version 1.1</td>
</tr>
<tr>
<td>JSON</td>
<td>ECMA-404 JavaScript Object Notation Data Interchange Format</td>
</tr>
<tr>
<td>JS/ECMAScript 5</td>
<td>ECMA-262 ECMA Script Language Specification</td>
</tr>
<tr>
<td>M.3100/3120</td>
<td>Equipment and connection models</td>
</tr>
<tr>
<td>MTOSI</td>
<td>Compliance of generic network objects, inventory retrieval, and JMS over XML</td>
</tr>
<tr>
<td>RFC 0959</td>
<td>FTP</td>
</tr>
<tr>
<td>RFC 1213</td>
<td>SNMPv1</td>
</tr>
</tbody>
</table>
Table 1 NFM-P standards compliance (continued)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1738</td>
<td>Uniform Resource Locators (URL)</td>
</tr>
<tr>
<td>RFC 2138</td>
<td>RADIUS client 2618</td>
</tr>
<tr>
<td>RFC 3411-3415</td>
<td>SNMPv3</td>
</tr>
<tr>
<td>RFC 3416</td>
<td>SNMPv2c</td>
</tr>
<tr>
<td>RFC 5246</td>
<td>The Transport Layer Security (TLS) Protocol</td>
</tr>
<tr>
<td>RFC 6241</td>
<td>Network Configuration Protocol (NETCONF)</td>
</tr>
<tr>
<td>SAML</td>
<td>SAM-L 1.1</td>
</tr>
<tr>
<td>SOAP</td>
<td>W3C SOAP 1.2</td>
</tr>
<tr>
<td>TMF 509/613</td>
<td>Network connectivity model</td>
</tr>
<tr>
<td>TR-069</td>
<td>TR-069 (Amendment 1) by way of the Home Device Manager</td>
</tr>
<tr>
<td>XML</td>
<td>W3C XML 1.0</td>
</tr>
<tr>
<td></td>
<td>W3C Namespaces in XML</td>
</tr>
<tr>
<td></td>
<td>W3C XML schemas</td>
</tr>
</tbody>
</table>

The following standards are considered in the NFM-P GUI design:

- Telcordia (Bell Core) GR-2914-CORE Sept. 98, *Human Factors Requirements for Equipment to Improve Network Integrity*.
- Telcordia (Bell Core) GR-826-CORE, June 1994, Issue 1, Section 10.2 of OTGR, *User Interface Generic Requirements for Supporting Network Element Operations*.
- ITU-T Recommendation Z.361 (02/99), *Design guidelines for Human- Computer Interfaces (HCI) for the management of telecommunications networks*.
- ETSI EG 201 204 v1.1.1 (1997-05), *Human Factors (HF); User Interface design principles for the Telecommunications Management Network (TMN) applicable to the “G” Interface*.