Table of Contents

Preface 15

ISA Hardware
- MS-ISA Overview ... 20
- MS-ISM Overview ... 21
- Application Assurance Hardware Features 22
- AA System Support ... 22
- Host IOM Support for AA on MS-ISA .. 23

Application Assurance
- Application Assurance (AA) Overview 27
- Application Assurance Hardware Features 28
- AA Integration in Subscriber Edge Gateways 29
- Fixed Residential Broadband Services 31
- Dual-Stack Lite – DS-Lite .. 32
- 6to4 /6RD ... 34
- Wireless LAN Gateway Broadband Services 36
- Application-Aware Business VPN Services 37
- Application Assurance System Architecture 39
- AA ISA Resource Configuration ... 39
- AA ISA Groups and Partitions .. 39
- Redundancy ... 43
- ISA Load Balancing .. 45
- Asymmetry Removal ... 46
- ISA Overload Detection .. 56
- AA Packet Processing .. 58
- Divert of Traffic and Subscribers ... 59
- Application Identification ... 80
- Statistics and Accounting .. 91
- Application QoS Policy (AQP) ... 121
- Service Monitoring and Debugging 150
- CPU Utilization .. 150
- CLI Batch: Begin, Commit and Abort Commands 151

Configuring Application Assurance with CLI 153
- Provisioning AA ISA MDA .. 153
- Configuring an AA ISA Group .. 154
- Configuring Watermark Parameters 156
- Configuring a Group Policy .. 157
- Beginning and Committing a Policy Configuration 157
- Aborting a Policy Configuration .. 157
- Configuring an IP Prefix List ... 158
- Configuring AA Session Filters ... 159
- Configuring an Application Group 162
- Configuring an Application ... 163
- Configuring an Application Filter 164
- Configuring an Application Profile 165
Table of Contents

Configuring Application Service Options ... 166
Configuring a Policier ... 167
Configuring an Application QoS Policy ... 168
Configuring an HTTP Error Redirect ... 170
Configuring HTTP Header Enrichment ... 171
Configuring an HTTP Policy Redirect ... 172
Configuring ICAP URL Filtering .. 173
Configuring HTTP Notification .. 176
Configuring AA Volume Accounting and Statistics .. 177
Configuring Cflowd Collector ... 179
Configuring AA Volume, TCP and RTP Performance Reporting 180
Application Assurance Command Reference ... 183

IP Tunnels

IP Tunnels Overview ... 368
Tunnel ISAs ... 371
 Public Tunnel SAPs ... 372
 Private Tunnel SAPs ... 373
IP Interface Configuration .. 374
GRE and IP-IP Tunnel Configuration ... 374
IP Fragmentation and Reassembly for IP Tunnels .. 376
Operational Conditions ... 379
QoS Interactions ... 380
OAM Interactions ... 380
Redundancy ... 380
Statistics Collection .. 382
Security .. 382
 GRE Tunnel IPv4 Multicast Support .. 383
IKEv2 .. 384
IKEv2 TS-List .. 384
SHA2 Support .. 386
Using Certificates For IPSec Tunnel Authentication 387
Trust-Anchor-Profile .. 388
Cert-Profile ... 389
 Cert-Profile/trust-anchor-profile versus cert/trust-anchor 391
Certificate Management Protocol Version 2 (CMPv2) 392
OCSP ... 393
Using CRL .. 394
Remote Access VPN Concentrator Example ... 395
Video Wholesale Example ... 396
Multi-Chassis IPSec Redundancy Overview ... 397
 Architecture ... 398
 MC-IPSec Mastership Protocol (MIMP) ... 399
 Routing ... 403
 MC-IPSec Aware VRRP ... 404
 Synchronization ... 404
 Responder Only ... 405
 IPSec Deployment Requirements ... 405
IKEv2 Remote-Access Tunnel ... 407
Table of Contents

IKEv2 Remote-Access Tunnel – Authentication ... 407
IKEv2 Remote-Access Tunnel – EAP Authentication 411
IPv6 over IPv4 IPSec Tunnel ... 413
IPv6 over IPv4: Static LAN-to-LAN Tunnel .. 413
IPv6 over IPv4: Dynamic LAN-to-LAN Tunnel ... 414
IPv6 over IPv4: Remote-Access Tunnel .. 414
Configuring IPSec with CLI ... 415
Provisioning a Tunnel ISA ... 415
Configuring a Tunnel Group .. 416
Configuring Router Interfaces for IPSec .. 417
Configuring IPSec Parameters ... 418
Configuring IPSec in Services .. 419
Configuring X.509v3 Certificate Parameters ... 420
Configuring MC-IPSec ... 423
Configuring MIMP .. 423
Configuring Multi-Chassis Synchronization .. 424
Configuring Routing for MC-IPSec .. 424
Configuring and Using CMPv2 .. 426
Configuring OCSP ... 427
Configuring IKEv2 Remote-Access Tunnel .. 428
IP Tunnel Command Reference .. 431

Video Services ... 528
Video Services ... 528
Video Groups ... 528
Video SAP ... 529
Video Interface ... 529
Multicast Information Policies ... 530
Duplicate Stream Protection ... 532
Duplicate Stream Selection ... 533
Stream Identification .. 533
Initial Sequence Identification ... 534
Packet Selection .. 534
Clock Recovery ... 535
Playout ... 536
Loss of Transport .. 536
Video Quality Monitoring ... 537
VoIP/Video/Teleconferencing Performance Measurements 543
Mean Opinion Score (MOS) Performance Measurements Solution Architecture ... 544
Retransmission and Fast Channel Change .. 545
Retransmission ... 545
Fast Channel Change (FCC) ... 546
RET and FCC Server Concurrency ... 554
Multi-Service ISA Support in the IOM-3 for Video Services 556
Prioritization Mechanism for RET vs. FCC ... 556
RET Features ... 557
FCC Features ... 559
Ad Insertion ... 560
Local/Zoned Ad Insertion ... 560

OS Multi-Service ISA Guide
Table of Contents

Transport Stream Ad Splicing .. 560
Ad Zones ... 563
Local/Zoned ADI Prerequisites and Restrictions 564
Configuring Video Service Components with CLI 565
Video Services Overview .. 565
Configuring an ISA-MS Module .. 567
Configuring a Video Group ... 568
Configuring a Video SAP and Video Interface in a Service 569
Basic Multicast Information Policy Configuration 570
Sample Configurations ... 571
Configuring RET/FCC Video Components with CLI 577
Configuring RET/FCC Video Features in the CLI 578
Configuring the RET Client ... 578
Configuring the RET Server ... 582
Configuring the FCC Server ... 586
Logging and Accounting Collection for Video Statistics 590
Configuring ADI Components with CLI 591
Configuring ADI in CLI .. 592
Configuring the RET Client ... 592
Configuring a Video Group ... 593
Configuring NTP ... 594
Configuring Channel Parameters .. 594
Configuring Service Entities .. 595
Video Command Reference ... 597
IP-TV Command Hierarchies ... 598
Show Commands .. 605
Clear Commands .. 605
Debug Commands .. 606
Video Services Commands ... 607
Generic Commands .. 607

Network Address Translation
Terminology ... 666
Network Address Translation (NAT) Overview 668
Principles of NAT .. 668
Application Compatibility ... 669
NAT Point-to-Point Tunneling Protocol (PPTP) Application Layer Gateway (ALG) 670
PPTP Protocol .. 670
Supported Control Messages .. 670
GRE Tunnel .. 671
PPTP ALG Operation .. 672
Multiple Sessions Initiated From the Same PPTP Client Node 676
Selection of Call IDs in NAT .. 676
Large Scale NAT ... 677
Port Range Blocks .. 678
Reserved Ports and Priority Sessions ... 678
Preventing Port Block Starvation ... 679
Timeouts ... 683
Watermarks .. 684
Table of Contents

L2-Aware NAT ... 685
Port Control Protocol (PCP) .. 687
DS-Lite and NAT64 Fragmentation 689
 Overview .. 689
 IPv6 Fragmentation in DS-Lite 690
 NAT64 .. 691
NAT Logging ... 692
 Syslog/SNMP/Local-File Logging 692
 Filtering LSN Events to System Memory 693
 NAT Logging to a Local File 696
SNMP Trap Logging ... 697
 NAT Syslog ... 698
LSN RADIUS Logging .. 699
 RADIUS Logging and L2-Aware NAT 703
LSN and L2-Aware NAT Flow Logging 704
NAT Stateless Dual-Homing ... 709
 Configuration Considerations 711
 Troubleshooting Commands 713
Deterministic NAT .. 716
 Overview .. 716
 Supported Deterministic NAT Flavors 716
 Number of Subscribers per Outside IP and per Pool 717
 Referencing a Pool ... 717
 Outside Pool Configuration 717
 Mapping Rules and the map Command in Deterministic LSN44 723
 Hashing Considerations in Deterministic LSN44 726
 Distribution of Outside IP Addresses Across MS-ISAs in an MS-ISA NA Group 728
Sharing of Deterministic NAT Pools 728
 Simultaneous support of dynamic and deterministic NAT 728
Selecting Traffic for NAT ... 728
Inverse Mappings .. 729
 MIB approach ... 729
 Off-line Approach to Obtain Deterministic Mappings 729
Logging .. 731
 Deterministic DS-Lite .. 731
 Hashing Considerations in DS-Lite 732
 Order of Configuration Steps in Deterministic DS-Lite .. 734
Enhanced Statistics in NAT — Histogram 737
 Configuration ... 739
NAT – Multiple NAT Policies per Inside Routing Context 741
 Restrictions ... 741
 Multiple NAT Policies Per Inside Routing Context 741
Routing Approach for NAT Diversion 743
Filter-Based Approach .. 744
 Multiple NAT Policies with DS-Lite and NAT64 745
Default NAT Policy .. 745
Scaling Considerations .. 746
 Multiple NAT Policies and SPF Configuration Considerations 746
 Multiple NAT Policies and Forwarding Considerations 747

OS Multi-Service ISA Guide
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging</td>
<td>748</td>
</tr>
<tr>
<td>ISA Feature Interactions</td>
<td>751</td>
</tr>
<tr>
<td>MS-ISA Use with Service Mirrors</td>
<td>751</td>
</tr>
<tr>
<td>LNS, Application Assurance and NAT</td>
<td>751</td>
</tr>
<tr>
<td>Subscriber Aware Large Scale NAT44</td>
<td>752</td>
</tr>
<tr>
<td>Configuring NAT</td>
<td>761</td>
</tr>
<tr>
<td>ISA Redundancy</td>
<td>761</td>
</tr>
<tr>
<td>NAT Layer 2-Aware Configurations</td>
<td>764</td>
</tr>
<tr>
<td>Large Scale NAT Configuration</td>
<td>766</td>
</tr>
<tr>
<td>NAT Configuration Examples</td>
<td>768</td>
</tr>
<tr>
<td>NAT Command Reference</td>
<td>771</td>
</tr>
<tr>
<td>L2TP Network Server</td>
<td></td>
</tr>
<tr>
<td>Subscriber agg-rate-limit on LNS</td>
<td>866</td>
</tr>
<tr>
<td>LNS Reassembly</td>
<td>870</td>
</tr>
<tr>
<td>Overview</td>
<td>870</td>
</tr>
<tr>
<td>Reassembly Function</td>
<td>870</td>
</tr>
<tr>
<td>Load Sharing Between the ISAs</td>
<td>872</td>
</tr>
<tr>
<td>Inter-chassis ISA Redundancy</td>
<td>872</td>
</tr>
<tr>
<td>MLPPPoe, MLPPP(oE)oA with LFI on LNS</td>
<td>873</td>
</tr>
<tr>
<td>Terminology</td>
<td>873</td>
</tr>
<tr>
<td>LNS MLPPPoX</td>
<td>874</td>
</tr>
<tr>
<td>MLPPP Encapsulation</td>
<td>875</td>
</tr>
<tr>
<td>MLPPPoX Negotiation</td>
<td>876</td>
</tr>
<tr>
<td>Enabling MLPPPoX</td>
<td>877</td>
</tr>
<tr>
<td>Link Fragmentation and Interleaving (LFI)</td>
<td>878</td>
</tr>
<tr>
<td>MLPPPoX Fragmentation, MRRU and MRU Considerations.</td>
<td>879</td>
</tr>
<tr>
<td>LFI Functionality Implemented in LNS</td>
<td>881</td>
</tr>
<tr>
<td>Last Mile QoS Awareness in the LNS</td>
<td>883</td>
</tr>
<tr>
<td>BB-ISA Processing</td>
<td>885</td>
</tr>
<tr>
<td>LNS-LAC Link</td>
<td>886</td>
</tr>
<tr>
<td>AN-RG Link</td>
<td>886</td>
</tr>
<tr>
<td>Home Link</td>
<td>886</td>
</tr>
<tr>
<td>Optimum Fragment Size Calculation by LNS</td>
<td>887</td>
</tr>
<tr>
<td>Upstream Traffic Considerations</td>
<td>890</td>
</tr>
<tr>
<td>Multiple Links MLPPPoX With No Interleaving</td>
<td>890</td>
</tr>
<tr>
<td>MLPPPoX Session Support</td>
<td>890</td>
</tr>
<tr>
<td>Session Load Balancing Across Multiple BB-ISAs</td>
<td>892</td>
</tr>
<tr>
<td>BB-ISA Hashing Considerations</td>
<td>893</td>
</tr>
<tr>
<td>Last Mile Rate and Encapsulation Parameters</td>
<td>893</td>
</tr>
<tr>
<td>Link Failure Detection</td>
<td>896</td>
</tr>
<tr>
<td>CoA Support</td>
<td>896</td>
</tr>
<tr>
<td>Accounting</td>
<td>897</td>
</tr>
<tr>
<td>Filters and Mirroring</td>
<td>897</td>
</tr>
<tr>
<td>PTA Considerations</td>
<td>898</td>
</tr>
<tr>
<td>QoS Considerations</td>
<td>898</td>
</tr>
<tr>
<td>Dual-Pass</td>
<td>898</td>
</tr>
<tr>
<td>Traffic Prioritization in LFI</td>
<td>898</td>
</tr>
<tr>
<td>Shaping Based on the Last Mile Wire Rates</td>
<td>900</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Downstream Bandwidth Management on Egress Port</td>
<td>901</td>
</tr>
<tr>
<td>Sub/Sla-Profile Considerations</td>
<td>901</td>
</tr>
<tr>
<td>Example of MLPPPoX Session Setup Flow</td>
<td>902</td>
</tr>
<tr>
<td>Other Considerations</td>
<td>904</td>
</tr>
<tr>
<td>Configuration Notes</td>
<td>905</td>
</tr>
<tr>
<td>L2TP Network Server Command Reference</td>
<td>907</td>
</tr>
<tr>
<td>Threat Management Service</td>
<td></td>
</tr>
<tr>
<td>TMS Service Introduction</td>
<td>926</td>
</tr>
<tr>
<td>Configuration Guidelines and Example</td>
<td>927</td>
</tr>
<tr>
<td>TMS Image Location</td>
<td>927</td>
</tr>
<tr>
<td>Configuration Example For TMS Interfaces on the SR OS</td>
<td>927</td>
</tr>
<tr>
<td>Dynamic Control of IP Filter Entries</td>
<td>930</td>
</tr>
<tr>
<td>Threat Management Service Command Reference</td>
<td>931</td>
</tr>
<tr>
<td>Appendix A: Common CLI Command Descriptions</td>
<td></td>
</tr>
<tr>
<td>Common Service Commands</td>
<td>950</td>
</tr>
</tbody>
</table>
List of Figures

ISA Hardware
Figure 1: MS-ISA on Host IOM ... 20
Figure 2: MS-ISM with ISA2s ... 21
Figure 3: AA ISA on Host IOM 2-20G Example 23

Application Assurance
Figure 4: AA ISA Inline Identification, Classification and Control 28
Figure 5: AA Deployment Topologies ... 29
Figure 6: DS-Lite Deployment .. 32
Figure 7: 6to4 in Access Network Deployment .. 34
Figure 8: AA BVS Services Integrated into the Provider Edge 38
Figure 9: Transit Sub SAP/Spoke SDP Multi-Homing with Asymmetry 46
Figure 10: VPN Site Multi-Homing with Asymmetry 47
Figure 11: Multi-Chassis Asymmetry Removal Functional Overview 48
Figure 12: Application Assurance High Level Functional Components 58
Figure 13: Application Assurance Ingress Datapath 59
Figure 14: static-remote-aa-sub Usage Topology 67
Figure 15: RADIUS COA Example ... 69
Figure 16: Determining the Subscriber Profile, SLA Profile and Application Profile of a Host ... 73
Figure 17: Configuration Example ... 74
Figure 18: AQP Definition Example .. 75
Figure 19: Single ASO Example .. 76
Figure 20: Policy Structure ... 82
Figure 21: Usage Monitoring .. 111
Figure 22: From-AA-Sub Application-Aware Bandwidth Policing 130
Figure 23: To-AA-Sub Application-Aware Bandwidth Policing 130
Figure 24: HTTP Redirect Due To URL Block .. 133
Figure 25: AQP Actions ... 136
Figure 26: ICAP High Level Flow Diagram .. 137
Figure 27: HTTP Enrichment ... 139
Figure 28: HTTP in Browser Notification - High Level 142
Figure 29: AA Mirroring for offline Specialized Appliance Processing 146
Figure 30: Stateful Firewall ... 148
Figure 31: Application Layer Gateway Support 149

IP Tunnels
Figure 32: 7750 IPSec Implementation Architecture 368
Figure 33: Example GRE over IPSec Tunnel Configuration 377
Figure 34: IKEv2 TS-List ... 385
Figure 35: IPSec into VPRN Example .. 395
Figure 36: Video Wholesale Configuration .. 396
Figure 37: MC-IPSec Architecture ... 398
Figure 38: Call Flow for psk-radius/cert-radius 408
Figure 39: Typical Call Flow of EAP Authentication 411
List of Figures

Video Services
- **Figure 40:** RTP Header Extension ... 542
- **Figure 41:** Voice/Video Monitoring Deployment Example 543
- **Figure 42:** RET Server Retransmission of a Missing Frame 545
- **Figure 43:** FCC Client/Server Protocol ... 547
- **Figure 44:** FCC Bursting Sent Faster Than Nominal Rate 548
- **Figure 45:** FCC Denting Removing Less Important Frames 548
- **Figure 46:** Ad Insertion Model .. 560
- **Figure 47:** Transport Stream Ad Splicing ... 561
- **Figure 48:** Splicer Model ... 561
- **Figure 49:** Transport Stream Flow Example 562
- **Figure 50:** Video Services Configuration Elements 566

Network Address Translation
- **Figure 51:** NAT PPTP Operation ... 674
- **Figure 52:** Merging of Endpoints in NAT .. 675
- **Figure 53:** Dynamic Port Block Starvation in LSN 680
- **Figure 54:** L2-Aware Tree .. 685
- **Figure 55:** DS-Lite ... 690
- **Figure 56:** Pool Fate Sharing Group .. 710
- **Figure 57:** Consistency Check ... 712
- **Figure 58:** Outside Pool Configuration .. 718
- **Figure 59:** Outside Address Ranges .. 722
- **Figure 60:** Deterministic LSN44 Configuration Example 727
- **Figure 61:** Pool Selection Based on Traffic Destination 742
- **Figure 62:** NAT Pool Selection Based on the Inside Source IP Address 742
- **Figure 63:** SPF With Multiple NAT Policies .. 747
- **Figure 64:** Bypassing Nat Policy Rule .. 748

L2TP Network Server
- **Figure 65:** QoS Hierarchy on LNS ... 866
List of Tables

ISA Hardware
Table 1: Application Assurance System Support .. 22

Application Assurance
Table 2: Traffic Diversion to the ISA ... 30
Table 3: Interaction and Dependencies Between AARP States .. 55
Table 4: Spoke SDP Divert ... 63
Table 5: Transit AA Subs Support .. 64
Table 6: AA Flows and Sessions .. 83
Table 7: Application Assurance Statistics Fields Generated per Record (Accounting File) 94
Table 8: AA Performance Planning Record Fields .. 101
Table 9: Per ISA AA Performance Record Fields .. 104
Table 10: Per AA Partition Stats Record Fields .. 107
Table 11: Policer's Hardware Rate Steps for AA ISA ... 128

IP Tunnels
Table 12: Master and Backup Chassis Example ... 399

Network Address Translation
Table 13: Template Set Values .. 707
Table 14: Contiguous Number of Subscribers ... 719
Table 15: Preserving Det/Dyn Port Ratio with 2^n Subscribers 720
Table 16: Fixed Number of Deterministic Ports with 2^n Subscribers 721
Preface

About This Guide

This guide describes details pertaining to Integrated Services Adapters (ISAs) and the services they provide.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring 7750 SR and 7450 ESS routers. It is assumed that the network administrators have an understanding of networking principles and configurations.

List of Technical Publications

The documentation set is composed of the following books:

- 7750 SR OS Basic System Configuration Guide
 7450 ESS OS Basic System Configuration Guide
 These guides describe basic system configurations and operations.

- 7750 SR OS System Management Guide
 7450 ESS OS System Management Guide
 These guides describe system security and access configurations as well as event logging and accounting logs.

- 7750 SR OS Interface Configuration Guide
 7450 ESS OS Interface Configuration Guide
 These guides describe card, Media Dependent Adapter (MDA), link aggregation group (LAG) and port provisioning.
• 7750 SR OS Router Configuration Guide
 7450 ESS OS Router Configuration Guide
 These guides describe logical IP routing interfaces and associated attributes such as an IP
 address, port, as well as IP and MAC-based filtering, and VRRP, and Cflowd.

• 7750 SR OS Routing Protocols Guide
 7450 ESS OS Routing Protocols Guide
 These guides provide an overview of routing concepts and provides configuration
 examples for RIP, OSPF, IS-IS, Multicast, BGP, and route policies.

• 7750 SR OS MPLS Guide
 7450 ESS OS MPLS Guide
 These guides describe how to configure Multiprotocol Label Switching (MPLS) and Label
 Distribution Protocol (LDP).

• 7750 SR OS Services Guide
 7450 ESS OS Services Guide
 These guides describe how to configure service parameters such as service distribution
 points (SDPs), customer information, and user services.

• 7750 SR OS OAM and Diagnostic Guide
 7450 ESS OS OAM and Diagnostic Guide
 These guides describe how to configure features such as service mirroring and Operations,
 Administration and Management (OAM) tools.

• 7750 SR OS Triple Play Guide
 7450 ESS OS Triple Play Guide
 These guides describe Triple Play services and support provided by the router and presents
 examples to configure and implement various protocols and services.

• 7750 SR OS Quality of Service Guide
 7450 ESS OS Quality of Service Guide
 These guides describe how to configure Quality of Service (QoS) policy management.

• OS Multi-Service Integrated Services Adapter Guide
 These guides describe services provided by integrated service Adapters such as
 Application Assurance, IPSec.

• 7750 SR OS RADIUS Attributes Reference Guide
 This guide describes all supported RADIUS Authentication, Authorization and
 Accounting attributes. 7750 SR only.

• 7750 SR OS Gx AVPs Reference Guide
 This guide describes Gx Attribute Value Pairs (AVP). 7750 SR only.
Technical Support

If you purchased a service agreement for your router and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance.

If you purchased an Alcatel-Lucent service agreement, contact your welcome center:

Web: http://www.alcatel-lucent.com/wps/portal/support

Report documentation errors, omissions and comments to:

Documentation.feedback@alcatel-lucent.com

Include document name, version, part number and page(s) affected.
In This Section

This section provides an overview of Alcatel-Lucent’s implementation of the ISA hardware.

Topics include:

• MS-ISA Overview on page 20
• MS-ISM Overview on page 21
• Application Assurance Hardware Features on page 22
The MS-ISA (or ISA-MS in CLI) is an Integrated Services Adaptor for Multi-Service processing, as a resource module within the 7x50 system providing packet buffering and packet processing.

ISA-MS fits in an MDA/ISA slot on an IOM and has no external ports, so all communication passes through the IOM, making use of the network processor complex on the host IOM for queuing and filtering functions like other MDAs and ISAs.

The actual ingress and egress throughput will vary depending on the buffering and processing demands of a given application, but the ISA-MS hardware can support slightly more than 10 Gbps of throughput ingress and egress.

With the introduction of the MS-ISM and ISA2 processing, ISA-MS may also be referred to as ISA1, as the first generation ISA hardware.

![Figure 1: MS-ISA on Host IOM](image-url)
MS-ISM Overview

The Multi-Service Integrated Services Module (MS-ISM) card contains two ISA2 processing modules providing increased packet processing throughput and scale compared to the MS-ISA platform. Each ISA2 processing module supports a 40G datapath for packet processing; as with ISA1 the actual throughput varies by function.

The IOM base card is an imm-2pac-fp3 with two embedded positions for ISA2s. Hot swap or field replacement of the ISA2s within an MS-ISM assembly is not supported. IMM cards offering 10x10GE media plus one ISA2, or 1x100GE media plus one ISA2.

Figure 2: MS-ISM with ISA2s

The MS-ISM remains as a common base hardware assembly to be used as a generic CPU processing platform for multiple applications. The functions supported in this release on MS-ISM including the following software based capabilities:

- Application Assurance (AA)
- Tunnel (IPsec, GRE)
- Broadband (NAT, LNS)
Application Assurance Hardware Features

AA System Support

The Application Assurance Integrated Services Adapter (AA ISA) is a resource adapter, which means that there are no external interface ports on the AA ISA itself. Instead, any other Input Output Modules on a system in which the AA ISA is installed are used to switch traffic internally MS ISA to the AA ISA. Table 1 describes Application Assurance ISA support on 7750 SR and 7450 ESS products.

Table 1: Application Assurance System Support

<table>
<thead>
<tr>
<th>System</th>
<th>AA on MS-ISA</th>
<th>AA on MS-ISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7750 SR-12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7750 SR-12e</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7750 SR-7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7750 SR-c12</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>7750 SR-c4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>7750 SR-1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7710 SR</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7450 ESS-12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7450 ESS-7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7450 ESS-6</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

A key strength of Application Assurance features is the complete integration into the 7750 SR and 7450 ESS family of products. Common interfaces and operational familiarity reduce the effort to integrate the Application Assurance into existing networks.
Host IOM Support for AA on MS-ISA

The AA MS-ISA is supported on IOM-20G-B, IOM2-20g, IOM3-XP, CFM-XP (c12), and IOMc4-xp.

Each IOM can support a maximum of two AA ISA modules. To maximize AA ISA redundancy, deployment of AA ISAs on separate host IOMs is recommended as it provides IOM resilience. Traffic from any supported IOM (for example, the IOM-20G-B, and IOM3-XP, fixed port IOMs (IMMs)) can be diverted to AA ISA host IOM.

The MS-ISA is field replaceable and supports hot insertion and removal. See Figure 1. A system can support up to seven active AA MS-ISA cards providing up to 70 G of processing capacity (a system with seven active ISA2s on MS-ISM provides up to 280G processing).

AA ISA software upgrades are part of the ISSU functionality. Upgrades to AA ISA software, for example to activate new protocol signatures, do not impact the second MDA slot for the IOM carrying the AA ISA, nor do upgrades impact the router itself (for example, a new AA ISA software image can be downloaded without a need to upgrade other software images).

![Figure 3: AA ISA on Host IOM 2-20G Example](image-url)
Application Assurance

In This Section

This section provides an overview of Alcatel-Lucent’s implementation of the Application Assurance service model.

Topics include:

- Application Assurance (AA) Overview on page 27
 - Application Assurance: Inline Policy Enforcement on page 28
 - AA Integration in Subscriber Edge Gateways on page 29
 - Fixed Residential Broadband Services on page 31
 - Application-Aware Business VPN Services on page 37
- Application Assurance System Architecture on page 39
 - AA ISA Resource Configuration on page 39
 - AA ISA Groups and Partitions on page 39
 - Redundancy on page 43
 - ISA Load Balancing on page 45
 - Asymmetry Removal on page 46
 - ISA Overload Detection on page 56
 - AA Packet Processing on page 58
 - Divert of Traffic and Subscribers on page 59
 - Application Identification on page 80
 - Statistics and Accounting on page 91
 - Application QoS Policy (AQP) on page 121
 - AA Mirroring to Offline Processing on page 145
→ Application Assurance Firewall on page 147
 - Stateful /Stateless Packet Filtering and Inspection with Application-Level Gateway (ALG) Support on page 147
 - Denial Of Service (DOS) Protection on page 124
 - Virtual AA FW on page 126
→ Service Monitoring and Debugging on page 150
→ CPU Utilization on page 150
→ CLI Batch: Begin, Commit and Abort Commands on page 151
Application Assurance (AA) Overview

Network operators are transforming broadband network infrastructures to accommodate unified architecture for IPTV, fixed and mobile voice services, business services, and High Speed Internet (HSI), all with a consistent, integrated awareness and policy capability for the applications using these services.

As bandwidth demand grows and application usage shifts, the network must provide consistent application performance that satisfies the end customer requirements for deterministic, managed quality of experience (QoE), according to the business objectives for each service and application. Application Assurance (AA) is the enabling network technology for this evolution in the service router operating system.

Application Assurance, coupled with subscriber and/or VPN access policy control points enables any broadband network to provide application-based services. For service providers, this unlocks:

- The opportunity for new revenue sources.
- Content control varieties of service.
- Control over network costs incurred by various uses of HSI.
- Complementary security aspects to the existing network security.
- Improved quality of service (QoS) sophistication and granularity of the network.
- The ability to understand and apply policy control on the transactions traversing the network.
The integrated solution approach for Application Assurance recognizes that a per-AA-subscriber and per-service capable QoS infrastructure is a pre-condition for delivering application-aware QoS capabilities. Enabling per-application QoS in the context of individual subscriber’s VPN access points maximizes the ability to monetize the application service, because a direct correlation can be made between customers paying for the service and the performance improvements obtained from it. By using an integrated solution there is no additional cost related to router port consumption, interconnect overhead or resilience to implement in-line application-aware policy enforcement.
AA Integration in Subscriber Edge Gateways

Multiple deployment models are supported for integrating application assurance in the various subscriber edge and VPN PE network topologies. In all cases, application assurance can be added by in-service upgrade to the installed base of equipment rather than needing deploy and integrate a whole new set of equipment and vendors into the network for Layer 4-7 awareness.

Integrating Layer 4-7 application policy with the 7750 SR or 7450 ESS subscriber edge policy context is the primary solution to address both residential broadband edge or Layer 2/Layer 3 application aware business VPN. Placement of Layer 4-7 analysis at the distributed subscriber edge policy point simplifies AA deployments in the following ways:

- For residential markets, CO-based deployment allows deployment-driven scaling of resources to the amount of bandwidth needed and the amount of subscribers requiring application-aware functionality.
- For AA business VPNs, a network deployment allows large scale application functionality at a VPN provider edge access point, vastly reducing complexity, cost, and time to market required to offer application-aware VPN services.
- Traffic asymmetry is avoided. Any subscriber traffic usually passes through one CO subscriber edge element so there is no need for flow paths to be recombined for stateful analysis.
- PE integration provides a single point of policy enforcement.

Figure 5: AA Deployment Topologies
There are residential topologies where it is not possible or practical to distribute ISAs into the same network elements that run ESM, including for legacy edge BRASs that still need Application Assurance policy (reporting and control) for the same internet services, and which needs to be aligned and consistent with the ESM AA policy. This is supported using transit AA subscribers, typically in the first routed element behind the legacy edge.

Application Assurance enables per AA-subscriber (a residential subscriber, or a Layer 2/Layer 3 SAP or spoke SDP), per application policy for all or a subset of AA subscriber's applications. This provides the ability to:

- Implement Layer 4-7 identification of applications using a multitude of techniques from a simple port-based/IP address based identification to behavioral techniques used to identify, for example, encrypted or evasive applications.
- Once identified, to apply QoS policy on either an aggregate or a per-AA-subscriber, per-application basis.
- Provide reports on the identification made, the traffic volume and performance of the applications, and policies implemented.

An integrated AA module allows the SR/ESS product families to provide application-aware functions that previously required standalone devices (either in residential or business environment) at a fraction of cost and operational complexity that additional devices in a network required.

A key benefit if integrating AA in the existing IP/MPLS network infrastructure (as opposed to an in-line appliance) is the ability to select traffic for treatment on a granular, reliable basis. Only traffic that requires AA treatment is simply and transparently diverted to the ISA. Other traffic from within the same service or interface will follow the normal forwarding path across the fabric. In the case of ISA failure, ISA redundancy is supported and in the case no backup ISAs are available the AA traffic reverts to the normal fabric matrix forwarding, also known as “fail to fabric”.

Table 2: Traffic Diversion to the ISA

<table>
<thead>
<tr>
<th>Deployment Case</th>
<th>System Divert ID</th>
<th>AA-Sub Type</th>
<th>App-Profile on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Edge</td>
<td>ESM Sub-ID</td>
<td>ESM</td>
<td>ESM sub (All IPs, not per-host)</td>
</tr>
<tr>
<td>Wireless LAN GW</td>
<td>DSM-ID</td>
<td>DSM</td>
<td>DSM</td>
</tr>
<tr>
<td>Business Edge</td>
<td>L2/L3 SAP</td>
<td>SAP</td>
<td>SAP (Aggregate)</td>
</tr>
<tr>
<td>Residential Transit</td>
<td>Parent L3 SAP/Spoke-SDP</td>
<td>Transit AA</td>
<td>Transit Sub</td>
</tr>
<tr>
<td>Spoke Attached Edge</td>
<td>Spoke SDP</td>
<td>Spoke SDP</td>
<td>Spoke SDP (Aggregate)</td>
</tr>
</tbody>
</table>
Fixed Residential Broadband Services

Fixed residential HSI services as a single edge Broadband Network Gateway (BNG) or as part of the Triple Play Service Delivery Architecture (TPSDA) are a primary focus of Application Assurance performance, subscriber and traffic scale.

To the service provider, application-based service management offers:

- Application aware usage metering packages (quotas, 0-rating etc.)
- New revenue opportunities to increase ARPU (average revenue per user) (for gaming, peer-to-peer, Internet VoIP and streaming video, etc.).
- Fairness: Aligns usage of HSI network resources with revenue on a per-subscriber basis.
- Operational visibility into the application usage, trends, and pressure points in the network.

To the C/ASP, service offerings can be differentiated by improving the customer’s on-line access experience. The subscriber can benefit from this by gaining a better application experience, while paying only for the value (applications) that they need and want.
Dual-Stack Lite – DS-Lite

Dual Stack Lite is an IPv6 transition technique that allows tunneling of IPv4 traffic across an IPv6-only network. Dual-stack IPv6 transition strategies allow service providers to offer IPv4 and IPv6 services and save on OPEX by allowing the use of a single IPv6 access network instead of running concurrent IPv6 and IPv4 access networks. Dual-Stack Lite has two components: the client in the customer network (the Basic Bridging BroadBand element (B4)) and an Address Family Transition Router (AFTR) deployed in the service provider network.

Dual-Stack Lite leverages a network address and port translation (NAPT) function in the service provider AFTR element to translate traffic tunneled from the private addresses in the home network into public addresses maintained by the service provider. On the 7750 SR, this is facilitated through the Carrier Grade NAT function.

When a customer’s device sends an IPv4 packet to an external destination, DS-Lite encapsulates the IPv4 packet in an IPv6 packet for transport into the provider network. These IPv4-in-IPv6 tunnels are called softwires. Tunneling IPv4 over IPv6 is simpler than translation and eliminates performance and redundancy concerns.

![Figure 6: DS-Lite Deployment](al_0182)

The IPv6 source address of the tunnel represents a unique subscriber. Only one tunnel per customer (although more is possible), but the IPv6 addresses cannot overlap between different customers. When encapsulated traffic reaches the softwire concentrator, the device treats the source-IP of the tunnel to represent a unique subscriber. The softwire concentrator performs IPv4 network address and port translation on the embedded packet by re-using Large Scale NAT and L2-Aware NAT concepts.

Advanced services are offered through Application Assurance multi service ISA to the DS-Lite connected customers. Subscribers’ traffic (ESMs or transit-ip) are diverted to AA-ISA for L3-L7
identification / classifications, reporting and control based on the IPv4 packets (transported within the IPv6 DS-Lite tunnel). This AA classification, reporting and control of subscribers’ traffic take effect before any NAT44 functions. In other words, AA sites on the subscriber side of NAT44.

The absence of a control protocol for the IP-in-IP tunnels simplifies the operational/management model, since any received IPv6 packet to the AA-ISA can be identified as a DS-Lite tunneled packet if:

- protocol 4 in the IPv6 header, and
- the embedded IP packet is IPv4 (inside).

Fragmented IPv4 are supported only if tunneled through non-fragmented IPv6 packets.

Fragmentation at the IPv6 layer is not supported by AA-ISA (when used to tunnel fragmented or non-fragmented IPv4 packets). These packets are cut-through with sub-default policy applied with a possibility of re-ordering.

If DSCP AQP action is applied to DS-Lite packet, both IPv4 and IPv6 headers are modified. AQP mirroring action is applied at the IPv6 layer. All collected statistics include the tunnel over-head bytes (also known as IPv6 header size).
6to4 /6RD

6RD/6to4 tunneling mechanism allows IPv6 sites to communicate over an IPv4 network without the need to configure explicit tunnels, as well as and for them to communicate with native IPv6 domains via relay routers. Effectively, 6RD/6to4 treats the wide area IPv4 network as a unicast point-to-point link layer. Both ends of the 6RD/6to4 tunnel are dual-stack routers. Because 6RD/6to4 does not build explicit tunnels, it scales better and is easier to manage after setup.

6to4 encapsulates an IPv6 packet in the payload portion of an IPv4 packet with protocol type 41. The IPv4 destination address for the encapsulating IPv4 packet header is derived from the IPv6 destination address of the inner packet (which is in the format of 6to4 address) by extracting the 32 bits immediately following the IPv6 destination address's 2002:: prefix. The IPv4 source address in the encapsulating packet header is the IPv4 address of the outgoing interface (not system IP address).

6RD is very similar to 6to4. The only difference is that the fixed 2002 used in 6to4 prefix is replaced by a configurable prefix.

An important deployment of 6RD/6to4 deployment is in access network as shown in Figure 7.

Figure 7: 6to4 in Access Network Deployment

To provide IPv6 services to subscribers, 6RD is deployed in these access networks to overcome the limitations of IPv4 only access network gear (for example, DSLAMs) with no dual stack support.
From an AA-ISA point of view, deployment of 6RD in the access network is similar to that of the general deployment case between IPv6 islands with the added simplification that each 6RD tunnel carries traffic of a single subscriber.

When AA-ISA sees an IPv4 packet with protocol type 41 and a payload that includes IPv6 header, it detects that this is a 6rd/6to4 tunneled packet.

AA-ISA detects, classifies, reports, and applies policies to 6rd/6to4 packet for ESM, SAP, spoke-SDP, and transit-IP (ip-policy) AA subscriber types.

Fragmented IPv6 are supported only if tunneled through non-fragmented IPv4 packets.

Fragmentation at the IPv4 layer is not supported by AA-ISA (when used to tunnel fragmented or non-fragmented IPv6 packets). These packets are cut-through with sub-default policy applied with a possibility of re-ordering.

If the packet has IPv4 options then AA-ISA will not look into the IPv6 header. The packet will be classified as IPv4 “unknown TCP/UDP”. Furthermore, TCP/UDP checksum error detection is only applied for IPIPE and routed services.

If DSCP AQP action is applied to 6RD6to4 packets, both IPv4 and IPv6 headers are modified. AQP mirroring action is applied at the IPv4 layer. All collected statistics include the tunnel overhead bytes, aka. IPv4 header size.
Wireless LAN Gateway Broadband Services

Application Assurance enables a variety of use cases important for Wireless LAN Gateway deployments in residential, public WiFi or VPN wireless LAN services. These include:

- **HTTP redirect for subscriber authentication with HTTP whitelist** — Redirects all non-authenticated subscriber HTTP traffic to an authentication portal and blocks the rest of Internet access, but allows user access to specific whitelisted websites, download Apps and software needed to authenticate.

- **HTTP redirect by policy** — URL or application blocking or usage threshold notification. Redirects some or all subscriber HTTP traffic to a portal landing site based on static or dynamic policy. This can be done while not interrupting selected HTTP-based services such as streaming video.

- **Inline HTTP browser notification** — Provides messaging in the form of web banners, overlays, or http-redirection. This can always be enabled, One-time per sub at authentication (greeting message “Welcome to our WiFi Service”), one time per COA, or periodically.

- **ICAP for large scale URL filtering** — ICAP client in AA interacts with offline ICAP URL filtering services, for parental control or large blacklists. Reduces cost as only URLs for specific flows are sent to server, rather than full inline traffic.

- **Analytics** — Provides operator insight into the following: Application and App-group volume usage by time of day/day of week, top subs, devices, etc.

- **Traffic control for fair use policy** — Prevents some users of the hotspot from consuming a disproportionate amount of resources by limiting to volume of such use across all subscribers as a traffic management tool, or on a per-subscriber basis.

- **Stateful Firewall** — Prevents unsolicited sessions from attacking devices.
Application-Aware Business VPN Services

AA for business services can be deployed at the Layer 2 or Layer 3 network provider edge (PE) policy enforcement point for the service or at Layer 2 aggregation policy enforcement point complimentary to the existing Layer 3 IP VPN PE. In a business environment, an AA-subscriber represents a VPN access point. A typical business service can have a much larger average bandwidth rate then the residential service and is likely to have a smaller AA-subscriber count than a residential deployment.

Up to seven active ISAs can be deployed per PE, each incrementally processing up to 10Gbps. The in-network scalability is a key capability that allows a carrier to be able to grow the service bandwidth without AA throughput affecting the network architecture (more edge nodes, application-aware devices).

Application-aware Layer 2 and Layer 3 VPNs implemented using AA ISA equipped 7750 SR/7450 ESS together with rich network management (5620 SAM, 5750 RAM, end customer application service portals) give operators a highly scalable, flexible, and cost effective integrated solution for application-based services to end customers. These services may include:

- Rich application reporting with VPN, access site visibility.
- Right-sizing access pipes into a VPN service to improve/ensure application performance.
- Application-level QoS (policing, session admission, remarking, etc.) to ensure application-level performance, end-customer QoE objectives are met.
- Value-added services such as application verification, new application detection, application mirroring.
- Performance reporting for real time (RTP) and non-real time (TCP) based applications.
- Dual Stack IPv4 – IPv6 support.
- Control unauthorized or recreational applications by site, by time of day.
Figure 8: AA BVS Services Integrated into the Provider Edge
Application Assurance System Architecture

AA ISA Resource Configuration

AA ISAs are flexible embedded, packet processing resource cards that require configuration such that services may be associated with the resources. This includes assigning ISAs to groups, optionally defining group partitions, and setting the redundancy model. Load balancing is affected by how ISAs are grouped.

AA ISA Groups and Partitions

An AA ISA group allows operators to group multiple AA ISAs into a single logical group for consistent management of AA resources and policies across multiple AA ISA cards configured for that group.

AA ISA Groups

An AA ISA group allows operators to group multiple AA ISAs into one of several logical groups for consistent management of AA resources and policies across multiple AA ISA cards configured for that group. The following operations can be performed at the group level:

- Define one or multiple AA ISA groups to allow AA resource partitioning/reservation for different types of AA service.
- Define the AA subscriber scale mode for the group. Residential, VPN and distributed subscriber management modes are supported.
- Assign physical AA ISAs to a group.
- Select forwarding classes to be diverted for inspection by the AA subscribers belonging to the group and select the AA policy to be applied to the group.
- Configure redundancy and bypass mode features to protect against equipment failure.
- Configure QoS on IOMs which host AA ISAs for traffic toward AA ISAs and from AA ISAs.
- Configure ISA capacity planning using low and high thresholds.
- Enable partitions of a group.
- Configure the ISA traffic overload behavior for the group to either backpressure to the host IOM (resulting in possible network QoS-based discards) or to cut-through packets through the ISA without full AA processing. Cut-through is typically enabled for AA VPN groups but not for residential groups.
Residential services is an example where all AA services might be configured as part of a single group encompassing all AA ISAs, for operator-defined AA service. This provides management of common applications and reporting for all subscribers and services, with common or per customer AQP (using ASOs characteristics to divide AA group’s AQP into per app-profile QoS policies).

Multiple groups can be further used to create separate services based on different sets of common applications, different traffic divert needs (such as for capacity planning) or different redundancy models. Cases where multiple groups might be used can include:

- For mix of residential and business customers.
- Among different business VPN verticals.
- For business services with a common template base but for different levels of redundancy, different FC divert, or scaling over what is supported per single group.
- System level status statistics have AA ISA group/partition scope of visibility.
AA Group Partitions

VPN-specific AA services are enabled using operator defined partitions of an AA Group into AA policy partitions, typically with one partition for each VPN-specific AA service. The partition allows VPN specific custom protocols/application/application group definition, VPN specific policy definition and VPN specific reporting (some VPNs with volume-only reports, while others with volume and performance reports). Each partition’s policy can be again divided into multiple application QoS policies using ASOs.

The use of ISA groups and partitions also improves scaling of policies, as needed with VPN-specific AA policies.

If partitions are not defined, all of the AA group acts as a single partition. When partitions are configured, application identification, policy and statistics configuration applies only to the given partition and not any other partitions configured under the same AA group.

The definition of application profiles (and related ASO characteristics/values) are within the context of a given partition (however, application profiles names must have node-wide uniqueness)

The definition of applications, application groups and AQP are also specific to a given partition. This allows:

- The definition of unique applications and app-groups per partition.
- The definition of AQP policy per partition.
- The definition of common applications and app-groups per partition with per partition processing and accounting.

Partitions also enable accounting/reporting customization for every AA subscriber associated with a partition, for example:

- The ability to define different types of reporting/accounting policies for different partitions in a single AA group, such as uniquely define which application, protocols, app groups are being reported on for every AA subscriber that uses a given partition.
- AA group level protocol statistics with partition visibility (for example, protocol counts reported for each partition of the group separately).

The system provides independent editing and committing of each partition config (separate begin/commit/abort commands).

Policer templates allow group-wide policing, and can be referenced by partition policies.
Bypass Modes

If no active AA ISA is available (for example, due to an operational failure, misconfiguration) the default behavior is to forward traffic as if no AA was configured, the system does not send traffic to the AA ISA (equivalent to fail to closed). Alarms are raised to flag this state externally. There is an optional “fail to open” feature where AA ISA service traffic is dropped if no active AA ISA is present (such as no AA ISA is present and operationally up).
Redundancy

AA ISA group redundancy is supported, to protect against card failure and to minimize service interruption during maintenance or protocol signature upgrades.

No AA ISA Group Redundancy

AA can be configured with no ISA redundancy within the AA group. All AA ISAs are configured as primary with no backup (up to the limit of active AA ISAs per node). There is no fault state indicating that a spare AA ISA is missing. If a primary is configured but not active, there will be a “no aa-isa” fault.

Failure to Fabric

In the event that no ISA redundancy is deployed or insufficient ISAs are available for needed sparing, the system implements “failure to fabric”. When the ISA status shows the ISA is not available and there is no redundant ISA available, the ingress IOMs simply do not divert the packets that would have been sent to that ISA, but instead these proceed to the next hop directly across the fabric. When the ISA becomes available, the divert eligible packets resume divert through the ISA. This behavior is completely internal to the system, without affecting the forwarding or routing configuration and behavior of the node or the network.

N+1 AA ISA Card Warm Redundancy

The system supports N+1 AA ISA equipment warm redundancy (N primary and 1 backup). If a backup is configured and there is no ISA available (a primary and backup failed), there will be a “no aa-isa” fault. The backup AA ISA is pre-configured with isa-aa.tim and the group policies. Datapath traffic is only sent to active AA ISAs, so the backup has no flow state. If a backup ISA is unavailable, there will be a “backup missing” fault.

An AA subscriber is created and assigned to a primary AA ISA when an application profile is assigned to a subscriber, SAP, or spoke SDP. By default, AA subscribers are balanced across all configured primary AA ISAs.

Upon failure of a primary AA ISA, all of its AA subscribers and their traffic are operationally moved to the newly active backup AA ISA but the current flow states are lost (warm redundancy). The new AA ISA will identify any session-based active flows at a time of switchover as an existing protocol, while the other flows will be re-identified. The existing protocol-based application filters can be defined to ensure service hot redundancy for a subset of applications. Once the backup AA ISA has taken control, it will wait for operator control to revert activity to the failed primary AA ISA module.
The user can disable a primary AA ISA for maintenance by triggering a controlled AA ISA activity switch to do the AA ISA software field upgrade (a shutdown of an active AA ISA is recommended to trigger an activity switch).

The activity switch experiences the following AA service impact:

- All flow states for the primary ISA are lost, but existing flows can be handled with special AQP rules for the existing flows by the newly active backup AA ISA until sessions end.
- All statistics gathered on the active AA ISA since the last interval information that was sent to the CPM will be lost.
ISA Load Balancing

Capacity-cost based load balancing allows a cost to be assigned to diverted AA subscribers (by the app-profile). Load Balancing uses the total allocated costs on a per-ISA basis to assign the subscriber to the lowest sum cost ISA resource. Each ISA supports a threshold as the summed cost value that notifies the operator if or when capacity planning has been exceeded.

The load balancing decision is made based on the AA capacity cost of an AA subscriber. The capacity cost is configured against the app-profile. When assigning a new diverted aa-sub to an ISA, the ISA with the lowest summed cost (that also has sufficient resources) is chosen. Examples of different load-balancing approaches that may be implemented using this flexible model include:

- aa-sub count balancing — Configure the capacity cost for each app-profile to the same number (for example, 1).
- aa-sub stats resource balancing — Configure the capacity cost to the number of stats collected for AA subscribers using the app-profile. This might be used if different partitions have significantly different stats requirements.
- Bandwidth balancing — Configure the capacity cost to the total bandwidth in both directions (in kbps) expected for those AA subscribers. This might be used if different AA subscribers have highly varying bandwidth needs.

Load balancing operates across ISAs with in an AA group, and will not balance across groups. The system will ensure that app-profiles assigned to AA subscribers (ESM subscribers, SAPs and spoke SDPs) that are within a single VPLS/Epipe/IES/VPRN service are all part of the same AA group (partitions within an AA group are not checked/relevant).

Users can replace the app-profile assigned to an AA subscriber with another app-profile (from the same group/partition) that has a different capacity cost.

Regardless of the preferred choice of ISA, the system takes into account:

- Per previous releases, resource counts have per-ISA limits. If exceeded on the ISA of choice, that ISA cannot be used and the next best is chosen.
- Divert IOM service queuing resources may limit load-balancing. If queuing resources are exhausted, the system attempts to assign the aa-sub to the ISA where the first AA subscriber within that service (VPLS/Epipe) or service type (IES/VPRN) was allocated.

For prefix transit AA subscriber deployments using the remote-site command, traffic for the remote transit subs are processed a second time. The ISA used by the parent AA-sub will be used by all transits within the parent. In remote-site cases there may be a need to increase capacity cost of parent since the transits stay on same ISA as the parent.

Prefix transit AA-subs are all diverted to the same Group and partition as the parent SAP.
Asymmetry Removal

Asymmetry removal is a means of eliminating traffic asymmetry between a set of multi-homed SAP or spoke-sdp endpoints. This can be across endpoints within a single node or across a pair of inter-chassis link connected routers. Asymmetry means that the two directions of traffic for a given flow (to-sub and from-sub) take different paths through the network. Asymmetry removal ensures that all packets for each flow, and all flows for each AA subscriber are diverted to a given AA ISA.

Traffic asymmetry is created when there are multi-homed links for a given service, and the links are simultaneously carrying traffic. In this scenario packets for flows will use any reachable paths, thus creating dynamic and changing asymmetry. Single node or multi-chassis asymmetry removal is used for any case where traffic for an AA subscriber may be forwarded over diverse paths on active AA divert links in a multi-homed topology. This includes support for SAP/spoke AA subscribers as well as business and residential transit AA subscribers within the diverted service.

Asymmetry removal must be implemented in the first routed hop on the network side of the subscriber management point, such that there will be a deterministic and fixed SAP / spoke-SDP association between the downstream subscriber management the parent divert service. Asymmetry removal allows support for the SAP or spoke SDPs to the downstream element to be multi-homed on active links to redundant PE AA nodes as shown in Figure 9.

![Figure 9: Transit Sub SAP/Spoke SDP Multi-Homing with Asymmetry](image-url)
AA for transit-ip subscribers is commonly deployed behind the point of the subscriber policy edge after aggregation. This includes cases where AA needed is behind:

- Any 7x50 node running ESM but where there is not desire, need or space to deploy distributed AA-ISAs.
- Legacy BRAS that do not support integrated application policy.

Asymmetry removal also allows a VPN site (Figure 10) to be connected with multi-homed, dual-active links while offering AAN services with the ISA:

![Figure 10: VPN Site Multi-Homing with Asymmetry](image)

Asymmetry removal is supported for Layer 3 AA divert services:

- IES SAP and spoke SDP
- VPRN SAP and spoke SDP

When asymmetry exists between multi-chassis redundant systems, Ipipe spoke SDPs are used to interconnect these services between peer nodes over an Inter-Chassis Link (ICL).

Asymmetry removal supports multiple endpoints of a service with a common AARP instance, with a primary endpoint assigned the app-profile (and transit policy for transit subs). The remaining endpoints are defined as secondary endpoints of the AARP instance. All SAP or spoke endpoints within a given AARP instance are load balanced to the same ISA in that node. Multi-
endpoint AARP instances allow single-node asymmetry removal and multi-chassis asymmetry removal with multiple active links per node.

Asymmetry Removal Overview

![Figure 11: Multi-Chassis Asymmetry Removal Functional Overview](image)

For a Multi-homed parent AA-sub, the parent SAP/SDP that is Active/Inactive per chassis is agreed by the inter-chassis AA Redundancy Protocol (AARP). For single node multi-homed endpoints, the AARP state is determined within a single node, as explained later in the AARP operational states section.

- Divert AA-sub are cost-based load balanced across ISAs in each chassis/AA group (node-local decision).
- Divert AA-sub multi-homed pairing is supported by AA Redundancy Protocol (AARP) over inter-chassis link.
 - The same AARP ID is assigned to the divert SAP in both nodes.
 - AARP state in one node is master when all AARP conditions are met.
→ Packets arriving on node with the master AARP ID divert locally to ISA.
→ From sub packets on a node with backup AARP ID remote diverted over the subscriber side interface spoke SDP shunt after ISA processing. To-sub packets on node with backup AARP ID remote divert over the network side shunt, appearing to the ISA as if it was a local network side divert packet for the AA-sub, then returned to the subscriber side interface spoke-sdp shunt after ISA processing.
→ All packets are returned to the original node for system egress (sent back over the inter-chassis shunts).

- If ISA N+1 sparing is available in a node, ISA sparing activates before AARP activity switch.
- Supports asymmetry for business SAPs and spoke SDPs, with or without transit AA subs.
- The AARP master-selection-mode is in minimize-switches mode by default, which is non-revertive and does not factor endpoint status. This can be configured per AARP instance using the master-selection-mode. The priority-rebalance configuration will rebalance based on priority once the master failure condition is repaired. The inter-chassis-efficiency mode does priority based rebalance and includes the EP status for cases where an AARP activity switch is preferred to sustained ICL traffic load (when peer nodes are geographically remote).

Failure Modes

Failure modes include the following:

- AARP infrastructure failure including shunts: For AARP to remove asymmetry, the AARP link must be synchronized between peers and all components of the Shunts (iPipe shunts and interface shunts) must be up and operational. If any of those components has failed, each AARP Id operates as standalone and diverts locally. Asymmetry is not removed.

- Failure of one of the interfaces to the dual homed site: routing will move all traffic to the remaining link/node, if this is the master AARP peer node no action is required. For any traffic the backup node, inter-chassis shunting will be used. There is no change to the AARP master/backup state. Traffic will still be processed by the same ISA as before the failure.

- Network reachability fails to master AARP node: AARP node loses reachability on the network side. This does not trigger an AARP activity switch, the shunt is used to move traffic from the backup node to the master node for the duration of the reachability issue. Routing should take care of traffic reconvergence. However, if the peer AARP is also not reachable, both nodes go on standalone mode and there is no asymmetry removal.
• Master AA-ISA failure: AARP activity will flip for all the master AARP instances linked to this local ISA if there is no local spare available. Any traffic arriving on the node with the failed ISA will use the shunt to reach the master ISA.
AARP Peered Node/Instance Configuration

The multi-homed diverted AA-sub in each peer node must be configured with the following parameters set in each node of the peer pair as follows:

- Service ID — Node specific
- Interface — Node specific
- SAP or spoke/SDP ID — Node specific
- AA-group ID — Node specific
- App-profile name — Content must be same in both peers to not affect behavior, recommend using same name and content
- Transit policy ID — Same in both (only applies if transits are used)
- AARP ID — Same in both
- shunt-sdp sdp-id:vc-id — Node specific but must properly cross-connect the local AA-sub service with the peer Ipipe/service shunt interface in order to operate properly for asymmetry removal for remote divert traffic. Peer AARPs will stay in standalone mode until cross-connect is configured properly.
- Master-selection mode — same in both.
- Other ISA-AA group configuration — Same in both, including fail-to, divert FC, etc.
- IOM traffic classification into a FC — Same in both (can affect AA divert since this is conditioned by the FC). This includes sub side, network side and shunt IOMs.

AARP operation has the following required dependencies:

- For multi-chassis, shunt links are configured and operationally Up.
- For multi-chassis, peer communications established.
- Dual-homed SAP/spoke configured.
- app-profile configured against SAP/spoke with divert (making the sub an aa-sub). This endpoint is called the primary endpoint if more than one endpoint is configured for an AARP instance.
- All endpoints within an AARP instance must be of the same type (SAP or spoke).
- All endpoints with an AARP instance must be within the same service.
Multi-Chassis Control Link (MC-CTL)

A multi-chassis control link is automatically established between peer AARP instances to exchange configuration and status information. Information exchanged includes configured service, protecting sap/spoke, redundant-interface name, shunt-sdp, app-profile, priority and operational states.

AARP requires configuration of the peer IPv4 system address in order to establish a session between the two node’s system IPv4 addresses.

Multi-Chassis Datapath Shunts

When traffic needs to be remotely diverted it flows over shunts that are provisioned as `sdp-id:vc-id` between the dual-homed aa-sub local service an a remote vc-switching Ipipe.

Subscriber to Network Direction

The traffic is either handled locally (diverted to a local ISA when the AARP state is Master) or at the peer 7750 SR (redirect over the shunt Ipipe when the local AARP state is Backup or Remote). When traffic arrives on the subscriber side spoke SDP of the shunt-Ipipe, the system uses the AARP ID of the Ipipe to associate with an app-profile, hence triggering Ipipe divert. It is diverted to the same ISA used to service the dual-homed SAP/spoke SDP. The ISA then treats this traffic the same as if it was received locally on the dual-homed SAP/spoke SDP context. After ISA processing, the traffic returns on the network side of the Ipipe to the peer. When the traffic returns to the original 7750 SR, the shunt Ipipe terminates into the routed service and it makes a new routing decision.

Network to Subscriber Direction

The traffic is either handled locally (diverted to a local ISA when the AARP state is Master) or at the peer 7750 SR (remote divert over the shunt Ipipe when the local AARP state is Backup or Remote). When traffic arrives on the shunt Ipipe from the peer with an AARP ID and associated app-profile, it is diverted through AA on the way to the subscriber-side spoke SDP. After AA processing, the traffic returns on the subscriber side of the Ipipe to the peer. When the traffic returns to the original 7750 SR, the shunt Ipipe terminates into the routed service and it makes a new routing decision to go out the dual-homed SAP/spoke SDP.
AARP Operational States

In single node operation, there are 2 operational states, Master or Standalone. A single node AARP instance is Master when all these conditions are met, otherwise AARP is in the standalone state with no asymmetry removal occurring:

- Dual-homed (primary) and dual-homed-secondary endpoints are configured
- Divert Capability is Up
- App Profile is diverting
- AA-Sub is configured

With multi-chassis operation there are 4 operational states for an AARP instance: master, backup, remote and standalone.

- Master — In multi-chassis operation, an AARP instance can only become operationally Master when the inter-chassis link datapath is operational and the control path is or was up, the received peer node status indicating the peer’s AARP instance and similar dependencies is or was up, and the AARP priority is higher than the peer. When the priority is equal then higher system interface IP address is used as a tiebreak.

 The Master state will be immediately switched to Remote for AARP related failures that result in the instance being not ready. ICL datapath shunt SDP failures will cause the peer AARP go standalone. A shunt/Ipipe SDP failure is determined by the failure detection protocol used (BFD on routes, keep-alive on SDPs, LDP/RSPV, etc.). When a SAP/spoke SDP with an AARP instance is shutdown nothing changes for AARP, as packets can still use the AARP interface. When the SAP/spoke SDP is deleted, AARP will be disassociated the from the spoke SDP/SAP before deleting. The AARP instance will still exist after deleting the sap/spoke but without an association to an aa-sub, the AARP state will go standalone.

 The Master state will be immediately switched to Remote for AARP related failures that result in the instance being not ready. ICL datapath shunt SDP failures will cause the peer AARP go standalone. A shunt/Ipipe SDP failure is determined by the failure detection protocol used (BFD on routes, keep-alive on SDPs, LDP/RSPV, etc.).

- Backup — Backup is the AARP state when all required conditions of the AARP instance are met except the master/backup priority evaluation.

- Remote — When an AARP instance is operating with remote divert set for the protecting SAP/spoke aa-sub. The peer AARP instance is the Master, there is no Backup as the local system is not ready. This state is entered as a result of a failure in a local resource on the AARP instance, which triggers the divert traffic to the remote peer, such as a ISA failure without ISA backup). AA-sub traffic is diverted over shunts to the peer.

- Standalone — AARP is not operational between the multi-chassis pair, with AA operating with local AA divert to the ISAs within that node. There is no Master or Backup. This is the starting initial state for the AARP instance, or as a result of a failure in a dependant ICL resource (MC-CTL communication link or shunt down).

An AARP instance activity switch is when one node moves from Master to remote or backup mode, with the peer node becoming Master. This can occur on a per-instance basis using the re-
evaluate tool, or for all instances on an ISA that fails. On an AARP activity switch, AA divert changes from local to remote (or vice versa) such that any given packet will not been seen by both nodes, resulting in no missed packet counts or double counts against the aa-sub.

AARP activity is non-revertive, in order to maximize the ID accuracy of flows. When an AARP instance toggles activity, packets are diverted to the newly active divert ISA and are processed as new flows, which for mid-session flows will often result in “unknown” traffic ID until those flows terminate. When the condition that triggered the AARP activity switch is resolved and the instance remains in backup state, in order to not cause an additional application ID impacting event. This is consistent with AA N+1 ISA activity switches.

Because AA ISA availability is a criteria for AARP switches, any ISA failure or shutdown will move all AARP instance activity to ISAs in the master peer nodes, such as during software upgrades of ISAs. Depending on the nature of the failure or sequence of an upgrade procedure, all AA traffic may be processed by ISAs in one of the peers with no traffic being processed by ISAs on the other node.

If it is desired to rebalance the ISA load between the peer nodes, there is a tools perform application-assurance aarp aarp-id force-evaluate command will re-run AARP activity evaluation on a per-ISA basis to determine Master/Backup AARP based on configured priority.

Table 3 shows the interaction and dependencies between AARP states between a local node and its peer:
Table 3: Interaction and Dependencies Between AARP States

<table>
<thead>
<tr>
<th>Local AARP Operation State</th>
<th>Peer AARP Operational State</th>
<th>Description</th>
</tr>
</thead>
</table>
| Master | Backup | • Inter-Chassis Link (ICL) Communication established between AARP peers.
 | | • AARP dependent resources are up (to-sub/from-sub shunt, aarp control link, dual-homed SAP/spoke SDP).
 | | • AARP instances have negotiated initial state assignment using configured priority/system IP address.
 | | • AA service is available for the dual-homed SAP/spoke subscriber.
 | | • All to-sub/from-sub traffic specific to the dual-homed SAP/spoke SDP will be serviced on the local node.
 | | • Peer node is available to takeover in the event of a AA service failure on the local node.
 | | • Asymmetry is removed for the dual-homed SAP/spoke subscribers, serviced by AA on the local (master) node. |
| Master | Remote | Same as Master/Backup except:
 | | • AA service is available on the local node. AA service is unavailable on the peer node. |
| Standalone | Standalone | Initial state of the AARP instances upon creation or a result of a failure in any of the AARP dependent resources.
 | | • All to-sub/from-sub traffic for the dual-homed sap/spoke will be serviced on each node independently.
 | | • aarp instance operational state is outOfService on both sides.
 | | • Asymmetry is not removed for the dual-homed SAP/spoke subscribers (traffic ID is not optimal). |
ISA Overload Detection

Capacity cost resource counting does not have a hard per-ISA limit, since the cost values are decoupled from actual ISA resources. However, the value of the total summed cost per-ISA can be reported, and a threshold value can be set which will raise an event when exceeded.

ISA capacity overload detection and events are supported within the system resource monitoring / logging capabilities if the traffic and resource load crosses the following high and low load thresholds on a per-ISA basis:

- ISA capacity cost
- Flow table consumption (number of allocated flows)
- Flow setup rate
- Traffic volume
- Host IOM egress weighted average shared buffer pool use (within the egress QoS configuration for each group). These thresholds are also used for overload cut-through processing

While an app-profile is assigned to AA subscribers, the capacity-cost for that app-profile can be modified. The system makes updates in terms of the load balancing summary, but this does not trigger a re-balance.

In the absence of user configuration, the App-profile default capacity cost is 1. The range for capacity cost is 1 — 65535 (for example, for bandwidth based balancing the value 100 could represent 100kbps). Note that 0 is an invalid value.

If the re-balancing of AA subscribers is required (for instance after the addition of new ISAs), there is a tools command to rebalance AA subscribers between ISAs within a group. Rebalance affects which AA subs divert to which ISAs based on capacity cost. Transit subs cannot be rebalanced independent of the parent (they move with the parent divert). The system attempts to move aa-subs from the most full ISA to the least full ISA based on the load balancing mode. If the load becomes balanced or an aa-sub move fails due to ISA resources or divert IOM service queuing resources, the load balancing terminates.

Alternatively, load balancing can be manually accomplished by the AA subscriber being removed and re-added. This will trigger a load balancing decision based on capacity-cost. For all AA subscriber types, this can be accomplished by removing and re-applying the AA subscriber's app-profile. In the case of ESM AA subscribers, shutting down and re-enabling either sub-sla-mgmt or the host(s) will have the same effect. Dynamic ESM AA subscribers will re-balance naturally over time as subscribers come and go from the network.
For transit AA subscriber deployments, the parent divert SAPs are load-balanced based on AA capacity cost from the app-profile configured against the SAP/SDP. The parent capacity cost should be configured to represent the maximum expected cost when all transit subs are present.

All traffic not matching a configured transit subscribers is dealt with as a member of the parent SAP and according to its app-profile.
There are four key elements of Application Assurance packet processing (Figure 12):

1. **Divert**: Selection of traffic to be diverted to the AA ISA.
2. **Identification of the traffic on a per flow (session) basis**.
3. **Reporting of the traffic volume and performance**.
4. **Policy treatment of the identified traffic**.

Figure 12: Application Assurance High Level Functional Components
Divert of Traffic and Subscribers

Any traffic can be diverted for application-aware processing. Application Assurance is enabled through the assignment of an application profile as part of either an enhanced subscriber management or static configuration. This process enables the AA functionality for all traffic of interest to and from a given subscriber/SAP/spoke SDP. Which traffic is deemed of interest, is configured through an AA ISA group-specific configuration of forwarding classes (FCs) to be diverted to AA and enabled on a per subscriber/SAP/spoke SDP using application profiles.

Figure 13 shows the general mechanism for filtering traffic of interest and diverting this traffic to the appropriate AA ISA module residing on an IOM (referred as the host IOM). This traffic management divert method applies to both bridged and routed configurations.

For a SAP, subscribers with application profiles enabling AA, the traffic is diverted to the active AA ISA using ingress QoS policy filters, identifying forwarding and sub-forwarding classes that could be diverted to the Application Assurance. Only single point (SAP, ESM subscriber, spoke SDP) configuration is required to achieve divert for both traffic originated by and destined to a given AA subscriber. Diversion (divert) to the AA ISA is conditional based on the AA ISA status (enabled, failed, bypassed, etc.).
Unless the AA subscriber’s application profile is configured as “divert” using Application Profiles and the FC is selected to be diverted as well, the normal ingress forwarding occurs. Traffic that is filtered for divert to AA ISAs is placed in the appropriate location for that system’s AA ISA destination.

Users can leverage the extensive QoS capabilities of the router when deciding what IP traffic is diverted to the Application Assurance system for inspection. Through AA ISA group-wide configuration, at least one or more QoS forwarding classes with the “divert” option can be identified. The forwarding classes can be used for any AA subscriber traffic the service provider wants to inspect with Application Assurance.
Services and AA Subscribers

The 7750 SR/7450 ESS AA ISA provides the Layer 3-7 packet processing used by the Application Assurance feature set. Application Assurance is applied to IPv4 and IPv6 traffic on a per AA subscriber basis, where an AA subscriber is one of:

- ESM subscriber
- Distributed sub management subscriber
- SAP/spoke

Non-IPv4 and IPv6 traffic is not diverted to AA and forwarded as if AA was not configured where an AA subscriber may be contained in the following services:

- IES
- VPLS
- VLL — Epipe and Ipipe
- VPRN

Application Assurance is supported with:

- Bridged CO
- Routed CO
- Multi-homed COs
- Layer 2/Layer 3 VPN service access points and spoke SDPs

The AA ISA feature set uses existing 7750 SR/7450 ESS QoS capabilities and further enhances them to provide application-aware traffic reporting and management on per individual AA subscriber, AA subscriber-type or group. A few examples of per-application capabilities within the above AA subscriber contexts include:

- Per AA subscriber, application traffic monitoring and reporting.
- Per application bandwidth shaping/policing/prioritization.
- Throttling of flow establishment rate.
- Limiting the number of active flows per application (such as BitTorrent, video or teleconference sessions, etc.).
- Application-level classification to provide higher or lower (including drop) level traffic management in the system (for example, IOM QoS) and network.

The following restrictions are noted.
• Application Assurance is not supported for tunneled transit traffic (GRE or L2TP tunnels using PPP or DHCP based policy) destined for a remote BRAS.
Spoke SDPs

AA on spoke SDP services allows AA divert of the spoke SDP, logically representing a remote service point, typically used where the remote node does not support AA. A given SAP/spoke can be assigned and app-profile, and when this app-profile is enabled for **divert** all packets to and from that SAP/spoke will be diverted to an AA ISA (for forwarding classes that are configured as divert eligible).

Table 4 shows spoke SDP divert capabilities.

Table 4: Spoke SDP Divert

<table>
<thead>
<tr>
<th>Access Node Service (spoke SDP type)</th>
<th>Connected to Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Epipe</td>
</tr>
<tr>
<td>Epipe (Ethernet spoke)</td>
<td>Y</td>
</tr>
<tr>
<td>Ipipe (IP spoke)</td>
<td>N/A</td>
</tr>
<tr>
<td>VPLS (Ethernet spoke)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The following restriction is noted.

- Spoke SDP divert is only supported on services to/from IOM3-XP or newer IOMs or IMMs.
Transit AA Subs

A transit AA sub is an ISA local AA sub contained within a parent AA sub. There are two types of transit AA subs:

- Transit IP AA-subs: defined by Transit IP Policy as one or more /32 IP addresses per sub
- Transit Prefix AA-subs: defined by Transit Prefix Policy as one or more prefix IP addresses, used in business VPNs

A transit AA-sub incorporates the following attributes:

- Name
- IP address (one or more hosts)
- App-profile (note that the divert/no divert and capacity cost setting of the app-profile does not affect transit AA-subs since divert occurs only against the parent SAP).

When a SAP or spoke-SDP diverted to AA is configured with transit subs, that SAP or Spoke-SDP is referred to as the parent AA subscriber. Transit AA subs are supported on the following parent Layer 3 SAPs or spoke SDPs that support AA divert:

Table 5: Transit AA Subs Support

<table>
<thead>
<tr>
<th>Transit Subscriber Type</th>
<th>Epipe</th>
<th>VPLS</th>
<th>IES</th>
<th>VPRN</th>
<th>Ipipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit IP</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>Transit Prefix</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

The transit AA-subs within a given parent AA sub can be displayed using the `show aa group transit policy` or `transit-prefix policy` command.

For transit IP subscribers all packets are accounted for once in the ISA records. Therefore, transit IP AA sub counts do not count against the parent SAP in reporting. For transit prefix AA subscriber deployments using the remote-site command, traffic for the remote transit subs are processed and counted for both the local parent and the remote transit subscriber.
Transit AA-Sub App-Profile

The app-profile assigned to the aa-sub-id affects both stats and control of the policy. App-profiles are assigned to the transit AA-subs either explicitly when the transit-aa-sub is created, or by default (when not specified) according to a default app-profile configured in a transit-ip-policy or transit-prefix-policy. This allows transit AA subs to be treated with a different default app-profile than the app-profile (default or specified) set against the parent aa sub. The number of aa-sub stats used per ISA is proportional to the number of AA subscribers including transit subscribers subs are added.

ASO policy override is supported for static transit subs.

Transit IP Policy and Transit Prefix Policy

A transit policy is associated with the parent (divert) SAP/SDP to define how transit AA subs are created within that parent. The transit policy must be defined in the config>app-assure>group context before it can be assigned to a parent. Transit IP subs can be created by the following methods:

- Static — CLI/SNMP configuration of a transit aa-sub is done within the transit-ip-policy
- Dynamic - DHCP authentication
- Dynamic - RADIUS accounting to PCRF

Transit prefix subs are created by static CLI/SNMP configuration of a transit aa-sub within the transit-prefix-policy. The transit prefix policy follows IP filter conventions for first match and ordering of entries. While for residential /32 transits if there is an IP address conflict between any static prefix transit subs, the latter config will be blocked, for business transit subs multiple overlapping address entries are allowed to enable longest match within subnets. IP addresses for a VPN site as an AA-sub are configured with the transit prefix policy. There are two options:

- aa-sub-ip is used when the site is on the same side of the system as the parent SAP
- aa-network-ip is used when the site is on the same opposite of the system as the parent SAP

A given transit prefix subscriber may only have either aa-sub-ip entries or aa-network-ip entries but not both.

The IP addresses defined in the transit-ip-policy for a transit sub are full /32 IP addresses. The IP addresses defined in the transit-prefix-policy for a transit sub are any length from /0 to /32.

Multiple IP addresses (from any prefix/pool) can be assigned to a single transit AA sub. IP addresses must be unique within a transit policy, but can be re-used in separate policies (since they have parent specific context).
The transit policy contains the default app-profile for the transit sub if a transit policy is created but app-profile is not specified. An app-profile can be later explicitly assigned to the transit sub after the sub is created (using RADIUS COA, DHCP or static).

For dynamic transit ip subs, a sub-ident-policy (also used by ESM to associate sub ID policies to a SAP) can now also be associated with the AA-sub parent by defining the sub-ident policy in the transit IP policy. This determines how sub identifying strings are derived from DHCP option 82 fields. The policy also contains app-profile-map which maps the strings to the defined app-profiles. Transit subs do not use the sla-profile or sub-profile aspects of the sub-ident-map.

In the case of multi-homed transit subs, the transit-ip-policy must be the same on both nodes of the multi-homed parent link to ensure consistency of sub context and policy.

There are no configurable limit hosts per sub per sub (this is similar to lease-populate which limits the number of dynamic hosts per SAP), or, limit the number of transit subs per transit ip policy (parent). This is a function for the PE doing subscriber management.

If transit sub resource limits are exceeded (hosts per sub, or subs per ISA) the transit sub creation is blocked (for both static and dynamic models).

There is a per-ISA group/partition show list of AA-subs in a transit-ip-policy which includes a parent field for transit subs (static versus dynamic identified).

Persistent AA statistics is supported dynamic transit AA subs, ensuring that accounting usage information is not lost when the sub disconnects prior to reporting interval end.
static-remote-aa-sub Command

Figure 14: static-remote-aa-sub Usage Topology

This command enables unique ISA treatment of transit prefix subscribers configured on the opposite (remote) side of the system from the parent SAP/spoke SDP. Provisioning a transit sub as remote-aa-sub within a transit prefix policy enables the ISA to treat any network IP-based transit subs in the following ways:

- Treat packets for the parent aa-sub independent of whether transits are also configured (stats and policers for parent work as usual).
- Subsequently treat the same packet as a transit-sub packet when matching to a configured transit sub (stats, policers).
- Allows natural direction of the packet for both the parent aa-sub and the transit-aa-sub, as shown in Figure 14, where a packet from a remote client to a local server will be seen as to-sub for the parent, and from-sub for the transit sub that is logically at the far end site.
- Correct directionality of packet ID for all aa subs allows proper operation of app-filter flow-setup-direction
Static Transit AA-Sub Provisionings

Static (through CLI/SNMP) provisioning of transit AA-subs is supported. A profile policy override to set policy characteristics by ASO (as opposed to within an app-profile) is supported only for statically configured transit AA subs.

If there is an IP address conflict between a static and dynamic transit sub, the static takes precedence (per ESM). If the static is configured first, the dynamic transit sub will be rejected. If the dynamic is created first, a warning is provided before removing the dynamic transit sub and notifying the sub-manager by COA failure.

DHCP Transit IP AA-Subs at DHCP Relay Node

DHCP-based transit sub creation provides a sub ID and lease time for IP addresses correlated to the ESM/subscriber context in the PE.

The 7750 DHCP relay agent creates dynamic DHCP AA-subs when the DHCP ACK is received from the DHCP server, including the sub name, IP address and app-profile from DHCP Option 67 (if present) when the DHCP ACK messages passes through AA node to the downstream subscriber-edge node. If there is no app-profile assigned when the transit aa-sub is created, a default transit aa-sub app-profile is used (configured in the transit-ip-policy assigned against the divert parent aa-sub).

This is compatible with the ESM 7x50 edge as well as third-party BRAS and CMTS.

Dynamic AA-sub stats records are persistent across modem reset/session releases. The end of accounting records are created when transit subs are released.

Multiple IPs per transit AA sub are determined by seeing a common the DHCP Option 82 cct ID.
RADIUS Transit AA-Subs

Transit subs can be dynamically provisioned by RADIUS accounting start messages forwarded by the RADIUS AAA server to a RADIUS sub-manager function at the OSS layer (5780 DSC). This RADIUS sub manager manages dynamic transit AA subs on the appropriate ISA and transit-ip-policy based on the RADIUS accounting information. The interface for the sub manager to configure transit AA subs is RADIUS COA messages, which are acknowledged with a COA success message to the sub manager.

If a dynamic transit sub cannot be created as requested by a COA due to resource constraints or conflicts, the node replies to the sub manager with a COA fail message so that retries will not continue. This message should contain information as to the cause of the rejection. Multiple IPs per sub are allowed when common sub-ID names are seen, but with differing IP hosts.

When a RADIUS update/COA message is seen, it could contain a modified IP address or app-profile for an existing transit sub which is accepted without affecting transit AA subscriber statistics. These transit AA-subs are removed by the sub manager when a RADIUS accounting stop message is received.

![Figure 15: RADIUS COA Example](image-url)
The attributes in RADIUS COA that identify the downstream transit AA-subs are:

- Downstream BRAS/ CMTS: NAS-port-ID
- IP address: framed-ip-address
- Subscriber ID: per RADIUS accounting sub-id-string

Seen-IP RADIUS Notification

Seen-IP transit subscriber notification provides RADIUS Accounting Start notification of the IP addresses and location of active subscribers within a parent AA service. This allows a PCRF to dynamically manage RADIUS AA subscriber policy (create, modify, delete) without requiring static network topology mapping of a subscriber edge gateway to the parent transit service.

When detect-seen-IP is enabled within a transit policy, the ISA will detect IP flows on a AA parent subscriber that do not map to an existing transit AA-subscriber. It will then use a simple RADIUS Accounting Start notification from the transit AA node to the PCRF to initiate subscriber creation, providing information on the location of the transit subscriber traffic. This provides notice for subscriber authentication changes such as new subscriber session, or new host IP addresses added to an existing aa-sub, while being independent of the network topology for how the BNG is homed into the transit AA nodes.

The RADIUS Accounting Start message is sent to the RADIUS Server referenced by the specified seen-ip-radius-acct-policy. This RADIUS message contains the following information about the flow:

- subscriber-side IP address
- Parent SAP/Spoke-SDP ID (NAS Port ID)
- IP address of node making the request
- Peer SAP/Spoke-SDP ID (NAS Port ID) - if configured
- Peer IP address of SR making the request - if configured
- AARP ID - if configured
Transit AA-Sub Persistence

Transit AA subs can be persistent within a single node, since, in some cases, there is not a dual-node BNG subscriber redundancy configuration. This allows a single node that has dynamically created transit subs to retain the subscriber state, context, and stats across a node or ISA reboot.

If dynamic transit AA subs are released, renewed or otherwise changed during an outage or reboot of a transit AA node, the sub manager will notify the transit node of these changes.

Prefix transit subs are not affected by persistence since they can only be statically configured.

Policers for Transit AA-Subs

AA-sub per-subscriber policers can provide per SAP policing for the parent SAP, with transit AA-sub each supporting distinct per-sub policers within the parent (packets are only processed once against one aa-sub – the parent or the transit sub). Packets matching transit AA subs and policers will not be included in a parent policer.

There is no policer hierarchy unless system wide policers are referred to by both the parent aa-sub and transit aa-sub. When the remote-site configuration is not used, system policers can be used to police all traffic for a site containing transits, subject to constraints on system policer scale.

When the remote-aa-sub config is used, the parent owns all packets for stats and policing, so any transit sub configuration within the parent does not affect the stats or policers. AA policers are supported on a transit subscriber basis, across all (multiple) IP prefixes per sub.

ISA Host IOM for Transit Subs

The AA divert IOM is not impacted by transit AA subs in the divert parent. The ISA host IOM egress datapath functions to convert the parent SAP into transit AA-subs that are then handled by the ISA consistent with all other AA-sub features. The ISA itself treats all AA-subs equally regardless of whether the AA sub is from ESM, from a SAP, or from a transit subscriber in a parent SAP/spoke.

Prefix transit subs can only be created on IOM3-xp as host IOM, or with MS-ISM as host for ISA2. Asymmetry removal requires IOM3-xp or MS-ISM as host and IOM3-xp or newer (IMM) as divert IOM.
AA Subscriber Application Service Definition

- Application Profile on page 72
- Application Profile Map on page 74
- Application Service Options (ASOs) on page 74
- ASO Overrides on page 78

Application Profile

Application profiles enable application assurance service for a given ESM subscriber, Service Access Point or spoke SDP (AA subscriber). Each application profile is unique in the system and defines the AA service that the AA subscriber will receive. An ESM subscriber can be assigned to an application profile which affects every host of the particular subscriber. For SAP or spoke SDP AA subscribers, an application profile can be assigned which affects all traffic originated/destined over that SAP or spoke SDP. By default, ESM subscribers, SAPs or spoke SDPs are not assigned an application profile.

The following are main properties of application profiles:

- One or more application profiles can be configured in the system.
- Application profiles specify whether or not AA subscriber's traffic is to be diverted to Application Assurance.
- Application profiles are defined by an operator can reference the configured application service options (ASO) characteristics (see Application Service Options (ASOs) on page 74.
- Application profiles must only be assigned once AA resources (AA ISA cards) are configured.
- App-profiles can be assigned a capacity cost used for subscriber load balancing among ISAs within the AA group. (See ISA Load Balancing on page 45.)

ESM includes an application profile string. The string points to an application profile pre-provisioned within the router and is derived by:

- Parsing the DHCP Option 82 sub-option 1 circuit ID payload, vendor specific sub-option 9, or customer-defined option different from option 82, during authentication and the DHCPDISCOVER, as well as re-authentication and the subscriber’s DHCPREQUEST.
- RADIUS using a new VSA. [26-6527-xx] alc-application-profile-string
- DIAMETER using “AA-profile-name” AVP under ADC rule.
- Inherited by defaults in the sap>sub-sla-mgmt context, to allow default application profile assignment if no application profile was provided.
• Static configuration.

Mid-session (PPP/DHCP) changes to the application profile string allows:

• Modification of the application profile a subscriber is mapped to and pushes the change into the network as opposed to waiting for the subscriber to re-authenticate to the network.

• Change to the subscribers application profile inline, without a need for the subscriber to re-authenticate to RADIUS or perform any DHCP message exchange (renew or discover) to modify their IP information.

![Diagram: Determining the Subscriber Profile, SLA Profile and Application Profile of a Host]

Figure 16: Determining the Subscriber Profile, SLA Profile and Application Profile of a Host
Application Profile Map

Application Assurance adds new map (app-profile-map) application profile command to associate an app-profile-string from dynamic subscriber management to a specific application profile using its app-profile-name that has been pre-provisioned. The application profile map is configured in the `config>subscr-mgmt>sub-ident-pol` context.

The pre-defined subscriber identification policy has to be assigned to a SAP, which determines the sub-id, sub, sla, and app-profiles.

Application Service Options (ASOs)

ASOs are used to define service provider and/or customer visible network control (policy) that is common between sets of AA subscribers (for example, upstream/downstream bandwidth for a tier of AA service). ASO definition decouples every AA subscriber from needing subscriber-specific entries in the AQP for standard network services.

As an example, an operator can define an ASO called ServiceTier to define various HSI services (Super, Lite, etc.) (Figure 17-A). The operator can then reference these defined ASOs when creating the App Profiles that are assigned to AA-subscribers (Figure 17-B).

```
A:AA-7750SR>config>app-assure>group>policy>
  app-service-options
  characteristic "ResidentialServiceTier"
  create
    value "Lite"
    value "Regular"
    value "Super"
    value "None"
    default-value "None"
  exit
  characteristic "SiteType"
  create
    value "Remote"
    value "DataCenter"
    value "None"
    default-value "None"
  exit
characteristic "VPN_ID"
  create
    value "0"
    value "8"
    default-value "0"
  exit
A:AA-7750SR>config>app-assure>group>policy>
  app-profile "SuperTier" create
  divert
  characteristic "ServiceTier" value "Super"
  exit

A:AA-7750SR>config>app-assure>group>policy>
  app-profile "VPN_ID_8_RemoteSite" create
  divert
  characteristic "SiteType" value "Remote"
  characteristic "VPN_ID" value "8"
  exit
```

Figure 17: Configuration Example
Then, the defined ASOs are used in the AQP definition to determine the desired treatment / policy (Figure 18).

```
app-qos-policy
  entry 50 create
  description "Limit downstream b/w for Super subscribers"
  match
    traffic-direction network-to-subscriber
    characteristic "ServiceTier" eq "Super"
  exit
  action
    bandwidth-policer "SuperDown"
  exit
  no shutdown
exit
entry 110 create
match
  application-group eq "Tunneling"
  characteristic "SiteType" eq "Remote"
exit
action
  remark fc af
exit
no shutdown
exit
```

Figure 18: AQP Definition Example

Alternatively, if ASOs were not used in the previous example, then the operator would have to define a unique AQP entry for every subscriber. Each of these AQPs will have its “match” criteria setup to point to the subscriber ID, while the action for all of these unique AQPs will be the same for the same service (for Tier 1 service, the policer bandwidth will be the same for all Tier 1 AA subscribers) (Figure 19).
The example in Figure 19, shows how the use of just a single ASO can save the user from having to provision an AQP entry every time a subscriber is created.

Other example uses of ASO entries include:

- Entry per application group that is to be managed, such as VoIP, P2P, HTTP.
- Several entries where specific applications within an application group can individually be managed as service parameters, for example, HTTP content from a specific content provider, or streaming video from network television or games.
- HSI tiers (for example, Gold, Silver, and Bronze for specifying bandwidth levels).
- VPN customer ID.
Application characteristics are defined as specific to the services offered within the operator's network. The operator defines ASO characteristics and assigns to each ASO one or more values to define service offering to the customers.

The following are the main elements of an ASO:

- A unique name is applied to each characteristic.
- The name is unique to the group-partition-policy, but the expectation is that characteristics will be consistent network wide.
- Operator-defined values (variables) are defined for each characteristic and are unique to each characteristic. A default value must be specified from the set of the values configured.

The following lists how ASO characteristics are used:

- Application service options are used as input to application profiles.
- AQP rule sets also use the ASO characteristics to influence how specific traffic is inspected and policies applied.
- Multiple ASO characteristic values are allowed in a single rule.

Syntax checking is performed when defining application profiles and AQPs that include application characteristics. This ensures:

- The characteristic is correctly identified.
- In an app-profile and app-qos-policy when specifying a characteristic, the value must be specified. The “default-value” applies if a characteristic is not specified within an app-profile.
ASO Overrides

This feature enables individual attributes/values to be set against an aa-sub complementary to using app-profiles. The aa-sub types supported that can have ASO overrides by CLI/SNMP are provisioned business AA SAPs and spoke SDPs, and statically-provisioned transit AA subs. Dynamic AA subscribers (ESM and transit subs) can have ASO overrides applied by RADIUS override VSAs.

Application profile assignment is still used to obtain the following information:

- The application-assurance group (and partition) to which the AA-sub is being assigned to
- Whether or not the traffic should be diverted
- Capacity-cost (for load balancing to a multi-isa group)

The information configured in the app-profile is also used, but the following can be overridden:

- ASO characteristics and values (these are from the policy defined in the group and partition)

The overrides are specific to a single aa-sub. An ASO override does affect any other aa-sub or the app-profile config itself.

Typically the ASO characteristics in the app-profile would not be specified, thus leaving all characteristics at their default values. This is not mandatory though and the app-profile could specify any ASO characteristic and non-default value.

The AA app-qos-policy has entries that can refer to ASO characteristics (attributes) and values in their match criteria. In the absence of any individual attribute/value override, an aa-sub will continue to work as before - using the ASO characteristics/values defined inside the app-profile assigned to them. With overrides, the aa-sub attributes used in app-qos-policy lookups are the combination of the following:

- The characteristics/values from the app-profile,
- Any specific characteristics and values overridden for that aa-sub.

Show command output display the combined set of attributes that apply to the aa-sub.

The override commands can only be used if there is already an app-profile assigned to the aa-sub, otherwise, the overrides are rejected.

The app-profile attribute override is assigned to a specific aa-sub (SAP, spoke SDP) within the AA Group:partition with where the subscriber exists. While subscriber names are unique, the Group:partition policy context where apps, app-profiles and ASO characteristics are defined is relevant to the override context. Override for ESM subscribers can be triggered via DIAMETER or RADIUS.
AA-Sub Scale Mode

An AA VPN policy is generally administered using a per-site (aa-subscriber) policy attribute assignment (ASO override), as opposed to a service profile based model commonly used for residential services. Due to this, the number of attributes and values of ASOs that can be needed in an AA VPN service will be much larger than ASO scale needed for residential uses.

On the other hand, the number of AA subscribers needed per node and per ISA is much smaller for VPN services, and the size of each in bandwidth is generally much larger than residential.

In conjunction with App-profile ASO override, a new capability is added to place an AA-group into a mode optimized for VPN scale requirements:

```
config>aa>aa-group>aa-sub-scale {residential|vpn} (residential is default)
```
Application Identification

This section discusses the following topics:

- Application Assurance Identification Components on page 82
- Protocol Signatures on page 84
- Custom Protocols on page 85
- Protocol Shutdown on page 86
- Supported Protocol Signatures on page 86
- Application Groups on page 86
- Applications on page 87
- Application Filters on page 88
- HTTP on page 89
- Charging Groups on page 87
- AA IP Prefix Lists on page 90

Application identification means there is sufficient flow information to provide the network operator with a view to the underlying nature and value of the content. Application ID does not include:

- Anti-virus signatures per IPS/UTM.
- Content inspection (e-mail, text, picture, or video images). The payload data content of flows is typically not examined as part of the application identification.

Application Assurance can identify and measure non-encrypted IP traffic flows using any available information from Layer 2-Layer 7, and encrypted IP traffic flows using heuristic techniques.

Application Assurance attempts to positively identify the protocols and applications for flows based on a pattern signature observation of the setup and initial packets in a flow. The system correlates control and data flows belonging to the same application. In parallel, statistical and behavioral techniques are also used to identify the application. Until identified, the flow will not have a known application and will be treated according to the default policies (AQP policies defined using all or any ASO characteristics, subscriber Id and traffic direction as match criteria) for traffic for that AA subscriber, app-profile and direction (packets will be forwarded unless an action is configured otherwise). If the identification beyond OSI Layer 2 is not successful, the flow will be flagged as an unknown protocol type, (for example unknown_tcp or unknown_udp). The unknown traffic is handled as part of all application statistics and policy, including generation of stats on the volume of unknown traffic.
Application Assurance allows operators to optionally define port-based applications for “trusted” TCP or UDP ports. Operators must explicitly identify a TCP/UDP port(s) in an application filter used for “trusted” port application definition and specify whether a protocol signature-based application identification is to be performed on a flow or not. Two options are available:

- If no protocol signature processing is required (expected to be used only when (A) AQP policy must be performed from the first packet seen, (B) the protocol signature processing requires more than 1 packet to positively identify a protocol/application, and (C) no other application traffic runs over a given TCP/UDP port), the first packet seen by AA ISA for a given flow on that TCP/UDP port will allow application identification. The traffic for a given flow will be identified as “trusted tcp/trusted_udp” protocols.

- If protocol signature verification of an application is required (expected to be used only when (a) AQP policy must be performed from the first packet seen, (b) the protocol signature processing requires more than 1 packet to positively identify a protocol/application, but (c) other application traffic may run over a given TCP/UDP port, for example TCP port 80), the first packet seen will identify the application but protocol signature-based analysis continues. Once the identification completes, the application is re-evaluated against the remaining application filters allowing detection and policy control of unexpected applications on a “trusted” port.

At Application Assurance system startup or after an AA ISA activity switch, all open flows are marked with the “existing” protocol signature and have a policy applied according to an application based on the “existing” protocol until they end or the identification of an in-progress flow is possible. Statistics are generated.

From the first packet of a flow, a default per AA subscriber AQP policy is applied to every packet. Once an application is identified, subsequent packets for a flow will have AA subscriber and application-specific AQP applied. The AA-generated statistics for the flow with AA subscriber and application context are collected based on the final determination of the flow's application. A subset of the applications may be monitored on an ongoing basis to further refine the identification of applications carried with the traffic flow and to identify applications using an external application wrapper to evade detection.
Application Assurance Identification Components

Figure 20 shows the relationship between the Application Assurance system components used to identify applications and configure Application Assurance related capabilities. Each ID-related component is defined as follows:

- Protocol signatures
- Application filters
- Applications
- Application groups
- Charging groups

Figure 20: Policy Structure
Table 6 provides an overview of how those various components used in Application Assurance to recognize types of flows/sessions.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Signature</td>
<td>Alcatel-Lucent’s proprietary component of AA flow identification provided as part of AA S/W load to identify protocols used by clients. Where a protocol is defined as an agreed upon format for transmitting data between two devices.</td>
<td>Tftp, iMap, msn-msgr, RTP, emule, http_video, bittorrent, SIP</td>
</tr>
<tr>
<td></td>
<td>Note: Alcatel-Lucent’s protocol signatures do not rely on IP port numbers to identify a TCP/UDP port based protocols / applications in order to avoid eliminate false-positives but allow operators to define application filters if a port-based identification is deemed adequate (see an example below).</td>
<td></td>
</tr>
<tr>
<td>Application Filter</td>
<td>Operator configurable, optional component of AA flow identification that uses any combination of protocol signatures, server IP address and port, flow set-up direction, configurable expressions (for example an HTTP string match) to identify user’s traffic.</td>
<td>http_video + IP address of partner’s video server or http_video + an HTTP string to identify partner’s video content TCP or UDP + TCP/UDP port number to identify a TCP or UDP based protocol or application.</td>
</tr>
<tr>
<td>Application</td>
<td>Operator configurable, optional component of AA flow identification that allows defining any specific forms of traffic to and from end user clients by combining application filter entries</td>
<td>Google Talk, POP3, YouTube, iTunes, Shoutcast</td>
</tr>
<tr>
<td>Application Charging</td>
<td>Operator configurable, optional component of AA flow identification that allows grouping of similar end use applications using operator defined names and groups.</td>
<td>IM, Mail, Multimedia, P2P, Tunneling, Web, Other</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Clients | End user programs that generate user traffic for applications and protocols, and that are used in a process of AA flow identification verification. | The list of clients is constantly evolving as new clients or versions are introduced in the marketplace. The following example illustrates clients that may be used to generate Application traffic matching BitTorrent application defined using BitTorrent and DHT protocol signatures: Limewire, BitTorrent, Azureus, Ktorrent, Transmission, Utorrent }
Protocol Signatures

The set of signatures used to identify protocols is generated by Alcatel-Lucent and included with the Application Assurance software load. The signature set includes:

- The protocols that can be identified with this load, using a combination of pattern and behavioral techniques. The protocols are used in generating statistics by protocol, and are used as input in combination with other information to identify applications.
- Pattern signatures are the set of pattern-match signatures used in analysis.
- Behavior signatures are the set of diagnostic techniques used in analysis.

Dynamic upgrades of the signatures in the system are implemented by invoking an `admin application-assurance upgrade` command and then performing AA ISA activity switches.

The protocol signatures are included in aa-isa.tim software load which is not tightly coupled with software releases allowing for protocol signature updates without upgrading and impacting of routing/forwarding engines as part of an ISSU upgrade that updates only the AA ISA software. Refer to upgrade procedures described in the 7750 SR and/or 7450 ESS Release Notes for detailed information.

Since protocol signatures are intended to be the most basic block of Application Identification, other AA components like Application Filters are provided to further customize Protocol Signatures allowing operators to customize their applications and to reduce a need for a new Protocol Signature load when a new Application may need to be identified. This architecture gives operators more flexibility in responding to ever changing needs in application identifications.

Signature upgrade without a router upgrade is allowed within a major router release independently of system ISSU limits. An AA ISA signature upgrade is supported before the first ISSU router release (for example, operators can upgrade signatures for pre-ISSU minor releases).

In addition, any router release from ISSU introduction release can run any newer aa-isa.tim image within the same major release by performing an aa-isa.tim single step upgrade. For example, release 8.4 may be upgraded in a single step to run release 8.14 of isa-aa.tim.

Each protocol, except internal protocols used for special-case processing statistic gathering (like “cut-through”, for example), can be referenced in the definition of one or multiple applications (through the App-Filter definition). Assignment of a supported protocol to an app-filter or application is not mandatory. Protocols not assigned to an application are automatically mapped by the system to the default “Unknown” application.
Custom Protocols

Custom protocols are supported using configurable strings (up to 16 hex octets) for pattern-matched application identification in the payload of TCP or UDP based applications (mutually exclusive to other string matches in an app-filter).

The match is specified for the “client-to-server”, “server-to-client”, or “any” direction for TCP based applications, and in the “any” direction for UDP based applications.

There is a configurable description and custom protocol id for a protocol, with configurable shutdown. When disabled, traffic is identified as if the protocol was not configured.

Custom protocols and ALU-provided protocols are functionally equivalent. Custom protocols are used in application definition without limitations (all app-filter entries except strings are supported). Collection of custom protocol statistics on a partition/ISA group/special study sub level is supported.
Protocol Shutdown

The protocol shutdown feature provides the ability for signature upgrades without automatically affecting policy behavior, especially if some or even all new signatures are not required for a service. All new signatures are disabled on upgrade by default to ensure no policy/service impact because of the signature update.

All protocols introduced at the R1 stage of a given release are designated as “Parent” signatures for a given release and cannot be disabled.

Within a major release, all protocols introduced post-R1 of a major release as part of any isa-aa.tim ISSU upgrade are by default shutdown. They must be enabled on a per-protocol basis (system-wide) to take effect.

When shutdown, post R1-introduced protocols do not change AA behavior (app-id, policy, statistics are as before the protocol introduction), for example, traffic maps to the parent protocol on which the new signature is based. In cases where there is more than one parent protocol, all traffic is mapped to a single, most-likely, parent protocol. For example if 80% of a new protocol has traffic mapping to unknown_tcp, and 20% mapping to another protocol(s), unknown_tcp would be used as parent.

Enabling/disabling of a new protocol takes affect for new flows only. The current status (enabled/shutdown) of a signature and the parent protocol is visible to an operator as part of retrieving protocol information through CLI/SNMP.

Supported Protocol Signatures

Protocol signatures are release independent and can be upgraded independently from the router’s software and without impacting router’s operations as part of an ISSU upgrade. A separate document outlines signatures supported for each signature software load (isa-aa.tim). New signature loads are distributed as part of the SR/ESS maintenance cycle. Traffic identified by new signatures will be mapped to an “Unknown” application until the AA policy configuration changes to make use of the newly introduced protocol signatures.

Application Groups

Application groups are defined as a container for multiple applications. The only application group created by default is Unknown. Any applications not assigned to a group are automatically assigned to the default Unknown group. Application groups are expected to be defined when a common policy on a set of applications is expected, yet per each application visibility in accounting is required. The application group name is a key match criteria within application QoS policy rules.
Charging Groups

Charging Groups allow usage accounting by application and/or app groups in a manner that does not affect app to app-group mapping. For example, AA app groups statistics for “Streaming Video” includes all streaming apps, independent of whether any specific application is 0-rated for charging. AA charging groups are used for charging related statistics.

As with app-groups, charging groups are defined under an AA policy context for an AA group or partition. Once defined, individual apps and app-groups can be associated with the desired charging group. The charging group name is a key match criteria within application QoS policy rules.

A default charging group can be specified for the AA policy to associate a charging group to any applications or app-groups that are not explicitly assigned to a charging group.

Charging groups are also assigned an export-id number for accounting export purposes. If no export-id is assigned, that charging group cannot be added to the aa-sub stats RADIUS export-type. Once a charging group index is referenced, it cannot be deleted without removing the reference.

Applications

The application context defines and assigns a description to the application names supported by the application filter entries, and assigns applications to application groups.

- Application name is a key match criteria within application QoS policy rules, which are applied to a subscribers IP traffic.
- Each application can be associated with one of the application groups provided by Application Assurance.

The Application Assurance system provides no pre-defined applications other than Unknown. Applications must be explicitly configured. Any protocols not assigned to an application are automatically assigned to the default Unknown application. Alcatel-Lucent provides sets of known-good application/app-group configurations upon request. Contact the technical support staff for further information.

The applications are used by Application Assurance to identify the type of IP traffic within the subscriber traffic.

The network operator can:

- Define unique applications.
• Associate applications with an application group. The application group must already be configured.

Application Filters

Application filters (app-filter) are provided as an indirection between protocols and applications to allow the addition of variable parameters (port number, IP addresses, etc.) into an application definition. An application filter is a numbered rule entry that defines the use of protocol signatures and other criteria to define an application. Multiple rules can be used to define what constitutes an application but each rule will map to only one application definition.

The system concept of application filters is analogous to IP filters. Match of a flow to multiple rules is possible and is resolved by picking the rule with the lowest entry number that matches. A flow will only ever be assigned to one application.

The following criteria can be assigned to an application filter rule entry:

- Unique entry ID number
- Application name
- Flow setup direction
- Server IP address (or server IP filter list)
- Server port
- Protocol signature
- IP protocol number
- String matches against Layer 5+ protocol header fields (for example, a string expression against HTTP header fields)

The application must be pre-configured prior to using it in an app-filter. Once defined, the new application names can be referenced.
HTTP Protocol

The Hyper-Text Transfer Protocol (HTTP) has become the most significant protocol used on the Internet and has expanded its role beyond web browsing with a large number of applications using HTTP for a variety of functions on both desktop and mobile devices.

Application Assurance provides the tools required by residential, mobile and business VPN service providers to accurately classify any web-based applications regardless of where the content is stored and how it is delivered. This is done by using either the default protocol signatures delivered with the AA-ISA software or by defining string based signatures from the HTTP header information fields included in the HTTP request messages to further refine the detection.

HTTP Session Persistency

HTTP can use both non-persistent connections and persistent connections. Non-persistent connection uses one TCP connection per HTTP request while persistent connection can reuse the same TCP connection for multiple HTTP request to the same server.

Nowadays most applications are using HTTP/1.1 and persistent connection but HTTP/1.0 and non-persistent connections remains on older software and mobile devices.

HTTP flows are classified in a particular application using the first HTTP request of the flow only by default. Optionally, the MS-ISA offers the flexibility to classify each HTTP request within the same flow independently using http-match-all-request feature.

HTTP Proxy Support

Application Assurance also supports traffic classification of HTTP between a subscriber and a web proxy. This feature is enabled by default, the ISA monitors and detects HTTP proxy flows automatically, each request within the same persistent connection to the proxy server is classified independently.
AA IP Prefix Lists

AA-ISA allows the match section of session filters, AQPs entries and application filters to include matching against a configured IP filter list(s). Each IP filter list (aka IP pools) can have up to 64 IP address entries with a configurable mask for each entry.
Statistics and Accounting

Application Assurance statistics provide the operator with information to understand application usage within a network node.

Application Assurance XML record accounting aggregates the flow information into per application group, per application, per protocol reports on volume usage during the last accounting interval. This information is then sent to a statistics collector element for network wide correlation and aggregation into customized graphical usage reports. Application Assurance uses and benefits from the rich 7750 SR/7450 ESS accounting infrastructure and the functionality it provides to control accounting policy details.

The following types of accounting volume records are generated and can be collected:

- Per ISA group and partition record for each configured application group
- Per ISA group and partition record for each configured application
- Per ISA group and partition record for each configured protocol
- Per each AA subscriber record with operator-configurable field content using custom AA records for operator-selected subset of protocols, applications and application groups
- Per AA subscriber per each configured application record (special study mode)
- Per AA subscriber per each supported protocol record (special study mode)
- Per ISA AA-performance record, containing information about the traffic and resources of each ISA
- Per AA partition stats record for counts of traffic by Layer 3 protocol used to transport L4 protocols. This includes TCP, UDP and NonTcpUdp carried by IPv4, IPv6, DS_Lite, 6to4/6RD and Teredo protocols

Application Assurance supports RADIUS accounting export of per AA subscriber charging group statistics.

Each AA group:partition can be configured for AA-subscribers stats export by referencing both an accounting policy (for XML statistics) and/or a RADIUS accounting policy. In order to determine how to export various counters for subscriber AA statistics, an export-using keyword is used when enabling aa-sub level stats export to specify the export method to be used for each, whether accounting-policy or radius-accounting-policy and/or diameter-based usage monitoring.

Per AA flow statistics are provided as described in the cflowd section.

Refer to the 7750 SR/7450 ESS OS System Management Guide for information on general accounting functionality.
Per-AA-Subscriber Special Study

The system can be configured to generate statistical records for each application and protocol that the system identifies for specific AA subscribers. These capabilities are disabled by default but can be enabled for a subset of AA subscribers to allow detailed monitoring of those AA subscriber’s traffic.

Per-aa-sub per-application and per-aa-sub per-protocol records are enabled by assigning individual AA subscribers to “special study” service lists. The system and ISA group limit the number of AA subscribers in this mode to constrain the volume of stats generated. When an AA subscriber is in a special study mode, one record for every application and/or one record for every protocol that are configured in the system are generated for that subscriber. For example, if 500 applications are configured and 200 protocols are identified, 700 records per AA subscriber will be generated, if the AA subscriber is listed in both the per-aa-sub-application and per-aa-sub protocol lists.
System Aspects

Application Assurance uses the existing redundant accounting and logging capability of the 7750 SR/7450 ESS for sending application and subscriber usage information, in-band or out-of-band. Application Assurance statistics are stored using compressed XML format with other system and subscriber statistics in compact flash modules on the redundant SF/CPMs. A large volume of statistics can be expected under scaled scenarios when per-AA-subscriber statistics/accounting is enabled.

AA accounting and statistics can be deployed as part of other system functionality as long as the system’s function is compatible with AA accounting or as long as the system-level statistics can become application-aware due to, for example, AA ISA-based classification. An example of this feature interaction includes volume and time-based accounting where AA-based classification into IOM queues with volume and time accounting enabled can, for instance, provide different quota/credit management for off-net and on-net traffic or white/grey applications.
Application Assurance XML Volume Statistics and Accounting

Application Assurance is configured to collect and report on the following statistics when at least one AA ISA is active. The default Application Assurance statistics interval is 15 minutes.

Statistics to be exported from the node are aggregated into accounting records, which must be enabled in order to be sent. By default, no records are sent until enabled. Each record template type is enabled individually to control volume of statistics to the desired level of interest. Only non-zero records are written to the accounting files for all AA subscriber based statistics to reduce the volume of data.

The operator can further select a subset of the fields to be included in per-AA-subscriber records and whether to send records if no traffic was present for a given protocol or application, for example, sending only changed records.

Each record generated contains the record fields as described in Table 7. The header row represents the record type.

<table>
<thead>
<tr>
<th>Record Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Group</td>
<td>Name X data name</td>
</tr>
<tr>
<td>Application Name</td>
<td>X X data name</td>
</tr>
<tr>
<td>Protocol Name</td>
<td>X X data name</td>
</tr>
<tr>
<td>Aggregation Type ID</td>
<td>ID (can be protocol, application, charging group or application group record)</td>
</tr>
<tr>
<td># Active Subscribers</td>
<td># of subscribers who had a flow of this category during this interval</td>
</tr>
<tr>
<td># allowed flows from-sub</td>
<td># of new flows that were identified and allowed</td>
</tr>
<tr>
<td># allowed flows to-sub</td>
<td>As above in opposite direction</td>
</tr>
</tbody>
</table>
Table 7: Application Assurance Statistics Fields Generated per Record (Accounting File)

<table>
<thead>
<tr>
<th>Record Fields</th>
<th>Description</th>
<th>AA-Sub Custom</th>
<th>AA-Sub Special Study</th>
<th>AA-Sub Special Study Protocol</th>
<th>XML Name</th>
</tr>
</thead>
<tbody>
<tr>
<td># denied flows from-sub</td>
<td>the # of new flows that were identified and denied</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td># denied flows to-sub</td>
<td>As above in opposite direction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td># Active flows from-sub</td>
<td># of flows that were either: closed, opened & closed, opened, or continued during this interval</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td># active flows to-sub</td>
<td>As above, in opposite direction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total packets from-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total packets to-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total bytes from-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total bytes to-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total discard packets from-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total short flows</td>
<td>Number of flows with duration <= 30 seconds that completed up to the end of this interval</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total medium flows</td>
<td>Number of flows with duration <= 180 seconds that completed up to the end of this interval</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total long flows</td>
<td>Number of flows with duration > 180 seconds that completed up to the end of this interval</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total discard packets to-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total discard bytes from-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total discard bytes to-sub</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total flows completed</td>
<td># of to- and from-subscriber flows that have been completed up to the reported interval</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 7: Application Assurance Statistics Fields Generated per Record (Accounting File)

<table>
<thead>
<tr>
<th>Record Fields</th>
<th>Description</th>
<th>From AA Sub:</th>
<th>To AA Sub:</th>
<th>AA-Sub Custom</th>
<th>AA-Sub Special Study Protocol</th>
<th>XML Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total flow duration</td>
<td>Duration, in seconds, of all flows that have been completed up to the reported interval.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>tfd</td>
</tr>
<tr>
<td>From AA Sub: Maximum throughput byte count</td>
<td>Maximum of all total byte counts recorded for throughput intervals within this accounting interval for traffic originated by AA subscriber for a given application/app-group. AA-ISA discarded traffic is not included.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>sbm</td>
</tr>
<tr>
<td>From AA Sub: Packet count corresponding to the max. throughput byte count interval</td>
<td>Packet count for the throughput interval with the maximum byte count value for traffic originated by AA subscriber for the application/app-group. AA-ISA discarded traffic is not included.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>spm</td>
</tr>
<tr>
<td>To AA Sub: Max throughput time slot index</td>
<td>UTC time that corresponds to the end of the 5-minute throughput interval where the max throughput byte count was detected.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>sfc</td>
</tr>
<tr>
<td>From AA Sub: Forwarding-class</td>
<td>Observed forwarding-class bits.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>nfc</td>
</tr>
<tr>
<td>To AA Sub: Forwarding-class</td>
<td>Observed forwarding-class bits.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>To AA Sub: Maximum throughput byte count</td>
<td>Maximum of all total byte counts recorded for throughput intervals within this accounting interval for traffic originated from Network towards AA subscriber for a given application/app-group. AA-ISA discarded traffic is not included.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>,nbm</td>
</tr>
</tbody>
</table>
Table 7: Application Assurance Statistics Fields Generated per Record (Accounting File)

<table>
<thead>
<tr>
<th>Record Fields</th>
<th>Description</th>
<th>AA-Sub Custom</th>
<th>AA-Sub Special Study per App</th>
<th>XML Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>To AA Sub:</td>
<td>Packet count corresponding to the max. Throughput byte count interval.</td>
<td>X</td>
<td></td>
<td>npm</td>
</tr>
<tr>
<td></td>
<td>Packet count for the throughput interval with the maximum byte count value for traffic originated from network towards AA subscriber for a given application / app-group. AA-ISA discarded traffic is not included.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From AA Sub:</td>
<td>Max throughput time slot index</td>
<td>X</td>
<td>X</td>
<td>nmt</td>
</tr>
<tr>
<td></td>
<td>UTC time that corresponds to the end of the 5-minute throughput interval where the max throughput byte count was detected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From AA Sub:</td>
<td>Forwarding-class</td>
<td>X</td>
<td>X</td>
<td>sbm</td>
</tr>
<tr>
<td></td>
<td>Observed forwarding-class bits.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From AA Sub:</td>
<td>Maximum throughput byte count</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum of all total byte counts recorded for throughput intervals within this accounting interval for all traffic originated by AA subscriber. AA-ISA discarded traffic is not included.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From AA Sub:</td>
<td>Packet count corresponding to the max. Throughput byte count interval.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet count for the throughput interval with the maximum byte count value for traffic originated by AA subscriber. AA-ISA discarded traffic is not included.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From AA Sub:</td>
<td>Max throughput time slot index</td>
<td>X</td>
<td></td>
<td>spm</td>
</tr>
<tr>
<td></td>
<td>UTC time that corresponds to the end of the 5-minute throughput interval where the max throughput byte count was detected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To AA Sub:</td>
<td>Maximum throughput byte count</td>
<td>X</td>
<td></td>
<td>nbm</td>
</tr>
<tr>
<td></td>
<td>Maximum of all total byte counts recorded for throughput intervals within this accounting interval for traffic originated from network towards AA subscriber. AA-ISA discarded traffic is not included.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The records are generated per ISA group and partition, with an ISA group identified by the group ID (XML field name “aaGroup”), partition identified by the partition ID (XML field name “aaPart name”) and per AA subscriber (if applicable) with the AA subscriber identified by the ESM subscriber name, SAP ID (XML field name “subscriber name”, “sap name” or “spoke SDP ID” respectively). The date, time, and system ID for the records will be visible as part of the existing accounting log capability, thus does not need to be contained inside the Application Assurance records themselves.

The Forwarding Class is included in AA XML records as generally a VPN interconnection SLA is a combination of Bandwidth connection at the site level and Forwarding Class to transport the traffic over the MPLS network, by mapping the end-customer DSCP or 802.1P traffic value into a given FC.

AA accounting stats of the application/application-group volume usage per forwarding class shows the exact volume of each application at the per FC level and better ties the AA reports to the VPN services and SLA.

This can also identify key applications using a non optimal FC over a given VPN/Site and allow the option for AA to remark these into a higher traffic class, with reporting per FC to show resulting use.

Table 7: Application Assurance Statistics Fields Generated per Record (Accounting File)

<table>
<thead>
<tr>
<th>Record Fields</th>
<th>Description</th>
<th>Description</th>
<th>Description</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To AA Sub: Packet count corresponding to the max. Throughput Byte Count interval.</td>
<td>Packet count for the throughput interval with the maximum byte count value for traffic originated from network towards AA subscriber. AA-ISA discarded traffic is not included.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>To AA Sub: Max throughput time slot index</td>
<td>UTC time that corresponds to the end of the 5-minute throughput interval where the max throughput byte count was detected.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Forwarding Class | X | fc |
The AA partition statistics record contains counters by traffic family for each of 3 IP protocol types. The IP protocol types are:

1. other (non TCP or UDP)
2. TCP traffic
3. UDP traffic

Within each of these types, records provided include counters relating to these IP families:

1. IPv4
2. IPv6
3. dsLite - IPv4 tunneled inside IPv6
4. 6RD - IPv6 tunneled inside IPv4, includes 6rd, 6to4
5. Teredo - IPv6 tunneled inside UDP, tunneled inside IPv4
Configurable AA-Subscriber Statistics Collection

Existing average volume statistics collected over an accounting interval are extended to provide the maximum volume (bytes/packets) recorded for a throughput measurement period (5 minutes) within an accounting interval. These additional statistics improve accuracy for the access-pipe right-sizing service.

Maximum throughput statistics can be enabled for the selected applications and/or application groups enabled for custom per AA statistics. In addition, the operator can enable (disabled by default) per AA-subscriber “Max-throughput” statistics for total (/aggregate) subscriber traffic, independent of defined applications/application-groups.

Maximum throughput statistics records are allocated from the 2048K records available for use for per subscriber records.

Maximum throughput statistics are not provided for the protocols enabled for custom per AA statistics.
AA-Performance Record for ISA Load

The AA-performance statistics record provides visibility of ISA loading related statistics to allow operational monitoring and planning of ISA overload:

1. Provides end of reporting interval snapshot of current values of the parameters listed in below into a per AA-ISA Planning record. “Current” is the value of a counter at the end of the reporting interval, for rate based values this is the ~10sec short term current rate used in CLI statistics.

2. Provides time-based averages during record interval of the above values: Average(I)

3. Provides peak values of the above values in the reporting interval: Peak(I)

The 5670 RAM provides further analysis and thresholding triggers based on these ISA statistics, suitable for long-range planning trends such as average number of subs or peak numbers of flows.

The node per-ISA planning record values are cleared on accounting read (per all accounting records). Not reading the records means that the average and peak values are the values for the last reporting interval. The time last read is indicated in the record.

The AA performance planning record contains the following fields:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current</th>
<th>Average(I)</th>
<th>Peak(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA ID</td>
<td># flows</td>
<td># flows</td>
<td></td>
</tr>
<tr>
<td>active flows</td>
<td>flows/sec</td>
<td>flows/sec</td>
<td></td>
</tr>
<tr>
<td>flow setup rate</td>
<td>bits/sec</td>
<td>bits/sec</td>
<td></td>
</tr>
<tr>
<td>traffic rate</td>
<td>packets/sec</td>
<td>packets/sec</td>
<td></td>
</tr>
<tr>
<td>Packet rate</td>
<td># subs</td>
<td># subs</td>
<td></td>
</tr>
<tr>
<td>active subs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>downloaded subs</td>
<td># subs</td>
<td># subs</td>
<td></td>
</tr>
<tr>
<td>flow resources in use (active flows + wildcard flows)</td>
<td># flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISA AA sub stats resource allocation</td>
<td>sum of cost of active AA subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISA capacity cost</td>
<td># subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISA Transit Subs</td>
<td>(packets, octets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diverted traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>entered ISA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application Assurance System Architecture

Table 8: AA Performance Planning Record Fields (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current</th>
<th>Average(I)</th>
<th>Peak(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy discards in ISA</td>
<td>(packets, octets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>congestion discards in ISA</td>
<td>(packets, octets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>error discards in ISA</td>
<td>(packets, octets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>policy bypass errors</td>
<td>(packets, octets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>returned traffic</td>
<td>(packets, octets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume cflowd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Records reported</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports dropped</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets sent</td>
<td># packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive cflowd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Records reported</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports dropped</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets sent</td>
<td># packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP performance cflowd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flows not allocated</td>
<td># flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Records reported</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports dropped</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets sent</td>
<td># packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP performance cflowd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flows not allocated</td>
<td># flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Records reported</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports dropped</td>
<td># records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packets sent</td>
<td># packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num of synchronization sources that had to be aborted</td>
<td>#SSRC aborted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: AA Performance Planning Record Fields (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current</th>
<th>Average(I)</th>
<th>Peak(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Records sent (Note that the data name=collector address and port inserted in XML record.)</td>
<td>#records to be collected (referenced by XML name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-Subs Created</td>
<td>#requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-Subs Deleted</td>
<td>#subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-Subs Modified</td>
<td>#subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seen-ip - requests sent</td>
<td>#requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seen-ip - requests dropped</td>
<td>#subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subscribers created</td>
<td>#subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subscribers deleted</td>
<td>#subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subscribers modified</td>
<td>#subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transit-prefix v4 address count</td>
<td>#addresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transit-prefix v6 address count</td>
<td>#addresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transit-prefix v6 remote address count</td>
<td>#addresses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9: Per ISA AA Performance Record Fields

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Type</th>
<th>Description</th>
<th>MIB object</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmo</td>
<td>cumulative</td>
<td>octets to MDA</td>
<td>tmnxBsxGrpStatusOctsToMda</td>
</tr>
<tr>
<td>tmp</td>
<td>cumulative</td>
<td>packets to MDA</td>
<td>tmnxBsxGrpStatusPktsToMda</td>
</tr>
<tr>
<td>fmo</td>
<td>cumulative</td>
<td>octets from MDA</td>
<td>tmnxBsxGrpStatusOctsFromMda</td>
</tr>
<tr>
<td>fmp</td>
<td>cumulative</td>
<td>packets from MDA</td>
<td>tmnxBsxGrpStatusPktsFromMda</td>
</tr>
<tr>
<td>dco</td>
<td>cumulative</td>
<td>octets discarded due to congestion in MDA</td>
<td>tmnxBsxGrpStatusOctsDisCongMda</td>
</tr>
<tr>
<td>dcp</td>
<td>cumulative</td>
<td>packets discarded due to congestion in MDA</td>
<td>tmnxBsxGrpStatusPktsDisCongMda</td>
</tr>
<tr>
<td>dpo</td>
<td>cumulative</td>
<td>octets discarded due to policy in MDA</td>
<td>tmnxBsxGrpStatusOctsDiscPolicy</td>
</tr>
<tr>
<td>dpp</td>
<td>cumulative</td>
<td>packets discarded due to policy in MDA</td>
<td>tmnxBsxGrpStatusPktsDiscPolicy</td>
</tr>
<tr>
<td>dco</td>
<td>cumulative</td>
<td>octets discarded due to error</td>
<td>tmnxBsxGrpStatusOctsDiscErrors</td>
</tr>
<tr>
<td>dep</td>
<td>cumulative</td>
<td>packets discarded due to error</td>
<td>tmnxBsxGrpStatusPktsDiscErrors</td>
</tr>
<tr>
<td>pbo</td>
<td>cumulative</td>
<td>octets policy bypass</td>
<td>tmnxBsxGrpStatusOctsPolicyByps</td>
</tr>
<tr>
<td>pbp</td>
<td>cumulative</td>
<td>packets policy bypass</td>
<td>tmnxBsxGrpStatusPktsPolicyByps</td>
</tr>
<tr>
<td>nfl</td>
<td>cumulative</td>
<td>number of flows</td>
<td>tmnxBsxGrpStatusFlows</td>
</tr>
<tr>
<td>caf</td>
<td>intervalized</td>
<td>current active flows</td>
<td>tmnxBsxGrpStatusFlowsCurrent</td>
</tr>
<tr>
<td>aaf</td>
<td>intervalized</td>
<td>average active flows</td>
<td>tmnxBsxGrpStatusFlowsAverage</td>
</tr>
<tr>
<td>paf</td>
<td>intervalized</td>
<td>peak active flows</td>
<td>tmnxBsxGrpStatusFlowsPeak</td>
</tr>
<tr>
<td>cfr</td>
<td>intervalized</td>
<td>current flow setup rate</td>
<td>tmnxBsxGrpStatusFlowSetupRate</td>
</tr>
<tr>
<td>afr</td>
<td>intervalized</td>
<td>average flow setup rate</td>
<td>tmnxBsxGrpStatusFlowSetupRateAvg</td>
</tr>
<tr>
<td>pfr</td>
<td>intervalized</td>
<td>peak flow setup rate</td>
<td>tmnxBsxGrpStatusFlowSetupRatePk</td>
</tr>
<tr>
<td>ctr</td>
<td>intervalized</td>
<td>current traffic rate</td>
<td>tmnxBsxGrpStatusTrafficRate</td>
</tr>
<tr>
<td>atr</td>
<td>intervalized</td>
<td>average traffic rate</td>
<td>tmnxBsxGrpStatusTrafficRateAvg</td>
</tr>
<tr>
<td>ptr</td>
<td>intervalized</td>
<td>peak traffic rate</td>
<td>tmnxBsxGrpStatusTrafficRatePeak</td>
</tr>
<tr>
<td>Record Name</td>
<td>Type</td>
<td>Description</td>
<td>MIB object</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>cpr</td>
<td>intervalized</td>
<td>current packet rate</td>
<td>tmnxBsxCflowdStatusPktRateCurr</td>
</tr>
<tr>
<td>apr</td>
<td>intervalized</td>
<td>average packet rate</td>
<td>tmnxBsxGrpStatusPacketRateAvg</td>
</tr>
<tr>
<td>ppr</td>
<td>intervalized</td>
<td>peak packet rate</td>
<td>tmnxBsxGrpStatusPacketRatePeak</td>
</tr>
<tr>
<td>cas</td>
<td>intervalized</td>
<td>current active subscribers (with flows)</td>
<td>tmnxBsxGrpStatusSubsCurrent</td>
</tr>
<tr>
<td>aas</td>
<td>intervalized</td>
<td>average active subscribers (with flows)</td>
<td>tmnxBsxGrpStatusSubsAverage</td>
</tr>
<tr>
<td>pas</td>
<td>intervalized</td>
<td>peak active subscribers (with flows)</td>
<td>tmnxBsxGrpStatusSubsPeak</td>
</tr>
<tr>
<td>cds</td>
<td>intervalized</td>
<td>current diverted subscribers</td>
<td>tmnxBsxGrpStatusSubsDiverted</td>
</tr>
<tr>
<td>ads</td>
<td>intervalized</td>
<td>average diverted subscribers</td>
<td>tmnxBsxGrpStatusSubsDivertedAvg</td>
</tr>
<tr>
<td>pds</td>
<td>intervalized</td>
<td>peak diverted subscribers</td>
<td>tmnxBsxGrpStatusSubsDivertedPk</td>
</tr>
<tr>
<td>rfi</td>
<td>intervalized</td>
<td>flows in use</td>
<td>tmnxBsxGrpStatusFlowResInUse</td>
</tr>
<tr>
<td>rcc</td>
<td>cumulative</td>
<td>ISA capacity cost</td>
<td>tmnxBsxBsxGrpMdaCapacityCost</td>
</tr>
<tr>
<td>rss</td>
<td>cumulative</td>
<td>subscriber statistics count</td>
<td>tmnxBsxBsxGrpMdaStatsResourceCount</td>
</tr>
<tr>
<td>rti</td>
<td>cumulative</td>
<td>transit-ip address count</td>
<td>tmnxBsxBsxGrpMdaTransIpAddr</td>
</tr>
<tr>
<td>rtp4</td>
<td>cumulative</td>
<td>transit-prefix v4 address count</td>
<td>tmnxBsxBsxGrpMdaTransPrefV4Entr</td>
</tr>
<tr>
<td>rtp6</td>
<td>cumulative</td>
<td>transit-prefix v6 address count</td>
<td>tmnxBsxBsxGrpMdaTransPrefV6Entr</td>
</tr>
<tr>
<td>rtp6r</td>
<td>cumulative</td>
<td>transit-prefix v6 remote address count</td>
<td>tmnxBsxBsxGrpMdaTransPrefV6RemEntr</td>
</tr>
<tr>
<td>srs</td>
<td>cumulative</td>
<td>seen-ip - requests sent</td>
<td>tmnxBsxBsxGrpStatusHCSeenIpReqSent</td>
</tr>
<tr>
<td>srd</td>
<td>cumulative</td>
<td>seen-ip - requests dropped</td>
<td>tmnxBsxBsxGrpStatusHCSeenIpReqDrop</td>
</tr>
<tr>
<td>tsc</td>
<td>cumulative</td>
<td>total subscribers created</td>
<td>tmnxBsxBsxGrpStatusHCSubsCreated</td>
</tr>
<tr>
<td>tsd</td>
<td>cumulative</td>
<td>total subscribers deleted</td>
<td>tmnxBsxBsxGrpStatusHCSubsDeleted</td>
</tr>
<tr>
<td>tsm</td>
<td>cumulative</td>
<td>total subscribers modified</td>
<td>tmnxBsxBsxGrpStatusHCSubsModified</td>
</tr>
<tr>
<td>vrr</td>
<td>cumulative</td>
<td>volume cflowd - records reported</td>
<td>tmnxBsxBsxCflowdStatusRecReported</td>
</tr>
<tr>
<td>vrd</td>
<td>cumulative</td>
<td>volume cflowd - records dropped</td>
<td>tmnxBsxBsxCflowdStatusRecDropped</td>
</tr>
<tr>
<td>vps</td>
<td>cumulative</td>
<td>volume cflowd - packets sent</td>
<td>tmnxBsxBsxCflowdStatusPktSent</td>
</tr>
<tr>
<td>Record Name</td>
<td>Type</td>
<td>Description</td>
<td>MIB object</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>crr</td>
<td>cumulative</td>
<td>comprehensive cflowd - records reported</td>
<td>tmnxBsxCflowdStatusRecReported</td>
</tr>
<tr>
<td>crd</td>
<td>cumulative</td>
<td>comprehensive cflowd - records dropped</td>
<td>tmnxBsxCflowdStatusRecDropped</td>
</tr>
<tr>
<td>cps</td>
<td>cumulative</td>
<td>tcp-performance cflowd - packets sent</td>
<td>tmnxBsxCflowdStatusPktsSent</td>
</tr>
<tr>
<td>trr</td>
<td>cumulative</td>
<td>tcp-performance cflowd - records reported</td>
<td>tmnxBsxCflowdStatusRecReported</td>
</tr>
<tr>
<td>trd</td>
<td>cumulative</td>
<td>tcp-performance cflowd - records dropped</td>
<td>tmnxBsxCflowdStatusRecDropped</td>
</tr>
<tr>
<td>tps</td>
<td>cumulative</td>
<td>tcp-performance cflowd - packets sent</td>
<td>tmnxBsxCflowdStatusPktsSent</td>
</tr>
<tr>
<td>tfn</td>
<td>cumulative</td>
<td>tcp-performance cflowd - flows but no cflowd resources available</td>
<td>tmnxBsxCflowdStatusFlowsNoRes</td>
</tr>
<tr>
<td>rrr</td>
<td>cumulative</td>
<td>rtp-performance cflowd - records reported</td>
<td>tmnxBsxCflowdStatusRecReported</td>
</tr>
<tr>
<td>rrd</td>
<td>cumulative</td>
<td>rtp-performance cflowd - records dropped</td>
<td>tmnxBsxCflowdStatusRecDropped</td>
</tr>
<tr>
<td>rps</td>
<td>cumulative</td>
<td>rtp-performance cflowd - packets sent</td>
<td>tmnxBsxCflowdStatusPktsSent</td>
</tr>
<tr>
<td>rfn</td>
<td>cumulative</td>
<td>rtp-performance cflowd - flows but no cflowd resources available</td>
<td>tmnxBsxCflowdStatusFlowsNoRes</td>
</tr>
<tr>
<td>rsr</td>
<td>cumulative</td>
<td>rtp-performance cflowd - num of synchronization sources that had to be aborted</td>
<td>tmnxBsxCflowdStatusHCUSupSSRCSt</td>
</tr>
<tr>
<td>res</td>
<td>cumulative</td>
<td>srflow collector - records sent</td>
<td>tmnxBsxCflowdCollStatRecSent</td>
</tr>
</tbody>
</table>
AA Partition Traffic Type Statistics

AA-ISA provides, at the AA partition level, traffic volume visibility of the Layer 3 protocols used to transport the different Layer 4 protocols. These include a traffic volume break down of TCP, UDP and Non-TCP-UDP carried by IPv4, IPv6, DS_Lite, 6to4/6RD and Teredo protocols.

Traffic-type statistics are broken down by "family" and "protocol":

- Family: IPv4, IPv6, DS-Lite, 6RD/6to4, Teredo
- Protocol: TCP, UDP, Other

Therefore, AA-ISA traffic type record provides a collection of 15 sets of traffic volume (Bytes) statistics figures as follows:

- IPv4 — TCP, UDP, Other
- IPv6 — TCP, UDP, Other
- DS-Lite — TCP, UDP, Other (IPv4 tunneled inside IPv6)
- 6to4/6RD — TCP, UDP, Other (IPv6 tunneled inside IPv4)
- Teredo — TCP, UDP, Other (IPv6 tunneled inside IPv4 and UDP)

These statistics are always counted. There is no configuration required to enable/disable tracking. However, the operator has the option to enable/disable export of these statistics via XML.

Table 10: Per AA Partition Stats Record Fields

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Type</th>
<th>Description</th>
<th>MIB object (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sba</td>
<td>cumulative</td>
<td>octets admitted (from-sub)</td>
<td>tmnxBsxTrafStatOctsAdmFmSb</td>
</tr>
<tr>
<td>spa</td>
<td>cumulative</td>
<td>packets admitted (from-sub)</td>
<td>tmnxBsxTrafStatPktsAdmFmSb</td>
</tr>
<tr>
<td>sbd</td>
<td>cumulative</td>
<td>octets denied (from-sub)</td>
<td>tmnxBsxTrafStatOctsDnyFmSb</td>
</tr>
<tr>
<td>spd</td>
<td>cumulative</td>
<td>packets denied (from-sub)</td>
<td>tmnxBsxTrafStatPktsDnyFmSb</td>
</tr>
<tr>
<td>nba</td>
<td>cumulative</td>
<td>octets admitted (to-sub)</td>
<td>tmnxBsxTrafStatOctsAdmToSb</td>
</tr>
<tr>
<td>npa</td>
<td>cumulative</td>
<td>packets admitted (to-sub)</td>
<td>tmnxBsxTrafStatPktsAdmToSb</td>
</tr>
<tr>
<td>nbd</td>
<td>cumulative</td>
<td>octets denied (to-sub)</td>
<td>tmnxBsxTrafStatOctsDnyToSb</td>
</tr>
<tr>
<td>npd</td>
<td>cumulative</td>
<td>packets denied (to-sub)</td>
<td>tmnxBsxTrafStatPktsDnyToSb</td>
</tr>
<tr>
<td>sfa</td>
<td>cumulative</td>
<td>flows admitted (from-sub)</td>
<td>tmnxBsxTrafStatFlwsAdmFmSb</td>
</tr>
<tr>
<td>sfd</td>
<td>cumulative</td>
<td>flows denied (from-sub)</td>
<td>tmnxBsxTrafStatFlwsDnyFmSb</td>
</tr>
</tbody>
</table>
Table 10: Per AA Partition Stats Record Fields (Continued)

<table>
<thead>
<tr>
<th>Record Name</th>
<th>Type</th>
<th>Description</th>
<th>MIB object (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>saf</td>
<td>intervalized</td>
<td>active flows (from-sub)</td>
<td>tmnxBsxTrafStatActFlwsFmSb</td>
</tr>
<tr>
<td>nfa</td>
<td>intervalized</td>
<td>active flows (to-sub)</td>
<td>tmnxBsxTrafStatActFlwsToSb</td>
</tr>
<tr>
<td>nfd</td>
<td>cumulative</td>
<td>flows denied (to-sub)</td>
<td>tmnxBsxTrafStatFlwsDnyToSb</td>
</tr>
<tr>
<td>naf</td>
<td>intervalized</td>
<td>active flows (from-sub)</td>
<td>tmnxBsxTrafStatActFlwsFmSb</td>
</tr>
<tr>
<td>tfc</td>
<td>cumulative</td>
<td>total terminated flows</td>
<td>tmnxBsxTrafStatTermFlws</td>
</tr>
<tr>
<td>tfd</td>
<td>cumulative</td>
<td>total terminated flow duration</td>
<td>tmnxBsxTrafStatTermFlwDur</td>
</tr>
<tr>
<td>sdf</td>
<td>cumulative</td>
<td>short duration flows</td>
<td>tmnxBsxTrafStatShrtDurFlws</td>
</tr>
<tr>
<td>mdf</td>
<td>cumulative</td>
<td>medium duration flows</td>
<td>tmnxBsxTrafStatMedDurFlws</td>
</tr>
<tr>
<td>ldf</td>
<td>cumulative</td>
<td>long duration flows</td>
<td>tmnxBsxTrafStatLngDurFlws</td>
</tr>
<tr>
<td>sfc</td>
<td>cumulative</td>
<td>forwarding-class bitmap (from-sub)</td>
<td>n/a</td>
</tr>
<tr>
<td>nfc</td>
<td>cumulative</td>
<td>forwarding-class bitmap (to-sub)</td>
<td>n/a</td>
</tr>
</tbody>
</table>
RADIUS Accounting AA Records

AA RADIUS accounting provides per aa-subscriber level charging group statistics as well as application-group (AG) support into RADIUS accounting infrastructure and application group support. The primary use of this is to allow RADIUS accounting to be enhanced with AA information useful for usage-based billing plans, providing flexibility to charge and rate application content using IP subnets, HTTP URLs, SIP URIs and other AA identified applications.

The system can export AA accounting statistics using accounting policy records exported with RADIUS accounting. AA RADIUS accounting provides total volume broken out by charging groups which are mapped by application. AA RADIUS accounting is aa-sub-ID based, where the AA-sub context IPv4 and IPv6 host addresses for the sub are not reflected in RADIUS accounting.

AA RADIUS accounting is implemented using ALU Vendor Specific Attributes (VSAs). This provides all charging group counters for a given subscriber to be exported with a common accounting session ID. The following statistics are included in each record. Accounting values are for forwarded packets (after AA policy):

- input octets (from-sub)
- input packets (from-sub)
- output octets (to-sub)
- output packets (to-sub)

RADIUS accounting is supported for all AA-sub types. RADIUS accounting is used to export of AA CG and AG (App-group) values at according to the RADIUS accounting policy interval. Charging groups statistics are exported in RADIUS accounting independent of app-groups (either or both can be enabled).
AA GX Based Usage Monitoring

Using 3GPP (third generation Partnership Project) diameter (Gx) functionality, AA-ISA upon receiving requests from Policy and Charging Rules Function (PCRF), can monitor application usage at the subscriber’s level and report back to PCRF whenever the usage exceeds the threshold(s) set by the PCRF.

Usage-monitoring can be used by operators to report to PCRF when:

- a.) AA-ISA detects the start of a subscriber application (by setting usage threshold to be very low)
- b.) A Pre-set usage volume per subscriber application is exceeded.

AA can monitor subscriber’s traffic for any defined:

- Application,
- Application group, and/or
- Charging group.

AA-ISA Gx-based usage monitoring is restricted to AA ESM subscribers’ type.

The AA-ISA Gx usage monitoring feature builds on 3GPP defined Application Detection and Control (ADC) Gx attributes.

AA-ISA reports accumulated usage when:

- A usage threshold is reached
- The PCRF explicitly disables usage monitoring
- The PCRF requests for a report
- When the ADC rule associated with the monitoring instance is removed or deactivated
- When a session is terminated

An AA defined application, application group and/or charging group is automatically allowed to be referenced by a an ADC rule for the purpose of usage monitoring only if:

- a.) It is already selected for either XML or Radius per subscriber accounting or
- b.) It is explicitly enabled by the operator for per sub statistics collection

 AND

- c.) Usage monitoring is enabled for the given AA group:partition.
Figure 21 illustrates the different messaging/call flows involved in application level usage monitoring. Details on the different supported AVPs used in these messages are illustrated later.

AA-ISA (the PCEF) supports Usage-Thresholds AVPs that refer to the thresholds (in byte) at which point an event needs to be sent back to the PCRF (Figure 21).

No time based thresholds are supported.

AA supports “grant-service-unit” AVP using the following possible values (AVP):

- CC-Input-Octets AVP (code 412): From Subscriber total byte count threshold
- CC-Output-Octet AVP (code 414): To subscriber total byte count threshold
• CC-Total-octets AVP (code 421) : threshold of aggregate traffic (Input and Output byte counters).

As shown in Figure 21 (T=7), AA sends a CCR message with a "USAGE_REPORT" Event-Trigger AVP to the PCRF when the usage counter reaches the configured usage monitoring threshold for a given subscriber (and given application group). AA counters are reset (to zero) when the monitoring threshold is reached (and an event is sent back to PCRF). The counter(s) however does not stop counting newly arriving traffic. AA counters only include “admitted” packets. Any packets that got discarded by AA due to—say—policing actions—are not counted for usage-monitoring purposes.

The TDF-Application-Identifier AVP—within the ADC rule—refers to AA Charging group, AA application group or to an AA application.

TDF-Application-Identifiers (such as charging-groups) have to be manually entered at the PCRF to match AA charging groups configured on the 7750 SR.

If the TDF-Application-Identifiers refers to a name that is used for both a charging group and an application (or application group), AA monitors the charging group. In other words, AA charging group has higher precedence, than AA application group.

Supported AVPs

ADC Rule AVP

The ADC Rule install appears in the CCA and RAR messages from PCRF towards AA-ISA.

• For installing a new ADC rule or modifying an ADC rule already installed, ADC-Rule-Definition AVP shall be used.
• For activating a specific predefined ADC rule, ADC-Rule-Name AVP shall be used as a reference for that ADC rule.

ADC-Rule-Definition ::= < AVP Header: 1094 >
{ ADC-Rule-Name }
[TDF-Application-Identifier]
; AA charging group/application group/application name
[Flow-Status]*
[QoS-Information]*
[Monitoring-Key]
[Redirect-Information] ::= < AVP Header: 1085 >*
[Redirect-Support];*
[Redirect-Address-Type];*
[Redirect-Server-Address];*
[Mute-Notification];*
* [AVP]
AVPs not supported by AA-ISA.

TDF-application-Identifier — This field specifies a predefined AA charging group, application group or application name for which usage monitoring functionality is required (for a given subscriber).

The Monitoring-Key AVP (AVP code 1066), refers to a predefined (by PCRF) USAGE Monitoring AVP.

The value of the monitoring key is random. However, it should be noted that a monitoring key instance can only be used a single ADC rule (for example, single app/app-grp/chg-grp). While the standards allow for a monitoring instance to be referenced by one or more ADC rules, AA-ISA implementation restricts this to one ADC rule. Hence, if a monitoring key is referenced in one ADC rule, it cannot be referenced by another.

Usage-Monitoring-Information AVP

The Usage-Monitoring-Information AVP (AVP code 1067) is of type Grouped, and it contains the usage monitoring control information.

The Monitoring-Key AVP identifies the usage monitoring control instance.

```
Usage-Monitoring-Information ::= < AVP Header: 1067 >
    [ Monitoring-Key ]
    [ Granted-Service-Unit ]
    [ Used-Service-Unit ]
    [ Usage-Monitoring-Level ]
    [ Usage-Monitoring-Report ]
    [ Usage-Monitoring-Support ]
    *[ AVP ]
```

Monitoring-Key AVP

The Monitoring-Key AVP (AVP code 1066) is of type OctetString and is used for usage monitoring control purposes as an identifier to a usage monitoring control instance.

Granted-Service-Unit AVP

shall be used by the PCRF to provide the threshold level to the PCEF. The CC-Total-Octets AVP shall be used for providing threshold level for the total volume, or the CC-Input-Octets and/or CC-Output-Octets AVPs shall be used for providing threshold level for the uplink volume and/or the downlink volume.

```
Granted-Service-Unit ::= < AVP Header: 431 >
```
Used-Service-Unit AVP

This AVP is used by AA_ISA (the PCEF) to provide the measured usage to the PCRF. Reporting is done, as requested by the PCRF, in CC-Total-Octets, CC-Input-Octets an/or CC-Output-Octets AVPs of Used-Service-Unit AVP.

The Used-Service-Unit AVP contains the amount of used units measured from the point when the service became active or, if interim interrogations are used during the session, from the point when the previous measurement ended.

```
Used-Service-Unit ::= < AVP Header: 446 >
    [ Tariff-Change-Usage ]*
    [ CC-Time ]*
    [ CC-Money ]*
    [ CC-Total-Octets ]
    [ CC-Input-Octets ]
    [ CC-Output-Octets ]
    [ CC-Service-Specific-Units ]*
    *[ AVP ]*
```

*AVPs not supported by AA-ISA.

CC-Total-Octets AVP — The CC-Total-Octets AVP (AVP Code 421) is of type Unsigned64 and contains the total number of requested, granted, or used octets regardless of the direction (sent or received).

CC-Input-Octets AVP — The CC-Input-Octets AVP (AVP Code 412) is of type Unsigned64 and contains the number of requested, granted, or used octets that can be/have been received from the end user.

CC-Output-Octets AVP —

The CC-Output-Octets AVP (AVP Code 414) is of type Unsigned64 and contains the number of requested, granted, or used octets that can be/have been sent to the end user
Usage-Monitoring-Level AVP

The Usage-Monitoring-Level AVP (AVP code 1068) is of type Enumerated and is used by the PCRF to indicate the level that the usage monitoring instance applies to.

If Usage-Monitoring-Level AVP is not provided, its absence shall indicate the value PCC_RULE_LEVEL (1).

The following values are defined (by standard):

- **SESSION_LEVEL (0)** – Not applicable for AA-ISA
- **PCC_RULE_LEVEL (1)** – Not applicable for AA-ISA
- **ADC_RULE_LEVEL (2)** — This value, if provided within an RAR or CCA command by the PCRF, indicates that the usage monitoring instance applies to one or more ADC rules.

Note that the ADC_rule_level is the only level that is applicable and supported by AA-ISA usage monitoring feature.

Usage-Monitoring-Report AVP

The Usage-Monitoring AVP (AVP code 1069) is of type Enumerated and is used by the PCRF to indicate that accumulated usage is to be reported by AA-ISA (the PCEF) regardless of whether a usage threshold is reached for certain usage monitoring key (within a Usage-Monitoring-Information AVP).

The following values are defined:

- **USAGE_MONITORING_REPORT_REQUIRED (0)**
 This value, if provided within an RAR or CCA command by the PCRF indicates that accumulated usage shall be reported by the PCEF.

Note that if no monitoring keys are set, AA-ISA reports all enabled monitoring instances for the subscriber.

Usage-Monitoring-Support AVP

The Usage-Monitoring-Support AVP (AVP code 1070) is of type Enumerated and is used by the PCRF to indicate whether usage monitoring shall be disabled for certain Monitoring Key.

The following values are defined:

- **USAGE_MONITORING_DISABLED (0)**
This value indicates that usage monitoring is disabled for a monitoring key.

Event-Trigger AVP (All Access Types)

The Event-Trigger AVP (AVP code 1006) is of type Enumerated. When sent from the PCRF to the PCEF (AA-ISA) the Event-Trigger AVP indicates an event that can cause a re-request of ADC rules. When sent from the PCEF to the PCRF the Event-Trigger AVP indicates that the corresponding event has occurred at the gateway.

USAGE_REPORT (26)

This value is used in a CCA and RAR commands by the PCRF when requesting usage monitoring at the PCEF (AA-ISA). The PCRF also provides in the CCA or RAR command the Usage-Monitoring-Information AVP(s) including the Monitoring-Key AVP and the Granted-Service-Unit AVP.

When used in a CCR command, this value indicates that AA-ISA (the PCEF) generated the request to report the accumulated usage for one or more monitoring keys. AA_ISA provides the accumulated usage volume using the Usage-Monitoring-Information AVP(s) including the Monitoring-Key AVP and the Used-Service-Unit AVP.

Note that only if the usage_report event is set by the PCRF, AA-ISA reports usage-monitoring when a threshold is crossed.

Usage Monitoring Disabled

Once enabled, the PCRF may explicitly disable usage monitoring as a result of receiving a CCR from AA-ISA which is not related to reporting usage, but related to other external triggers (e.g. subscriber profile update), or a PCRF internal trigger.

Note that when the PCRF disables usage monitoring, AA-ISA reports the accumulated usage which has occurred while usage monitoring was enabled since the last report.

To disable usage monitoring for a monitoring key, the PCRF sends the Usage-Monitoring-Information AVP including only the applicable monitoring key within the Monitoring-Key AVP and the Usage-Monitoring-Support AVP set to USAGE_MONITORING_DISABLED.

When the PCRF disables usage monitoring in a RAR or CCA command, AA-ISA sends a new CCR command with CC-Request Type AVP set to the value "UPDATE_REQUEST" and the Event-Trigger AVP set to "USAGE_REPORT" to report accumulated usage for the disabled usage monitoring key(s).
Session Termination

At AA-ISA subscriber’s session termination, AA-ISA sends the accumulated usage information for all monitoring keys for which usage monitoring is enabled in the CCR command with the CC-Request-Type AVP set to the value "TERMINATION_REQUEST"
Cflowd AA Records

AA ISA allows cflowd records to be exported to an external cflowd collector. The cflowd collector parameters (such as IP address and port number) are configured per application assurance group. All cflowd records collected for both volume and per-flow performance (TCP and/or audio video) are exported to the configured collector(s). AA ISA supports cflowd Version 10/ IPFIX.

A cflowd record is only exported to the collector once the flow is closed/terminated.

TCP Application Performance

AA ISA allows an operator to collect per flow TCP performance statistics to be exported through cflowd v10/IPFIX.

The operator can decide to collect TCP performance for sampled flows within a TCP enabled group-partition-application/application-group. The flow sampling rate is configurable on per ISA-group level. For example a flow sample rate of 10 means that every 10th TCP flow is selected for TCP performance statistics collection. Anytime a flow is sampled (selected for TCP performance statistics collection) its mate flow in reverse direction is also selected. This allows collectors to correlate the results from the two flows and provide additional statistics (such as round-trip delay). Per-flow cflowd TCP performance records are exported to the configured collector(s) upon flow closure. The system can gather per flow TCP performance statistics for up to 307,200 concurrent flows.

Two configurable TCP flow sampling rates are available per AA ISA group. Applications and/or Application groups selected for TCP performance monitoring can use of one these two sampling rates. For example, important applications are assigned high sampling rates, while other TCP applications are subjected to TCP performance monitoring using a lower flow sampling rate.

Per-flow TCP performance can be enabled (or disabled), using one of two configurable sampling rates, per application/app-group per partition per AA ISA-group.

Volume Statistics

AA ISA allows an operator to collect per flow volume statistics to be exported for any group partition. The packet sampling rate is configurable per AA- ISA-group level. For example, a packet sample rate of 10 means that one of every 10 packets is selected for volume statistics collection. If a flow has at least a single packet sampled for cflowd volume statistics, its per-flow cflowd volume record is exported to the configured collector upon flow closure.

Comprehensive Statistics
AA ISA allows an operator to collect per flow comprehensive statistics to be exported through cflowd v10/IPFIX.

This record type facilitates two deployments scenarios:

1. HTTP host and device info — Using the new performance cflowd, operators can collect statistics regarding the host names (used, for example, in HTTP GET methods) and device types being used in different flows within the network. These per flow statistics are exported via IPFIX v10 cflowd formatted records to a cflowd collector (such as RAM DCP) to enable intelligent reporting on devices and host fields.

2. Scaling of cflowd — In some situation, operators are mainly interested in augmenting the 5 Tuple IP flow information with AA classification of the flows in terms of application/application group. While AA volume cflowd provides such a function, however it is enabled at AA-partition level, covering all traffic within a partition, which then prohibits the use of high sampling rates. Using AA comprehensive flow-sampled cflowd mechanism, operators can target (or exclude), within an AA partition, certain applications (application groups) for sampling. Hence providing finer control at the application/application group level, rather than at the partition level (case of volume cflowd).

The operator can decide to collect comprehensive statistics for sampled flows within an enabled group-partition-application/application-group. Parameters such as flow’s applications/application groups, host fields (applicable to HTTP traffic only), subscriber’s device type (when available), along with other general statistics such as flow’s bytes/packets counts are collected in a comprehensive cflowd record.

The flow sampling rate is configurable on per ISA group level. For example, a flow sample rate of 10 means that every 10th flow is selected for comprehensive statistics collection. Any time a flow is sampled (selected for comprehensive statistics collection) its mate flow in reverse direction is also selected. The two flows are exported in a single cflowd record.

Per-flow comprehensive can be enabled (or disabled), using one of two configurable sampling rates, per application/app-group per partition per AA ISA-group.

Applications and/or Application groups selected for comprehensive statistics gathering can use one these two sampling rates. For example, important applications are assigned high sampling rates, while other applications are subjected to a lower flow sampling rate.
Audio/Video (A/V) Application Performance

AA-ISA integrates a third party audio/video performance measurement software stack to perform VoIP and video conferencing MOS-related measurements for RTP based A/V applications.

A passive monitoring technology estimates transmission quality of voice and video over packet technologies by considering the effects of packet loss, jitter and delay in addition to the impairments caused by encoding/decoding technology. A rich set of diagnostic data is provided that can be used to help network managers identify a variety of problems that could impact the quality of voice and video streams and/or service level agreements (SLAs).

This feature provides:

- Call quality analysis using optimized ITU-T G.107, such as listening and conversational quality MOS and R-factor scores – MOS-LQ, MOS-CQ R-LQ and R-CQ.
- Measurements of perceptual effects of burst packet loss and recency using ETSI TS 101 29-5 Annex E Extensions
- Reporting of RTCP XR (RFC 3611, RTP Control Protocol Extended Reports (RTCP XR)) VoIP metrics payloads.

Once a flow terminates, AA-ISA formats the flow MOS parameters into a cflowd record and forwards the record to a configured IPFIX /10 cflowd collector (such as 5670 RAM). The collector then summarizes these records using route of interest information (source/destinations). In addition, RAM provides the user with statistics (min/max/avg values) for the different performance parameters that are summarized.

Two configurable RTP flow sampling rates are available per AA ISA group. Applications and/or Application groups selected for RTP performance monitoring can use one of these two sampling rates. For example, important applications (such as Cisco’s Telepresence video conferencing or operator’s VoIP service) are assigned high sampling rates, while other RTP applications are subjected to RTP performance monitoring using a lower flow sampling rate.

Like TCP performance, per flow audio/video performance can be enabled (or disabled), using one of two configurable sampling rates, per application/app-group per partition per AA-ISA-group.

The operator can decide to collect RTP A/V performance for sampled RTP flows within an RTP A/V enabled group-partition-application/application-group. The two available flow sampling rates is are configurable on per ISA group level. For example a flow sample rate of 10 means that every 10th RTP flow is selected for RTP performance statistics collection. Anytime a flow is sampled (selected for RTP A/V performance statistics collection) its mate flow reverse direction is also selected. When RTP dynamic payload types (RTP “PT”) are used, only flows that use SIP to signal RTP codec can be selected for RTP performance measurement. Flows that use static RTP payload types can be selected for performance measurement regardless of the signaling channel used to setup the call. The system can gather per flow RTP A/V performance statistics for up to 6000 voice calls.
Application QoS Policy (AQP)

An AQP is an ordered set of entries defining application-aware policy (actions) for IP flows diverted to a given AA ISA group. The IP flow match criteria are based on application identification (application or application group name) but are expected to use additional match criteria such as ASO characteristic value, IP header information or AA subscriber ID, for example.

When application service option characteristic values are used in application profiles, the characteristics values can be further used to subdivide an AQP into policy subsets applicable only to a subset of AA subscribers with a given value of an ASO characteristic in their profile. This allows to, for example, subdivide AQP into policies applicable to a specific service option (MOS iVideo Service), specific subscriber class (Broadband service tier, VPN, Customer X), or a combination of both.

A system without AQP defined will have statistics generated but will not impact the traffic that is flowing through the system. However, it is recommended that an AQP policy is configured with at least default bandwidth and flow policing entries to ensure a fair access to AA ISA bandwidth/flow resources for all AA subscribers serviced by a given AA ISA.

AQP rules consist of match and action criteria:

- **Match**: Refers to application identification determined by application and application group configuration using protocol signatures and user-configurable application filters that allow customers to create a wide range of identifiable applications. To further enhance system-wide per subscriber/service management user configurable application groups are provided.

 An AQP consists of a numbered and ordered set of entries each defining match criteria including AND, NOT and wildcard conditions followed by a set of actions.

 AQP Entry <#> = <Match Criteria> AND <Match Criteria> <action>

 OR match conditions are supported in AQP through defining multiple entries. Multiple match criteria of a single AQP entry form an implicit AND function. An AQP can be defined for both recognized and unrecognized traffic. IP traffic flows that are in the process of being identified have a default policy applied (AQP entries that do not include application identification or IP header information). Flows that do not match any signatures are identified as unknown-tcp or unknown-udp and can have specific policies applied (as with any other protocol).

- **Actions**: Defines AA actions to be applied to traffic, a set of actions to apply to the flows like bandwidth policing, packet discards, QoS remarking and flow count or/and rate limiting.
AQP Match Criteria

Match criteria consists of any combination of the following parameters:

- The source/destination IP address and port, or IP-prefix list
- Application name
- Application group name
- Charging group name
- One or more application service option characteristic and value pairs
- Direction of traffic (subscriber to network, network to subscriber, or both, or spoke SDP)
- DSCP name
- AA subscriber (ESM subscriber, SAP or spoke SDP)
- ip-protocol-num field, which when used in AQP matches allows more precise control of match criteria, e.g. to specify port or IP address matches specifically for either TCP or for UDP.

AQP entries with match criteria that exclusively use any combination of ASO characteristic and values, direction of traffic, and AA subscriber define default policies. All other AQP entries define application aware policies. Both default and application aware policies. Until a flow's application is identified only default policies can be applied.

AQP Actions

An AQP action consists of the following action types. Multiple actions are supported for each rule entry (unlike ip-filters):

- Dual or single-bucket bandwidth rate limit policer
- Drop (discard)
- Error drop
- Flow count limit policer
- Flow setup rate limit policer
- Fragment drop
- HTTP enrichment
- HTTP error redirect
- HTTP notification
- HTTP redirect
- Source mirror for an existing mirror service
• Remark QoS (one or a combination of discard priority, forwarding class name, DSCP). When applied, ingress marked FC and discard priority is overwritten by AA ISA and the new values are used during egress processing (for example, egress queueing or egress policy DSCP remarking). For MPLS class-based forwarding, ingress-marked FC is still used to select an egress tunnel.

• None (monitor and report only)

• Session filter

• URL-Filter (ICAP Category Based URL Filtering)

Any flow diverted to an ISA group is evaluated against all entries of an AQP defined for that group at flow creation (default policy entries), application identification completion (all entries), and an AA policy change (all flows against all entries as a background task). Any given flow can match multiple entries, in which case multiple actions will be selected based on the AQP entry’s order (lowest number entry, highest priority) up to a limit of:

• 1 drop action

• Any combination of (applied only if no drop action is selected):
 → Up to 1 mirror action;
 → up to 1 FC, 1 priority and 1 DSCP remark action;
 → up to 4 BW policers;
 → up to 12 flow policers.

AQP entries the IP flow matched, that would cause the above per-IP-flow limits to be exceeded are ignored (no actions from that rule are selected).

Examples of some policy entries may be:

• Limit the subscriber to 20 concurrent Peer To Peer (P2P) flows max.
• Rate limit upstream total P2P application group to 400kbps.
• Remark the voice application group to EF.
Denial Of Service (DOS) Protection

DoS attacks work by consuming network and system resources, making them unavailable for legitimate network applications. Network flooding attacks, malformed packets, and port scans are examples of such DoS attacks.

The aim of AA FW DOS protection is to protect subscribers and prevent any abuse of network resources.

Using AA FW stateful session filters, operators can protect their subscribers from any port scan scheme by configuring the session filters to disallow any traffic that is initiated from the network.

Furthermore, AA ISA provides configurable flow policers. These policers, once configured prevent all sort of flooding attacks (for example, ICMP PING flooding, UDP flooding, SYN Flood Attack). These policers provide protection at multiple levels; per system per application/application groups and per subscriber per applications/applications groups. AA ISA flow policers has two flavors; flow setup rate policers and flow count policers. Flow setup rate policers limit the number of new flows, while flow count policers limit the total number of active flows.

To protect hosts and network resources, AA_FW validates/checks the following parameters, if any fails, it declares the packet to be invalid:

- IP layer Validation:
 - IP version is not 4 nor 6
 - Checksum error (IPv4)
 - Header length check
 - Packet length check
 - TTL/Hop limit (not equal to zero) check
 - IPv4 source address checks:
 - class D/E (>=224.0.0.0)
 - BCAST 255.255.255.255 (multicast source address)
 - 127.x.x.x (invalid source address)
 - invalid subnet (subnet, 0) [unless /31 point-to-point interface]
 - invalid subnet multicast (subnet, -1) unless /31 point-to-point interface
 - IPv4 destination address checks:
 - BCAST 255.255.255.255, 0.x.x.x,127.x.x.x
 - IPv6_source address check
 - multicast source address (FFxx:xxxx:……:xxxx)
 - IPv6_destination address check
 - invalid destination address (=::)
• TCP/UDP validation:
 → header checksum
 → Source or destination ports (not equal to zero) check
 (only dest port is checked for UDP)
 → Invalid TCP flags:
 – TCP FIN Only: only the FIN flag set.
 – TCP No Flags: no flags are set.
 – TCP FIN RST: both FIN and RST are set.
 – TCP SYN URG: both SYN and URG are set.
 – TCP SYN RST: both SYN and RST are set.
 – TCP SYN FIN: both SYN and FIN are set

The above complements ESM enhanced security features, such as IP (or mac) anti-spoofing
protection (for example, protecting against “LAND attack”) and network protocols DoS protections. The combination provides a world class carrier grade FW function.
Virtual AA FW

AA FW can provide up to 128 virtual/partitioned FWs, each with its own FW polices. This is achieved through the use of AA-Partitions. Each APN can belong to one AA-partition. Hence, different APNs can have different FW policies/rules.

Configuring AA FW

AA-ISA AQPs are enhanced with few new AQP actions that provide session filtering functionality. As is the case of AQPs, these have partition level scope. Which allows different FW polices to be implemented by utilizing AA partitions concepts within the same AA-ISA group. Hence, multiple virtual AA FW instances can be realized. There is no need for multiple physical instances of FWs to implement different FW policies.

The AA FW stateful session filter consists of multiple entries (similar to ACLs) with a **match** and **action** per entry. Actions are **deny** or **permit**. A **deny** action results in packets discarded without creating a session/flow context. **match** conditions include IP 5 tuples info. An overall default action is also configurable, in case of a no match to any session filter entry.

Note: AQPs with session filter actions, need to have, as a matching condition, traffic direction, ASOs and/or subscriber name. It cannot have any references to applications and/or application groups.

AA FW offers, in addition to session-filter actions, a variety of AQP actions to that are aimed to allow or deny: errored/malformed packets, fragmented packets and/or first packet out-of-order fragments and overload traffic.

Statistics are incremented when packets are dropped by a session filter. These are accounted against:

- protocol = denied by default policy,
- application= unknown,
- application group = unknown.

A session-filter hit-count counter is maintained by AA-ISA and can be viewed via CLI. There is no current support for export of session-filter entry hit counters via XML to SAM.
AA FW Logging

AA-ISA can be configured, per AQP or per session filter, to log events related to how the packets are processed (allowed/denied). AA-ISA FW logs contain the following information:

- Group:partition
- Timestamp
- 5-tuple
- Direction
- Subscriber info (if available)
- Log source/type (session-filter or AQP)
- Action (allow/drop)
- Session-filter specific
 - Session-filter name
 - Session-filter entry
- AQP specific
 - Drop reason
 - Fragment Offset (if applicable)
 - Fragment ID (if applicable)
- If an out of order fragment triggers the log, then whatever 5-tuple information is available is included.

Note that for AQPs, only drop events are captured in the log. The logs do not capture drops due to flow policers.

The operator can configure up to one log per partition, with a maximum configurable log size of 100,000 events per log.
Application Assurance Policers

The rate limit (policer) policy actions provide the flow control mechanisms that enable rate limiting by application and/or AA subscriber(s).

There are four types of policers:

- Flow rate policer monitors a flow setup rate.
- Flow count limits control the number of concurrent active flows
- Single-rate bandwidth policers monitor bandwidth using a single rate and burst size parameters.
- Dual-rate bandwidth rate policers monitor bandwidth using CIR/PIR and CBS/MBS. These can only be used at the per-subscriber granularity.

Once a policer is referred to by an AQP action for one traffic direction, the same policer cannot be referred to in the other direction. This also implies that AQP rules with policer actions must specify a traffic direction other than the “both” direction.

Table 11 illustrates a policer's hardware rate steps for AA ISA:

<table>
<thead>
<tr>
<th>Hardware Rate Steps</th>
<th>Rate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5Gb/sec</td>
<td>0 to 64Gb/sec</td>
</tr>
<tr>
<td>100Mb/sec</td>
<td>0 to 12.7Gb/sec</td>
</tr>
<tr>
<td>50Mb/sec</td>
<td>0 to 6.4Gb/sec</td>
</tr>
<tr>
<td>10Mb/sec</td>
<td>0 to 1.3Gb/sec</td>
</tr>
<tr>
<td>5Mb/sec</td>
<td>0 to 635Mb/sec</td>
</tr>
<tr>
<td>1Mb/sec</td>
<td>0 to 127Mb/sec</td>
</tr>
<tr>
<td>500Kb/sec</td>
<td>0 to 64Mb/sec</td>
</tr>
<tr>
<td>100Kb/sec</td>
<td>0 to 12.7Mb/sec</td>
</tr>
<tr>
<td>50Kb/sec</td>
<td>0 to 6.4Mb/sec</td>
</tr>
<tr>
<td>10Kb/sec</td>
<td>0 to 1.2Mb/sec</td>
</tr>
<tr>
<td>8Kb/sec</td>
<td>0 to 1Mb/sec</td>
</tr>
<tr>
<td>1Kb/sec</td>
<td>0 to 127Kb/sec</td>
</tr>
</tbody>
</table>
Policers are unidirectional and are named with these attributes:

- Policer name
- Policer type: single or dual bucket bandwidth, flow rate limit, flow count limit.
- Granularity: select per-subscriber or system-wide
- Parameters for flow setup rate (flows per second rate)
- Parameters for flow count (maximum number of flows)
- Rate parameters for single-rate bandwidth policer (PIR)
- Parameters for two-rate bandwidth policer (CIR, PIR)
- PIR and CIR adaptation rules (min, max, closest)
- Burst size (CBS and MBS)
- Conformant action: allow (mark as in-profile)
- Non-conformant action: discard, or mark with options being in profile and out of profile

Policers allow temporary oversubscription of rates to enable new sessions to be added to traffic that may already be running at peak rate. Existing flows are impacted with discards to allow TCP backoff of existing flows, while preventing full capacity from blocking new flows.

Policers can be based on an AQP rule configuration to allow per-app-group, per-AA-sub total, per AA profile policy per application, and per system per app-group enforcement.

Policers are applied with two levels of hierarchy (granularity):

- Per individual AA subscriber
 - Per-AA-sub per app group/application or protocol rate
 - Per-AA-sub per application route limit for a small selection of applications
 - Per-AA-sub PIR/CIR. This allows the AA ISAAA ISA to emulate IOM ingress policers in from-sub direction.
- Per system (AA ISA or a group of AA subscribers)
 - Total protocol/application rate
 - Total app group rate

Flows may be subject to multiple policers in each direction (from-subscriber-to-network or from-network-to-subscriber).

In Figure 22, Application Assurance policers are applied after ingress SAP policers. Configuration of the SAP ingress policers can be set to disable ingress policing or to set PIR/CIR values such that AA ISA ingress PIR/CIR will be invoked first. This enables application aware discard decisions, ingress policing at SAP ingress is application blind. However, this is a design/implementation guideline that is not enforced by the node.
In the to-aa-sub direction (Figure 23), traffic hits the AA ISA policers before the SAP egress queuing and scheduling. This allows application aware flow, AA subscriber and node traffic policies to be implemented before the internet traffic is mixed with the other services at node egress. Note that AA ISA policers may remark out-of-profile traffic which allows preferential discard at an IOM egress congestion point only upon congestion.
Time of Day Policing Adjustments

Time-of-day changes to Application Assurance policing rates are supported through the use of time-of-day override in the policers, up to 8 overrides. Up to 8 overrides can be configured per policers each using either a daily or weekly time-range. The adjusted policing limits are applied immediately to any pre-existing or new flows.
Application Assurance HTTP Redirect

AA HTTP Policy Redirect

With AA-ISA HTTP policy based redirect feature, when HTTP flows are blocked, the user is directed to a web portal that displays relevant messages to indicate why the HTTP traffic is blocked, such as: time of day policy to block youtub.com, top-up request, etc.

Without HTTP policy redirect, when HTTP flows are blocked, the subscriber application retries and before it times-out. The subscriber in most cases is unaware of the cause of this timeout. Frustration builds up and leads to increase calls to IT / operators help desk. That in turn, results in an increase in operator’s OPEX. Hence, with HTTP policy redirect, the operator realizes savings related to decrease in network loading associated with retries as well as IT HELP desk OPEX savings. Above all, the operator retains happier and less frustrated customers / clients.

AA-ISA provides full customer control to configure an AQP action that redirects traffic that matches the AQP match criteria. Hence, the HTTP redirect service can applied at any level (application, application group, specific subscribers, specific source IP addresses) or any other AQP match criteria.

To illustrate, say the operator configures www.poker.com as a “gambling” app-group.

The operator configures AA_ISA to drop and redirect all HTTP traffic classified under “gambling” app-group to www.redirect.isp.com. When a client/subscriber initiates an HTTP GET for www.poker.com. Traffic to poker.com is dropped at the AA-ISA. AA-ISA issues a redirect to the client. [in the redirect, information about the user are encoded in the PATH message, such as www.poker.com, sub-ID, sub-type, reason for redirect (=AQP drop action) AA application name]. Client, unaware of the drop, responds to the redirect.

Redirect landing page explains to the user why the page at www.poker.com is not accessible. See Figure 24.
AA-ISA allows the operator to configure HTTP redirect policies. An HTTP redirect policy contains, most importantly, the HTTP host to be used for the redirect. Within the AQP actions, such polices can be linked (like policers). Redirect will take place only if the AQP configured matching criteria is met and the HTTP flow is dropped (due to other AQP actions, such as “drop”, flow-count/rate policers). Obviously, redirect only applies to HTTP traffic. Non-HTTP flows (even if the conditions above are met) are not redirected (no redirect for RTSP traffic).

The HTTP redirect policy includes an option for TCP-client-reset. This is used to improve the end-user experience when TCP traffic that cannot be HTTP redirected is blocked. Resetting the client TCP session avoids the client waiting for tcp session timeout. The ISA will initiate a TCP reset towards the client if the AA policy results in an http-redirect with packet drop but the http-redirect policy includes an option for TCP-client-reset.
redirect cannot be delivered. Scenarios for this include blocked HTTPs (TLS) sessions, blocking of non-HTTP traffic, and blocking of existing flows after a policy re-evaluate of an existing subscriber. A mid-session policy change to redirect & block traffic for a sub will cause a TCP reset of existing non-http tcp sessions when the next packet for those sessions arrives. For example, when the packet is dropped.
AA HTTP 404 Redirect

HTTP status code-based redirect feature provides error resolution and search technology that enhances the internet experience for end customers while generating new revenue stream for the ISP.

Alcatel-Lucent’s AA-ISA HTTP status code-based redirect feature, along with its partners Barefruit or Xercole, replaces unhelpful DNS and HTTP error messages with relevant alternatives, giving the user a search solution rather than a no direction. Customers benefit from an improved surfing experience as they are served relevant results that can help them find what they were looking for. The ISP, on the other hand, receives a share of the search revenue.

Every time an end-user clicks on a broken link (“Page Not Found”), an error page displays. Frequently, a search provider produces results, through a browser plug-in, for that user. This generates revenue for the search provider if the user clicks on a paid link.

With AA-ISA HTTP status code-based redirect feature, the user sees high-quality, relevant search results. In addition, instead of the search provider receiving all of the revenue, the ISP is paid every time a user clicks on a sponsored link.

AA-ISA provides full customer control to configure an AQP action that redirects traffic that matches the AQP match criteria (Figure 25). Hence, the HTTP redirect service can applied at any level (application, application group, specific subscribers, specific source IP addresses) or any other AQP match criteria.
HTTP headers are intercepted by AA-ISA on the return path from the requested web site. If the HTTP status code is a non custom 404, then the response is replaced with JavaScript that redirects the client to the Contextual Analysis Servers (Barefruit server). This redirect contains details of the original URI that gave rise to the 404 error.

The operator can configure AA-ISA HTTP 404 redirect to use either Barefruit or Xerocole partner contextual analysis servers. A redirect policy can be defined once at the AA group level (similar to policers), and then referenced as many times as needed in AQP actions. The system allows a maximum of one HTTP 404 redirect policy per AA group.
ICAP - Large Scale Category based URL Filtering

Large scale URL filtering is a common content filtering requirement from broadband, mobile, and business VPN operators that allows them to solve various use cases such as:

- Category based URL filtering: typically offered as an opt-in service by broadband or mobile operators to protect the subscribers from accessing selected category of URLs, such as, gambling, drugs, pornography, racism etc.
- Managed URL filtering service for Business VPN to prevent employee from accessing specific content.

Application Assurance provides both a cost efficient and best of breed content filtering solution to solve these use cases by enabling offline dedicated web filtering servers through the Internet Content Adaptation Protocol (ICAP). Using application assurance the operator does not need to deploy costly inline filtering appliances or a limited client software solution requiring maintenance and updates for a growing number of computing devices and operating systems (for example, laptop, smartphone, smartTV, tablets).

A high level packet flow diagram of the solution is shown in Figure 26. The AA ISA is the ICAP client and performs inline L7 packet processing functions while the ICAP application server is used for URL filtering offline, thus the application server does not need to be inserted in the data flow:

![Figure 26: ICAP High Level Flow Diagram](image-url)

The 7750 uses the Application Assurance capabilities to extract the URL from the subscriber's HTTP/HTTPS request and send an ICAP rating request to the ICAP server along with the subscriber-id information. The ICAP server can then return an accept or redirect response based on various criteria such as subscriber profile, URL categories, whitelist, blacklist, time of the day.
The ICAP response received by the 7750 ICAP client is used to either accept, redirect, or block the flow.

Note:

- Each HTTP request within a TCP flows are sent to the ICAP server for rating.
- HTTPs (SSL/TLS) ICAP Url-Filtering is limited to the domain name information.
HTTP Header Enrichment

AA-ISA in EPC 4.0 extends its application assurance functionality to support modifications of the HTTP header for traffic going to specific user configured sites (URLs/IPs) in order to add user’s Network based information, such as subscriber ID, to the HTTP header. These sites use this information to authenticate the user and/or present the user with user specific information/services.

In Figure 27, the operator configures the AA ISA on the PGW/GGSN MG_FSM module, to insert the mobile user’s subscriber ID number into the HTTP header for all the HTTP traffic destined to the operator portal (designated by server IP and/or http host name). Traffic going to other destination, like yahoo.com, does not get enriched. To support this, AA introduces a new AQP action -called HTTP_enrich- that allows the operator to enrich traffic that satisfies the AQP matching conditions.
The operator can configure multiple HTTP enrichment policies that get applied to traffic going to different destination. For example, HTTP traffic destined to “xyz.com”, gets User’s IP inserted into the header, while traffic going to “billing.xyz.com” gets enriched with subscriber ID and user’s ip address.

AA-ISA supports insertion of one or more of the following parameters/fields into the HTTP header: subscriber ID, User’s IP@, subscriber ID and configurable static string fields. The text preceding the inserted field is fully configurable. For example, sub-ID = 1243534666 or “x-sub-ID” = 1243534666.

AA supports enrichment of all HTTP methods, such as GET, POST, etc. AA enriches HTTP traffic without having to terminate the TCP session (aka does not act as a proxy). In this way, AA enrichment function does not intervene with other TCP acceleration functions/appliances that could be deployed by the operator.

Billing statistics use original bytes counts prior to any enrichment. i.e. the user is not billed for bytes inserted by AA-ISA as a result of enrichment. However, the rest of AA bytes statistics reflect post header enrichment packet sizes.

AA HTTP enrichment function has the following caveats:

• To handle the case of TCP retransmission, AA-ISA implements an enrichment window of size =5. If a retransmission of a packet occurs outside the last 5 enriched packets, no enrichment takes place.

• No enrichments of : corrupted packets, “AA-ISA-cut-through” and/or “out-of-order” fragmentation

• Out of sequence packets are not enriched. For example, if AA –ISA receives out-of-sequence HTTP requests: REQ2,REQ1,REQ3; only REQ2 and REQ3 can be enriched

• No enrichment takes place if by enriching, the resulting packet size will exceed the configured MTU size. AA-ISA does not perform fragmentation.

• AA-ISA does not support header enrichment for WAP1.x, RTSP or SIP headers.

• AA TCP performance measurements cannot co-exist with HTTP enrichment. Enriched flows are ineligible for TCP performance sampling. If a flow is selected for TCP performance measurements and then it was enriched, TCP performance measurements cease to continue.

• Enrichment can be applied as an action to any AQP entry, subject to:
 → The matching conditions for the AQPs cannot include a specific http protocol (such as, “protocol eq HTTP_video”). In other words, applications which require a specific HTTP protocol type (video/flash) are not considered for enrichment.
 → Within the same AQP entry, the enrichment action cannot co-exist with any other AQP action (such as mark/police, etc.).
AQP hit counter is not updated based on executing an HTTP enrichment action of an AQP. A separate “pre-determination” hit counter is updated.
HTTP In Browser Notification

The AA ISA HTTP Notification policy based feature enables the operator to send in browser notification messages to their subscribers. The notification format can either be an overlay, a web banner, or a splash page, which makes HTTP notification less disruptive than standard HTTP redirection for the subscriber; both the original content and the notification message can be displayed at the same time while browsing.

There is a wide range of notification use cases in Broadband and WiFi networks to use this functionality such as fair use policy threshold warning, marketing and monetization messages, late bill payment notice, copyright infringement notice, operational outages.

The solution is based on two primary components being the AA ISA responsible for specific packet manipulation and a messaging server. The messaging server controls the message format and its content while the AA ISA modifies selected HTTP flows so that the subscriber transparently download a script located on the messaging server. This script is then executed by the web browser to display the notification message. The AA ISA only select specific HTTP request flows meeting the criteria of a web browser session compatible with in browser notification messages.

A high level view of the typical network elements involved in HTTP in browser notifications are described in Figure 28:

![Figure 28: HTTP in Browser Notification - High Level](image)

The AA-ISA provides full subscriber control to configure an AQP action enabling http notification policy based on specific app-profiles attributes (ASO characteristics), application, or application
group. The operator can dynamically modify the subscriber policy from the policy manager to enable/disable HTTP notification during the lifetime of the subscriber.

Notification Interval

The notification can be configured to be displayed either only once during the lifetime of the subscriber, or the operator can chose to configure a minimum interval in minutes in between notifications. When an interval in minutes is selected, the subscriber will continue to receive notifications messages while browsing.

HTTP Notification Example

To illustrate how HTTP notification works, the steps below describes a typical usage quota notification example with a subscriber reaching its monthly quota:

- AAA identifies that a particular subscriber is now over its quota.
- A Radius CoA message is sent from the AAA to the 7750 to modify the subscriber app-profile in order to enable HTTP notification.
- The AA ISA modifies the subscriber profile and enable HTTP notification for this subscriber.
- The notification message is displayed in the subscriber web browser while browsing (in the form of an overlay or web banner). The content of the notification includes a link to the operator web portal to acknowledge the reception of the overage notification.
- Until the subscriber clicks on the acknowledgment link, the AA ISA will continue to execute the same policy so that notification messages are displayed in the subscriber web browser at the configured interval.
- Once the subscriber has clicked on the link provided in the notification message, the provider OSS system updates the AAA which then sends a new CoA message to the 7750 in order to modify the subscriber app-profile.
- The AA ISA modifies the subscriber app-profile and disable HTTP notification for this subscriber.

HTTP Notification Customization through Radius VSA

The operator can customize the notification message per subscriber through the use a new radius VSA returned either at the subscriber creation time or within a CoA. This new VSA is a string appended automatically at the end of the script-url request made by the subscriber towards the messaging server, and it is not interpreted by the AA ISA. When received by the messaging server, it can be used to return specific content to the subscriber.
As an example, the HTTP Notification can be customized using the RADIUS VSA to display location based information, and the messaging server can use this data to display content based on the desired location:

- Alc-AA-Sub-Http-Url-Param RADIUS VSA: "location=SohoStation"
- Configured Script-URL: http://1.1.1.1/notification.js
- Subscriber HTTP request to the messaging server:
 http://1.1.1.1/notification.js?subId=<aa-subscriber-id>&VSA=location=SohoStation
AA Mirroring to Offline Processing

Some deployments require specialized offline processing not provided by the 7750 SR/7450 ESS AA. An example of such processing is Lawful Intercept (LI) traffic content processing or using an offline appliance. To enable such capabilities in a highly-scalable fashion that minimizes traffic seen by the offline device, the 7750 SR/7450 ESS AA allows operators to use an AQP action to mirror traffic conditioned by both application and AA subscriber context, so detailed content processing can be performed only for AA subscribers and applications of choice. The content processing equipment generally needs to see the entire traffic stream for a given application, therefore, the entire application’s traffic is mirrored including packets that have not yet been identified. Optionally, only traffic positively identified can be mirrored as well.

Although similar functionality could be achieved by mirroring service or a SAP, the total bandwidth and added complexity that an offline appliance would need to handle extra bandwidth makes such a solution more costly and harder to scale.

Since the application mirroring is an additional function independent from all other AA functions provided on the ESS/SR, the in-line deployed AA ISA modules not only reduces the amount of traffic the offline device must see, but also allows in-line policy enforcement actions with application awareness once the offline devices triggers such a policy change. For example, AA subscriber traffic for an application or applications being mirrored can be quarantined while the remaining traffic remains unaffected.

Figure 29 depicts an example of application mirroring to a specialized offline appliance for further processing.

1. AA subscriber traffic contains applications requiring specialized offline appliance processing that requires Layer 2 — Layer 7 application identification.
2. AA ISA with AQP configured:
 Match:
 → Application for offline processing for selected subscribers (downstream only, upstream only, or both).
 Action:
 → Mirror source for application’s IP packets into a mirror service configured on a router.
3. Specialized appliance sees only the required traffic and performs the desired offline processing.
Figure 29: AA Mirroring for offline Specialized Appliance Processing
Application Assurance Firewall

The Application Assurance firewall (FW) feature extends AA-ISA application level analysis to provide an in-line integrated stateful service that protects subscribers from malicious security attacks. AA stateful packet filtering feature combined with AA Layer 7 classifications and control, empowers operators with an advanced, next generation firewall functionalities that is integrated within. AA stateful firewall and application firewall runs on AA-ISA In a stateful inspection, the AA FW does not only inspect packets at Layers 3-7, but also monitors and keeps track of the connection's state. If the operator configures a “deny” action within a session filter then the matching packets (matching both the AQP and associated session filter match conditions) are dropped and no flow session state/context is created.

AA FW can be used in all deployments of AA-ISA:

- SR – BNG (ESM)
- Transit-subscriber
- Business AA.

AA FW enabled solution provides:

- Stateful /Stateless Packet Filtering and Inspection with Application-Level Gateway (ALG) Support
- Denial Of Service (DOS) Protection
- Security Gateway — SeGW: MME (/Sctp) traffic protection.

Stateful /Stateless Packet Filtering and Inspection with Application-Level Gateway (ALG) Support

Stateful flow processing and inspection utilizes IP Layers 3/4 header information to build a state of the flow within AA-ISA. Layer 7 inspection is used in order to provide ALG support. Stateful flow/session processing takes note of the originator of the session and hence can allow traffic to be initiated from the subscriber, while denying, if configured, traffic originating from the network. Packets received from the network are inspected against the session filter and only those that are part of a subscriber initiated session are allowed.
Stateless packet filtering does not take note of session initiator and hence, it discards or allows packets independent of the any previous packets. Stateless packet filtering can be performed in the system using IOM ACLs.

AA FW inspection of packets at layer 7 offers Application Layer Gateway functionality for the following applications:

- rtsp
- sip
- h323 (IPv4 only)
- googletalkvoice
- ftp
- tftp
- pptp
- citrix
- sybase
- msexchange
- skinny
- ares
- bittorrent
These applications make use of control channels/flows that spun other flows. AA FW inspects the payload of these control flows so that it can open a pinhole for the associated required flows.
Service Monitoring and Debugging

Operators can use AA-specific tools in addition to system tools that allow them to monitor, adjust, debug AA services.

The following are examples of some of the available functions:

1. Display and monitor AA ISA group status and statistics (AA ISA status and capacity planning/monitoring).
2. Clear AA ISA group statistics (clears all system and per-AA-subscriber statistics).
3. Special study mode for real-time monitoring of AA-subscriber traffic (ESM subscriber, SAP or spoke SDP).
4. Per AQP entry statistics for number of hits (flow matching the entry) and conflicts (actions ignored due to per flow action limit exceeded).
5. Mirror (all or any subset of traffic seen by an AA ISA group).
6. All the per-ISA statistics from the aa-performance record, for examining resource loading of each ISA
7. The top active AA-subscribers per ISA by bytes, packets or flows, for traffic in each direction

CPU Utilization

The ISA show status command displays per ISA CPU utilization by main tasks, to provide insight into what aspects of load may be loading the ISA. These are split into 2 main areas:

- Management CPU, which includes all tasks related to communication between the CPM and the ISA, with the following usage percentage reported:
 - System — Various infrastructure and overhead work
 - Management — Managing AA policy, AA subscriber and trap configurations and handling tools requests
 - Statistics — Collecting and reporting statistics and Cflowd reporting
 - Idle

- Datapath CPUs, which includes all tasks related to datapath packet and flow processing on the ISA, with the following usage percentage reported:
 - System — Various infrastructure and overhead work
 - Packet processing — Receiving, associating with flows, applying application QoS policy and transmitting
 - Application ID — Using protocol signatures and other techniques to identify application/app-group and determine the application QoS policy.
The Application Assurance uses CLI batches capability in policy definition. To start editing a policy, a begin command must be executed. To finish editing either abort (discard all changes) or commit (accept all changes) needs to be executed. CLI batch commands/state are preserved on HA activity switch.

To enter the mode to create or edit policies, the **begin** keyword must be entered at the prompt. Other editing commands include:

- The **commit** command saves changes made to policies during a session. The newly committed policy takes affect immediately for all new flows. Existing flows will transition onto the new policy shortly after the commit.
- The **abort** command discards changes that have been made to policies during a session.

To allow flexible order for policy editing, the `policy>commit` function cross references policy components to verify, among others:

- Whether all ASO characteristics have a default value and are defined in the app-profile.
- Limits checking.
Configuring Application Assurance with CLI

This section provides information to configure Application Assurance entities using the command line interface. It is assumed that the user is familiar with basic configuration of policies.

Provisioning AA MDA

The following illustrates syntax to provision AA ISA and configure ingress IOM QoS parameters. (The egress IOM QoS is configured in the `config>isa>application-assurance-grp>qos` context.)

CLI Syntax:
```
configure>card>mda mda-slot
  mda-type isa-aa
  network
  ingress
  pool
  slope-policy slope-policy-name
  resv-cbs percent-or-default
  queue-policy network-queue-policy-name
```

The following output displays AA ISA configuration example.

```
*A:cpm-a>config>app-assure# show mda 1/1
================================================================================
MDA 1/1
================================================================================
Slot  Mda   Provisioned Mda-type Equipped Mda-type Admin State Operational State
-------------------------------------------------------------------------------
  1     1     isa-aa       isa-ms up        up
================================================================================
*A:cpm-a>config>app-assure#
```

```
*A:cpm-a>config>card# info
--------------------------------------------------------------------------------
card-type iom-20g-b
  mda 1
    mda-type isa-aa
  exit
--------------------------------------------------------------------------------
*A:cpm-a>config>card#
```
Configuring an AA ISA Group

To enable AA on the router:

• Create an AA ISA group.
• Assign active and optional backup AA ISA(s) to an AA ISA group.
• Select the forwarding classes to divert.
• Enable the group.
• Optionally:
 → Enable group policy partitioning
 → Configure capacity cost threshold values
 → Configure the number of transit prefix IP policies
 → Configure IOM egress queues to the MS-ISA
 → Enable overload cut through and configure the high and low watermarks values
 → Configure performance statistics accounting

The following example illustrates AA ISA group configuration with:

• Primary AA ISA and warm redundancy provided by the backup AA ISA.
• “fail-to-wire” behavior configured on group failure.
• BE forwarding class selected for divert.
• Default IOM QoS for logical ISA egress ports. The ISA ingress QoS is configured as part of ISA provisioning (config>card>mda>network>ingress>qos).

The following commands illustrate AA ISA group configuration context.

CLI Syntax:
```
config>>isa>application-assurance-group isa-aa-group-id [aa-sub-scale {residential|vpn}] [create]
backup mda-id
description description
divert-fc fc-name
no fail-to-open
isa-capacity-cost-high-threshold threshold
isa-capacity-cost-low-threshold threshold
partitions
primary mda-id
qos
egress
  from-subscriber
  pool [pool-name]
  resv-cbs percent-or-default
```
The following output displays an AA ISA group configuration example.

```
A:ALU-A>config>isa>aa-grp# info detail
----------------------------------------------
no description
primary 1/2
backup  2/2
no fail-to-open
isa-capacity-cost-high-threshold 4294967295
isa-capacity-cost-low-threshold 0
no partitions
divert-fc be
qos
egress
  from-subscriber
    pool
      slope-policy "default"
      resv-cbs default
      exit
    queue-policy "default"
    no port-scheduler-policy
    exit
to-subscriber
    pool
      slope-policy "default"
      resv-cbs default
      exit
    queue-policy "default"
    no port-scheduler-policy
    exit
exit
no shutdown
----------------------------------------------
A:ALU-A>config>isa>aa-grp#
```
Configuring Watermark Parameters

Use the following CLI syntax to configure thresholds for logs and traps when under high consumption of the flow table. The flow table has a limited size and these thresholds can be established to alert the user that the table is approaching capacity. These flow table watermarks represent number of flow contexts allocated on the ISA, which will be slightly higher than the actual number of existing flows at the point when the watermark is reached.

The low threshold is used while the high threshold is used as an alarm.

CLI Syntax:

```
cfg>application-assurance
flow-table-high-wmark high-watermark
flow-table-low-wmark low-watermark
```
Configuring a Group Policy

Beginning and Committing a Policy Configuration

To enter the mode to create or edit Application Assurance policies, you must enter the `begin` keyword at the `config>app-assure>group>policy` prompt. The `commit` command saves changes made to policies during a session. Changes do not take affect in the system until they have performed the commit function. The `abort` command discards changes that have been made to policies during a session.

The following error message displays when creating or modifying a policy without entering `begin` first.

A:ALA-B>config>app-assure>group>policy#
MINOR: AA #1005 Invalid Set - Cannot proceed with changes when in non-edit mode

There are no default policy options. All parameters must be explicitly configured.

Use the following CLI syntax to begin a policy configuration.

CLI Syntax:
```
config>app-assure# group group-id
   policy
   begin
```

Use the following CLI syntax to commit a policy configuration.

CLI Syntax:
```
config>app-assure# group group-id
   policy
   commit
```

Aborting a Policy Configuration

Use the following CLI syntax to abort a policy configuration.

CLI Syntax:
```
config>app-assure# group group-id
   policy
   abort
```
Configuring an IP Prefix List

An operator can use IP lists to define a list of IP addresses (along with any masks). This list can be later referenced in AQPs, application filters and/or session-filters.

Use the following CLI syntax to configure an application filter entry.

CLI Syntax:

```
Config>aa>group>policy>app-assurance>group <aa-group-id>[:<partition>]
   ip-prefix-list <prefix-list-name> [create]
   no ip-prefix-list <prefix-list-name>
   description <description>
   no description
   prefix <address/mask> [name <prefix-name>]
   no prefix <address/mask>
```

*A:Dut-A>config>app-assure>group# ip-prefix-list AllowedLAN1Hosts create
*A:Dut-A>config>app-assure>group>app-assure>group# prefix 10.10.8.2/32
*A:Dut-A>config>app-assure>group>app-assure>group# prefix 10.10.8.180/32
*A:Dut-A>config>app-assure>group>app-assure>group# prefix 10.10.8.231/32
*A:Dut-A>config>app-assure>group>app-assure>group# exit
*A:Dut-A>config>app-assure>group#

--
A:Dut-A>config>app-assure>group# ip-prefix-list "AllowedLAN1Hosts"
*A:Dut-A>config>app-assure>group# info
--*
 description "allowed hosts"
 prefix 10.10.8.2/32
 prefix 10.10.8.180/32
 prefix 10.10.8.231/32
--
A:Dut-A>config>app-assure>group>app-assure>group#
Configuring AA Session Filters

Session filters can be configured to allow stateful firewall use-cases. Refer to AA Group Commands on page 188 for syntax and CLI descriptions.

CLI Syntax:

```plaintext
*A:Dut-A>config>app-assure>group# session-filter <session-filter-name> [create]
    default-action {permit|deny} [event-log <event-log-name>]
    description <description-string>
    entry <entry-id> [create]
    no entry <entry-id>
    action {permit|deny} [event-log <event-log-name>]
    match
    dst-ip <ip-address>
    dst-ip ip-prefix-list <ip-prefix-list-name>
    no dst-ip
    dst-port {eq|gt|lt} <port-num>
    dst-port range <start-port-num> <end-port-num>
    no dst-port
    ip-protocol-num <ip-protocol-number>
    no ip-protocol-num
    src-ip <ip-address>
    no src-ip
    src-ip ip-prefix-list <ip-prefix-list-name>
    src-port {eq|gt|lt} <port-num>
    src-port range <start-port-num> <end-port-num>
    no src-port
```

Example:

```plaintext
*A:Dut-A>config>app-assure>group# session-filter "denyUnsolicitedwMgmtCntrl" create
description "S-FW opted-in sub - allow ISP access"
default-action deny event-log "FW_log"
entry 10 create
description "allow ICMP access from ISP LAN#1"
match
    ip-protocol-num icmp
    src-ip 10.10.8.0/24
    exit
    action permit
    exit
entry 30 create
description "allow all TCP (e.g. FTP/telnet) access from ISP LAN#2"
match
    ip-protocol-num tcp
    src-ip 192.168.0.0/24
    exit
    action permit
entry 40 create
description "allow TCP on port 80 /HTTP access from a IP List on ISP LAN#1"
match
    ip-protocol-num tcp
    src-ip ip-prefix-list AllowedLAN1Hosts
```
dst-port eq 80
exit
action permit
exit

*A:Dut-A>config>app-assure>group>sess-fltr$ info

description "S-FW opted-in sub . allow ISP access"
default-action deny event-log "FW_Log"
entry 10 create
description "allow ICMP access from ISP LAN#1"
match
 ip-protocol-num icmp
 src-ip 10.10.8.0/24
exit
 action permit
exit
entry 20 create
description "allow ICMP access from ISP LAN#2"
 action deny
exit
entry 30 create
description "allow all TCP (e.g. FTP/telnet) access from ISP LAN#2"
match
 ip-protocol-num tcp
 src-ip 192.168.0.0/24
exit
 action permit
exit
entry 40 create
description "allow all TCP on port 80 /HTTP access from a IP List on ISP LAN#1"
match
 ip-protocol-num tcp
 src-ip ip-prefix-list "AllowedLan1Hosts"
 dst-port eq 80
exit
 action permit
exit

*A:Dut-A>config>app-assure>group>sess-fltr$

*A:Dut-A>config>app-assure>group>policy>eqp>
entry 110 create
description "FW for managed opted-in subs"
match
 traffic-direction network-to-subscriber
exit
action
 session-filter " denyUnsolicteddMgntCntrl "
 fragment-drop all event-log "FW_log"
 error-drop event-log "FW_log"
 overload-drop
exit
exit
A:Dut-A>config>app-assure>group>policy>aqp>entry# info

description "FW for managed opted-in subs."
match
traffic-direction network-to-subscriber
exit
action
 session-filter "denyUnsolicitedwMgntCntrl"
 fragment-drop all event-log "FW_log"
 error-drop event-log "FW_log"
 overload-drop
exit
no shutdown

A:Dut-A>config>app-assure>group>policy>aqp>entry#
Configuring an Application Group

An operator can configure an application group to group multiple application into a single application assurance entity by referencing those applications to the group created.

Use the following CLI syntax to configure an application group.

CLI Syntax:
```
cfg>app-assure>group>policy# app-group application-group-name [create]
   description description
```

The following example displays an application group configuration.

```
*A:ALA-48>config>app-assure>group>policy# app-group "Peer to Peer" create
*A:ALA-48>config>app-assure>group>policy>app-grp# info
----------------------------------------------
description "Peer to Peer file sharing applications"
----------------------------------------------
*A:ALA-48>config>app-assure>group>policy>app-grp#
```
Configuring an Application

An operator can configure an application to group multiple protocols, clients or network applications into a single Application Assurance application by referencing it later in the created application filters as display in other sections of this guide.

Use the following CLI syntax to configure an application.

CLI Syntax:

```
config>app-assure>group>policy# application application-name
[create]
app-group  app-group-name
description  description
```

The following example displays an application configuration.

```
*A:ALA-48>config>app-assure>group>policy# application "SQL" create
*A:ALA-48>config>app-assure>group>policy>app# info
----------------------------------------------
description "SQL protocols"
app-group "Business Critical Applications"
----------------------------------------------
*A:ALA-48>config>app-assure>group>policy>app#
```
Configuring an Application Filter

An operator can use an application filter to define applications based on ALU protocol signatures and a set of configurable parameters like IP flow setup direction, IP protocol number, server IP address and server TCP/UDP port. An application filter references an application configured as previously shown.

Use the following CLI syntax to configure an application filter entry.

CLI Syntax:
```
config>app-assure>group>policy# app-filter
  entry entry-id [create]
    application application-name
    description description-string
    expression expr-index expr-type {eq | neq} expr-string
    flow-setup-direction {subscriber-to-network | network-to-subscriber | both}
    ip-protocol-num {eq | neq} protocol-id
    protocol {eq | neq} protocol-signature-name
    server-address {eq|neq} ip-address
    server-address {eq|neq} dns-ip-cache dns-ip-cache-name
    server-address {eq|neq} ip-prefix-list ip-prefix-list-name
    server-port {eq | neq | gt | lt} server-port-number
    server-port {eq|neq} range start-port-num end-port-num
    server-port {eq} {port-num | range start-port-num end-port-num} first-packet-trusted|first-packet-validate
    no shutdown
```

The following example displays an application filter configuration.

```
*A:ALA-48>config>app-assure>group>policy>app-filter# entry 30 create
*A:ALA-48>config>app-assure>group>policy>app-filter>entry# info
----------------------------------------------
description "DNS traffic to local server on expected port #53"
protocol eq "dns"
flow-setup-direction subscriber-to-network
ip-protocol-num eq *
server-address eq 192.0.2.0/32
server-port eq 53
application "DNS_Local"
no shutdown
----------------------------------------------
*A:ALA-48>config>app-assure>group>policy>app-filter>entry#
```
Configuring an Application Profile

Use the following CLI syntax to configure an application profile.

CLI Syntax:

```
config>app-assure>group>policy# app-profile app-profile-name
[create]
characteristic characteristic-name value value-name
description description-string
divert
```

The following example displays an application profile configuration.

```
*A:ALA-48>config>app-assure>group>policy# app-profile "Super" create
*A:ALA-48>config>app-assure>group>policy>app-prof# info
----------------------------------------------
description "Super User Application Profile"
divert
characteristic "Server" value "Prioritize"
characteristic "ServiceBw" value "SuperUser"
characteristic "Teleworker" value "Yes"
characteristic "VideoBoost" value "Priority"
----------------------------------------------
*A:ALA-48>config>app-assure>group>policy>app-prof#
```
Configuring Application Service Options

Use the following CLI syntax to configure application service options.

CLI Syntax:
```
cfg>app-assure>group>policy# app-service-options
    characteristic characteristic-name [create]
    default-value value-name
    value value-name
```

The following example displays an application service options configuration.

```
*A:ALA-48>config>app-assure>group>policy>aso# info
---------------------------------------------
characteristic "Server" create
    value "Block"
    value "Permit"
    value "Prioritize"
    default-value "Block"
exit
characteristic "ServiceBw" create
    value "Lite_128k"
    value "Power_5M"
    value "Reg_1M"
    value "SuperUser"
    default-value "Reg_1M"
exit
characteristic "Teleworker" create
    value "No"
    value "Yes"
    default-value "No"
exit
characteristic "VideoBoost" create
    value "No"
    value "Priority"
    default-value "No"
exit
---------------------------------------------
*A:ALA-48>config>app-assure>group>policy>aso#*
```
Configuring a Policer

Use the following CLI syntax to configure a policer.

CLI Syntax:
```
config>app-assure>group>policy# policer policer-name type type
  granularity granularity create
  action {priority-mark | permit-deny}
  adaptation-rule pir adaptation-rule
  description description-string
  mbs maximum burst size
  rate pir-rate
  tod-override tod-override-id [create]
```

The following example displays an Application Assurance policer configuration.

```
*A:ALA-48>config>app-assure>group# policer "RegDown_Policer" type dual-bucket-bandwidth
  granularity subscriber create
*A:ALA-48>config>app-assure>group>policer# info
----------------------------------------------
description "Control the downstream aggregate bandwidth for Regular 1Mbps
  subscribers"
  rate 1000 cir 500
  mbs 100
  cbs 50
----------------------------------------------
*A:ALA-48>config>app-assure>group>policer#
```
Configuring an Application QoS Policy

Use the following CLI syntax to configure an application QoS policy.

CLI Syntax:

```plaintext
config>app-assure>group>policy# app-qos-policy
entry entry-id [create]
  action
    bandwidth-policer policer-name
    drop
    error-drop [event-log event-log-name]
    flow-count-limit policer-name
    flow-rate-limit policer-name
    fragment-drop {all | out-of-order} [event-log event-log-name]
    http-error-redirect redirect-name
    mirror-source [all-inclusive] mirror-service-id
    overload-drop [event-log event-log-name]
    remark
      dscp in-profile dscp-name out-profile dscp-name
      fc fc-name
      priority priority-level
    description description-string
  match
    aa-sub sap {eq | neq} sap-id
    aa-sub esm {eq | neq} sub-ident-string
    aa-sub spoke-sdp {eq | neq} sdp-id:vc-id
    app-group {eq | neq} application-group-name
    application {eq | neq} application-name
    characteristic characteristic-name {eq} value-name
    dscp {eq | neq} dscp-name
    dst-ip {eq | neq} ip-address[/mask]
    dst-ip {eq|neq} ip-prefix-list ip-prefix-list-name
    dst-port {eq | neq} port-num
    dst-port {eq | neq} range start-port-num end-port-num
    src-ip {eq | neq} ip-address[/mask]
    src-ip {eq|neq} ip-prefix-list ip-prefix-list-name
    src-port {eq | neq} port-num
    src-port {eq | neq} range start-port-num end-port-num
    traffic-direction {subscriber-to-network | network-to-
subscriber | both}
  no shutdown
```
The following example displays an application QoS policy configuration.

```
*A:ALA-48>config>app-assure>group>policy>aqp# entry 20 create
----------------------------------------------
description "Limit downstream bandwidth to Reg_1M subscribers"
match
traffic-direction network-to-subscriber
characteristic "ServiceBw" eq "Reg_1M"
exit
action
bandwidth-policer "RegDown_Policer"
exit
no shutdown
----------------------------------------------
*A:ALA-48>config>app-assure>group>policy>aqp#
```

The following example display an AQP entry configuration to mirror all positively identified only P2P traffic (AppGroup P2P) for a subset of subscribers with ASO characteristic `aa-sub-mirror` enabled.

```
A:ALA-48>config>app-assure>group>policy>aqp#
-------------------------------------------------------------------------------
entry 100 create
    match
        app-group eq P2P
        characteristic aa-sub-mirror eq enabled
    exit
    action    # mirror to an existing mirror service id
        mirror-source 100
    exit
no shutdown
exit
-------------------------------------------------------------------------------
A:ALA-48>config>app-assure>group>policy>aqp#
```

The following example displays an AQP entry to mirror all P2P traffic (all positively identified P2P traffic and any unidentified traffic that may or may not be P2P - AppGroup P2P) for a subset of subscribers with ASO characteristic `aa-sub-mirror` enabled (the order is significant):

```
A:ALA-48>config>app-assure>group>policy>aqp#
-------------------------------------------------------------------------------
entry 100 create
    match
        app-group eq P2P
        characteristic aa-sub-mirror value enabled
    exit
    action
        mirror-source all-inclusive 100
    exit
no shutdown
exit
-------------------------------------------------------------------------------
A:ALA-48>config>app-assure>group>policy>aqp#
```
Configuring an HTTP Error Redirect

Use the following CLI syntax to configure an HTTP error redirect policy:

CLI Syntax:

```plaintext
config>app-assure>group>http-error-redirect redirect-name create
  no http-error-redirect redirect_name
  description description-string
  no description
  error-code error-code [custom-msg-size custom-msg-size]
  no error-code error-code
  http-host http-host // eg. www.demo.barefruit.com
  no http-host
  participant-id participant-id // 32-char string used by template 1
  no participant-id
  no] shutdown
  template template-id // {1, 2} one for Barefruit, 2= Xercole
  no template
```

The following example displays an Application Assurance HTTP redirect configuration.

```plaintext
*A:ALA-48>config>app-assure>group# http-error-redirect "redirect-404"
create
description "redirect policy of 404 to Barefruit servers"
error-code 404
http-host att.barefruit.com
participant-id att-ISP
template 1
```

```plaintext
*A:ALA-48>config>app-assure>group>http-error-redirect# redirect-404
info
----------------------------------------------
description "redirect policy of 404 to Barefruit servers"
template 1
http-host "att.barefruit.com"
participant-id "att-ISP"

error-code 404
```

```plaintext
*A:ALA-48>config>app-assure>group>http-error-redirect#
```
Configuring HTTP Header Enrichment

Use the following CLI syntax to configure an HTTP header Enrichment policy:

CLI Syntax:
```
cfg>app-assure>group> http-enrich <http_enrich_name> [ create]  
[no] description <description-string>  
[no] shutdown  
[no] field <field_name> name <header_name>  
  // Where "Field name" can be:  
  // subscriber-ip: Header name for subscriber IP @  
[no] http-enrich <http_enrich_name>
```

The following example displays an Application Assurance HTTP header enrichment configuration.

```
*A:ALA-48>config>app-assure>group# http-enrich "enrich_example" create  
description "enrich HTTP headers with IMSI and subscriberIP"  
field imsi name "x-imsi"  
field subscriber-ip name "x-srcIP"  
*A:ALA-48>config>app-assure>group> http-enrich# enrich_example info  
----------------------------------------------
description " enrich HTTP headers with IMSI and subscriberIP"  
field "imsi" name "x-imsi"  
field "subscriber-ip" name "x-srcIP"  
----------------------------------------------
*A:ALA-48>config>app-assure>group>http-enrich#
```
Configuring an HTTP Policy Redirect

Use the following CLI syntax to configure an HTTP redirect policy:

CLI Syntax:
```
cfg>app-assure>group# http-redirect redirect-name [create]
description description-string
  no description
  template template-id
  redirect-url URL // redirect URL e.g. www.isp.com/redirect.html
  no redirect-url
  [no] shutdown
  no http-redirect redirect-name
```

The following example displays an Application Assurance http redirect configuration.

```
*A:ALA-48>config>app-assure>group# http-redirect "redirect1" create
description "redirect policy for blocked http content traffic without url parameters"
template 3
  redirect-url http://www.isp.com/redirect.html
  no shutdown
```

The following example displays an Application Assurance http-redirect configuration using macro substitution to append url parameters within the redirect url:

```
*A:ALA-48>config>app-assure>group# http-redirect "redirect2" create
description "redirect policy for blocked http content traffic with url parameters"
template 5
  no shutdown
```

The following example displays AQP entry to block all http gaming traffic (AppGroup BlockedContent) and perform redirect:

```
A:ALA-48>config>app-assure>group>policy>aqp>entry#
-------------------------------------------------------------------------------
  entry 100 create
  match
    app-group eq BlockedContent
  exit
  action
    drop
    http-redirect redirectgaming
  exit
  no shutdown
  exit
-------------------------------------------------------------------------------
A:ALA-48>config>app-assure>group>policy>aqp#
Configuring ICAP URL Filtering

To configure the system for ICAP URL Filtering, the operator needs to:

- Create an aa-interface and assign an ip address to each AA ISA within an IES or VPRN service. This routed interface is then used by the system to establish TCP communication with the ICAP server.
- Create an http-redirect policy (used by the url-filter to redirect http traffic).
- Create a url-filter, configure the icap server ip-address, redirect-policy, and default action.
- Verify that the aa-interface(s) and url-filter are operationally up.

Use the following CLI syntax to configure the aa-interfaces for each AA ISA:

**CLI Syntax:**
```
config-service>vprn# aa-interface <aa-if-name> [create]
config-service>vprn>aa-if# aa-interface interface <ip-int-name> [create]
description <description-string>
no description
address <ipv4_subnet/31>
no address
 sap <card/mda/aa-svc:vlan> [create]
description <description-string>
 no description
 egress
 [no] filter
 [no] qos
 exit
 ingress
 [no] qos
 exit
 [no] shutdown
 exit
```

The following examples displays an AA interface created for the ISA card 1/2 using IP address 172.16.2.1/31:

```
A:7750>config>service>ies# info
--
aa-interface "aa-if1" create
 address 172.16.2.1/31
 sap 1/2/aa-svc:10 create
 egress
 filter ip 10
 exit
 no shutdown
 exit
 no shutdown
 exit
```
In the example above, 172.16.2.1 is used by the IOM side of the interface while the ISA itself is automatically assigned 172.16.2.0 based on the /31 subnet.

Recommendations:

- More than one aa-interface can be configured per AA ISA card, however, the operator needs to use the same service vlan across all these interfaces for a given url-filter object.
- Configure an egress ip filter under the sap towards the ISA AA interface to only allow selected ip addresses or subnet (subnet examples: icap servers, network management).

Use the following CLI syntax to configure the url-filter:

**CLI Syntax:**

```
config>app-assure>group#
url-filter <url-filter-name> [create]
description <description-string>
no description
vlan-id <service-port-vlan-id>
no vlan-id
default-action {allow | block-all | block-http-redirect <redirect-name>}
no default-action
icap-http-redirect <http-redirect-name>
no icap-http-redirect
icap-server <ip-address[:port]> [create]
description <description-string>
no description
[no] shutdown
no icap-server <ip-address[:port]>
[no] shutdown
no url-filter <url-filter-name>
```

The following examples displays a url-filter configuration:

```
*A:7750>config>app-assure>group# url-filter "filter1" create
 vlan-id 10
 default-action block-http-redirect "http-redirect-portal"
 icap-http-redirect "http-redirect-portal"
 icap-server 172.16.1.101 create
 no shutdown
 exit
 no shutdown
```

The following examples displays the AQP entry to enable icap url-filtering for opted-in subscribers based on ASO characteristics:

```
A:7750>config>app-assure>group>policy>aqp# entry 100 create
 match
 characteristic "url-filter" eq "yes"
```
exit
action
  url-filter "filter1"
exit
no shutdown
Configuring HTTP Notification

Use the following CLI syntax to configure an HTTP Notification policy.

CLI Syntax:  
```
config>app-assure>group#
http-notification <http-notification-name> [create]
description <description-string>
no description
script-url <script-url-name>
no script-url
interval {one-time | <minimum-interval>}
template <template-id>
no template
[no] shutdown
no http-notification <http-notification-name>
```

The following example displays an HTTP notification policy configured with a minimum interval of 5 minutes:

```
A:7750>config>app-assure>group# http-notification "in-browser-notification" create
A:7750>config>app-assure>group>http-notif# info
--
description "In Browser Notification Example"
template 1
script-url "http://1.1.1.1/In-Browser-Notification/script.js"
interval 5
no shutdown
--
```

The following examples displays the AQP entry required to match this policy based on an ASO characteristic:

```
A:7750>config>app-assure>group>policy>aqp# info
--
entry 200 create
match
 characteristic "in-browser-notification" eq "yes"
exit
action
 http-notification "in-browser-notification"
exit
no shutdown
exit
--
```
Configuring AA Volume Accounting and Statistics

A network operator can configure AA volume statistic collection and accounting on both AA ISA system and subscriber levels.

The following commands illustrate the configuration of statistics collection and accounting policy on an AA group/partition aggregate level (without subscriber context).

**CLI Syntax:**
```
config>app-assure>group>statistics>app-group
 accounting-policy act-policy-id
 collect-stats
```

**CLI Syntax:**
```
config>app-assure>group>statistics>application
 accounting-policy act-policy-id
 collect-stats
```

**CLI Syntax:**
```
config>app-assure>group>statistics>protocol
 accounting-policy act-policy-id
 collect-stats
```

These commands illustrate the configuration of statistics collection and accounting policy for each AA subscriber in the system.

**CLI Syntax:**
```
config>app-assure>group>statistics>aa-sub
 accounting-policy acct-policy-id
 aggregate-stats
 app-group app-group-name export-using export-method [export-method...(upto 2 max)]
 application application-name export-using export-method [export-method...(upto 2 max)]
 charging-group charging-group-name export-using export-method [export-method...(upto 2 max)]
 collect-stats
 exclude-tcp-retrans
 max-throughput-stats
 protocol protocol-name export-using export-method
 radius-accounting-policy rad-acct-plcy-name
```

These commands illustrate configuration of special study mode for a subset of AA subscribers (configured) to collect all protocol and/or application statistics with an AA subscriber context.

**CLI Syntax:**
```
config>app-assure>group>statistics# aa-sub-study {application|protocol}
 accounting-policy acct-policy-id
 collect-stats
```
For details on accounting policy configuration (including among others AA record type selection and customized AA subscriber record configuration) refer to the OS System Management Guide.

The following output illustrates per AA-subscriber statistics configuration that elects statistic collection for a small subset of all application groups, applications, protocols:

```
*A:ALU-40>config>app-assure>group>statistics>aa-sub# info
--
accounting-policy 4
 collect-stats
 app-group "File Transfer"
 app-group "Infrastructure"
 app-group "Instant Messaging"
 app-group "Local Content"
 app-group "Mail"
 app-group "MultiMedia"
 app-group "Business_Critical"
 app-group "Peer to Peer"
 app-group "Premium Partner"
 app-group "Remote Connectivity"
 app-group "Tunneling"
 app-group "Unknown"
 app-group "VoIP"
 app-group "Web"
 app-group "Intranet"
 application "BitTorrent"
 application "eLearning"
 application "GRE"
 application "H323"
 application "TLS"
 application "HTTP"
 application "HTTPS"
 application "HTTPS_Server"
 application "HTTP_Audio"
 application "HTTP_Video"
 application "eMail_Business"
 application "eMail_Other"
 application "Oracle"
 application "Skype"
 application "SAP"
 application "SIP"
 application "SMTP"
 application "SQL_Alltypes"
 application "TFTP"
 protocol "bittorrent"
 protocol "dns"
 protocol "sap"
 protocol "skype"
--
*A:ALU-40>config>app-assure>group>statistics>aa-sub#```

The following output displays an Application Assurance cflowd collector configuration example:

Example:
* A:ALA-48# configure application-assurance group 1 cflowd
 collector 138.120.131.149:55000 create
 *A:ALA-48>config>app-assure>group>cflowd>collector$description
 "cflowd_collector_NewYork"
 *A:ALA-48>config>app-assure>group>cflowd>collector# no shutdown
 *A:ALA-48>config>app-assure>group>cflowd>collector# exit

* A:ALA-48>config>app-assure>group>cflowd# info
--
 collector 138.120.131.149:55000 create
 description "cflowd_collector_NewYork"
 no shutdown
--
* A:ALA-48>config>app-assure>group>cflowd#
Configuring Application Assurance with CLI

Configuring AA Volume, TCP and RTP Performance Reporting

CLI Syntax:

```
config>application-assurance>group isa-aa-group-id
cflowd
collector ip-address[:port] [create]
no collector ip-address[:port]
description description-string
no description
  [no] shutdown
rtp-performance
  flow-rate sample-rate
  no flow-rate
  flow-rate2 sample-rate2
  no flow-rate2
tcp-performance
  flow-rate sample-rate
  no flow-rate
  flow-rate2 sample-rate2
  no flow-rate2
template-retransmit seconds
no template-retransmit
  [no] shutdown
volume
  rate sample-rate
  no rate
  [no] shutdown
```

CLI Syntax:

```
config>application-assurance
  group isa-aa-group-id[:partition] [create]
no group isa-aa-group-id[:partition]
cflowd
volume
  [no] shutdown
rtp-performance
  [no] app-group app-group-name [flow-rate|flow-rate 2]
  [no] application application-name [flow-rate|flow-rate 2]
  [no] shutdown
tcp-performance
  [no] app-group app-group-name [flow-rate|flow-rate 2]
  [no] application application-name [flow-rate|flow-rate 2]
  [no] shutdown
```

Note: The default if flow-rate
The following example shows a configuration that:

- Enables per-flow volume stats for group 1, partition 1 and configures sampling rate to 1/1000.
- Enables per-flow TCP performance stats for web_traffic application within group 1, partition 1 and configures TCP sampling rate to 1/500.
- Enables per-flow TCP performance stats for citrix_traffic application within group 1, partition 1 using TCP sampling rate2 to 1/100.
- Enables per-flow RTP A/V performance stats for voip_traffic application within group 1, partition 1 and configures rtp sampling rate to 1/10.

```plaintext
*A:ALA-48# configure application-assurance group 1 cflowd
*A:ALA-48>config>app-assure>group>cflowd# volume rate 1000
*A:ALA-48>config>app-assure>group>cflowd# tcp-performance flow-rate 500
*A:ALA-48>config>app-assure>group>cflowd# tcp-performance flow-rate2 100
*A:ALA-48>config>app-assure>group>cflowd# rtp-performance flow-rate 10
*A:ALA-48>config>app-assure>group>cflowd# no shutdown
*A:ALA-48>config>app-assure>group>cflowd# info

----------------------------------------------
collector 138.120.131.149:55000 create
description "cflowd_collector_NewYork"
exit
volume
  rate 1000
exit
tcp-performance
  flow-rate 500
  flow-rate 100
rtp-performance
  flow-rate 10
exit
  no shutdown

----------------------------------------------
*A:ALA-48>config>app-assure>group>cflowd#

*A:ALA-48# configure application-assurance group 1:1 cflowd
*A:ALA-48>config>app-assure>group>cflowd#
*A:ALA-48>config>app-assure>group>cflowd# volume no shutdown
*A:ALA-48>config>app-assure>group>cflowd# tcp-performance application "web_traffic"
*A:ALA-48>config>app-assure>group>cflowd# tcp-performance application "citrix" [flow-rate2]
*A:ALA-48>config>app-assure>group>cflowd# rtp-performance application "voip_traffic"
*A:ALA-48>config>app-assure>group>cflowd# rtp-performance no shutdown
*A:ALA-48>config>app-assure>group>cflowd# info

volume
  no shutdown exit
rtp-performance no shutdown
  application "voip_traffic"
tcp-performance
  no shutdown
  application "web_traffic"
  application "citrix" flow-rate2
```
exit

*ALA-48>config>app-assure>group>cflowd#
Application Assurance Command Reference

- Hardware Commands on page 183
- Admin Commands on page 183
- ISA Commands on page 184
- Application Assurance Commands on page 186
- Persistence Commands on page 197
- Show Commands on page 198
- Tools Commands on page 201
- Clear Commands on page 202
- Debug Commands on page 202
- Admin Commands on page 183

Hardware Commands

Refer to the 7x50 SR OS Interfaces Configuration Guide and the 7450 ESS OS Interface Configuration Guide for information about slots, cards and MDAs.

```
config
  — card slot-number
    — card-type card-type
    — no card-type
    — mda mda-slot
      — mda-type mda-type
      — no mda-type
```

Admin Commands

```
admin
  — application-assurance
  — upgrade
```
ISA Commands

```
config
  — isa
    — application-assurance-group application-assurance-group-index [create] [aa-sub-scale
      sub-scale]
    — no application-assurance-group application-assurance-group-index
      — [no] backup mda-id
      — description description-string
      — no description
      — [no] divert-fc fc-name
      — [no] fail-to-open
      — isa-capacity-cost-high-threshold threshold
      — no isa-capacity-cost-high-threshold
      — isa-capacity-cost-low-threshold threshold
      — no isa-capacity-cost-low-threshold
      — [no] isa-overload-cut-through
      — [no] partitions
      — [no] primary mda-id
      — qos
        — egress
          — from-subscriber
            — pool [pool-name]
            — no pool
              — resv-cbs percent-or-default
              — no resv-cbs
              — slope-policy slope-policy-name
              — no slope-policy
            — port-scheduler-policy port-scheduler-policy-name
            — no port-scheduler-policy
            — queue-policy network-queue-policy-name
            — no queue-policy
            — wa-shared-high-wmark percent
            — no wa-shared-high-wmark
            — wa-shared-low-wmark percent
            — no wa-shared-low-wmark
          — to-subscriber
            — no pool
              — resv-cbs percent-or-default
              — no resv-cbs
              — slope-policy slope-policy-name
              — no slope-policy
            — port-scheduler-policy port-scheduler-policy-name
            — no port-scheduler-policy
            — queue-policy network-queue-policy-name
            — no queue-policy
            — wa-shared-high-wmark percent
            — no wa-shared-high-wmark
            — wa-shared-low-wmark percent
            — no wa-shared-low-wmark
      — [no] shutdown
      — statistics
        — performance
          — accounting-policy acct-policy-id
          — no accounting-policy
          — [no] collect-stats
```
— transit-prefix-ipv4-entries entries
— no transit-prefix-ipv4-entries
— transit-prefix-ipv4-remote-entries entries
— no transit-prefix-ipv4-remote-entries
— transit-prefix-ipv6-entries entries
— no transit-prefix-ipv6-entries
— transit-prefix-ipv6-remote-entries entries
— no transit-prefix-ipv6-remote-entries
Application Assurance Commands

- AA Commands on page 186
- AA Group Commands on page 188
 - AA Group Policer Commands on page 190
 - AA Group Policer Commands on page 190
 - AA Group Policy Commands on page 190
 - AA Group App Profile Commands on page 191
 - AA Group AQP Commands on page 191
 - AA Group Service Options Commands on page 192
 - AA Group Application Commands on page 192
 - AA Group Charging Group Commands on page 193
 - AA Group Custom Protocol Commands on page 193
 - AA Group Policy Override Commands on page 193
 - AA Group Session Filter Commands on page 193
 - AA Group Statistics Commands on page 194
 - AA Group Transit IP Policy Commands on page 194
 - AA Group Transit Prefix Policy Commands on page 195
 - AA Group URL Filter Commands on page 195

AA Commands

```
cfg
  application-assurance
    aarp aarpId [create]
    no aarp aarpId
      description description-string
      no description
      master-selection-mode mode
      peer ip-address
      no peer
    peer-endpoint sap sap-id encap-type {dot1q|null|qinq}
    peer-endpoint spoke-sdp-DVD-id
    no peer-endpoint
    priority [0.255]
    no priority
    [no] shutdown
    bit-rate-high-wmark high-watermark
    bit-rate-low-wmark low-watermark
    no bit-rate-low-wmark
    flow-setup-high-wmark high-watermark
    flow-setup-low-wmark low-watermark
    no flow-setup-low-wmark
    flow-table-high-wmark high-watermark
    flow-table-low-wmark low-watermark
    no flow-table-low-wmark
```
— packet-rate-high-wmark high-watermark
— packet-rate-low-wmark low-watermark
— no packet-rate-low-wmark
— protocol protocol-name
 — [no] shutdown
— radius-accounting-policy rad-acct-plcy-name [create]
— no radius-accounting-policy rad-acct-plcy-name
 — description description-string
 — no description
 — interim-update-interval minutes
 — no interim-update-interval
 — radius-accounting-server
 — access-algorithm {direct | round-robin}
 — no access-algorithm
 — retry count
 — router router-instance
 — router service-name service-name
 — no router
 — server server-index address ip-address secret key [hash | hash2] [port]
 — create
 — no server server-index
 — source-address ip-address
 — no source-address
 — timeout seconds
 — significant-change delta
 — no significant-change
AA Group Commands

```
config
   -- application-assurance
   -- group aa-group-id[:partition-id] [create]
   -- no group aa-group-id:partition-id
   -- [no] aa-sub-remote
   -- cflowd
         -- collector ip-address[:port] [create]
         -- no collector ip-address[:port]
               -- description description-string
               -- [no] description
               -- [no] shutdown
         -- comprehensive
               -- app-group app-group-name [rate]
               -- no app-group app-group-name
               -- application application-name [rate]
               -- no application application-name
               -- flow-rate sample-rate
               -- no flow-rate
               -- flow-rate2 sample-rate
               -- no flow-rate2
               -- [no] shutdown
         -- [no] shutdown
         -- tcp-performance
               -- [no] app-group app-group-name
               -- [no] application application-name
               -- flow-rate sample-rate
               -- no flow-rate
               -- flow-rate2 sample-rate
               -- no flow-rate2
               -- [no] shutdown
               -- template-retransmit seconds
               -- no template-retransmit seconds
               -- volume seconds
               -- rate sample-rate
               -- [no] rate
               -- [no] shutdown
         -- event-log event-log-name [create]
         -- no event-log event-log-name
               -- buffer-type buffer-type
               -- max-entries max-entries
               -- [no] shutdown
         -- http-enrich http-enrich-name [create]
         -- no http-enrich http-enrich-name
               -- description description-string
```
— no description
— field field-name
— no field field-name
 — name header-name
 — [no] anti-spoof
 — encode type key key
 — encode type key hash-key hash
 — encode type key hash2-key hash2
 — no encode
 — static-string static-string
 — no static-string static-string
— [no] shutdown
— http-error-redirect redirect-name [create]
— no http-error-redirect redirect-name
 — description description-string
 — no description
 — error-code error-code [custom-msg-size custom-msg-size]
 — no error-code error-code
 — http-host http-host
 — no http-host
 — participant-id participant-id
 — no participant-id
 — [no] shutdown
 — template template-id
 — no template
— [no] http-match-all-requests
— http-notification http-notification-name [create]
— no http-notification http-notification-name
 — description description-string
 — no description
 — interval {one-time | minimum-interval}
 — script-url script-url-name [create]
 — no script-url
 — template value
 — no template
— http-redirect redirect-name [create]
— no http-redirect redirect-name
 — description description-string
 — no description
 — redirect-url redirect-url
 — no redirect-url
 — http-host http-host
 — no http-host
 — [no] shutdown
 — [no] tcp-client-reset
 — template template-id
 — no template
— [no] http-x-online-host
— ip-prefix-list ip-prefix-list-name [create]
— no ip-prefix-list ip-prefix-list-name
 — description description-string
 — no description
 — field ip-prefix/ip-prefix-length [name prefix-name]
— no field ip-prefix/ip-prefix-length
— policer policer-name type granularity granularity [create]
— policer policer-name
— no policer policer-name
— action {priority-mark | permit-deny}
— adaptation-rule pir {max | min | closest} [cir {max | min | closest}]
— no adaptation-rule
— cbs committed burst size
— no cbs
— description description-string
— no description
— flow-count flow-count
— no flow-count
— mbs maximum burst size
— no mbs maximum burst size
— rate pir-rate [cir cir-rate]
— no rate
— tod-override tod-override-id [create]
— no tod-override tod-override-id
— description description-string
— no description
— mbs maximum-burst-size
— no mbs
— rate pir-rate
— no rate
— [no] shutdown
— time-range daily start start-time end end-time [on day
 [day...(upto 7 max)]]
— time-range weekly start start-time end end-time

— policy
— abort
— begin
— commit
— app-filter
— entry entry-id [create]
— no entry entry-id
— application application-name
— no application application-name
— description description-string
— no description
— expression expr-index expr-type {eq | neq} expr-string
— no expression expr-index
— flow-setup-direction {subscriber-to-network | network-to-subscriber | both}
— [no] http-match-all-requests
— ip-protocol-num {eq | neq} protocol-id
— no ip-protocol-num
— protocol {eq | neq} protocol-signature-name
— no protocol
— server-address {eq | neq} ip-address
— server-address {eq | neq} ip-prefix-list ip-prefix-list-name
— no server-address
— server-port {eq | neq | gt | lt} server-port-number
Application Assurance CLI Tree

— server-port \{eq\} server-port-number \{first-packet-trusted | first-packet-validate\}
— server-port \{eq | neq\} range start-port-num end-port-num
— no server-port
— [no] shutdown

— app-group application-group-name [create]
— no app-group application-group-name
— charging-group charging-group-name
— no charging-group
— description description-string
— no description
— export-id export-id
— no export-id

— app-profile app-profile-name [create]
— no app-profile app-profile-name
— capacity-cost cost
— no capacity-cost
— characteristic characteristic-name value value-name
— no characteristic characteristic-name
— description description-string
— no description
— [no] divert

— app-qos-policy
— entry entry-id [create]
— no entry entry-id
— action
— bandwidth-policer policer-name
— no bandwidth-policer
— [no] bandwidth-policer
— [no] drop
— error-drop [event-log event-log-name]
— no error-drop
— flow-count-limit policer-name
— no flow-count-limit
— flow-rate-limit policer-name
— no flow-rate-limit
— fragment-drop \{all | out-of-order\} [event-log event-log-name]
— no fragment-drop
— http-enrich http-enrich-name
— no http-enrich
— http-error-redirect redirect-name
— no http-error-redirect
— http-notification http-notification
— no http-notification
— http-redirect redirect-name flow-type flow-type
— no http-redirect
— mirror-source \{all-inclusive\} mirror-service-id
— no mirror-source
— remark
— dscp in-profile dscp-name out-profile dscp-name
--- no dscp
--- fc fc-name
--- no fc fc-name
--- priority priority-level
--- no priority
--- session-filter session-filter-name
--- no session-filter
--- url-filter url-filter-name [create]
--- no url-filter

match
--- aa-sub esm {eq | neq} sub-ident-string
--- aa-sub sap {eq | neq} sap-id
--- aa-sub spoke-sdp {eq | neq} sdp-id:vc-id
--- aa-sub transit {eq | neq} transit-aasub-name
--- no aa-sub
--- app-group {eq | neq} application-group-name
--- no app-group
--- application {eq | neq} application-group-name
--- no application
--- characteristic characteristic-name eq value-name
--- no characteristic
--- charging-group {eq | neq} charging-group-name
--- no charging-group
--- dscp {eq | neq} dscp-name
--- no dscp
--- dst-ip {eq | neq} ip-address
--- dst-ip {eq | neq} ip-prefix-list ip-prefix-list-name
--- no dst-ip
--- dst-port {eq | neq} port-num
--- dst-port {eq | neq} range start-port-num end-port-num
--- no dst-port
--- ip-protocol-num {eq | neq} protocol-id
--- no ip-protocol-num
--- src-ip {eq | neq} ip-address
--- src-ip {eq | neq} ip-prefix-list ip-prefix-list-name
--- no src-ip
--- src-port {eq | neq} port-num
--- src-port {eq | neq} range start-port-num end-port-num
--- no src-port
--- src-port {subscriber-to-network | network-to-subscriber | both}
--- [no] shutdown

--- app-service-options
--- characteristic characteristic-name [create]
--- no characteristic characteristic-name
--- default-value value-name
--- no default-value
--- [no] value value-name

--- application application-name [create]
--- no application application-name
--- app-group app-group-name
--- charging-group charging-group-name
--- no charging-group
— description description-string
— no description
— export-id export-id
— no export-id

— charging-group charging-group-name [create]
— no charging-group

— custom-protocol custom-protocol-id ip-protocol-num protocol-id [create]
— custom-protocol custom-protocol-id
— no custom-protocol custom-protocol-id

— description description-string
— no description
— export-id export-id
— no export-id

— default-charging-group charging-group-name
— no default-charging-group
— diff

— policy-override
— policy aa-sub { sap sap-id | spoke-sdp sdp-id:vc-id } [create]
— no policy aa-sub { sap sap-id | spoke-sdp sdp-id:vc-id }

— characteristic characteristic-name value value-name
— no characteristic characteristic-name

— session-filter session-filter-name [create]
— no session-filter session-filter-name

— default-action { permit | deny } [event-log event-log-name]
— description description-string
— no description
— entry entry-id [create]
— no entry entry-id

— action { permit | deny } [event-log event-log-name]
— description description-string
— no description
— match

— dst-ip { eq | neq } ip-address
— dst-ip ip-prefix-list ip-prefix-list-name
— no dst-ip
— dst-port { eq | neq } port-num
— dst-port { eq | neq } range start-port-num end-port-num
— no dst-port
— ip-protocol-num { eq | neq } protocol-id
— no ip-protocol-num
— src-ip { eq | neq } ip-address
— src-ip ip-prefix-list ip-prefix-list-name
— no src-ip
— src-port { eq | gt | lt } port-num
— src-port range start-port-num end-port-num
— no src-port

— statistics
 — aa-partition
 — accounting-policy acct-policy-id
 — no accounting-policy
 — [no] collect-stats
 — [no] traffic-type

— aa-sub
 — accounting-policy acct-policy-id
 — no accounting-policy
 — [no] aggregate-stats
 — app-group app-group-name export-using export-method
 [export-method... (up to 2 max)]
 — app-group app-group-name no-export
 — no app-group app-group-name
 — application application-name export-using export-method
 — application application-name no-export
 — no application application-name
 — charging-group charging-group-name export-using export-method
 [export-method... (up to 2 max)]
 — charging-group charging-group-name no-export
 — no charging-group charging-group-name
 — [no] collect-stats
 — [no] exclude-tcp-retrans
 — [no] max-throughput-stats
 — [no] protocol protocol-name export-using export-method
 — radius-accounting-policy rad-acct-plcy-name
 — no radius-accounting-policy
 — [no] usage-monitoring

— aa-sub-study study-type
 — aa-sub {esm sub-ident-string | sap sap-id | spoke-sdp sdp-id:vc-id | transit transit-aasub-name}
 — no aa-sub {esm sub-ident-string | sap sap-id | spoke-sdp sdp-id:vc-id | transit transit-aasub-name}
 — accounting-policy acct-policy-id
 — no accounting-policy
 — [no] collect-stats

— application
 — accounting-policy acct-policy-id
 — no accounting-policy
 — charging-group charging-group-name export-using export-method
 — no charging-group charging-group-name
 — [no] collect-stats

— protocol
 — accounting-policy acct-policy-id
 — no accounting-policy
 — [no] collect-stats

— transit-ip-policy ip-policy-id [create]
— no transit-ip-policy ip-policy-id
 — def-app-profile app-profile-name
 — no def-app-profile
— description description-string
— no description
— [no] detect-seen-ip
— dhcp
 — [no] shutdown
— ipv6-address-prefix-length IPv6 prefix length
— no ipv6-address-prefix-length
— radius
 — authentication-policy name
 — no authentication-policy
 — seen-ip-radius-acct-policy rad-acct-plcy-name
 — no seen-ip-radius-acct-policy
 — [no] shutdown
— static-aa-sub transit-aasub-name
— static-aa-sub transit-aasub-name app-profile app-profile-name [create]
— no static-aa-sub transit-aasub-name
 — [no] ip ip-address
— sub-ident-policy sub-ident-policy-name
— no sub-ident-policy
— transit-auto-create
 — [no] shutdown
— transit-prefix-policy prefix-policy-id [create]
— no transit-prefix-policy prefix-policy-id
 — description description-string
 — no description
 — entry entry-id [create]
 — entry entry-id
 — no entry entry-id
 — aa-sub transit-aasub-name
 — no aa-sub
 — match transit-aasub-name
 — aa-sub-ip ip-address[/mask]
 — no aa-sub-ip
 — network-ip ip-address[/mask]
 — no network-ip
— static-aa-sub transit-aasub-name
— static-aa-sub transit-aasub-name app-profile app-profile-name [create]
— no static-aa-sub transit-aasub-name
— static-remote-aa-sub transit-aasub-name
— static-remote-aa-sub transit-aasub-name app-profile app-profile-name
 [create]
— no static-remote-aa-sub transit-aasub-name
— url-filter url-filter-name [create]
— no url-filter
 — default-action allow
 — default-action block-all
 — default-action block-http-redirect http-redirect-name
 — no default-action
 — description description-string
 — no description
 — icap-http-redirect http-redirect-name
 — no icap-http-redirect
 — icap-server ip-address[/port] [create]
— no icap-server ip-address[:port]
 — description description-string
 — no description
 — [no] shutdown
— [no] shutdown
— vlan-id service-port-vlan-id
— no vlan-id
— wap1x
 — [no] shutdown
Persistence Commands

```plaintext
config
  — system
    — persistence
      — application-assurance
        — description description-string
        — no description
        — location cflash-id
        — no location
```
Show Commands

```
show
    — debug [application]
    — isa
        — application-assurance-group [aa-group-id [load-balance [unassigned]]]
    — application-assurance
        — aarp
        — aarp aarpld [detail]
        — group aa-group-id [partition-id]
            — aa-interface isa mda-id
            — aa-sub esm sub-ident-string [snapshot]
            — aa-sub sap sap-id [snapshot]
            — aa-sub spoke-sdp sdp-id:vc-id [snapshot]
            — aa-sub transit transit-aasub-name [snapshot]
            — aa-sub app-group [app-group-name] count [detail]
            — aa-sub app-group count top granularity [max-count max-count]
            — aa-sub app-group application [application-name] count [detail]
            — aa-sub app-group count top granularity [max-count max-count]
            — aa-sub charging-group [charging-group-name] count [detail]
            — aa-sub charging-group count top granularity [max-count max-count]
            — aa-sub count [detail]
            — aa-sub policer
            — aa-sub policer policer-name [detail]
            — aa-sub policer summary
            — aa-sub protocol [protocol-name] count [detail]
            — aa-sub protocol count top granularity [max-count max-count]
            — aa-sub summary
            — aa-sub usage-monitor status
            — aa-sub usage-monitor [application [application-name] | app-group [app-group-name] | charging-group [charging-group-name]]] count
            — aa-sub-list [isa mda-id]
            — aa-sub-list policers-exceeded [summary]
            — aa-sub-list summary
            — aa-sub-study esm sub-ident-string [snapshot]
            — aa-sub-study sap sap-id [snapshot]
            — aa-sub-study spoke-sdp sdp-id:vc-id [snapshot]
            — aa-sub-study transit transit-aasub-name [snapshot]
            — aa-sub-study application [application-name] count [detail]
            — aa-sub-study protocol [protocol-name] count [detail]
            — app-group app-group-name count [detail]
            — app-group count [detail]
            — application application-name count [detail]
            — application count [detail]
            — cflowd
                — collector [detail]
                — status
                — dns-ip-cache cache-name isa mda-id
                — dns-ip-cache cache-name
                — http-enrich enrichment-name
                    — detail [partition]
                    — field field-name
                    — summary
                — http-error-redirect redirect-name
                — http-notification http-notification-name [summary]
                — http-error-redirect redirect-name [detail]
```
— policer
 — policer policer-name [detail]
 — policer summary
— policy
 — admin
 — app-filter [entry-id]
 — app-group [app-group-name]
 — app-profile [app-prof-name]
 — app-profile app-prof-name associations
 — app-qos-policy [entry-id]
 — app-service-option [characteristic-name]
 — application app-name
 — application
 — charging-group charging-group-name
 — custom-protocol
 — summary
— protocol protocol-name count [detail]
— protocol count [detail]
— protocol count top granularity [max-count max-count]
— session-filter
 — session-filter session-filter-name
— status [isa mda-id] cflowd
 — status [isa mda-id]
 — status [isa mda-id] detail
 — status isa mda-id cpu [sample-period seconds]
 — status isa mda-id qos count
 — status isa mda-id qos pools
— traffic-type detail
 — traffic-type ip-family
 — traffic-type ip-protocol
 — transit-ip-policy ip-policy-id
 — transit-ip-policy ip-policy-id summary
 — transit-prefix-policy transit-prefix-policy-id
 — transit-prefix-policy summary
 — transit-prefix-policy transit-prefix-policy-id summary
 — url-filter [url-filter-name]
 — url-filter url-filter-name isa mda-id [detail]
— http-enrich enrichment-name
 — field field-name
 — fields
— http-error-redirect
 — error-codes
 — template
— protocol [protocol-name] detail
— radius-accounting-policy [rad-acct-plcy-name]
— radius-accounting-policy rad-acct-plcy-name associations
— radius-accounting-policy rad-acct-plcy-name statistics
— version
— mda slot [mda] [detail]
— service
 — aa-sub-using
— aa-sub-using **app-profile** app-profile-name
— sap-using **app-profile** app-profile-name
— sap-using **aarp** aarp-id
— sap-using transit-ip-policy ip-policy-id
— sap-using transit-prefix-policy prefix-policy-id
— sdp-using **aarp** aarp-id
— sdp-using **app-profile** app-profile-name
— sdp-using transit-ip-policy ip-policy-id
— sdp-using transit-ip-policy **ip** transit-ip-policy
— sdp-using transit-ip-policy **prefix** transit-prefix-policy
— subscriber-using **app-profile** app-profile-name
Tools Commands

```
tools
  — dump
    — application-assurance
    — aarp aarpld event-history [clear]
    — seen-ip transit-ip-policy ip-policy-id
    — seen-ip transit-ip-policy ip-policy-id clear
    — group aa-group-id
      — aa-sub dsm mac mac-address [snapshot] {summary}
      — aa-sub-search top [bytes/packets/flows] [direction {from-sub|to-sub|both}] max-count max-count
      — policer policer-name day day time-of-day
    — group aa-group-id [partition-id]
      — event-log event-log-name isa mda-id
      — event-log event-log-name [ isa mda-id ] url file-url
      — flow-record-search aa-sub { esm sub-ident-string | sap sap-id | spoke-sdp sdp-id:vc-id | transit transit-aasub-name | mobile { imsi imsi-msisdn | mmsi mmsi-msisdn | imei imei } | apn apn-name | dsm mac mac-address } [protocol protocol-name] [application app-name] [app-group app-group-name] [flow-status flow-status] [start-flowid start-flowid] [classified classified] [server-ip ip-address] [server-port port-num] [client-ip ip-address] [bytes-tx kbytes] [flow-duration minutes] [max-count max-count] [search-type search-type] [url file-url]
    — http-host-recorder status [isa mda-id]
    — http-host-recorder top [bytes/flows] [max-count {1..25}] [isa mda-id]
    — http-host-recorder detail [isa mda-id] url file-url
    — port-recorder status [isa mda-id]
    — port-recorder top [bytes/flows] [max-count {1..25}] [isa mda-id]
    — port-recorder detail [flow-count flow-count] [byte-count kbyte-count]
      [isa mda-id] url file-url
    — traffic-capture detail url file-url
    — traffic-capture status

  — perform
    — application-assurance
    — aarp aarpld force-evaluate
    — group aa-group-id load-balance [service service-id]
```
Clear Commands

```
clear
  — application-assurance
    — group aa-group-id cflowd
    — group aa-group-id event-log event-log
    — group aa-group-id statistics
    — group aa-group-id status
    — radius-accounting-policy rad-acct-plcy-name [server server-index] statistics
```

Debug Commands

```
debug
  — application-assurance
    — group aa-group-id[:partition-id]
      — [no] traffic-capture
        — [no] match
          — application {eq | neq} application-name
          — no application
          — client-ip {eq | neq} ip-address
          — no client-ip
          — client-port {eq | neq} port-num
          — no client-port
          — dst-ip {eq | neq} ip-address
          — no dst-ip
          — dst-port {eq | neq} port-num
          — no dst-port
          — ip-addr1 {eq | neq} ip-address
          — no ip-addr1
          — ip-addr2 {eq | neq} ip-address
          — no ip-addr2
          — ip-protocol-num {eq | neq} protocol-id
          — no ip-protocol-num
          — port1 {eq | neq} port-num
          — no port1
          — port2 {eq | neq} port-num
          — no port2
          — server-ip {eq | neq} ip-address
          — no server-ip
          — server-port {eq | neq} port-num
          — no server-port
          — src-ip {eq | neq} ip-address
          — no src-ip
          — src-port {eq | neq} port-num
          — no src-port
        — record
          — limit {all-packet-matches|first-session-match}
          — start {immediate|on-new-session}
        — [no] shutdown
```

```
debug
  — mirror-source service-id
    — isa-aa-group aa-group-id {all | unknown}
    — no isa-aa-group aa-group-id
```
debug
 — system
 — persistence [persistence-client]
 — no persistence
Application Assurance Commands

- Application Assurance Commands on page 205
 - Generic Commands on page 206
 - Hardware Commands on page 208
 - Application Assurance Commands on page 212
 - Group Commands on page 230
 - Policer Commands on page 231
 - Policy Commands on page 236
 - Application Filter Commands on page 242
 - Application Profile Commands on page 252
 - Application QoS Policy Commands on page 253
 - Application Service Options Commands on page 266
 - Statistics Commands on page 272
 - ISA Commands on page 296

Application Assurance uses system components for some of its functionality. Refer to the following for details on:

- Configuration of Application Assurance Accounting policy including per accounting type record selection and customization of AA subscriber records.
- Configuration of AA ISA IOM QoS.
Generic Commands

description

Syntax

```
description description-string
no description
```

Context

```
config>app-assure>aarp
config>app-assure>group>cflowd>collector
config>app-assure>group>cflowd>group>cflowd
config>app-assure>group>cflowd>group>cflowd>collector
config>app-assure>group>cflowd>group>cflowd>volume
config>app-assure>group>description
config>app-assure>group>http-enrich
config>app-assure>group>http-error-redirect
config>app-assure>group>http-redirect
config>app-assure>group>ip-prefix-list
config>app-assure>group>policer
config>app-assure>group>policer>tod-override
config>app-assure>group>policy>app-filter>entry
config>app-assure>group>policy>app-group
config>app-assure>group>policy>application
config>app-assure>group>policy>app-profile
config>app-assure>group>policy>app-qos-policy>entry
config>app-assure>group>policy>aqp>entry
config>app-assure>group>policy>aqp>entry>action>url-filter
config>app-assure>group>policy>custom-protocol
config>app-assure>group>policy>transit-ip-policy
config>app-assure>group>tod-override
config>app-assure>group>url-filter
config>app-assure>group>url-filter>icap-server
config>app-assure>protocol
config>app-assure>rad-acct-plcy
config>isa>aa-group
```

Description

This command creates a text description which is stored in the configuration file to help identify the content of the entity.

The `no` form of the command removes the string from the configuration.

Default

none

Parameters

`string` — The description character string. Allowed values are any string composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Syntax

[no] shutdown

Context

config>app-assure>aarp
config>app-assure>group>cflowd
cfg>app-assure>group>cflowd tcp-performance
cfg>app-assure>group>cflowd volume
cfg>app-assure>group>cflowd>collector
cfg>app-assure>group>cflowd>comprehensive
cfg>app-assure>group>cflowd>rtp-performance
cfg>app-assure>group>event-log
cfg>app-assure>group>http-enrich
cfg>app-assure>group>http-error-redirect
cfg>app-assure>group>http-redirect
cfg>app-assure>group>policer>tod-override
cfg>app-assure>group>policy>app-filter>entry
cfg>app-assure>group>policy>app-qos-policy>entry
cfg>app-assure>group>policy>custom-protocol
cfg>app-assure>group>statistics>protocol
cfg>app-assure>group>transit-ip-policy>dhcp
cfg>app-assure>group>transit-ip-policy>radius
cfg>app-assure>group>transit-ip-policy>transit-auto-create
cfg>app-assure>group>url-filter
cfg>app-assure>group>url-filter>icap-server
cfg>app-assure>group>wap1x
cfg>app-assure>protocol

Description

This command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the no shutdown command.

The shutdown command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.
Hardware Commands

card-type

Syntax

```
card-type card-type
no card-type
```

Context

```
config>card
```

Description

This mandatory command adds an IOM to the device configuration for the slot. The card type can be preprovisioned, meaning that the card does not need to be installed in the chassis.

A card must be provisioned before an MDA, MCM or port can be configured.

A card can only be provisioned in a slot that is vacant, meaning no other card can be provisioned (configured) for that particular slot. To reconfigure a slot position, use the `no` form of this command to remove the current information.

A card can only be provisioned in a slot if the card type is allowed in the slot. An error message is generated if an attempt is made to provision a card type that is not allowed.

If a card is inserted that does not match the configured card type for the slot, then a medium severity alarm is raised. The alarm is cleared when the correct card type is installed or the configuration is modified.

A high severity alarm is raised if an administratively enabled card is removed from the chassis. The alarm is cleared when the correct card type is installed or the configuration is modified. A low severity trap is issued when a card is removed that is administratively disabled.

Because the IOM-3 integrated card does not have the capability in install separate MDAs, the configuration of the MDA is automatic. This configuration only includes the default parameters such as default buffer policies. Commands to manage the MDA such as `shutdown`, named buffer pool etc will remain in the MDA configuration context.

An appropriate alarm is raised if a partial or complete card failure is detected. The alarm is cleared when the error condition ceases.

Refer to the 7x50 SR OS Interfaces Configuration Guide and the 7450 ESS OS Interface Configuration Guide for information about slots, cards and MDAs.

The `no` form of this command removes the card from the configuration.

Default

No cards are preconfigured for any slots.

Parameters

```
card-type — The type of card to be configured and installed in that slot.
```

Values

```
iom-20g, iom2-20g, iom-20g-b, iom3-20g, iom3-40g, iom3-xp, imm48-1gb-sfp, imm48-1gb-tx, imm4-10gb-xfp, imm5-10gb-xfp, imm8-10gb-xfp, imm12-10gb-SF+, imm1-40gb-tun, imm3-40gb-qsfp, imm1-oc768-tun, imm1-100g-cfp, iom3-xp, imm-2pac-fp3, iom3-xp, imm-2pac-fp3
```
Syntax

```
mda-type mda-type
no mda-type
```

Context

```
config>card>mda
```

Description

This mandatory command provisions a specific MDA type to the device configuration for the slot. The MDA can be preprovisioned but an MDA must be provisioned before ports can be configured. Ports can be configured once the MDA is properly provisioned. A maximum of two MDAs can be provisioned on an IOM. Only one MDA can be provisioned per IOM MDA slot. To modify an MDA slot, shut down all port associations.

A maximum of six MDAs or eight CMAs (or a combination) can be provisioned on a 7750 SR-c12. Only one MDA/CMA can be provisioned per MDA slot. To modify an MDA slot, shut down all port associations. CMAs do not rely on MCM configuration and are provisioned without MCMs. Note: CMAs are provisioned using MDA commands. A medium severity alarm is generated if an MDA/CMA is inserted that does not match the MDA/CMA type configured for the slot. This alarm is cleared when the correct MDA/CMA is inserted or the configuration is modified. A high severity alarm is raised when an administratively enabled MDA/CMA is removed from the chassis. This alarm is cleared if the either the correct MDA/CMA type is inserted or the configuration is modified. A low severity trap is issued if an MDA/CMA is removed that is administratively disabled.

An MDA can only be provisioned in a slot if the MDA type is allowed in the MDA slot. An error message is generated when an MDA is provisioned in a slot where it is not allowed.

A medium severity alarm is generated if an MDA is inserted that does not match the MDA type configured for the slot. This alarm is cleared when the correct MDA is inserted or the configuration is modified.

A high severity alarm is raised when an administratively enabled MDA is removed from the chassis. This alarm is cleared if the either the correct MDA type is inserted or the configuration is modified. A low severity trap is issued if an MDA is removed that is administratively disabled.

An alarm is raised if partial or complete MDA failure is detected. The alarm is cleared when the error condition ceases. All parameters in the MDA context remain and if non-default values are required then their configuration remains as it is on all existing MDAs.

Refer to the 7750 SR OS Interface Guide or 7450 ESS OS Interface Guide for further information on command usage and syntax for the AA ISA and other MDA and ISA types.

The **no** form of this command deletes the MDA from the configuration. The MDA must be administratively shut down before it can be deleted from the configuration.

Default

No MDA types are configured for any slots by default.

Parameters

mda-type — Specifies the type of MDA for the slot position.

ISA-2: isa2-aa, isa2-bb, isa2-tunnel

7750: m60-10/100eth-tx, m10-1gb-sfp, m16-oc12/3-sfp, m8-oc12/3-sfp, m16-oc3-sfp, m8-oc3-sfp, m4-oc48-sfp, m1-oc192, m5-1gb-sfp, m12-chds3, m1-choc12-sfp, m1-10gb, m4-choc3-sfp, m2-oc192-xpfsp, m2-oc48-sfp, m20-100eth-sfp, m20-1gb-tx, m2-10gb-sfp, m2-oc192-xfp, m12-1gb-sfp, m12-1gb+2-10gb-xp, m4-atmoc12/3-sfp, m16-atmoc3-sfp, m20-1gb-sfp, m4-chds3, m1-10gb-xfp, vsm-cca, m5-1gb-sfp-b, m10-1gb-sfp-b, m4-choc3-as-sfp, m10-1gb+1-10gb, isa-ipsec, m1-choc12-as-sfp, m12-chds3-as, m4-chds3-as, isa-aa, isa-tms,
m12-1gb-xp-sfp, m12-1gb+2-10gb-xp, m10-1gb-hs-sfp, m1-10gb-hs-xfp, m4-choc3-ces-sfp, m1-choc3-ces-sfp, m4-10gb-xp-sfp, m2-10gb-xp-sfp, m2-10gb-xp-xfp, m1-10gb-xp-xfp, m10-1gb-xp-xfp, m20-1gb-xp-sfp, m20-1gb-xp-xfp, m1-choc12-ces-sfp, p1-100g-cfp, p10-10gsfp,p3-40g-qsfp, p6-10g-sfp, imm24-1gb-xp-sfp, imm24-1gb-xp-xfp, imm5-10gb-xp-sfp, imm4-10gbxp-xfp, imm3-40gb-qsfp, imm1-40gb-qsfp, imm1-40gb-xp-xfp, imm1-40gb-xp-tun, imm1-1pac-fp3/p1-100g-tun, imm2-10gb-xp-sfp, imm12-10gb-xp-SF+, imm1-oc768-xp-tun, imm1-100gb-xp-cfp, isa-video, m1-10gb-dwdm-tun, iom3-xp-b, m4-atmoc12/3-sf-b, m16-atmoc3-sf-b, m16-oc12/3-sf-b, m4-oc48-sfp-bisa2-aa, isa2-bb, isa2-tunnel

7750 SR-c12: m60-10/100eth-tx, m8-oc3-sfp, m5-1gb-sfp, m2-oc48-sfp, m20-100eth-sfp, m20-1gbtx,m4-atmoc12/3-sfp, m20-1gb-sfp, m5-1gb-sfp-b, m4-choc3-as-sfp, c8-10/100eth-tx, c1-1gb-sfp,c2-oc12/3-sf-b, c8-chds1, c4-ds3, c2-oc12/3-sfp, c1-choc3-ces-sfp, m1-choc12-as-sfp, m12-chds3-as,m4-chds3-as, m4-choc3-ces-sfp, m10-1gb-xp-sfp, m20-1gb-xp-sfp, m20-1gb-xp-t, isa-aa, isa2-aa,

Note: Refer to the 7x50 SR OS Interfaces Configuration Guide and the 7450 ESS OS Interface Configuration Guide for further information.
Admin Commands

application-assurance

Syntax

```
application-assurance
```

Context

```
admin
```

Description

This command enables the context to perform Application Assurance (AA) configuration operations.

upgrade

Syntax

```
upgrade
```

Context

```
admin>app-assure
```

Description

Use this command to load a new isa-aa.tim file as part of a router-independent signature upgrade. An AA ISA reboot is required.
Application Assurance Commands

aarp

Syntax
```
aarp aarpId [create]
no aarp aarpId
```

Context
```
config>application-assurance
```

Description
This command defines an Application Assurance Redundancy Protocol (AARP) instance. This instance is paired with the same `aarpId` in a peer node as part of a configuration to provide flow and packet asymmetry removal for traffic for a multi-homed SAP or spoke SDP.

The `no` form of the command removes the instance from the configuration.

Default
`no aarp`

Parameters
`aarpId` — An integer that identifies an AARP instance.

Values
- `1 — 65535`
- `create` — Keyword used to create the AARP instance.

master-selection-mode

Syntax
```
master-selection-mode mode
```

Context
```
config>app-assure>aarp
```

Description
This command configures the AARP mode of operation with the peer instance. The modes affect the AARP state machine behavior according to the desired behavior. Minimize-switchover will change AARP state based on Master ISA failure, and be non-revertive in that when the priority ISA returns a switch does not occur, which is optimal for AA flow identification. Inter-chassis efficiency mode considers both priority (revertive) and the endpoint status of the AARP instance and will switch activity in case of EP failure in order to avoid sending all the traffic over the ICL. The priority-based-balance mode will be revertive after a priority master returns to service, but excludes EP status. The master-selection-mode configuration must match on both peer AARP instances, or the AARP operational status will stay down.

Default
`minimize-switchovers`

Parameters
`mode` — Specifies the the AARP master selection mode.

Values
- `minimize-switchovers` — Optimal AA flow detection continuity by minimizing AARP switchovers.
- `inter-chassis-efficiency` — minimizes inter-chassis traffic.
- `priority-based-balance` — AA load balance between AARP peers based on configured priority.
peer

Syntax

```
peer ip-address
no peer
```

Context

config>app-assure>aarp

Description

This command defines the IP address of the peer router which must be a routable system IP address.

If no peer is configured and the AARP is `no shutdown`, it is configured as a single node AARP instance.

The `no` form of the command removes the IP address from the AARP instance.

Default

no peer

Parameters

`ip-address` — Specifies the IP address in the a.b.c.d format.

peer-endpoint

Syntax

```
peer-endpoint sap sap-id encap-type {dot1q|null|qinq}
peer-endpoint spoke-sdp sdp-id:vc-id
no peer-endpoint
```

Context

config>app-assure>aarp#

Description

This command defines the peer endpoint ID of the SAP or spoke-SDP parent-aa-sub of the AARP peer.

The `no` form of the command removes the peer endpoint from the AARP instance.

Default

no peer-endpoint

Parameters

- `sap sap-id` — Specifies the physical port identifier portion of the SAP definition.
- `sdp-id:vc-id` — Specifies the spoke SDP ID and VC ID.
 - **Values**
 - `1 — 17407`
 - `1 — 4294967295`
- `encap-type {dot1q|null|qinq}` — Specifies the encapsulation type.

priority

Syntax

```
priority [0..255]
no priority
```

Context

config>app-assure>aarp

Description

This command defines the priority for the AARP instance. The priority value is used to determine the master/backup upon initialization or re-balance.

The `no` form of the command removes the priority.
Default priority 100

Parameters $[0 — 255]$ — Specifies an integer that defines the priority of an AARP instance.

Values $0 — 255$

bit-rate-high-wmark

Syntax `bit-rate-high-wmark high-watermark`

Context `config>application-assurance`

Description This command configures the high watermark for bit rate alarms.

Parameters `high-watermark` — Specifies the high watermark for bit rate alarms. The value must be larger than or equal to the low-watermark value.

Values $1 — 10000$, `max` megabits/sec

bit-rate-low-wmark

Syntax `bit-rate-low-wmark low-watermark`

Context `config>application-assurance`

Description This command configures the utilization of the flow records on the ISA-AA Group when the full alarm will be cleared by the agent.

Default 0

Parameters `low-watermark` — Specifies the low watermark for bit rate alarms. The value must be lower than or equal to the high-watermark value.

Values $0 — 10000$ megabits/sec

packet-rate-high-wmark

Syntax `packet-rate-high-wmark high-watermark`

Context `config>app-assure`

Description This command configures the packet rate on the ISA-AA when a packet rate alarm will be raised by the agent.

Default `max = disabled`

Parameters `high-watermark` — Specifies the high watermark for packet rate alarms. The value must be larger than or equal to the packet-rate-low-wmark value.
Values 1 — 14880952, max packets/sec

packet-rate-low-wmark

Syntax packet-rate-low-wmark low-watermark

no packet-rate-low-wmark

Context config>app-assure

Description This command configures the system wide low watermark threshold for per-ISA throughput in packets/second when an high packet rate alarm will be cleared by the agent. The value must be less than or equal to the packet-rate-high-wmark parameter.

The **no** form of the command sets the parameter to minimum (watermark disabled).

Default 0

Parameters

low-watermark — Specifies the low watermark for packet rate alarms. The value must be lower than or equal to the packet-rate-low-wmark value.

Values 0 — 14880952 packets/sec

flow-setup-high-wmark

Syntax flow-setup-high-wmark high-watermark

Context config>application-assurance

Description This command configures the system wide high watermark threshold for per-ISA throughput in packets/second when an alarm will be raised by the agent. The value must be larger than or equal to the packet-rate-low-wmark parameter.

The **no** form of the command sets the parameter to maximum (watermark disabled).

Default 0

Parameters

high-watermark — Specifies the high watermark for flow setup rate alarms. The value must be larger than or equal to the flow-setup-low-wmark value.

Values 1 — 200000, max flows/sec

flow-setup-low-wmark

Syntax flow-setup-low-wmark low-watermark

no flow-setup-low-wmark

Context config>application-assurance

Description This command configures the flow setup rate on the ISA-AA when a flow setup alarm will be raised by the agent.
Default 0

Parameters

- **low-watermark** — Specifies the low watermark for flow setup rate alarms. The value must be larger than or equal to the flow-setup-high-wmark value.

 Values 1 — 200000, max flows/sec

application-assurance

Syntax application-assurance

Context config

Description This command enables the context to perform Application Assurance (AA) configuration operations.

flow-table-high-wmark

Syntax flow-table-high-wmark high-watermark

no flow-table-high-wmark

Context config>app-assure

Description The command configures the system-wide high watermark threshold as a percentage of the flow table size for the per-ISA utilization of the flow records when a full alarm will be raised by the agent.

Parameters high-watermark — Specifies the high watermark for flow table full alarms.

 Values 0 — 100

 Default 95%

flow-table-low-wmark

Syntax flow-table-low-wmark low-watermark

no flow-table-low-wmark

Context config>app-assure

Description This command configures the system-wide low watermark threshold as a percentage of the flow table size for per-ISA. The value must be lower than or equal to the **flow-table-high-wmark** high-watermark parameter.

Parameters low-watermark — Specifies the low watermark for flow table full alarms.

 Values 0 — 100

 Default 90%

protocol
Application Assurance Commands

Syntax
protocol protocol-name

Context
config>app-assure

Description
This command configures the shutdown of protocols system-wide.

Parameters
protocol-name — A string of up to 32 characters identifying a predefined protocol.

group

Syntax
group aa-group-id[:partition-id] [create]
no group aa-group-id:partition-id

Context
config>app-assure

Description
This command configures and enables the context to configure an application assurance group and partition parameters.

Parameters
aa-group-id — Represents a group of ISA MDAs.

- **Values**
 1 — 255

partition-id — Specifies a partition within a group.

- **Values**
 1 — 65535

create — Keyword used to create the partition in the group.

aa-sub-remote

Syntax
[no] aa-sub-remote

Context
config>app-assure

Description
This command specifies whether or not the from subscriber and to subscriber traffic direction is reversed for this group-partition.

Default
no aa-sub-remote

cflowd

Syntax
cflowd

Context
config>app-assure>group

Description
This command enables the context to configure cflowd parameters for the application assurance group.

collector
Syntax

```plaintext
collector ip-address[:port] [create]
no collector ip-address[:port]
```

Context

```
config>app-assure>group>cflowd
```

Description

This command defines a flow data collector for cflowd data. The IP address of the flow collector must be specified. The UDP port number is an optional parameter. If it is not set, the default of 2055 is used.

Parameters

`ip-address` — The IP address of the flow data collector in dotted decimal notation.

`port` — The UDP port of flow data collector.

- **Default**: 2055
- **Values**: 1—65535

comprehensive

Syntax

```plaintext
comprehensive
```

Context

```
config>app-assure>group>cflowd
```

Description

This command enables the context to configure cflowd comprehensive statistics output parameters.

rtp-performance

Syntax

```plaintext
performance
```

Context

```
config>app-assure>group>cflowd
```

Description

This command configures the cflowd RTP performance export.

event-log

Syntax

```plaintext
event-log event-log-name [create]
no event-log event-log-name
```

Context

```
config>app-assure>group
```

Description

This command configures an event log.

buffer-type

Syntax

```plaintext
buffer-type buffer-type
```

Context

```
config>app-assure>group>evt-log
```

Description

This command specifies the type of buffer to be used in the event log.
Parameters

buffer-type — Specifies the type of event type.

Values

linear — Specifies a linear buffer which once full will stop recording events until it is cleared.
circular — Specifies a circular buffer whereby older entries will be overwritten by newer entries.

max-entries

Syntax

max-entries max-entries
no shutdown

Context

config>app-assure>group>evt-log

Description

This command configures the number of entries in the buffer.

Parameters

max-entries — Specifies the maximum number of entries for the event log.

Values

1 — 100000

Default

500

app-group

Syntax

[no] app-group app-group-name [rate]

Context

config>app-assure>group>cflowd>rtp-performance
config>app-assure>group>cflowd>tcp-performance
config>app-assure>group>cflowd>comprehensive

Description

This command configures application groups to export performance records with cflowd. The no form of the command removes the parameters from the configuration.

Parameters

app-group-name — Specifies the application group name.

rate — Specifies which sampling flow rate to use; flow-rate or flow-rate2.

Values

flow-rate, flow-rate2

Default

flow-rate

application

Syntax

[no] application application-name [rate]

Context

config>app-assure>group>cflowd>rtp-performance
config>app-assure>group>cflowd>tcp-performance
config>app-assure>group>cflowd>comprehensive

Description

This command configures applications to export performance records with cflowd.
The no form of the command removes the parameters from the configuration.

Parameters

- **application-name** — Specifies the name defined for the application.
- **rate** — Specifies which sampling flow rate to use; flow-rate or flow-rate2.

Values
- flow-rate, flow-rate2
- Default: flow-rate

flow-rate

Syntax

```plaintext
flow-rate sample-rate
no flow-rate
```

Context

- `config>app-assure>group>cflowd>rtp-performance`
- `config>app-assure>group>cflowd>tcp-performance`
- `config>app-assure>group>cflowd>comprehensive`

Description

This command configures specifies the per-flow sampling rate for the cflowd export of Application Assurance performance statistics.

The no form of the command reverts to the default.

Default

no flow-rate

Parameters

- **sample-rate** — This is the rate at which to sample flows that are eligible for TCP performance measurement.

Values

- 1 — 1000

flow-rate2

Syntax

```plaintext
flow-rate2 sample-rate
no flow-rate2
```

Context

- `config>app-assure>group>cflowd>rtp-performance`
- `config>app-assure>group>cflowd>tcp-performance`
- `config>app-assure>group>cflowd>comprehensive`

Description

This command configures specifies the per-flow second sampling rate for the cflowd export of Application Assurance performance statistics.

The no form of the command reverts to the default.

Default

no flow-rate

Parameters

- **sample-rate** — This is the rate at which to sample flows that are eligible for TCP and/or RTP performance measurement.

Values

- 1 — 1000
template-retransmit

Syntax
```
template-retransmit seconds
no template-retransmit
```  

Context
```
config>app-assure>group>cflowd
```  

Description
This command configures the period of time, in seconds, for the template to be retransmitted.

Parameters
```
seconds — Specifies the time period for the template to be retransmitted.
```

Values
```
10 — 600
```

Default
```
600
```

tcp-performance

Syntax
```
tcp-performance
```  

Context
```
config>app-assure>group>cflowd
```  

Description
This command enables the context to configure Cflowd TCP performance export parameters.

volume

Syntax
```
volume
```  

Context
```
config>app-assure>group>cflowd
```  

Description
This command configures the cflowd volume export.

rate

Syntax
```
rate sample-rate
no rate
```  

Context
```
config>app-assure>group>cflowd>volume
```  

Description
This command configures the sampling rate of packets for the cflowd export of application assurance volume statistics.

The no form of the command reverts to the default value.

Parameters
```
sample-rate — This is the rate at which to sample packets for the cflowd export of application assurance volume statistics.
```

Values
```
1 — 10000
```
Application Assurance Commands

Syntax

http-error-redirect redirect-name [create]
no http-error-redirect redirect-name

Context

config>app-assure>group

Description

This command configures an HTTP error redirect policy. The policy contains important information relevant to the redirect server.

The no form of the command removes the redirect name from the group configuration.

Default

none

Parameters

redirect-name — A string of up to 32 characters that identifies the HTTP error redirect policy.

error-code

Syntax

error-code error-code [custom-msg-size custom-msg-size]
no error-code error-code

Context

config>app-assure>group>http-error-redirect

Description

This command refers to which HTTP status codes a redirect action is applied. Currently, only 404 http error code is supported. Only messages with sizes less than that configured here (custom-msg-size) are eligible for redirect action.

The no form of the command removes the parameters from the configuration.

Default

Error code: none

Parameters

error-code — Specifies the error code for a HTTP Error Redirect.

Values

0 — 4294967295

custom-msg-size — Specifies the maximum message size above which redirect will not be done.

Values

0 — 4294967295

http-host

Syntax

http-host http-host
no http-host

Context

config>app-assure>group>http-error-redirect

Description

This is a string that refers to the http host name of the landing server (barefurit or xerocole). It is used in the HTTP GET operation from the client (which is being redirected) to the redirect search landing server. It must contain a valid IP address or HTTP host name / URI for the HTTP GET from the client to the landing server to work.

The no form of the command removes the HTTP host string from the configuration.

Default

none

Parameters

http-host — Specifies a string of 255 chars max length, that refers to the HTTP host name of the landing server (barefurit or xerocole).
participant-id

Syntax

```
participant-id participant-id
no participant-id
```

Context

`config>app-assure>group>http-error-redirect`

Description

This command specifies a 32-character string assigned to the operator by Barefruit. It is used by barefruit landing servers (applies to template # 1 only).

Default

None

Parameters

`participant-id` — 32-char string supplied by the Barefruit

template

Syntax

```
template template-id
no template
```

Context

`config>app-assure>group`

`config>app-assure>group>http-error-redirect`

Description

The redirect template refers to the template of parameters passed from the AA-ISA to the redirect server via JavaScript in the redirect packet. The template is specific to the redirect server being used in the network.

Currently, two partners are used and tested with AA-ISA redirect solution, Barefruit and Xerocole. The `no` form of the command reverts to the default.

Default

1 = referring to redirect format for Barefruit landing server.

Parameters

`template-id` — Specifies an HTTP error redirect template.

- 1 = Barefruit specific template
- 2 = xerocole specific template.

Values

0 — 4294967295

http-match-all-requests

Syntax

```
[no] http-match-all-requests
```

Context

`config>app-assure>group`

`config>app-assure>group>policy>app-filter>entry`

Description

This command enables HTTP matching for all requests for a given HTTP expression.

The `no` form of the command restores the default (removes http-match-all-request for this particular expression) by this app-filter entry).

Default

no http-match-all-requests
http-notification

Syntax

http-notification http-notification-name [create]
no http-notification http-notification-name

Context config>app-assure>group

Description This command configures an http-notification object for subscriber in browser notification.
The **no** form of the command removes the http notification policy from the configuration.

Parameters

http-notification-name — Specifies the name of the HTTP Notification policy.
create — Specifies the mandatory keyword to create the policy.

interval

Syntax

interval {one-time | minimum-interval}

Context config>app-assure>group>http-notif#

Description This command configures the minimum interval in between notification messages. It can be set to
one-time or a value in minutes from 1 to 1440.
The **no** form of the command removes the interval from the http-notification policy.

Parameters

minimum-interval — Represents the minimum interval value in minutes in between two http
notifications.

Values 1 — 1440.

template

Syntax

template value
no template

Context config>app-assure>group>http-notif

Description This command configures the template which defines the format and parameters included in the http
notification message.
The **no** form of the command removes the template from the configuration.

Parameters

value — Specifies the template id of this HTTP Notification.

Values 1 — The only acceptable value.

script-url

Syntax

script-url script-url-name [create]
no script-url
Application Assurance Commands

Context
config>app-assure>group>http-notif

Description
This command configures the url of the script used by the http notification policy.
The **no** form of the command removes the script-url from the http-notification policy.

Parameters

- **script-url-name** — Specifies the 255 characters long string representing the url of the script used in the http notification policy.

http-redirect

Syntax

- **http-redirect redirect-name [create]**
- **no http-redirect redirect-name**

Context
config>app-assure>group

Description
This command configures an HTTP redirect.
The **no** form of the command removes the http redirect policy from the configuration.

Parameters

- **redirect-name** — Specifies the HTTP redirect that will be applied. If no redirect name is specified then HTTP redirect is not enabled.

redirect-url

Syntax

- **redirect-url redirect-url**
- **no redirect-url**

Context
config>app-assure>group>http-redirect

Description
This command configures the http redirect URL which is the URL (page) that the user is redirected to when an HTTP redirect takes effect.
The operator can select the URL arguments to include in the redirect-url using either a specific template-id or by configuring the redirect-url using one of the supported macro substitution keywords.
The **no** form of the command removes the redirect-url field from the configuration.

Parameters

- **redirect-url** — Specifies the URL of the landing page.

macro substitutions:

Values
- **$URL** — The Request-URI in the HTTP GET Request received
- **$SUB-** — A string that represents the subscriber ID
- **$IP-** — A string that represents the IP address of the subscriber host
- **$RTRID-** — A string that represents the router ID
- **$URLPRM-** — The HTTP URL parameter associated with the subscriber

tcp-client-reset

Syntax

- **[no] tcp-client-reset**
Application Assurance Commands

Context config>app-assure>group>http-redirect

Description This command enables an HTTP-redirect policy to initiate a TCP reset towards the client if the AA policy results in a redirect with packet drop but the http redirect cannot be delivered. Scenarios for this include HTTPs (TLS) sessions, blocking of non-HTTP TCP traffic, and blocking of existing flows after a policy re-evaluate of an existing subscriber.

The no form of the command disables the command.

template

Syntax template template-id
no template

Context config>app-assure>group>http-redirect

Description This command configures the template that defines which parameters are appended to the HTTP host redirect field in the redirect message.

The HTTP redirect template provides HTTP 302 redirect containing only the URL specified in the redirect policy, with no other parameters.

The no form of the command removes the template from the configuration.

Default none

Parameters template-id — Specifies the HTTP Policy Redirect template.

Values 1 — Javascript based redirect embedded in HTTP 200 OK response with a predefined number of arguments automatically appended to the redirect URL
2 — HTTP 302 Redirect with a predefined number of arguments automatically appended to the redirect URL.
3 — HTTP 302 Redirect with no parameters appended to the URL (empty).
4 — Empty Redirect format using Javascript.
5 — Redirect supporting macro substitution using HTTP 302.
6 — Redirect supporting macro substitution using Javascript.

http-x-online-host

Syntax [no] http-x-online-host

Context config>app-assure>group

Description This command specifies whether X-Online-Host header field is used as a replacement for the HTTP Host header field.

The no form of the command disables the use of X-Online-Host header field used as a replacement.

ip-prefix-list

Syntax ip-prefix-list ip-prefix-list-name [create]
no ip-prefix-list ip-prefix-list-name

Context config>app-assure>group

Description This command configures an IP prefix list.

Parameters create — Mandatory keyword used when creating an application profile. The create keyword requirement can be enabled/disabled in the environment>create context.

http-enrich

Syntax http-enrich http-enrich_name [create]

no http-enrich http-enrich_name

Context config>app-assure>group

Description This command configures an HTTP enrichment policy.
The no form of the command removes the http enrichment policy from the configuration

Default none.

Parameters http-enrich_name — Specifies the name of the http enrichment policy up to 32 characters in length.
create — Mandatory keyword used when creating an application profile. The create keyword requirement can be enabled/disabled in the environment>create context.

field

Syntax [no] field field-name

Context config>app-assure>group>http-enrich

Description This command configures what fields to be inserted into the HTTP header. The command is repeated for each field to be inserted (up to a maximum of four fields). The same field cannot be inserted twice into the header under different header names.
The no form of the command removes the specified parameter so that it is not inserted into the http header.

Default none.

Parameters field-name — Specifies what parameter(s) to inserted into the header

Values imsi, msisdn, subscriber-ip, imei-sv

Where:
imsi: header name for subscriber IMSI
msisdn: Header name for subscriber MSISDN
subscriber-ip: Header name for subscriber IP address
imei-sv: Header name for subscriber IMEI-SV
name

Syntax name <header_name>

Context config>app-assure>group>http-enrich>field

Description This command configures an HTTP enrichment template field header name. The no form of the command removes the http enrichment template field header name from the configuration.

Default none.

Parameters header-name — Specifies the name of the http enrichment policy. It is inserted before the actual field name (e.g. “x-MSISD” = MSISDN)

anti-spoof

Syntax [no] anti-spoof

Context config>app-assure>group>http-enrich>field

Description This command configures the HTTP header enrichment anti-spoofing functionality. The no form of the command disables anti-spoofing functionality.

Default no anti-spoof

static-string

Syntax static-string static-string

no static-string

Context config>app-assure>group>http-enrich>field

Description This command configures an HTTP header enrichment template field static string. The no form of the command removes the template field static string.

Default no static-string

Parameters static-string — Specifies a static string (max 32 char in length).
encode

Syntax

- `encode type key key`
- `encode type key hash-key hash`
- `encode type key hash2-key hash2`
- `no encode`

Context

`config>app-assure>group>http-enrich>field`

Description

This command configures an HTTP header enrichment template field static string. The `no` form of the command removes the template field static string.

Default

- no static-string

Parameters

- `type` — md5
- `key` — Specifies the key string, 64 characters maximum
- `hash-key` — Specifies the first hashed key.
- `hash-key2` — Specifies the second hashed key
- `hash | hash2` — Specifies the hashing scheme used in the hashed key.
transit-ip-policy

Syntax

transit-ip-policy ip-policy-id [create]

no transit-ip-policy ip-policy-id

Context

config>application-assurance>group

Description

This command defines a transit AA subscriber IP policy. Transit AA subscribers are managed by the system through the use of this policy assigned to services, which determines how transit subs are created and removed for that service.

The **no** form of the command deletes the policy from the configuration. All associations must be removed in order to delete a policy.

Default

no transit-ip-policy

Parameters

- **ip-policy-id** — An integer that identifies a transit IP profile entry.
 - **Values**
 - 1 — 65535
 - **create** — Keyword used to create the entry.
Policer Commands

Syntax

```
policer policer-name type type granularity granularity [create]
policer policer-name
no policer policer-name
```

Context

```
config>app-assure>group
```

Description

This command creates application assurance policer profile of a specified type. Policers can be bandwidth or flow limiting and can have a system scope (limits traffic entering AA ISA for all or a subset of AA subscribers), subscriber scope or granularity (limits apply to each AA subscriber traffic).

The policer type and granularity can only be configured during creation. They cannot be modified. The policer profile must be removed from all AQPs in order to be removed. Changes to policer profile parameters take effect immediately for policers instantiated as result of AQP actions using this profile.

The `no` form of the command deletes the specified policer from the configuration.

Parameters

`type` — Specifies the policer type.
- `single-bucket-bandwidth` — Creates a profile for a single bucket (PIR) bandwidth limiting policer.
- `dual-bucket-bandwidth` — Creates profile for a dual bucket (PIR, CIR) bandwidth limiting policer.
- `flow-rate-limit` — Creates profile for a policer limiting rate of flow set-ups.
- `flow-count-limit` — Creates profile for a policer limiting total flow count.

`granularity` — Specifies the granularity type.
- `system` — Creates a system policer provile for a policer that limits the traffic in the scope of all or a subset of AA subscribers on a given AA ISA.
- `subscriber` — Creates a policer profile for a policer for each AA subscriber that limits the traffic in the scope of that subscriber.

`create` — Keyword used to create the policer name and parameters.

Default

```
none
```

Parameters

`policer-name` — A string of up to 32 characters that identifies policer.

action

Syntax

```
action {priority-mark | permit-deny}
```

Context

```
config>app-assure>group>policer
```

Description

This command configures the action to be performed by single-bucket bandwidth policers for non-conformant traffic.
Dual bucket bandwidth policers cannot have their action configured and always mark traffic below CIR in profile, between CIR and PIR out of profile, and drop traffic above PIR. Flow policers always discard non-conformant traffic.

When multiple application assurance policers are configured against a single flow (including policers at both subscriber and system), the final action done to the flow/packet will be a logical OR of all policers’ actions. For example, if only one of the policers requires the packet to be discarded, the packet will be dropped regardless of the action of the other policers.

Default

Parameters

- **permit-deny** — Non-conformant traffic will be dropped.
- **priority-mark** — Non-conformant traffic will be marked out of profile and the conformant traffic will be marked in profile. The new marking will overwrite any previous IOM QoS marking done to a packet.
- **permit-drop** — Non-conformant traffic will be dropped.

adaptation-rule

Syntax

```
adaptation-rule pir {max | min | closest} [cir {max | min | closest}]
```

Context

config>app-assure>group>policer

Description

This command defines the method used by the system to derive the operational CIR and PIR settings when the queue is provisioned in hardware. For the CIR and PIR parameters individually, the system attempts to find the best operational rate depending on the defined option. To change the CIR adaptation rule only, the current PIR rule must be part of the command executed.

The `no` form of the command removes any explicitly defined constraints used to derive the operational CIR and PIR created by the application of the policy. When a specific adaptation-rule is removed, the default constraints for rate and cir apply.

Default

Parameters

- **max** — The operational PIR or CIR for the queue will be equal to or less than the administrative rate specified using the `rate` command.
- **min** — The operational PIR or CIR for the queue will be equal to or greater than the administrative rate specified using the `rate` command.
- **closest** — The operational PIR or CIR for the queue will be the rate closest to the rate specified using the `rate` command.

flow-count

Syntax

```
flow-count flow-count
no flow-count
```

Context

config>app-assure>group>policer
Application Assurance Commands

Description This command configures the flow count for the flow-count-limit policer. It is recommended to configure flow count subscriber-level policer for AA subscribers to ensure fair usage of flow resources between AA subscribers.

Parameters

- **flow-count** — Specifies the flow count for the flow-count-limit policer.

cbs

Syntax

```
  cbs [committed-burst-size [no cbs]]
```

Context

```
config>app-assure>group>policer
```

Description This command provides a mechanism to configure the committed burst size for the policer. It is recommended that CBS is configured larger than twice the maximum MTU for the traffic handled by the policer to allow for some burstiness of the traffic. CBS is configurable for dual-bucket bandwidth policers only.

The **no** form of the command resets the cbs value to its default.

Default 0

Parameters

- **committed-burst-size** — An integer value defining size, in kbytes, for the CBS of the policer.

Values

- 0 — 131071

mbs

Syntax

```
  mbs [maximum-burst-size [no mbs]]
```

Context

```
config>app-assure>group>policer
config>app-assure>group>tod-override
```

Description This command provides a mechanism to configure the maximum burst size for the policer. It is recommended that MBS is configured larger than twice the MTU for the traffic handled by the policer to allow for some burstiness of the traffic. MBS is configurable for single-bucket, dual-bucket bandwidth and flow setup rate policers only.

The **no** form of the command resets the MBS value to its default.

Default 0

Parameters

- **maximum-burst-size** — An integer value defining either size, in kbytes, for the MBS of the bandwidth policer, or flow count for the MBS of the flow setup rate policers.

Values

- 0 — 131071

rate

Syntax

```
  rate [pir-rate [cir cir-rate]]
```

Values

- 0 — 131071
no rate

Context
config>app-assure>group>policer
config>app-assure>group>tod-override

Description
This command configures the administrative PIR and CIR for bandwidth policers and flow setup rate limits for flow policers. The actual rate sustained by the flow can be limited by other policers that may be applied to that flow’s traffic. This command does not apply to flow-count-limit policers. The cir option is applicable only to dual-bucket bandwidth policers. It is recommended to configure flow setup rate subscriber-level policer for AA subscribers to ensure fair usage of flow resources between AA subscribers.

The no form of the command resets the values to defaults.

Default
0

Parameters
- **pir-rate** — An integer specifying either the PIR rate in Kbps for bandwidth policers.
 - **Values**
 - 1 — 100000000, max or flows

- **cir-rate** — An integer specifying the CIR rate in Kbps.
 - **Values**
 - 0 — 100000000, max

tod-override

Syntax
tod-override tod-override-id [create]
no tod-override tod-override-id

Context
config>app-assure>group>policer

description
This commands creates a time of day override policy for a given policer. Up to 8 overrides can be configured per policer. Rate/mbs/cbs/flow-rate/flow-count configured in each override-id will override the default policer values at the specified time of day configured in the override.

Default
one

Parameters
- **tod-override-id** — Specify the time of day override ID.
 - **Values**
 - 1 — 255

time-range

Syntax
time-range daily start-time end-time [on day [day...(upto 7 max)]]
time-range weekly start-time end-time
no time-range

Context
config>app-assure>group>tod-override

Description
This command configures the time-range applicable to a particular override-id. The time-range can be configured as daily or weekly policies.

When using a daily override the operator can select which day(s) during the week from Sunday to Saturday it is applicable along with the start/end hour/min time range repeated over the(se) day(s).
When using a weekly override the operator can select between which days in the week the policy start up to the hours/min for both start day and end day.

Default
no time-range

Parameters
daily — Schedule the override as a daily occurrence.

weekly — Schedule the override as a daily occurrence.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Daily</th>
<th>Weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>start-time</td>
<td>daily <hh>:<mm></td>
<td>weekly <day>,<hh>:<mm></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><hh> : 0..23</td>
</tr>
<tr>
<td></td>
<td></td>
<td><mm> : 0</td>
</tr>
<tr>
<td>end-time</td>
<td>daily <hh>:<mm></td>
<td>weekly <day>,<hh>:<mm></td>
</tr>
<tr>
<td></td>
<td></td>
<td><hh> 0..23</td>
</tr>
<tr>
<td></td>
<td></td>
<td><mm> 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><day> sunday</td>
</tr>
</tbody>
</table>
policy

Syntax: policy
Context: config>app-assure>group>policy
Description: This command enables the context to configure parameters for application assurance policy. To edit any policy content begin command must be executed first to enter editing mode. The editing mode is left when the abort or commit commands are issued.

abort

Syntax: abort
Context: config>app-assure>group>policy
Description: This command ends the current editing session and aborts any changes entered during this policy editing session.

begin

Syntax: begin
Context: config>app-assure>group>policy
Description: This command begins a policy editing session. The editing session continues until one of the following conditions takes place:

• Abort or commit is issued.
• Control complex resets.

The editing session is not interrupted by:

• HA activity switch.
• CLI session termination (for example, as result of closing a Telnet session).

commit

Syntax: commit
Context: config>app-assure>group>policy
Description: This command commits changes made during the current editing session. None of the policy changes done will take effect until commit command is issued. If the changes can be successfully committed,
no errors detected during the commit during cross-reference verification against exiting application assurance configuration, the editing session will also be closed.

The newly committed policy takes affect immediately for all new flows, existing flows will transition onto the new policy shortly after the commit.

app-group

Syntax
app-group application-group-name [create]

no app-group application-group-name

Context
config>app-assure>group>policy

Description
This command creates an application group for an application assurance policy. The no form of the command deletes the application group from the configuration. All associations must be removed in order to delete a group.

Parameters
application-group-name — A string of up to 32 characters uniquely identifying this application group in the system.

create — Mandatory keywork used when creating an application group. The create keyword requirement can be enabled/disabled in the environment>create context.

charging-group

Syntax
charging-group charging-group-name [create]

no charging-group

Context
config>app-assure>group>policy

Description
This command creates a charging group for an application assurance policy. The no form of the command deletes the charging group from the configuration. All associations must be removed in order to delete a group.

Parameters
charging-group-name — A string of up to 32 characters uniquely identifying this charging group in the system.

create — Mandatory keywork used when creating a charging group group. The create keyword requirement can be enabled/disabled in the environment>create context.
Group Commands

Context
config>app-assure>group>policy>application
config>app-assure>group>policy>app-group

Description
This command associates an application or app-group to an application assurance charging group. The **no** form of the command deletes the charging group association.

Default
no charging-group

Parameters
charge-group-name — Specifies a string of up to 32 characters uniquely identifying an existing charging group in the system.

export-id

Syntax

- export-id export-id
- no export-id

Context
config>app-assure>group>policy>application
config>app-assure>group>policy>application>charging-group
config>app-assure>group>policy>app-group

Description
This command assigns an export-id value to a charging group to be used for accounting export identification of the charging group. This ID is encoded in the top 2 bytes of the RADIUS accounting VSA to identify which charging group the counter value represents. If no export-id is assigned, that charging group cannot be added to the aa-sub stats RADIUS export-type. Once a charging group index is referenced, it cannot be deleted without removing the reference. The no form of the command removes the export-id from the configuration.

Default
no export-id

Parameters
export-id — An integer that identifies an export-id.

Values
1 — 65535

app-filter

Syntax
app-filter

Context
config>app-assure>group>policy

Description
This command enables the context to configure an application filter for application assurance.

app-profile

Syntax

- app-profile app-profile-name [create]
- no app-profile app-profile-name

Context
config>app-assure>group>policy
Application Assurance Commands

Description
This command creates an application profile and enables the context to configure the profile parameters.

The no form of the command removes the application profile from the configuration.

Parameters

app-profile-name — Specifies the name of the application profile up to 32 characters in length.

create — Mandatory keyword used when creating an application profile. The create keyword requirement can be enabled/disabled in the environment>create context.

Default
none

app-qos-policy

Syntax app-qos-policy

Context config>app-assure>group>policy

Description
This command enables the context to configure an application QoS policy.

default-charging-group

Syntax default-charging-group charging-group-name

no default-charging-group

Context config>app-assure>group>policy

Description
This command associates a charging group to any applications or app-groups that are not explicitly assigned to a charging group, for an application assurance policy.

The no form of the command deletes the default charging group from the configuration.

Default
no default-charging-group

Parameters
charging-group-name — A string of up to 32 characters uniquely identifying an existing charging group in the system

diff

Syntax diff
Group Commands

Context config>app-assure>group>policy

Description This command compares the newly configured policy against the operational policy.

application

Syntax

application application-name [create]
no application application-name

Context config>app-assure>group>policy

Description This command creates an application of an application assurance policy. The no form of the command deletes the application. To delete an application, all associations to the application must be removed.

Default none

Parameters

application-name — Specifies a string of up to 32 characters uniquely identifying this application in the system.

create — Mandatory keyword used when creating an application. The create keyword requirement can be enabled/disabled in the environment>create context.

policy-override

Syntax

policy-override

Context config>app-assure>group>policy

Description This command enables the context to configure policy override parameters.

policy aa-sub

Syntax

policy aa-sub {sap sap-id | spoke-sdp sdp-id:vc-id} [create]
no policy aa-sub {sap sap-id | spoke-sdp sdp-id:vc-id}

Context config>app-assure>group>policy>policy-override

Description This command specifies the SAP or SDP. The no form of the command removes the SAP or ESM matching criteria.

Parameters

sap sap-id — Specifies the physical port identifier portion of the SAP definition.

sdp-id:vc-id — Specifies the spoke SDP ID and VC ID.

Values

1 — 17407
1 — 4294967295
characteristic

Syntax
characteristic characteristic-name value value-name
no characteristic characteristic-name

Context
config>app-assure>group>policy>policy-override

Description
This command configure an override characteristic and value.

Parameters
characteristic-name — Specifies the characteristic name up to 32 characters in length.
value value-name — Specifies the override characteristic value for the application profile characteristic used by the Application assurance subscriber.

app-group

Syntax
app-group application-group-name

Context
config>app-assure>group>policy>application

Description
This command associates an application with an application group of an application assurance policy.

Default
none

Parameters
application-name — A string of up to 32 characters uniquely identifying an existing application in the system.
APPLICATION FILTER COMMANDS

entry

Syntax
```
entry entry-id [create]
no entry entry-id
```

Context
```
config>app-assure>group>policy>app-filter
```

Description
This command creates an application filter entry.

App filter entries are an ordered list, the lowest numerical entry that matches the flow defines the application for that flow.

An application filter entry or entries configures match attributes of an application.

The no form of this command deletes the specified application filter entry.

Default
none

Parameters
- `entry-id` — An integer that identifies an app-filter entry.
 - Values: 1 — 65535
- `create` — Keyword used to create the entry.

application

Syntax
```
application application-name
```

Context
```
config>app-assure>group>policy>application
config>app-assure>group>policy>app-filter>entry
```

Description
This command assigns this application filter entry to an existing application. Assigning the entry to Unknown application restores the default configuration.

Default
unknown application

Parameters
- `application-name` — Specifies an existing application name.

expression

Syntax
```
expression expr-index expr-type {eq | neq} expr-string
no expression expr-index
```

Context
```
config>app-assure>group>policy>app-filter>entry
```

Description
This command configures string values to use in the application definition.

Parameters
- `expr-index` — Specifies an index value which represents .expression substrings.
Values

1 — 4

expr-type — Represents a type (and thereby the expression substring).

http-host|http-uri|http-referer|http-user-agent|
sip-ua|sip-uri|sip-mt|citrix-app|h323-product-id|tls-cert-subj-org-name|tls-cert-subj-common-

name| rtsp-host|rtsp-uri|rtsp-ua

http-host — Matches the string against the HTTP Host field or TLS Server Name Indicator (SNI).

http-uri — Matches the string against the HTTP URI field.

http-referer — Matches the string against the HTTP Referer field.

http-user-agent — Matches the string against the HTTP User Agent field.

sip-ua — Matches the string against the SIP UA field.

sip-uri — Matches the string against the SIP URI field.

sip-mt — Matches the string against the SIP MT field.

citrix-app — Matches the string against the Citrix app field.

h323-product-id — Matches the string against the h323-product-id field.

tls-cert-subj-org-name — Matches the TLS Certificate Subject Organization Name substring.

tls-cert-subj-common-name — Matches the TLS Certificate Subject Common Name substring.

rtsp-host — Matches the Real Time Streaming Protocol (RTSP) substring host.

rtsp-uri — Matches the RTSP URI substring.

rtsp-ua — Matches the RTSP UA substring.

rtmp-page-host — Matches against the RTMP Page Host Field

rtmp-page-uri — Matches against the RTMP Page URI Field

rtmp-swf-host — Matches against the RTMP Swf Host Field

rtmp-swf-uri — Matches against the RTMP Swf URI Field

eq — Specifies the equal to comparison operator to match the specified HTTP string.

neq — Specifies the not equal to comparison operator to match the specified HTTP string.

expr-string — Specifies an expression string, up to 64 characters, used to define a pattern match.

Denotes a printable ASCII substring used as input to an application assurance filter match criteria object.

• The following syntax is permitted within the substring to define the pattern match criteria:

^<substring>* - matches when <substring> is at the beginning of the object.

<substring> - matches when <substring> is at any place within the object.

*<substring>$ - matches when <substring> is at the end of the object.

^<substring>$ - matches when <substring> is the entire object.

* - matches zero to many of any character. Note that a single wildcard as infix in the expression is allowed.

\ - matches any single character

\d - matches any single decimal digit [0-9]

\l - forces case sensitivity (by default, the expression match are case insensitive), the \l can be specified anywhere between the leading [*] and trailing [$*]

* - matches the asterisk character

• Rules for <substring> characters:
Flow setup direction

Syntax: flow-setup-direction (subscriber-to-network | network-to-subscriber | both)

Context: config>app-assure>group>policy>app-filter>entry

Description: This command configures the direction of flow setup to which the application filter entry is to be applied.

Parameters:
- subscriber-to-network — Specifies that the app-filter entry will be applied to flows initiated by a local subscriber.
- network-to-subscriber — Specifies that the app-filter entry will be applied to flows initiated from a remote destination towards a local subscriber.
- both — Specifies that the app filter entry will be applied for subscriber-to-network and network-to-subscriber traffic.

Default: both

- The "\"" (slash) character is used as an ESCAPE sequence. The following ESCAPE sequences are permitted within the <substring>:
 - Hexadecimal Octet YY \xYY
 - Note: A <substring> that uses the '\\' (backslash) ESCAPE character which is not followed by a "\\" or "\x" and a 2-digit hex octet is not valid.

Operational Notes:

1. When matching a TCP flow against HTTP-string based applications, the HTTP header fields are collected from the first HTTP request (for example a GET or a POST) for a given TCP flow. The collected strings are then evaluated against each HTTP flow created within the given TCP flow to determine whether a given HTTP flow matches the application. By not specifying a protocol, the HTTP expressions are matched against all protocols in the HTTP family. By specifying a specific HTTP protocol (for example, http_video) the expression match can be constrained to a subset of the HTTP protocols.

2. To uniquely identify a SIP-based application a protocol match is not required in the app-filter entry with the SIP expression. The SIP expression match is performed against any protocol in the SIP family (such as sip and rtp_sip). By specifying a specific SIP protocol (like rtp_sip) the expression match can be constrained to a subset of the SIP protocols.
ip-protocol-num

Syntax

```
ip-protocol-num {eq | neq} protocol-id
no ip-protocol-num
```

Context

```
config>app-assure>group>policy>app-filter>entry
```

Description

This command configures the IP protocol to use in the application definition. The `no` form of the command restores the default (removes IP protocol number from application criteria defined by this app-filter entry).

Default

```
none
```

Parameters

```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>Specifies that the value configured and the value in the flow must be equal.</td>
</tr>
<tr>
<td>neq</td>
<td>Specifies that the value configured differs from the value in the flow.</td>
</tr>
<tr>
<td>protocol-id</td>
<td>Specifies the decimal value representing the IP protocol to be used as an IP filter match criterion. Well known protocol numbers include ICMP (1), TCP (6), UDP (17). The <code>no</code> form the command removes the protocol from the match criteria.</td>
</tr>
</tbody>
</table>

Values  

```
1 — 255 (Decimal, Hexadecimal, or Binary representation).
```

Supported IANA IP protocol names: 
- crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, idrp, igmp, igp, ip, ipv6, ipv6-frag, ipv6-icmp, ipv6-no-nxt, ipv6-options, ipv6-route, isis, iso-ip, l2tp, ospf-igp, pim, pnni, ptp, rdp, RSVP, sctp, stp, tcp, udp, vrrp

```
* - udp/tcp wildcard
```

server-address

Syntax  

```
server-address {eq | neq} ip-address
server-address {eq | neq} ip-prefix-list ip-prefix-list-name
no server-address
```

Context  

```
config>app-assure>group>policy>app-filter>entry
```

Description  

This command configures the server address to use in application definition. The server IP address may be the source or destination, network or subscriber IP address. The `no` form of the command restores the default (removes the server address from application criteria defined by this entry).

Default  

```\nno net-address
```

Parameters  

```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>Specifies a comparison operator that the value configured and the value in the flow are equal.</td>
</tr>
<tr>
<td>neq</td>
<td>Specifies a comparison operator that the value configured differs from the value in the flow.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Specifies a valid unicast address.</td>
</tr>
</tbody>
</table>

Values

```
ipv4-address  a.b.c.d[/mask]
multiplicity - [1..32]
```

```
ipv6-address  x:x:x:x:x:x:x/x/prefix-length
```

```
x:x:x:x:x:x:d.d.d
```
server-port

Syntax

```
server-port \{eq | neq | gt | lt\} server-port-number
server-port \{eq | neq\} range start-port-num end-port-num
server-port \{eq\} \{port-num | range\} start-port-num end-port-num \{first-packet-trusted | first-packet-validate\}
no server-port
```

Context

```
config>app-assure>group>policy>app-filter>entry
```

Description

This command specifies the server TCP or UDP port number to use in the application definition. The *no* form of the command restores the default (removes server port number from application criteria defined by this app-filter entry).

Default

`no server-port` (the server port is not used in the application definition)

Parameters

- **eq** — Specifies that the value configured and the value in the flow are equal.
- **neq** — Specifies that the value configured differs from the value in the flow.
- **gt** — Specifies all port numbers greater than server-port-number match.
- **lt** — Specifies all port numbers less than server-port-number match.

`server-port-num` — Specifies a valid server port number.

Values

```
0 — 65535
```

`start-port-num, end-port-num` — Specifies the starting or ending port number.

Values

```
0 — 65535
```

Server Port Options:

- **No option specified:** TCP/UDP port applications with full signature verification:
 - AA ensures that other applications that can be identified do not run over a well-known port.
 - Application-aware policy applied once signature-based identification completes (likely requiring several packets).

- **first-packet-validate:** TCP/UDP trusted port applications with signature verification:
 - Application identified using well known TCP/UDP port based filters and re-identified once signature identification completes.
 - AA policy applied from the first packet of a flow while continuing signature-based application identification. Policy re-evaluated once the signature identification completes, allowing to detect improper/unexpected applications on a well-known port.

- **first-packet-trusted:** TCP/UDP trusted port applications - no signature verification:
 - Application identified using well known TCP/UDP port based filters only.
 - Application Aware policy applied from the first packet of a flow.
No signature processing assumes operator/customer trusts that no other applications can run on the well-known TCP/UDP port (statistics collected against trusted_tcp or trusted_udp protocol).

protocol

Syntax

```
protocol {eq | neq} protocol-name
no protocol
```

Context

```
config>app-assure>group>policy>app-filter>entry
```

Description

This command configures protocol signature in the application definition.

The **no** form of the command restores the default (removes protocol from match application defined by this app-filter entry).

Default

```
o protocol
```

Parameters

- **eq** — Specifies that the value configured and the value in the flow are equal.
- **neq** — Specifies that the value configured differs from the value in the flow.
- **protocol-name** — A string of up to 32 characters identifying a predefined protocol.

Sample Output

```
*A:7x50-E11# show application-assurance protocol
=================================================================================
Application Assurance Protocols
=================================================================================

Protocol : Description
--------------------------------------------------------------------------------
aim_oscar : America Online Oscar Instant Messaging.
aim_oscar_file_xfer : America Online Oscar File Transfer.
aim_oscar_video_voice : America Online Oscar Video and Voice Traffic.
aim_toc : America Online Talk to Oscar Instant Messaging.
ares : Ares P2P File Sharing Protocol
betamax_voip : Betamax VoIP Protocol traffic.
bgp : IETF RFC 4271: Border Gateway Protocol
bittorrent : BitTorrent peer to peer protocol.
citrix_ica : Citrix ICA protocol.
citrix_ima : Citrix IMA protocol.
cnnlive : CNN Live Streaming Video
cups : Common Unix Printing Service.
cut_through : Traffic that cannot be categorized. Only default subscriber policy is applied.
cut_through_by_default_policy : Traffic that has been cut-through due to a subscriber default policy.
cvs : Concurrent Versions System.
dcerpc : DCERPC Remote Procedure Call.
denied_by_default_policy : Traffic that was denied by a default subscriber flow policer.
dhcp : Dynamic Host Configuration Protocol
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dht</td>
<td>Peer to Peer Distributed Hash Table exchange.</td>
</tr>
<tr>
<td>direct_connect</td>
<td>Direct Connect peer to peer protocol</td>
</tr>
<tr>
<td>dns</td>
<td>IETF RFC 1035: Domain Name System.</td>
</tr>
<tr>
<td>domino</td>
<td>IBM Domino-Notes.</td>
</tr>
<tr>
<td>empty_tcp</td>
<td>TCP flows that close without ever having exchanged any data.</td>
</tr>
<tr>
<td>emule</td>
<td>eMule/eDonkey peer to peer protocol.</td>
</tr>
<tr>
<td>existing</td>
<td>Traffic that was in progress or with no start of flow.</td>
</tr>
<tr>
<td>fasttrack</td>
<td>FastTrack peer to peer protocol.</td>
</tr>
<tr>
<td>fix</td>
<td>FIX (Financial Information eXchange) protocol.</td>
</tr>
<tr>
<td>fring</td>
<td>Fring Mobile traffic.</td>
</tr>
<tr>
<td>gamecenter</td>
<td>Apple Game Center</td>
</tr>
<tr>
<td>gnutella</td>
<td>Gnutella/Gnutella2 peer to peer protocol.</td>
</tr>
<tr>
<td>google_talk_file_xfer</td>
<td>Google Talk Instant Messaging file transfer.</td>
</tr>
<tr>
<td>google_talk_im</td>
<td>Google Talk Instant Messaging.</td>
</tr>
<tr>
<td>google_talk_voicemail</td>
<td>Google Talk Instant Messaging voice mail.</td>
</tr>
<tr>
<td>gtp</td>
<td>GTP (GPRS Tunneling Protocol).</td>
</tr>
<tr>
<td>h225</td>
<td>ITU H.225 Multimedia Call Signalling Protocol</td>
</tr>
<tr>
<td>h245</td>
<td>ITU H.245 Control Protocol for MultiMedia Communication</td>
</tr>
<tr>
<td>headcall</td>
<td>Headcall Protocol traffic.</td>
</tr>
<tr>
<td>hotline</td>
<td>Hotline Communications: A client-server protocol for file sharing and chatting.</td>
</tr>
<tr>
<td>http</td>
<td>IETF RFC 2616: Hypertext transfer protocol.</td>
</tr>
<tr>
<td>http_audio</td>
<td>HTTP transported Audio content.</td>
</tr>
<tr>
<td>http_shockwaveflash</td>
<td>HTTP transported Shockwave Flash content.</td>
</tr>
<tr>
<td>http_video</td>
<td>HTTP transported Video content.</td>
</tr>
<tr>
<td>http_webfeed</td>
<td>RSS or ATOM Web Feed</td>
</tr>
<tr>
<td>icq</td>
<td>ICQ protocol traffic.</td>
</tr>
<tr>
<td>ical</td>
<td>InterAsterisk Exchange Protocol.</td>
</tr>
<tr>
<td>ibmdb2</td>
<td>IBM DB2 Database Server.</td>
</tr>
<tr>
<td>ipp</td>
<td>Internet Printing Protocol.</td>
</tr>
<tr>
<td>iplayer</td>
<td>BBC iPlayer media traffic.</td>
</tr>
<tr>
<td>ipsec_nat_t</td>
<td>IETF RFC 3948: UDP Encapsulated IPsec ESP.</td>
</tr>
<tr>
<td>ipp</td>
<td>RFC 1459 Internet Relay Chat</td>
</tr>
<tr>
<td>iscsi</td>
<td>ISCSI Protocol.</td>
</tr>
<tr>
<td>justintv</td>
<td>Justin.tv media traffic.</td>
</tr>
<tr>
<td>kontiki</td>
<td>Kontiki Distribution Protocol</td>
</tr>
</tbody>
</table>
llmr : LLMNR Protocol.
mail.ru : mail.ru messaging protocol
manolito : Manolito P2P File Sharing Protocol
megaco : Media Gateway Control Protocol.
megaco : Media Gateway Control Protocol.
mms : Multimedia Messaging Service over HTTP.
ms communicator : Microsoft Communicator Client.
mssql_smb : MS SQL Server Named Pipe traffic.
mssql_tcp : MS SQL Server over TCP.
mssql_udp : MS SQL Server Monitoring Service.
mysql : MySQL Network Protocol.
net2phone : Net2Phone protocol.
net2phone_voip : Net2Phone VOIP
nttcp_udp : Non TCP or UDP traffic.
octoshape : Octoshape Streaming Video
onlive : OnLive Cloud Streaming Services
ooVoo : ooVoo Protocol.
onlive : OnLive Cloud Streaming Services
openft : openft peer to peer protocol.
openvpn : OpenVPN protocol.
opera_mini : Opera Mini mobile web browser.
pplive : PPLive Peer to Peer Video Streaming Protocol
pcanywhere : Symantec PcAnywhere.
pptp : Point-to-Point Tunneling Protocol.
qq : QQ Instant Messaging Protocol
qvod : QVOD: Streaming media on demand.
rds : Realnetworks Data Transport protocol.
rfb : Remote Framebuffer protocol.
rlogin : IETF RFC 1258 rlogin virtual terminal protocol widely used between Unix hosts
rsh : Unix remote shell command
rsync : Open source file transfer protocol
rtp_h323 : H323 RTP Voice.
rtp_msgr : MSN Messenger RTP Voice.
Group Commands

rtp rtsp : RTSP RTP Data
rtp sip : SIP RTP Data
rtp skinny : Skinny RTP Data
rtp_yahoo_im : Yahoo Instant Messenger RTP Voice.
sap : SAP Protocol.
shoutcast : SHOUTcast audio streaming protocol.
siebel : Siebel Suite.
skinny : Skinny Call Control Protocol.
skype : Skype
slingbox : SlingBox: TV video streaming and remote control
smb : Server Message Block protocol over TCP.
smb_netbios : Server Message Block protocol over NetBIOS.
ssocks : SOCKS Proxy.
soulseek : SoulSeek P2P File Sharing Protocol
spotify : Spotify Protocol.
starcraft2 : Starcraft II Protocol
steam : Steam Gaming Protocol.
steam networking : Steam Online Gaming Protocol.
ssocks : SOCKS Proxy.
soulseek : SoulSeek P2P File Sharing Protocol
spotify : Spotify Protocol.
starcraft2 : Starcraft II Protocol
steam : Steam Gaming Protocol.
vudu : VUDU on-demand video distribution
webex : Cisco Webex web conferencing
weixin : Weixin Instant Messaging Protocol
winmx : WinMX P2P File Sharing Protocol
wow : World of Warcraft Protocol
wsp_http : WSP transported HTTP traffic.
xbllive : Xbox Live: Microsoft online game and media delivery service.
xmlp-facebook : Facebook XMPP traffic.
xunlei : Xunlei Client.
xwindows : X Window System: A graphical user interface for networked computers
yahoo_im : Yahoo Instant Messaging Protocol.
yahoo-video : Yahoo Instant Messaging Protocol Webcam Video.
youtube : YouTube RTMP/RTMPE traffic.

==
Number of protocols : 181

A:7x50-E11#
APPLICATION PROFILE COMMANDS

capacity-cost

Syntax

\[\text{capacity-cost } cost\]
\[\text{nocapacity-cost}\]

Context

config>app-assure>group>policy>app-profile

Description

This command configures an application profile capacity cost. Capacity-Cost based load balancing allows a cost to be assigned to diverted SAPs (with the app-profile) and this is then used for load-balancing SAPs between ISAs as well as for a threshold that notifies the operator if/when capacity planning has been exceeded.

Parameters

\[cost\] — Specifies the profile capacity cost.

Values

\[1 — 65535\]

characteristic

Syntax

\[\text{characteristic } \text{characteristic-name } \text{value-name}\]
\[\text{no characteristic } \text{characteristic-name}\]

Context

config>app-assure>group>policy>app-profile

Description

This command assigns one of the existing values of an existing application service option characteristic to the application profile.

The \text{no} form of the command removes the characteristic from the application profile.

Default

none

Parameters

\[\text{characteristic-name}\] — Specifies the name of an existing ASO characteristic.

\[\text{value } \text{value-name}\] — Specifies the name for the application profile characteristic up to 32 characters.

divert

Syntax

\[\text{[no]} \text{divert}\]

Context

config>app-assure>group>policy>app-profile

Description

This command enables the redirection of traffic to AA ISA for the system-wide forwarding classes diverted to application assurance (\text{divert-fc}) for AA subscribers using this application profile.

The \text{no} form of the command stops redirect of traffic to AA ISAs for the AA subscribers using this application profile.

Default

\text{no divert}
APPLICATION QoS POLICY COMMANDS

entry

Syntax
[no] entry entry-id [create]

Context
config>app-assure>group>policy>aqp

Description
This command creates an application QoS policy entry. A flow that matches multiple Application QoS policies (AQP) entries will have multiple AQP entries actions applied. When a conflict occurs for two or more actions, the action from the AQP entry with the lowest numerical value takes precedence.

The no form of this command deletes the specified application QoS policy entry.

Default
none

Parameters
entry-id — An integer identifying the AQP entry.

Values
1 — 65535

create — Mandatory keyword creates the entry. The create keyword requirement can be enabled/disabled in the environment>create context.

action

Syntax
action

Context
config>app-assure>group>policy>aqp>entry

Description
This command enables the context to configure AQP actions to be performed on flows that match the AQP entry’s match criteria.

bandwidth-policer

Syntax
bandwidth-policer policer-name

no bandwidth-policer

Context
config>app-assure>group>policy>aqp>entry>action

Description
This command assigns an existing bandwidth policer as an action on flows matching this AQP entry. The match criteria for the AQP entry must specify a uni-directional traffic direction before a policer action can be configured. If a policer is used in one direction in an AQP match entry the same policer name cannot be used by another AQP entry which uses a different traffic direction match criteria.

When multiple policers apply to a single flow, the final action on a packet is the worse case of all policer outcome (for example, if one of the policers marks packet out of profile, the final marking will reflect that).
The no form of the command removes bandwidth policer from actions on flows matching this AQP entry.

Parameters
`policer-name` — The name of the existing flow setup rate policer for this application assurance profile. The `policer-name` is configured in the `config>app-assure>group>policer` context.

drop

Syntax
```
[no] drop
```

Context
```
config>app-assure>group>policy>aqp>entry>action
```

Description
This command configures the drop action on flows matching this AQP entry. When enabled, all flow traffic matching this AQP entry will be dropped. When drop action is part of a set of multiple actions to be applied to a single flow as result of one or more AQP entry match, drop action will be performed first and no other action will be invoked on that flow.

The no form of the command disables the drop action on flows matching this AQP entry.

Default
no drop

error-drop

Syntax
```
error-drop [event-log event-log-name]
no error-drop
```

Context
```
config>app-assure>group>policy>aqp>entry>action
```

Description
This command configures a drop action for error flows (bad IP checksums, tcp/udp port 0, etc.).

flow-count-limit

Syntax
```
flow-count-limit policer-name
no flow-count-limit
```

Context
```
config>app-assure>group>policy>aqp>entry>action
```

Description
This command assigns an existing flow count limit policer as an action on flows matching this AQP entry.

The match criteria for the AQP entry must specify a uni-directional traffic direction before a policer action can be configured. If a policer is used in one direction in an AQP match entry the same policer name cannot be used by another AQP entry which uses a different traffic direction match criteria.

When multiple policers apply to a single flow, the final action on a packet is the worse case of all policer outcome (for example, if one of the policers marks packet out of profile, the final marking will reflect that).
The no form of the command removes this flow policer from actions on flows matching this AQP entry.

Default

no flow-count-limit

Parameters

`policer-name` — The name of the existing flow setup rate policer for this application assurance profile. The `policer-name` is configured in the `config>app-assure>group>policer` context.

flow-rate-limit

Syntax

`flow-rate-limit policer-name`

`no flow-rate-limit`

Context

`config>app-assure>group>policy>aqp>entry>action`

Description

This command assigns an existing flow setup rate limit policer as an action on flows matching this AQP entry.

The match criteria for the AQP entry must specify a uni-directional traffic direction before a policer action can be configured. If a policer is used in one direction in an AQP match entry the same policer name cannot be used by another AQP entry which uses a different traffic direction match criteria.

When multiple policers apply to a single flow, the final action on a packet is the worse case of all policer outcome (for example, if one of the policers marks packet out of profile, the final marking will reflect that).

The no form of the command removes this flow policer from actions on flows matching this AQP entry.

Default

no flow-rate-limit

Parameters

`policer-name` — The name of the existing flow setup rate policer for this application assurance profile. The `policer-name` is configured in the `config>app-assure>group>policer` context.

fragment-drop

Syntax

`fragment-drop {all | out-of-order} [event-log event-log-name]`

`no fragment-drop`

Context

`config>app-assure>group>policy>aqp>entry>action`

Description

This command specifies the action to apply to fragments.

Parameters

`all` — All the fragments will be dropped.

`out-of-order` — All out of order fragments will be dropped.

`event-log event-log-name` — specifies if the dropping of fragments should be logged to the specified event log name.
http-enrich

Syntax
```
http-enrich  http-enrich-name
no http-enrich
```

Context
`config>app-assure>group>policy>aqp>entry>action`

Description
This command configures a the HTTP header enrichment template name that will be applied as defined in the tmnxBsxHttpEnrichTable. An empty value specifies no HTTP header enrichment template.

Parameters
`http-enrich-name` — Specifies the HTTP header enrichment template name up to 32 characters inlength.

http-redirect

Syntax
```
http-redirect  http-redirect-name  flow-type
no http-redirect
```

Context
`config>app-assure>group>policy>aqp>entry>action`

Description
This command assigns an existing http redirect policy as an action on flows matching this AQP entry. The redirect only takes effect if the matching flows are HTTP and the condition specified after the `http-redirect` command, admitted flows or dropped-flows, is met. The condition specified by “dropped-flows” means the flow is dropped due to an AQP actions such as “flow rate/count policers” or “drop” actions. HTTP Policy Redirect on admitted-flows allows the operator to redirect HTTP traffic to a web portal while allowing non-HTTP matching the same AQP rule to be forwarded.

Note: No HTTP redirect will take place if HTTP redirect action and a “drop/flow-police” action are part of the default AQP policy, because in this case, any flow drop actions will take place before identification of the application/application-group.

The no form of the command removes http redirect from actions on flows matching this AQP entry.

Default
no http-redirect

Parameters
`http-redirect-name` — Specifies the name of the existing http policy redirect for this application assurance profile. The HTTP redirect name is configured in the `config>appassure>group>http-redirect` context.

`flow-type` — Values

- **admitted-flows** — Redirect HTTP flows matching the AQP criteria.
- **dropped-flows** — Redirects those HTTP flows that are dropped due to an AQP action.

http-error-redirect

Syntax
```
http-error-redirect  redirect-name
no http-error-redirect
```
Context
config>app-assure>group>policy>aqp>entry>action

Description
This command specifies the HTTP error redirect that will be applied as defined in the redirect table. An empty value specifies no HTTP error redirect.

Parameters
redirect-name — Specifies an http-error redirect action, up to 32 characters in length, for flows matching this entry.

http-redirect

Syntax
http-redirect redirect-name flow-type flow-type
no http-redirect

Context
config>app-assure>group>policy>aqp>entry>action

Description
This command configures an HTTP redirect action for flows of a specific type matching this entry

Default
no http-redirect

Parameters
redirect-name — Specifies the HTTP error redirect that will be applied as defined in the tmnxBsxHttpRedirErrTable. An empty value specifies no HTTP error redirect.

flow-type flow-type — Specifies the type of flow that will be redirected.

Values
admitted-flows — This allows HTTP redirect for selective traffic steering of HTTP traffic while not affecting other traffic.
dropped-flows — This allows HTTP redirect on blocked traffic.

http-notification

Syntax
http-notification http-notification
no http-notification

Context
config>app-assure>group>policy>aqp>entry>action

Description
This command configures an HTTP notification action for flows matching this entry.

Parameters
http-notification — specifies the Application-Assurance HTTP Notification that will be applied as defined in the tmnxBsxHttpNotifTable. If no string is configured then no HTTP notification will occur.

mirror-source

Syntax
mirror-source [all-inclusive] mirror-service-id
no mirror-source

Context
config>app-assure>group>policy>aqp>entry>action

Description
This command configures an application-based policy mirroring service that uses this AA ISA group’s AQP entry as a mirror source. When configured, AQP entry becomes a mirror source for IP
packets seen by the AA (note that the mirrored packet is an IP packet analyzed by AA and does not include encapsulations present on the incoming interfaces).

Default

```markdown
no mirror-source
```

Parameters

- **all-inclusive** — Specifies that all packets during identification phase that could match a given AQP rule are mirrored in addition to packets after an application identification completes that match the AQP rule. This ensures all packets of a given flow are mirrored at a cost of sending unidentified packets that once the application is identified will no longer match this AQP entry.

```
mirror-service-id — Specifies the mirror source service ID to use for flows that match this policy.
```

Values

```
1 — 214748364
svc-name: 64 char max
```

remark

Syntax

```markdown
remark
```

Context

```markdown
config>app-assure>group>policy>aqp>entry>action
```

Description

This command configures remark action on flows matching this AQP entry.

dscp

Syntax

```markdown
dscp in-profile dscp-name out-profile dscp-name
no dscp
```

Context

```markdown
config>app-assure>group>policy>aqp>entry>action>remark
```

Description

This command enables the context to configure DSCP remark action or actions on flows matching this AQP entry. When enabled, all packets for all flows matching this AQP entry will be remarked to the configured DSCP name.

DSCP remark can only be applied when the entry remarks forwarding class or forwarding class and priority. In-profile and out-of profile of a given packet for DSCP remark is assessed after all AQP policing and priority remarking actions took place.

The `no` form of the command stops DSCP remarking action on flows matching this AQP entry.

Parameters

- **in-profile dscp-name** — Specifies the DSCP name to use to remark in-profile flows that match this policy.

```
Values
be, cp1, cp2, cp3, cp4, cp5, cp6, cp7, cs1, cp9, af11, cp11, af12, cp13, af13, cp15, cs2, cp17, af21, cp19, af22, cp21, af23, cp23, cs3, cp25, af31, cp27, af32, cp29, af33, cp31, cs4, cp33, af41, cp35, af42, cp37, af43, cp39, cs5, cp41, cp42, cp43, cp44, cp45, ef, cp47, nc1, cp49, cp50, cp51, cp52, cp53, cp54, cp55, nc2, cp57, cp58, cp59, cp60, cp61, cp62, cp63
```

out-profile dscp-name — Specifies the DSCP name to use to remark out-of-profile flows that match this policy.
fc

Syntax
fc fc-name
no fc

Context
config>app-assure>group>policy>aqp>entry>action>remark

Description
This command configures remark FC action on flows matching this AQP entry. When enabled, all
packets for all flows matching this AQP entry will be remarked to the configured forwarding class.
The no form of the command stops FC remarking action on packets belonging to flows matching this
AQP entry.

Parameters
fc-name — Configure the FC remark action for flows matching this entry.
Values
be, l2, af, l1, h2, ef, h1, nc

priority

Syntax
priority priority-level
no priority

Context
config>app-assure>group>policy>aqp>entry>action>remark

Description
This command configures remark discard priority action on flows matching this AQP entry. When
enabled, all packets for all flows matching this AQP entry will be remarked to the configured discard
priority.

Default
no priority

Parameters
priority-level — Specifies the priority to apply to a packet.
Values
high, low

session-filter

Syntax
session-filter session-filter-name
no session-filter

Context
config>app-assure>group>policy>aqp>entry>action

Description
This command specifies the Application-Assurance session filter that will be evaluated. If no session
filters are specified then no session filters will be evaluated.

Default
none

Parameters
session-filter-name — Specifies the session filter to be applied.

match

Syntax
match
Group Commands

Context
config>app-assure>group>policy>aqp>entry

Description
This command enables the context to configure flow match rules for this AQP entry. A flow matches this AQP entry only if it matches all the match rules defined (logical and of all rules). If no match rule is specified, the entry will match all flows.

aa-sub

Syntax

```
aa-sub esm {eq | neq} sub-ident-string
aa-sub sap {eq | neq} sap-id
aa-sub spoke-sdp {eq | neq} sdp-id:vc-id
aa-sub transit {eq | neq} transit-aasub-name
no aa-sub
```

Context
config>app-assure>group>policy>aqp>entry>match

Description
This command specifies a Service Access Point (SAP) or an ESM subscriber as matching criteria. The no form of the command removes the SAP or ESM matching criteria.

Parameters

- **eq** — Specifies that the value configured and the value in the flow are equal.
- **neq** — Specifies that the value configured differs from the value in the flow.
- **sub-ident-string** — Specifies the name of an existing application assurance subscriber.
- **sap-id** — Specifies the SAP ID.
- **sap sap-id** — Specifies the physical port identifier portion of the SAP definition.
- **sdp-id:vc-id** — Specifies the spoke SDP ID and VC ID.

Values

- 1 — 17407
- 1 — 4294967295

- **transit-aasub-name** — Specifies the name of a transit AA subscriber.

app-group

Syntax

```
app-group {eq | neq} application-group-name
no app-group
```

Context
config>app-assure>group>policy>aqp>entry>match

Description
This command adds app-group to match criteria used by this AQP entry. The no form of the command removes the app-group from match criteria for this AQP entry.

Default
no app-group

Parameters

- **eq** — Specifies that the value configured and the value in the flow are equal.
- **neq** — Specifies that the value configured differs from the value in the flow.

application-group-name — The name of the existing application group entry. The application-group-name is configured in the config>app-assure>group>policy>aqp>entry>match context.
application

Syntax
application {eq | neq} application-name
no application

Context
config>app-assure>group>policy>aqp>entry>match

Description
This command adds an application to match criteria used by this AQP entry.

The no form of the command removes the application from match criteria for this AQP entry.

Default
no application

Parameters
eq — Specifies that the value configured and the value in the flow are equal.
neq — Specifies that the value configured differs from the value in the flow.

application-name — The name of name existing application name. The application-group-name is configured in the config>app-assure>group>policy>aqp>entry>match context.

characteristic

Syntax
characteristic characteristic-name eq value-name
no characteristic

Context
config>app-assure>group>policy>aqp>entry>match

Description
This command adds an existing characteristic and its value to the match criteria used by this AQP entry.

The no form of the command removes the characteristic from match criteria for this AQP entry.

Default
no characteristic

Parameters
eq — Specifies that the value configured and the value in the flow are equal.

characteristic-name — The name of the existing ASO characteristic up to 32 characters in length.
value-name — The name of an existing value for the characteristic up to 32 characters in length.

charging-group

Syntax
charging-group {eq | neq} charging-group-name
no charging-group

Context
config>app-assure>group>policy>aqp>entry>match

Description
This command adds charging-group to match criteria used by this AQP entry.

The no form of the command removes the charging-group from match criteria for this AQP entry.

Default
no charging-group

Parameters
eq — Specifies that the value configured and the value in the flow are equal.
neq — Specifies that the value configured differs from the value in the flow.

charging-group-name — The name of the existing application group entry. The application-group name is configured in the `config>app-assure>group>policy>aqp>entry>match` context.

dscp

Syntax

```
dscp {eq | neq} dscp-name  
no dscp
```

Context

`config>app-assure>group>policy>aqp>entry>match`

`config>app-assure>group>sess-fltr>entry>match`

Description

This command adds a DSCP name to the match criteria used by this entry. The no form of the command removes dscp from match criteria for this entry.

Default

no dscp

Parameters

- **eq** — Specifies that the value configured and the value in the flow are equal.
- **neq** — Specifies that the value configured differs from the value in the flow.

- **dscp-name** — The DSCP name to be used in match.

Values

be, cp1, cp2, cp3, cp4, cp5, cp6, cp7, cs1, cp9, af11, cp11, af12, cp13, af13, cp15, cs2, cp17, af21, cp19, af22, cp21, af23, cp23, cs3, cp25, af31, cp27, af32, cp29, af33, cp31, cs4, cp33, af41, cp35, af42, cp37, af43, cp39, cs5, cp41, cp42, cp43, cp44, cp45, ef, cp47, nc1, cp49, cp50, cp51, cp52, cp53, cp54, cp55, nc2, cp57, cp58, cp59, cp60, cp61, cp62, cp63

dst-ip

Syntax

```
dst-ip {eq | neq} ip-address  
dst-ip {eq | neq} ip-prefix-list ip-prefix-list-name  
no dst-ip
```

Context

`config>app-assure>group>policy>aqp>entry>match`

`config>app-assure>group>sess-fltr>entry>match`

Description

This command specifies a destination IP address to use as match criteria.

Parameters

- **eq** — Specifies a that a successful match occurs when the flow matches the specified address or prefix.
- **neq** — Specifies that a successful match occurs when the flow does not match the specified address or prefix.

- **ip-address** — Specifies a valid unicast address.

Values

- **ipv4-address**
 - a.b.c.d/mask
 - mask - [1..32]

- **ipv6-address**
 - x:x:x:x:x:x:x/x
 - x:x:x:x:0:0:0:0
dst-port

Syntax

```
dst-port {eq | neq} port-num
```

```
dst-port {eq | neq} range start-port-num end-port-num
```

```
no dst-port
```

Context

config>app-assure>group>policy>aqp>entry>match

config>app-assure>group>sess-fltr>entry>match

Description

This command specifies a destination TCP/UDP port or destination range to use as match criteria.

The `no` form of the command removes the parameters from the configuration.

Parameters

- **eq** — Specifies that a successful match occurs when the flow matches the specified port.
- **neq** — Specifies that a successful match occurs when the flow does not match the specified port.

- **port-num** — Specifies the destination port number.

- **Values**
 - `0 — 65535`

- **start-port-num end-port-num** — Specifies the start or end destination port number.

- **Values**
 - `0 — 65535`

ip-protocol-num

Syntax

```
ip-protocol-num {eq | neq} protocol-id
```

Context

config>app-assure>group>policy>aqp>entry>match

Description

This command configures the IP protocol to use to use as match criteria.

The `no` form the command removes the protocol from the match criteria.

Default

- `none`

Parameters

- **eq** — Specifies that the value configured and the value in the flow must be equal.
- **neq** — Specifies that the value configured differs from the value in the flow.

- **protocol-id** — Specifies the decimal value representing the IP protocol to be used as an IP filter match criterion. Well known protocol numbers include ICMP (1), TCP (6), UDP (17).

- **Values**
 - `1 — 255` (Decimal, Hexadecimal, or Binary representation).

Supported IANA IP protocol names:

- crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, idrp, igmp, igp, ip, ipv6, ipv6-frag, ipv6-icmp, ipv6-no-nxt, ipv6-opts, ipv6-route, isis, iso-ip, l2tp, ospf-igp, pim, pnni, ptp, rdp, rsvp, sctp, stp
src-ip

Syntax

```
src-ip {eq | neq} ip-address
src-ip {eq | neq} ip-prefix-list ip-prefix-list-name
no src-ip
```

Context

```
config>app-assure>group>policy>aqp>entry>match
config>app-assure>group>sess-fltr>entry>match
```

Description

This command specifies a source TCP/UDP address to use as match criteria.

Parameters

- `eq` — Specifies that a successful match occurs when the flow matches the specified address or prefix.
- `neq` — Specifies that a successful match occurs when the flow does not match the specified address or prefix.

- `ip-address` — Specifies a valid IPv4 unicast address.
- `ip-address` — Specifies a valid unicast address.

Values

```
ipv4-address a.b.c.d[/mask]
  mask - [1..32]
ipv6-address x:x:x:x:x:x:x/x/prefix-length
  x:x:x:x:x:d.d.d.d
  x - [0..FFFF]H
  d - [0..255]D
  prefix-length [1..128]
```

src-port

Syntax

```
src-port {eq | neq} port-num
src-port {eq | neq} range start-port-num end-port-num
no src-port
```

Context

```
config>app-assure>group>policy>aqp>entry>match
config>app-assure>group>sess-fltr>entry>match
```

Description

This command specifies a source IP port or source range to use as match criteria.

The `no` form of the command removes the parameters from the configuration.

Parameters

- `eq` — Specifies that a successful match occurs when the flow matches the specified port.
- `neq` — Specifies that a successful match occurs when the flow does not match the specified port.

- `port-num` — Specifies the source port number.

Values

```
0 — 65535
```

- `start-port-num end-port-num` — Specifies the start or end source port number.

Values

```
0 — 65535
```

traffic-direction
| Syntax | traffic-direction \{ subscriber-to-network | network-to-subscriber | both \} |
|---------------|---|
| Context | config\>app-assure\>group\>policy\>aqp\>entry\>match |
| Description | This command specifies the direction of traffic where the AQP match entry will be applied. To use a policer action with the AQP entry the match criteria must specify a traffic-direction of either subscriber-to-network or network-to-subscriber. |
| Default | both |
| Parameters | **subscriber-to-network** — Traffic from a local subscriber will match this AQP entry. |
| | **network-to-subscriber** — Traffic to a local subscriber will match this AQP entry. |
| | **both** — Combines subscriber-to-network and network-to-subscriber. |
APPLICATION SERVICE OPTIONS COMMANDS

characteristic

Syntax
`characteristic characteristic-name [create]`
`no characteristic characteristic-name`

Context
`config>app-assure>group>policy>aso`

Description
This command creates the characteristic of the application service options.
The `no` form of the command deletes characteristic option. To delete a characteristic, it must not be referenced by other components of application assurance.

Default
none

Parameters
`characteristic-name` — Specifies a string of up to 32 characters uniquely identifying this characteristic.

`create` — Mandatory keyword used to create when creating a characteristic. The `create` keyword requirement can be enabled/disabled in the `environment>create` context.

default-value

Syntax
`default-value value-name`

`no default-value`

Context
`config>app-assure>group>policy>aso>char`

Description
This command assigns one of the characteristic values as default.
When a default value is specified, app-profile entries that do not explicitly include this characteristic inherit the default value and use it as part of the AQP match criteria based on that app-profile.
A default-value is required for each characteristic. This is evaluated at commit time.
The `no` form of the command removes the default value for the characteristic.

Default
none

Parameters
`value-name` — Specifies the name of an existing characteristic value.

value

Syntax
`[no] value value-name`

Context
`config>app-assure>group>policy>aso>char`

Description
This command configures a characteristic value.
The `no` form of the command removes the value for the characteristic.
Default: none

Parameters:

- `value-name` — Specifies a string of up to 32 characters uniquely identifying this characteristic value.
CUSTOM PROTOCOL COMMANDS

custom-protocol

Syntax

```
custom-protocol custom-protocol-id ip-protocol-num protocol-id [create]
custom-protocol custom-protocol-id
no custom-protocol custom-protocol-id
```

Context config>app-assure>group>policy

Description

This command creates and enters configuration context for custom protocols. Custom protocols allow the creation of TCP and UDP-based custom protocols (based on the `ip-protocol-num` option) that employ pattern-match at offset in protocol signature definition.

Operator-configurable custom-protocols are evaluated ahead of any Alcatel-Lucent provided protocol signature in order of `custom-protocol-id` (the lower ID is matched first in case of flow matching multiple custom-protocols) within the context the protocol is defined.

Custom protocols must be created before they can be used in application definition but do not have to be enabled. To reference a custom protocol in application definition, or any other CLI configuration one must use protocol name that is a concatenation of “custom_” and `<custom-protocol-id>`, (for example custom_01, custom_02 ... custom_10, etc.). This concatenation is also used when reporting custom protocol statistics.

Parameters

`custom-protocol-id` — Specifies the index into the protocol list that defines a custom protocol for application assurance.

Values

```
1 — 10
```

`protocol-id` — Specifies the IP protocol to match against for the custom protocol.

Values

```
0 — 255, Protocol numbers accepted in DHB,
keywords: udp, tcp
```

`create` — Mandatory keyword used when creating custom protocol. The `create` keyword requirement can be enabled/disabled in the `environment>create` context.

equation

Syntax

```
equation expr-index eq expr-string offset payload-octet-offset direction
no equation expr-index
```

Context config>app-assure>group>policy>custom-protocol

Description

This command configures an expression string value for pattern-based custom protocols match. A flow matches a custom protocol if the specified string is found at an offset of a TCP/UDP of the first payload packet.

Options:

client-to-server — A pattern will be matched against a flow from a TCP client.
server-to-client — A pattern will be matched against a flow from a TCP server.
any – A pattern will be matched against a TCP/UDP flow in any direction (towards or from AA subscriber)

The **no** form of this command deletes a specified string expression from the definition.

Parameters

expr-index — Specifies the expression substring index.

Values

1

expr-string — Denotes a printable ASCII string, up to 16 characters, used to define a custom protocol match. Rules for *expr-string* characters:

- Must contain printable ASCII characters.
- Must not contain the “double quote” character or the “ ” (space) character on its own.
- Match is case sensitive.
- Must not include any regular expression meta-characters.

The “\” (slash) character is used as an ESCAPE sequence. The following ESCAPE sequences are permitted within the *expr-string*:

- **Hexadecimal Octet YY** — \xYY

 Note: An *expr-string* that uses the ‘\’ (backslash) ESCAPE character which is not followed by a “\” or “\x” and a 2-digit hex octet is not valid.

offset payload-octet-offset — specifies the offset (in octets) into the protocol payload, where the *expr-string* match criteria will start.

Values

0 — 127

direction direction — Specifies the protocol direction to match against to resolve to a custom protocol.

Values

client-to-server, server-to-client, any
Session Filter Commands

session-filter

Syntax

```
session-filter session-filter-name [create]
no session-filter session-filter-name
```

Context

```
config>app-assure>group
```

Description

This command creates a session filter.

Parameters

`session-filter-name` — Creates a session filter name up to 32 characters in length.

match

Syntax

```
match
```

Context

```
config>app-assure>group>sess-fltr>entry
```

Description

This command enables the context to configure session conditions for this entry.

default-action

Syntax

```
default-action {permit | deny} [event-log event-log-name]
no default-action
```

Context

```
config>app-assure>group>sess-fltr
```

Description

This command specifies the default action to take for packets that do not match any filter entries. The `no` form of the command reverts the default action to the default value (forward).

Default

`deny`

Parameters

`deny` — Packets matching the criteria are denied

`permit` — Packets matching the criteria are permitted.

entry

Syntax

```
entry entry-id [create]
no entry entry-id
```

Context

```
config>app-assure>group>policy>sess-fltr
```

Description

This command configures a particular Application-Assurance session filter match entry. Every session filter can have zero or more session filter match entries. An application filter entry or entries configures match attributes of an application.
The **no** form of this command deletes the specified entry.

Default
none

Parameters

- **entry-id** — An integer that identifies the entry.
 - **Values** 1 — 65535
- **create** — Keyword used to create the entry.

action

Syntax

```
action {permit|deny} [event-log event-log-name]
```

Context

```
config>app-assure>group>sess-fltr>entry
```

Description

This command configures the action for this entry.
- **deny** — Packets matching the criteria are denied
- **permit** — Packets matching the criteria are permitted.
Statistics Commands

statistics

Syntax statistics
Context config>app-assure>group
Description This command enables the context to configure accounting and billing statistics for this AA ISA group.

app-group

Syntax app-group app-group-name export-using export-method...(up to 2 max)
app-group app-group-name no-export
no app-group app-group-name
Context config>app-assure>group>statistics>aa-sub
Description This command enables the context to configure accounting and statistics collection parameters per system for application groups of application assurance for a given AA ISA group/partition.
The no form of the command removes the application group name.
Default none
Parameters

app-group-name — Specifies an existing application group name up to 32 characters in length.
export-using accounting-policy — Specifies that the method of stats export to be used.
no-export — Allows the operator to enable the referred to app-grp to be selected (via Diameter) for Gx-usage monitoring. Gx usage monitoring is enabled automatically (and this command is not shown) if the export-using parameter is selected for the respective app group.

Note: usage-monitoring must be enabled at the group:partition level (config>app-assure>group>statistics>aa-sub>usage-monitoring) as well in order to allow any application/application group/charging group usage-monitoring.

aa-sub

Syntax aa-sub
Context config>app-assure>group>statistics
Description This command enables the context to configure accounting and statistics collection parameters per application assurance subscribers.

aa-sub-study
Application Assurance Commands

Syntax
`aa-sub-study` `<study-type>`

Context
`config>app-assure>group>statistics`

Description
This command enables the context to configure accounting and statistics collection parameters per application assurance special study subscribers.

Parameters
`<study-type>` — Specifies special study protocol subscriber stats.

Values
- application
- protocol

application

Syntax
`application` `<application-name>` `export-using` `<export-method>`
`application` `<application-name>` `no-export`
`no application` `<application-name>`

Context
`config>app-assure>group>statistics>aa-sub`

Description
This command configures aa-sub accounting statistics for export of applications of a given AA ISA group/partition.

The no form of the command removes the application name.

Default
None

Parameters
`<application-name>` — Specifies an existing application name up to 32 characters in length.

`export-using` `<accounting-policy>` — Specifies that the method of stats export to be used. Accounting-policy is the only option for application statistics.

`no-export` — Allows the operator to enable the referred application group to be selected (via Diameter) for Gx-usage monitoring. Gx usage monitoring is enabled automatically (and this command is not shown) if the `export-using` parameter is selected for the respective application group.

Note: usage-monitoring must be enabled at the group:partition level (`config>app-assure>group>statistics>aa-sub>usage-monitoring`) as well in order to allow any application/application group/charging group usage-monitoring.

charging-group

Syntax
`charging-group` `<charging-group-name>` `export-using` `<export-method>` `[<export-method...(up to 2 max)]`
`charging-group` `<charging-group-name>` `no-export`
`no charging-group` `<charging-group-name>`

Context
`config>aa>group>statistics>aa-sub`

Description
This command configures aa-sub accounting statistics for export of charging groups of a given AA ISA group/partition.

The no form of the command removes the parameters from the configuration.
Default

none

Parameters

charging-group-name — The name of the charging group. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.

export-using export-method — Specifies that the method of stats export to be used.

Values: accounting, policy, radius-accounting-policy

no-export — Allows the operator to enable the referred to a charging group to be selected (via Diameter) for Gx-usage monitoring. Gx usage monitoring is enabled automatically (and this command is not shown) if the export-using parameter is selected for the respective charging group.

Note: usage-monitoring must be enabled at the group:partition level (config>app-assure>group>statistics>aa-sub>usage-monitoring) as well in order to allow any application/application group/charging group usage-monitoring.

accounting-policy

Syntax

accounting-policy acct-policy-id

Context

config>app-assure>group>statistics>app-grp
config>app-assure>group>statistics>app
config>app-assure>group>statistics>protocol
config>app-assure>group>statistics>aa-partition
config>app-assure>group>statistics>aa-sub
config>app-assure>group>statistics>aa-sub-study
config>isa>aa-grp>statistics

Description

This command specifies the existing accounting policy to use for AA. Accounting policies are configured in the config>log>accounting-policy context.

Parameters

acct-policy-id — Specifies the existing accounting policy to use for applications.

Values: 1 — 99

aggregate-stats

Syntax

[no] aggregate-stats

Context

config>app-assure>group>statistics>app-grp

Description

This command enables aggregate statistics collection. The no form of the command disables the collection.

protocol

Syntax

protocol
Application Assurance Commands

Context config>app-assure>group>statistics

Description This command enables the context to configure accounting and statistics collection parameters per-system for protocols of application assurance for a given AA ISA group/partition.

aa-sub

Syntax \[no\] aa-sub \{esm \textit{sub-ident-string} \mid \textit{sap sap-id} \mid \textit{spoke-sdp sdp-id:vc-id} \mid \textit{transit transit-aasub-name}\}

Context config>app-assure>group>statistics>aa-sub-study

Description This command adds an existing subscriber identification to a group of special study subscribers (for example, subscribers for which per subscriber statistics and accounting records can be collected for protocols and applications of application assurance). The \textbf{no} form of the command removes the subscriber from the special study subscribers.

Up to 100 subscribers can be configured into the special study group for protocols and up to a 100 potentially different subscribers can be configured into the special study group for applications.

When adding a subscriber to the special study group, accounting records and statistics generation will commence immediately. When removing a subscriber from the group, special study statistics and accounting records for that subscriber in the current interval will be lost.

Default none

Parameters

\textit{sub-ident-string} — The name of a subscriber ID. Note that the subscriber does not need to be currently active. Any sub-ident-string will be accepted. When the subscriber becomes active, statistics generation will start automatically at that time.

\textit{esm \textit{sub-ident-string}} — Specifies an existing subscriber identification policy name.

\textit{sap \textit{sap-id}} — Specifies the physical port identifier portion of the SAP definition.

\textit{spoke-id \textit{sdp-id:vc-id}} — Specifies the spoke SDP ID and VC ID.

\textit{transit transit-aasub-name} — Specifies an existing transit subscriber name string up to 32 characters in length.

collect-stats

Syntax \[no\] collect-stats

Context config>app-assure>group>statistics>app-grp
config>app-assure>group>statistics>application
config>app-assure>group>statistics>protocol
config>app-assure>group>statistics>aa-partition
config>app-assure>group>statistics>aa-sub
config>app-assure>group>statistics>aa-sub-study
config>isa>aa-grp>statistics
Group Commands

Description This command enables statistic collection within the applicable context.

Default disabled

traffic-type

Syntax [no] traffic-type

Context config>app-assure>group>statistics>aa-partition

Description This command enables traffic type statistics collection within an aa-partition. The no form of the command disables traffic type statistics collection.

exclude-tcp-retrans

Syntax [no] exclude-tcp-retrans

Context config>app-assure>group>statistics>aa-sub

Description This command is to only to EPC. When enabled, TCP errors and retransmission packets are not counted for the purpose of CBC. This setting has no impact on app/app-group aggregate AA stats.

max-throughput-stats

Syntax [no] max-throughput-stats

Context config>app-assure>group>statistics>app-sub

Description This command enables the collection of max-throughput statistics. The no form of the command disables the collection.

protocol

Syntax protocol protocol-name export-using export-method
 no protocol

Context config>app-assure>group>statistics>app-sub

Description This command configures aa-sub accounting statistics for export of protocols of a given AA ISA group/partition. The no form of the command removes the protocol name.

Default none

Parameters protocol-name — Specifies an existing protocol name up to 32 characters in length.
export-using export-method — Specifies that the method of stats export to be used. Accounting-policy is the only option for protocol statistics.

radius-accounting-policy

Syntax

```
radius-accounting-policy rad-acct-plcy-name
no radius-accounting-policy
```

Context config>aa>group>statistics>aa-sub

Description This command specifies an existing subscriber RADIUS based accounting policy to use for AA. RADIUS Accounting policies are configured in the config>application-assurance>radius-accounting-policy context.

Parameters

- `rad-acct-plcy-name` — The name of the policy. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.

usage-monitoring

Syntax

```
[no] usage-monitoring
```

Context config>aa>group>statistics>aa-sub

Description This command enables Gx usage monitoring the given AA group/partition. It can only be enabled if there is enough usage monitoring resources for all existing subs. Once disabled, all monitoring instances for AA subscriber(s) are silently removed (no PCRF notifications) and all subsequent AA Gx usage monitoring messages are ignored.

Default Disabled for Gx usage monitoring.
transit-ip-policy

Syntax
```plaintext
transit-ip-policy ip-policy-id [create]
no transit-ip-policy ip-policy-id
```

Context
```
config>application-assurance>group>policy
```

Description
This command defines a transit AA subscriber IP policy. Transit AA subscribers are managed by the system through the use of this policy assigned to services, which determines how transit subs are created and removed for that service.

The `no` form of the command deletes the policy from the configuration. All associations must be removed in order to delete a policy.

Default
```
no transit-ip-policy
```

Parameters
```
  ip-policy-id — An integer that identifies a transit IP profile entry.

  Values  
  1 — 65535

  create — Keyword used to create the entry.
```

def-app-profile

Syntax
```plaintext
def-app-profile app-profile-name
no def-app-profile
```

Context
```
config>app-assure>group>policy>transit-ip-policy
```

Description
This command defines a default app-profile to be associated to dynamically created transit aa-subs created using this profile, when no app-profile is explicitly assigned.

The `no` form of the command removes the default app-profile from the policy.

Parameters
```
  app-profile-name — Specifies the name of the application profile up to 32 characters in length.
```

detect-seen-ip

Syntax
```plaintext
[no] detect-seen-ip
```

Context
```
config>app-assure>group>policy>transit-ip-policy
```

Description
This command enables seen-IP notification of transit subscriber traffic on the parent transit aa-subs that are referencing this transit-ip-policy.

The `no` form of the command disables seen-IP notification.

Default
```
no detect-seen-ip
```
dhcp

Syntax dhcp

Context config>app-assure>group>policy>transit-ip-policy

This command enables dynamic DHCP-based management of transit aa-subs for the transit-ip-policy. This is mutually exclusive to other types management of transit subs for a given transit-ip-policy.

ipv6-address-prefix-length

Syntax ipv6-address-prefix-length IPv6 prefix length
no ipv6-address-prefix-length

Context config>app-assure>group>policy>transit-ip-policy

Description This command configures a transit IP policy IPv6 address prefix length.

Default 0

Parameters IPv6 prefix length — Specifies the prefix length of IPv6 addresses in this policy for both static and dynamic transits.

Values 32 — 64

radius

Syntax radius

Context config>app-assure>group>policy>transit-ip-policy

Description This command enables dynamic radius based management of transit aa-subs for the transit-ip-policy. This is mutually exclusive to other types management of transit subs for a given transit-ip-policy.

authentication-policy

Syntax authentication-policy name
no authentication-policy

Context config>app-assure>group>policy>transit-ip-policy>radius

Description This command configures the RADIUS authentication-policy for the IP transit policy.

seen-ip-radius-acct-policy

Syntax seen-ip-radius-acct-policy rad-acct-plcy-name
no seen-ip-radius-acct-policy
Group Commands

Context
config>app-assure>group>policy>transit-ip-policy>radius

Description
This command refers to a RADIUS accounting-policy to enable seen-IP notification.
The no form of the command removes the policy.

Default
no seen-ip-radius-acct-policy

static-aa-sub

Syntax
- `static-aa-sub transit-aasub-name`
- `static-aa-sub transit-aasub-name app-profile-name [create]`
- `no static-aa-sub transit-aasub-name`

Context
config>app-assure>group>policy>transit-ip-policy

Description
This command configures static transit aa-subs with a name and an app-profile. A new transit sub with both a name and an app-profile is configured with the create command. Static transit aa-sub must have an explicitly assigned app-profile. An existing transit sub can optionally be assigned a different app-profile, or this command can be used to enter the static-aa-sub context.

The no form of the command deletes the named static transit aa-sub from the configuration.

Default
no transit-ip-policy

Parameters
- `transit-aasub-name` — Specifies the name of a transit subscriber up to 32 characters in length.
- `app-profile-name` — Specifies the name of an existing application profile up to 32 characters in length.
- `create` — Keyword used to create a new app-profile entry.

ip

Syntax
- `[no] ip ip-address`

Context
config>app-assure>group>policy>transit-ip-policy>static-aa-sub

Description
This command configures the /32 ip address for a static transit aa-sub.
The no form of the command deletes the ip address assigned to the static transit aa-sub from the configuration.

Default
no ip

Parameters
- `ip-address` — Specifies the IP address in a.b.c.d form.

Values
- ipv6-address/prefix: ipv6-address x:x:x:x:x:x:x (eight 16-bit pieces)
 - x [0 — FFFF]H
 - d [0 — 255]D
 - prefix-length /32 to /64
sub-ident-policy

Syntax sub-ident-policy sub-ident-policy-name

Context config>app-assure>group>policy>transit-ip-policy

Description This command associates a subscriber identification policy to this SAP. The subscriber identification policy must be defined prior to associating the profile with a SAP in the config>subscribermgmt>sub-ident-policy context.

Subscribers are managed by the system through the use of subscriber identification strings. A subscriber identification string uniquely identifies a subscriber. For static hosts, the subscriber identification string is explicitly defined with each static subscriber host.

For dynamic hosts, the subscriber identification string must be derived from the DHCP ACK message sent to the subscriber host. The default value for the string is the content of Option 82 CIRCUIT-ID and REMOTE-ID fields interpreted as an octet string. As an option, the DHCP ACK message may be processed by a subscriber identification policy which has the capability to parse the message into an alternative ASCII or octet string value.

When multiple hosts on the same port are associated with the same subscriber identification string they are considered to be host members of the same subscriber.

A sub-ident-policy can also used for identifying dynamic transit subscriber names.

The no form of the command removes the default subscriber identification policy from the SAP configuration.

Default no sub-ident-policy

transit-auto-create

Syntax transit-auto-create

Context config>app-assure>group>transit-ip

Description This command enables seen-IP auto creation of transit subscribers using the transit-IP-policy name and subscriber IP address as the AA-sub name. The default app-profile configured against the transit-ip-policy is applied to these subscribers.

Default disabled

transit-prefix-ipv4-entries

Syntax transit-prefix-ipv4-entries entries

no transit-prefix-ipv4-entries

Context config>isa>aa-grp

Description This command defines the number of transit-prefix IPv4 entries for an ISA.

The no form of the command removes the assignment of entries space from the configuration. All entries must be removed in order to delete the configuration.
Parameters

entries — Specifies an integer that determines the number of transit-prefix-ipv4 entries.

Values

0 — 16383

transit-prefix-ipv4-remote-entries

Syntax

transit-prefix-ipv4-remote-entries entries
no transit-prefix-ipv4-remote-entries

Context

cfg>isa>aa-grp

Description

This command configures the ISA-AA-group transit prefix IPv4 remote entry limit. This entry space is allocated on the IOM within a common area with the second MDA/ISA position of the IOM and also used for IPv4 filter entries for system SDPs. The per-ISA size allocated for transit-prefix-ipv4 entries should be set to allow sufficient space on the IOM for SDP IPv4 filters.

The no form of the command removes the assignment of entries space from the configuration. All entries must be removed in order to delete the configuration.

Parameters

entries — Specifies the ISA-AA-Group transit prefix IPv4 remote entry limit.

Values

0 — 2047

transit-prefix-ipv6-entries

Syntax

transit-prefix-ipv6-entries entries
no transit-prefix-ipv6-entries

Context

cfg>isa>aa-grp

Description

This command configures the ISA-AA-group transit prefix IPv6 entry limit for each ISA in the group. This entry space is allocated on the IOM within a common area with the second MDA/ISA position of the IOM and also used for IPv6 filter entries for system SDPs. The per-ISA size allocated for transit-prefix-ipv6 entries should be set to allow sufficient space on the IOM for SDP IPv6 filters.

The no form of the command removes the assignment of entries space from the configuration. All entries must be removed in order to delete the configuration.

Parameters

entries — Specifies the ISA-AA-Group transit prefix IPv6 entry limit.

Values

0 — 8191

transit-prefix-ipv6-remote-entries

Syntax

transit-prefix-ipv6-remote-entries entries
no transit-prefix-ipv6-remote-entries

Context

cfg>isa>aa-grp

Description

This command configures the ISA-AA-group transit prefix IPv6 remote entry limit. This entry space is allocated on the IOM within a common area with the second MDA/ISA position of the IOM and
also used for IPv6 filter entries for system SDPs. The per-ISA size allocated for transit-prefix-ipv6 entries should be set to allow sufficient space on the IOM for SDP IPv6 filters.

The no form of the command removes the assignment of entries space from the configuration. All entries must be removed in order to delete the configuration.

Parameters
entries — Specifies the ISA-AA-Group transit prefix IPv6 remote entry limit.

Values
0 — 1023

transit-prefix-policy

Syntax

```plaintext
transit-prefix-policy prefix-policy-id [create]  
no transit-prefix-policy prefix-policy-id
```

Context

```
config>service>ies>if>sap  
config>service>ies>if>spoke-sdp  
config>service>vprn>if>sap  
config>service>vprn>if>spoke-sdp  
config>service>epipe>sap  
config>service>epipe>spoke-sdp  
config>service>ipipe>sap  
config>service>ipipe>spoke-sdp  
config>service>vpls>sap  
config>service>vpls>spoke-sdp
```

Description

This command associates a transit aa subscriber prefix policy to the service. The transit prefix policy must be defined prior to associating the policy with a SAP in the config>application assurance>group>policy>transit-prefix-policy context.

The no form of the command removes the association of the policy to the service.

Parameters

prefix-policy-id — Specifies an integer that identifies a transit ip profile entry.

Values

1 — 65535

create — Mandatory keyword used when creating transit prefix policy. The create keyword requirement can be enabled/disabled in the environment>create context.

transit-prefix-policy

Syntax

```plaintext
transit-prefix-policy prefix-policy-id [create]  
no transit-prefix-policy prefix-policy-id
```

Context

```
config>app-assure>group
```

Description

This command defines a transit aa subscriber prefix policy. Transit AA subscribers are managed by the system through the use of this policy assigned to services, which determines how transit subs are created and removed for that service.
The **no** form of the command deletes the policy from the configuration. All associations must be removed in order to delete a policy.

Parameters

prefix-policy-id — Indicates the transit prefix policy to which this subscriber belongs.

| Values | 1 — 65535 |

create — Mandatory keyword used when creating transit prefix policy. The create keyword requirement can be enabled/disabled in the environment>create context.

entry

Syntax

```plaintext
entry entry-id [create]
entry entry-id
no entry entry-id
```

Context

`config>app-assure>group>transit-prefix-policy`

Description

This command configures the index to a specific entry of a transit prefix policy. The **no** form of the command removes the entry ID from the transit prefix policy configuration.

Default

`none`

Parameters

`entry-id` — Specifies a transit prefix policy entry.

| Values | 1 — 4294967295 |

aa-sub

Syntax

```plaintext
aa-sub transit-aasub-name
no aa-sub
```

Context

`config>app-assure>group>transit-prefix-policy>entry`

Description

This command configures a transit prefix policy entry subscriber. The **no** form of the command removes the transit subscriber name from the transit prefix policy configuration.

Default

`none`

Parameters

`transit-aasub-name` — specifies the name of the transit prefix AA subscriber up to 32 characters in length.

match

Syntax

```plaintext
match
```

Context

`config>app-assure>group>transit-prefix-policy>entry`

Description

This command enables the context to configure transit prefix policy entry match criteria.
aa-sub-ip

Syntax

```plaintext
aa-sub-ip ip-address[/mask]
```

```plaintext
no aa-sub-ip
```

Context

`config>app-assure>group>transit-prefix-policy>entry>match`

Description

This command configures a transit prefix subscriber ip address prefix. It is used when the site is on the local side, being the same side of the system as the parent SAP. The local aa-sub-ip addresses represent the src-IP in the from-SAP direction and dest-IP in the to-SAP direction.

The `no` form of the command deletes the aa-sub-ip address assigned from the entry configuration.

Default

`no aa-sub-ip`

Parameters

`ip-address[/mask]` — Specifies the address type of the subscriber address prefix associated with this transit prefix policy entry.

Values

- ipv4-address - a.b.c.d[/mask]
- ipv6-address - x:x:x:x:x:x:x:x/prefix-length
- x:x:x:x:x:x:d.d.d.d
- x - [0..FFFF]H
- d - [0..255]D
- prefix-length [1..128]

network-ip

Syntax

```plaintext
network-ip ip-address[/mask]
```

```plaintext
no network-ip
```

Context

`config>app-assure>group>transit-prefix-policy>entry>match`

Description

This command configures an entry for an address of prefix transit aa-sub and is used when the site is a remote site on the same opposite side of the system as the parent SAP. The network IP addresses represent the dest-IP in the from-SAP direction and src-IP in the to-SAP direction.

The `no` form of the command removes the network IP address/mask from the match criteria.

Parameters

`ip-address[/mask]` — specifies the network address prefix and length associated with this transit prefix policy entry.

Values

- ipv4-address - a.b.c.d[/mask]
- ipv6-address - x:x:x:x:x:x:x:x/prefix-length
- x:x:x:x:x:x:d.d.d.d
- x - [0..FFFF]H
- d - [0..255]D
- prefix-length [1..128]

static-aa-sub
Group Commands

Syntax

static-aa-sub transit-aasub-name
static-aa-sub transit-aasub-name app-profile-name [create]
no static-aa-sub transit-aasub-name

Context config>app-assure>group>transit-prefix-policy
config>app-assure>group>transit-ip-policy>static

Description

This command configures a static transit aa-sub with a name and an app-profile. A new transit sub with both a name and an app-profile is configured with the create command. Static transit aa-sub must have an explicitly assigned app-profile. An existing transit sub can optionally be assigned a different app-profile, or this command can be used to enter the static-aa-sub context.

The **no** form of the command deletes the named static transit aa-sub from the configuration.

Parameters

transit-aasub-name — Specifies a transit aasub-name up to 32 characters in length.

app-profile-name — Specifies the name of an existing application profile up to 32 characters in length.

create — Keyword used to create a new app-profile entry

static-remote-aa-sub

Syntax

static-remote-aa-sub transit-aasub-name
static-remote-aa-sub transit-aasub-name app-profile-name [create]
no static-remote-aa-sub transit-aasub-name

Context config>app-assure>group>transit-prefix-policy

Description

This command configures static remote transit aa-subs with a name and an app-profile. Remote transit subscribers are configured for sites on the opposite side of the system as the parent SAP/spoke-SDP. A new remote transit sub with both a name and an app-profile is configured with the create command. Static remote transit aa-subs must have an explicitly assigned app-profile. An existing remote transit sub can optionally be assigned a different app-profile.

The **no** form of the command removes the name from the transit prefix policy.

Parameters

transit-aasub-name — Specifies a transit aasub-name up to 32 characters in length.

app-profile-name — Specifies the name of an existing application profile up to 32 characters in length.

create — Keyword used to create a new app-profile entry

aa-sap-interface

Syntax

sap card/mda/aa-svc:vlan [create]
no sap

Context config>service>vprn>aa-if
config>service>ies>aa-if

Description

This commands specifies which ISA card and which VLAN is used by a given AA Interface.
Application Assurance Commands

Default

```
no sap
```

Parameters

```
card/mda/aa-svc:vlan — specifies AA ISA card slot/port and VLAN information.
create — Specifies keyword used to created the AARP instance.
```

url-filter

Syntax

```
url-filter  url-filter-name  [create]
no url-filter
```

Context
```
config>app-assure>group
```

Description

This command configures a URL filter action for flows of a specific type matching this entry. If no URL filters are specified then no URL filters will be evaluated.

Parameters

```
url-filter-name — Specifies the Application-Assurance URL filter that will be evaluated.
```

aa-interface

Syntax

```
aa-interface  aa-int-name  [create]
no aa-interface
```

Context
```
config>service>ies/vprn
```

Description

This command creates a new AA interface within an IES or VPRN service. It is used by the aa-isa to send/receive IPv4 traffic. In the context of icap url-filtering this interface is used by the ISA to establish icap tcp connections to the icap server(s).

This interface supports /31 subnet only, and uses by default .1q encapsulation.

The system will automatically configure the ISA IP address based on the address configured by the operator under the aa-interface object (which represents the ISA sap facing interface on the ISA).

Default

```
no aa-interface
```

Parameters

```
aa-int-name — specifies the name of the AA Interface.
create — Specifies keyword used to created the AARP instance.
```

default-action

Syntax

```
default-action allow
default-action block-all
default-action block-http-redirect  http-redirect-name
no default-action
```

Context
```
config>app-assure>group>policy>aqp>entry>action>url-filter
```

Description

This command configures the default action to take when the ICAP server is unreachable.
Parameters

- **allow** — Allows all requests.
- **block-all** — Blocks all requests.
- **block-http-redirect** $http-redirect-name$ — Blocks and redirects requests.

http-request-filtering

Syntax

```
http-request-filtering {all | first}
```

Context

```
config>app-assure>group>url-filter
```

Description

HTTP Filtering can either be enabled for all HTTP request within a flow or limited to the first HTTP request in a flow.

Default

```
all
```

Parameters

- **all** — Specifies all HTTP Request within a flow.
- **first** — Specifies the first HTTP Request within a flow.

icap-http-redirect

Syntax

```
icap-http-redirect $http-redirect-name$
no icap-http-redirect
```

Context

```
config>app-assure>group>url-filter
```

Description

This command specifies the HTTP redirect that will be applied when the Internet Content Adaptation Protocol (ICAP) server blocks an HTTP request.

Default

```
one
```

Parameters

- **$http-redirect-name$** — Specifies the ICAP HTTP redirect name up to 32 characters in length.

icap-server

Syntax

```
icap-server ip-address[;port] [create]
no icap-server ip-address[;port]
```

Context

```
config>app-assure>group>url-filter>icap-server
```

Description

This command configures the IP address and server port of the ICAP server.

Default

```
one
```

Parameters

- **ip-address[;port]** — the ICAP server IP address and port.

vlan-id
Application Assurance Commands

Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td><code>vlan-id service-port-vlan-id</code></td>
<td><code>config>app-assure>group>url-filter</code></td>
<td>This command configures the VLAN ID on which the ISA-AA is expected to be emitting traffic mapping to a pre-configured aa-interface.</td>
</tr>
<tr>
<td>no vlan-id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wap1x</td>
<td><code>wap1x</code></td>
<td><code>config>app-assure>group</code></td>
<td>This command configures the Wireless Application Protocol (WAP) 1.X.</td>
</tr>
<tr>
<td>packet-rate-high-wmark</td>
<td><code>packet-rate-high-wmark high-watermark</code></td>
<td><code>config>app-assure</code></td>
<td>This command configures the packet rate on the ISA-AA when a packet rate alarm will be raised by the agent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parameters <code>/high-watermark</code> — Specifies the high watermark for packet rate alarms. The value must be larger than or equal to the packet-rate-low-wmark value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Values <code>1 — 14880952</code>, <code>max</code> packets/sec</td>
</tr>
<tr>
<td>packet-rate-low-wmark</td>
<td><code>packet-rate-low-wmark low-watermark</code></td>
<td><code>config>app-assure</code></td>
<td>This command configures the packet rate on the ISA-AA when a packet rate alarm will be cleared by the agent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parameters <code>/low-watermark</code> — Specifies the low watermark for packet rate alarms. The value must be lower than or equal to the packet-rate-low-wmark value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Values <code>0 — 14880952</code> packets/sec</td>
</tr>
<tr>
<td>wa-shared-high-wmark</td>
<td><code>wa-shared-high-wmark percent</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OS Multi-Service ISA Guide Page 289
Group Commands

no wa-shared-high-wmark

Context config>isa>aa-grp>qos>egress>from-sub
 config>isa>aa-grp>qos>egress>to-sub

Description This command configures the high watermark for the weighted average utilization of the shared buffer space in the from-subscriber buffer pool for each ISA. When a buffer pool is not in the overload state and the wa-shared buffer utilization for an ISA crosses above the high watermark value in the ISA from-subscriber buffer pool enters an overload state and an overload notification is raised.

Default 100

Parameters percent — Specifies the weighted average shared buffer utilization high watermark

Values 0 — 100

wa-shared-low-wmark

Syntax wa-shared-low-wmark percent
 no wa-shared-low-wmark

Context config>isa>aa-grp>qos>egress>from-sub
 config>isa>aa-grp>qos>egress>to-sub

Description This command configures the low watermark for the weighted average utilization of the shared buffer space in the from-subscriber buffer pool. When a buffer pool is in an overloaded state and the wa-shared buffer utilization for an ISA drops below low watermark value ISA from-subscriber buffer pool leaves the overload state and a is sent to indicate the overload state has cleared.

Default 0

Parameters percent — Specifies the weighted average shared buffer utilization low watermark

Values 0 — 100

protocol

Syntax protocol protocol-name

Context config>app-assure

Description This command configures the shutdown of protocols system-wide

Parameters protocol-name — Specifies a shutable (disable) protocol name.

shutdown

Syntax [no] shutdown

Context config>app-assure>protocol
Description: This command administratively disables the protocol specified in `protocol protocol-name`. The **no** form of the command enables the protocol.

radius-accounting-policy

Syntax

```plaintext
radius-accounting-policy rad-acct-plcy-name [create]
no radius-accounting-policy rad-acct-plcy-name
```

Context

```plaintext
config>app-assure
config>aa>group>statistics>aa-sub
```

Description

This command specifies an existing subscriber RADIUS-based accounting policy to use for AA. RADIUS accounting policies are configured in the `config>application-assurance>radius-accounting-policy` context.

Default

`none`

Parameters

- `name` — Specifies the policy name. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.

interim-update-interval

Syntax

```plaintext
interim-update-interval minutes
no interim-update-interval
```

Context

```plaintext
config>app-assure>rad-acct-plcy
```

Description

This command configures the interim update interval. The **no** form of the command reverts to the default.

Default

`no interim-update-interval`

Parameters

- `minutes` — Specifies the interval at which subscriber accounting data will be updated. If set no value is specified then no interim updates will be sent.

 Values

 5 — 1080

radius-accounting-server

Syntax

```plaintext
radius-accounting-server
```

Context

```plaintext
config>app-assure>rad-acct-plcy
```

Description

This command creates the context for defining RADIUS accounting server attributes under a given session authentication policy.

access-algorithm
null
Description
This command adds a RADIUS server and configures the RADIUS server IP address, index, and key values.

Up to five RADIUS servers can be configured at any one time. RADIUS servers are accessed in order from lowest to highest index for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received from a lower indexed server (which implies that the server is not available). If a response from a server is received, no other RADIUS servers are queried.

The no form of the command removes the server from the configuration.

Default
none

Parameters

server-index — The index for the RADIUS server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from lowest to highest index.

Values

1 — 16 (a maximum of 5 accounting servers)

address ip-address — The IP address of the RADIUS server. Two RADIUS servers cannot have the same IP address. An error message is generated if the server address is a duplicate.

secret key — Values
The secret key to access the RADIUS server. This secret key must match the password on the RADIUS server.

secret-key — A string up to 20 characters in length.
hash-key — A string up to 33 characters in length.
hash2-key — A string up to 55 characters in length.

hash — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.

port — Specifies the UDP port number on which to contact the RADIUS server for authentication.

Values

1 — 65535

source-address

Syntax

source-address ip-address

no source-address

Context

config>app-assure>rad-acct-plcy>server

Description
This command configures the source address of the RADIUS packet. The system IP address must be configured in order for the RADIUS client to work. See Configuring a System Interface in the 7750 SR OS Router Configuration Guide. Note that the system IP address must only be configured if the source-address is not specified. When the no source-address command is executed, the source address is determined at the moment the request is sent. This address is also used in the nas-ip-address attribute: over there it is set to the system IP address if no sourceaddress was given.

The no form of the command reverts to the default value.

Default

systemIP address
Group Commands

Parameters

ip-address — The IP prefix for the IP match criterion in dotted decimal notation.

Values 0.0.0.0 - 255.255.255.255

timeout

Syntax

```
timeout seconds
```

Context

```
config>app-assure>rad-acct-plcy>server
```

Description

This command configures the number of seconds the router waits for a response from a RADIUS server.

The **no** form of the command reverts to the default value.

Default

5

Parameters

seconds — Specifies the time the router waits for a response from a RADIUS server.

Values 1 — 90

significant-change

Syntax

```
significant-change delta
no significant-change
```

Context

```
config>app-assure>rad-acct-plcy
```

Description

This command configures the significant change required to generate the record.

The **no** form of the command reverts to the default.

Default

no significant-change

Parameters

delta — Specifies the delta change (significant change) that is required for the charging-group counts to be included in the RADIUS Accounting VSA(s).

Values 0 — 4294967295
System Persistence Commands

persistence

Syntax persistence
Context config>system
Description This command enables the context to configure persistence parameters on the system.

The persistence feature enables state on information learned through DHCP snooping across reboots to be retained. This information includes data such as the IP address and MAC binding information, lease-length information, and ingress SAP information (required for VPLS snooping to identify the ingress interface).

If persistence is enabled when there are no DHCP relay or snooping commands enabled, it will simply create an empty file.

Default no persistence

application-assurance

Syntax application-assurance
Context config>system>persistence
Description This command enables the context to configure application assurance persistence parameters.

location

Syntax location cflash-id
 no location
Context config>system>persistence>subscriber-mgmt
Description This command instructs the system where to write the file. The name of the file is: appassure.db. On boot the system scans the file systems looking for appassure.db, if it finds it, it starts to load it.

In the subscriber management context, the location specifies the flash device on a CPM card where the data for handling subscriber management persistency is stored.

The no form of this command returns the system to the default. If there is a change in file location while persistence is running, a new file will be written on the new flash, and then the old file will be removed.

Default no location
application-assurance-group

Syntax

- application-assurance-group application-assurance-group-index [create] [aa-sub-scale sub-scale]
- no application-assurance-group application-assurance-group-index

Context

config>isa

Description

This command enables the context to create an application assurance group with the specified system-unique index and enables the context to configure that group’s parameters. The no form of the command deletes the specified application assurance group from the system. The group must be shutdown first.

Default

none

Parameters

- application-assurance-group-index — Specifies an integer to identify the AA group

 Values

 - create — Mandatory keyword used when creating an application assurance group in the ISA context. The create keyword requirement can be enabled/disabled in the environment>create context.

 - aa-sub-scale sub-scale — Specifies the set of scaling limits that are supported with regards to the maximum number of AA subscribers per ISA and the corresponding policies that can be specified.

 Values

 - residential: Scaling limits for residential operation.
 - vpn: Scaling limits for VPNs.
 - mobile-gateway: Scaling limits for operation as a mobile gateway.

 Default

 residential

backup

Syntax

- [no] backup mda-id

Context

config>isa>aa-grp

Description

This command assigns an AA ISA configured in the specified slot to this application assurance group. The backup module provides the application assurance group with warm redundancy when the primary module in the group is configured. Primary and backup modules have equal operational status and when both module are coming up, the ones that becomes operational first becomes the
active module. A module can serve as a backup for multiple AA ISA cards but only one can fail to it at one time.

On an activity switch from the primary module, configurations are already on the backup MDA but flow state information must be re-learned. Any statistics not yet spooled will be lost. Auto-switching from the backup to primary, once the primary becomes available again, is not supported.

Operator is notified through SNMP events when:

• When the AA service goes down (all modules in the group are down) or comes back up (a module in the group becomes active).
• When AA redundancy fails (one of the modules in the group is down) or recovers (the failed module comes back up).
• When an AA activity switch occurred.

The no form of the command removes the specified module from the application assurance group.

Default no backup

Parameters mda-id — Specifies the card/slot identifying a provisioned module to be used as a backup module.

Values mda-id:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot</td>
<td>1 — up to 10 depending on chassis model</td>
</tr>
<tr>
<td>mda</td>
<td>1 — 2</td>
</tr>
</tbody>
</table>

divert-fc

Syntax [no] divert-fc fc-name

Context config>isa>aa-grp

Description This command selects a forwarding class in the system to be diverted to an application assurance engine for this application assurance group. Only traffic to/from subscribers with application assurance enabled is diverted.

To divert multiple forwarding classes, the command needs to be executed multiple times specifying each forwarding class to be diverted at a time.

The no form of the command stops diverting of the traffic to an application assurance engine for this application assurance group.

Default no divert-fc

Parameters fc-name — Creates a class instance of the forwarding class fc-name.

Values be, l2, af, l1, h2, ef, h1, nc

fail-to-open

Syntax [no] fail-to-open

Context config>isa>aa-grp
isa-capacity-cost-high-threshold

Syntax

```plaintext
isa-capacity-cost-high-threshold threshold
no isa-capacity-cost-high-threshold
```

Context

`config>isa>aa-grp`

Description

This command configures the ISA-AA capacity cost high threshold. The `no` form of the command reverts the threshold to the default value.

Default

4294967295

Parameters

- `threshold` — Specifies the capacity cost high threshold for the ISA-AA group.

Values

- 0 — 4294967295

isa-capacity-cost-low-threshold

Syntax

```plaintext
isa-capacity-cost-low-threshold threshold
no isa-capacity-cost-low-threshold
```

Context

`config>isa>aa-grp`

Description

This command configures the ISA-AA capacity cost low threshold. The `no` form of the command reverts the threshold to the default value.

Default

0

Parameters

- `threshold` — Specifies the capacity cost low threshold for the ISA-AA group.

Values

- 0 — 4294967295

isa-overload-cut-through

Syntax

```plaintext
[no] isa-overload-cut-through
```

Context

`config>isa>aa-grp`

Description

This command configures the ISA group to enable cut-through of traffic if an overload event occurs, triggered when the IOM weighted average queues depth exceeds the wa-shared-high-wmark. In this ISA state, packets are cut-through from application analysis but retain subscriber context with default subscriber policy applied.
The **no** form of the command disables cut-through processing on overload.

Default
isa-overload-cut-through

partitions

Syntax
[no] partitions

Context
config>isa>aa-grp

Description
This command enables partitions within an ISA-AA group. When enabled, partitions can be created. The **no** form of the command disables partitions within an ISA-AA group.

Default
disabled

primary

Syntax
[no] primary mda-id

Context
config>isa>aa-grp

Description
This command assigns an AA ISA module configured in the specified slot to this application assurance group. Primary and backup ISAs have equal operational status and when both ISAs are coming up, the one that becomes operational first becomes the active ISA.

On an activity switch from the primary ISA, all configurations are already on the backup ISA but flow state information must be re-learned. Any statistics not yet spooled will be lost. Auto-switching from the backup to primary, once the primary becomes available again, is not supported.

Operator is notified through SNMP events when:

- When AA service goes down (all ISAs in the group are down) or comes back up (an ISA in the group becomes active)
- When AA redundancy fails (one of the ISAs in the group is down) or recovers (the failed MDA comes back up)
- When an AA activity switch occurred.

The **no** form of the command removes the specified ISA from the application assurance group.

Default
no primary

Parameters

- **mda-id** — Specifies the slot/mda identifying a provisioned AA ISA.

<table>
<thead>
<tr>
<th>Values</th>
<th>mda-id:</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/mda</td>
<td>slot 1 — up to 10 depending on chassis model*</td>
</tr>
<tr>
<td></td>
<td>mda 1 — 2</td>
</tr>
</tbody>
</table>

qos

Syntax
qos
Group Commands

Context
cfg>isa>aa-grp

Description
This command enables the context for Quality of Service configuration for this application assurance group.

statistics

Syntax
statistics

Context
cfg>isa>aa-grp

Description
This command enables the context to configure statistics generation.

performance

Syntax
performance

Context
cfg>isa>aa-grp>statistics

Description
This command configures the ISA group to enable the aa-performance statistic record. This record contains information on the traffic load and resource consumption for each ISA in the group, to allow tracking of ISA load for long term capacity planning and short term anomalies. The user can configure the accounting policy to be used, and enables the record using the [no]collect-stats command.

egress

Syntax
egress

Context
cfg>isa>aa-grp>qos

Description
This command enables the context for IOM port-level Quality of Service configuration for this application assurance group in the egress direction (traffic entering an application assurance engine).

from-subscriber

Syntax
from-subscriber

Context
cfg>isa>aa-grp>qos>egress

Description
This command enables the context for Quality of Service configuration for this application assurance group form-subscriber logical port, traffic entering the system from AA subscribers and entering an application assurance engine.
Syntax
```
pool [pool-name]
no pool
```

Context
```
config>isa>aa-grp>qos>egress>from-subscriber
config>isa>aa-grp>qos>egress>to-subscriber
config>isa>aa-grp>qos>ingress
```

Description
This command enables the context to configure an IOM pool as applicable to the specific application assurance group traffic. The user can configure resv-cbs (as percentage) values and slope-policy similarly to other IOM pool commands.

Parameters
`pool-name` — The name of the pool.

Values
- default

resv-cbs

Syntax
```
resv-cbs percent-or-default
no resv-cbs
```

Context
```
config>isa>aa-grp>qos>egress>from-subscriber>pool
config>isa>aa-grp>qos>egress>to-subscriber>pool
config>isa>aa-grp>qos>ingress>pool
```

Description
This command defines the percentage or specifies the sum of the pool buffers that are used as a guideline for CBS calculations for access and network ingress and egress queues. Two actions are accomplished by this command.

- A reference point is established to compare the currently assigned (provisioned) total CBS with the amount the buffer pool considers to be reserved. Based on the percentage of the pool reserved that has been provisioned, the over provisioning factor can be calculated.
- The size of the shared portion of the buffer pool is indirectly established. The shared size is important to the calculation of the instantaneous-shared-buffer-utilization and the average-shared-buffer-utilization variables used in Random Early Detection (RED) per packet slope plotting.

Note that this command does not actually set aside buffers within the buffer pool for CBS reservation. The CBS value per queue only determines the point at which enqueuing packets are subject to a RED slope. Oversubscription of CBS could result in a queue operating within its CBS size and still not able to enqueue a packet due to unavailable buffers. The resv-cbs parameter can be changed at any time.

If the total pool size is 10 MB and the resv-cbs set to 5, the ‘reserved size’ is 500 KB. The no form of this command restores the default value.

Parameters
`percent-or-default` — Specifies the pool buffer size percentage.

Values
- 0 — 100, default
slope-policy

Syntax
```
slope-policy name
no slope-policy
```

Context
```
config>isa>aa-grp>qos>egress>from-subscriber>pool
config>isa>aa-grp>qos>egress>to-subscriber>pool
config>isa>aa-grp>qos>ingress>pool
```

Description This command specifies an existing slope policy which defines high and low priority RED slope parameters and the time average factor. The slope policy is defined in the `config>qos>slope-policy` context.

queue-policy

Syntax
```
queue-policy network-queue-policy-name
no queue-policy
```

Context
```
config>isa>aa-grp>qos>egress>from-subscriber
config>isa>aa-grp>qos>egress>to-subscriber
config>isa>aa-grp>qos>ingress
```

Description This command assigns an IOM network queue policy as applicable to specific application assurance group traffic.

Default default

Parameters
```
  network-queue-policy-name — The name of the network queue policy defined in the system.
```

wa-shared-high-wmark

Syntax
```
wa-shared-high-wmark percent
no wa-shared-high-wmark
```

Context
```
config>isa>aa-grp>qos>egress>from-sub
config>isa>aa-grp>qos>egress>to-sub
```

Description This command configures the high watermark for the weighted average utilization of the shared buffer space in the `from-subscriber` buffer pool for each ISA. When a buffer pool is not in the overload state and the wa-shared buffer utilization for an ISA crosses above the high watermark value in the ISA `from-subscriber` buffer pool enters an overload state and an overload notification is raised.

Default 100

Parameters
```
  percent — Specifies the weighted average shared buffer utilization high watermark
```

Values
```
  0 — 100
```

wa-shared-low-wmark
Application Assurance Group Commands

Syntax

```
wa-shared-low-wmark percent
no wa-shared-low-wmark
```

Context

```
config>isa>aa-grp>qos>egress>from-sub
config>isa>aa-grp>qos>egress>to-sub
```

Description

This command configures the low watermark for the weighted average utilization of the shared buffer space in the from-subscriber buffer pool. When a buffer pool is in an overloaded state and the wa-shared buffer utilization for an ISA drops below low watermark value ISA from-subscriber buffer pool leaves the overload state and a is sent to indicate the overload state has cleared.

Default

0

Parameters

- `percent` — Specifies the weighted average shared buffer utilization low watermark
 - **Values**
 - 0 — 100

port-scheduler-policy

Syntax

```
port-scheduler-policy port-scheduler-policy-name
no port-scheduler-policy
```

Context

```
config>isa>aa-grp>qos>egress>from-subscriber
config>isa>aa-grp>qos>egress>to-subscriber
```

Description

This command assigns an existing port scheduler policy as applicable to the specific application assurance group traffic.

Default

default

Parameters

- `port-scheduler-policy-name` — specifies the name of an existing port scheduler policy.

to-subscriber

Syntax

```
to-subscriber
```

Context

```
config>isa>aa-grp>qos>egress
```

Description

This command enables the context for Quality of Service configuration for this application assurance group to-subscriber logical port, traffic destined to AA subscribers and entering an application assurance engine.

ingress

Syntax

```
ingress
```

Context

```
config>card>mda>network>ingress
```

Description

This command enables the context for MDA-level IOM Quality of Service configuration.
Show Commands

debug

Syntax

```
display debug [application]
```

Context

show

Description

This command displays the debug points that have been set.

Parameters

application — Specifies the application debug points that have been set.

Values

aaa, application-assurance, atm, bgp, cisco-hdlc, cmpv2, diameter, ethernet, filter, frame-relay, igmp, ip, ipsec, isis, l2tp, lag, ldp, local-dhcp-server, mcast-management, mirror, mld, mpls, msdp, mtrace, nat, oam, ocs, open-flow, ospf, ospf3, pim, ppp, radius, radius-proxy, rip, ripng, rsvp, service, snmp, srrp, subscriber-mgmt, system, vrrp, wlan-gw, wpp

application-assurance-group

Syntax

```
application-assurance-group [aa-group-id [load-balance [unassigned]]]
```

Context

show>isa

Description

This command displays ISA group information.

Parameters

aa-group-id — Specifies the AA ISA group ID.

load-balance — Specifies load balancing information.

unassigned — Specifies load balancing unassigned aa-sub information.

Output

Show Command Output — The following table describes the show command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA-AA Group Index</td>
<td>Indicates the group number of this group of MDAs.</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Primary ISA-AA</td>
<td>Displays the primary slot and card number and whether the status is up or down and is either active or standby.</td>
</tr>
<tr>
<td>Backup ISA-AA</td>
<td>Displays the backup slot and card number and whether the status is up or down and is either active or standby. The status should be up and standby.</td>
</tr>
<tr>
<td>Last Active change</td>
<td>Indicates the last time a successful change was performed.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative state, up or down.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state, up or down.</td>
</tr>
<tr>
<td>Diverted FCs</td>
<td>Displays the forwarding class to be diverted.</td>
</tr>
<tr>
<td>Fail to mode</td>
<td>Displays how traffic is handled when there are no available ISA-AA cards to handle the traffic, either failToWire or failToOpen.</td>
</tr>
<tr>
<td>Partitions</td>
<td>Indicates whether partitions are enabled or disabled within an ISA-AA group. When the value of this object is set to disabled, partitions can be created in the tmnxBsxAaGrpPartTable.</td>
</tr>
<tr>
<td>Egress from subscriber</td>
<td></td>
</tr>
<tr>
<td>Pool</td>
<td>Displays the buffer pool as defined in TIMETRA-PORT-MIB::tmnxObjectAppPool for subscriber to network traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Reserved Cbs</td>
<td>Displays the percentage of the buffer pool reserved for high priority traffic for subscriber to network traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Slope Policy</td>
<td>Displays the policy as defined in TIMETRA-QOS-MIB::tSlopePolicyTable for subscriber to network traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Queue Policy</td>
<td>Displays the policy as defined in TIMETRA-QOS-MIB::tNetworkQueueTable for subscriber to network traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Scheduler Policy</td>
<td>Displays the policy as defined in TIMETRA-QOS-MIB::tSchedulerPolicyTable for network to subscriber traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Egress to subscriber</td>
<td></td>
</tr>
<tr>
<td>Pool</td>
<td>Displays the buffer pool as defined in TIMETRA-PORT-MIB::tmnxObjectAppPool for network to subscriber traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Reserved Cbs</td>
<td>Displays the percentage of the buffer pool reserved for high priority traffic for network to subscriber traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Slope Policy</td>
<td>Displays the policy as defined in TIMETRA-QOS-MIB::tSlopePolicyTable for network to subscriber traffic egressing towards the ISA-AA MDA.</td>
</tr>
<tr>
<td>Queue Policy</td>
<td>Displays the policy as defined in TIMETRA-QOS-MIB::tNetworkQueueTable for network to subscriber traffic egressing towards the ISA-AA MDA.</td>
</tr>
</tbody>
</table>

Sample Output
A:ALU>show>isa# application-assurance-group 1
===
ISA Application-assurance-groups
===
ISA-AA Group Index : 1
Description : Test
Primary ISA-AA : 2/1 up/active (7 subs, 9 saps)
 : 3/2 up/active (6 subs, 8 saps)
Backup ISA-AA : 1/1 up/standby
Last Active change : 01/30/2009 20:14:37
Admin State : Up
Oper State : Up
Diverted FCs : be l2
Fail to mode : fail-to-wire Partitions: disabled
QoS
Egress from subscriber
 Pool : default
 Reserved Cbs : 50 percent
 Slope Policy : aa_spoll
 Queue Policy : aa_nqpolEgr
 Scheduler Policy : aa_pspFrmSub
Egress to subscriber
 Pool : default
 Reserved Cbs : 50 percent
 Slope Policy : aa_spoll
 Queue Policy : aa_nqpolEgr
 Scheduler Policy : aa_pspToSub
===
A:ALU>show>isa#

A:ALA-IPD# show isa application-assurance-group <aa-group-id> load-balance
===
ISA Application-assurance-group <aa-group-id>
===
load-balance status : Complete | Balancing
isa-capacity-cost-threshold : low 40,000
 : high 50,000

capacity-cost aa-sub aa-sub stats spoke-sdp transit-ip
count count entries entries

1/1 6 6 60 0 0
3/1 5 5 48 0 0
Mda Limit NA 1024 32768 1024 1024

aa-sub type count for group 2
all esm sap spoke-sdp transit

1/1 6 3 3 0 0
3/1 5 3 2 0 0
Unassigned 0 0 0 0 0
...

A:ALA-IPD#

*A:Dut-C# show isa application-assurance-group 84 load-balance unassigned
aarp

Syntax

```plaintext
aarp aarpld [detail]
```

Context

```
show>app-assur
```

Description

This command displays Application Assurance Redundancy Protocol (AARP) instance status.

Parameters

- **aarpld** —
 - **Values**
 - 1 — 65535

- **detail** — Displays detailed information.

group

Syntax

```plaintext
group aa-group-id [:partition-id]
```

Context

```
show>app-assure
```

Description

This command enables the context to display application-assurance group information.

Parameters

- **aa-group-id** — Specifies an AA ISA group ID.
 - **Values**
 - 1

- **partition-id** — Specifies a partition within a group.
 - **Values**
 - 1 — 65535

aa-interface
Syntax aa-interface isa mda-id

Context show>app-assure>group

Description This command displays AA interface information.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>mda-id</td>
<td><mda-id></td>
</tr>
<tr>
<td></td>
<td>slot</td>
</tr>
<tr>
<td></td>
<td>mda</td>
</tr>
</tbody>
</table>

aa-sub

Syntax aa-sub esm sub-ident-string [snapshot]
aa-sub sap sap-id
aa-sub spoke-id sdp-id:vc-id [snapshot]
aa-sub transit transit-aasub-name [snapshot]

Context show>app-assure>group

Description This command displays per-subscriber statistics.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>esm</td>
<td>sub-ident-string — Specifies an existing subscriber identification string.</td>
</tr>
<tr>
<td>sap</td>
<td>sap-id — Specifies the physical port identifier portion of the SAP definition. Refer to Appendix A: Common CLI Command Descriptions on page 949 for syntax.</td>
</tr>
<tr>
<td>spoke-id</td>
<td>sdp-id:vc-id — Specifies the spoke SDP ID and VC ID.</td>
</tr>
<tr>
<td>snapshot</td>
<td>snapshot — Specifies that the statistics retrieved include the sum of the statistics from the previous collection windows, and the statistics for any closed flows since the last collection window.</td>
</tr>
<tr>
<td>transit</td>
<td>transit-aasub-name — Specifies an existing transit subscriber name string up to 32 characters in length.</td>
</tr>
</tbody>
</table>

Sample Output

*A:Dut-C# show application-assurance group 1 aa-sub spoke-sdp 1:1 snapshot application count
===
Application-Assurance Subscriber 1:1 (spoke-sdp)
Application Statistics (snapshot)

Application Disc Octets Packets Flows

Unknown 0% 0 0 0

*A:Dut-C#

A:ALA-IPD# show application-assurance group 1 aa-sub {esm <sub-ident-string> |
sap <sap-id> | spoke-sdp <sdp-id:vc-id> | transit <transit-aasub-name>} summary
Application Assurance Command Descriptions

AA-Subscriber : 1:1 (spoke-sdp)
ISA assigned : 3/1
App-Profile : app_prof_D_4
App-Profile divert : Yes
Capacity cost : 1

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admitted from subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Denied from subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows from subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Admitted to subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Denied to subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows to subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total flow duration</td>
<td>0 seconds</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Top App-Groups

<table>
<thead>
<tr>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td><app-group-name></td>
<td>100000</td>
<td>3000</td>
</tr>
<tr>
<td><app-group-name></td>
<td>90000</td>
<td>3000</td>
</tr>
<tr>
<td><app-group-name></td>
<td>80000</td>
<td>3000</td>
</tr>
</tbody>
</table>

A:ALA-IPD#

A:ALA-IPD# show application-assurance group 1 aa-sub transit <transit-aasub-name> summary

AA-Subscriber : <transit-aasub-name>
App-Profile : <app-profile-name>
aa-filter : aa-ip <aa-ip-filter-id> or aa-prefix <aa-prefix-filter-id>
Parent : SAP <sap-id> or Spoke-SDP <id> or N/A
Parent ISA assigned : <Slot/MDA> or <None (fail-to-closed | fail-to-open)> or Unassigned or N/A
Parent app-profile : <app-profile-name> or N/A
Parent divert : Yes or No or N/A
Parent capacity-cost : 2000 or N/A

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admitted from subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Denied from subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows from subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Admitted to subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Denied to subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows to subscriber</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total flow duration</td>
<td>0 seconds</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Top App-Groups

<table>
<thead>
<tr>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A:ALA-IPD# show application-assurance group 1 aa-sub {esm <sub-ident-string> | sap <sap-id> | spoke-sdp <sdp-id:vc-id> | transit <transit-aasub-name>} count
MINOR: CLI aa-sub esm|sap|transit <name> has too many flows to obtain real-time stats, use aa-sub esm|sap|transit|spoke <sub-name> snapshot

A:ALA-IPD# show application-assurance group 1 aa-sub {esm <sub-ident-string> | sap <sap-id> | spoke-sdp <sdp-id:vc-id> | transit <transit-aasub-name>} snapshot count

Application-Assurance Subscriber esm|sap|spoke-sdp|transit <name>
Application Group, Application and Protocol Statistics (realtime | snapshot)

Application Group Disc Octets Packets Flows

Games 0% 0 0 0
Mail 0% 0 0 0
Peer to Peer 0% 0 0 0
Unknown 0% 0 0 0
Web 0% 0 0 0

Application Disc Octets Packets Flows

SIP 0% 0 0 0

Protocol statistics are not configured in statistics>aa-sub

A:ALA-IPD#

A:ALA-IPD# show application-assurance group 1 aa-sub {esm <sub-ident-string> | sap <sap-id> | spoke-sdp <sdp-id:vc-id> | transit <transit-aasub-name>} application count detail

Application-Assurance Subscriber esm|sap|spoke-sdp|transit <name>
Application Statistics (realtime | snapshot)

Subscriber Application:
Type Octets Packets Flows

name SIP:
Admitted from subscriber: 0 0 0
Denied from subscriber: 0 0 0
Active flows from subscriber: 0
Admitted to subscriber: 0 0 0
Denied to subscriber: 0 0 0
Active flows to subscriber: 0
Max per min from sub: 1000 10
Max per min to sub: 2000 20
Total flow duration: 0 seconds
Terminated flows: 0
Short Duration flows: 0
Medium Duration flows: 0
Long Duration flows: 0

aa-sub-list

Syntax

```
aa-sub-list [isa mda-id]
aa-sub-list policers-exceeded
aa-sub-list summary
```

Context

```
show>app-assure>group
```

Description

This command displays aa-subscriber lists.

Parameters

- `isa mda-id` — Displays the slot and MDA ID.
 - Values:
 - 1 — 10 (depending on chassis model)
 - 1, 2
- `policers-exceeded` — Displays the policer resources which are exceeded.
- `summary` — Displays summary information.

Sample Output

```
show application-assurance group 1 aa-sub {esm <sub-ident-string> | sap <sap-id> | spoke-sdp <sdp-id:vc-id> } summary
```

```
===============================================================================
Application-Assurance Subscriber summary (realtime | snapshot)
===============================================================================
AA-Subscriber        : <sub-ident-string> or <sap-id> or <sdp-id:vc-id>
ISA assigned         : <Slot/MDA> Unassigned
App-Profile          : <app-profile-name>
App-Profile divert   : Yes or No
capacity-cost        : 100 // for sap/spoke-sdp & esm aa-sub)
Traffic                Octets    Packets    Flows
-------------------------------------------------------------------------------
Admitted from subscriber: 0         0         0
Denied from subscriber:   0         0         0
Active flows from subscriber:                               0
Admitted to subscriber:   0         0         0
Denied to subscriber:     0         0         0
Active flows to subscriber:                                 0
Total flow duration:      0 seconds
Terminated flows:                                           0
Short Duration flows:                                       0
Medium Duration flows:                                      0
Long Duration flows:                                        0
Top App-Groups          Octets    Packets    Flows
-------------------------------------------------------------------------------
<app-group-name>          100000     3000        30
<app-group-name>          90000      3000        30
<app-group-name>          80000      3000        30
-------------------------------------------------------------------------------
Application Service Options (ASO)
```

```
-----------------------------------
Characteristic   Value    Derived from
-----------------------------------
```
<table>
<thead>
<tr>
<th>Server</th>
<th>Block</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceBw</td>
<td>SuperUser</td>
<td>app-profile</td>
</tr>
<tr>
<td>Teleworker</td>
<td>Yes</td>
<td>override</td>
</tr>
<tr>
<td>VideoBoost</td>
<td>Priority</td>
<td>override</td>
</tr>
</tbody>
</table>

Total characteristics: 4
Total derived from aso defaults: 1
Total derived from app-profile: 1
Total derived from overrides: 2

*A:Dut-C# show application-assurance group 224:10559 aa-sub-list

Application-Assurance Subscriber List for Group 224:10559

<table>
<thead>
<tr>
<th>type</th>
<th>aa-sub</th>
<th>ISA</th>
<th>App-Profile</th>
<th>divert</th>
<th>assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap</td>
<td>1/1/1:113</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:241</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:369</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:497</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:113</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:241</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:369</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:497</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Total number of aa-subs found: 8

*A:Dut-C#

*A:Dut-C# show application-assurance group 224:10559 aa-sub-list isa 3/2

Application-Assurance Subscriber List for Group 224:10559, isa 3/2

<table>
<thead>
<tr>
<th>type</th>
<th>aa-sub</th>
<th>ISA</th>
<th>App-Profile</th>
<th>divert</th>
<th>assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap</td>
<td>1/1/1:113</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:241</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:369</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:497</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:113</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:241</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:369</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:497</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Total number of aa-subs found: 8

*A:Dut-C#

A:ALA-IPD# show application-assurance group 2 aa-sub-list [isa <mda-id>]

Application-Assurance Subscriber List for Group 2, isa <slot/mda>

<table>
<thead>
<tr>
<th>type</th>
<th>aa-sub</th>
<th>ISA</th>
<th>App-Profile</th>
<th>divert</th>
<th>assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:113</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:241</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:369</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/1:497</td>
<td>3/2</td>
<td>prof_224_10559_1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:113</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:241</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:369</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>1/1/4:497</td>
<td>3/2</td>
<td>prof_224_10559_2</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Total number of aa-subs found: 8
aa-sub-study

Syntax

- `aa-sub-study esm sub-ident-string [snapshot]`
- `aa-sub-study sap sap-id`
- `aa-sub-study spoke-sdp sdp-id:vc-id [snapshot]`
- `aa-sub-study transit transit-aasub-name [snapshot]`

Context

`show>app-assure>group`

Description

This command display per-subscriber special study statistics.
Parameters

esm sub-ident-string — Specifies an existing subscriber identification string.

sap sap-id — Specifies the physical port identifier portion of the SAP definition. Refer to Appendix A: Common CLI Command Descriptions on page 949 for syntax.

spoke-id sdp-id:vc-id — Specifies the spoke SDP ID and VC ID.

Values

1 — 17407
1 — 4294967295

snapshot — Specifies that the statistics retrieved include the sum of the statistics from the previous collection windows, and the statistics for any closed flows since the last collection window.

transit transit-aasub-name — Specifies an existing transit subscriber name string.

app-group

Syntax

app-group [app-group-name] count [detail]

Context

show>app-assure>group>aa-sub
show>app-assure>group

Description

This command displays per-application-group statistics. System-wide statistics displayed account for all flows completed and the last internal snapshot of the active flows.

Parameters

app-group-name — Displays information about the specified application group name.

count — Displays the counters for the application group.

detail — Displays detailed information.

Sample Output

A:ALU>show>app-assure>group# app-group count
===
App-group Statistics
===
Application Group Disc Octets Packets Flows

File Transfer 0% 0 0 0
Games 0% 3865532 4952 144
Infrastructure 0% 174524 1217 1177
Instant Messaging 0% 2979117 9930 97
Local Content 0% 10581539 10942 74
Mail 0% 57940 346 24
MultiMedia 0% 76911464 79417 198
NNTP 0% 0 0 0
Peer to Peer 0% 10903442 13901 485
Premium Partner 0% 0 0 0
Remote Connectivity 0% 0 0 0
Server 0% 1097 8 2
Suspect 72% 1012 11 11
Tunneling 0% 19872617 33989 204
Unknown 0% 5243395 27510 2648
Web 0% 82135303 91828 2152

A:ALU>show>app-assure>group#
application

Syntax
application [application-name] count [detail]

Context
show>app-assure>group
show>app-assure>group>aa-sub
show>app-assure>group>aa-sub-study

Description
This command displays per-application statistics. The system-wide statistics displayed account for all flows completed and the last internal snapshot of the active flows.

Subscriber statistics are available for special-study subscribers and account for all completed and active flows at the moment of this statistics request.

Parameters

- **application-name** — Displays information about the specified application name.
- **count** — Displays counter information.
- **detail** — Displays detailed information.

Sample Output

A:ALU-ABC>show>app-assure>group# application count

<table>
<thead>
<tr>
<th>Application</th>
<th>Disc Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiMedia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admitted from subscriber:</td>
<td>193605</td>
<td>1797</td>
<td>23</td>
</tr>
<tr>
<td>Denied from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows from subscriber:</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Admitted to subscriber:</td>
<td>4835822</td>
<td>3366</td>
<td>23</td>
</tr>
<tr>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows to subscriber:</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total flow duration:</td>
<td>433 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminated flows:</td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Short Duration flows:</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Medium Duration flows:</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Long Duration flows:</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Active subscribers:</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

A:ALU>show>app-assure>group#
A:ALU-ABC>show>app-assure>group#

A:ALU-ABC>show>app-assure>group# application "POP3" count detail

Application "POP3" Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admitted from subscriber:</td>
<td>14095</td>
<td>149</td>
<td>10</td>
</tr>
<tr>
<td>Denied from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows from subscriber:</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Admitted to subscriber:</td>
<td>30707</td>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows to subscriber:</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total flow duration:</td>
<td>7 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminated flows:</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Active subscribers:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALU-ABC>show>app-assure>group#

A:ALU>show>app-assure>group# application "HTTP_Video" count detail

Application "HTTP_Video" Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admitted from subscriber:</td>
<td>369528</td>
<td>5404</td>
<td>36</td>
</tr>
<tr>
<td>Denied from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows from subscriber:</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Admitted to subscriber:</td>
<td>15387734</td>
<td>10629</td>
<td>36</td>
</tr>
<tr>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows to subscriber:</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total flow duration:</td>
<td>463 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminated flows:</td>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Short Duration flows:</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Medium Duration flows:</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Long Duration flows:</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Active subscribers:</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALU>show>app-assure>group#

cflowd

Syntax cflowd
null
Syntax

status

Context

show>app-assure>group>cflowd

Description

This command display status information.

Sample Output

A:ALU-A# show application-assurance group 1 status [isa 1/2] cflowd
==
Application-Assurance Group Cflowd Status
==
Cflowd Admin Status : Enabled
Cflowd Oper Status : Enabled
--
Volume :
--
Sample Rate : <Disabled> or <1 in 500 packets>
Active Flows : 23102
Records Reported : 12345
Records Dropped : 10
Records Per Second : 45
Packets Sent : 1763
Packets Sent Per Sec : 7
--
TCP Performance :
--
Sample Rate : <Disabled> or <1 in 1000 flows>
Active Flows : 32103
Flows Not Allocated : 33
Records Reported : 12345678
Records Dropped : 100
Records Per Second : 456
Packets Sent : 2057613
Packets Sent Per Sec : 76
==
A:ALU-A#

A:ALU-A#show application-assurance group <aa-group-id:[partition]> cflowd status
==
Application-Assurance Group:Partition Cflowd Status
==
Volume :
==
Admin State : Up
Records Reported : 12345
Records Dropped : 10
==
TCP Performance :
==
Admin State : Up
Flows Not Allocated : 33
Records Reported : 12345678
Records Dropped : 100
==
A:ALU-A#
dns-ip-cache

Syntax
```
dns-ip-cache cache-name isa mda-id
dns-ip-cache cache-name
```

Context
```
show>app-assure>group
```

Description
This command displays dns-ip-cache information.

http-enrich

Syntax
```
http-enrich enrichment-name
```

Context
```
show>app-assure>group
```

Description
This command displays HTTP enrichment information.

Parameters
```
enrichment-name — Specifies the name of the HTTP enrichment policy up to 32 characters in length.
```

detail

Syntax
```
detail [partition]
```

Context
```
show>app-assure>group>http-enrich
```

Description
This command displays detailed HTTP Enrichment information.

field

Syntax
```
field field-name
```

Context
```
show>app-assure>group>http-enrich
```

Description
This command displays HTTP enrichment field information.

fields

Syntax
```
fields
```

Context
```
show>app-assure
```

Description
This command displays HTTP enrichment fields.

summary

Syntax
```
summary
```

Context
```
show>app-assure
```

Description
This command displays HTTP enrichment fields.
Context show>app-assure>group>http-enrich

Description This command displays summarized HTTP enrichment information.

count

Syntax count [detail]

Context show>app-assure>group>aa-sub

Description This command displays per-subscriber app-group application and protocol statistics.

Parameters detail — Displays detailed information.

Sample Output

```
A:ALU>show>app-assure>group>aa-sub# count
Application-Assurance Subscriber TestSubscriberName
Application Group, Application and Protocol Statistics

<table>
<thead>
<tr>
<th>Application Group</th>
<th>Disc Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>File Transfer</td>
<td>0% 27243</td>
<td>169</td>
<td>22</td>
</tr>
<tr>
<td>Games</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>0% 71494</td>
<td>555</td>
<td>515</td>
</tr>
<tr>
<td>Instant Messaging</td>
<td>0% 4947792</td>
<td>25587</td>
<td>411</td>
</tr>
<tr>
<td>Local Content</td>
<td>0% 923</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Mail</td>
<td>0% 53729</td>
<td>318</td>
<td>22</td>
</tr>
<tr>
<td>Mail Server</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MultiMedia</td>
<td>0% 31670667</td>
<td>33087</td>
<td>142</td>
</tr>
<tr>
<td>NNTP</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peer to Peer</td>
<td>0.45% 11096224</td>
<td>16339</td>
<td>2431</td>
</tr>
<tr>
<td>Premium Partner</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Remote Connectivity</td>
<td>0% 15321</td>
<td>171</td>
<td>2</td>
</tr>
<tr>
<td>Server</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Suspect</td>
<td>72% 1012</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Tunneling</td>
<td>0% 19659289</td>
<td>33535</td>
<td>164</td>
</tr>
<tr>
<td>Unknown</td>
<td>0% 1945164</td>
<td>6317</td>
<td>287</td>
</tr>
<tr>
<td>Web</td>
<td>0% 29538078</td>
<td>34873</td>
<td>1022</td>
</tr>
<tr>
<td>Web Server</td>
<td>0% 0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A:ALU>show>app-assure>group>aa-sub# count detail

Application-Assurance Subscriber TestSubscriberName

<table>
<thead>
<tr>
<th>Application Group</th>
<th>Disc Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP_Local</td>
<td>0% 923</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

A:ALU>show>app-assure>group>aa-sub#

Application-Assurance Subscriber TestSubscriberName
```
Application Group, Application and Protocol Statistics

<table>
<thead>
<tr>
<th>Subscriber</th>
<th>Application Group:</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestSubscriberName</td>
<td>Instant Messaging:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admitted from subscriber:</td>
<td>2558576</td>
<td>12720</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Denied from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Active flows from subscriber:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admitted to subscriber:</td>
<td>2389216</td>
<td>12867</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Active flows to subscriber:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total flow duration:</td>
<td>2912 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminated flows:</td>
<td>411</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short Duration flows:</td>
<td>387</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium Duration flows:</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Duration flows:</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ... | ... | ... | ... |

<table>
<thead>
<tr>
<th>Subscriber</th>
<th>Application:</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestSubscriberName</td>
<td>HTTP_Local:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admitted from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Denied from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Active flows from subscriber:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admitted to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Active flows to subscriber:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total flow duration:</td>
<td>0 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminated flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short Duration flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium Duration flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Duration flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscriber</th>
<th>Protocol:</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestSubscriberName</td>
<td>dns:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admitted from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Denied from subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Active flows from subscriber:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admitted to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Active flows to subscriber:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total flow duration:</td>
<td>0 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminated flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short Duration flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium Duration flows:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
admin

Syntax admin
Context show>app-assure>group>policy
Description This command displays the application-assurance policy uncommitted changes.

Sample Output
*A:ALA-48>show>app-assure>group>policy# admin
begin
app-filter
entry 10 create
shutdown
exit
exit
app-qos-policy
entry 10 create
shutdown
exit
commit
*A:ALA-48>show>app-assure>group>policy#

app-filter

Syntax app-filter [entry-id]
Context show>app-assure>group>policy
Description This command displays application-assurance policy filter information.
Parameters entry-id — Specifies an existing application filter entry.

Values 1 — 65535

app-group

Syntax app-group [app-group-name]
Context show>app-assure>group>policy
Description This command displays application-assurance policy application group information.
Application Assurance Command Descriptions

app-profile

Syntax
```
app-profile [app-prof-name]
```

Parameters
- `app-prof-name` — Specifies an existing application profile name.

```
app-profile app-prof-name associations
```

Context
```
show>app-assure>group>policy
```

Description
This command displays application-assurance policy application profile information.

app-qos-policy

Syntax
```
app-qos-policy [entry-id]
```

Parameters
- `entry-id` — Specifies an existing application QoS policy entry id.

```
entry-id = 1 — 65535
```

Description
This command displays application-assurance policy application QoS policy information.

app-service-option

Syntax
```
app-service-option [characteristic-name]
```

Context
```
show>app-assure>group>policy
```

Description
This command displays application-assurance policy application service option information.

application

Syntax
```
application [app-name]
```

Context
```
show>app-assure>group>policy
```

Description
This command displays application-assurance policy application information.

custom-protocol

Syntax
```
custom-protocol
```

Context
```
show>app-assure>group>policy
```

Description
This command displays application-assurance policy custom protocol information.
summary

Syntax summary

Context show>app-assure>group>policy

Description This command displays application-assurance policy summary information.

policer

Syntax policer

policer policer-name [detail]
policer summary

Context show>app-assure>group>policy>aa-sub

Description This command displays policer configuration information.

Sample Output

A:cpm-a>show>app-assure>group>aa-sub# policers
===
Application-Assurance Subscriber Policer Summary
===
AA-Subscriber : Alex (esm)

Type: single-bucket-bandwidth Direction: subscriber-to-network

AQP Policer Resources Exceeded?

61 SuspectUp_policer N

Type: single-bucket-bandwidth Direction: network-to-subscriber

AQP Policer Resources Exceeded?

62 SuspectDown_policer N

Policer usage counts:
single-bucket-bandwidth
 subscriber-to-network 1 out of 32
 network-to-subscriber 1 out of 32
dual-bucket-bandwidth
 subscriber-to-network 0 out of 1
 network-to-subscriber 0 out of 1
flow-count-limit 0 out of 8
flow-rate-limit 0 out of 8
===
A:cpm-a>show>app-assure>group>aa-sub#
Syntax summary

Context show>app-assure>group>policy
show>app-assure>group>aa-sub

Description This command displays application-assurance policy summary information.

protocol

Syntax protocol [protocol-name] count [detail]

Context show>app-assure>group>aa-sub
show>app-assure>group

Description This command displays per-protocol statistics. The system-wide statistics displayed account for all flows completed and the last internal snapshot of the active flows.

Subscriber statistics are available for special study subscribers and account for all completed and active flows at the moment of this statistics request.

Parameters protocol-name — Displays information about the specified protocol name.

 count — Displays protocol counters.

 detail — Displays detailed information.

Sample Output

A:ALU>show>app-assure>group# protocol count
===
Protocol Statistics
===
Protocol Disc Octets Packets Flows

aim_oscar 0% 0 0 0
aim_oscar_file_xfer 0% 0 0 0
aim_oscar_video_voice 0% 0 0 0
aim_toc 0% 0 0 0
bittorrent 0% 0 0 0
...

A:ALU>show>app-assure>group# protocol "http_audio" count detail
===
Protocol "http_audio" Statistics
===

Protocol:
Type Octets Packets Flows

http_audio:
Admitted from subscriber: 14958 201 2
Denied from subscriber: 0 0 0
Active flows from subscriber: 0
Admitted to subscriber: 587590 396 2
Denied to subscriber: 0 0 0
Active flows to subscriber: 0
Total flow duration: 21 seconds
Application Assurance Command Descriptions

Terminated flows: 4
Short Duration flows: 4
Medium Duration flows: 0
Long Duration flows: 0
Active subscribers: 1

A:ALU>show>app-assure>group#

session-filter

Syntax session-filter

Context show>app-assure>group

Description This command displays session filter information.

Parameters session-filter-name — Specifies a session-filter-name up to 32 characters.

Sample Output

show application-assurance group <aa-group-id>[:<partition>] session-filter <filter-name>
session-filter<filter-id>

AA Session Filter

Filter Name : Block UDP Session Initiation
Applied : Yes Def. Action : Permit
Entries : 1
Description : Block UDP initiated towards subscribers

Filter Match Criteria

Entry : 1
Description : (Not Specified)
Protocol : 17
Action : deny
Hit Count : 0 pkts

summary

Syntax summary

Context show>app-assure>group>aa-sub

Description This command displays a summary of statistics for a specific aa-sub.

Sample Output
A:ALU>show>app-assure>group>aa-sub# summary
===
Application-Assurance Subscriber Summary
===
AA-Subscriber : TestSubscriberName
ISA assigned : 3/2
App-Profile : Power_Profile
App-Profile divert : Yes

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admitted from subscriber:</td>
<td>7092548</td>
<td>52935</td>
<td>2843</td>
</tr>
<tr>
<td>Denied from subscriber:</td>
<td>51160</td>
<td>617</td>
<td>374</td>
</tr>
<tr>
<td>Active flows from subscriber:</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admitted to subscriber:</td>
<td>73705675</td>
<td>73538</td>
<td>1453</td>
</tr>
<tr>
<td>Denied to subscriber:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Active flows to subscriber:</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total flow duration:</td>
<td></td>
<td></td>
<td>12750 seconds</td>
</tr>
<tr>
<td>Terminated flows:</td>
<td></td>
<td></td>
<td>4646</td>
</tr>
<tr>
<td>Short Duration flows:</td>
<td></td>
<td></td>
<td>4516</td>
</tr>
<tr>
<td>Medium Duration flows:</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>Long Duration flows:</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top App-Groups</th>
<th>Octets</th>
<th>Packets</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiMedia</td>
<td>29060053</td>
<td>29961</td>
<td>138</td>
</tr>
<tr>
<td>Tunneling</td>
<td>19659289</td>
<td>33535</td>
<td>164</td>
</tr>
<tr>
<td>Web</td>
<td>14856331</td>
<td>19829</td>
<td>932</td>
</tr>
</tbody>
</table>

usage-monitor

Syntax

usage-monitor status
usage-monitor [{application [application-name] | app-group [app-group-name] | charging-group [charging-group-name]]] count

Context

show>app-assure>group>aa-sub

Description

This command displays per-subscriber usage-monitoring statistics.

status

Syntax

status [isa mda-id] cflowd
status [isa mda-id]
status [isa mda-id] detail
status [isa mda-id] cpu [sample-period seconds]
status (isa mda-id) qos count
status (isa mda-id) qos pools

Context

show>app-assure>group

Description

This command displays system statistics.
Parameters

isa — Displays information about the specified AA ISA.

cflowd — Displays cflowd status information.

detail — Displays detailed status information.

cpu [sample-period seconds] — Displays cpu utilization info about the specified AA ISA. The **isa** **mda-id** must be specified. The sample period can be specified within a range of 1-5 seconds (default 1s).

Values

1 — 5

qos count — Displays information about queue statistics. The **isa** **mda-id** must be specified.

qos pools — Displays information about pool utilization. The **isa** **mda-id** must be specified.

Sample Output

```
A:ALU>show>app-assure>group# status
===============================================================================
Application-assurance Status
===============================================================================
Last time change affecting status: 01/30/2009 20:14:37
Active Subs : 1
-------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverted traffic</td>
<td>58783</td>
</tr>
<tr>
<td>Diverted discards</td>
<td>4</td>
</tr>
<tr>
<td>Entered ISA-AAs</td>
<td>58784</td>
</tr>
<tr>
<td>Discarded in ISA-AAs</td>
<td>60</td>
</tr>
<tr>
<td>Exited ISA-AAs</td>
<td>58724</td>
</tr>
<tr>
<td>Returned discards</td>
<td>0</td>
</tr>
<tr>
<td>Returned traffic</td>
<td>58724</td>
</tr>
</tbody>
</table>
-------------------------------------------------------------------------------
A:ALU>show>app-assure>group#
```

```
A:ALU>show>app-assure>group# status detail
===============================================================================
Application-assurance Status
===============================================================================
Last time change affecting status: 01/30/2009 20:14:37
Number of Active ISAs : 2
Flow Setup Rate : 2 per second
Traffic Rate : 1 Mbps
AA-Subs Downloaded : 30
Active Subs : 1
-------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverted traffic</td>
<td>60744</td>
</tr>
<tr>
<td>Diverted discards</td>
<td>4</td>
</tr>
<tr>
<td>Congestion</td>
<td>0</td>
</tr>
<tr>
<td>Errors</td>
<td>4</td>
</tr>
<tr>
<td>Entered ISA-AAs</td>
<td>60745</td>
</tr>
<tr>
<td>Buffered in ISA-AAs</td>
<td>0</td>
</tr>
<tr>
<td>Discarded in ISA-AAs</td>
<td>164</td>
</tr>
</tbody>
</table>
```

OS Multi-Service ISA Guide Page 329
Policy : 164 12759
Congestion : 0 0
Errors : 0 0
Errors (policy bypass) : 1 60
Exited ISA-AAs : 60581 47194209
Returned discards : 0 0
Congestion : 0 0
Errors : 0 N/A
Returned traffic : 60580 47193845

A:ALU>show>app-assure>group#

Application-Assurance Status

Last time change affecting status : 09/28/2012 14:19:05
Number of Active ISAs : 1
Flows : 62
Flow Resources In Use : 0
AA-Subs Created : 200
AA-Subs Deleted : 149
AA-Subs Modified : 3
Seen-IP Requests Sent : 0
Seen-IP Requests Dropped : 0

<table>
<thead>
<tr>
<th>Current</th>
<th>Average</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Flows</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flow Setup Rate (per second)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Traffic Rate (Mbps)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Packet Rate (per second)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AA-Subs Downloaded</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Active Subs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A:ALU>show>app-assure>group# status isa 3/2 qos count

Application-assurance Queue Statistics for ISA-AA Group: 1, isa 3/2

Egress From-Subscriber

<table>
<thead>
<tr>
<th>Queue 1</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Profile forwarded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In Profile dropped</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Out Profile forwarded</td>
<td>28940</td>
<td>3767233</td>
</tr>
<tr>
<td>Out Profile dropped</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Egress To-Subscriber

<table>
<thead>
<tr>
<th>Queue 2</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Profile forwarded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In Profile dropped</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Out Profile forwarded</td>
<td>44499</td>
<td>53066848</td>
</tr>
<tr>
<td>Out Profile dropped</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
In Profile dropped : 0 0
Out Profile forwarded: 0 0
Out Profile dropped : 0 0

In Profile forwarded: 25548 3361023
In Profile dropped : 0 0
Out Profile forwarded: 0 0
Out Profile dropped : 0 0

Queue 1

In Profile forwarded: 2921 365606
In Profile dropped : 0 0
Out Profile forwarded: 0 0
Out Profile dropped : 0 0

Queue 9

In Profile forwarded: 0 0
In Profile dropped : 0 0
Out Profile forwarded: 0 0
Out Profile dropped : 0 0

Queue 10

In Profile forwarded: 0 0
In Profile dropped : 0 0
Out Profile forwarded: 0 0
Out Profile dropped : 0 0

A:ALU>show>app-assure>group# status isa 3/2 qos pools
===
Pool Information
===
MDA : 3/2
Application : Net-Ing Pool Name : default
Resv CBS : 50%

Utilization State Start-Avg Max-Avg Max-Prob

<table>
<thead>
<tr>
<th>Queue-Groups</th>
<th>Utilization</th>
<th>State</th>
<th>Start-Avg</th>
<th>Max-Avg</th>
<th>Max-Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Slope</td>
<td>Up</td>
<td>70%</td>
<td>90%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Low-Slope</td>
<td>Up</td>
<td>50%</td>
<td>75%</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

FC-Maps

<table>
<thead>
<tr>
<th>Q-Grp</th>
<th>Dest</th>
<th>MBS</th>
<th>Depth</th>
<th>A.CIR</th>
<th>A.PIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>be af l1 h2 ef h1 nc</td>
<td>5/*</td>
<td>20480</td>
<td>0</td>
<td>8000000</td>
<td>20000000</td>
</tr>
<tr>
<td>1</td>
<td>1280</td>
<td>8000000</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>be af l1 h2 ef h1 nc</td>
<td>4/*</td>
<td>20480</td>
<td>0</td>
<td>8000000</td>
<td>20000000</td>
</tr>
<tr>
<td>1</td>
<td>1280</td>
<td>8000000</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pool Information

- **Port**: 3/2/fm-sub
- **Application**: Net-Egr
- **Pool Name**: default
- **Resv CBS**: 50%

Queue-Groups

<table>
<thead>
<tr>
<th>Utilization</th>
<th>State</th>
<th>Start-Avg</th>
<th>Max-Avg</th>
<th>Max-Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Slope</td>
<td>Up</td>
<td>70%</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Low-Slope</td>
<td>Up</td>
<td>50%</td>
<td>75%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Application Assurance Command Descriptions

FC-Maps

<table>
<thead>
<tr>
<th>Q-Grp</th>
<th>ID</th>
<th>MBS</th>
<th>Depth</th>
<th>A.CIR</th>
<th>A.PIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>be af l1 h2 ef h1 nc</td>
<td>3/2/fm-*</td>
<td>8192</td>
<td>0</td>
<td>4000000</td>
<td>10000000</td>
</tr>
<tr>
<td>1</td>
<td>5120</td>
<td>4000000</td>
<td>5000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l2</td>
<td>3/2/fm-*</td>
<td>6144</td>
<td>0</td>
<td>6000000</td>
<td>10000000</td>
</tr>
<tr>
<td>2</td>
<td>3584</td>
<td>5000000</td>
<td>5000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pool Information

- **Port**: 3/2/to-sub
- **Application**: Net-Egr
- **Pool Name**: default
- **Resv CBS**: 50%

Queue-Groups

- **Utilization**
 - **High-Slope**: Up 70% 90% 80%
 - **Low-Slope**: Up 50% 75% 80%

Time Avg Factor

- **High Slope Start Avg**: 8192 KB
- **Low Slope Start Avg**: 6144 KB

Pool Total

- **Total**: 24576 KB
- **Shared**: 12288 KB
- **Resv**: 12288 KB

Hi-Slope Drop Prob

- **Start Avg**: 8192 KB
- **Max Avg**: 10240 KB

Lo-Slope Drop Prob

- **Start Avg**: 6144 KB
- **Max Avg**: 8192 KB

Traffic Type

Syntax

- traffic-type detail
- traffic-type ip-family
- traffic-type ip-protocol

Context

- show>app-assure>group

Description

This command displays per traffic type statistics.

Parameters

- detail — Displays detailed statistics.
ip-family — Displays IP family statistics.

ip-protocol — Displays IP protocol statistics.

transit-ip-policy

Syntax

```plaintext
transit-ip-policy ip-policy-id
transit-ip-policy summary
transit-ip-policy ip-policy-id summary
```

Context

```
show>app-assure>group
```

Description

This command displays transit IP policy information.

Parameters

- `ip-policy-id` — Displays information for the specified IP policy.
 - **Values**
 - `1 — 65535`
 - `summary` — Displays summarized information.

transit-prefix-policy

Syntax

```plaintext
transit-prefix-policy transit-prefix-policy-id
transit-prefix-policy summary
transit-prefix-policy transit-prefix-policy-id summary
```

Context

```
show>app-assure>group
```

Description

This command displays transit prefix policy information.

Parameters

- `transit-prefix-policy-id` — Displays information for the specified transit prefix policy.
 - **Values**
 - `1 — 65535`
 - `summary` — Displays summarized information.

url-filter

Syntax

```plaintext
url-filter url-filter-name
url-filter url-filter-name isa card/mda
url-filter url-filter-name isa card/mda detail
```

Context

```
show>app-assure>group
```

Description

This command displays information about the configured url-filter policy along with some associated raw statistics. These output statistics are:

- Vlan Id: Vlan id used by the aa interface(s)
- Amin Status: Up / Down
- Oper Status: Up / Down
• Oper Flags: adminDown, no-aa-if, aa-if-down, icap-server-down
• Default Action: default policy action taken by the url-filter
• ICAP HTTP Redirect: HTTP redirect Policy
• AQP Referenced: Yes/No
• HTTP Request: Number of subscriber HTTP requests
• HTTP Errors: Impossible to send an ICAP request, this can be caused by either no TCP connection available, associated flow with a drop action due to another aqp policy, system resource exhausted
• ICAP Request: Number of ICAP request sent
• ICAP Errors: ICAP request timeout, unexpected ICAP response, internal TCP errors.

In addition to these counters the system will count the type of action taken by the url-filter policy (allow, block, redirect, default) as well as the type of responses received from the icap server (allow, block, redirect, late).

Parameters

url-filter-name — Specifies the name of the url-filter policy.
card/mda — Specifies the card/mda reference of the ISA card.
detail — Specifies detailed statistics related to the ISA card.

Sample Output

A:7750# show application-assurance group 1 url-filter "filter1"

Application Assurance Group 1 URL Filter "filter1"

Description : (Not Specified)
Vlan Id : 10
Admin Status : Up
Oper Status : Up
Oper Flags :

Default Action : allow
ICAP HTTP Redirect : http-redirect-portal
AQP Referenced : Yes

Total Connection Stats

HTTP Requests : 17 ICAP Requests : 17
HTTP Req Errors : 0 ICAP Req Errors : 0
HTTP Response Actions ICAP Responses
 Allow : 17 Allow : 17
 Block : 0 Block : 0
 Redirect : 0 Redirect : 0
 Default : 0 Late ICAP Resp : 0

A:Dut-D# show application-assurance group 1 url-filter "filter1" isa 1/2

Application Assurance Group 1 URL Filter "filter1" ISA 1/2

Description : (Not Specified)
Vlan Id : 10
Admin Status : Up
Oper Status : Up
Oper Flags :
Default Action : allow
ICAP HTTP Redirect : http-redirect-portal
AQP Referenced : Yes
AA Interface : aa-if1
Service : IES 1
SAP Id : 1/2/aa-svc:10
ICAP Client IP : 172.16.2.0/31

ISA 1/2 Connection Stats

HTTP Requests : 17
HTTP Req Errors : 0
ICAP Requests : 17
ICAP Req Errors : 0
HTTP Response Actions
<table>
<thead>
<tr>
<th>Allow</th>
<th>Block</th>
<th>Redirect</th>
<th>Default</th>
<th>Late ICAP Resp</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ICAP Responses
<table>
<thead>
<tr>
<th>Allow</th>
<th>Block</th>
<th>Redirect</th>
<th>Late ICAP Resp</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ISA 1/2 ICAP Connection Stats

ICAP Server Status : Up
Request Rate (per second) : 0
Round Trip (microsecond) : 996

A:Dut-D# show application-assurance group 1 url-filter "filter1" isa 1/2 detail
===
Application Assurance Group 1 URL Filter "filter1" ISA 1/2
===
Description : (Not Specified)
Vlan Id : 10
Admin Status : Up
Oper Status : Up
Oper Flags :
Default Action : allow
ICAP HTTP Redirect : http-redirect-portal
AQP Referenced : Yes
AA Interface : aa-if1
Service : IES 1
SAP Id : 1/2/aa-svc:10
ICAP Client IP : 172.16.2.0/31

ISA 1/2 Connection Stats

HTTP Requests : 17
HTTP Req Errors : 0
ICAP Requests : 17
ICAP Req Errors : 0
HTTP Response Actions
<table>
<thead>
<tr>
<th>Allow</th>
<th>Block</th>
<th>Redirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ICAP Responses
<table>
<thead>
<tr>
<th>Allow</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>
Charging Group

Syntax

```
charging-group [charging-group-name] count [detail]
charging-group count top granularity [max-count max-count]
```

Context

```
show>app-assure>group>aa-sub
```

Description

This command displays application-assurance group charging group information.

Parameters

- `charging-group-name` — Specifies an existing charging group.
- `count` — Displays the counters for the charging group.
- `detail` — Displays detailed information.
- `top` — Displays counters sorted by granularity.
- `granularity` — Specifies the granularity of the search.
 - **Values**
 - `octets`, `packets`, `flows`
- `max-count max-count` — Specifies the maximum flows to display.
 - **Values**
 - `1` — `4294967295`

HTTP Notification

Syntax

```
http-notification http-notification-name
```

Context

```
show>app-assure>group
```

Description

This command displays information about the configured http-notification policy with associated raw statistics:

- Template: Template Id in use
- Script URL: URL address of the script used in the notification message
- Admin Status: Up / Down
- AQP Referenced: Yes/No
- Notified: Total number of notifications sent
http-notification

Syntax http-notification $http-notification-name$ summary

Context show>app-assure>group

Description This command displays information about the configured http-notification policy with associated raw
statistics summed over all partitions.

• Template: Template Id in use
• Script URL: URL address of the script used in the notification message
• Admin Status: Up / Down
• AQP Referenced: Yes/No
• Notified: Total number of notifications sent
• Notification criteria selection not matched: Number of HTTP request not matching the selection
 criteria for in browser notification

Parameters $http-notification-name$ — Displays the name of the http-notification policy.

Output
A:Dut-D# show application-assurance group 1 http-notification "in-browser-notification" summary

Application Assurance Group 1 HTTP Notification "in-browser-notification"

Description : IBN Demo ALU Message
Template : 1 - Javascript-url with subId and optional Http-Url-Param
Script URL : http://1.1.1.1/In-Browser-Notification/script.js
Admin Status : Up
AQP Ref : Yes

<table>
<thead>
<tr>
<th>Notified</th>
<th>Notification Selection Criteria Not Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

partition

Syntax partition summary
Context show>app-assure>group
Description This command displays partition information.
Parameters summary — Displays partition summary information.

policer

Syntax policer
 policer policer-name [detail]
 policer summary
Context show>app-assure>group
Description This command displays application-assurance policer information.
Parameters policer-name — Displays information about the specified policer.
 summary — Displays summarized information about policers on this node.

Sample Output

show application-assurance group 1 policer <policer-name> detail

Policer Instance "1m-dwn"

Description : (Not Specified)
Type : dual-bucket-bandwidth
Granularity : subscriber
Adaptation Rule : pir closest cir closest
Active tod-override : none

PIR : max Oper PIR : max
CIR : 0 kbps Oper CIR : 0 kbps
MBS : 20000 KB Oper MBS : 20000 KB
CBS : 0 KB Oper CBS : 0 KB

No. of tod-overrides : 2
--
Time of Day Override Instance 10
--
Description : (Not Specified)
Admin State : in-service
Occurrence : daily (monday tuesday wednesday thursday friday)
Start time : 19:00
End time : 22:00
PIR : max
CIR : 0 kbps
MBS : 10000 KB
CBS : 0 KB
--
Time of Day Override Instance 20
--
Description : (Not Specified)
Admin State : in-service
Occurrence : daily (sunday saturday)
Start time : 19:00
End time : 22:00
PIR : max
CIR : 0 kbps
MBS : 5000 KB
CBS : 0 KB

policy

Syntax policy
Context show>app-assure>group
Description This command enables the context to display application-assurance policy configuration information.

http-error-redirect

Syntax http-error-redirect redirect-name
Context show>app-assure
show>app-assure>group
Description This command enables the context to display http-error-redirect static definitions.
Sample Output

*A:ces-E11>show application-assurance group 1 http-error-redirect <redirect-name>
===
Application-Assurance Group 1 http-error-redirect <redirect-name>
===
description : <description-string>
template : <template-id>
participant-id : <string>
http-host : <http-host-name>
error code : <http-error-code> custom-msg-size : <msg size>
admin status : Up
===
Grp:Part Error Redirects Redirects Not Sent
Code Sent > Custom Out ofFile Error
size Resourcetype

1:1 404 1250 52 10 10
1:56789 404 2000 952 81 01

Total 3250 1004 91 1 1
--
==
*A:ces-E11>

http-redirect

Syntax

http-redirect redirect-name [detail]

Context

show>app-assure>group

Description

This command displays HTTP redirect information.

Sample Output

*A:cpm-a-config>app-assure>group>policy# show application-assurance group 1 http-redirect "Example"
Application Assurance Group 1 HTTP Redirect Example
Description : (Not Specified)
Template : 1
 : Default redirect format using Javascript
Redirect URL : www.example.com
Admin Status : Up
AQP Ref : Yes

Grp:Part Redirects Client Resets Redirects
Sent Sent

1 1 2 0
error-codes

Syntax
error-codes

Context
show>app-assure>http-redirect

Description
This command displays http-error-redirect error-codes.

Sample Output

```plaintext
*A:cses-E11>show application-assurance http-error-redirect error-codes
================================================================================
Application-Assurance http-error-redirect error-codes
================================================================================
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Default custom-msg-size</th>
</tr>
</thead>
<tbody>
<tr>
<td>404</td>
<td>Not found</td>
<td>1024</td>
</tr>
</tbody>
</table>

*A:cses-E11>
```

template

Syntax
template

Context
show>app-assure>http-redirect

Description
This command displays http-error-redirect template information.

Sample Output

```plaintext
*A:cses-E11>show application-assurance http-error-redirect template
================================================================================
Application-Assurance http-error-redirect templates
================================================================================
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Template suited for Barefruit landing server. Includes participant-id.</td>
</tr>
<tr>
<td>2</td>
<td>Template suited for Xerocole landing server.</td>
</tr>
</tbody>
</table>

*A:cses-E11>
```

protocol

Syntax
protocol [protocol-name]
protocol [protocol-name] detail

Context
show>app-assure
Description

This command displays application-assurance policy protocols loaded from the isa-aa.tim file.

Parameters

- **protocol-name** — Displays all protocols from the isa-aa.tim file.
- **detail** — Displays detailed information about the specified protocol name.

Sample Output

```
A:ALU-ABC>show>app-assure# protocol
================================================================================
Application Assurance Protocols
================================================================================
Protocol : Description
---------------------------------------------------------------
aim_oscar  : America Online Oscar Instant Messaging.
aim_oscar_file_xfer : America Online Oscar File Transfer.
aim_oscar_video_voice : America Online Oscar Video and Voice Traffic.
aim_toc  : America Online Talk to Oscar Instant Messaging.
bittorrent : BitTorrent peer to peer protocol.
...
A:ALU-ABC>show>app-assure#
```

```
A:ALU-ABC>show>app-assure# protocol tftp
================================================================================
Application Assurance Protocols
================================================================================
Protocol : Description
---------------------------------------------------------------
```

```
A:ALU-ABC>show>app-assure#
```

radius-accounting-policy

Syntax

radius-accounting-policy [rad-acct-plcy-name]

radius-accounting-policy rad-acct-plcy-name associations

radius-accounting-policy rad-acct-plcy-name statistics

Context

show>app-assure

Description

This command displays RADIUS accounting policy information.

Parameters

- **rad-acct-plcy-name** — Specifies the RADIUS accounting policy.
- **associations** — Specifies to show what contexts are associated with this policy.
- **statistics** — Specifies to show statistics related to this policy.

version
Syntax
version

Context
show>app-assure

Description
This command displays the versions of the isa-aa.tim used by the CPM and the AA ISAs.

Sample Output

```plaintext
A:ALU>show>app-assure# version
===============================================================================
Versions of isa-aa.tim in use
===============================================================================
CPM           : TiMOS-M-7.0.R4
1/1           : TiMOS-I-7.0.R1
2/1           : TiMOS-I-7.0.R1
3/2           : TiMOS-I-7.0.R1
===============================================================================
A:ALU>show>app-assure#
```

mda

Syntax
mda [slot [Imda]] [detail]

Context
show

Description
This command displays MDA information.

If no command line options are specified, a summary output of all MDAs is displayed in table format.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot</td>
<td>The slot number for which to display MDA information.</td>
</tr>
<tr>
<td>mda</td>
<td>The MDA number in the slot for which to display MDA information.</td>
</tr>
<tr>
<td>detail</td>
<td>Displays detailed MDA information.</td>
</tr>
</tbody>
</table>

Output

MDA Output — The following table describes MDA output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>The chassis slot number.</td>
</tr>
<tr>
<td>MDA</td>
<td>The MDA slot number.</td>
</tr>
<tr>
<td>Provisioned type</td>
<td>The MDA type provisioned.</td>
</tr>
<tr>
<td>Equipped type</td>
<td>The MDA type actually installed.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up — Administratively up.</td>
</tr>
<tr>
<td></td>
<td>Down — Administratively down.</td>
</tr>
<tr>
<td>Operational</td>
<td>Up — Operationally up.</td>
</tr>
<tr>
<td>State</td>
<td>Down — Operationally down.</td>
</tr>
</tbody>
</table>

Page 344
OS Multi-Service ISA Guide
Sample Output

show mda

MDA Summary

<table>
<thead>
<tr>
<th>Slot</th>
<th>Mda</th>
<th>Provisioned Type</th>
<th>Equipped Type (if different)</th>
<th>Admin State</th>
<th>Operational State</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>m20-1gb-xp-sfp</td>
<td>up</td>
<td>up</td>
<td>up/active</td>
</tr>
<tr>
<td>2</td>
<td>isa-aa</td>
<td></td>
<td>isa-ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aa-sub-using

Syntax aa-sub-using

Syntax aa-sub-using app-profile app-profile-name

Context show>service

Description This command displays application subscriber information.

Parameters app-profile-name — Specifies the application profile name.

sap-using app-profile

Syntax sap-using app-profile app-profile-name

Context show>service>sap-using

Description This command displays information about SAPs using the specified application profile.

Parameters app-profile-name — Specifies an existing application profile name created in the config>app-assure>group>policy context.

Sample Output

*A:ALA-48# show service sap-using app-profile test

Service Access Point Using Application Profile 'test'

<table>
<thead>
<tr>
<th>PortId</th>
<th>SvcId</th>
<th>Ing QoS</th>
<th>Ing Fltr</th>
<th>Egr QoS</th>
<th>Egr Fltr</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/18:0</td>
<td>89</td>
<td>1</td>
<td>none</td>
<td>1</td>
<td>none</td>
<td>Up</td>
<td>Down</td>
</tr>
</tbody>
</table>

Number of SAPs : 1

*A:ALA-48#
sap-using aarp

Syntax sap-using aarp aarp-id
Context show>service
Description This command displays SAP information for a specific AARP ID.
Parameters aarp-id — Specifies the AARP ID.
Values 1 — 65535

sap-using transit-ip-policy

Syntax sap-using transit-ip-policy ip-policy-id
Context show>service
Description This command displays SAP information for a specific transit-policy.
Parameters ip-policy-id — Specifies the transit-policy.
Values 1 — 65535

sdp-using aarp

Syntax sdp-using aarp aarp-id
Context show>service
Description This command displays SDP information for a specific AARP instance ID.
Parameters aarp-id — Specifies the AARP instance ID.
Values 1 — 65535

sdp-using transit-ip-policy
Syntax

```
sdp-using transit-ip-policy ip transit-ip-policy
sdp-using transit-ip-policy prefix transit-prefix-policy
```

Context

`show>service`

Description

This command displays SDP information for an IP transit IP policy or a transit prefix policy.

Parameters

- `ip ip-policy-id` — Specifies an transit IP policy ID.

 Values

 1 — 65535

- `prefix transit-prefix-policy` — Specifies an transit prefix policy ID.

 Values

 1 — 65535

transit-prefix-policy

Syntax

```
transit-prefix-policy prefix-policy-id
```

Context

`show>service>sdp-using`

Description

Parameters

`prefix-policy-id` —

sdp-using app-profile

Syntax

```
sap-using app-profile app-profile-name
```

Context

`show>service`

Description

subscriber-using app-profile

Syntax

```
subscriber-using app-profile app-profile-name
```

Context

`show>service`

Description
Tools Commands

aarp

Syntax `aarp aarpId event-history [clear]`

Context `tools>dump>application-assurance`

Description This command dumps application-assurance AARP information for a specified instance.

Parameters

- `aarpId` — Specifies the AARP ID.

 Values

 - `1 — 65535`

- `event-history` — Dumps historical information for the instance.

- `clear` — Specifies to clear the event history after reading.

group

Syntax `group aa-group-id`

Context `tools>dump>application-assurance`

Description This command dumps application-assurance information within a group.

Parameters

- `aa-group-id`:

 Values

 - `aa-group-id[:partition-id]`

 Values

 - `1 — 255`

aa-sub

Syntax `aa-sub dsm mac mac-address [snapshot]`

Context `tools>dump>app-assure>group`

Description This command displays AA subscriber information for a specific ISA.
app-group

Syntax
```
app-group [app-group-name] count [detail]
```

Context
```
tools>dump>app-assure>group
```

Description
This command displays per-subscriber per-app-group statistics.

application

Syntax
```
application [application-name] count [detail]
```

Context
```
tools>dump>app-assure>group
```

Description
This command displays per-subscriber per-application statistics.

charging-group

Syntax
```
charging-group [charging-group-name] count [detail]
```

Context
```
tools>dump>app-assure>group
```

Description
This command displays per-subscriber per-charging-group statistics.

summary

Syntax
```
summary
```

Context
```
tools>dump>app-assure>group
```

Description
This command displays subscriber summary information.

aa-sub-list

Syntax
```
aa-sub-list [filter-by-type sub-type] [isa mda-id]
aa-sub-list summary
```

Context
```
tools>dump>app-assure>group
```

Description
This command displays the AA subscriber list for the specified ISA.

aa-sub-search

Syntax
```
aa-sub-search top {bytes|packets|flows} [direction {from-sub|to-sub|both}] max-count
```

```
max-count
```
Application Assurance Command Descriptions

Context tools>dump>app-assure>group

Description This command displays application-assurance aa-sub information.

Parameters $search-type$ — Specifies the type of search.

Values top

$granularity$ — Specifies the granularity of the search.

Values bytes, packets, flows

direction $direction$ — Specifies the network/subscriber direction.

Values from-sub, to-sub, oth

$max-count max-count$ — Specifies the maximum flows to display.

Values 1 — 100

event-log

Syntax event-log event-log-name isa mda-id

event-log event-log-name [url file-url] isa mda-id

Context tools>dump>app-assure>group

Description This command displays application-assurance event-log information.

flow-record-search

Syntax flow-record-search aa-sub {esm sub-ident-string | sap sap-id | spoke-sdp sdp-id:vc-id | transit transit-aasub-name | mobile {imsi imsi-msisdn | msisdn imsi-msisdn | imei imei} apn apn-name | dsm mac mac-address} [protocol protocol-name] [application app-name] [app-group app-group-name] [flow-status flow-status] [start-flowid start-flowid] [classified classified] [server-ip ip-address] [server-port port-num] [client-ip ip-address] [bytes-tx kbytes] [flow-duration minutes] [max-count max-count] [search-type search-type] [url file-url]

flow-record-search isa mda-id [protocol protocol-name] [application app-name] [app-group app-group-name] [flow-status flow-status] [start-flowid start-flowid] [classified classified] [server-ip ip-address] [server-port port-num] [client-ip ip-address] [bytes-tx kbytes] [flow-duration minutes] [max-count max-count] [search-type search-type] [url file-url]

Context tools>dump>app-assure>group

Description This command dumps application-assurance flow-records matching the specified criteria for a specific AA subscriber.

Parameters application $app-name$ — Displays flows for the specified application name.

app-group $app-group-name$ — Displays flows for the specified application group.
bytes-tx kbytes — Display flows with the specified minimum kilobytes.
 Values 0 — 4294967295

classified classified — Specifies the starting flow ID.
 Values yes, no

client-ip ip-address — Display flows with the specified client IP address.
 Values ipv4-address - a.b.c.d
 ipv6-address - x:x:x:x:x:x:x:x (eight 16-bit pieces)

dsm mac mac-address —

esm sub-ident-string — Displays flows for the specified subscriber.

flow-duration minutes — Display flows with the specified minimum duration in minutes.
 Values 0 — 4294967295

flow-status flow-status — Displays only flows that are active or closed.
 Values active, closed

max-count max-count — Specifies the maximum count of flows to display.
 Values 1—4294967295

protocol protocol-name — Displays flows for the specified protocol.

sap sap-id — Displays flows for the specified SAP.

search-type search-type — Specifies the level of detail displayed for flows that match the search
 criteria.
 Values default — Displays some per flow information.
 count — Displays the number of matching flows.
 detail — Displays all per flow information available.

server-ip ip-address — Display flows with the specified server IP address.
 Values ipv4-address - a.b.c.d
 ipv6-address - x:x:x:x:x:x:x:x (eight 16-bit pieces)

server-port port-num — Display flows with the specified server port number.
 Values 0 — 65535

spoke-sdp sdp-id:vc-id — Displays flows for the specified spoke SDP.

start-flowid start-flowid — Specifies the starting flow ID.
 Values 0 — 4294967295

transit transit-aasub-name — Displays flows for the specified transit subscriber.

url file-url — Specifies the URL for the file to direct the search output to. The file may be local or
 remote.
 Values local-url | remote-url
 local-url [cflash-id[/]<file-path>]
 200 chars max, including cflash-id
 directory length 99 chars max each
Application Assurance Command Descriptions

load-balance

Syntax load-balance [service service-id]

Context tools>perform>app-assure>group

Description This command rebalances AA subscribers between ISAs within a group, in case imbalance occurs such as with the addition of new cards.

Parameters service service-id — Specifies the service

Values 1 — 2147483648

http-host-recorder detail

Syntax http-host-recorder detail [isa mda-id] url file-url

Context tools>dump>app-assure>group

Description This command saves the http host values recorded by the tool into a file. The http-host-recorder is configured using debug commands.

Parameters isa mda-id — Specifies the AA ISA.

Values slot 1 — 10, mda 1 — 2

url file-url — Specifies the URL for the file to direct the http-host-recorder output to.

Values local-url: <cflash-id>/[/<file-path>]

remote-url: [{ftp://|tftp://}<login>:<pswd>@<remote-locn>/][<file-path>]

remote-locn: [<hostname> | <ipv4-address> | <ipv6-address>]

ipv4-address a.b.c.d

ipv6-address x:x:x:x:x:x:x:[-interface]

x:x:x:x:x:x:d.d.d.d:[-interface]

x - [0..FFFF]H

d - [0..255]D

interface - 32 chars max, for link local addresses

cflash-id flash slot ID
http-host-recorder status

Syntax
```
http-host-recorder status [isa mda-id]
```

Context
```tools>dump>app-assure>group```

Description  
This command displays the current status of the http-host-recorder with current-time, start-time, stop-time, sample-rates, filters, buffer as well as number of bytes and flows recorded for the specified AA ISA. The http-host-recorder is configured using debug commands.

Parameters  
- `isa mda-id` — Specifies the AA ISA
  - Values  
    - slot 1 — 10, mda 1 — 2

http-host-recorder top

Syntax  
```
http-host-recorder top {bytes|flows} [max-count {1..25}] [isa mda-id]
```

Context  
```tools>dump>app-assure>group```

Description
This command configures dump application-assurance http-host-recorder information.

Parameters
- `granularity` — Specifies if the output is sorted by bytes or flows.
 - Values
 - bytes, flows
 - `max-count max-count` — Specifies the maximum count of flows to display.
 - Values
 - 1— 25
 - `isa mda-id` — Specifies the AA ISA
 - Values
 - slot 1 — 10
 - mda 1 — 2

http-host-recorder granularity

Syntax
```
http-host-recorder top granularity [max-count max-count] [isa mda-id]
```

Context
```tools>dump>app-assure>group```

Description  
This command displays by bytes or flows top http-host recorded by the tool on a particular AA ISA.

Parameters  
- `granularity` — Specifies if the output is sorted by bytes or flows.
  - Values  
    - bytes, flows
  - `max-count count-value` — Specifies the maximum number of values to display.
Values 1 — 25

**isa mda-id**  —  Specifies the AA ISA

Values slot 1 — 10, mda 1 — 2

**policer**

**Syntax**  
`policer policer-name day time time-of-day`

**Context**  
tools>dump>app-assure>group

**Description**  
This command displays rates for the policer for a specific day and time.

**Parameters**  
policer-name  —  Specifies an existing policer name up to 256 characters in length.

day  —  Specifies a day to display policer rates.

Values  
- sunday
- monday
- tuesday
- wednesday
- thursday
- friday
- saturday

**time** time-of-day  —  Specifies a time of day (in hours and minutes) to display policer rates.

Values  
- hh : 0..24
- mm : 0, 15, 30, 45

**port-recorder detail**

**Syntax**  
`port-recorder detail [flow-count flows] [byte-count kbytes] [isa mda-id] url file-url`

**Context**  
tools>dump>app-assure>group

**Description**  
This command saves the port recorded by the tool into a file. The port-recorder is configured using debug commands.

**Parameters**  
flow-count flows  —  Match ports with flow count greater than the specified value.

Values  
- slot 1 — 4294967295

byte-count kbytes  —  Match ports with bytes count greater than the specified value.

Values  
- slot 1 — 4294967295

**isa mda-id**  —  Specifies the AA ISA

Values  
- slot 1 — 10, mda 1 — 2

**url file-url**  —  Specifies the URL for the file to direct the port-recorder output to.

Values  
- local-url, remote-url

local-url  
```bash
<flash-id>/[/<file-path>]
```

- 200 chars max, including cflash-id
- directory length 99 chars max each

remote-url  
```bash
[ftp://|tftp://]login:pswd@remote-locn[/]<file-path>
```

- 255 chars max
- directory length 99 chars max each
- remote-locn[ hostname | ipv4-address | ipv6-address ]
Application Assurance Command Descriptions

ipv4-address a.b.c.d
ipv6-address x:x:x:x:x:x:x
x - [0..FFFF]H
D - [0..255]D
interface - 32 chars max, for link local addresses
cflash-id flash slot ID

port-recorder status

Syntax  port-recorder status [isa mda-id]

Context  tools>dump>app-assure>group

Description  This command displays the current status of the port-recorder with current-time, start-time, stop-time, sample-rates as well as number of bytes and flows for UDP and TCP traffic on the specified AA ISA card. The port-recorder is configured using debug commands.

Parameters  

isa mda-id  — Specifies the AA ISA

Values  

slot 1 — 10, mda 1 — 2

port-recorder top

Syntax  port-recorder top granularity [max-count max-count] [isa mda-id]

Context  tools>dump>app-assure>group

Description  This command displays by bytes or flows the top ports recorded by the tool on a particular AA ISA.

Parameters  

granularity  — Specifies if the output is sorted by bytes or flows.

Values  bytes, flows

max-count count-value  — Specifies the maximum number of values to display.

Values  1 — 25

isa mda-id  — Specifies the AA ISA

Values  

slot 1 — 10, mda 1 — 2

traffic-capture

Syntax  traffic-capture detail url file-url

traffic-capture status

Context  tools>dump>app-assure>group

Description  This command displays application-assurance traffic-capture information.
seen-ip

Syntax: seen-ip transit-ip-policy ip-policy-id
seen-ip transit-ip-policy ip-policy-id clear

Context: tools>dump>app-assure>group

Description: This command dumps application-assurance seen-ip information for a specified transit-ip policy.

Parameters:
- transit-ip-policy ip-policy-id — An integer that identifies a transit IP profile entry.
  
  Values: 1 — 65535
- clear — Clears the seen IP information after reading.

aarp

Syntax: aarp aarpId force-evaluate

Context: tools>perform>app-assure

Description: This command performs Application Assurance Redundancy Protocol instance operations.

Parameters:
- aarpId —
  
  Values: 1 — 65535
- force-evaluate — Forces a re-evaluation of the preferred AARP instance.

group

Syntax: group aa-group-id load-balance [service service-id]

Context: tools>perform>app-assure

Description: This command performs application assurance group operations.

Parameters:
- aa-group-id — Specifies the application assurance group ID.
  
  Values: 1 — 255
- load-balance — Load balances subscribers within the group.
- service service-id — Load balances the specified service.
  
  Values: 1 — 2148007978, svc-name (up to 64 char max.)
Clear Commands

### group

**Syntax**

- `group aa-group-id cflowd`
- `group aa-group-id event-log`
- `group aa-group-id statistics`
- `group aa-group-id status`

**Context**

`clear>app-assure`

**Description**

This command clears application assurance group statistics or status.

**Parameters**

- `aa-group-id` — Clears data for the specified AA ISA group.
- `cflowd` — Clears application assurance cflowd statistics.
- `event-log` — Clears application assurance event log.
- `statistics` — Clears application assurance system and subscriber statistics.
- `status` — Clears application assurance status statistics.

### radius-accounting-policy

**Syntax**

`radius-accounting-policy rad-acct-plcy-name [server server-index] statistics`

**Context**

`clear>app-assure`

**Description**

This command clears application assurance RADIUS accounting statistics for the specified policy.

**Parameters**

- `policy-name` — The name of the policy. The string is case sensitive and limited to 32 ASCII 7-bit printable characters with no spaces.
- `server-index` — The index for the RADIUS server.

**Values**

- `1 — 16` (a maximum of 5 accounting servers)
Debug Commands

**group**

**Syntax**

```
group aa-group-id[:partition-id]
```

**Context**

`debug>app-assure`

**Description**

This command configures application-assurance within a group/partition debugging.

**Parameters**

```
aa-group-id[:partition-id] — Specifies the existing application assurance group and partition id.
```

**Values**

```
<aa-group-id:parti*> : <aa-group-id>:<partition-id>
aa-group-id [1..255]
partition-id [1..65535]
```

**traffic-capture**

**Syntax**

```
[no] traffic-capture
```

**Context**

`debug>app-assure>group`

**Description**

This command configures debugging for traffic capture.

**match**

**Syntax**

```
[no] match
```

**Context**

`debug>app-assure>group>traffic-capture`

**Description**

This command configures debugging for traffic match criteria.

**application**

**Syntax**

```
application {eq | neq} application-name
no application
```

**Context**

`debug>app-assure>group>traffic-capture>match`

**Description**

This command configures debugging on an application.

**client-ip**

**Syntax**

```
client-ip {eq | neq} ip-address
```
no client-ip

Context debug>app-assure>group>traffic-capture>match
Description This command configures debugging of a client IP.

client-port

Syntax client-port {eq | neq} port-num
no client-port

Context debug>app-assure>group>traffic-capture>match
Description This command configures debugging of a client port.

dst-ip

Syntax dst-ip {eq | neq} ip-address
no dst-ip

Context debug>app-assure>group>traffic-capture>match
Description This command configures debugging on a destination IP address.

dst-port

Syntax dst-port {eq | neq} port-num
no dst-port

Context debug>app-assure>group>traffic-capture>match
Description This command configures debugging on a destination port.

ip-addr1

Syntax ip-addr1 {eq | neq} ip-address
no ip-addr1

Context debug>app-assure>group>traffic-capture>match
Description This command configures debugging on IP address 1.

ip-addr2

Syntax ip-addr2 {eq | neq} ip-address
no ip-addr2
Application Assurance Command Descriptions

Context  
```plaintext
debug>app-assure>group>traffic-capture>match
```

Description  
This command configures debugging on IP address 2.

### ip-protocol-num

**Syntax**  
```plaintext
ip-protocol-num {eq | neq} protocol-id
```

**no ip-protocol-num**

**Context**  
```plaintext
debug>app-assure>group>traffic-capture>match
```

**Description**  
This command configures debugging on an IP protocol number.

### port1

**Syntax**  
```plaintext
port1 {eq | neq} port-num
```

**no port1**

**Context**  
```plaintext
debug>app-assure>group>traffic-capture>match
```

**Description**  
This command configures debugging on port 1.

### server-ip

**Syntax**  
```plaintext
server-ip {eq | neq} ip-address
```

**no server-ip**

**Context**  
```plaintext
debug>app-assure>group>traffic-capture>match
```

**Description**  
This command configures debugging on a servicer IP address.

### port2

**Syntax**  
```plaintext
port2 {eq | neq} port-num
```

**no port2**

**Context**  
```plaintext
debug>app-assure>group>traffic-capture>match
```

**Description**  
This command configures debugging on port 2.

### server-port

**Syntax**  
```plaintext
server-port {eq | neq} port-num
```

**no server-port**

**Context**  
```plaintext
debug>app-assure>group>traffic-capture>match
```
This command configures debugging on a server port.

**src-ip**

| Syntax          | src-ip \{eq | neq\} ip-address  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no src-ip</td>
<td></td>
</tr>
</tbody>
</table>

**Context**

debug>app-assure>group>traffic-capture>match

**Description**

This command configures debugging on a source IP address.

**src-port**

| Syntax          | src-port \{eq | neq\} port-num  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no src-port</td>
<td></td>
</tr>
</tbody>
</table>

**Context**

debug>app-assure>group>traffic-capture>match

**Description**

This command configures debugging on a source port.

**mirror-source**

Syntax	[no] mirror-source service-id

**Context**

debug>app-assure>group>traffic-capture>match

**Description**

This command configures debugging on a mirror source.

**record**

Syntax	record

**Context**

debug>app-assure>group>traffic-capture

**Description**

This command configures traffic recording options.

**limit**

| Syntax          | limit \{all-packet-matches | first-session-match\}  
|-----------------|---------------------------------|

**Context**

debug>app-assure>group>traffic-capture>record

**Description**

This command records limit conditions.

**Parameters**

all-packet-matches —
first-session-match —

start

Syntax start {immediate | on-new-session}
Context debug>app-assure>group>traffic-capture>record
Description This command records limit conditions.
Parameters immediate —
on-new-session —

shutdown

Syntax [no] shutdown
Context debug>app-assure>group>traffic-capture
Description This command administratively disables traffic capture.

isa-aa-group

Syntax isa-aa-group aa-group-id {all | unknown}
no isa-aa-group aa-group-id
Context debug>mirror-source
Description This command configures AA ISAgroup as a mirror source for this mirror service. Traffic is mirrored after AA processing takes place on AA ISAs of the group, therefore, any packets dropped as part of that AA processing are not mirrored.
Parameters all — Specifies that all traffic after AA processing will be mirrored.
unknown — Specifies that all traffic during the identification phase (may match policy entry or entries that have mirror action configured) and traffic that had been identified as unknown_tcp or unknown_udp after AA processing will be mirrored.

persistence

Syntax persistence [persistence-client]
no persistence
Context debug>system
Description This command displays persistence debug information.
Parameters  

**persistence-client** — Use the **application-assurance** keyword to display persistence debug information.

**Values**  

application-assurance

---

**http-host-recorder**

**Syntax**  

[no] http-host-recorder

**Context**  

debug>app-assur>group

**Description**  

This command enables the http-host-recorder feature on a particular group:partition. The no form of the command disables the http-host-recorder feature.

---

**filter**

**Syntax**  

filter

**Context**  

debug>app-assur>group>http-host-recorder

**Description**  

This command configures recorder filter settings. This command specifies the filtering parameter for the http-host-recorder feature.

---

**default-filter-action**

**Syntax**  

default-filter-action default-action

**Context**  

debug>app-assur>group>http-host-recorder>filter

**Description**  

This command configures the recorder filter default action to either record or no-record. This parameter applies to http-host values not matching any expressions defined in the filter context.

**Parameters**  

**default-action** — Specifies the default action.

**Values**  

record, no record

---

**expression**

**Syntax**  

expression expr-index expr-type eq expr-string {record|no-record}

no expression expr-index

**Context**  

debug>app-assur>group>http-host-recorder>filter

**Description**  

This command configures the recorder filter expressions.

**Parameters**  

**expr-index** — Specifies the expression index value.

**Values**  

1 — 4
expr-type — Specifies the expression type.

Values

http-host

expr-string — Specifies the HTTP host filter expression string.

Values

format *<expression>$ (33 chars max)

record

Syntax record {all-hosts|http-host-app-filter-candidates}

Context debug>app-assur>group>http-host-recorder>filter

Description This command configures which http-host are selected for the http-host-recorder. It is either any http-host values going through the AA ISA or the http-host corresponding to flows not matching a string based app-filter. Note that for the feature to work it is required to configure at least one app-filter to catch the HTTP protocol signature.

Parameters all-hosts|http-host-app-filter-candidates — Specifies which hosts the recorder will record

Values all-hosts, http-host-app-filter-candidates

Default http-host-app-filter-candidates

rate

Syntax rate sample-rate

no rate

Context debug>application-assurance>group>http-host-recorder
debug>application-assurance>group>port-recorder

Description This command configures the sampling rate for the recorded http host, a sampling rate of 10 will sample one out of 10 http-host.

Values 1 — 10000

Default 100

Sample Output

The following configuration records http-host entries ending with “.com” as a result of the expression filter configuration. It will not record any other HTTP host values since the default-filter-action set to no-record. The http-host entries analyzed by the recorder in the first place are http-host-app-filter-candidates.

7750# show debug
debug

application-assurance
group 1:1
http-host-recorder
filter
default-filter-action no-record
expression 1 http-host eq "*.com$" record
record http-host-app-filter-candidates
exit
rate 100
no shutdown
exit
exit
exit
exit
shutdown

Syntax  [no] shutdown

Context  debug>application-assurance>group>http-host-recorder
debug>application-assurance>group>port-recorder

Description  This command allows to stop or start the http-host-recorder. To reset the recorded values execute shutdown followed by no shutdown.

port-recorder

Syntax  [no] port-recorder

Context  debug>application-assurance>group

Description  This command allows to stop or start the http-host-recorder. To reset the recorded values execute shutdown followed by no shutdown.

application

Syntax  [no] application application-name

Context  debug>application-assurance>group>port-recorder

Description  This command specifies the applications used as input by the port-recorder. Note that applications responsible for unknown or unidentified traffic are meant to be used by this tool.

Sample Output

The following configuration records TCP and UDP port numbers for the application “Unidentified TCP”.

7750# show debug
debug
    application-assurance
        group 1:1
port-recorder
  application "Unidentified TCP"
  rate 100
  no shutdown
  exit
  exit
  exit
  exit
In This Section

This section provides an overview of IP Security (IPSec) software features for the IPSec ISA.

Topics in this section include:

- IP Tunnels Overview on page 368
  - Tunnel ISAs on page 371
  - Operational Conditions on page 379
  - QoS Interactions on page 380
  - OAM Interactions on page 380
  - Redundancy on page 380
  - Statistics Collection on page 382
  - Security on page 382
  - IKEv2 on page 384
  - SHA2 Support on page 386
  - Using Certificates For IPSec Tunnel Authentication on page 387
  - Trust-Anchor-Profile on page 388
  - OCSP on page 393
  - Remote Access VPN Concentrator Example on page 395
  - Video Wholesale Example on page 396
  - Multi-Chassis IPSec Redundancy Overview on page 397
  - IKEv2 Remote-Access Tunnel on page 407
IP Tunnels Overview

This section discusses IP Security (IPSec), GRE tunneling, and IP-IP tunneling features supported by the MS-ISA. In these applications, the MS-ISA functions as a resource module for the system, providing encapsulation and (for IPSec) encryption functions. The IPSec encryption functions provided by the MS-ISA are applicable for many applications including: encrypted SDPs, video wholesale, site-to-site encrypted tunnel, and remote access VPN concentration.

Figure 32 shows an example of an IPSec deployment, and the way this would be supported inside a 7750. GRE and IP-IP tunnel deployments are very similar. IP tunnels have two flavors GRE/IP-IP, in all but a few areas, the information for IP Tunnels applies to both types.

Figure 32, the public network is typically an “insecure network” (for example, the public Internet) over which packets belonging to the private network in the diagram cannot be transmitted natively. Inside the 7750, a public service instance (IES or VPRN) connects to the public network and a private service instance (typically a VPRN) connects to the private network.

The public and private services are typically two different services, and the MS-ISA is the only “bridge” between the two. Traffic from the public network may need to be authenticated and encrypted inside an IPSec tunnel to reach the private network. In this way, the authenticity/confidentiality/integrity of accessing the private network can be enforced. If authentication and confidentiality are not important then access to the private network may alternatively be provided through GRE or IP-IP tunnels.

The MS-ISA provides a variety of encryption features required to establish bi-directional IPSec tunnels including:

![Image of IPSec Implementation Architecture]
Control Plane:

- Manual Keying
- Dynamic Keying: IKEv1/v2
- IKEv1 Mode: Main and Aggressive
- Authentication: Pre-Shared-Key /xauth with RADIUS support/X.509v3 Certificate/EAP
- Perfect Forward Secrecy (PFS)
- DPD
- NAT-Traversal
- Security Policy

Data Plane:

- ESP (with authentication) Tunnel mode
- Encryption Algorithm: DES/3DES/AES128/AES192/AES256
- DH-Group: 1/2/5/14/15
- Anti-Replay Protection
- N:M IPSec ISA card redundancy

Note: SR OS will use a configured authentication algorithm in an ike-policy for Pseudorandom Function (PRF).

There are two types of tunnel interfaces and SAPs:

- Public tunnel interface: configured in the public service; outgoing tunnel packets have a source IP address in this subnet
- Public tunnel SAP: associated with the public tunnel interface; a logical access point to the MS-ISA card in the public service
- Private tunnel interface: configured in the private service; can be used to define the subnet for remote access IPSec clients.
- Private tunnel SAP: associated with the private tunnel interface, a logical access point to the MS-ISA card in the private service

Traffic flows to and through the MS-ISA card as follows:

- In the upstream direction, the encapsulated (and possibly encrypted) traffic is forwarded to a public tunnel interface if its destination address matches the local or gateway address of an IPSec tunnel or the source address of a GRE or IP-IP tunnel. Inside the MS-ISA card, encrypted traffic is decrypted, the tunnel header is removed, the payload IP packet is delivered to the private service, and from there, the traffic is forwarded again based on the destination address of the payload IP packet.
• In the downstream direction, unencapsulated/clear traffic belonging to the private service is forwarded into the tunnel by matching a route with the IPSec/GRE/IP-IP tunnel as next-hop. The route can be configured statically, learned by running OSPF on the private tunnel interface (GRE tunnels only), learned by running BGP over the tunnel (IPSec and GRE tunnels only), or learned dynamically during IKE negotiation (IPSec only). After clear traffic is forwarded to the MS-ISA card, it is encrypted if required, encapsulated per the tunnel type, delivered to the public service, and from there, the traffic is forwarded again based on the destination address of the tunnel header.
Tunnel ISAs

A tunnel-group is a collection of MS-ISAs (each having mda-type **isa-tunnel**) configured to handle the termination of one or more IPSec, GRE and/or IP-IP tunnels. Two example tunnel-group configurations are shown below:

```plaintext
cfg isa
tunnel-group 1 create
 primary 1/1
 backup 2/1
 no shutdown
exit

cfg isa
 tunnel-group 2 create
 multi-active
 mda 3/1
 mda 3/2
 no shutdown
```

A GRE, IP-IP, or IPSec tunnel belongs to only one tunnel group. There are two types of tunnel groups:

- A single-active tunnel-group can have one tunnel-ISA designated as primary and optionally one other tunnel-ISA designated as backup. If the primary ISA fails the affected failed tunnels are re-established on the backup (which is effectively a cold standby) if it is not already in use as a backup for another tunnel-group.
- A multi-active tunnel-group can have multiple tunnel-ISAs designated as primary. This is only supported on 7750 SR7/SR12/SR12E with chassis mode D or 7450 mixed mode with IOM3.

The `show isa tunnel-group` allows the operator to view information about all configured tunnel groups. This command displays the following information for each tunnel-group: group ID, primary tunnel-ISAs, backup tunnel-ISAs, active tunnel-ISAs, admin state and oper state.
Public Tunnel SAPs

A VPRN or IES service (the delivery service) must have at least one IP interface associated with a public tunnel SAP to receive and process the following types of packets associated with GRE, IP-IP and IPSec tunnels:

- GRE (IP protocol 47)
- IP-IP (IP protocol 4)
- IPSec ESP (IP protocol 50)
- IKE (UDP)

The public tunnel SAP type has the format tunnel-tunnel-group.public:index, as shown in the following CLI example.

*A:Dut-C>config>service# info
---------------------------------------------
customer 1 create
description "Default customer"
exit
ies 1 customer 1 create
interface "public" create
   address 64.251.12.1/24
tos-marking-state untrusted
sap tunnel-1.public:200 create
   exit
   no shutdown
exit
vprn 2 customer 1 create
route-distinguisher 1.1.1.1:65007
interface "greTunnel" tunnel create
   address 10.0.0.1/24
dhcp
   no shutdown
exit
sap tunnel-1.private:210 create
ip-tunnel "toCel" create
   dest-ip 10.0.0.2
gre-header
   source 64.251.12.88
   remote-ip 64.251.12.2
   backup-remote-ip 64.251.12.22
delivery-service 1
   no shutdown
exit
exit
no shutdown
exit
---------------------------------------------
*A:Dut-C>config>service#
Private Tunnel SAPs

The private service must have an IP interface to a GRE, IP-IP, or IPSec tunnel in order to forward IP packets into the tunnel, causing them to be encapsulated (and possibly encrypted) per the tunnel configuration and to receive IP packets from the tunnel after the encapsulation has been removed (and decryption). That IP interface is associated with a private tunnel SAP.

The private tunnel SAP has the format tunnel-tunnel-group.private:index, as shown in the following CLI example where a GRE tunnel is configured under the SAP.

*A:Dut-A# show ip tunnel

<table>
<thead>
<tr>
<th>TunnelName</th>
<th>SapId</th>
<th>SvcId</th>
<th>Admn</th>
<th>DlvrySvcId</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>tun-1-gre-tunnel</td>
<td>tunnel-1.private:1</td>
<td>201</td>
<td>Up</td>
<td>1201</td>
<td>Up</td>
</tr>
</tbody>
</table>

IP Tunnels: 1
IP Interface Configuration

In the configuration example of the previous section the IP address 10.0.0.1 is the address of the GRE tunnel endpoint from the perspective of payload IP packets. This address belongs to the address space of the VPRN 1 service and will not be exposed to the public IP network carrying the GRE encapsulated packets. An IP interface associated with a private tunnel SAP does not support unnumbered operation.

It is possible to configure the IP MTU (M) of a private tunnel SAP interface. This sets the maximum payload IP packet size (including IP header) that can be sent into the tunnel – for example, it applies to the packet size before the tunnel encapsulation is added. When a payload IPv4 packet that needs to be forwarded to the tunnel is larger than M bytes:

- If the DF bit is clear, the payload packet is IP fragmented to the MTU size prior to tunnel encapsulation.
- If the DF bit is set, the payload packet is discarded and (if allowed by the ICMP setting of the sending interface) an ICMP type 3/code 4 is returned to the sender (with MTU of the private tunnel SAP interface in the payload).

---

GRE and IP-IP Tunnel Configuration

To bind an IP/GRE or IP-IP tunnel to a private tunnel SAP, the `ip-tunnel` command should be added under the SAP. To configure the tunnel as an IP/GRE tunnel, the `gre-header` command must be present in the configuration of the `ip-tunnel`. To configure the tunnel as an IP-IP tunnel, the `ip-tunnel` configuration should have the `no gre-header` command. When configuring a GRE or IP-IP tunnel, the `dest-ip` command is mandatory as this specifies the private IP address of the remote tunnel endpoint. If the dest-ip address is not within the subnet of the local private endpoint then the tunnel will not come up. In the CLI sub-tree under `ip-tunnel`, there are commands to configure the following:

- The source address of the GRE or IP-IP tunnel- This is the source IPv4 address of GRE or IP-IP encapsulated packets sent by the delivery service. It must be an address in the subnet of the associated public tunnel SAP interface.
- The remote IP address - If this address is reachable in the delivery service (there is a route) then this is the destination IPv4 address of GRE or IP-IP encapsulated packets sent by the delivery service.
- The backup remote IP address- If the remote IP address of the tunnel is not reachable then this is the destination IPv4 address of GRE or IP-IP encapsulated packets sent by the delivery service.
- The delivery service- This is the id or name of the IES or VPRN service where GRE or IP-IP encapsulated packets are injected and terminated. The delivery service can be the same service where the private tunnel SAP interface resides.
• The DSCP marking in the outer IP header of GRE encapsulated packets. If this is not configured then the default is to copy the DSCP from the inner IP header to the outer IP header.

A private tunnel SAP can have only one ip-tunnel sub-object (one GRE or IP-IP tunnel per SAP).

The show ip tunnel displays information about a specific IP tunnel or all configured IP tunnels. The following information is provided for each tunnel:

• service ID that owns the tunnel
• private tunnel SAP that owns the tunnel
• tunnel name, source address
• remote IP address
• backup remote IP address
• local (private) address
• destination (private) address
• delivery service
• dscp
• admin state
• oper state
• type (GRE or IP-IP)
IP Fragmentation and Reassembly for IP Tunnels

An IPSec, GRE or IP-IP tunnel packet that is larger than the IP MTU of some interface in the public network must either be discarded (if the Do Not Fragment bit is set in the outer IP header) or fragmented. If the tunnel packet is fragmented, it is then up to the destination tunnel endpoint to reassemble the tunnel packet from its fragments. Starting in R10, IP reassembly can be enabled for all the IPSec, GRE, and IP-IP tunnels belonging to a tunnel-group. For IP-IP and GRE tunnels, the reassembly option is also configurable on a per-tunnel basis so that some tunnels in the tunnel-group can have reassembly enabled, and others can have the extra processing disabled. When reassembly is disabled for a tunnel, all received fragments belonging to the tunnel are dropped.

To avoid public network fragmentation of IPSec, GRE, or IP-IP packets belonging to a particular tunnel, one possible strategy is to fragment IPv4 payload packets larger than a specified size $M$ at entry into the tunnel (before encapsulation and encryption if applicable). The size $M$ is configurable using the `ip-mtu` command under the `ip-tunnel`, `ipsec-tunnel` or `tunnel-template` configuration.

If the payload IPv4 packets are all $M$ bytes or less in length then it is guaranteed that all resulting tunnel packets will be less than $M+N$ bytes in length, if $N$ is the maximum overhead added by the tunneling protocol. If $M+N$ is less than the smallest interface, IP MTU in the public network fragmentation will be avoided. In some cases, some of the IPv4 payload packets entering a tunnel may have their Don’t Fragment (DF) bit set. And if desired, SR OS supports the option (also configurable on a per-tunnel basis) to clear the DF bit in these packets so that they can be fragmented.

The system allows users to configure an encapsulated-ip-mtu for a given tunnel. This represents the maximum size of the encapsulated tunnel packet. If the v4/v6 tunnel packet size exceeds the configured encapsulated-ip-mtu, then the system will fragment the packet against the encapsulated-ip-mtu.
Configuration of Router A:

```
config isa
 tunnel-group 1 create
 primary 1/1
 backup 2/1
 no shutdown
 exit
 tunnel-group 2 create
 primary 3/1
 backup 2/1
 no shutdown
 exit
 exit all
config ipsec
 ike-policy 1 create
 auth-algorithm sha1
 dh-group 5
 encryption-algorithm aes128
 ike-mode main
 ike-version 1
 exit
 ipsec-transform 1
 esp-auth-algorithm sha1
 esp-encryption-algorithm aes256
 exit
```
exit all

config service ies 100 customer 1 create
interface "public-ipsec-1" create
    address 1.1.1.1/24
    sap tunnel-1.public:200 create
exit all

config service vprn 101 customer 1 create
ipsec
    security-policy 1 create
        entry 1 create
            local-ip 192.168.1.0/24
            remote-ip 192.168.2.0/24
        exit
exit
interface "private-ipsec-1" tunnel create
    ipsec-tunnel "ipsec-tunnel-for-n-gre-tunnels" create
    security-policy 1
        local-gateway-address 1.1.1.2 peer 2.2.2.2 delivery-service 100
        dynamic-keying
        ike-policy 1
            pre-shared-key "secret"
            transform 1
        exit
        exit
        exit
    exit
interface "public-gre-1" create
    address 192.168.1.1/24
    sap tunnel-2.public:200 create
exit
interface "private-gre-1" tunnel create
    ip-tunnel "protected-gre-tunnel" create
        gre-header
            dest-ip 10.0.0.2
            source 192.168.1.2
            remote-ip 192.168.2.2
            delivery-service 101
            no shutdown
        exit
        exit
        exit
    static-route 192.168.2.0/24 next-hop ipsec-tunnel "ipsec-tunnel-for-n-gre-tunnels"
Operational Conditions

A tunnel group that is in use cannot be deleted. In single-active mode, changes to the primary ISA are allowed only in when the tunnel group is in a shutdown state. Change to the backup ISA (or the addition of a backup ISA) is allowed at any time unless the ISA is currently active for this tunnel group. When the backup module is active, changing the primary module is allowed without shutting down the tunnel group. If it is part of a multi-chassis configuration, you cannot change the mode until it is removed from this configuration as well.

A shutdown of tunnel-group is required to do the following:

- Change the mode between multi-active and single-active.
- Change the primary-isa in single-active mode.
- Change the active-mda-number in multi-active mode.

In multi-active mode, if the active member ISA goes down, system will replace it with backup ISA; however, if there is no backup ISA, the tunnel-group will be “oper-down”. A multi-active tunnel-group with MC-IPSec enabled cannot be changed into single active-mode unless it is removed from MC-IPSec configuration.

Changes to the ipsec-transform/ike-policy in-use are not allowed.

The public interface address can be changed at any time. However, if changed, tunnels that were configured to use it will require a configuration change. If the public subnet changed is still using an old subnet, the tunnels will be in an operationally down state until their configuration is corrected. The public service cannot be deleted while tunnels are configured to use it. A public service is the IES or VPRN service that hold the regular interface that connects the node to the public network. A private service connects to the private protected service.

A tunnel group ID or tag cannot be changed. To remove an tunnel group instance, it must be in a shutdown state (both front-door and back-door).

A change to the security policy is not allowed while a tunnel is active and using the policy.

The tunnel local-gateway-address, peer address, or delivery router parameters cannot be changed while the tunnel is operationally up (shutdown will make it both admin down and operationally down).

A tunnel security policy cannot be changed while the tunnel is operationally up. An IPSec transform policy or ike-policy assignments to a tunnel requires the tunnel to be shutdown.
QoS Interactions

The MS-ISA can interact with the queuing functions on the IOM through the ingress/egress QoS provisioning in the IES or IP VPN service where the IPSec session is bound. Multiple IPSec sessions can be assigned into a single IES or VPRN service. In this case, QoS defined at the IES or VPRN service level, is applied to the aggregate traffic coming out of or going into the set of sessions assigned to that service.

In order to keep marking relevant in the overall networking design, the ability to translate DSCP bit marking on packets into DSCP bit markings on the IPSec tunneled packets coming out of the tunnel is supported.

OAM Interactions

The MS-ISA is IP-addressed by an operator-controlled IP on the public side. That IP address can be used in Ping and Traceroute commands and the ISA can either respond or forward the packets to the CPM.

For static LAN-to-LAN tunnel, in multi-active mode, a ping requests to public tunnel address would not be answered if the source address is different from the remote address of the static tunnel.

The private side IP address is visible. The status of the interfaces and the tunnels can be viewed using show commands.

Traffic that ingresses or egresses an IES or VPRN service associated with certain IPSec tunnels can be mirrored like other traffic.

Mirroring is allowed per interface (public) or IPSec interface (private) side. A filter mirror is allowed for more specific mirroring.

Redundancy

In single-active mode, every tunnel group can be configured with primary and backup ISAs. An ISA can be used as a backup for multiple IPSec groups. The ISAs are cold standby such that upon failure of the primary the standby resumes operation after the tunnels re-negotiate state. While the backup ISA can be shared by multiple tunnel groups only one tunnel group can fail to a single ISA at one time (no double failure support).

In multi-active mode, the active-\texttt{mda-number} value determines the number of ISA MDAs that will be active for this tunnel group, and tunnels are spread across all active ISA MDAs. Additional ISA MDA in this tunnel group will be in cold standby.
IPSec also supports dead peer detection (DPD).

Note that BFD can be configured on the private tunnel interfaces associated with GRE tunnels and used by the OSPF, BGP or static routing that is configured inside the tunnel.

SR OS also supports multi-chassis IPSec redundancy, which provides 1:1 stateful protection against MS-ISA failure or chassis failure.
Statistics Collection

Input and output octets and packets per service queue are used for billing end customers who are on a metered service plan. Since multiple tunnels can be configured per interface the statistics can include multiple tunnels. These can be viewed in the CLI and SNMP.

Reporting (syslog, traps) for authentication failures and other IPSec errors are supported, including errors during IKE processing for session setup and errors during encryption or decryption.

A session log indicates the sort of SA setup when there is a possible negotiation. This includes the setup time, teardown time, and negotiated parameters (such as encryption algorithm) as well as identifying the service a particular session is mapped to, and the user associated with the session.

Security

The MS-ISA module provides security utilities for IPSec-related service entities that are assigned to interfaces and SAPs. These entities (such as card, isa-tunnel module, and IES or VPRN services) must be enabled in order for the security services to process. The module only listens to requests for security services from configured remote endpoints. In the case of a VPN concentrator application, these remote endpoints could come from anywhere on the Internet. In the cases where a point-to-point tunnel is configured, the module listens only to messages from that endpoint.
GRE Tunnel IPv4 Multicast Support

GRE tunnels only support unicast and multicast IPv4 packets as payload. From a multicast prospective, GRE tunnel IP interface (associated with a private tunnel SAP) can be configured as an IGMP interface and/or as a PIM interface. The following multicast features are supported:

- IGMP versions 1, 2 and 3
- IGMP import policies
- IGMP host tracking
- Static IGMP membership
- Configurable IGMP timers
- IGMP SSM translation
- Multicast CAC
- Per-interface, per-protocol (IGMP/PIM) multicast group limits
- MVPN support (draft-rosen)
- MVPN support (BGP-MPLS)
- PIM-SM and SSM operation
- PIM BFD support
- Configurable PIM timers
- Configurable PIM priority
- PIM tracking support
- PIM ECMP (bandwidth or hash-based)
- Static multicast route
IKEv2

IKEv2, defined in RFC 4306, *Internet Key Exchange (IKEv2) Protocol*, is the second version of the Internet Key Exchange Protocol. The main driver of IKEv2 is to simplify and optimize the IKEv1. An IKE_SA and a CHILD_SA could be created with only 4 IKEv2 messages exchanges. The 7750-SR supports IKEv2 with following features:

- Static lan-to-lan tunnel.
- Dynamic lan-to-lan tunnel. Remote-access tunnel.
- Pre-shared-key authentication, certificate authentication, EAP (Remote-access tunnel only).
- Liveness check.
- IKE_SA rekey.
- Child_SA rekey.

IKEv2 TS-List

Since R12.0R1, the system allows users to configure a ts-list per ipsec-gw, apply to both IKEv2 remote-access tunnels and LAN-to-LAN tunnels.

Each ts-list contains up to 32 entries. Each entry contains a local address range/subnet. In case of ipsec-gw, the ts-list represents the TSr payload. Each entry represent one TS inside TSr.

The address range/subnet between entries in the same ts-list are NOT allowed to overlap.

The system will perform address range narrowing for the received TSr as following:

- The system will compute the intersection list between received TSr address ranges and address ranges in the ts-list.
- The system will send back the resulting TSr to the client.
- If there is no intersection, then system will fail the tunnel setup and return a TS_UNACCEPTABLE notification.

Figure 34: IKEv2 TS-List
According to RFC 4868, *Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec*, the following SHA2 variants are supported for authentication or pseudo-random functions:

Use HMAC-SHA-256+ algorithms for data origin authentication and integrity verification in IKEv1/2, ESP:

- AUTH_HMAC_SHA2_256_128
- AUTH_HMAC_SHA2_384_192
- AUTH_HMAC_SHA2_512_256

For use of HMAC-SHA-256+ as a PRF in IKEv1/2:

- PRF_HMAC_SHA2_256
- PRF_HMAC_SHA2_384
- PRF_HMAC_SHA2_512
Using Certificates For IPSec Tunnel Authentication

The SR OS supports X.509v3 certificate authentication for IKEv2 tunnel (LAN-to-LAN tunnel and remote-access tunnel). The SR OS also supports asymmetric authentication. This means the SR OS and the IKEv2 peer can use different methods to authenticate. For example, one side could use pre-shared-key and the other side could use certificate.

The SR OS supports certificate chain verification. For a static LAN-to-LAN tunnel or ipsec-gw, there will be a configurable trust-anchor-profile which specifies the expecting CA(s) that should be present in the certificate chain before reaching the root CA (self-signed CA) configured in the system.

The SR OS’s own key and certificate are also configurable per tunnel or ipsec-gw.

Note that when using certificate authentication, the SR OS will use the subject of the configured certificate as its ID by default.
Since R12.0R1, the SR OS supports multiple trust-anchors per ipsec-tunnel/ipsec-gw. Users can configure a trust-anchor-profile that includes up to eight CAs. The system will build a certificate chain by using the certificate in the first certificate payload in the received IKEv2 message. If any of configured trust-anchor CAs in the trust-anchor-profile appears in the chain, then authentication is successful. Otherwise authentication is failed.

Note: The SR OS will only support processing of up to 16 hashes for the trust-anchor list from other products. If the remote end is sending more than 16, and a certificate match is in the > 16 range the tunnel will remain down with authentication failure.

The current trust-anchor command under ipsec-tunnel/ipsec-gw will be deprecated in a future release.
Cert-Profile

Since R12.0R1, the SR OS supports sending different certificate/chains according to the received IKEv2 certificate-request payload. This is achieved by configuring a cert-profile which allows up to eight entries. Each entry includes a certificate and a key and optionally also a chain of CA certificates.

The system will load cert/key in cert-profile into memory and build a chain: compare-chain for the certificate configured in each entry of cert-profile upon no shutdown of the cert-profile. These chains will be used in IKEv2 certificate authentication. If a chain computation cannot be completed for a configured certificate, then the corresponding compare-chain will be empty, or only partially computed.

Because there could be multiple entries configured in the cert-profile, the system needs to pick the cert/key in the correct entry that the other side expects to receive. This is achieved by a lookup of the CAs within the received cert-request payload in the compare-chain and then picking the first entry that there is a cert-request CA appearing in its chain. If there is no such cert, the system picks the first entry in the cert-profile. Note that the first entry is the 1st configured entry in cert-profile. The entry-id of first entry does not have to be “1”.

For example, there are three CA listed in certificate-request payload: CA-1, CA-2 and CA-3, and there are two entries configured in the cert-profile like following:

```
cert-profile "cert-profile-1"
 entry 1
 cert "cert-1"
 key "key-1"
 entry 2
 cert "cert-2"
 key "key-2"
 send-chain
 ca-profile "CA-1"
 ca-profile "CA-2"
```

The system will build two compare-chains: chain-1 for cert-1 and chain-2 for cert-2. Assume CA-2 appears in chain-2, but CA-1 and CA-3 do not appear in either chain-1 or chain-2. Then the system will pick entry 2.

After a cert-profile entry is selected, the system generates the AUTH payload by using the configured key in the selected entry. The system will also send the cert in the selected entry as “certificate” payload to the peer.

If a chain is configured in the selected entry, then one certificate payload is needed for each certificate in the configured chain. The first certificate payload in the IKEv2 message will be the signing certificate, which is configured by the `cert` command in the chosen cert-profile entry. With the above example, the system will send three certificate payloads: cert-2, CA-1,CA-2.
The following CA chain-related enhancements are supported

- The no-shut of a ca-profile will trigger a re-computation of compute-chain in related cert-profiles. The system will also generate a new log-1 to indicate a new compute-chain has been generated; the log includes the ca-profile names on the new chain. Another log-2 will be generated if the send-chain in a cert-profile entry is not in compute-chain due to this ca-profile change. Another log is generated if the hash calculation for a certificate under a ca-profile has changed.

- When no-shutting a cert-profile, the system now allows the CAs in the send-chain, not in the compute-chain. The system will also generate log-2 as above.

- The system now allows changes of the configuration of send-chain without shutdown of cert-profile.
Cert-Profile/trust-anchor-profile versus cert/trust-anchor

Since R12.0R1, cert-profile/trust-anchor-profile provides a superset of function of current cert/trust-anchor commands. The current cert/trust-anchor commands will be deprecated in a future release.

To facilitate transition and also to update the certificate trust-anchor, the following is a list of user configuration actions and corresponding system behavior while the tunnel or ipsec-gw is enabled (no shutdown):

- trust-anchor-profile X —> trust-anchor-profile Y: allowed
- trust-anchor Z —> trust-anchor-profile Y: allowed
- trust-anchor-profile X —> no trust-anchor-profile: disallowed
- trust anchor W —> trust-anchor Z: disallowed
- cert-profile X —> cert-profile Y: allowed
- cert A + key B —> cert-profile Y: allowed
- cert-profile X —> no cert-profile: disallowed
- cert A —> cert B: disallowed
- key C —> key D: disallowed

Notes:

- The new configuration will only be used in subsequent tunnel authentication. Existing tunnel will not be affected.
- The CLI rollback might not always allow above behavior.
Certificate Management Protocol Version 2 (CMPv2)

CMPv2, RFC 4210, *Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)* is a protocol between a Certificate Authority (CA) and an end entity. It provides multiple certificate management functions like certificate enrollment, certificate update, etc.

The SR OS supports following CMPv2 operations:

- **Initial Registration** — The process the SR OS uses to enroll a certificate with a certain CA for the first time.
  - Public/Private key pair must be pre-provisioned before enrollment by means of local generation or other methods.
  - Users can optionally include a certificate or certificate chain in the extraCerts field of the initial registration request.
- **Key Pair Update** — A process for SR OS to update an existing certificate due to reason like refreshes key/cert before it expires or any other reason
- **Certificate Update** — A process where an initialized SR OS system obtains additional certificates.
- **Polling** — In some cases, the CA may not return the certificate immediately for reasons such as request processing need manual intervention. In such cases, the SR OS supports polling requests and responds as described in Section 5.3.22, Polling Request and Response, in RFC 4210, *Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)*.

The following lists some implementation details:

- HTTP is the only supported transport protocol for CMPv2. HTTP 1.1 and 1.0 are supported and configurable.
- All CMPv2 messages sent by SR OS consist of only one PKI Message. The size of the sequence for PKI Messages are 1 in all cases.
- Both the password-based MAC and the public key-based signature CMPv2 message protection are supported.
- SR OS only allows one outstanding ir/cr/kur request for each CMPv2 server. The means that no new requests are allowed if a pending request is present.
OCSP

Online Certificate Status Protocol (OCSP) (RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP) is used by SR OS applications to determine the (revocation) state of an identified certificate. Unlike CRL, which relies on checking against an offline file, OCSP provides timely, online information regarding the revocation status of a certificate.

IPSec is the only supported application to use OCSP. With introduction of OCSP, the system supports both CRL and OCSP as the certificate revocation status checking method. For a given ipsec-tunnel or ipsec-gw, the user could configure a primary method, a secondary method and a default result to achieve a hierarchical fallback mechanism. If the primary method fails to return a result, the system will fall back to the secondary method. If the secondary method fails, the fall back proceeds to a default result.

The following lists implementation details:

- Only an OCSP client function is supported.
- HTTP is the only supported transport protocol.
- OCSP server access via management routing instance is not supported.
- SR OS does not sign an OCSP Request.
- The OCSP response must be signed. The system will verify the response by using the signer’s certificate included in the response. If there is no such certificate, the CA certificate in the ca-profile will be used.
- If a nextUpdate exists in the OCSP response, the system will check the current time <= nextUpdate. If yes, then the response is valid, otherwise the response is considered unreliable. The system will move to next revocation checking method.
- The revocation status result from a valid OCSP response will be cached in the system.
- OCSP can only be used to verify the revocation status of the end-entity certificate. CRL is still needed for CA certificate’s status verification.
Using CRL

By default, the system uses CRL to check the revocation status of a certificate, whether it is an end entity certificate or a CA certificate. This makes CRL a mandatory configuration in the ca-profile.

The `revocation-check` command in the `ca-profile` can change this behavior, with `revocation-check crl-optional` configured:

When a user enables the ca-profile (no shutdown), the system will try to load the configured CRL (specified by command the `crl-file`). But, if the system fails to load it for following reasons, then the system will still be ca-profile oper-up, but leave the CRL as non-exist.

- CRL file does not exist
- CRL is not properly encoded, possibly due to an interrupted file transfer
- CRL is not signed by CA certificate
- Wrong CRL version
- CRL expired

If the system needs to use the CRL of a specific ca-profile to check revocation status of an end-entity cert and CRL is non-exist due to the above reasons, then the system will treat it as unable to get an answer from CRL and fall back to the next status-verify method or default-result configured under the ipsec-gw/ipsec-tunnel.

If the system needs to check the revocation of a CA cert in cert chain, and if CRL is non-existent due to the above reasons, then the system will skip checking the revocation status of the CA cert. For example, the CA1 is issued by CA2, if CA2’s revocation-check is `crl-optional` and CA2’s CRL is non-existent, then the system will not check CA1 cert’s revocation status and consider it as good.

Note: The user must disable the ca-profile to change the revocation-check configuration.
Remote Access VPN Concentrator Example

In this application (Figure 35), an IPSec client sets up encrypted tunnel across public network. The 7750 MS-ISA acts as a concentrator gathering, and terminating these IPSec tunnels into an IES or VPRN service. This mechanism allows as service provider to offer a global VPRN service even if node of the VPRN are on an uncontrolled or insecure portion of the network.
As satellite headend locations can be costly, many municipal and second tier operators cannot justify the investment in their own ground station in order to offer triple play features. However, it is possible for a larger provider or a cooperative of smaller providers to unite and provide a video headend. Each retail subscriber can purchase content from this single station, and receive it over IP. However, encryption is required so the signal cannot be understood if intercepted. A high speed encrypted tunnel is preferred over running two layers of double video protection which is cumbersome and computationally intensive.
Multi-Chassis IPSec Redundancy Overview

Multi-Chassis IPSec redundancy (MC-IPSec) provides a 1:1 (active/standby) IPSec stateful failover mechanism between two chassis.

- This feature provides protection against MS-ISA failure and chassis failure.
- IKEv2 static LAN-to-LAN is supported in SR OS R10.0R5; IKEv2 dynamic LAN-to-LAN tunnel is supported in SR OS R10.0R8. IKEv2 remote-access tunnel is supported in SR OS R11.0R6.
- This feature is supported on following platforms:
  - 7750 SR7, SR12 and SR12E
  - IOM3 and chassis mode D
  - 7450 mixed mode
  - Multi-active tunnel-group only
- The granularity of failover is per tunnel-group, which means a specific tunnel-group could failover to standby chassis independent of other tunnel-groups on the master chassis.
- The following components are included in this feature:
  - Master Election: MIMP (MC-IPSec Mastership Protocol) runs between chassis to elect master, MIMP run for each tunnel-group independently
  - Synchronization: MCS (Multi-Chassis Synchronization) sync IPSec states between chassis
  - Routing:
    - MC-IPSec aware routing attract traffic to the master chassis
    - Shunting support
    - MC-IPSec aware VRRP (10.0R8)
Architecture

The overall MC-IPSec redundancy architecture is displayed in Figure 37:

![Figure 37: MC-IPSec Architecture](image-url)
**MC-IPSec Mastership Protocol (MIMP)**

With MIMP enabled, there is a master chassis and a backup chassis. The state of the master or standby is per tunnel-group. For example (Table 12), chassis A and B, for tunnel-group 1, A is master, B is standby; for tunnel-group 2, A is standby, B is master.

### Table 12: Master and Backup Chassis Example

<table>
<thead>
<tr>
<th>Tunnel Group</th>
<th>Master</th>
<th>Standby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

All IKEv2 negotiation and ESP traffic encryption/decryption only occurs on the master chassis. If the backup chassis receives such traffic, if possible, it will shunt them to the master.

There will be a mastership election protocol (MIMP) running between the chassis to elect the master. This is an IP-based protocol to avoid any physical topology restrictions.

A central BFD session could be bound to MIMP to achieve fast chassis failure detection.

---

**MIMP Protocol States**

There are five MIMP states:

1. Discovery
   - Upon MC-IPSec is enabled for the tunnel-group, for example:
     - System starts up.
     - no shutdown MC-IPSec peer.
     - no shutdown MC-IPSec tunnel-group.
   - Functionally, this means blackhole traffic to the MS-ISA and no shunting.
   - If the peer is reached before the discovery-interval (configurable) has expired, then the state will be changed to whatever the MIMP decides
   - If the peer is not reached before the discovery-interval has expired, then the state will be changed to **eligible** or **notEligible** depending on the oper-status of the tunnel-group.

2. notEligible
   - The tunnel-group is operationally down.
   - Functionally, this means blackhole traffic to the MS-ISA and no shunting.

3. Eligible
   - The peer is not reachable or the associated BFD session is down but the tunnel-group is operationally up.
Multi-Chassis IPSec Redundancy Overview

- Functionally, this means the MS-ISA processes traffic.

4. Standby
- Peer is reachable, elected standby.
- Functionally, this means blackhole traffic to MS-ISA and shunting if possible.

5. Master
- Peer is reachable, elected master.
- Functionally, this means the MS-ISA processes traffic.

---

**Election Logic**

The following election logic is executed when MIMP packets are exchanged.

1. Set masterEligible to TRUE if the local tunnel group is operationally up, otherwise FALSE.
2. Set peerMasterEligible to TRUE if the peer’s tunnel group is operationally up, otherwise FALSE.

First elect based on eligibility:

3. If masterEligible and not peerMasterEligible, elect self master -> DONE.
4. If not masterEligible and peerMasterEligible, elect peer master -> DONE.
5. If not masterEligible and not peerMasterEligible, no master -> DONE.

Then apply stickyness rules (mastership tends not to change)

6. If I was “acting master” and peer was not “acting master”, then elect self master -> DONE.
7. If I was not “acting master” and peer was “acting master”, then elect peer master -> DONE.

Note: An “acting master” is either in MIMP state “master” or “eligible”.

Then elect based on priority and number of active ISA:

8. If my priority is higher than peer, elect self master -> DONE.
9. If peer priority is higher than mine, elect peer master -> DONE.
10. If I have more active ISA than peer, elect self master -> DONE.
11. If peer has more active ISA than me, elect peer master -> DONE.
The tie breaker:

12. If the local chassis’s MIMP source address is higher than the peer’s, elect self master -> DONE.

13. Elect peer master -> DONE.

---

**Protection Status**

Each MC-IPSec-enabled tunnel-group has a “protection status”, which could be one of following:

- **notReady** — The tunnel-group is not ready for a switchover due to reasons such as no elected standby to takeover or there are pending IPSec states which need to be synced. If switchover occurs with this status, then there could be a significant traffic impact.
- **nominal** — The tunnel-group is in a better situation to switchover than notReady. However, traffic still may be impacted.

Protection status serves as an indication for the operator to decide the optimal time to perform a controlled switchover.

The **show redundancy multi-chassis mc-ipsec peer <ip-address> tunnel-group <tunnel-group-id>”** command can be used to check current protection status.

---

**Other Details**

- Mastership election is per tunnel-group.
- MIMP is running in the base routing instance.
- MIMP will use the configured value of the **config>redundancy>multi-chassis>peer>source-address** command as the source address. If not configured, then system address will be used.
- The priority range is from 0 to 255.
- When an mc-ipsec tunnel-group enters standby from acting master, the tunnel-group will be restarted.
- When a tunnel-group enters an admin shutdown state under the mc-ipsec configuration (add a tunnel-group to mc-ipsec configuration, or upon admin shutdown of an mc-ipsec enabled tunnel group):
  - All tunnels in the tunnel-group will be deleted/reinstalled to the MS-ISAs.
  - All IKE states associated with those tunnels are locally purged from the MS-ISAs.
  - No IKE messages are sent to the IKE peer.

These behaviors occur regardless of the presence of a redundant chassis or the state of a redundant chassis.
• With MC-IPSec enabled:
  → auto-establish is blocked.
  → For DPD configuration, only no dpd and dpd configurations with reply-only are allowed.
Routing

Routing in Public Service

A /32 route of the local tunnel address is created automatically for all tunnels on the MC-IPSec enabled tunnel-group. This /32 route can be exported to a routing protocol by a route policy. The protocol type in route-policy is IPSec.

To attract traffic to the master chassis, a route metric of these /32 routes could be set according to the MIMP state, a metric from the master chassis is better than a metric from the standby chassis. There are three available states that can be used in the from state command in the route policy entry configuration:

- IPSec-master-with-peer
  → Corresponding MIMP states: master
- IPSec-master-without-peer
  → Corresponding MIMP states: eligible
- IPSec-non-master
  → Corresponding MIMP states: discovery/standby

However, if the standby chassis receives IPSec traffic, the traffic will be shunt to the master chassis by forwarding to a redundant next-hop. The redundant next-hop is an IP next-hop in the public routing instance.

Routing in Private Services

For static LAN-to-LAN tunnels, the static route with the IPSec tunnel as the next-hop could be exported to a routing protocol by a route policy. The protocol type remains static. For dynamic LAN-to-LAN tunnels, the reverse-route could be exported to a routing protocol by a route policy. The protocol type is ipsec. For remote-access tunnel, the private interface route could be exported to a routing protocol by a route policy.

Similar to routing in public services, the route metric of the above the routes could be set according to the MIMP state. Only a static route with an IPSec tunnel as the nexthop and reverse route has an MIMP state.

If the standby chassis receives IPSec traffic, the traffic will be shunt to the master chassis by forwarding to a redundant next-hop. The redundant next-hop is an IP next-hop in a private routing instance.
Other Details About Shunting

Shunting only works when tunnel-group is operationally up.

Shunting is not supported over auto-bind tunnels.

MC-IPSec Aware VRRP

In many cases, the public side is a Layer 2 network and VRRP is used to provide link or node protection. However, VRRP and MC-IPSec are two independent processes, each has its own mastership state, which means the VRRP master could be different from MC-IPSec master. This will result unnecessary shunting traffic.

To address this issue, MC-IPSec aware VRRP is introduced in SR OS Release 10.0R8, which add a new priority event in vrrp-policy: mc-ipsec-non-forwarding. If the configured tunnel-group enters non-forwarding (non-master) state, then the priority of associated VRRP instance will be set to the configured value. Delta priority is not supported for this type of event.

Synchronization

In order to achieve stateful failover, IPSec states are synced between chassis by using the MCS protocol.

- Only successfully created SA after a completed INITIAL EXCHANGES or CREATE_CHILD_SA EXECHANGES is synced.
- Upon switchover, the new standby chassis will reboot the tunnel-group.
- The ESP sequence number is not synced.
- The CLI configuration is not synced.

The time must be the same on both chassis (using NTP/SNTP to sync to the same server is an option).

Automatic CHILD_SA Rekey

Because the ESP sequence number is not synced, a CHILD_SA rekey for each tunnel will be initiated by the new master to reset the sequence number upon switchover.
Responder Only

With MC-IPSec, it is required that MC-IPSec pair could only act as IKEv2 responder (except for the automatic CHILD_SA rekey upon switchover). To enable this behavior, configure following command.

```bash
config>isa>tunnel-grp>
 ipsec-responder-only
```

Refer to IPSec Deployment Requirements on page 405 section for details

IPSec Deployment Requirements

The following describes requirements to deploy SR OS IPSec features.

**IPSec General:**

To avoid high CPU loads and some complex cases, the following are the requirements for configuring IKEv2 lifetime:

1. The IKE_SA lifetime on one side should be approximately 2 times larger than the other side. The CHILD_SA lifetime on one side should be approximately 2 or 3 times larger than the other side.
2. With the previous rule, the lifetime of the side with smaller lifetime should NOT be too small:
   - IKE_SA: \( >= 86400 \) seconds
   - CHILD_SA: \( >= 3600 \) seconds
3. With 1st rule, on the side with smaller lifetime, the IKE_SA lifetime should be at least 3 times larger than CHILD_SA lifetime.
4. The IKE protocol is the control plane of IPSec, thus, the IKE packet should be treated as high QoS priority in the end-to-end path of public service.
   - On a public interface, a sap-ingress QoS policy should be configured to ensure the IKE packet treated as high QoS priority.

**MC-IPSec Specific:**

1. The IKEv2 lifetime requirements from the previous "IPSec General" section should be applied with special care to MC-IPSec deployments.

   In an MC-IPSec deployment where the MC-IPSec pair peers with single, non-redundant IKE clients, the IKEv2 lifetime requirements must be applied with the larger lifetimes configured on the MC-IPSec pair.

   An MC-IPSec deployment where one MC-IPSec pair peers with another MC-IPSec pair is not recommended. MC-IPSec performs optimally when the multi-chassis pair peers with a
single IKE entity. If such a peering (MC-to-MC) is created, the above IKEv2 lifetime requirements should still be followed. However, with one side nominated to be the primary rekey initiator and having the smaller configured lifetimes.

2. Responder-only configuration is a mandatory requirement for all types of tunnels on the MC-IPSec pair in the usual deployment scenario of a MC-IPSec pair peering with single, non-redundant IKE clients.

If peering a MC-IPSec pair with another MC-IPSec pair (not recommended -- see above), one side must be nominated to be the rekey initiator. This side must not have responder-only configured.

3. DPD on peer side, **no dpd** on the MC-IPSec side.

4. Dedicated, direct physical link between chassis with enough bandwidth for MCS and shunting traffic, and proper QoS configuration to make sure the MIMP/MCS packet get the highest priority.

5. A MC-IPSec switchover when the protection status is not nominal may result in unexpected behavior and traffic loss. A nominal state must be reached on both MC-IPSec chassis before a MC-IPSec switchover is triggered.

6. When using VRRP in the public service and a chassis failure occurs, the VRRP/Layer 2 network should re-converge before the MC-IPSec switchover occurs. One way to speed up VRRP switchover is to bind a BFD session to VRRP.
IKEv2 Remote-Access Tunnel

Since R11.0R6, SR OS supports IKEv2 remote-access tunnel. The difference between a remote-access tunnel and a LAN-to-LAN tunnel is that the remote-access tunnel allows the client to require an internal address via the IKEv2 configuration payload. The SR OS supports IKEv2 remote-access tunnel with following features:

- Authentication Methods:
  - Pre-Shared-Key RADIUS (psk-radius)
  - Certificate RADIUS (cert-radius)
  - EAP/EAP-Only
- Internal address assignment via IKEv2 configuration payload
- RADIUS based address assignment
- RADIUS accounting to report address usage
- NAT-Traversal support
- Support MC-IPSec

IKEv2 Remote-Access Tunnel – Authentication

If the auth-method in the ike-policy is configured as auth-method psk-radius or auth-method cert-radius, then the system will authenticate the client via PSK or certificate accordingly as like a LAN-to-LAN tunnel. The difference being that if psk-radius/cert-radius are configured, the system will also perform a RADIUS authentication/authorization and optionally send RADIUS accounting messages.

Figure 38 displays a typical call flow for psk-radius/cert-radius.
The Access-Request includes following attributes:

- **Username**: IDi
- **User-Password**: One of following value’s hash according to section 5.2 of RFC 2865, Remote Authentication Dial In User Service (RADIUS).
  - Client’s PSK if the psk-radius is configured (refer to the CLI).
  - Otherwise, a CLI configured key via the `password` command in the radius-authentication-policy; if password is not configured in this case, then system will not include User-Password attribute in access-request.
- **Acct-Session-Id**: Represents the IPSec tunnel session, format is: local_gw_ip-remote_ip-remote_port-time_stamp. An example: 172.16.100.1-192.168.5.100:500-1365016423.
- **Other RADIUS attributes** (dependent on the `config>ipsec>radius-auth-policy> include-radius-attribute` configuration).
  - Called-Station-Id: Local tunnel address.
  - Calling-station-Id: Remote tunnel address:port number.
  - Nas-Identifier: The system name.
  - Nas-Ip-Address: The system IP.
  - Nas-port-id: The public tunnel SAP ID.
If the RAIDIUS authentication is successful, RADIUS sever will send access-accept back; else, send access-reject back.

Expected attributes in access-accept:

- AcIc-IPsec-Serv-Id
- AcIc-IPsec-Interface
- Framed-IP-Address
- Framed-IP-Netmask
- AcIc-Primary-Dns
- AcIc-IPsec-Tunnel-Template-Id
- AcIc-IPsec-SA-Lifetime
- AcIc-IPsec-SA-PFS-Group
- AcIc-IPsec-SA-Encr-Algorithm
- AcIc-IPsec-SA-Auth-Algorithm
- AcIc-IPsec-SA-Replay-Window

Only Framed-IP-Address and Framed-IP-Netmask are mandatory, other attributes are optional.

Once tunnel is successfully created, system could optionally (depends on the configuration of radius-accounting-policy under the ipsec-gw) send accounting-start packet to RADIUS server, and also send accounting-stop when tunnel is removed.

The following attributes are expected in acct-start/stop:

- Acct-status-type
- Acct-session-id: same as it in access-request
- Username
- (following attributes are depend on “radius-acct-policy> include-radius-attribute” configuration)
- Frame-ip-address: the assigned internal address
- Calling-station-id
- Called-station-id
- Nas-Port-Id
- Nas-Ip-Addr
- Nas-Identifier
- Acct-Session-Time: tunnel session time, only in acct-stop packet.

By default, the system will only return what the client has requested in the CFG_REQUEST payload. However, this behavior can be overridden by configuring the relay-unsolicited-cfg-
attribute in the ike-policy. With this configuration, the configured attributes returned from the source (such as the RADIUS server) will be returned to client regardless if the client has requested it in the CFG_REQUEST payload.
IKEv2 Remote-Access Tunnel – EAP Authentication

SROS support EAP authentication for IKEv2 remote-access tunnel, in which case, the system acts as an authenticator between the IPSec client and the RADIUS server. It transparently forwards an EAP message between the IKEv2 session and the RADIUS session, so the actual EAP authentication happens between the client and RADIUS server.

*Figure 39* shows a typical call flow of EAP authentication:

![Figure 39: Typical Call Flow of EAP Authentication](image)

EAP authentication is enabled by configuring **authentication eap**. Once enabled, after receiving an IKE_AUTH request from the client, the system sends an EAP-Response/ID with IDi as the value in access-request to AAA. AAA will return a method request and the system starts pass through between client and AAA (*Figure 39*).

The generation of AUTH payload in IKE_AUTH response sent by the SR OS (message 4 in above flow) is dependent on the configuration of the **own-auth-method** command parameters:

- **psk** — AUTH payload is present and generated by using PSK
- **cert** — AUTH payload is present and generated by configured public/private key pairs as it does in certificate authentication, any needed certificates will be also sent.
• **eap-only** — Neither AUTH nor CERT payload is present.

The RADIUS attributes in authentication/accounting packets are very similar to psk-radius/cert-radius with following differences:

- Support EAP-Message/Message-Authenticator /State attributes.
- Support Access-Challenge packet.
- Support MS-MPPE-Send-Key/ MS-MPPE-Recv-Key in access-accept. These two attributes are required for all EAP methods that generate MSK.

The system provides a method to support EAP and other authentication methods on the same ipsec-gw. This is enabled by configuring **auto-eap-radius** as the auth-method in the ike-policy.

With **auto-eap-radius**:

- If there is no AUTH payload in IKE_AUTH request, then the system uses EAP to authenticate the client and will also use **own-auth-method** to generate AUTH payload.
- If there is an AUTH payload in the IKE_AUTH request:
  - If auto-eap-method is psk, then the system proceeds as auth-method: **psk-radius**.
  - If auto-eap-method is cert, then the system proceeds as auth-method: **cert-radius**.
  - If auto-eap-method is **psk-or-cert**, then:
    - If the **Auth Method** field of the AUTH payload is PSK, then the system proceeds as auth-method: **psk-radius**.
    - If the **Auth Method** field of the AUTH payload is RSA or DSS, then the system proceeds as auth-method: **cert-radius**.
  - The system will use **auto-eap-own-method** to generate the AUTH payload.
IPv6 over IPv4 IPSec Tunnel

SROS IPv6 over IPv4 IPSec allows IPv6 packets to be forwarded within an IPv4 IPSec tunnel, current support include following:

- IKEv2 tunnel only
- Tunnel type support:
  -> Static LAN-to-LAN tunnel
  -> Dynamic LAN-to-LAN tunnel
  -> Remote-access tunnel
- 7750 SR C12 is not supported
- The prefix length of the IPv6 address on private interface must be /96 or longer

IPv6 over IPv4: Static LAN-to-LAN Tunnel

There are three methods to forward IPv6 traffic into static tunnel on the private side:

1. The destination address is a configured dest-ip under the tunnel context:
   ```sh
cfg>service>vprn>if>sap>ipsec-tun> [no] dest-ip <v4/v6 addr>
```
   - dest-ip could be either an IPv6 address or an IPv4 address.
   - In case of IPv6, it must be either an IPv6 global unicast address or an IPv6 link-local address.
   - In case of IPv4, it could be used to forward IPv4 traffic into the tunnel.
   - In case of unicast address, dest-ip must be within the prefix configured on a private interface.
   - Up to 16 dest-ips can be configured per ipsec-tunnel.

2. A v6 route with configured dest-ip as the next-hop. This route can be either static or dynamic learn from routing protocol like BGP.

3. A IPv6 static route with ipsec-tunnel as next-hop.

Security-policy supports either an IPv4 entry or an IPv6 entry; however IPv4 and IPv6 can’t co-exist in the same entry.
IPv6 over IPv4: Dynamic LAN-to-LAN Tunnel

With Dynamic LAN-to-LAN tunnel, system will automatically create v6 reverse route in private VPRN based on the received TSi payload with the tunnel as the nexthop.

IPv6 over IPv4: Remote-Access Tunnel

The system supports the following IKEv2 IPv6 configuration attributes:

- INTERNAL_IP6_ADDRESS
- INTERNAL_IP6_DNS

The system supports only one internal IPv6 address per tunnel.

The following IPv6 related RADIUS attributes are also supported in access-accept:

- Framed-IPv6-Prefix — This will be translated into INTERNAL_IP6_ADDRESS in configuration payload, which includes two parts. A 16 bytes v6 prefix and one byte prefix length.
- Alc-Ipv6-Primary-Dns
- Alc-Ipv6-Secondary-Dns

If an internal v6 address has been assigned to the remote-access client, then Framed-IPv6-Prefix will also be included in RADIUS accounting-request packet.

The assigned internal v6 address must be within the prefix configured on the corresponding private interface.
Configuring IPSec with CLI

This section provides information to configure IPSec using the command line interface.

Topics in this section include:

- Provisioning a Tunnel ISA on page 415
- Configuring a Tunnel Group on page 416
- Configuring Router Interfaces for IPSec on page 417
- Configuring IPSec Parameters on page 418
- Configuring IPSec in Services on page 419
- Configuring X.509v3 Certificate Parameters on page 420
- Configuring MC-IPSec on page 423
- Configuring MC-IPSec on page 423
- Configuring and Using CMPv2 on page 426
- Configuring OCSP on page 427
- Configuring IKEv2 Remote-Access Tunnel on page 428

Provisioning a Tunnel ISA

An IPSec ISA can only be provisioned on an IOM2. The following output displays a card and ISA configuration.

```
*A:ALA-49>config# info
--
... card 1
 card-type iom2-20g
 mda 1
 mda-type m10-1gb-sfp
 exit
 mda 2
 mda-type isa-tunnel
 exit
...--
*A:ALA-49>config#
```
Configuring a Tunnel Group

The following output displays a tunnel group configuration in the ISA context. The `primary` command identifies the card/slot number where the IPSec ISA is the primary module for the IPSec group.

*A:ALA-49>config# info
----------------------------------------------
...
  isa
    tunnel-group 1 create
      primary 1/2
      no shutdown
    exit
  exit
...
----------------------------------------------
*A:ALA-49>config#
Configuring Router Interfaces for IPSec

The following output displays an interface “internet” configured using the network port (1/1/1).

*A:ALA-49>config# info
----------------------------------------------
...  
  router  
  interface "internet"  
      address 10.10.7.118/24  
      port 1/1/1  
  exit  
  interface "system"  
      address 10.20.1.118/32  
  exit  
  autonomous-system 123  
  exit  
...  
----------------------------------------------
*A:ALA-49>config#
Configuring IPSec Parameters

The following output displays an IPSec configuration example.

*A:ALA-49>config# info 
--------------------------------------------
... ipsec
  ike-policy 1 create
  ipsec-lifetime 300
  isakmp-lifetime 600
  pfs
  auth-algorithm md5
  dpd interval 10 max-retries 5
  exit
ipsec-transform 1 create
  esp-auth-algorithm sha1
  esp-encryption-algorithm aes128
  exit
exit
...
--------------------------------------------
*A:ALA-49>config#
Configuring IPSec in Services

The following output displays an IES and VPRN service with IPSec parameters configured.

```
*A:ALA-49>config# info
--

... service

ies 100 customer 1 create
interface "ipsec-public" create
 address 10.10.10.1/24
 exit
no shutdown
exit

vprn 200 customer 1 create
ipsec
 security-policy 1 create
 entry 1 create
 local-ip 172.17.118.0/24
 remote-ip 172.16.91.0/24
 exit
 exit
 exit
route-distinguisher 1:1
ipsec-interface "ipsec-private" tunnel create
 sap tunnel-1.private:1 create
 ipsec-tunnel "remote-office" create
 security-policy 1
 local-gateway-address 10.10.10.118 peer 10.10.7.91 delivery-service
 100
dynamic-keying
 ike-policy 1
 pre-shared-key "humptydumpty"
 transform 1
 exit
 no shutdown
 exit
 exit

... exit

interface "corporate-network" create
 address 172.17.118.118/24
 exit

static-route 172.16.91.0/24 ipsec-tunnel "remote-office"
 no shutdown
 exit

... config#
```
Configuring X.509v3 Certificate Parameters

The following displays steps to configure certificate enrollment.

1. Generate a key.
   
   admin certificate gen-keypair cf3:/key_plain_rsa2048 size 2048 type rsa

2. Generate a certificate request.
   
   admin certificate gen-local-cert-req keypair cf3:/key_plain_rsa2048 subject-dn
   "C=US,ST=CA,CN=7750" file 7750_req.csr

   note: since 12.0R1, the system encodes the common name field as UTF8 instead of a
   printable string format. If a printable string is required for compatibility add the option
   "use-printable" to the request for legacy behavior.

3. Send the certificate request to CA-1 to sign and get the signed certificate.

4. Import the key.
   
   admin certificate import type key input cf3:/key_plain_rsa2048 output key1_rsa2048
   format der

5. Import the signed certificate.
   
   admin certificate import type cert input cf3:/7750_cert.pem output 7750cert format pem

The following displays steps to configure CA certificate/CRL import.

1. Import the CA certificate.
   
   admin certificate import type cert input cf3:/CA_1_cert.pem output ca_cert format pem

2. Import the CA's CRL.
   
   admin certificate import type crl input cf3:/CA_1_crl.pem output ca_crl format pem
The following displays a certificate authentication for IKEv2 static LAN-to-LAN tunnel configuration.

```
config>system>security>pki# info
--
ca-profile "alu-root" create
cert-file "alu_root.cert"
crl-file "alu_root.crl"
no shutdown
exit
--

config>ipsec# info
--
ike-policy 1 create
 ike-version 2
 auth-method cert-auth
exit
ipsec-transform 1 create
exit
cert-profile "segw" create
 entry 1 create
 cert segw.cert
 key segw.key
exit
 no shutdown
exit
trust-anchor-profile "alu" create
 trust-anchor "alu-root"
exit
--

config>service>vprn>if>sap
--
ipsec-tunnel "t50" create
 security-policy 1
 local-gateway-address 192.168.55.30 peer 192.168.33.100 delivery-service 300
 dynamic-keying
 ike-policy 1
 transform 1
cert
 trust-anchor-profile "alu"
 cert-profile "segw"
exit
no shutdown
exit
```
The following displays an example of the syntax to import a certificate from the pem format.

*A:SR-7/Dut-A# admin certificate import type cert input cf3:/pre-import/R1-0cert.pem output R1-0cert.der format pem

The following displays an example of the syntax to export a certificate to the pem format.

*A:SR-7/Dut-A# admin certificate export type cert input R1-0cert.der output cf3:/R1-0cert.pem format pem
Configuring MIMP

The following is an MIMP configuration example.

```
config>redundancy>multi-chassis
--
peer 2.2.2.2 create
 mc-ipsec
 bfd-enable
 tunnel-group 1 create
 peer-group 2
 priority 120
 no shutdown
 exit
 exit
 no shutdown
 exit
```

The peer’s tunnel-group id is not necessarily the same as the local tunnel-group id. With bfd-enable, the BFD parameters are specified under the interface that the MIMP source address resides on, which must be a loopback interface in the base routing instance. The default source address of MIMP is the system address.

The keep-alive-interval and hold-on-neighbor-failure define the MIMP alive parameter, however, BFD could be used for faster chassis failure detection.

The SR OS also provides a tool command to manually trigger the switchover such as:

```
tools perform redundancy multi-chassis mc-ipsec force-switchover tunnel-group 1
```
Configuring Multi-Chassis Synchronization

The following displays an MCS for MC-IPSec configuration.

```plaintext
config>redundancy>multi-chassis>
--
 peer 2.2.2.2 create
 sync
 ipsec
 tunnel-group 1 sync-tag "sync_tag_1" create
 no shutdown
 exit

The **sync-tag** must matched on both chassis for the corresponding tunnel-groups.
```

Configuring Routing for MC-IPSec

The following configuration is an example using a route policy to export /32 local tunnel address route:

```plaintext
config>router>policy-options>
--
policy-statement "exportOSPP"
 entry 10
 from
 protocol ipsec
 state ipsec-master-with-peer
 exit
 action accept
 metric set 500
 exit
 exit
 entry 20
 from
 protocol ipsec
 state ipsec-non-master
 exit
 action accept
 metric set 1000
 exit
 exit
 entry 30
 from
 protocol ipsec
 state ipsec-master-without-peer
 exit
 action accept
 metric set 1000
 exit
 exit
```
The following configuration shows shunting in public and private service.

Shunting in public service:

```plaintext
config>service>ies>
 interface "ipsec-pub" create
 address 172.16.100.254/24
 sap tunnel-1.public:100 create
 exit
 static-tunnel-redundant-next-hop 1.1.1.1
 exit
```

Shunting in private service:

```plaintext
config>service>vprn>
 interface "ipsec-priv" tunnel create
 ...
 static-tunnel-redundant-next-hop 7.7.7.1
 exit
```

Shunting is enabled by configuring redundant next-hop on a public or private IPsec interface

`static-tunnel-redundant-next-hop` — Shunting next-hop for a static tunnel.

`dynamic-tunnel-redundant-next-hop` — Shunting next-hop for a dynamic tunnel.
Configuring and Using CMPv2

CMPv2 server information is configured under corresponding ca-profile by using following key commands:

```
config>system>security>pki>ca-profile
cmpv2
 url <url-string> [service-id <service-id>]
 response-signing-cert <filename>
 key-list
 key <password> reference <reference-number>
```

The `url` command specifies the HTTP URL of the CMPv2 server, the service specifies the routing instance that the system used to access the CMPv2 server (if omitted, then system will use base routing instance).

Also note that the service ID is only needed for inband connections to the server via VPRN services. IES services are not to be referenced by the service ID as any of those are considered base routing instance.

The `response-signing-cert` command specifies a imported certificate that is used to verify the CMP response message if they are protected by signature. If this command is not configured, then CA’s certificate will be used.

The `keylist` specifies a list of pre-shared-key used for CMPv2 initial registration message protection.

For example:

```
config>system>security>pki>ca-profile
cmpv2
 url "http://cmp.example.com/request" service-id 100
 key-list
 key passwordToBeUsed reference "1"
```

All CMPv2 operations are invoked by using the `admin certificate cmpv2` command.

If there is no `key-list` defined under the `cmpv2` configuration, the system will default to the `cmpv2` transaction input for the command line in regards to authenticating a message without a senderID. Also, if there is no senderID in the response message, and there IS a key-list defined, it will choose the lexicographical first entry only, if that fails, it will have a fail result for the transaction.

Refer to the command reference section for details about syntax and usage. The system supports optional commands (such as, `always-set-sender-ir`) to support inter-op with CMPv2 servers. Refer to CMPv2 Commands on page 441 for details.
Configuring OCSP

OCSP server information is configured under the corresponding ca-profile:

```
config>system>security>pki>ca-profile>
 ocsp
 responder-url <url-string>
 service <service-id>
```

The **responder-url** command specifies the HTTP URL of the OCSP responder. The **service** command specifies the routing instance that system used to access the OCSP responder.

Example:

```
config>system>security>pki>ca-profile>
 ocsp
 responder-url "http://ocsp.example.com/request"
 service 100
```

For a given ipsec-tunnel or ipsec-gw, the user can configure a primary method, a secondary method and a default result.

```
config>service>ies>if>sap>ipsec-gw>
config>service>vprn>if>sap>ipsec-gw>
config>service>vprn>if>sap>ipsec-tun>
 cert
 status-verify
 primary {ocsp|crl}
 secondary {ocsp|crl}
 default-result {revoked|good}
```

Example:

```
config>service>ies>if>sap>ipsec-gw>
 cert
 status-verify
 primary ocsp
 secondary crl
```
Configuring IKEv2 Remote-Access Tunnel

The following are configuration tasks for an IKEv2 remote-access tunnel:

- Create an ike-policy with one of the auth-methods that enabled the remote-access tunnel.
- Configure a tunnel-template/ipsec-transform This is the same as configuring a dynamic LAN-to-LAN tunnel.
- Create a radius-authentication-policy and optionally, a radius-accounting-policy (a radius-server-policy and a radius-server must be preconfigured)
- Configure a private VPRN service and private tunnel interface with an address on the interface. The internal address assigned to the client must come from the subnet on the private interface.
- Configure a public IES/VPRN service and an ipsec-gw under the public tunnel SAP.
- Configure the radius-authentication-policy and radius-accounting-policy (optional) under the ipsec-gw.
- Certificate the related configuration if cert-radius is used.

The following shows an example using cert-radius:

```
config>system>security>pki# info
--
 ca-profile "ALU-ROOT" create
 cert-file "ALU-ROOT.cert"
 crl-file "ALU-ROOT.crl"
 no shutdown
 exit
--
A:SeGW(config)>aaa# info
--
 radius-server-policy "femto-aaa" create
 servers
 router "management"
 server 1 name "svr-1"
 exit
 exit
--
A:SeGW(config>router# info
--
 radius-server
 server "svr-1" address 10.10.10.1 secret "KR35xB3W4aUXtL8o3WzPD." hash2 create
 exit
 exit
--
config>ipsec# info
--
 ike-policy 1 create
 ike-version 2
 auth-method cert-radius
 exit
 ipsec-transform 1 create
```
exit
tunnel-template 1 create
   transform 1
exit
cert-profile "c1" create
   entry 1 create
      cert SeGW2.cert
      key SeGW2.key
   exit
   no shutdown
exit
trust-anchor-profile "tap-1" create
   trust-anchor "ALU-ROOT"
exit
radius-authentication-policy "femto-auth" create
   include-radius-attribute
      calling-station-id
      called-station-id
   exit
   password "DJzlyYKCFcyhommFcFSBuLZovSemMKde" hash2
   radius-server-policy "femto-aaa"
exit
radius-accounting-policy "femto-acct" create
   include-radius-attribute
      calling-station-id
      framed-ip-addr
   exit
   radius-server-policy "femto-aaa"
exit
----------------------------------------------
config>service>ies# info
----------------------------------------------
   interface "pub" create
      address 172.16.100.0/31
      tos-marking-state untrusted
      sap tunnel-1.public:100 create
      ipsec-gw "rw"
      cert
         trust-anchor-profile "tap-1"
         cert-profile "c1"
      exit
default-secure-service 400 interface "priv"
default-tunnel-template 1
ike-policy 1
local-gateway-address 172.16.100.1
radius-accounting-policy "femto-acct"
radius-authentication-policy "femto-auth"
   no shutdown
exit
exit
exit
no shutdown
----------------------------------------------
A:SeGW>config>service>vprn# info
----------------------------------------------
   route-distinguisher 400:11
   interface "priv" tunnel create
      address 20.20.20.1/24
      sap tunnel-1.private:200 create
   exit
exit
interface "l1" create
   address 9.9.9.9/32
   loopback
exit
no shutdown
-----------------------------
IP Tunnel Command Reference

- Hardware Commands on page 431
- ISA Commands on page 431
- IPSec Commands on page 432
- Service Configuration Commands on page 435
  - IES Commands on page 435
  - VPRN Commands on page 437
- Show Commands on page 442
- Debug Commands on page 442

Configuration Commands

Hardware Commands

```
config
 — card slot-number
 — mda mda-slot
 — mda-type isa-tunnel
 — no mda-type
```

ISA Commands

```
config
 — isa
 — tunnel-group tunnel-group-id [create]
 — no tunnel-group tunnel-group-id
 — active-mda-number [1..16]
 — no active-mda-number
 — backup mda-id
 — no backup
 — description description-string
 — no description
 — [no] ipsec-responder-only
 — mda mda-id
 — [no] mda
 — multi-active
 — primary mda-id
 — no primary
 — reassembly [wait-msecs]
 — no reassembly
 — [no] shutdown
```
IPSec Commands

config
   — ipsec
      — cert-profile profile-name [create]
      — no cert-profile profile-name
      — entry entry-id [create]
      — no entry entry-id
         — cert cert-filename
         — no cert
         — key key-filename
         — no key
         — [no] send-chain
            — [no] send-chain
      — [no] shutdown
      — trust-anchor-profile name [create]
      — no trust-anchor-profile
         — trust-anchor ca-profile-name
         — no trust-anchor
      — ts-list list-name [create]
      — no ts-list list-name
         — local
            — entry entry-id [create]
            — no entry entry-id
               — address prefix ip-prefix/ip-prefix-len
               — address from begin-ip-address to end-ip-address
               — no address

config
   — ipsec
      — ike-policy ike-policy-id [create]
      — no ike-policy ike-policy-id
         — auth-algorithm auth-algorithm
         — no auth-algorithm
         — auth-method {psk/plain-psk-xauth|cert-auth/psk-radius/cert-radius/eap/auto-eap-radius}
         — no auth-method
         — auto-eap-method {psk|cert|psk-or-cert}
         — auto-eap-own-method {psk|cert}
         — description description-string
         — no description
         — dh-group {1 2 5 14 15}
         — no dh-group
         — dpd [interval interval] [max-retries max-retries] [reply-only]
         — no dpd
         — encryption-algorithm {des | 3des | aes128 | aes192 | aes256}
         — no encryption-algorithm
         — ike-mode {main | aggressive}
         — no ike-mode
         — ike-version [1..2]
         — ipsec-lifetime ipsec-lifetime
         — no ipsec-lifetime
         — isakmp-lifetime isakmp-lifetime
         — no isakmp-lifetime
         — [no] match-peer-id-to-cert
         — nat-traversal [force] [keep-alive-interval keep-alive-interval] [force-keep-alive]
--- no nat-traversal
--- own-auth-method {psk | cert | eap-only}
--- no own-auth-method
--- pfs [dh-group {1 | 2 | 5 | 14 | 15}]
--- no pfs
--- relay-unsolicited-cfg-attribute
  --- [no] internal-ip4-dns
  --- [no] internal-ip4-netmask
  --- [no] internal-ip6-dns

config
--- ipsec
  --- ipsec-transform transform-id [create]
  --- no ipsec-transform transform-id
    --- esp-auth-algorithm {null | md5 | sha1 | sha256 | sha384 | sha512 | aes-xcbc}
    --- no esp-auth-algorithm
    --- esp-encryption-algorithm {null | des | 3des | aes128 | aes192 | aes256}
    --- no esp-encryption-algorithm

config
--- ipsec
  --- [no] static-sa sa-name
    --- authentication auth-algorithm ascii-key ascii-string
    --- authentication auth-algorithm hex-key hex-string [hash|hash2]
    --- no authentication
    --- description description-string
    --- no description
    --- direction ipsec-direction
    --- no direction
    --- protocol ipsec-protocol
    --- no protocol
    --- spi spi
    --- no spi

config
--- ipsec
  --- tunnel-template ipsec template identifier [create]
  --- no tunnel-template/ipsec template identifier
    --- [no] clear-df-bit
    --- description description-string
    --- no description
    --- encapsulated-ip-mtu octets
    --- no encapsulated-ip-mtu
    --- icmp6-generation
      --- packet-too-big number [10..1000] seconds [1..60]
      --- no packet-too-big
    --- no packet-too-big
    --- ip-mtu octets
    --- no ip-mtu
    --- replay-window {32 | 64 | 128 | 256 | 512}
    --- no replay-window
    --- [no] sp-reverse-route
    --- transform transform-id [transform-id...(up to 4 max)]
    --- no transform
config
  — ipsec
    — radius-accounting-policy name [create]
    — no radius-accounting-policy name
      — [no] include-radius-attribute
        — [no] called-station-id
        — [no] calling-station-id
        — [no] framed-ip-addr
        — [no] nas-identifier
        — [no] nas-ip-addr
        — [no] nas-port-id
    — radius-server-policy radius-server-policy-name
    — no radius-server-policy
    — radius-authentication-policy name [create]
    — no radius-authentication-policy name
      — [no] include-radius-attribute
        — [no] called-station-id
        — [no] calling-station-id
        — [no] nas-identifier
        — [no] nas-ip-addr
        — [no] nas-port-id
      — password password [hash|hash2]
        — no password
      — radius-server-policy radius-server-policy-name
      — no radius-server-policy
Service Configuration Commands

IES Commands

```plaintext
config
 — service
 — ies service-id [customer customer-id] [vpn vpn-id]
 — [no] interface ip-int-name [tunnel]
 — dynamic-tunnel-redundant-next-hop ip-address
 — no dynamic-tunnel-redundant-next-hop
 — static-tunnel-redundant-next-hop ip-address
 — no static-tunnel-redundant-next-hop
 — [no] sap sap-id [create]
 — ip-tunnel ip-tunnel-name [create]
 — backup-remote-ip ip-address
 — no backup-remote-ip
 — [no] clear-df-bit
 — delivery-service {service-id | svc-name}
 — no delivery-service
 — description description-string
 — no description
 — dscp dscp-name
 — no dscp
 — [no] dest-ip ip-address
 — gre-header
 — gre-header send-key receive-key receive-key
 — no gre-header
 — ip-mtu octets
 — no ip-mtu
 — reassembly [wait-msecs]
 — no reassembly
 — remote-ip ip-address
 — no remote-ip
 — [no] shutdown
 — source ip-address
 — no source
 — [no] ipsec-gw
 — cert
 — cert filename
 — no cert
 — cert-profile profile
 — no cert-profile
 — key filename
 — no key
 — status-verify
 — default-result {revoked|good}
 — no default-result
 — primary {ocsp|crl}
 — no primary
 — secondary {ocsp|crl}
 — no secondary
```
— trust-anchor ca-profile-name
— no trust-anchor
— trust-anchor-profile profile-name
— no trust-anchor-profile
— trust-anchor ca-profile-name
— no trust-anchor
— trust-anchor-profile profile-name
— no trust-anchor-profile
— default-secure-service service-id ipsec-interface ip-int-name
— no default-secure-service
— default-tunnel-template ipsec template identifier
— no default-tunnel-template
— ike-policy ike-policy-id
— no ike-policy
— local-gateway-address ip-address
— no local-gateway-address
— local-id {ipv4 | fqdn} [value [255 chars max]]
— no local-id
— pre-shared-key key
— no pre-shared-key
— radius-accounting-policy policy-name
— no radius-accounting-policy
— radius-accounting-policy name
— no radius-accounting-policy
— [no] shutdown
— ts-negotiation ts-list list-name
— no ts-negotiation
VPRN Commands

```
config
 — service
 — vprn service-id [customer customer-id]
 — no vprn service-id
 — ipsec
 — security-policy security-policy-id [create]
 — no security-policy security-policy-id
 — entry entry-id [create]
 — no entry entry-id
 — local-ip {ip-prefix|prefix-length | ip-prefix netmask | any}
 — local-v6-ip ipv6-prefix|prefix-length
 — local-v6-ip any
 — no local-v6-ip
 — remote-ip {ip-prefix|prefix-length | ip-prefix netmask | any}
 — remote-v6-ip any
 — remote-v6-ip ipv6-prefix|prefix-length
 — no remote-v6-ip
 — [no] interface ip-int-name
 — ipv6
 — address ipv6-address|prefix-length [eui-64] [preferred] [track-srrp srrp-instance]
 — no address ipv6-address|prefix-length
 — link-local-address ipv6-address [preferred]
 — [no] interface ip-int-name [create] [tunnel]
 — dynamic-tunnel-redundant-next-hop ip-address
 — no dynamic-tunnel-redundant-next-hop
 — static-tunnel-redundant-next-hop ip-address
 — no static-tunnel-redundant-next-hop
 — [no] sap sap-id [create]
 — ip-tunnel ip-tunnel-name [create]
 — backup-remote-ip ip-address
 — no backup-remote-ip
 — [no] clear-df-bit
 — delivery-service {service-id | svc-name}
 — no delivery-service
 — description description-string
 — no description
 — dscp dscp-name
 — no dscp
 — [no] dest-ip ip-address
 — [no] gre-header
 — ip-ntu octets
 — no ip-ntu
 — reassembly [wait-msecs]
 — no reassembly
 — remote-ip ip-address
 — no remote-ip
```
— [no] shutdown
— source ip-address
— no source

— [no] ipsec-gw
    — cert
        — cert filename
        — no cert
        — cert-profile profile
        — no cert-profile
        — key filename
        — no key
        — status-verify
            — default-result {revoked|good}
            — no default-result
            — primary {ocsp|crl}
            — no primary
            — secondary {ocsp|crl}
            — no secondary
        — trust-anchor ca-profile-name
        — no trust-anchor
        — trust-anchor-profile profile-name
        — no trust-anchor-profile
    — default-secure-service service-id ipsec-interface ip-int-name
        — no default-secure-service
        — default-tunnel-template ipsec template identifier
        — no default-tunnel-template
        — ike-policy ike-policy-id
        — no ike-policy
        — local-gateway-address ip-address
        — no local-gateway-address
        — local-id [ipv4 | fqdn] [value [255 chars max]]
        — no local-id
        — [no] shutdown
        — ts-negotiation ts-list list-name
        — no ts-negotiation

— ipsec-tunnel ipsec-tunnel-name [create]
— no ipsec-tunnel ipsec-tunnel-name
    — [no] bfd-designate
    — bfd-enable service service-id interface interface-name dst-ip ip-address
    — [no] clear-df-bit
    — description description-string
    — no description
    — [no] dest-ip ip-address
    — [no] dynamic-keying
        — [no] auto-establish
        — cert
            — cert filename
            — no cert
            — cert-profile profile
            — no cert-profile
            — key filename
            — no key
            — status-verify
IPSEC CLI Tree

— default-result {revoked|good}
— no default-result
— primary {ocsp|crl}
— no primary
— secondary {ocsp|crl}
— no secondary
— trust-anchor ca-profile-name
— no trust-anchor
— trust-anchor-profile profile-name
— no trust-anchor-profile
— ike-policy ike-policy-id
— no ike-policy
— local-id {ipv4 | fqdn} {value [255 chars max]}
— no local-id
— pre-shared-key key
— no pre-shared-key
— transform transform-id [transform-id...(up to 4 max)]
— no transform
— encapsulated-ip-mtu octets
— no encapsulated-ip-mtu
— icmp6-generation
— packet-too-big
— packet-too-big number [10..1000] seconds [1..60]
— no packet-too-big
— ip-mtu octets
— no ip-mtu
— local-gateway-address ip-address peer ip-address
delivery-service service-id
— no local-gateway-address
— [no] manual-keying
— security-association security-entry-id
  authentication-key authentication-key
  encryption-key encryption-key spi spi
  transform transform-id direction
  {inbound|outbound}
— no security-association security-entry-id
direction {inbound|outbound}
— replay-window replay-window-size
— no replay-window
— security-policy security-policy-id
— no security-policy
IPSec Mastership Election Commands

**configure**
- redundancy
  - multi-chassis
    - peer ip-address [create]
    - no peer ip-address
  - [no] mc-ipsec
    - [no] bfd-enable
    - discovery-interval interval-secs [boot interval-secs]
    - no discovery-interval
    - hold-on-neighbor-failure multiplier
    - no hold-on-neighbor-failure
    - keep-alive-interval interval
    - no keep-alive-interval
    - tunnel-group tunnel-group-id [create]
    - no tunnel-group tunnel-group-id
      - peer-group tunnel-group-id
      - [no] peer-group
      - priority priority
      - no priority
      - [no] shutdown

**Related Commands**

**config**
- router
  - policy-options
    - policy-statement
      - entry
        - from
          - protocol protocol [all | instance instance]
          - no protocol
          - state state
          - no state

  - redundancy
  - multi-chassis
  - peer
    - sync
      - [no] ipsec
      - tunnel-group tunnel-group-id sync-tag tag-name [create]
      - no tunnel-group tunnel-group-id
CMPv2 Commands

config
  — system
  — security
    — pki
      — certificate-display-format {ascii|utf8}
      — ca-profile name [create]
      — no ca-profile name
        — cmpv2
          — [no] accept-unprotected-errormsg
          — [no] accept-unprotected-pkiconf
          — [no] always-set-sender-for-ir
          — http-response-timeout timeout
          — no http-response-timeout
          — http-version [1.0|1.1]
          — key-list
            — key password [hash|hash2] reference reference-number
            — no key reference reference-number
          — response-signing-cert filename
          — no response-signing-cert
          — [no] same-recipnonce-for-pollreq
          — url url-string [service-id service-id]
          — no url
            — revocation-check {crl | crl-optional}

admin
  — certificate
    — cmpv2
      — cert-request ca ca-profile-name current-key key-filename current-cert cert-filename [hash-alg hash-algorithm] newkey key-filename subject-dn subject-dn save-as save-path-of-result-cert
      — clear-request ca ca-profile-name
      — initial-registration ca ca-profile-name key-to-certify key-filename protection-alg [password password reference ref-number | signature [cert cert-file-name [send-chain [with-ca ca-profile-name]]] [protected-key key-file-name] [hash-alg [md5 | sha1 | sha224 | sha256 | sha384 | sha512]]] subject-dn dn save-as save-path-of-result-cert
      — key-update ca ca-profile-name newkey key-filename oldkey key-filename oldcert cert-filename [hash-alg hash-algorithm] save-as save-path-of-result-cert
      — poll ca ca-profile-name
      — show-request [ca ca-profile-name]
IPSEC CLI Tree

Show Commands

```
show
 — ipsec

 — cert-profile name association
 — cert-profile [name]
 — cert-profile name entry [1..8]
 — certificate filename association
 — gateway name name
 — gateway [service service-id]
 — gateway tunnel [ip-address:port]
 — gateway name name tunnel
 — gateway name name tunnel
 — gateway tunnel count
 — ike-policy ike-policy-id
 — ike-policy
 — radius-accounting-policy [name]
 — radius-authentication-policy [name]
 — security-policy service-id [security-policy-id]
 — security-policy
 — static-sa
 — static-sa name sa-name
 — static-sa spi spi
 — transform [transform-id]
 — trust-anchor-profile trust-anchor-profile association
 — trust-anchor-profile [trust-anchor-profile]
 — ts-list [list-name]
 — ts-list list-name association
 — ts-list list-name entry [1..32]
 — tunnel ipsec-tunnel-name
 — tunnel
 — tunnel-template [ipsec template identifier]

 — redundancy
 — redundancy

 — multi-chassis
 — mc-ipsec peer ip-address tunnel-group tunnel-group-id
 — mc-ipsec peer ip-address
```

Debug Commands

```
debug
 — ipsec

 — [no] gateway name name tunnel ip-address[:port] [nat-ip nat-ip[:port]] [detail]
 — tunnel ipsec-tunnel-name [detail]
 — no tunnel ipsec-tunnel-name
 — [no] certificate filename

 — cmpv2
 — [no] ca-profile profile-name

 — ocs
Tools Commands

```
  tools
  -- perform
  -- redundancy
  -- multi-chassis
  -- mc-ipsec

  force-switchover tunnel-group local-group-id [now][to {master|standby}]
```
Generic Commands

description

Syntax

```
description description-string
```

Context

```
config>isa>ipsec-group
config>isa
```

Description

This command creates a text description which is stored in the configuration file to help identify the content of the entity.

The `no` form of the command removes the string from the configuration.

Default

`none`

Parameters

`string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

shutdown

Syntax

```
[no] shutdown
```

Context

```
config>isa
config>isa>aa-group
config>isa>tunnel-grp
config>ipsec>cert-profile
```

Description

This command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the `no shutdown` command.

The `shutdown` command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.
Hardware Commands

mda-type

Syntax

- `mda-type isa-tunnel`
- `no mda-type`

Context

`config>card>mda`

Description

This command provisions or de-provisions an MDA to or from the device configuration for the slot.

Parameters

`isa-tunnel` — Specifies the ISA tunnel.
ISA Commands

isa

Syntax
isa

Context config

Description This command enables the context to configure Integrated Services Adapter (ISA) parameters.

tunnel-group

Syntax
tunnel-group tunnel-group-id [create]
no tunnel-group tunnel-group-id

Context config>isa

Description This command allows a tunnel group to be created or edited. A tunnel group is a set of one or more MS-ISAs that support the origination and termination of IPSec and IP/GRE tunnels. All of the MS-ISAs in a tunnel group must have isa-tunnel as their configured mda-type.

The **no** form of the command deletes the specified tunnel group from the configuration.

Parameters

- **tunnel-group-id** — An integer value that uniquely identifies the tunnel-group.
 - **Values** 1—16
 - **create** — Mandatory keyword used when creating tunnel group in the ISA context. The create keyword requirement can be enabled/disabled in the **environment>create** context.

active-mda-number

Syntax
active-mda-number number
no active-mda-number

Context config>isa>tunnel-grp

Description This command specifies the number of active MS-ISA within all configured MS-ISA in the tunnel-group with multi-active enabled. IPsec traffic will be load balanced across all active MS-ISAs. If the number of configured MS-ISA is greater than the active-mda-number then the delta number of MS-ISA will be backup.

Default no

Parameters

- **number** — Specifies the number of active MDAs.
 - **Values** 1—16
backup

Syntax
backup mda-id
no backup

Context config>isa>tunnel-grp

Description This command assigns an ISA IPSec module configured in the specified slot to this IPSec group. The backup module provides the IPSec group with warm redundancy when the primary module in the group is configured. An IPSec group must always have a primary configured.

Primary and backup modules have equal operational status and when both modules are coming up, the one that becomes operational first becomes the active module. An IPSec module can serve as a backup for multiple IPSec groups but the backup can become active for only one ISA IPSec group at a time.

All configuration information is pushed down to the backup MDA from the CPM once the CPM gets notice that the primary module has gone down. This allows multiple IPSec groups to use the same backup module. Any statistics not yet spooled will be lost. Auto-switching from the backup to primary, once the primary becomes available again, is supported.

The operator is notified through SNMP events when:

• When the ISA IPSec service goes down (all modules in the group are down) or comes back up (a module in the group becomes active).
• When ISA IPSec redundancy fails (one of the modules in the group is down) or recovers (the failed module comes back up).
• When an ISA IPSec activity switch took place.

The no form of the command removes the specified module from the IPSec group.

Default no backup

Parameters mda-id — Specifies the card/slot identifying a provisioned module to be used as a backup module.

Values mda-id: slot/mda
 slot 1 — up to 10 depending on chassis model
 mda 1 — 2

mda

Syntax mda mda-id
no mda

Context config>isa>tunnel-grp

Description This command specifies the MDA id of the MS-ISA as the member of tunnel-group with multi-active enabled. Up to 16 MDA could be configured under the same tunnel-group.

Default no

Parameters mda-id — Specifies the id of MS-ISA.

Values iom-slot-id/mda-slot-id
multi-active

Syntax [no] multi-active

Context config>isa>tunnel-grp

Description This command enables configuring multiple active MS-ISA in the tunnel-group. IPsec traffic will be load balanced to configured active MS-ISAs.

Note:

- A shutdown of group and removal of all existing configured tunnels of the tunnel-group are needed before provisioning command “multi-active”.
- If the tunnel-group is admin-up with “multi-active” configured then the configuration of “primary” and “backup” are not allowed.
- The active-mda-number must be <= total number of ISA configured.

If active-mda-number is less than total number of ISA configured then the delta number of ISA will become backup ISA.

Default no

primary

Syntax primary mda-id

no primary

Context config>isa>tunnel-grp

Description This command assigns an ISA IPSec module configured in the specified slot to this IPSec group. The backup ISA IPSec provides the IPSec group with warm redundancy when the primary ISA IPSec in the group is configured. Primary and backup ISA IPSec have equal operational status and when both MDAs are coming up, the one that becomes operational first becomes the active ISA IPSec.

All configuration information is pushed down to the backup MDA from the CPM once the CPM gets notice that the primary module has gone down. This allows multiple IPSec groups to use the same backup module. Any statistics not yet spooled will be lost. Auto-switching from the backup to primary, once the primary becomes available again, is supported.

The operator is notified through SNMP events when:

- When the ISA IPSec service goes down (all modules in the group are down) or comes back up (a module in the group becomes active).
- When ISA IPSec redundancy fails (one of the modules in the group is down) or recovers (the failed module comes back up).
- When an ISA IPSec activity switch took place.

The no form of the command removes the specified primary ID from the group’s configuration.

Default no primary

Parameters mda-id — Specifies the card/slot identifying a provisioned IPSec ISAA.
reassembly

Syntax

reassembly [wait-msecs]

no reassembly

Context

config>isa>tunnel-group
config>service>ies>interface>sap>gre-tunnel
config>service>vprn>interface>sap>gre-tunnel

Description

This command configures IP packet reassembly for IPSec and GRE tunnels supported by an MS-ISA. The reassembly command at the tunnel-group level configures IP packet reassembly for all IPSec and GRE tunnels associated with the tunnel-group. The reassembly command at the GRE tunnel level configures IP packet reassembly for that one specific GRE tunnel, overriding the tunnel-group configuration.

The no form of the command disables IP packet reassembly.

Default

no reassembly (tunnel-group level)

reassembly (gre-tunnel level)

Parameters

wait — Specifies the maximum number of milliseconds that the ISA tunnel application will wait to receive all fragments of a particular IPSec or GRE packet. If one or more fragments are still missing when this limit is reached the partially reassembled datagram is discarded and an ICMP time exceeded message is sent to the source host (if allowed by the ICMP configuration of the sending interface). Internally, the configured value is rounded up to the nearest multiple of 100 ms.

Values

100 — 5000

Default

2000 (tunnel-group level)
Certificate Profile Commands

cert-profile

Syntax
- `cert-profile profile-name [create]`
- `no cert-profile profile-name`

Context config>ipsec

Description This command creates a new cert-profile or enters the configuration context of an existing cert-profile.

The `no` form of the command removes the profile name from the cert-profile configuration.

Default none

Parameters
- `profile-name` — Specifies the name of the certification profile up to 32 characters in length.

entry

Syntax
- `entry entry-id [create]`
- `no entry entry-id`

Context config>ipsec>cert-profile

Description This command configures the certificate profile entry information

The `no` form of the command removes the entry-id from the cert-profile configuration.

Default none

Parameters
- `entry-id` — Specifies the entry ID.

 Values 1 — 8

cert

Syntax
- `cert cert-filename`
- `no cert`

Context config>ipsec>cert-profile>entry

Description This command specifies the file name of an imported certificate for the cert-profile entry.

The `no` form of the command removes the cert-file-name from the entry configuration.

Default none
key

Syntax
key key-filename
no key

Context
config>ipsec>cert-profile>entry

Description
This command specifies the filename of an imported key for the cert-profile entry.
The no form of the command removes the key-filename from the entry configuration.

Default
none

Parameters
key-filename — Specifies the filename of an imported key.

send-chain

Syntax
[no] send-chain

Context
config>ipsec>cert-profile>entry

Description
This command enters the configuration context of send-chain in the cert-profile entry.
The configuration of this command is optional, by default system will only send the certificate specified by cert command in the selected entry to the peer. This command allows system to send additional CA certificates to the peer. These additional CA certificates must be in the certificate chain of the certificate specified by the cert command in the same entry.

ca-profile

Syntax
[no] ca-profile name

Context
config>ipsec>cert-profile>entry>send-chain

Description
This command specifies a CA certificate in the specified ca-profile to be sent to the peer.
Multiple configurations (up to seven) of this command are allowed in the same entry.

Default
none

Parameters
name — Specifies the profile name up to 32 characters in length.
Internet Key Exchange (IKE) Commands

ipsec

Syntax: `ipsec`
Context: `config`
Description: This command enables the context to configure Internet Protocol security (IPSec) parameters. IPSec is a structure of open standards to ensure private, secure communications over Internet Protocol (IP) networks by using cryptographic security services.

trust-anchor

Syntax: `trust-anchor profile-name`
Context: `config>ipsec`
Description: This command specifies a ca-profile as a trust-anchor CA. multiple trust-anchors (up to 8) could be specified in a single trust-anchor-profile.
Parameters: `profile-name` — The name of ca-profile.

ike-policy

Syntax: `ike-policy ike-policy-id [create]`
`no ike-policy ike-policy-id`
Context: `config>ipsec`
Description: This command enables the context to configured an IKE policy.
The `no` form of the command
Parameters: `ike-policy-id` — Specifies a policy ID value to identify the IKE policy.
Values: 1 — 2048

auth-algorithm

Syntax: `auth-algorithm auth-algorithm`
`no auth-algorithm`
Context: `config>ipsec>ike-policy`
Description: The command specifies which hashing algorithm to use for the IKE authentication function.
The no form of the command removes the parameter from the configuration.

Parameters

- **md5** — Specifies the hmac-md5 algorithm for authentication.
- **sha1** — Specifies the hmac-sha1 algorithm for authentication.
- **sha256** — Specifies the sha256 algorithm for authentication.
- **sha384** — Specifies the sha384 algorithm for authentication.
- **sha512** — Specifies the sha512 algorithm for authentication.
- **aes-xcbc** — Specifies the aes-xcbc algorithm for authentication.

auth-method

Syntax

```
auth-method {psk|plain-psk-xauth|cert-auth|psk-radius|cert-radius|eap|auto-eap-radius}
```

Context

```
config>ipsec>ike-policy
```

Description

This command specifies the authentication method used with this IKE policy. The no form of the command removes the parameter from the configuration.

Default

```
o auth-method
```

Parameters

- **psk** — Both client and gateway authenticate each other by a hash derived from a pre-shared secret. Both client and gateway must have the PSK. This work with both IKEv1 and IKEv2.
- **plain-psk-xauth** — Both client and gateway authenticate each other by pre-shared key and RADIUS. This work with IKEv1 only.
- **psk-radius** — Use the pre-shared-key and RADIUS to authenticate. IKEv2 remote-access tunnel only.
- **cert-radius** — Use the certificate, public/private key and RADIUS to authenticate. IKEv2 remote-access tunnel only.
- **eap** — Use the EAP to authenticate peer. IKEv2 remote-access tunnel only
- **auto-eap-radius** — Use EAP or potentially other method to authenticate peer. IKEv2 remote-access tunnel only. Also see auto-eap-method and auto-eap-own-method.

auto-eap-method

Syntax

```
auto-eap-method {psk|cert|psk-or-cert}
```

Context

```
config>ipsec>ike-policy
```

Description

This command enables following behavior for IKEv2 remote-access tunnel when auth-method is configured as auto-eap-radius:

- If there is no AUTH payload in IKE_AUTH request, then system use EAP to authenticate client and also will own-auth-method to generate AUTH payload.
If there is AUTH payload in IKE_AUTH request:
 → if auto-eap-method is psk, then system proceed as auth-method:psk-radius
 → if auto-eap-method is cert, then system proceed as auth-method:cert-radius
 → if auto-eap-method is psk-or-cert, then:
 - if the "Auth Method" field of AUTH payload is PSK, then system proceed as auth-
 method:psk-radius
 - if the "Auth Method" field of AUTH payload is RSA or DSS, then system proceed
 as auth-method:cert-radius

- The system will use auto-eap-own-method to generate AUTH payload.

Note that this command only applies when auth-method is configured as auto-eap-radius.

auto-eap-own-method

Syntax auto-eap-own-method {psk|cert}

Context config>ipsec>ike-policy

Description This command enables following behavior for IKEv2 remote-access tunnel when auth-method is
configured as auto-eap-radius:
 • If there is no AUTH payload in IKE_AUTH request, then system use EAP to authenticate client
 and also will own-auth-method to generate AUTH payload.
 • If there is AUTH payload in IKE_AUTH request:
 → if auto-eap-method is psk, then system proceed as auth-method:psk-radius.
 → if auto-eap-method is cert, then system proceed as auth-method:cert-radius.
 → if auto-eap-method is psk-or-cert, then:
 - if the "Auth Method" field of AUTH payload is PSK, then system proceed as auth-
 method:psk-radius.
 - if the "Auth Method" field of AUTH payload is RSA or DSS, then system proceed
 as auth-method:cert-radius.

- The system will use auto-eap-own-method to generate AUTH payload.

Note that this command only applies when auth-method is configured as auto-eap-radius.

Default auto-eap-method cert

Parameters psk — Uses the pre-shared-key as the authentication method.
 cer — Uses the certificate as the authentication method.
 psk-or-cert — Uses either the pre-shared-key or certificate based on the “Auth Method” field of the
 received AUTH payload.

OS Multi-Service ISA Guide Page 455
dh-group

Syntax
```
dh-group {1 | 2 | 5 | 14 | 15}
no dh-group
```

Context config>ipsec>ike-policy

Description This command specifies which Diffie-Hellman group to calculate session keys. Three groups are supported with IKE-v1:

- Group 1: 768 bits
- Group 2: 1024 bits
- Group 5: 1536 bits
- Group 14: 2048 bits
- Group 15: 3072 bits

More bits provide a higher level of security, but require more processing.

Default 5

The no form of the command removes the Diffie-Hellman group specification.

dpd

Syntax
```
dpd [interval interval] [max-retries max-retries] [reply-only]
no dpd
```

Context config>ipsec>ike-policy

Description This command controls the dead peer detection mechanism.

The no form of the command removes the parameters from the configuration.

Parameters
- **interval interval** — Specifies the interval that will be used to test connectivity to the tunnel peer. If the peer initiates the connectivity check before the interval timer it will be reset.

 Values 10 — 300 seconds

 Default 30

- **max-retries max-retries** — Specifies the maximum number of retries before the tunnel is removed.

 Values 2 — 5

 Default 3

- **reply-only** — Specifies to only reply to DPD keepalives. Issuing the command without the reply-only keyword disables the behavior.

 Values reply-only

encryption-algorithm
encryption-algorithm

Syntax

```
encryption-algorithm {des | 3des | aes128 | aes192 | aes256}
no encryption-algorithm
```

Context

`config>ipsec>ike-policy`

Description

This command specifies the encryption algorithm to use for the IKE session. The `no` form of the command removes the encryption algorithm from the configuration.

Default

`aes128`

Parameters

- `des` — This parameter configures the 56-bit des algorithm for encryption. This is an older algorithm, with relatively weak security. While better than nothing, it should only be used where a strong algorithm is not available on both ends at an acceptable performance level.
- `3des` — This parameter configures the 3-des algorithm for encryption. This is a modified application of the des algorithm which uses multiple des operations for more security.
- `aes128` — This parameter configures the aes algorithm with a block size of 128 bits. This is the mandatory implementation size for aes.
- `aes192` — This parameter configures the aes algorithm with a block size of 192 bits. This is a stronger version of aes.
- `aes256` — This parameter configures the aes algorithm with a block size of 256 bits. This is the strongest available version of aes.

ike-mode

Syntax

```
ike-mode (main | aggressive)
no ike-mode
```

Context

`config>ipsec>ike-policy`

Description

This command specifies one of either two modes of operation. IKE version 1 can support main mode and aggressive mode. The difference lies in the number of messages used to establish the session. The `no` form of the command removes the mode of operation from the configuration.

Default

`main`

Parameters

- `main` — Specifies identity protection for the hosts initiating the IPSec session. This mode takes slightly longer to complete.
- `aggressive` — Aggressive mode provides no identity protection but is faster.

ike-version

Syntax

```
ike-version [1..2]
no ike-version
```

Context

`config>ipsec>ike-policy`

Description

This command sets the IKE version (1 or 2) that the `ike-policy` will use.
Default 1

Parameters 1 | 2 — The version of IKE protocol.

ipsec-lifetime

Syntax `ipsec-lifetime ipsec-lifetime`

Syntax `no ipsec-lifetime`

Context `config>ipsec>ike-policy`

Description This parameter specifies the lifetime of a phase two SA.

The no form of the command reverts the `ipsec-lifetime` value to the default.

Default 3600 (1 hour)

Parameters `ipsec-lifetime` — specifies the lifetime of the phase two IKE key in seconds.

Values 1200 — 172800

isakmp-lifetime

Syntax `isakmp-lifetime isakmp-lifetime`

Syntax `no isakmp-lifetime`

Context `config>ipsec>ike-policy`

Description This command specifies the lifetime of a phase one SA. ISAKMP stands for Internet Security Association and Key Management Protocol.

The no form of the command reverts the `isakmp-lifetime` value to the default.

Default 86400

Parameters — Specifies the lifetime of the phase one IKE key in seconds.

Values 1200 — 172800

match-peer-id-to-cert

Syntax `[no] match-peer-id-to-cert`

Context `config>ipsec>ike-policy`

Description This command enables checking the IKE peer's ID matches the peer's certificate when performing certificate authentication.

nat-traversal
Syntax

```
nat-traversal [force] [keep-alive-interval keep-alive-interval] [force-keep-alive]
no nat-traversal
```

Context

```
config>ipsec>ike-policy
```

Description

This command specifies whether NAT-T (Network Address Translation Traversal) is enabled, disabled or in forced mode. The `no` form of the command reverts the parameters to the default.

Default

```
one
```

Parameters

- `force` — Forces to enable NAT-T.
- `keep-alive-interval`
  ```
  keep-alive-interval
  ```
 Specifies the keep-alive interval.
 - Values
 - 10 — 3600 seconds
 - `force-keep-alive` — When specified, the keep-alive does not expire.

own-auth-method

Syntax

```
oauth-method {psk | cert | eap-only}
no own-auth-method
```

Context

```
config>ipsec>ike-policy
```

Description

This command configures the authentication method used with this IKE policy on its own side.

pfs

Syntax

```
pfs [dh-group {1 | 2 | 5 | 14 | 15}]
no pfs
```

Context

```
config>ipsec>ike-policy
```

Description

This command enables perfect forward secrecy on the IPSec tunnel using this policy. PFS provides for a new Diffie-Hellman key exchange each time the SA key is renegotiated. After that SA expires, the key is forgotten and another key is generated (if the SA remains up). This means that an attacker who cracks part of the exchange can only read the part that used the key before the key changed. There is no advantage in cracking the other parts if they attacker has already cracked one.

The `no` form of the command disables PFS. If this it turned off during an active SA, when the SA expires and it is time to re-key the session, the original Diffie-Hellman primes will be used to generate the new keys.

Default

```
15
```

Parameters

- `dh-group {1 | 2 | 5 | 14 | 15}` — Specifies which Diffie-Hellman group to use for calculating session keys. More bits provide a higher level of security, but require more processing. Three groups are supported with IKE-v1:
 - Group 1: 768 bits
relay-unsolicited-cfg-attribute

Syntax relay-unsolicited-cfg-attribute

Context config>ipsec>ike-policy

Description This command enters relay unsolicited configuration attributes context. With this configuration, the configured attributes returned from source (such as a RADIUS server) will be returned to IKEv2 remote-access tunnel client regardless if the client has requested it in the CFG_REQUEST payload.

internal-ip4-dns

Syntax [no] internal-ip4-dns

Context config>ipsec>ike-policy>relay-unsol-attr

Description This command will return IPv4 DNS server address from source (such as a RADIUS server) to IKEv2 remote-access tunnel client regardless if the client has requested it in the CFG REQUEST payload.

internal-ip4-netmask

Syntax [no] internal-ip4-netmask

Context config>ipsec>ike-policy>relay-unsol-attr

Description This command will return IPv4 netmask from source (such as a RADIUS server) to IKEv2 remote-access tunnel client regardless if the client has requested it in the CFG_REQUEST payload.

internal-ip6-dns

Syntax [no] internal-ip6-dns

Context config>ipsec>ike-policy>relay-unsol-attr

Description This command will return IPv6 DNS server address from source (e.g. RADIUS server) to IKEv2 remote-access tunnel client regardless if the client has requested it in the CFG_REQUEST payload.

static-sa
syntax

Syntax `[no] static-sa sa-name

Context config>ipsec

Description This command configures an IPSec static SA.

direction

Syntax `direction ipsec-direction

no direction

Context config>ipsec>static-sa

Description This command configures the direction for an IPSec manual SA. The `no` form of the command reverts to the default value.

Default bidirectional

Parameters `ipsec-direction` — Identifies the direction to which this static SA entry can be applied.

Values inbound, outbound, bidirectional

protocol

Syntax `protocol ipsec-protocol

no protocol

Context config>ipsec>static-sa

Description This command configures the security protocol to use for an IPSec manual SA. The `no` statement resets to the default value.

Parameters `ipsec-protocol` — Identifies the IPSec protocol used with this static SA.

Values ah — Specifies the Authentication Header protocol.

esp — Specifies the Encapsulation Security Payload protocol.

Default esp

authentication

Syntax `authentication auth-algorithm ascii-key ascii-string

authentication auth-algorithm hex-key hex-string [hash|hash2]

no authentication

Context config>ipsec>static-sa

Description This command configures the authentication algorithm to use for an IPSec manual SA. The `no` form of the command reverts to the default value.
Default sha1

Parameters
 ascii-key — Specifies an ASCII key.
 hex-key — Specifies a HEX key.

spi

Syntax

```
spi spi
no spi
```

Context
config>ipsec>static-sa

Description
This command configures the SPI key value for an IPSec manual SA.

This command specifies the SPI (Security Parameter Index) used to lookup the instruction to verify and decrypt the incoming IPSec packets when the value of the direction command is **inbound**.

The SPI value specifies the SPI that will be used in the encoding of the outgoing packets when the when the value of the direction command is **outbound**. The remote node can use this SPI to lookup the instruction to verify and decrypt the packet.

If **no spi** is selected, then this static SA cannot be used.

The **no** form of the command reverts to the default value.

Default
none

Parameters

`spi` — Specifies the security parameter index for this SA.

Values
256..16383

ipsec-transform

Syntax

```
ipsec-transform transform-id [create]
```

Context
config>ipsec

Description
This command enables the context to create an ipsec-transform policy. IPSec transforms policies can be shared. A change to the ipsec-transform is allowed at any time. The change will not impact tunnels that have been established until they are renegotiated. If the change is required immediately the tunnel must be cleared (reset) for force renegotiation.

IPSec transform policy assignments to a tunnel require the tunnel to be shutdown.

The **no** form of the command removes the ID from the configuration.

Parameters

`transform-id` — Specifies a policy ID value to identify the IPSec transform policy.

Values
1 — 2048

`create` — Keyword that

`create` — This keyword is mandatory when creating an ipsec-transform policy. The **create** keyword requirement can be enabled/disabled in the environment>create context.
esp-auth-algorithm

Syntax

```
esp-auth-algorithm {null | md5 | sha1 | sha256 | sha384 | sha512 | aes-xcbc}
```

Context

cfg>ipsec>transform

Description

The command specifies which hashing algorithm should be used for the authentication function Encapsulating Security Payload (ESP). Both ends of a manually configured tunnel must share the same configuration parameters for the IPSec tunnel to enter the operational state.

The no form of the command disables the authentication.

Parameters

- **null** — This is a very fast algorithm specified in RFC 2410, which provides no authentication.
- **md5** — This parameter configures ESP to use the **hmac-md5** algorithm for authentication.
- **sha1** — This parameter configures ESP to use the **hmac-sha1** algorithm for authentication.
- **sha256** — This parameter configures ESP to use the sha256 algorithm for authentication.
- **sha384** — This parameter configures ESP to use the sha384 algorithm for authentication.
- **sha512** — This parameter configures ESP to use the sha512 algorithm for authentication.
- **aes-xcbc** — Specifies the aes-xcbc algorithm for authentication.

esp-encryption-algorithm

Syntax

```
esp-encryption-algorithm {null | des | 3des | aes128 | aes192 | aes256}
```

Context

cfg>ipsec>transform

Description

This command specifies the encryption algorithm to use for the IPSec session. Encryption only applies to esp configurations. If encryption is not defined esp will not be used.

For IPSec tunnels to come up, both ends need to be configured with the same encryption algorithm.

The no form of the command removes the

Default

aes128

Parameters

- **null** — This parameter configures the high-speed null algorithm, which does nothing. This is the same as not having encryption turned on.
- **des** — This parameter configures the 56-bit des algorithm for encryption. This is an older algorithm, with relatively weak security. Although slightly better than no encryption, it should only be used where a strong algorithm is not available on both ends at an acceptable performance level.
- **3des** — This parameter configures the 3-des algorithm for encryption. This is a modified application of the des algorithm which uses multiple des operations to make things more secure.
- **aes128** — This parameter configures the aes algorithm with a block size of 128 bits. This is the mandatory implementation size for aes. As of today, this is a very strong algorithm choice.
aes192 — This parameter configures the aes algorithm with a block size of 192 bits. This is a stronger version of aes.

aes256 — This parameter configures the aes algorithm with a block size of 256 bits. This is the strongest available version of aes.

tunnel-template

Syntax: tunnel-template ipsec template identifier [create]
no tunnel-template ipsec template identifier

Context: config>ipsec

Description: This command creates a tunnel template. Up to 2,000 templates are allowed.

Parameters:
- ipsec template identifier — Specifies the template identifier.

 Values: 1 — 2048

create — Mandatory keyword used when creating a tunnel-template in the IPSec context. The create keyword requirement can be enabled/disabled in the environment>create context.

clear-df-bit

Syntax: [no] clear-df-bit

Context: config>ipsec>tnl-temp

Description: This command enables clearing of the Do-not-Fragment bit.

ip-mtu

Syntax: ip-mtu octets
no ip-mtu

Context: config>ipsec>tnl-temp

Description: This command configures the template IP MTU.

Parameters:
- octets — Specifies the maximum size in octets.

 Values: 512 — 9000

replay-window
Syntax: **replay-window** \{32 | 64 | 128 | 256 | 512\}

no replay-window

Context: config>ipsec>tnl-temp

Description: This command sets the anti-replay window.
The **no** form of the command removes the parameter from the configuration.

Default: no replay-window

Parameters: \{32 | 64 | 128 | 256 | 512\} — Specifies the size of the anti-replay window.

sp-reverse-route

Syntax: **[no]** sp-reverse-route

Context: config>ipsec>tnl-temp

Description: This command specifies whether the node using this template will accept framed-routes sent by the RADIUS server and install them for the lifetime of the tunnel as managed routes.

The **no** form of the command disables sp-reverse-route.

Default: no sp-reverse-route

transform

Syntax: transform **transform-id** [transform-id\...(up to 4 max)]

no transform

Context: config>ipsec>tnl-temp

Description: This command configures IPSec transform.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>octets</td>
<td>Specifies the max size in octets.</td>
</tr>
</tbody>
</table>

Values

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>9000</td>
</tr>
</tbody>
</table>

icmp6-generation

Syntax

```plaintext
cmp6-generation
```

Context

- `config>service>vprn>if>sap>ipsec-tun`
- `config>ipsec>tnl-temp`
- `config>service>vprn>if>sap>ip-tunnel`
- `config>service>ies>if>sap>ip-tunnel`

Description

This command enters ICMPv6 packet generation configuration context.

packet-too-big

Syntax

```plaintext
packet-too-big number [10..1000] seconds [1..60]
packet-too-big
no packet-too-big
```

Context

- `config>service>vprn>if>sap>ipsec-tun`
- `config>ipsec>tnl-temp`
- `config>service>vprn>if>sap>ip-tunnel`
- `config>service>ies>if>sap>ip-tunnel`

Description

This command enables system to send ICMPv6 PTB (Packet Too Big) message on private side and optionally specifies the rate.

With this command configured, system will send PTB back if received v6 packet on private side is bigger than 1280 bytes and also exceeds the private MTU of the tunnel.

Note that the `ip-mtu` command (under `ipsec-tunnel` or `tunnel-template`) specifies the private MTU for the ipsec-tunnel or dynamic tunnel.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>Specifies the number of PTB messages.</td>
</tr>
<tr>
<td>seconds</td>
<td>Specifies the number of seconds.</td>
</tr>
</tbody>
</table>

ip-mtu

Syntax

```plaintext
ip-mtu octets
no ip-mtu
```

Context

- `config>ipsec>tnl-temp`

Description

This command continues the template IP MTU.
IPSec Configuration Commands

ipsec

```
Syntax: ipsec
Context: config>service>vprn>ipsec
Description: This command enables the context to configure IPSec policies.
Default: none
```

cert-profile

```
Syntax: cert-profile profile-name
   no cert-profile
Context: config>service>ies>if>sap>ipsec-gw>cert
         config>service>vprn>if>sap>ipsec-tun>dyn>cert
Description: This command specifies the cert-profile for the ipsec-tunnel or ipsec-gw. This command will override cert and key configuration under the ipsec-tunnel or ipsec-gw.
Default: none
Parameters: profile-name — Specifies the name of cert-profile.
```

security-policy

```
security-policy security-policy-id [create]
no security-policy security-policy-id
Context: config>service>vprn>ipsec
Description: This command configures a security policy to use for an IPSec tunnel.
Default: none
Parameters: security-policy-id — specifies a value to be assigned to a security policy.

Values: 1 — 8192
create — Keyword used to create the security policy instance. The create keyword requirement can be enabled/disabled in the environment>create context.
```

entry
Syntax entry entry-id [create]
 no entry entry-id

Context config>service>vprn>ipsec>sec-plcy

Description This command configures an IPSec security policy entry.

Parameters entry-id — Specifies the IPSec security policy entry.

 Values 1 — 16

create — Keyword used to create the security policy entry instance. The create keyword requirement
 can be enabled/disabled in the environment>create context.

local-ip

Syntax local-ip {ip-prefix/prefix-length | ip-prefix netmask | any}

Context config>service>vprn>ipsec>sec-plcy>entry

Description This command configures the local (from the VPN) IP prefix/mask for the policy parameter entry.

Only one entry is necessary to describe a potential flow. The local-ip and remote-ip commands can
be defined only once. The system will evaluate the local IP as the source IP when traffic is examined
in the direction of VPN to the tunnel and as the destination IP when traffic flows from the tunnel to
the VPN. The remote IP will be evaluated as the source IP when traffic flows from the tunnel to the
VPN when traffic flows from the VPN to the tunnel.

Parameters ip-prefix — The destination address of the aggregate route in dotted decimal notation.

 Values a.b.c.d (host bits must be 0)
 prefix-length 1 — 32

netmask — The subnet mask in dotted decimal notation.

any — keyword to specify that it can be any address.

local-v6-ip

Syntax local-v6-ip ipv6-prefix/prefix-length
 local-v6-ip any
 no local-v6-ip

Context config>service>vprn>ipsec>sec-plcy>entry

Description This command specifies the local v6 prefix for the security-policy entry.

Parameters ipv6-prefix/prefix-length — Specifies the local v6 prefix and length.

 Values ipv6-prefix/prefix-length x:x:x:x:x:x:x:x (eight 16-bit pieces)
 x:x:x:x:x:d.d.d d [0..255]
 x [0..FFFF]h
 host bits must be 0
remote-ip

Syntax
remote-ip ip-prefix/prefix-length | ip-prefix netmask | any

Context
config>service>vprn>ipsec>sec-plcy>entry

Description
This command configures the remote (from the tunnel) IP prefix/mask for the policy parameter entry. Only one entry is necessary to describe a potential flow. The local-ip and remote-ip commands can be defined only once. The system will evaluate the local IP as the source IP when traffic is examined in the direction of VPN to the tunnel and as the destination IP when traffic flows from the tunnel to the VPN. The remote IP will be evaluated as the source IP when traffic flows from the tunnel to the VPN when traffic flows from the VPN to the tunnel.

Parameters
ip-prefix — The destination address of the aggregate route in dotted decimal notation.

Values
a.b.c.d (host bits must be 0)
prefix-length 1 — 32

netmask — The subnet mask in dotted decimal notation.

any — keyword to specify that it can be any address.

remote-v6-ip

Syntax
remote-v6-ip any
remote-v6-ip ipv6-prefix/prefix-length
no remote-v6-ip

Context
config>service>vprn>ipsec>sec-plcy>entry

Description
This command specifies the remote v6 prefix for the security-policy entry.

Parameters
ipv6-prefix/prefix-length — Specifies the local v6 prefix and length.

Values
ipv6-prefix/prefix-length ipv6-prefix x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:x:x:d.d.d.d
x [0..FFFF]H
d [0..255]D
host bits must be 0
:: not allowed
prefix-length [1..128]

any — keyword to specify that it can be any address.
Syntax

address ipv6-address/prefix-length [eui-64] [preferred] [track-srrp srrp-instance]

no address ipv6-address/prefix-length

Context

`config>service>vprn>if>ipv6`

Description

This command adds an IPv6 address to the tunnel interface.

Note: the prefix length must be 96 or higher

Parameters

- `ipv6-address/prefix-length` — Specifies the IPv6 address on the interface.
 - **Values**
 - `ipv6-address/prefix`: ipv6-address x:x:x:x:x:x (eight 16-bit pieces)
 - x [0 — FFFF]H
 - d [0 — 255]D
 - `prefix-length`: 1 — 128

- `eui-64` — When the `eui-64` keyword is specified, a complete IPv6 address from the supplied prefix and 64-bit interface identifier is formed. The 64-bit interface identifier is derived from MAC address on Ethernet interfaces. For interfaces without a MAC address, for example ATM interfaces, the Base MAC address of the chassis is used.

- `preferred` — specifies that the IPv6 address is the preferred IPv6 address for this interface. Preferred address is an address assigned to an interface whose use by upper layer protocols is unrestricted. Preferred addresses maybe used as the source (or destination) address of packets sent from (or to) the interface. Preferred address doesn’t go through the DAD process.

link-local-address

Syntax

`link-local-address ipv6-address [preferred]`

Context

`config>service>vprn>if>ipv6`

Description

This command specifies the link-local-address for the tunnel interface.

Note: Only one link-local-address is allowed per interface

Parameters

- `ipv6-address` — Specifies the IPv6 address on the interface.
 - **Values**
 - `ipv6-address`: ipv6-address x:x:x:x:x:x:x (eight 16-bit pieces)
 - x [0 — FFFF]H
 - d [0 — 255]D

- `preferred` — specifies that the IPv6 address is the preferred IPv6 address for this interface. Preferred address is an address assigned to an interface whose use by upper layer protocols is unrestricted. Preferred addresses maybe used as the source (or destination) address of packets sent from (or to) the interface. Preferred address doesn’t go through the DAD process.

dynamic-tunnel-redundant-next-hop
Syntax
```
dynamic-tunnel-redundant-next-hop ip-address
no dynamic-tunnel-redundant-next-hop
```

Context
```
config>service>ies>if
config>service>vprn>if
```

Description
This command configures the dynamic ISA tunnel redundant next-hop address.

Default
no dynamic-tunnel-redundant-next-hop

Parameters
`ip-address` — Specifies the IP address of the next hop.

static-tunnel-redundant-next-hop

Syntax
```
static-tunnel-redundant-next-hop ip-address
no static-tunnel-redundant-next-hop
```

Context
```
config>service>ies>if
config>service>vprn>if
```

Description
This command specifies redundant next-hop address on public or private IPSec interface (with public or private tunnel-sap) for static IPSec tunnel. The specified next-hop address will be used by standby node to shunt IPSec traffic to master in case of it receives them.

The next-hop address will be resolved in routing table of corresponding service.

Default
no static-tunnel-redundant-next-hop

Parameters
`ip-address` — Specifies the IP address of the next hop.

interface

Syntax
```
interface ip-int-name [create] [tunnel]
no interface ip-int-name
```

Context
```
config>service>vprn
```

Description
This command creates a logical IP routing interface for a Virtual Private Routed Network (VPRN). Once created, attributes like an IP address and service access point (SAP) can be associated with the IP interface.

The `interface` command, under the context of services, is used to create and maintain IP routing interfaces within VPRN service IDs. The `interface` command can be executed in the context of an VPRN service ID. The IP interface created is associated with the service core network routing instance and default routing table. The typical use for IP interfaces created in this manner is for subscriber internet access.

Interface names are case sensitive and must be unique within the group of defined IP interfaces defined for `config router interface` and `config service vprn interface`. Interface names must not be in the dotted decimal notation of an IP address. For example, the name “1.1.1.1” is not allowed, but “int-1.1.1.1” is allowed. Show commands for router interfaces use either interface names or the IP addresses. Use unique IP address values and IP address names to maintain clarity. It could be unclear
to the user if the same IP address and IP address name values are used. Although not recommended, duplicate interface names can exist in different router instances.

The available IP address space for local subnets and routes is controlled with the `config router service-prefix` command. The `service-prefix` command administers the allowed subnets that can be defined on service IP interfaces. It also controls the prefixes that may be learned or statically defined with the service IP interface as the egress interface. This allows segmenting the IP address space into `config router` and `config service` domains.

When a new name is entered, a new logical router interface is created. When an existing interface name is entered, the user enters the router interface context for editing and configuration.

By default, there are no default IP interface names defined within the system. All VPRN IP interfaces must be explicitly defined. Interfaces are created in an enabled state.

The **no** form of this command removes IP the interface and all the associated configuration. The interface must be administratively shutdown before issuing the **no interface** command.

For VPRN services, the IP interface must be shutdown before the SAP on that interface may be removed. VPRN services do not have the **shutdown** command in the SAP CLI context. VPRN service SAPs rely on the interface status to enable and disable them.

Parameters

- **ip-int-name** — Specifies the name of the IP interface. Interface names can be from 1 to 32 alphanumeric characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
- **create** — Keyword used to create the IPSec interface instance. The `create` keyword requirement can be enabled/disabled in the **environment>create** context.

Values

- **1 — 32 characters maximum**

- **tunnel** — Specifies that the interface is configured as tunnel interface, which could be used to terminate IPSec or GRE tunnels in the private service.

Syntax

```
sap sap-id [create]
no sap sap-id
```

Context

- `config>service>ies>if`
- `config>service>vprn>if`

Description

This command creates a Service Access Point (SAP) within a service. A SAP is a combination of port and encapsulation parameters which identifies the service access point on the interface and within the router. Each SAP must be unique.

All SAPs must be explicitly created. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

Enter an existing SAP without the `create` keyword to edit SAP parameters. The SAP is owned by the service in which it was created.

A SAP can only be associated with a single service. A SAP can only be defined on a port that has been configured as an access port using the `config interface port-type port-id mode access` command. Channelized TDM ports are always access ports.

If a port is shutdown, all SAPs on that port become operationally down. When a service is shutdown, SAPs for the service are not displayed as operationally down although all traffic traversing the service...
will be discarded. The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The no form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

Default

No SAPs are defined.

Special Cases

```
sap tunnel-id.private | public:tag
```

This parameter associates a tunnel group SAP with this interface.

This context will provide a SAP to the tunnel. The operator may associate an ingress and egress QoS policies as well as filters and virtual scheduling contexts. Internally this creates an Ethernet SAP that will be used to send and receive encrypted traffic to and from the MDA. Multiple tunnels can be associated with this SAP. The “tag” will be a dot1q value. The operator may see it as an identifier. The range is limited to 1 — 4094.

Parameters

```
sap-id — Specifies the physical port identifier portion of the SAP definition. See Appendix A: Common CLI Command Descriptions on page 949 for command syntax.
```

```
port-id — Specifies the physical port ID in the slot/mda/port format.
```

If the card in the slot has Media Dependent Adapters (MDAs) installed, the `port-id` must be in the `slot_number/MDA_number/port_number` format. For example 61/2/3 specifies port 3 on MDA 2 in slot 61.

The `port-id` must reference a valid port type. When the `port-id` parameter represents SONET/SDH and TDM channels the port ID must include the channel ID. A period “.” separates the physical port from the `channel-id`. The port must be configured as an access port.

If the SONET/SDH port is configured as clear-channel then only the port is specified.

```
create — Keyword used to create a SAP instance.
```

ipsec-tunnel

Syntax

```
ipsec-tunnel ipsec-tunnel-name [create]
no ipsec-tunnel ipsec-tunnel-name
```

Context

`config>service>vprn>if>sap`

`config>service>vprn>if>sap>ipsec-tun`

Description

This command specifies an IPSec tunnel name. An IPSec client sets up the encrypted tunnel across public network. The 7750-SR IPSec MDA acts as a concentrator gathering, and terminating these IPSec tunnels into an IES or VPRN service. This mechanism allows as service provider to offer a global VPRN service even if node of the VPRN are on an uncontrolled or insecure portion of the network.

Default

`none`

Parameters

```
create — Keyword used to create the IPSec tunnel instance. The create keyword requirement can be enabled/disabled in the environment>create context.
```

```
ipsec-tunnel-name — Specifies an IPSec tunnel name up to 32 characters in length.
```
bfd-designate

Syntax

```
[no] bfd-designate
```

Context

`config>service>vprn>if>sap>ipsec-tunnel`

Description

This command specifies whether this IPSec tunnel is the BFD designated tunnel.

Default

none

bfd-enable

Syntax

```
[no] bfd-enable service service-id interface interface-name dst-ip ip-address
```

Context

`config>service>vprn>if>tunnel`

Description

This command assign a BFD session provide heart-beat mechanism for given IPSec tunnel. There can be only one BFD session assigned to any given IPSec tunnel, but there can be multiple IPSec tunnels using same BFD session. BFD control the state of the associated tunnel, if BFD session goes down, system will also bring down the associated non-designated IPSec tunnel.

Default

none

Parameters

- `service service-id` — Specifies where the service-id that the BFD session resides.
- `interface interface-name` — Specifies the name of the interface used by the BFD session.
- `dst-ip ip-address` — Specifies the destination address to be used for the BFD session.

dynamic-keying

Syntax

```
[no] dynamic-keying
```

Context

`config>service>vprn>if>tunnel`

Description

This command enables dynamic keying for the IPSec tunnel.

Default

none

auto-establish

Syntax

```
[no] auto-establish
```

Context

`config>service>vprn>if>tunnel`

Description

This command specifies whether to attempt to establish a phase 1 exchange automatically.

The `no` form of the command disables the automatic attempts to establish a phase 1 exchange.

Default

`no auto-establish`
transform

Syntax: transform transform-id [transform-id...(up to 4 max)]
no transform

Context: config>service>vprn>if>tunnel>dynamic-keying

Description: This command associates the IPSec transform sets allowed for this tunnel. A maximum of four transforms can be specified. The transforms are listed in decreasing order of preference (the first one specified is the most preferred).

Default: none

Parameters:
- transform-id — Specifies the value used for transforms for dynamic keying.
 - Values: 1 — 2048

local-gateway-address

Syntax: local-gateway-address ip-address peer ip-address delivery-service service-id
no local-gateway-address

Context: config>service>vprn>if>tunnel

Description: This command specifies the local gateway address used for the tunnel and the address of the remote security gateway at the other end of the tunnel and the remote peer IP address to use.

Default: The base routing context is used if the delivery-router option is not specified.

Parameters:
- ip-address — IP address of the local end of the tunnel.
- delivery-service service-id — The ID of the IES or VPRN (front-door) delivery service of this tunnel. Use this service-id to find the VPRN used for delivery.
 - Values: service-id: 1 — 2147483648
 - svc-name: Specifies an existing service name up to 64 characters in length.

manual-keying

Syntax: [no] manual-keying

Context: config>service>vprn>if>tunnel
 config>service>ies>if>sap>ipsec-gateway
 config>service>vprn>if>sap>ipsec-gateway

Description: This command configures Security Association (SA) for manual keying. When enabled, the command specifies whether this SA entry is created manually by the user or dynamically by the IPSec sub-system.

Default: none
security-association

Syntax

```plaintext
security-association security-entry-id authentication-key encryption-key spi spi transform transform-id direction {inbound | outbound}
no security-association security-entry-id direction {inbound | outbound}
```

Context

config>service>vprn>if>tunnel>manual-keying
config>service>ies>if>sap>ipsec-gateway>manual-keying

Description

This command configures the information required for manual keying SA creation.

Default

none

Parameters

- `security-entry-id` — Specifies the ID of an SA entry.
 - **Values** 1 — 16

- `encryption-key` — Specifies the key used for the encryption algorithm.
 - **Values** none or 0x0..0xFFFFFFFF...(max 64 hex nibbles)

- `authentication-key` —
 - **Values** none or 0x0..0xFFFFFFFF...(max 40 hex nibbles)

- `spi` — Specifies the SPI (Security Parameter Index) used to look up the instruction to verify and decrypt the incoming IPSec packets when the direction is inbound. When the direction is outbound, the SPI that will be used in the encoding of the outgoing packets. The remote node can use this SPI to lookup the instruction to verify and decrypt the packet.
 - **Values** 256 — 16383

- `transform` — specifies the transform entry that will be used by this SA entry. This object should be specified for all the entries created which are manual SAs. If the value is dynamic, then this value is irrelevant and will be zero.
 - **Values** 1 — 2048

- `direction` — Specifies the direction of an IPSec tunnel.
 - **Values** {inbound | outbound}

replay-window

Syntax

```plaintext
replay-window {32 | 64 | 128 | 256 | 512}
no replay-window
```

Context

config>service>vprn>if>tunnel>manual keying

Description

This command specifies the size of the anti-replay window. The anti-replay window protocol secures IP against an entity that can inject messages in a message stream from a source to a destination computer on the Internet.

Default

none

Parameters

- `{32 | 64 | 128 | 256 | 512}` — Specifies the size of the SA anti-replay window.
security-policy

Syntax

security-policy security-policy-id
no security-policy

Context

config>service>vprn>ipsec-if>tunnel

Description

This command configures an IPSec security policy. The policy may then be associated with tunnels defined in the same context.

Default

none

Parameters

security-policy-id — Specifies the IPSec security policy entry that the tunnel will use.

Values

1 — 8192
Interface SAP Tunnel Commands

ip-tunnel

Syntax

```
ip-tunnel ip-tunnel-name [create]
no ip-tunnel ip-tunnel-name
```

Context

```
config>service>ies>sap
config>service>vprn>sap
```

Description

This command is used to configure an IP-GRE or IP-IP tunnel and associate it with a private tunnel SAP within an IES or VPRN service.

The `no` form of the command deletes the specified IP/GRE or IP-IP tunnel from the configuration.

The tunnel must be administratively shutdown before issuing the `no ip-tunnel` command.

Default

no IP tunnels are defined.

Parameters

`ip-tunnel-name` — Specifies the name of the IP tunnel. Tunnel names can be from 1 to 32 alphanumeric characters. If the string contains special characters (for example, #, $, spaces), the entire string must be enclosed within double quotes.

source

Syntax

```
source ip-address
no source
```

Context

```
config>service>interface>ies>sap
config>service>interface>vprn>sap>gre-tunnel
```

Description

This command sets the source IPv4 address of GRE encapsulated packets associated with a particular GRE tunnel. It must be an address in the subnet of the associated public tunnel SAP interface. The GRE tunnel does not come up until a valid source address is configured.

The `no` form of the command deletes the source address from the GRE tunnel configuration. The tunnel must be administratively shutdown before issuing the `no source` command.

Parameters

`ip-address` — Specifies the source IPv4 address of the GRE tunnel.

Values

1.0.0.0 — 223.255.255.255

remote-ip

Syntax

```
remote-ip ip-address
no remote-ip
```

Context

```
config>service>interface>ies>sap
config>service>interface>vprn>sap>gre-tunnel
```

OS Multi-Service ISA Guide
Description

This command sets the primary destination IPv4 address of GRE encapsulated packets associated with a particular GRE tunnel. If this address is reachable in the delivery service (there is a route) then this is the destination IPv4 address of GRE encapsulated packets sent by the delivery service.

The `no` form of the command deletes the destination address from the GRE tunnel configuration.

Parameters

`ip-address` — Specifies the destination IPv4 address of the GRE tunnel.

Values

- `1.0.0.0` — `223.255.255.255`

backup-remote-ip

Syntax

```
backup-remote-ip ip-address
no backup-remote-ip
```

Context

```
config>service>interface>ies>sap>gre-tunnel
config>service>interface>vprn>sap>gre-tunnel
```

Description

This command sets the backup destination IPv4 address of GRE encapsulated packets associated with a particular GRE tunnel. If the primary destination address is not reachable in the delivery service (there is no route) or not defined then this is the destination IPv4 address of GRE encapsulated packets sent by the delivery service.

The `no` form of the command deletes the backup-destination address from the GRE tunnel configuration.

Parameters

`ip-address` — Specifies the destination IPv4 address of the GRE tunnel.

Values

- `1.0.0.0` — `223.255.255.255`

clear-df-bit

Syntax

```
[no] clear-df-bit
```

Context

```
config>service>vprn>interface>sap>ipsec-tunnel
config>service>vprn>interface>sap>gre-tunnel
config>service>ies>interface>sap>gre-tunnel
```

Description

This command instructs the MS-ISA to reset the DF bit to 0 in all payload IP packets associated with the GRE or IPSec tunnel, before any potential fragmentation resulting from the `ip-mtu` command. (This will require a modification of the header checksum.) The no clear-df-bit command, corresponding to the default behavior, leaves the DF bit unchanged.

The `no` form of the command disables the DF bit reset.

Default

`none`

delivery-service
Interface SAP Tunnel Commands

Syntax
```
delivery-service {service-id | svc-name}
```

no delivery-service

Context
```
config>service>interface>ies>sap>delivery-service
config>service>interface>vprn>sap>gre-tunnel
```

Description
This command sets the delivery service for GRE encapsulated packets associated with a particular GRE tunnel. This is the IES or VPRN service where the GRE encapsulated packets are injected and terminated. The delivery service may be the same service that owns the private tunnel SAP associated with the GRE tunnel. The GRE tunnel does not come up until a valid delivery service is configured.

The **no** form of the command deletes the delivery-service from the GRE tunnel configuration.

Parameters
- **service-id** — Identifies the service used to originate and terminate the GRE encapsulated packets belonging to the GRE tunnel.
 - **Values**
 - 1—2147483648
- **svc-name** — Identifies the service used to originate and terminate the GRE encapsulated packets belonging to the GRE tunnel.
 - **Values**
 - 1—64 characters

dscp

Syntax
```
dscp dscp-name
no dscp
```

Context
```
config>service>interface>ies>sap
config>service>interface>vprn>sap>gre-tunnel
```

Description
This command sets the DSCP code-point in the outer IP header of GRE encapsulated packets associated with a particular GRE tunnel. The default, set using the no form of the command, is to copy the DSCP value from the inner IP header (after remarking by the private tunnel SAP egress qos policy) to the outer IP header.

Default
```
no dscp
```

Parameters
- **dscp** — Specifies the DSCP code-point to be used.
 - **Values**
 - be, cp1, cp2, cp3, cp4, cp5, cp6, cp7, cs1, cp9, af11, cp11, af12, cp13, af13, cp15, cs2, cp17, af21, cp19, af22, cp21, af23, cp23, cs3, cp25, af31, cp27, af32, cp29, af33, cp31, cs4, cp33, af41, cp35, af42, cp37, af43, cp39, cs5, cp41, cp42, cp43, cp44, cp45, ef, cp47, nc1, cp49, cp50, cp51, cp52, cp53, cp54, cp55, nc2, cp57, cp58, cp59, cp60, cp61, cp62, cp63

dest-ip

Syntax
```
dest-ip ip-address
```

Context
```
config>service>ies>sap>ip-tunnel
config>service>vprn>sap>ip-tunnel
```
config>service>vprn>sap>ipsec-tunnel

Description
This command configures the private address of the remote tunnel endpoint. The configuration of this address is mandatory in the configuration of every IP-IP or IP-GRE tunnel.

Note: Unnumbered interfaces are not supported.

Default
No default

Parameters
ip-address — Specifies the private IP address of the remote IP tunnel endpoint. If this remote IP address is not within the subnet of the IP interface associated with the tunnel then the tunnel will not come up.

Values
<ip-address> ipv4-address a.b.c.d
ipv6-address x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:d.d.d.d
x - [0..FFFF]H
d - [0..255]D

gre-header

Syntax

gre-header send-key send-key receive-key receive-key

Context
config>service>ies>sap>ip-tunnel
cfgext>service>vprn>sap>ip-tunnel

Description
This command configures the type of the IP tunnel. If the gre-header command is configured then the tunnel is a GRE tunnel with a GRE header inserted between the outer and inner IP headers. If the no form of the command is configured then the tunnel is a simple IP-IP tunnel.

Default
no gre-header

Parameters
send-key send-key — Specifies a 32-bit unsigned integer.

Values
0 — 4294967295

receive-key receive-key — Specifies a 32-bit unsigned integer.

Values
0 — 4294967295

ip-mtu

Syntax
ip-mtu octets
no ip-mtu

Context
config>service>ies>if>sap>gre-tunnel
config>service>vprn>if>sap>gre-tunnel
config>service>vprn>if>sap>ipsec-tunnel

Description
This command configures the IP maximum transmit unit (packet) for this interface.

Note that because this connects a Layer 2 to a Layer 3 service, this parameter can be adjusted under the IES interface.
The MTU that is advertized from the IES size is:

\[
\text{MINIMUM}((\text{SdpOperPathMtu} - \text{EtherHeaderSize}), (\text{Configured ip-mtu}))
\]

By default (for ethernet network interface) if no ip-mtu is configured it is \((1568 - 14) = 1554\).

The **ip-mtu** command instructs the MS-ISA to perform IP packet fragmentation, prior to IPsec encryption and encapsulation, based on the configured MTU value. In particular:

- If the length of a payload IP packet (including its header) exceeds the configured MTU value and the DF flag is clear (due to the presence of the clear-df-bit command or because the original DF value was 0) then the MS-ISA fragments the payload packet as efficiently as possible (i.e. it creates the minimum number of fragments each less than or equal to the configured MTU size); in each created fragment the DF bit shall be 0.

If the length of a payload IP packet (including its header) exceeds the configured MTU value and the DF flag is set (because the original DF value was 1 and the tunnel has no clear-df-bit in its configuration) then the MS-ISA discards the payload packet without sending an ICMP type 3/code 4 message back to the packet’s source address.

The **no ip-mtu** command, corresponding to the default behavior, disables fragmentation of IP packets by the MS-ISA; all IP packets, regardless of size or DF bit setting, are allowed into the tunnel.

Note that the effective MTU for packets entering a tunnel is the minimum of the private tunnel SAP interface IP MTU value (used by the IOM) and the tunnel IP MTU value (configured using the above command and used by the MS-ISA). So, if it is desired to fragment IP packets larger than X bytes with DF set, rather than discarding them, the tunnel IP MTU should be set to X and the private tunnel SAP interface IP MTU should be set to a value larger than X.

Default

no ip-mtu

reassembly

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reassembly [wait-msecs]</td>
<td>config>service>ies>if>sap</td>
<td>This command configures the reassembly wait time.</td>
</tr>
<tr>
<td>no reassembly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPSec Gateway Commands

ipsec-gw

Syntax
[no] ipsec-gw

Context
config>service>ies>if>sap
config>service>vprn>if>sap

Description
This command configures an IPSec gateway.

default-secure-service

Syntax
default-secure-service service-id ipsec-interface ip-int-name
no default-secure-service

Context
config>service>ies>if>sap>ipsec-gateway
config>service>vprn>if>sap>ipsec-gateway

Description
This command specifies a service ID or service name of the default security service used by this SAP IPSec gateway.

Parameters

service-id — Specifies a default secure service.

Values

service-id: 1 — 2147483648
svc-name: An existing service name up to 64 characters in length.

default-tunnel-template

Syntax
default-tunnel-template ipsec template identifier
no default-tunnel-template

Context
config>service>ies>if>sap>ipsec-gateway
config>service>vprn>if>sap>ipsec-gateway

Description
This command configures a default tunnel policy template for the gateway.

ike-policy

Syntax
ike-policy ike-policy-id
no ike-policy

Context
config>service>ies>if>sap>ipsec-gateway
config>service>vprn>if>sap>ipsec-gateway

Description
This command configures IKE policy for the gateway.
Parameters

ike-policy-id — Specifies the IKE policy ID.

Values

1 — 2048

local-gateway-address

Syntax

local-gateway-address ip-address
no local-gateway-address

Context

config>service>ies>if>sap>ipsec-gateway
config>service>vprn>if>sap>ipsec-gateway

Description

This command configures an ipsec-gateway local address.

local-id

Syntax

local-id type {ipv4 | fqdn} [value [255 chars max]]
no local-id

Context

config>service>ies>if>sap>ipsec-gateway
config>service>vprn>if>sap>ipsec-gateway
service>vprn>if>sap>ipsec-tunnel

Description

This command specifies the local ID for 7750 SRs used for IDi or IDr for IKEv2 tunnels. The no form of the command removes the parameters from the configuration.

Default

Depends on local-auth-method like following:

- Psk: local tunnel ip address
- Cert-auth: subject of the local certificate

Parameters

type — Specifies the type of local ID payload, it could be ipv4 address/FQDN domain name, distinguish name of subject in X.509 certificate.

ipv4 — Specifies to use ipv4 as the local ID type, the default value is the local tunnel end-point address.

value — Specifies to use FQDN as the local ID type. The value must be configured.

pre-shared-key

Syntax

pre-shared-key key
no pre-shared-key

Context

config>service>ies>if>sap>ipsec-gateway
config>service>vprn>if>sap>ipsec-gateway

Description

This command specifies the shared secret between the two peers forming the tunnel.

Parameters

key — Specifies a pre-shared-key for dynamic-keying.
radius-accounting-policy

Syntax
```plaintext
radius-accounting-policy policy-name
no radius-accounting-policy
```

Context
```plaintext
config>service>ies>if>sap>ipsec-gw
config>service>vprn>if>sap>ipsec-gw
```

Description
This command specifies the radius-accounting-policy to be used for the IKEv2 remote-access tunnels terminated on the ipsec-gw. The radius-accounting-policy is defined under `config>ipsec` context.

Default
none

Parameters
`policy-name` — Specifies the name of an existing radius-accounting-policy.

radius-authentication-policy

Syntax
```plaintext
radius-authentication-policy policy-name
no radius-authentication-policy
```

Context
```plaintext
config>service>ies>if>sap>ipsec-gw
config>service>vprn>if>sap>ipsec-gw
```

Description
This command specifies the radius-authentication-policy to be used for the IKEv2 remote-access tunnels terminated on the ipsec-gw. The radius-authentication-policy is defined under `config>ipsec` context.

Default
none

Parameters
`policy-name` — Specifies the name of an existing radius-authentication-policy.

cert

Syntax
```plaintext
cert
[no] cert local-file-url
```

Context
```plaintext
config>service>ies>if>sap>ipsec-tunnel
config>service>vprn>if>sap>ipsec-tun>dynamic-keying>cert
config>svc>vprn>if>sap>ipsec-gw>cert
```

Description
This command configures cert parameters used by this SAP IPSec gateway.
Description
This command specifies the certificate that 7750 used to identify itself in case peer need it. 7750 will load (reload) the certificate from the configured URL when the ipsec-tunnel/ipsec-gw is “no shutdown”.

When system is loading the certificate, it will check if it is a valid X.509v3 certificate by performing following:

- **key** file must be already configured
- Configured cert file must be a DER formatted X.509v3 certificate file
- All non-optional fields defined in section 4.1 of RFC5280 must exist in the cert-file and conform to the RFC5280 defined format.
- The version field to see if its value is 0x2
- The Validity field to see that if the certificate is still in validity period.
- If Key Usage extension exists, then At least digitalSignature and keyEncipherment shall be set;
- The public key of the certificate can match with the public key in the configured key file.

If any of above checks fails, then the “no shutdown” command will fails

Configured certificate file url can only be changed or removed when tunnel or gw is shutdown.

Same certificate could be used for multiple ipsec-tunnels or ipsec-gws, however for each certificate file, there is only one memory instance, if a certificate file has been updated, “no shutdown” in any of tunnel that use the certificate file will cause the memory instance updated, which will not impact the current up and running tunnels that use the certificate file, but the new authentication afterwards will use the updated memory instance. Since 12.0R1, user should use **cert-profile** instead. This command will be deprecated in future release.

<table>
<thead>
<tr>
<th>Default</th>
<th>None</th>
</tr>
</thead>
</table>

| Parameters | local-file-url — URL for input file, this url is local CF card URL. |

key

Syntax
[no] key local-file-url

Context
config>service>vprn>if>sap>ipsec-tun>dynamic-keying>cert
config>svc>vprn>if>sap>ipsec-gw>cert
config>service>ies>if>sap>ipsec-gateway>cert

Description
This command specifies the key pair file 7750 will use for X.509 certificate authentication. System will load the key file when the ipsec-tunnel/gw is “no shutdown”.

When system is loading the key file, it will check if it is a valid 7750 formatted key file.

Key file url can only be changed or removed when tunnel or gw is shutdown.

Same key could be used for multiple ipsec-tunnels or ipsec-gws, however for each key file, there is only one memory instance, if a key file has been updated, “no shutdown” in any of tunnel that use the key file will cause the memory instance updated, which will not impact the current up and running tunnels that use the key file, but the new authentication afterwards will use the updated memory instance. Since 12.0R1, user should use **cert-profile** instead. This command will be deprecated in future release.
status-verify

Syntax

```
status-verify
```

Context

```
config>service>ies>if>sap>ipsec-gw>cert
config>service>vprn>if>sap>ipsec-gw>cert
config>service>vprn>if>sap>ipsec-tun>dyn>cert
```

Description

This command enables the context to configure certificate revocation status verification parameters.

Default

none

default-result

Syntax

```
default-result {revoked|good}
no default-result
```

Context

```
config>service>ies>if>sap>ipsec-gw>cert>cert-status-verify
config>service>vprn>if>sap>ipsec-gw>cert>cert-status-verify
config>service>vprn>if>sap>ipsec-tun>dyn>cert>cert-status-verify
```

Description

This command specifies the default result when both the primary and secondary method failed to provide an answer.

Default

default-result revoked

Parameters

- **good** — Specifies that the certificate is considered as acceptable.
- **revoked** — Specifies that the certificate is considered as revoked.

primary

Syntax

```
primary {ocsp|crl}
no primary
```

Context

```
config>service>ies>if>sap>ipsec-gw>cert>cert-status-verify
config>service>vprn>if>sap>ipsec-gw>cert>cert-status-verify
config>service>vprn>if>sap>ipsec-tun>dyn>cert>cert-status-verify
```

Description

This command specifies the primary method that used to verify revocation status of the peer’s certificate; could be either CRL or OCSP.

OCSP or CRL will use the corresponding configuration in the ca-profile of the issuer of the certificate in question.

Default

primary crl
Parameters

ocsp — Specifies to use the OCSP protocol. The OCSP server is configured in the corresponding ca-profile.

crl — Specifies to use the local CRL file. The CRL file is configured in the corresponding ca-profile

secondary

Syntax

```
secondary {ocsp|crl}
no secondary
```

Context

```
config>service>ies>if>sap>ipsec-gw>cert>cert-status-verify
cfg>service>vprn>if>sap>ipsec-gw>cert>cert-status-verify
config>service>vprn>if>sap>ipsec-tun>dyn>cert>cert-status-verify
```

Description

This command specifies the secondary method that is used to verify revocation status of the peer’s certificate; could be either CRL or OCSP.

OCSP or CRL will use the corresponding configuration in the ca-profile of the issuer of the certificate in question.

The secondary method will only be used when the primary method failed to provide an answer:

- OCSP — unreachable / any answer other than “good” or “revoked” / ocsp is NOT configured in ca-profile / OCSP response is not signed / Invalid nextUpdate
- CRL: CRL expired

Parameters

ocsp — Specifies to use the OCSP protocol, the OCSP server is configured in the corresponding ca-profile.

crl — Specifies to use the local CRL file, the CRL file is configured in the corresponding ca-profile

auto-establish

Syntax

```
[no] auto-establish
```

Context

```
config>service>vprn>if>sap>ipsec-tun>dynamic-keyig
```

Description

The system will automatically establish phase 1 SA as soon as the tunnel is provisioned and enabled (no shutdown). This option should only be configured on one side of the tunnel.

Note that any associated static routes will remain up as long as the tunnel could be up, even though it may actually be Oper down according to the CLI.

Default

None

trust-anchor-profile
trust-anchor

Syntax
```
trust-anchor-profile name
no trust-anchor-profile
```

Context
```
config>service>ies>if>sap>ipsec-gw>cert
config>service>vprn>if>sap>ipsec-gw>cert
config>service>vprn>if>sap>ipsec-tun>dyn>cert
```

Description
This command specifies the trust-anchor-profile for the ipsec-tunnel or ipsec-gw. This command will override “trust-anchor” configuration under the ipsec-tunnel or ipsec-gw.

Default
No

Parameters
```
profile-name — Specifies the name of trust-anchor-profile.
```

ts-list

Syntax
```
ts-list list-name [create]
no ts-list list-name
```

Context
```
config>ipsec
```

Description
This command creates a new TS list. The no form of the command removes the list name from the configuration.

Parameters
```
list-name — Specifies the name of the ts-list list.
```

local

Syntax
```
local
```

Context
```
config>ipsec>ts-list
```

Description
This command enables the context to configure local ts-list parameters. The traffic selector of the local system, such as TSr when the system acts as a IKEv2 responder.
entry

Syntax

entry entry-id [create]
no entry entry-id

Context

config>ipsec>ts-list>local

Description
This command specifies a ts-list entry.
The no form of the command removes the entry from the local configuration.

Parameters

entry-id — Specifies the entry id.

Values

1 — 32

address

Syntax

address prefix ip-prefix/ip-prefix-len
address from begin-ip-address to end-ip-address
no address

Context

config>ipsec>ts-list>local>entry

Description
This command specifies the address range in the IKEv2 traffic selector.

Parameters

ip-prefix/ip-prefix-len — Specifies the IP subnet and prefix.

begin-ip-address — Specifies the beginning address of the range for this entry.

down-ip-address — Specifies the address type of ending address of the range for this entry.

ts-negotiation

Syntax

ts-negotiation ts-list list-name
no ts-negotiation

Context

config>service>ies>if>sap>ipsec-gw

Description
This command enables the IKEv2 traffic selector negotiation with the specified ts-list.

Parameters
ts-list list-name — Specifies the ts-list name.
IPSec Mastership Election Commands

multi-chassis

Syntax multi-chassis

Context config>redundancy

Description This command enables the context to configure multi-chassis parameters.

peer

Syntax peer ip-address [create]
no peer ip-address

Context config>redundancy

Description This command configures a multi-chassis redundancy peer.

Parameters
ip-address — Specifies the peer address.

create — Mandatory keyword used when creating tunnel group in the ISA context. The create keyword requirement can be enabled/disabled in the environment>create context.

mc-ipsec

Syntax [no] mc-ipsec

Context config>redundancy>multi-chassis>peer

Description This command enables the context to configure multi-chassis peer parameters.

bfd-enable

Syntax [no] bfd-enable

Context config>redundancy>multi-chassis>peer>mc-ipsec

Description This command enables tracking a central BFD session, if the BFD session goes down, then system consider the peer is down and change the mc-ipsec status of configured tunnel-group accordingly.

The BFD session uses specified the loopback interface (in the specified service) address as the source address and uses specified dst-ip as the destination address. Other BFD parameters are configured with the bfd command on the specified interface.

Default 300
discovery-interval

Syntax: `discovery-interval interval-secs [boot interval-secs]`

no discovery-interval

Context: `config>redundancy>multi-chassis>peer>mc-ipsec`

Description: This command specifies the time interval of tunnel-group stays in “Discovery” state. Interval-1 is used as discovery-interval when a new tunnel-group is added to multi-chassis redundancy (mp-ipsec); interval-2 is used as discovery-interval when system boot-up, it is optional, when it is not specified, the interval-1 will be used.

Default: 300

Parameters:
- `interval-secs` — Specifies the maximum duration, in seconds, of the discovery interval during which a newly activated multi-chassis IPsec tunnel-group will remain dormant while trying to contact its redundant peer. Groups held dormant in this manner will neither pass traffic nor negotiate security keys. This interval ends when either the redundant peer is contacted and a master election occurs, or when the maximum duration expires.
- `boot interval-secs` — Specifies the maximum duration of an interval immediately following system boot up. When the normal discovery interval for a group would expire while the post-boot discovery interval is still active, then the group's discovery interval is extended until the post-boot discovery interval expires. This allows an extension to the normal discovery stage of groups following a chassis reboot, to account for the larger variance in routing

Values: 1 — 1800

hold-on-neighbor-failure

Syntax: `hold-on-neighbor-failure multiplier`

no hold-on-neighbor-failure

Context: `config>redundancy>multi-chassis>peer>mc-ipsec`

Description: This command specifies the number of keep-alive failure before consider the peer is down. The `no` form of the command reverts to the default.

Default: 3

Parameters:
- `multiplier` — Specifies the hold time applied on neighbor failure

Values: 2 — 25

keep-alive-interval

Syntax: `keep-alive-interval interval`

no keep-alive-interval

Context: `config>redundancy>multi-chassis>peer>mc-ipsec`
Description

This command specifies the time interval of mastership election protocol sending keep-alive packet.

The `no` form of the command reverts to the default.

Default

10

Parameters

`interval` — Specifies the keep alive interval in tenths of seconds.

Values

5 — 500

tunnel-group

Syntax

```
tunnel-group tunnel-group-id [create]
no tunnel-group tunnel-group-id
```

Context

`config>redundancy>multi-chassis>peer>mc-ipsec`

Description

This command enables multi-chassis redundancy for specified tunnel-group; or enters an already configured tunnel-group context. The configured tunnel-group could failover independently.

The `no` form of the command removes the tunnel group ID from the configuration.

Default

none

Parameters

`tunnel-group-id` — Specifies the tunnel-group identifier.

Values

1 — 16

peer-group

Syntax

```
peer-group tunnel-group-id
no peer-group
```

Context

`config>redundancy>multi-chassis>peer>mc-ipsec>tunnel-group`

Description

This command specifies the corresponding tunnel-group id on peer node. The peer tunnel-group id does not necessary equals to local tunnel-group id.

The `no` form of the command removes the tunnel group ID from the configuration.

Default

none

Parameters

`tunnel-group-id` — Specifies the tunnel-group identifier.

Values

1 — 16

priority

Syntax

```
priority priority
no priority
```

Context

`config>redundancy>multi-chassis>peer>mc-ipsec>tunnel-group`
Interface SAP Tunnel Commands

Description

This command specifies the local priority of the tunnel-group, this is used to elect master, higher number win. If priority are same, then the peer has more active ISA win; and priority and the number of active ISA are same, then the peer with higher IP address win.

The no form of the command removes the priority value from the configuration.

Default

100

Parameters

priority — Specifies the priority of this tunnel-group.

Values

0 — 255

protocol

Syntax

```
protocol {protocol} [all | instance instance]
```

no protocol

Context

`config>router>policy-options>policy-statement>entry>to`

Description

This command configures a routing protocol as a match criterion for a route policy statement entry. This command is used for both import and export policies depending how it is used. When the *ipsec* is specified this means IPSec routes.

If no protocol criterion is specified, any protocol is considered a match.

The no form of the command removes the protocol match criterion.

Default

`no protocol` — Matches any protocol.

Parameters

protocol — The protocol name to match on.

Values

direct, static, bgp, isis, ospf, rip, aggregate, bgp-vpn, igmp, pim, ospf3, ldp, sub-mgmt, mld, managed, vpn-leak, tms, nat, periodic, ipsec, mpls

instance — The OSPF or IS-IS instance.

Values

1 — 31

all — OSPF- or ISIS-only keyword.

state

Syntax

```
state state
no state
```

Context

`config>router>policy-options>policy-statement>entry>from`

Description

This command will configure a match criteria on the state attribute. The state attribute carries the state of an SRRP instance and it can be applied to:

- subscriber-interface routes
- subscriber-management routes (/32 IPv4 and IPv6 PD wan-host)
- managed-routes (applicable only to IPv4).
Based on the state attribute of the route we can manipulate the route advertisement into the network. We can enable or disable (in case there is no SRRP running) tracking of SRRP state by routes.

This is done on a per subscriber-interface route basis, where a subscriber-interface route is tracking a single SRRP instance state (SRRP instance might be in a Fate Sharing Group).

For subscriber-management and managed-routes, tracking is enabled per group interface under which SRRP is enabled.

```
<table>
<thead>
<tr>
<th>Default</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>This command specifies a multicast data source address as a match criterion for this entry.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>srrp-master</td>
<td>— Track routes with the state attribute carrying srrp-master state.</td>
</tr>
<tr>
<td>srrp-non-master</td>
<td>— Track routes with the state attribute carrying srrp-non-master state.</td>
</tr>
<tr>
<td>ipsec-master-with-peer</td>
<td>— Track routes with the state attribute carrying ipsec-master-with-peer state.</td>
</tr>
<tr>
<td>ipsec-non-master</td>
<td>— Track routes with the state attribute carrying ipsec-non-master state.</td>
</tr>
<tr>
<td>ipsec-master-without-peer</td>
<td>— Track routes with the state attribute carrying ipsec-master-without-peer state.</td>
</tr>
</tbody>
</table>
```

tunnel-group

```
| Syntax | tunnel-group tunnel-group-id sync-tag tag-name [create]  
|        | no tunnel-group |
| Context | config>redundancy>multi-chassis>peer>sync |
| Description | This command enables multi-chassis synchronization of IPsec states of specified tunnel-group with peer. sync-tag is used to match corresponding tunnel-group on both peers. IPsec states will be synchronized between tunnel-group with same sync-tag. |
| Default | no |
| Parameters |  
| tunnel-group-id | — Specifies the id of the tunnel-group |
| tag-name | — Specifies the name of the sync-tag. |
```

ipsec

```
| Syntax | [no] ipsec |
| Context | config>redundancy>multi-chassis>peer>sync |
| Description | This command enables multi-chassis synchronization of IPsec states on system level. |
| Default | no |
ipsec-responder-only

Syntax \[no\] ipsec-responder-only

Context config>isa>tunnel-group

Description With this command configured, system will only act as IKE responder except for the automatic CHILD_SA rekey upon MC-IPsec switchover.

Default no
IPSec RADIUS Commands

radius-accounting-policy

Syntax
radius-accounting-policy name [create]
no radius-accounting-policy name

Context config>ipsec

Description This command specifies an existing RADIUS accounting policy to use to collect accounting statistics on this subscriber profile by RADIUS. This command is used independently of the collect-stats command.

Parameters name — Specifies an existing RADIUS based accounting policy.

radius-authentication-policy

Syntax
radius-authentication-policy name [create]
no radius-authentication-policy name

Context config>ipsec

Description This command specifies the radius authentication policy associated with this IPsec gateway.

include-radius-attribute

Syntax [no] include-radius-attribute

Context config>ipsec>rad-acct-plcy>include
config>ipsec>rad-auth-plcy>include

Description This command enables the context to specify the RADIUS parameters that the system should include into RADIUS authentication-request messages.

called-station-id

Syntax [no] called-station-id

Context config>ipsec>rad-acct-plcy>include
config>ipsec>rad-auth-plcy>include

Description This command includes called station id attributes.
The no form of the command excludes called station id attributes.
calling-station-id

Syntax  [no] calling-station-id

Context  config>ipsec>rad-acct-plcy>include
         config>ipsec>rad-auth-plcy>include

Description  This command enables the inclusion of the calling-station-id attribute in RADIUS authentication requests and RADIUS accounting messages.

Default  no calling-station-id

framed-ip-addr

Syntax  [no] framed-ip-addr

Context  config>ipsec>rad-acct-plcy>include
         config>ipsec>rad-auth-plcy>include

Description  This command enables the inclusion of the framed-ip-addr attribute.

nas-identifier

Syntax  [no] nas-identifier

Context  config>ipsec>rad-acct-plcy>include
         config>ipsec>rad-auth-plcy>include

Description  This command enables the generation of the nas-identifier RADIUS attribute.

nas-ip-addr

Syntax  [no] nas-ip-addr

Context  config>ipsec>rad-acct-plcy>include
         config>ipsec>rad-auth-plcy>include

Description  This command enables the generation of the NAS ip-address attribute.

nas-port-id

Syntax  [no] nas-port-id

Context  config>ipsec>rad-acct-plcy>include
         config>ipsec>rad-auth-plcy>include
Description
This command enables the generation of the nas-port-id RADIUS attribute. Optionally, the value of this attribute (the SAP-id) can be prefixed by a fixed string and suffixed by the circuit-id or the remote-id of the client connection. If a suffix is configured, but no corresponding data is available, the suffix used will be 0/0/0/0/0/0.

radius-server-policy

Syntax
radius-server-policy radius-server-policy-name
no radius-server-policy

Context
config>ipsec>rad-acct-plcy>include
cfg>ipsec>rad-auth-plcy>include

Description
This command references an existing radius-server-policy (available under the config>aaa context) for use in subscriber management authentication and accounting.

When configured in an authentication-policy, following CLI commands are ignored in the policy to avoid conflicts:

- all commands in the radius-authentication-server context
- accept-authorization-change
- coa-script-policy
- accept-script-policy
- request-script-policy

When configured in a radius-accounting-policy, following CLI commands are ignored in the policy to avoid conflicts:

- all commands in the radius-accounting-server context
- acct-request-script-policy

The no form of the command removes the radius-server-policy reference from the configuration.

Default
no radius-server-policy

Parameters
radius-server-policy-name — Specifies the RADIUS server policy.

password

password password [hash|hash2]
no password

Context
config>ipsec>rad-auth-plcy>include

Description
This command specifies the password that is used in the RADIUS access requests. It shall be specified as a string of up to 32 characters in length.

The no form of the command resets the password to its default of ALU and will be stored using hash/hash2 encryption.

Default
ALU
Parameters

password — Specifies a password string up to 32 characters in length.

hash — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.
CMPv2 Commands

pki

Syntax pki
Context config>system>security
Description This command enables the context to configure PKI related parameters.
Default none

c-profile

Syntax ca-profile name [create]
no ca-profile name
Context config>system>security>pki
Description This command creates a new ca-profile or enter the configuration context of an existing ca-profile. Up to 128 ca-profiles could be created in the system. A shutdown the ca-profile will not affect the current up and running ipsec-tunnel or ipsec-gw that associated with the ca-profile. But authentication afterwards will fail with a shutdown ca-profile.

Executing a no shutdown command in this context will cause system to reload the configured cert-file and crl-file.

A ca-profile can be applied under the ipsec-tunnel or ipsec-gw configuration. The no form of the command removes the name parameter from the configuration. A ca-profile can not be removed until all the association(ipsec-tunnel/gw) have been removed.

Parameters name — Specifies the name of the ca-profile, a string up to 32 characters.
create — Keyword used to create a new ca-profile. The create keyword requirement can be enabled/disabled in the environment>create context.

certificate

Syntax certificate
Context admin
Description This command enables the context to configure X.509 certificate related operational parameters.

certificate-display-format
Syntax certificate-display-format {ascii|utf8}
Context config>system>security>pki
Description This command specifies the certificate subject display format.
Default ascii
Parameters
  ascii — Use ascii encoding.
  utf8 — Use utf8 encoding.

cmpv2
Syntax cmpv2
Context admin>certificate
cfg>system>security>pki>ca-profile
Description This command enables the context to configure CMPv2 parameters. Changes are not allowed when the CA profile is enabled (no shutdown).

accept-unprotected-errormsg
Syntax [no] accept-unprotected-errormsg
Context config>system>security>pki>ca-profile>cmpv2
Description This command enables the system to accept both protected and unprotected CMPv2 error message. Without this command, system will only accept protected error messages.
The no form of the command causes the system to only accept protected PKI confirmation message.
Default no

accept-unprotected-pkiconf
Syntax [no] accept-unprotected-pkiconf
Context config>system>security>pki>ca-profile>cmpv2
Description This command enables the system to accept both protected and unprotected CMPv2 PKI confirmation messages. Without this command, system will only accept protected PKI confirmation message.
The no form of the command causes the system to only accept protected PKI confirmation message.
Default none

always-set-sender-for-ir
Syntax  

always-set-sender-for-ir

Context  
config>system>security>pki>ca-profile>cmpv2

Description  
This command specifies to always set the sender field in CMPv2 header of all Initial Registration (IR) messages with the subject name. By default, the sender field is only set if an optional certificate is specified in the CMPv2 request.

Default  
no always-set-sender-for-ir

directories

key-list

Syntax  
kmp-key-list

Context  
config>system>security>pki>ca-profile>cmpv2

Description  
This command enables the context to configure pre-shared key list parameters.

directories

key

Syntax  
key password [hash|hash2] reference reference-number

no key reference reference-number

Context  
config>system>security>pki>ca-profile>cmpv2

Description  
This command specifies a pre-shared key used for CMPv2 initial registration. Multiples of key commands are allowed to be configured under this context.

The password and reference-number is distributed by the CA via out-of-band means.

The configured password is stored in configuration file in an encrypted form by using SR OS hash2 algorithm.

The no form of the command removes the parameters from the configuration.

Default  
none

Parameters  

password — Specifies a printable ASCII string, up to 64 characters in length.

hash — Specifies that the given password is already hashed using hashing algorithm version 1. A semantic check is performed on the given password field to verify if it is a valid hash 1 key to store in the database.

hash2 — Specifies that the given password is already hashed using hashing algorithm version 2. A semantic check is performed on the given password field to verify if it is a valid hash 2 key to store in the database.

reference reference-number — Specifies a printable ASCII string, up to 64 characters in length.

directories

url

Syntax  
cmp-url url-string [service-id service-id]
no cmp-url

**Context**  
config>system>security>pki>ca-profile>cmp2

**Description**  
This command specifies HTTP URL of the CMPv2 server. The URL must be unique across all configured ca-profiles.

The URL will be resolved by the DNS server configured (if configured) in the corresponding router context.

If the service-id is 0 or omitted, then system will try to resolve the FQDN via DNS server configured in bof.cfg. After resolution, the system will connect to the address in management routing instance first, then base routing instance.

Note that if the service is VPRN, then the system only allows HTTP ports 80 and 8080.

**Default** none

**Parameters**
- **url-string** — Specifies the HTTP URL of the CMPv2 server up to 180 characters in length.
- **service-id** service-id — Specifies the service instance that used to reach CMPv2 server.
  
  **Values**
  - service-id: 1..2147483647
  - base-router: 0

---

**revocation-check**

**Syntax**  
revocation-check {crl | crl-optional}

**Context**  
config>system>security>pki>ca-profile

**Description**  
This command specifies the revocation method system used to check the revocation status of certificate issued by the CA, the default value is **crl**, which will use CRL. But if it is **crl-optional**, then it means when the user disables the ca-profile, then the system will try to load the configured CRL (specified by the **crl-file** command). But if the system fails to load it for following reasons, then the system will still bring ca-profile oper-up, but leave the CRL as non-exist.

- CRL file does not exist
- CRL is not properly encoded - maybe due to interrupted file transfer
- CRL does not match cert
- Wrong CRL version
- CRL expired

If the system needs to use the CRL of a specific ca-profile to check the revocation status of an end-entity cert, and the CRL is non-existent due to the above reasons, then the system will treat it as being unable to get an answer from CRL and fall back to the next status-verify method or default-result.

If the system needs to check the revocation of a CA cert in cert chain, and if the CRL is non-existent due to the above reasons, then the system will skip checking the revocation status of the CA cert. For example, if CA1 is issued by CA2, if CA2’s revocation-check is **crl-optional** and the CA2’s CRL is non-existent, then the system will not check CA1 cert’s revocation status and consider it as “good”.

Note that users must shutdown the ca-profile to change the revocation-check configuration.

**Default** revocation-check crl
Parameters

- **crl** — Specifies to use the configured CRL.
- **crl-optional** — Specifies that the CRL is optional.

### http-response-timeout

**Syntax**

```
http-response-timeout timeout
no http-response-timeout
```

**Context**

```
config>system>security>pki>ca-profile>cmp2
```

**Description**

This command specifies the timeout value for HTTP response that is used by CMPv2. The `no` form of the command reverts to the default.

**Default**

30 seconds

**Parameters**

- **timeout** — Specifies the HTTP response timeout in seconds.
  
  **Values**
  
  1 — 3600

### http-version

**Syntax**

```
http-version [1.0|1.1]
```

**Context**

```
config>system>security>pki>ca-profile>cmp2
```

**Description**

This command configures the the HTTP version for CMPv2 messages.

**Default**

1.1

### response-signing-cert

**Syntax**

```
response-signing-cert filename
no response-signing-cert
```

**Context**

```
config>system>security>pki>ca-profile>cmp2
```

**Description**

This command specifies a imported certificate that is used to verify the CMP response message if they are protected by signature. If this command is not configured, then CA’s certificate will be used.

**Default**

none

**Parameters**

- **filename** — Specifies the filename of the imported certificate.

### same-recipnonce-for-pollreq

**Syntax**

```
[no] same-recipnonce-for-pollreq
```

**Context**

```
config>system>security>pki>ca-profile>cmp2
```
IPSec RADIUS Commands

Description
This command enables the system to use same recipNonce as the last CMPv2 response for poll request.

Default
none

cert-request

Syntax
cert-request ca ca-profile-name current-key key-filename current-cert cert-filename [hash-alg hash-algorithm] newkey key-filename subject-dn subject-dn save-as save-path-of-result-cert

Context
admin>certificate>cmpv2

Description
This command requests an additional certificate after the system has obtained the initial certificate from the CA.

The request is authenticated by a signature signed by the current-key, along with the current-cert. The hash algorithm used for signature is depends on the key type:

- DSA key: SHA1
- RSA key: MD5/SHA1/SHA224|SHA256|SHA384|SHA512, by default is SHA1

In some cases, the CA may not return a certificate immediately, due to reasons such as request processing need manual intervention. In such cases, the admin certificate cmpv2 poll command can be used to poll the status of the request.

Default
none

Parameters
ca ca-profile-name — Specifies a ca-profile name which includes CMP server information up to 32 characters max.

current-key key-filename — Specifies corresponding certificate issued by the CA up to 95 characters in max.

current-cert cert-filename — Specifies the file name of an imported certificate that is attached to the certificate request up to 95 characters in max.

newkey key-filename — Specifies the file name of the imported key up to 95 characters in max..

hash-alg hash-algorithm — Specifies the hash algorithm for RSA key.

Values
md5,sha1,sha224,sha256,sha384,sha512

subject-dn dn — Specifies the subject of the requesting certificate up to 256 chars max.

Values
attr1=val1,attr2=val2 where: attrN={C|ST|O|OU|CN}

save-as save-path-of-result-cert — Specifies the save full path name of saving the result certificate up to 200 characters max.

clear-request

Syntax
clear-request ca ca-profile-name

Context
admin>certificate>cmpv2
**Description**  
This command clears current pending CMPv2 requests toward the specified CA. If there are no pending requests, it will clear the saved result of prior request.

**Default**  
none

**Parameters**  
**ca ca-profile-name** — Specifies a ca-profile name up to 32 characters max.
initial-registration

**Syntax**

```
initial-registration ca ca-profile-name key-to-certify protection-alg
{password password reference ref-number | signature [cert cert-file-name [send-chain
[with-ca ca-profile-name]]] [protection-key key-file-name] [hash-alg (md5 | sha1 | sha224
| sha256 | sha384 | sha512)]] subject-dn dn save-as save-path-of-result-cert
```

**Context**

```
admin>certificate>cmpv2
```

**Description**

This command request initial certificate from CA by using CMPv2 initial registration procedure.

The `ca` parameter specifies a CA-profile which includes CMP server information.

The `key-to-certify` is an imported key file to be certified by the CA.

The protection-key is an imported key file used to for message protection if protection-alg is signature.

The request is authenticated either of following methods:

- A password and a reference number that pre-distributed by CA via out-of-band means.
  
  The specified password and reference number are not necessarily in the cmp-keylist configured in the corresponding CA-Profile

- A signature signed by the protection-key or key-to-certify, optionally along with the corresponding certificate. If the protection-key is not specified, system will use the key-to-certify for message protection. The hash algorithm used for signature is depends on key type:
  
  DSA key: SHA1
  
  RSA key: MD5/SHA1/SHA224|SHA256|SHA384|SHA512, by default is SHA1

Optionally, the system could also send a certificate or a chain of certificates in extraCerts field. Certificate is specified by the “cert” parameter, it must include the public key of the key used for message protection.

Sending a chain is enabled by specify the `send-chain` parameter.

The `subject-dn` specifies the subject of the requesting certificate.

The `save-as` specifies full path name of saving the result certificate.

In some cases, CA may not return certificate immediately, due to reason like request processing need manual intervention. In such cases, the `admin certificate cmpv2 poll` command could be used to poll the status of the request. If key-list is not configured in the corresponding `ca-profile`, then the system will use the existing password to authenticate the CMPv2 packets from server if it is in password protection.

If key-list is configured in the corresponding `ca-profile` and server doesn't send SenderKID, then the system will use lexicographical first key in the key-list to authenticate the CMPv2 packets from server in case it is in password protection.

**Default**

none

**Parameters**

- `ca ca-profile-name` — Specifies a ca-profile name which includes CMP server information up to 32 characters max.

- `key-to-certify key-filename` — Specifies the file name of the key to certify up to 95 characters max.
password password — Specifies an ASCII string up to 64 characters in length.

reference ref-number — Specifies the reference number for this CA initial authentication key up to 64 characters max.

cert cert-file-name — specifies the certificate file up to 95 characters max.

send-chain with-ca ca-profile-name — Specifies to send the chain.

protection-key key-file-name — Specifies the protection key associated with the action on the CA profile.

hash-alg hash-algorithm — Specifies the hash algorithm for RSA key.

Values md5,sha1,sha224,sha256,sha384,sha512

subject-dn dn — Specifies the subject of the requesting certificate up to 256 chars max.

Values attr1=val1,attr2=val2 where: attrN={C|ST|O|OU|CN}

save-as save-path-of-result-cert — Specifies the save full path name of saving the result certificate up to 200 characters max.

key-update

Syntax key-update ca ca-profile-name newkey key-file-name oldkey key-file-name oldcert cert-file-name [hash-alg hash-algorithm] save-as save-path-of-result-cert

Context admin>certificate>cmpv2

Description This command requests a new certificate from the CA to update an existing certificate due to reasons such as key refresh or replacing compromised key.

In some cases, the CA may not return certificate immediately, due to reasons such as request processing need manual intervention. In such cases, the admin certificate cmpv2 poll command can be used to poll the status of the request.

Parameters ca ca-profile-name — Specifies a ca-profile name which includes CMP server information up to 32 characters max.

newkey key-file-name — Specifies the key file of the requesting certificate up to 95 characters max.

oldkey key-file-name — Specifies the key to be replaced up to 95 characters max.

oldcert cert-file-name — Specifies the file name of an imported certificate to be replaced up to 95 characters max

hash-alg hash-algorithm — Specifies the hash algorithm for RSA key.

Values md5,sha1,sha224,sha256,sha384,sha512

save-as save-path-of-result-cert — Specifies the save full path name of saving the result certificate up to 200 characters max.

poll
Poll command

Syntax: `poll ca ca-profile-name`

Context: `admin>certificate>cmpv2`

Description: This command polls the status of the pending CMPv2 request toward the specified CA.

If the response is ready, this command will resume the CMPv2 protocol exchange with server as the original command would do. The requests could be also still be pending as a result, then this command could be used again to poll the status.

SR OS allows only one pending CMP request per CA, which means no new request is allowed when a pending request is present.

Default: none

Parameters: `ca ca-profile-name` — Specifies a ca-profile name up to 32 characters max.

Show-request

Syntax: `show-request [ca ca-profile-name]

Context: `admin>certificate>cmpv2`

Description: This command displays current the CMPv2 pending request toward the specified CA. If there is no pending request, the last pending request is displayed including the status (success/fail/rejected) and the receive time of last CMPv2 message from server.

The following information is included in the output:

- Request type, original input parameter (password is not displayed), checkAfter and reason in of last PollRepContent, time of original command input.

Default: none

Parameters: `ca ca-profile-name` — Specifies a ca-profile name up to 32 characters max. If not specified, the system will display pending requests of all ca-profiles.
Show Commands

cert-profile

Syntax

- `cert-profile name association`
- `cert-profile [name]`
- `cert-profile name entry [1..8]`

Description

This command displays IPsec certificate profile information.

- `name` — Specifies an existing cert-profile name.
- `association` — Displays information for which this IPsec certificate profile is associated.
- `entry [1..8]` — Displays information for the specified entry.

Sample Output

```
*A:Dut-A# show ipsec cert-profile cert "cert-1.der"
Certificate Profile Entry
Id Cert Key Status Flags
--------------- -------------- ---------------
1 cert-1.der key-1.der

*A:Dut-A# show ipsec cert-profile "cert-1.der" entry 1
IPsec Certificate Profile: cert-1.der Entry: 1 Detail
Cert File : cert-1.der
Key File : key-1.der
Status Flags : (Not Specified)
Comp Chain : complete

Compute Chain CA Profiles

CA10
CA9
CA8
CA7
CA6

*A:Dut-A# exit
```
show certificate

certificate 
filename association

show>ipsec

description This command displays certificate-related information.

parameters
filename — Specifies the certificate file name.

association — Displays information for which this IPSec certificate is associated.

Sample Output

*A:Dut-B# show certificate ca-profile

Max Cert Chain Depth: 7 (default)

Certificate Display Format: 1 ASCII

CA Profile

<table>
<thead>
<tr>
<th>CA Profile</th>
<th>Admin</th>
<th>Oper</th>
<th>Cert File</th>
<th>CRL File</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA0</td>
<td>up</td>
<td>up</td>
<td>CA1-00cert.der</td>
<td>CA1-00crl.der</td>
</tr>
<tr>
<td>CA1</td>
<td>up</td>
<td>up</td>
<td>CA1-01cert.der</td>
<td>CA1-01crl.der</td>
</tr>
<tr>
<td>CA2</td>
<td>up</td>
<td>up</td>
<td>CA1-02cert.der</td>
<td>CA1-02crl.der</td>
</tr>
<tr>
<td>CA3</td>
<td>up</td>
<td>up</td>
<td>CA1-03cert.der</td>
<td>CA1-03crl.der</td>
</tr>
<tr>
<td>CA4</td>
<td>up</td>
<td>up</td>
<td>CA1-04cert.der</td>
<td>CA1-04crl.der</td>
</tr>
<tr>
<td>CA5</td>
<td>up</td>
<td>up</td>
<td>rsa_sha512_1024_0cert.d*</td>
<td>rsa_sha512_1024_0crl.der</td>
</tr>
<tr>
<td>CA6</td>
<td>up</td>
<td>up</td>
<td>rsa_sha512_1024_1cert.d*</td>
<td>rsa_sha512_1024_1crl.der</td>
</tr>
<tr>
<td>CA7</td>
<td>up</td>
<td>up</td>
<td>rsa_sha512_1024_2cert.d*</td>
<td>rsa_sha512_1024_2crl.der</td>
</tr>
<tr>
<td>CA8</td>
<td>up</td>
<td>up</td>
<td>rsa_sha512_1024_3cert.d*</td>
<td>rsa_sha512_1024_3crl.der</td>
</tr>
<tr>
<td>CA9</td>
<td>up</td>
<td>up</td>
<td>rsa_sha512_1024_4cert.d*</td>
<td>rsa_sha512_1024_4crl.der</td>
</tr>
<tr>
<td>CA10</td>
<td>up</td>
<td>up</td>
<td>rsa_sha512_1024_5cert.d*</td>
<td>rsa_sha512_1024_5crl.der</td>
</tr>
<tr>
<td>CA11</td>
<td>up</td>
<td>up</td>
<td>rsa_sha384_1024_0cert.d*</td>
<td>rsa_sha384_1024_0crl.der</td>
</tr>
<tr>
<td>CA12</td>
<td>up</td>
<td>up</td>
<td>rsa_sha384_1024_1cert.d*</td>
<td>rsa_sha384_1024_1crl.der</td>
</tr>
<tr>
<td>CA13</td>
<td>up</td>
<td>up</td>
<td>rsa_sha384_1024_2cert.d*</td>
<td>rsa_sha384_1024_2crl.der</td>
</tr>
<tr>
<td>CA14</td>
<td>up</td>
<td>up</td>
<td>rsa_sha384_1024_3cert.d*</td>
<td>rsa_sha384_1024_3crl.der</td>
</tr>
<tr>
<td>CA15</td>
<td>up</td>
<td>up</td>
<td>rsa_sha384_1024_4cert.d*</td>
<td>rsa_sha384_1024_4crl.der</td>
</tr>
<tr>
<td>CA16</td>
<td>up</td>
<td>up</td>
<td>rsa_sha384_1024_5cert.d*</td>
<td>rsa_sha384_1024_5crl.der</td>
</tr>
<tr>
<td>CMPv2</td>
<td>up</td>
<td>up</td>
<td>rsaCMPv2cert.der</td>
<td>rsaCMPv2CRL.der</td>
</tr>
</tbody>
</table>

Entries found: 18

* indicates that the corresponding row element may have been truncated.

*A:Dut-B# show ipsec certificate cert-1.der association

Associated Tunnels

<table>
<thead>
<tr>
<th>Tunnel</th>
<th>SvcId</th>
<th>Sap</th>
<th>Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>tun-1-s-cert-v2</td>
<td>3</td>
<td>tunnel-1.private:3</td>
<td>Up</td>
</tr>
<tr>
<td>tun-1-s-cert-MTA-v2</td>
<td>8</td>
<td>tunnel-1.private:7</td>
<td>Up</td>
</tr>
<tr>
<td>tun-1-s-cert-i_op-ss-v2</td>
<td>42</td>
<td>tunnel-1.private:10</td>
<td>Up</td>
</tr>
</tbody>
</table>
Note that in the following example, the "cert-1.der" is the certificate-profile name, where as above the cert-1.der is the actual file in use.

*A:Dut-B# show ipsec cert-profile association "cert-1.der"

IPsec tunnels using certificate profile

<table>
<thead>
<tr>
<th>SvcId</th>
<th>Type</th>
<th>SAP</th>
<th>Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>vprn</td>
<td>tunnel-1.private:3</td>
<td>tun-1-s-cert-v2</td>
</tr>
<tr>
<td>8</td>
<td>vprn</td>
<td>tunnel-1.private:7</td>
<td>tun-1-s-cert-MTA-v2</td>
</tr>
<tr>
<td>42</td>
<td>vprn</td>
<td>tunnel-1.private:10</td>
<td>tun-1-s-cert-i_op-ss-v2</td>
</tr>
<tr>
<td>48</td>
<td>vprn</td>
<td>tunnel-1.private:11</td>
<td>tun-1-s-cert-MTA-i_op-ss-v2</td>
</tr>
</tbody>
</table>

Number of tunnel entries: 4

IPsec gateways using certificate profile

<table>
<thead>
<tr>
<th>SvcId</th>
<th>Type</th>
<th>SAP</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1057</td>
<td>vprn</td>
<td>tunnel-1.public:18</td>
<td>d-cert-MTA-g1-1-v2</td>
</tr>
<tr>
<td>1092</td>
<td>vprn</td>
<td>tunnel-1.public:21</td>
<td>d-cert-i_op-ss-g1-1-v2</td>
</tr>
</tbody>
</table>

Number of gateway entries: 2

*A:Dut-B#

gateway

**Syntax**

```
gateway name name
gateway [service service-id]
gateway tunnel [ip-address:port]
```

gateway name name tunnel ip-address:port
gateway name name tunnel

gateway tunnel count

**Context**

```
show>ipsec
```

**Description**

This command displays IPSec gateway information.

**Parameters**

`name name` — Specifies an IPSec gateway name.

`service service-id` — Specifies the service ID of the default security service used by the IPSec gateway.

**Values**

- 1 — 214748364
- svc-name: 64 char max
tunnel ip-address:port — Specifies to display the IP address and UDP port of the SAP IPSec gateway to the tunnel.

Values port: 0—65535

count — Specifies to display the number of IPSec gateway tunnels with the ike-policy/auth-method command set to psk.

tunnel

Syntax tunnel [gre-tunnel-name]

Context show>gre

Description This command displays information about a particular GRE tunnel or all GRE tunnels.

Parameters gre-tunnel-name — Specifies the name of a GRE tunnel.

The following table lists the information displayed for each GRE tunnel.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TunnelName (Tunnel Name)</td>
<td>The name of the GRE tunnel.</td>
</tr>
<tr>
<td>SvcID (Service ID)</td>
<td>The service ID of the IES or VPRN service that owns the GRE tunnel.</td>
</tr>
<tr>
<td>SapId (Sap ID)</td>
<td>The ID of the private tunnel SAP that owns the GRE tunnel.</td>
</tr>
<tr>
<td>Description</td>
<td>The description for the GRE tunnel.</td>
</tr>
<tr>
<td>LocalAddress (Source Address)</td>
<td>The source address of the GRE tunnel (public/outer IP)</td>
</tr>
<tr>
<td>RemoteAddress (Remote Address)</td>
<td>The destination address of the GRE tunnel (public/outer IP)</td>
</tr>
<tr>
<td>Bkup RemAddr (Backup Address)</td>
<td>The backup destination address of the GRE tunnel (public/outer IP)</td>
</tr>
<tr>
<td>To (Target Address)</td>
<td>The remote address of the GRE tunnel (private/inner IP). This is the peer’s IP address to the GRE tunnel. This comes from the tunnel configuration.</td>
</tr>
<tr>
<td>DlvrySvcId (Delivery Service)</td>
<td>The service ID of the IES or VPRN service that handles the GRE encapsulated packets belonging to the tunnel.</td>
</tr>
<tr>
<td>DSCP</td>
<td>The forced DSCP codepoint in the outer IP header of GRE encapsulated packets belonging to the tunnel.</td>
</tr>
<tr>
<td>Admn (Admin State)</td>
<td>Admin state of the tunnel (up/down).</td>
</tr>
<tr>
<td>Oper (Operational State)</td>
<td>Operational state of the tunnel (up/down).</td>
</tr>
</tbody>
</table>
Sample Output

dut-A# show gre tunnel
===============================================================================
GRE Tunnels
TunnelName       LocalAddress     SvcId     Admn        To                               Bkup RemAddr     DlvrySvcId  DSCP        Oper  Rem Addr
-------------------------------------------------------------------------------
toce2             50.1.1.7         500       Up          30.1.1.3         20.1.1.2
                   tunnel-1.private:1 30.1.1.3     500       Up          30.1.1.3
                  20.1.1.2                         None        30.1.1.3
                   toce2_backup                   502       Up          30.1.1.3
                   tunnel-1.private:3 30.1.1.3     502       Up          30.1.1.3
                  20.1.2.2                         30.1.1.3
-------------------------------------------------------------------------------
GRE Tunnels: 2
===============================================================================
A:Dut-A# show gre tunnel "toce2"

GRE Tunnel Configuration Detail

Label                                      Description (Continued)
Oper Rem Addr (Oper Remote Addr)            The destination address of the GRE tunnel (public/outer IP) that is currently being used.
Pkts Rx                                     Number of GRE packets received belonging to the tunnel.
Pkts Tx                                     Number of GRE packets transmitted belonging to the tunnel.
Bytes Rx                                    Number of bytes in received GRE packets associated with the tunnel.
Bytes Tx                                    Number of bytes in transmitted GRE packets associated with the tunnel.
Key Ignored Rx                              Incremented every time a GRE packet is received with a GRE key field.
Too Big Tx                                  Incremented every time an IP packet with DF=1 is to be forwarded into the GRE tunnel and its size exceeds the interface IP MTU.
Seq Ignored Rx                              Incremented every time a GRE packet is received with a sequence number.
Vers Unsup. Rx                              Incremented every time a GRE packet is dropped because the GRE version is unsupported.
Invalid Chksum Rx                           Incremented every time a GRE packet is dropped because the checksum is invalid.
Loops Rx                                    Incremented every time a GRE packet is dropped because the destination IP address of the un-encapsulated packet would cause it be re-encapsulated into the same tunnel.
Show Commands

Service Id      : 500      Sap Id           : tunnel-1.private:1
Tunnel Name     : toce2    Delivery Service : 500
Description     : None     Oper State       : Up
Target Address  : 20.1.1.2  Oper Remote Addr : 30.1.1.3
Admin State     : Up       Remote Address   : 30.1.1.3
Source Address  : 50.1.1.7  Backup Address   : 30.1.2.7
Remote Address  : 30.1.1.3  DSCP             : None
DSCP            : None      Oper Flags       : None
Oper State      : Up

GRE Tunnel Statistics: toce2

Errors Rx       : 0        Errors Tx      : 0
Pkts Rx         : 165342804  Pkts Tx        : 605753463
Bytes Rx        : 84986201256  Bytes Tx       : 296819196870
Key Ignored Rx  : 0
Seq Ignored Rx  : 0
Vers Unsup. Rx  : 0
Invalid Chksum Rx: 0
Loops Rx        : 0

A:Dut-A# show gre tunnel count
GRE Tunnels: 2

ike-policy

Syntax  
ike-policy  
ike-policy-id
ike-policy

ike-policy-id — Specifies the ID of an IKE policy entry.

Values   1 — 2048

Context   show>ipsec

Description   This command displays

Sample Output

*A:ALA-48# show ipsec ike-policy 10
Policy Id      : 10  IKE Mode      : main
DH Group       : Group2  Auth Method   : psk
PFS            : False   PFS DH Group : Group2
Auth Algorithm : Sha1     Encr Algorithm: Aes128
ISAKMP Lifetime: 86400   IPsec Lifetime: 3600
NAT Traversal  : Disabled
NAT-T Keep Alive: 0      Behind NAT Only : True
DFD            : Disabled
radius-accounting-policy

Syntax     radius-accounting-policy [name]

Context    show>ipsec

Description This command displays IPSec RADIUS accounting policy information.

Parameters name — Specifies an existing RADIUS accounting policy.

radius-authentication-policy

Syntax     radius-authentication-policy [name]

Context    show>ipsec

Description This command displays IPSec RADIUS authentication policy information.

Parameters name — Specifies an existing RADIUS authentication policy.

security-policy

Syntax     security-policy service-id [security-policy-id]

Context    show>ipsec

Description This command displays

Parameters service-id — Specifies the service-id of the tunnel delivery service.

Values 1 — 214748364
        svc-name: 64 char max

security-policy-id — Specifies the IPSec security policy entry that this tunnel will use.

Values 1 — 8192

Sample Output

*A:ALA-48>show>ipsec# security-policy 1

<table>
<thead>
<tr>
<th>SvcId</th>
<th>Security Policy</th>
<th>LocalIp</th>
<th>RemoteIp</th>
<th>PlcyId</th>
<th>ParamsId</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
static-sa

**Syntax**

```
static-sa
static-sa name sa-name
static-sa spi spi
```

**Context**

`show>ipsec`

**Description**

This command displays IPSec static-SA information.

**Parameters**

- `sa-name` — Specifies the SA name.
  
  **Values**
  
  32 chars max
  
- `spi` — Specifies the spi.
  
  **Values**
  
  256..16383

---

transform

**Syntax**

```
transform [transform-id]
```

**Context**

`show>ipsec`

**Description**

This command displays IPSec transforms.

**Parameters**

- `transform-id` — Specifies an IPSec transform entry.
  
  **Values**
  
  1 — 2048

---

Sample Output

```
*A:ALA-48>config>ipsec# show ipsec transform 1

IPsec Transforms

TransformId EspAuthAlgorithm EspEncryptionAlgorithm

1 Sha1 Aes128

No. of IPsec Transforms: 1

*A:ALA-48>config>ipsec#
```
### trust-anchor-profile

**Syntax**

```
trust-anchor-profile [trust-anchor-profile] association
trust-anchor-profile [trust-anchor-profile]
```

**Context**

`show>ipsec`

**Description**

This command displays trust anchor profile information.

**Parameters**

- `trust-anchor-profile` — Specifies the trust anchor profile name up to 32 characters in length.
- `association` — Displays information for which this trust anchor profile is associated.

**Sample Output**

```
*A:Dut-A# show ipsec trust-anchor-profile
==
Trust Anchor Profile Information
==
Name CA Profiles Down

CA0wCMPv2 0
CA1wCMPv2 0
CA2wCMPv2 0
CA3wCMPv2 0
CA4wCMPv2 0
CA5wCMPv2 0
CA6wCMPv2 0
CA7wCMPv2 0
CA8wCMPv2 0
CA9wCMPv2 0
CA10wCMPv2 0
==
*A:Dut-A#
```

```
*A:Dut-A# show ipsec trust-anchor-profile
==
Trust Anchor CA-profile List
==
CA Profile Admin/Oper State

CA6 up/up
CMPv2 up/up
==
*A:Dut-A#
```

### ts-list

**Syntax**

```
ts-list [list-name]
ts-list list-name association
ts-list list-name entry [1..32]
```

**Context**

`show>ipsec`

**Description**

This command displays IPSec traffic-selector list information.
Show Commands

**Parameters**

- **list-name** — Specifies the traffic-selector list name.
- **association** — Displays information for which this traffic-selector list is associated.
- **entry [1..32]** — Displays information for the specified entry.

**Sample Output**

```plaintext
show ipsec ts-list "ts1"
```

<table>
<thead>
<tr>
<th>Entry Id</th>
<th>IP Address Range or Prefix/Prefix-Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.1.0/24</td>
</tr>
<tr>
<td>2</td>
<td>192.168.2.0/24</td>
</tr>
</tbody>
</table>

```plaintext
show ipsec ts-list "ts1" association
```

<table>
<thead>
<tr>
<th>SvcId</th>
<th>Type</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>ies</td>
<td>tunnel-1.public:100</td>
</tr>
</tbody>
</table>

Number of entries: 1

**tunnel**

**Syntax**

`tunnel ipsec-tunnel-name`

**Context**

`show>ipsec`

**Description**

This command displays

**Parameters**

- **ipsec-tunnel-name** — Specifies the name of the tunnel up to 32 characters in length.

**tunnel-template**

**Syntax**

`tunnel-template [ipsec template identifier]`

**Context**

`show>ipsec`

**Description**

This command displays

**Parameters**

- **ipsec template identifier** — Displays an existing IPSec tunnel template ID.

  **Values**
  
  1 — 2048
Sample Output

*A:ALA-48>config>ipsec# show ipsec tunnel-template 1
===============================================================================
<table>
<thead>
<tr>
<th>IPSec Tunnel Template</th>
<th>Id</th>
<th>Trnsfrm1</th>
<th>Trnsfrm2</th>
<th>Trnsfrm3</th>
<th>Trnsfrm4</th>
<th>ReverseRoute</th>
<th>ReplayWnd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>useSecurityPolicy</td>
<td>128</td>
</tr>
<tr>
<td>Number of templates:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*A:ALA-48>config>ipsec#

mc-ipsec

Syntax

**mc-ipsec peer ip-address tunnel-group tunnel-group-id**

**mc-ipsec peer ip-address**

Context

show>redundancy>multi-chassis

Description

This command displays the IPSec multi-chassis states. Optionally, only state of specified tunnel-group will be displayed.

Parameters

**ip-address** — Specifies the peer address.

**tunnel-group-id** — Specifies the tunnel-group.

Output

**Show MC-IPSec Peer Command Output** — The following table describes show redundancy multi-chassis mc-ipsec output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>Displays the admin state of mc-ipsec.</td>
</tr>
<tr>
<td>Mastership/Master State</td>
<td>Displays the current MIMP state.</td>
</tr>
<tr>
<td>Protection Status</td>
<td>Displays <strong>nominal</strong> or <strong>notReady</strong>. <strong>notReady</strong> means the system is not ready for a switchover. There could be major traffic impact if switchover happens in case of notReady. <strong>nominal</strong> means the tunnel-group is in a better situation to switchover than notReady. However there still might be traffic impact.</td>
</tr>
<tr>
<td>Installed</td>
<td>Displays the number of tunnels that has been successfully installed on MS-ISA</td>
</tr>
<tr>
<td>Installing</td>
<td>Displays the number of tunnels that are being installed on MS-ISA.</td>
</tr>
<tr>
<td>Awaiting Config</td>
<td>Displays the number of synced tunnels that do not have corresponding configuration ready</td>
</tr>
<tr>
<td>Failed</td>
<td>Displays the number of tunnels that have been failed to installed on MS-ISA.</td>
</tr>
</tbody>
</table>
Sample Output

show redundancy multi-chassis mc-ipsec peer 2.2.2.2

Multi-Chassis MC-IPsec

Peer Name: (Not Specified)
Peer Addr: 2.2.2.2
Keep Alive Intvl: 1.0 secs  Hold on Nbr Fail: 3
Discovery Intvl: 300 secs  Discovery Boot Intvl: 300 secs
BFD: Disable
Last update: 09/27/2012 00:44:23

Multi-Chassis MC-IPsec Multi Active Tunnel-Group Table

<table>
<thead>
<tr>
<th>ID</th>
<th>Peer Group</th>
<th>Priority</th>
<th>Admin State</th>
<th>Mastership</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>100</td>
<td>Up</td>
<td>standby</td>
</tr>
</tbody>
</table>

Multi Active Tunnel Group Entries found: 1

show redundancy multi-chassis mc-ipsec peer 2.2.2.2 tunnel-group 1

Multi-Chassis MC-IPsec Multi Active Tunnel-Group: 1

Peer Ex Tnl Grp: 2  Priority: 100
Master State: standby  Protection Status: nominal
Admin State: Up  Oper State: Up

Multi-Chassis Tunnel Statistics

<table>
<thead>
<tr>
<th></th>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Installing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Awaiting Config</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Failed</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Debug Commands

gateway

Syntax   gateway name name tunnel ip-address[:port] [nat-ip nat-ip[:port]] [detail] [no-dpd-debug]
no gateway name name tunnel ip-address[:port]

Context   debug>ipsec

Description   This command enables debugging for specified IPSec tunnel terminated on specified ipsec-gw.
   Note that only one IPSec tunnel is allowed to enable debugging at a time.

Parameters   name name — Specifies the name of ipsec-gw.
   tunnel ip-address — The tunnel IP address of remote peer.
   port — The remote UDP port of IKE.
   nat-ip port — specifies inside IP address and optionally port for NATed tunnel.
   detail — Displays detailed debug information.
   no-dpd-debug — Stops logging IKEv1 and IKEv2 DPD events for less noise during debug.

tunnel

Syntax   tunnel ipsec-tunnel-name [detail] [no-dpd-debug]
no tunnel ipsec-tunnel-name

Context   debug>ipsec

Description   This command enables debugging for specified IPSec tunnel.
   Note that only one IPSec tunnel is allowed to enable debugging at a time.

Parameters   ipsec-tunnel-name — Specifies the name of ipsec-tunnel.
   detail — Displays detailed debug information.
   no-dpd-debug — Stops logging IKEv1 and IKEv2 DPD events for less noise during debug.

certificate

Syntax   certificate filename

Context   debug>ipsec

Description   This command enables debug for certificate chain computation in cert-profile.

Parameters   filename — Displays the filename of imported certificate.
Debug Commands

cmpv2

Syntax       cmpv2
Context      debug
Description  This command enables the context to perform CMPv2 operations.

ca-profile

Syntax       [no] ca-profile profile-name
Context      debug>cmpv2
Description  This command debugs output of the specified CA profile.
              • Protection method of each message is logged.
              • All HTTP messages are logged. Format allows offline analysis using Wireshark.
              • In the event of failed transactions, saved certificates are not deleted from file system for further
debug and analysis.
              • The system allows CMPv2 debugging for multiple ca-profile at the same time.

ocsp

Syntax       [no] ocsp ca-profile-name
Context      debug
Default      no ocsp
Parameters   ca-profile-name — Specifies the name of an existing ca-profile.
Tools Commands

mc-ipsec

Syntax  mc-ipsec
Context  tools>perform>redundancy>multi-chassis>
Description  This command enables the mc-ipsec context.

force-switchover

Syntax  force-switchover tunnel-group local-group-id [now] [to {master|standby}]
Context  tools>perform>redundancy>multi-chassis>mc-ipsec
Description  This command manually switchover mc-ipsec mastership of specified tunnel-group.
Parameters  

  local-group-id — Specifies the local tunnel-group id configured in the config>redundancy>multi-
  chassis>peer>mc-ipsec context.

  now — This optional parameter removes the prompt of confirmation.

  to {master|standby} — specifies the desired mastership state to be achieved following a forced
  switch between this tunnel group and its redundant peer. If the target state matches the current
  state when the switch is attempted, then no switch will occur.
In This Section

This section describes how to configure the hardware for video services and some basic video services configuration concepts in support of the IPTV video applications.

Topics include:

- Video Services on page 528
  - Video Groups on page 528
  - Video SAP on page 529
  - Video Interface on page 529
  - Multicast Information Policies on page 530
  - Duplicate Stream Protection on page 532
  - Duplicate Stream Selection on page 533
  - Video Quality Monitoring on page 537
- Retransmission and Fast Channel Change on page 545
  - RET and FCC Overview on page 545
  - Multi-Service ISA Support in the IOM-3 for Video Services on page 556
- Ad Insertion on page 560
  - Local/Zoned Ad Insertion on page 560
Video Services

Video Groups

When configured in the router, ISA-MS are logically grouped into video groups for video services. A video group allows more than one video ISA to be treated as a single logical entity for a given application where the system performs a load balancing function when assigning tasks to a member of the group. All video group members are “active” members, so there is no concept of a “standby” ISA as in other ISA groups in the 7750 SR and 7450 ESS.

Video groups provide a redundancy mechanism to guard against hardware failure within a group where the system will automatically rebalance tasks to the group excluding the failed ISA. Video groups also pool the processing capacity of all the group members and will increase the application throughput because of the increased packet processing capability of the group. The buffer usage is typically identical for all members of the video group, so increasing the number of members in a group will not increase the scaling numbers for parameters bounded by available buffering, but there will still be the increase in performance gained from the pooled packet processor capacity. A video service must be enabled at the video group level before that service can be used.

A maximum of four ISA-MSs can be supported in a single video group. Note that a given video application may restrict the number of members supported in a video group to a smaller number. Refer to specific sections in this guide for video application additional information.

A maximum of four video groups are supported in a router. There is a chassis limit of eight ISA-MSs per router which constrains the number and members of video groups.

Note: ISA-MS in a single video group cannot be on the same IOM. An IOM can accommodate two ISA-MS modules provided that the ISA-MS are members of different video groups.
Video SAP

The video group logically interfaces to a service instance with a video Service Access Point (SAP). Like a SAP for connectivity services, the video SAP allows the assignment of an ingress and egress filter policy and QoS policy.

Note: Ingress and egress directions for the filter and QoS policy are named based on the perspective of the router which is the opposite perspective of the ISA. An “egress” policy is one that applies to traffic egressing the router and ingressing the ISA. An “ingress” policy is one that applies to traffic ingressing the router and egressing the video. Although potentially confusing, the labeling of ingress and egress for the ISA policies was chosen so that existing policies for connectivity services can be reused on the ISA unchanged.

If no filter or QoS policy is configured, the default policies are used.

One of the key attributes of a video SAP is a video group association. The video SAP’s video group assignment is what determines which video group will service on that video SAP. The video groups configuration determines what video services are available.

Video Interface

A video interface is a logical IP interface associated with a video SAP and provide the IP addressing for a video SAP.

A video interface can have up to 16 IP addresses assigned in a Layer 3 service instance. A video interface can have only one IP address assigned in a Layer 2 service instance.
Multicast Information Policies

Multicast information policies on the 7750 SR and 7450 ESS serve multiple purposes. In the context of a service with video services, the multicast information policy assigned to the service provides configuration information for the multicast channels and defines video policy elements for a video interface.

Note: This section describes the base elements of a multicast information policy in support of a video service. Specific video service features will require additional configuration in the multicast information policy which are described in the sections dedicated to the video feature.

Multicast information policies are named hierarchically structured policies composed of channel bundles which contain channels which contain source-overrides.

- Bundles are assigned a name and contain a collection of channels. Attributes not defined for a named bundle are inherited from the special default bundle named “default”.

```
*A:ALA-48configmcast-mgmtmcast-info-plcy# info
--
bundle "default" create
exit
--
*A:ALA-48configmcast-mgmtmcast-info-plcy#
```

- Channels are ranges of IP multicast address identified by a start IP multicast address (G_{start}) and optional end IP multicast address (G_{end}), so the channels encompasses (*,G_{start}) through (*,G_{end}). A channel attribute is inherited from its bundle unless the attribute is explicitly assigned in which case the channel attribute takes precedence.

- A source-override within a channel are IP multicast addresses within the channel with a specific source IP address (S_{override}), so the source-override encompass (S_{override},G_{start}) through (S_{override},G_{end}). A source-override attribute is inherited from its channel unless the attribute is explicitly assigned in the source-override channel in which case the source-override channel attribute takes precedence.

For a given IP multicast channel (*,G) or (S,G), the most specific policy element in the hierarchy that matches applies to that channel.

A multicast information policy is assigned to a service instance. For video services, the multicast information policy assigned to the service determines the video group for a given IP multicast channel. When a channel is assigned to a video group, the channel is sent to the video group for buffering and/or processing as appropriate depending on the video services enabled on the video group. If no video group is assigned to a given channel, the channel will still be distributed within the service instance, but no video services will be available for that channel.
In addition to bundles, channels and source-overrides, multicast information policies also include video policies. Video policies define attributes for the video interfaces within the service instance.

Note: Video policy attributes are specific to the video feature and will be covered in detail in the applicable video feature section. Video policies are mentioned here because they are an element of the multicast information policy and provide the link to configuration for a video interface.
Duplicate Stream Protection

While H-RET can protect against minor amounts of packet loss, it is limited in the number of packets that can be recovered (currently 32). This can be from approximately 125ms of a 3Mbps stream to only 18ms for a 20Mbps stream. These times are short for a network reconvergence event which will typically be in the order of 300-1200ms. Further, retransmission will cause incremental bandwidth spikes in the network as the lost packets are sent to the client as quickly as possible.

Rather than invoke a retransmission event to protect against network interruption or reconvergence, it is often more efficient to protect the stream via an alternate transmission path. This can be a separate physical interface, transmission link, system or even technology.

Duplicate-stream protection allows an operator to split a single multicast stream (single S,G and common SSRC) into two different transmission paths that may have different transmission characteristics (latency/jitter). Rather than select one stream for retransmission to the client the Duplicate Stream protection feature evaluates each stream packet-by-packet, selecting the packet that first arrives (and is valid) for retransmission.

A circular buffer is used for duplicate-stream protection which incorporates both packet-by-packet selection (based on RTP sequence number/timestamp and SSRC) and a re-ordering function whereby any out-of-sequence packets will be placed into the buffer in order, thus creating a corrected, in-order stream.

Similar to the H-RET re-sequence feature playout rate is a function in ingest rate, however because the two streams may be delayed between one-another a few assumptions are made:

- The first arriving packet is always put into the buffer, allowing for the backup medium to wander in terms of latency and jitter.
- Because the source is the same, the rate at which a packet is put into the buffer (from either stream) can be assumed to be the normal bitrate.

The output RTP stream is always maintained in-sequence and the playout speed is user-controlled. Either with constant-delay (i.e., packet ingress time + 500ms = packet egress time) or can be a moving window average to smooth jitter that may occur between packets or the two contributing streams. The operator can specify the size of this window where zero (0) is a constant-delay.

The buffer size is similarly configurable and is the higher of the inter-stream phase (i.e., one stream ahead of another) or the expected jitter.
Duplicate Stream Selection

Stream Identification

Stream selection is a simple selection algorithm that is applicable to any number of input streams. It is a prerequisite for stream selection that RTPv2 encapsulation be used in UDP.

Each service is identified by multicast source, group/destination address and current synchronization source (SSRC). Once this has been identified, the ISA monitors its ingress for:

- Traffic with a DA of the multicast group, or;
- Traffic with a DA of the ISA (unicast)

Traffic is further checked as having RTP-in-UDP payload, RTP version 2.

The SSRC of each incoming RTP packet is learned as unique sources. Only one SSRC is supported for each stream, however as SSRC may change during abnormal situations (such as encoder failover), it can be updated.

A SSRC can only be updated when a Loss of Transport (LoT) occurs, as other duplicate streams (with the original SSRC) may still be operational. When an LoT occurs the SSRC is deleted, the buffers are purged and the RTP sequence counters are reset. The SSRC will be extracted from the next valid RTP packet and the sequence will start over.

Note that individual streams are not tracked by the ISA. There may be one, two, or ten duplicate streams, the number is of no consequence to the selection algorithm (however bandwidth and/or video quality monitoring (VQM) may be impacted). Irrespective of the number of duplicate streams, one RTP packet is selected for insertion into the video ISA buffer. Once a packet is selected the RTP sequence counter is incremented and any further RTP packets received by the ISA with the previous sequence number are discarded.

In summary, duplicate stream selection is a FIFO algorithm for RTP packet selection, this is considered optimal because:

- All stream sources are identical, thus for any given sequence number the payload should also be identical.
- Most bit errors should be detected by the CRC-32 algorithm applied to Ethernet, SDH, ATM, etc. These devices will typically discard frames where bit errors occur with the net result being the video ISA will receive a bit error-free stream (though packet loss may/do occur).
- UDP checksum in verified by the video ISA (after input VQM) and any failures result in a silent discard of the packet.
Initial Sequence Identification

When a service is defined and is enabled (no shutdown), the video ISA will monitor for valid RTP packets and on first receipt of a valid RTP packet learn the following information:

- SSRC
- Sequence number
- Timestamp (as timestamp is profile-specific, MPEG2-TS are assumed)

The packet will be inserted into the video ISA playout buffer associated with that particular service and playout when directed (playout algorithm).

Packet Selection

For each valid RTP packet received for a given service will be inserted into the buffer if there is no existing RTP packet that matches the sequence number. Because sequence number and timestamp discontinuities may occur the video ISA makes a limited attempt at validating either as they are not required for MPEG. The video ISA code adopts a philosophy that for the most part sequence number and timestamp increment correctly, but should they prove to be non-contiguous, the packet selection algorithm adapts.

Duplicate packets are detected by sequence number (or timestamp unless M-bit reset it), so should a packet already exist in the buffer with the same sequence number as one received (or one recently played out) it will be discarded. For the purpose of determining recent playout if an incoming sequence number is within 6.25% (-4096) the packet is considered late and is discarded.

In a multi programme transport stream (MPTS) timestamp is set uniquely for every RTP packet, this is because any RTP packet may contain a number of multiplexed elementary streams. As a result playout is based on the embedded timestamp in each RTP packet. In a single programme transport stream the inverse occurs, many RTP packets can share the same timestamp as it is referenced from the start of picture (and a picture can span many RTP packets). As a SPTS does not contain audio its application is limited to content production and so only MPTS are supported.

Timestamp discontinuities do occur and are normally represented with the Marker bit (M) being set.

Playout time is determined by an internal playout timestamp. The playout timestamp is set independently from the actual timestamp in the packet. The recovered clock is used to determine expected timestamp for every incoming RTP packet.

When a packet is received it is first compared to existing packets in the buffer based on sequence number (assuming here that a stream may be delay hundreds of milliseconds by a backup path yet still be valid); only if this packet is determined to be new RTP packet eligible for buffer insertion will jitter tolerance be evaluated. If jitter tolerance is exceeded then a timestamp discontinuity is
assumed and instead of setting playout timestamp based on the contained RTP timestamp, the actual received time (offset by playout-buffer) is set for the RTP packet playout timestamp.

In normal operation clock is recovered from the timestamp field in the RTP header, is offset by the playout buffer configuration parameter and used to schedule playout of the packet. The playout clock is synchronized with the sender by using an adaptive clock recovery algorithm to correct for wander.

Algorithm summary

- Is the service marked LoT — If a loss of transport occurred, purge the buffer and reset all counters/timers.
- If the service is UP, check the RTP packet sequence number. Compare to sequence numbers contained in the buffer. If no match then check last played sequence number. If the sequence number of this packet is between last played and last played + 4096 then consider this packet late and discard.
- Check the expected timestamp recovered clock value and compare to RTP timestamp: If the expected timestamp is (-ve)jitter tolerance<timestamp<(+ve)jitter tolerance then the packet is admitted to the buffer with a playout timestamp per the embedded RTP timestamp. If jitter tolerance is not maintained this marks a discontinuity event. Set playout timestamp to current clock + playout buffer and enqueue.

Clock Recovery

RFC 2250, *RTP Payload Format for MPEG1/MPEG2 Video*, defines the timestamp format for MPEG2 video streams (which may carry H.264 video): a 90kHz clock referenced to the PCR. Each ingest RTP packet has it’s timestamp inspected and it is used in an adaptive clock recovery algorithm. Importantly, these adjustments occur on ingress (not on playout). This serves as a long-term, stable, ingress stream recovered clock.

The 90kHz ingress stream recovered clock is adjusted for each service to account for the encoder’s reference clock/difference between the clock in the 7750 SR. This input timestamp is derived from the same RTP packet that is inserted into the buffer, and thus may be subjected to significant jitter. The clock adjustment algorithm must only adjust clock in extremely small increments (in the order of microseconds) over a very long sample period (not bitrate) of at least 30 minutes.
**Playout**

Playout is the process of regenerating the stream based on playout timestamp.

For each service the operator defines a fixed playout buffer. This serves as an exact offset to the ingress stream recovered clock and serves as playout time for the video ISA. Because timestamp is used for buffer playout, CBR, capped VBR and VBR streams are all supported without pre-configuration. The playout buffer mechanism effectively removes network-induced jitter and restores the output to the rate of the original encoder.

---

**Loss of Transport**

In the circumstance that the playout buffer is emptied an LoT is indicated. The video ISA will reset playout timestamp, clock, sequence number, etc., on this event and await the next valid RTP packet for this service.
Video Quality Monitoring

The following terminology is used in this section:

- TNC: Technically non-conformant
- QoS: Quality of Service
- POA: Program Off Air

Impairment event — A trap/alarm that an impairment event is detected and is termed as tnc. An impaired event is said to have occurred if:

- Continuity counter errors were detected.
- If PAT/PMT/PCR pids were not present in the video stream for a time period equal to or greater than the configured tnc value in the respective alarm.

The default value of the impaired threshold in terms of milli second is:

- PAT: 100ms
- PCR: 100ms
- PMT: 400ms

- If unreferenced PID is seen in the video stream which has not been referred in the PMT table.

Impaired seconds — The number of seconds an impaired event was detected.

Degraded event — A trap/alarm that a degraded event is detected and is termed as QoS. A degraded event is said to have occurred if:

- PAT/PMT Syntax error occurs in that second.
- Absence of PAT/PMT/PCR pids in the video stream for a time period equal to or greater than the configured qos value in their respective alarms.

The default value of the degraded threshold in terms of milli second is:

- PAT: 200ms
- PCR: 200ms
- PMT: 800ms

Degraded seconds — The number of seconds an degraded event was detected.

Error event — A trap/alarm that an error event is detected and is termed as POA.
• An errored event has occurred if:
  → If sync loss error has occurred for that particular second. A sync loss is said to have occurred if there are more than 1 consecutive sync byte errors are seen in the stream.
  → Absence of PAT/PMT/PCR PIDs in the video stream for a time period equal to or greater than the configured poa value.

The default value of the degraded threshold in terms of milli second is:
  - PAT : 500ms
  - PCR : 500ms
  - PMT : 2000ms

→ Traffic loss has occurred for that particular second.
→ Transport error indicator or TEI indicator is set in the transport stream packet header for that particular second in the video stream.

• Errored seconds — The number of seconds an errored event was detected.
• Good seconds — The number of seconds where we do not see any impaired, degraded or errored events.

Pid Stats :

• PID: Displays the value of the pid.
• Is PCR PID : Takes a value Yes/No. If yes, then it indicates that the pid is the PCR PID.
• TEI Err Sec : Counts the number of seconds TEI was set for that particular PID.
• Absent Err Secs: The number of seconds for which the PID was not seen for a particular interval of time which is decided by the alarms set for the Non-Vid PID Absent and Video PID Absent.
• PID bitrate: Is calculated by counting the number of times the pid occurred in the last second x 188 x 8.
  188 = TS packet size
  8 = Number of bits in a byte
• CC Err Secs: Number of seconds continuity counter errors were seen for that particular PID in the stream.
• PID Type: Specifies that the PID is either video, audio, PAT, PMT, or PCR.
• MPEG Stream Type: If the PID is of video or audio this field informs us about the way the video and audio is encoded.

For example:
  → For video : H.264 or Mpeg2 (Only the decimal equivalent defined by the MPEG standard is displayed and not the string)
  → For Audio : AC-3 or Mpeg-2 (Only the decimal equivalent defined by the MPEG standard is displayed and not the string)
Interval Stats

- Except the PID stats all other stats explained above have interval stats. Information can be obtained about stream status was in the last 1 minute, 5 minute and 15 minute.

MDI - Media Delivery Index (RFC 4445, *A Proposed Media Delivery Index (MDI)*)

- Delay Factor (RFC 4445) — The delay factor is a value which indicates the minimum amount of time a STB buffers to resolve network jitter (i.e., it is the minimum STB buffer depth in ms). RTP timestamp will be used as the definitive time indicator (the notional drain rate).
- Loss Rate (RFC 4445) — The Media Loss Rate is the number of media (Transport Stream) packets lost over a certain time interval. This is reported in TS/sec. Each RTP packet lost is assumed to have 7 TS packets lost.
- In absence of traffic MDI values will be reported as N/A. These stats are reported over current (current second), 1 minute, 5 minutes and 15 minutes intervals

In many instances IPTV operators are unable to identify the cause of visual impairments which are present in almost every video distribution network because the IPTV network has so many moving parts. While head end transport-stream monitoring; full reference video analysis (comparing the source content to the encoded output), and; STB probes allow an operator to establish whether the contribution source, the encoder, or the network is the problem the network is a very complex thing.

Operators can use another measurement point in the network, just prior to the last mile such that network faults can be characterized as being between the head end and last mile (transport) or in the last-mile itself.

The multicast video quality monitoring solution provides an inspection point for the multicast video stream that is combined with other analysis methods to create a full view of video issues and help troubleshoot the part of the network causing the issue.

Video quality monitoring is one part of a video assurance program and is combined with:

- TS analysis on the encoder output (to detect encoder errors);
- Full-reference PSNR and PQR on the encoder output (to detect over-encoding, noise and other contribution or encoding artefacts)
- STB reporting (such as packet-loss, RET events, packet errors) from the entire STB population
- STB probes performing full-reference monitoring (against test streams)
- STB probes performing channel-change times, estimated PSNR, etc

Multicast video monitoring within the network can be positioned as complementary to STB reporting and head end analysis, and but should not attempt to perform either of these functions.
Because the network node is not capable of decrypting a MPEG transport stream is primarily used to identify correctable and un-correctable network errors, correlate them with network events (i.e., routing reconvergence, interface failure, etc) and provide summary reports and alarms.

For operators who do not have existing STB probes or reporting, a network-based VQM solution can provide insight into quality issues the network may be contributing to, possibly reducing the amount of STB probe investment that is needed. (i.e., both probes and the 7750 VQM reports many of the same issues in terms of picture quality, fewer probes are needed to test channel change delay, etc).

The metrics which VQM can report are based on the use of RTP streams which provide per-packet sequencing and an indication of picture type. These two parameters along with measured bitrate allow VQM to produce estimated MOSv scores for both stream ingress (uncorrected) and stream egress (corrected) outputs.

Reportable metrics include:

- Relevant SCTE-143 error counters
  - PAT
  - PMT
  - PCR
  - Transport errors, etc
- ETSI TR 101 290
  - PID
  - SI repetition
  - Degraded blocks/intervals, etc
- MDI (RFC 4445)
- RTP Measurements (RFC 3357, *One-way Loss Pattern Sample Metrics*)
- Forwarded and impaired I-/B-/P-frame counts
- GOP length
- Video/audio/stream bitrate

These metrics are collected per stream and have relevant parameters (such as profile and PIDs) pre-defined, these will be collected into a so-called stream ID. Reports (containing numeric metrics) and alarms (log, SNMP or syslog) can be generated.
For each group, reports contain:

- Stream ID (S,G / SSRC)
  - Stream A (ingress) Statistics
  - Stream B (ingress) Statistics
  - Output Statistics

Reports are non-realtime and are compiled into an XML format for FTP extraction with a resolution of less than 5 minutes.

Event alarms are reported by log, syslog or SNMP (existing log interface).

VQM is an optional module available on the input side, or output side of the video ISA. On input, it is applied prior to ad-insertion, H-RET, and duplicate stream protection, conversely when on the output side it is applied only to multicast streams after ad-insertion, H-RET and duplicate stream protection.

Because of the large number of channels and the nature of measuring input and output sides, VQM is highly reliant on the use of RTP extensions to provide relevant transmission metrics to the VQM analysis module. In a typical head end a multicast stream will be scrambled to encrypt its video and/or audio. When this encryption occurs, it is typical for the entire payload of the transport stream (for the nominated PID) to be completely scrambled. The consequence of such is that the video and audio PES headers, which reveal much about the picture and timing information, are unavailable to the VQM program.

VQM utilizes intelligent RTP re-wrapping. RTP re-wrapping is a prerequisite for ad insertion and Fast Channel Change (FCC) and involves marking packets before encryption based on the picture type (most importantly, the start of the I frame of IDR frame in H.264.

The Alcatel-Lucent VSA as currently defined, re-multiplexes each transport stream into a new RTP packet. By doing so it allows the separation of different picture types into their own respective RTP packets, and the separation of audio packets from video packets to allow different synchronisation in events of FCC. In effect, it pulls the elementary streams back into their component forms while retaining the syntax and structure of the MPTS.

For information about Alcatel-Lucent VSAs, refer to the 7750 SR OS System Management Guide.

Meanwhile, additional information can be made available, prior to scrambling, of the picture information for quality analysis. The quality analysis performed by the VQM module emphasizes impairments caused by network issues and transport stream syntax given the relative proximity of the router to the customer.
When the video ISA is deployed alongside the ALU VSA re-wraper a custom RTP header extension is sent with each RTP packet.

Figure 40: RTP Header Extension

0xbede	length=1									
ID=1	len=3	B	E	ST	S	r	PRI	FPRI	r	GOP end countdown
ID=7	len=2	TDEC_90kHz (signed - 90KHz units)								

Where:

B (Frame Begin Flag): set if a frame starts in this packet
E (Frame End Flag): set if a frame finishes in this packet
ST (Stream Type)
  00 video
  01 audio
  10 data/padd/other
  11 Reserved
S (Switch bit): set to 1 in all RTP packets from the moment the client should do the IGMP join (rewrap does not fill it)
r: reserved (set to 1)
PRI: Packet Priority (coarse)
FPRI: Fine-grained priority
PRI FPRI dec DSCP
--- ---- --- ----
3 7 31 AF41 Video IDR frame
3 0 24 AF41 Audio
2 0 16 AF41 Reference frame (P in MPEG2, I or P or some Bs in AVC)
1 7 15 AF42 Non-reference frame (most Bs in MPEG2, some Bs in AVC)
1 5 13 AF42 Trans-GOP frames, undecodable in some circumstances (some Bs in MPEG2)
0 4 4 AF43 Rest of cases (data, secondary videos, etc)
0 1 1 AF43 Padding packets

where AF41=100010, AF42=100100, AF43=100110 (DSCP bits in the IP header)
VoIP/Video/Teleconferencing Performance Measurements

The feature provides ability to measure and provide statistics to allow reporting on voice and video quality for VoIP and teleconferencing (A/V) applications. A sampled deployment is shown in the picture below (Figure 41). Although a distributed model is shown, a hub-and-spoke model, with AA-ISA deployed only on one side of the traffic flow, is also supported.

Because of network-based AA, the operator has an ability to monitor voice, video, teleconferencing applications for a given AA subscriber regardless of the type of that subscriber (a residential subscriber vs. a user of a business VPN service). AA-ISA monitors UDP/RTP/RTCP/SDP headers for each initiated call/application session (sampling may be provided – although, it is expected that a sampling rate will be smaller than that of TCP-applications due to the nature of the voice/video applications – longer lasting and smaller number of sessions/calls per subscriber). AA ISA gathers statistics and computes MOS-scores/R-factor results per each call/application session. At the end of a call (application session closure), AA-ISA sends the statistics and computed scores to a Cflowd collector (the Cflowd infrastructure was introduced for TCP-performance but modified to carry voice/video specific data is used). The collector summarizes and presents the results to the operator/end user.
Mean Opinion Score (MOS) Performance Measurements Solution Architecture

AA-ISA integrates a third party MOS software stack to perform VoIP and video MOS measurements. This software provides:

- Call quality analysis using optimized ITU-T G.107
- Measurements of perceptual effects of burst packet loss and recency using ETSI TS 101 329-5 Annex E Extensions
- Measurements and analysis of RTCP XR (RFC3611) VoIP metrics payloads.

AA software monitors the associated SDP channel and passes codec information (when available) to the subsystem which monitors VoIP. The video bearer channels traffic generates a wide variety of A/V performance metrics such as:

- Call quality metrics
  - Listening and conversational quality MOS scores – MOS-LQ, MOS-CQ
  - Listening and conversational quality R-factors – R-LQ, R-CQ
  - Estimated PESQ scores – MOS-PQ
  - Separate R-factors for burst and gap conditions – R-Burst, R-Gap
  - Video MOS-V and Audio MOS-A
  - Video Transmission Quality - VSTQ

- Video stream metrics
  - Good and impaired I, B, P, SI, SP frame counts
  - Automatic detection of GoP structure and other key video stream attributes such as image size, bit rate, codec type

- Transport (IP/RTP) metrics
  - Packet loss rate, packet discard rate, burst/gap loss rates
  - Packet delay variation/ jitter

- Degradation factors
  - degradation due to loss, jitter, codec, delay, signal level, noise level, echo, recency

Once a flow terminates, AA software retrieve the flow MOS parameters from the subsystems, formats the info into a Cflowd record and forwards the record to a configured Cflowd collector (RAM).

RAM collects Cflowd records, summarizes these records using route of interest information (source/destinations). In addition, RAM provides the user with statistics (min/max/avg values) for the different performance parameters that are summarized.


Retransmission and Fast Channel Change

RET and FCC Overview

The following sections provide an overview of RET and FCC.

Retransmission

Retransmission (RET) for RTP (RFC 3550, *RTP: A Transport Protocol for Real-Time Applications*) is based on a client/server model where the client sends negative acknowledgments (NACKs) using Real-time Transport Control Protocol (RTCP) (RFC 4585, *Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)*) to a RET server when the client detects missing sequence numbers in the RTP stream. The RET server which caches the RTP stream, for example in a circular buffer, detects missing sequence numbers in the replies to the NACKs by resending the missing RTP packets as illustrated in Figure 42.

![Circular Buffer](image)

Figure 42: RET Server Retransmission of a Missing Frame

The format of the reply must be agreed upon by the RET client and server and can be an exact copy (Payload Type 33 as defined in RFC 3551, *RTP Profile for Audio and Video Conferences*).
Retransmission and Fast Channel Change

with Minimal Control) or sent with a different Payload Type using an encapsulating RET header format (RFC 4588, *RTP Retransmission Payload Format*).

RET has been defined in standards organizations by the IETF in the above-noted RFCs and Digital Video Broadcasting (DVB) in “Digital Video Broadcasting (DVB); Transport of MPEG-2 TS Based DVB Services over IP Based Networks (DVB-IPTV Phase 1.4)” which describes the STB standards.

STBs that have a port of the Alcatel-Lucent RET/FCC Client SDK are an example of a standards-compliant RET Client implementation.

---

**Fast Channel Change (FCC)**

FCC is an Alcatel-Lucent method based on a client/server model for providing fast channel changes on multicast IPTV networks distributed over RTP. During a fast channel change, the FCC client initiates a unicast FCC session with the FCC server where the FCC server caches the video stream and sends the channel stream to the FCC client starting at the beginning of a Group of Pictures (GOP). Beginning at a GOP in the past minimizes the visual channel transition on the client/STB, but the FCC unicast stream must be sent at an accelerated rate in the time domain to allow the unicast stream to catch up to the main multicast stream, at which point, the FCC server signals to the client to join the main RTP stream.

*Figure 43* illustrates the FCC client and server communication.
There are two techniques for compressing the FCC unicast stream in time to allow the unicast session to catch up to the multicast stream: bursting and denting. When bursting, the stream is sent at a rate faster than multicast stream, for example, the stream can be “bursted” at 130% (or 30% over the nominal) multicast rate. “Denting” is a technique where less important video frames are dropped by the FCC server and not sent to the FCC client. Hybrid mode combines bursting and denting.

Bursting is illustrated in Figure 44 and denting is illustrated in Figure 45.
Figure 44: FCC Bursting Sent Faster Than Nominal Rate

Figure 45: FCC Denting Removing Less Important Frames
When the unicast session has caught up to the multicast session, the FCC server signals to the FCC client to join the main multicast stream. The FCC server will then send the unicast session at a lower rate called the “handover” rate until the unicast session is terminated.

Note that the FCC server functionality requires the Alcatel-Lucent 5910 Video Services Appliance (VSA) Re-Wrapper which is used to encapsulate and condition the multicast channel streams into RTP, adding important information in the RTP extension header. Also, the ISA FCC server requires an STB FCC client based on the Alcatel-Lucent FCC/RET Client SDK.
Retransmission Client

The ISA RET client is used in hierarchical RET deployments and performs upstream corrections for missing packets in the RTP multicast stream to ensure that the RET server has all the packets for the stream.

The RET client is supported within a VPLS, IES or VPRN service context as applicable to the platform. The RET client source address is explicitly assigned. In a VPLS, the RET client IP appears to be an IP host within the service, and like a host, the RET client is also configured with a gateway IP address to provide a default route to reach the upstream RET server.

Whenever the RET client receives a retransmission from an upstream RET server, the replies are sent downstream as multicast in the multicast service using Payload Type 33 which is the Payload Type for an original stream.

Whether the RET client is active for a given multicast channel is defined in the multicast information policy where channels are defined. The channel configuration for the RET client within the policy is an explicit enable/disable of the RET client and the IP address and UDP port for the upstream RET server for the channel.

The ISA RET server supports the network model where there are separate service instances for unicast and multicast traffic that are cross-connected and multicast replicated downstream in the network, for example, where an access node provides the multicast service cross connect and replication at the last mile. If there are separate multicast and unicast service instances, the multicast service instance must be configured in the unicast service, and the unicast and multicast services must use the same multicast information policy.
Retransmission Server

The ISA RET server is supported within a VPLS, IES or VPRN service context as applicable to the platform.

Whether the RET server is active for a given multicast channel is defined in the multicast information policy where channels are defined. The channel configuration for the RET server within the policy is an explicit enable/disable of the local RET server (that is, whether the channel should be buffered), the RET buffer size for the channel in the ISA and a channel type (Picture-in-Picture (PIP), Standard Definition (SD) or High Definition (HD)). The RET buffer should be large enough to account for the round trip delay in the network; typically, a few hundred milliseconds is sufficient.

In a VPLS service, a single IP address is assigned to the RET server, and it acts like an IP host within the service.

In an IES or VPRN service, up to 16 IP addresses can be assigned to a video interface.

The video policy within the multicast information policy defines the characteristics for the how the RET server should respond to NACKs received on an IP address. The different characteristics defined in a RET server “profile” are for each channel type (PIP, SD and HD):

- Enable/disable for the RET server (that is, whether requests should be serviced or dropped).
- The RET rate (as a percentage of the nominal channel rate).

Typically, RET replies are sent below line rate because most dropped packets occur in the last mile and sending RET replies at a high rate may compound any last mile drop issues.

The IP address(es) of the RET server is(are) defined in the unicast service instance, whereas the UDP port for the RET server is defined in the “default” bundle in the multicast information policy. The same UDP port is used for all RET server IP addresses that use the particular multicast information policy.

The ISA RET server supports the network model where there are separate service instances for unicast and multicast traffic that are cross-connected and multicast replicated downstream in the network. If there are separate multicast and unicast service instances, the unicast and multicast services must use the same multicast information policy.
Fast Channel Change Server

The ISA FCC server is supported within a VPLS, IES or VPRN service context as applicable to the platform. VPRN services are not supported on the 7450 ESS.

Whether the FCC server is active for a given multicast channel is defined in the multicast information policy where channels are defined. The channel configuration for the FCC server within the policy is an explicit enable/disable of the local FCC server (that is, whether the channel should be buffered) and a channel type PIP, SD or HD. When FCC is enabled, three (3) GOPs are stored in the buffer. The channel also defines an optional fcc tuning parameter called the fcc Minimum Duration which is used by the FCC server to determine which GOP to start the FCC unicast session. If there are too few frames of the current GOP stored in the fcc server buffer (based on number of milliseconds of buffering), the FCC server will start the FCC session from the previous GOP.

In a VPLS service, a single IP address is assigned to the FCC server, and it acts like a IP host within the service.

In an IES or VPRN service, up to 16 IP addresses can be assigned to a video interface.

The Video Policy within the multicast information policy defines the characteristics for the how the FCC server should respond to FCC requests received on an IP address. The different characteristics defined in an FCC server “profile” are for each channel type (PIP, SD and HD):

- Enable/disable for the FCC server (for example, should the requests be serviced or dropped).
- The FCC mode: burst, dent or hybrid.
- The burst rate (as a percentage above the nominal channel rate) for PIP, SD and HD channel types.
- The multicast handover rate (as a percentage of the nominal channel rate) used by the server after it has signaled the client to join the main multicast channel.

Different FCC rates are allowed for each of the channel types because the channel types have different nominal bandwidths. For example, the last mile may only be able to reliably send a 25% burst (above nominal) for HD whereas the equivalent bit rate for SD is a 75% burst. The profiles are designed to provide flexibility.

The IP address of the FCC server is defined in the unicast service instance, whereas the UDP port for the FCC server is defined in the “default” bundle in the multicast information policy. The same UDP port is used for all FCC server IP addresses that use the particular multicast information policy.

The ISA FCC server supports the network model where there are separate service instances for unicast and multicast traffic that are cross-connected and multicast replicated downstream in the
network. If there are separate multicast and unicast service instances, the unicast and multicast services must use the same multicast information policy.

---

**Logging and Accounting for RET and FCC**

In previous releases, logging and statistics were maintained for active sessions (RET and FCC). This feature now provides more permanent logging, statistics and accounting for:

- RET Server sessions stats
- FCC session stats
- ADI events

---

**RET Server Session Stats**

For RET Server Stats, the RET session table entries will be sampled and periodically written to XML accounting records.

The basic framework is (requiring a CLI and perhaps some additional tuning) is:

- Session statistics will be written to a record in an XML file on a periodic basis with the sample period being 5 minutes or longer.
- Session statistics are written to a record when a) the session is removed from the session table, b) if the session is exists for more than two write periods.
- All statistics will be the total values (that is, not incremental values across sampling periods).
RET and FCC Server Concurrency

Even though the previous sections discussed the RET server and FCC server as separate entities, the ISA can support RET and FCC servers at the same service at the same time. As such, the configuration commands and operational commands for the services are intermingled. If both the RET server and FCC server are enabled for a given channel, a single buffer is used for caching of the channel.

A maximum bandwidth limit for all server requests can be defined for a given “subscriber” which is equated with the source IP address. Before an ISA server processes a request, the ISA calculates the bandwidth to the subscriber required, and will drop the request if the subscriber bandwidth limit will be exceeded.

The ISA services RET and FCC requests on a first in, first out (FIFO) basis. Before servicing any request, the ISA calculates whether its egress bandwidth can handle the request. If there is insufficient egress bandwidth to handle the service request, the request is dropped. Near the ISA’s egress limits, RET requests will generally continue to be serviced whereas FCC requests will be dropped because RET sessions are generally a fairly small percentage of the nominal rate and FCC sessions are slightly below to above the nominal channel rate.
Prerequisites and Restrictions

This section summarizes some key prerequisites and restrictions for the RET client, RET server and FCC server.

- Both RET and FCC require RTP as the transport stream protocol.
- FCC requires the Alcatel-Lucent 5910 VSA Re-Wrapper.
- FCC requires an implementation of the Alcatel-Lucent 5910 STB Client.
- The multicast information policies must be the same on multicast and unicast services which are cross connected downstream.
- Support for up to four ISA-MSs in a video group
- Only a single IP address and profile are supported within a VPLS service for RET or FCC, so only a single Profile can be supported in a VPLS service.
- Up to 16 IP addresses can be configured for a Layer 3 service video interface (IES or VPRN) with each supporting a distinct profile.
- There can be a maximum of 32 IP addresses across all Layer 3 service video interfaces per chassis.
Multi-Service ISA Support in the IOM-3 for Video Services

In previous releases, the Multi-Service ISA was supported in the iom-20g-b and the iom2-20g for video services. Now, this feature provides support for the Multi-Service ISA when installed in an iom3-xp card on both the 7450 ESS and the 7750 SR.

Prioritization Mechanism for RET vs. FCC

In previous releases, RET and FCC requests are processed with the same priority. Since RET generally has a more direct impact on a subscriber’s “quality of experience”, service providers are prioritizing RET as a feature over FCC, and for those that want to implement both, the preference is to have a mechanism to prioritize RET over FCC when there is contention for resources.

Now, this feature provides a mechanism to reserve an explicit amount of egress bandwidth for RET for all the ISAs within a video group. If the amount of egress bandwidth is less than the reserved amount, FCC requests are discarded and only RET requests processed. The bandwidth will need to be dynamically adjusted per ISA within the video group if ISAs become operational/non-operational within the group.
RET Features

Statistics ALU SQM MIB Additions

Alcatel-Lucent in Portugal has developed a network management application that does a statistical analysis of retransmissions to analyze the video quality. The following are existing MIB entries.

- TmnxVdoSessionEntry ::= SEQUENCE {
-   tmnxVdoSessionSourceAddrType InetAddressType,
-   tmnxVdoSessionSourceAddr InetAddress,
-   tmnxVdoSessionSourcePort InetPortNumber,
-   tmnxVdoSessionSSRCId Counter32,
-   tmnxVdoSessionUpTime Unsigned32,
-   tmnxVdoSessionExpireTime Unsigned32,
-   tmnxVdoSessionCName TNamedItem,
-   tmnxVdoSessionDestAddrType InetAddressType,
-   tmnxVdoSessionDestAddr InetAddress,
-   tmnxVdoSessionRxFCCRequests Counter32,
-   tmnxVdoSessionTxFCCReplies Counter32,
-   tmnxVdoSessionTxFCCPackets Counter32,
-   tmnxVdoSessionTxFCCOctets Counter32,
-   tmnxVdoSessionRxRTRequests Counter32,
-   tmnxVdoSessionTxRTReplies Counter32,
-   tmnxVdoSessionTxRTPackets Counter32,
-   tmnxVdoSessionTxRTOctets Counter32
}

The following are new entries:

- Total number of sequences of 10 — total sequences of 2 to 10 lost packets
- Total number of sequences of 20 — total sequences of 11 to 20 lost packets
- Total number of sequences of 30 — total sequences of 21 to 30 lost packets
- Total number of sequences of 40 — total sequences of 31 to 40 lost packets
- Total number of sequences of more ?total sequences of 41 or more lost packets}
RET Server Multicast Tuning Parameters

Downstream RET requests are responded to using multicast when there are a number of identical RET requests with the assumption that there was a loss in the network that affected a number of clients. In this instance, the retransmitted frames will be sent as Payload Type 33 as original packets and not in the RFC 4588, *RTP Retransmission Payload Format*, retransmission format.

The `rt-mcast-reply` command can tune the RET server as to when to use multicast to reply to RET requests have the option to disable multicast responses.
There are three modes of operation supported for FCC:

- In burst mode, the unicast FCC traffic is sent faster than nominal rate (bursted above nominal).
- In dent mode, packets are dropped from the unicast FCC stream based on a defined threshold for markings added to the packet that indicate the importance of the packet to the audio/video stream added by the rewrapper.
- Hybrid mode combines both bursting and denting.
Ad Insertion

Local/Zoned Ad Insertion

Transport Stream Ad Splicing

Alcatel-Lucent’s Local/Zoned ADI feature allows a 7750 SR with the ISA-MS (the “splicer”) to perform ad splicing in an MSTV environment. The splicer is a post-A server transport stream (TS) splicer and can splice into encrypted or unencrypted transport streams. The splicer is positioned between the A-server and the D-server. Figure 46 shows an ad insertion model displaying components.

Figure 46: Ad Insertion Model

The ad insertion process is initiated when the splicer detects the SCTE 35 cue signal that identifies the upcoming start and end of the advertising time slot. The splicer communicates with the ad server using SCTE 30 standard messaging and will be instructed by the ad server:

- To take advantage of an ad insertion opportunity or avail and
- Determine the ad to be spliced into the main stream, if applicable.

The ad servers must be configured for ad content to match encoder configurations for video/audio streams. The ad server sends the ad stream to the ad splicer and the ad splicer will switch it into the main stream as dictated by the digital splice points (Figure 47). The ad splicer can splice multiple ads into multiple channels simultaneously.
Note that IPTV encryption and Digital Rights Management (DRM) can be applied to the transport stream payload but not to the transport stream (TS) header which allows a TS splicer to splice into encrypted streams, although the spliced ad content will in all cases be unencrypted. TS splicing does not put any requirements on the middleware platform as ad insertion will be outside the middleware’s knowledge and control.

The Figure 49 depicts a TS flow with various MUXed elementary streams (ES) identified by a unique Packet Identifier (PID). The Program Map Table (PMT) is used as the legend to map PID to elementary streams. The digital cue points are also identified by separate unique PID also defined in the PMT that is used by the TS splicer to know when to splice-in and splice-out of the stream. It is important to note that the only important thing that a TS splicer needs are the headers of the TS packets, and the underlying payload of each ES is not needed. This gives the splicer flexibility and makes it agnostic to the ES payload types.
Figure 49: Transport Stream Flow Example
Ad Zones

Within the splicer, zones are created by taking an ingress main channel multicast group, for example \((*,G)\) or \((S,G)\), and creating one or more egress “zone channels” on distinct source-specific multicast (SSM) groups \((S1,G1)\), \((S2,G2)\), etc. Up to 16 zones can be configured for each ingress multicast channel. The group multicast address for the zone channels need not be unique and can actually be the same as the ingress channel, but the SSM sources for the zone channels must be distinct.

Within SCTE 30, the main channel and zone channel are identified by an ASCII string name. These names must be unique and will be used when the splicer communicates with the ad server.

The input stream can be depicted through the following semantics diagram.

\[
\begin{align*}
\text{CHANNEL1} & \rightarrow \text{CHANNEL1\_North (S1, G1)} \\
(S, G) & \rightarrow \text{CHANNEL1\_South (S2, G2)} \\
& \rightarrow \text{CHANNEL1\_East (S3, G3)} \\
& \rightarrow \text{CHANNEL1\_West (S4, G4)} \\
& \rightarrow \text{CHANNEL1\_Central (S5, G5)}
\end{align*}
\]

where \((S,G)\) is the input main channel stream mapping into five (5) \((Sx, Gx)\) which are zone channel streams.

S1..S16 must be IP addresses in the video interface subnet but not the video interface address itself. This implies that traffic for the zones will be sourced from the ISA-MS.

To facilitate traffic from \((S,G)\) to go to the ISA-MS, a static IGMP \((S,G)\) must be configured on the video interface.
Local/Zoned ADI Prerequisites and Restrictions

This section describes prerequisites and restrictions for the local/zoned ADI feature:

- Network Time Protocol (NTP) is required to keep time synchronized between the ad server and the splicer. The time synchronization system helps keep the splicer and the server within +/-15 ms of each other.
- ADI is only supported within a Layer 3 IES or VPRN service.
- Splicing an SD advertisement into an HD main stream is supported, but splicing of an HD advertisement into an SD is not supported.
- The SCTE 30 connection between the ad server and the splicer must be maintained on separate IP addresses on the splicer within the video service.
- Up to 2 ad servers can be configured for redundancy.
- ADI only supports a single ISA-MS member in a video group.
- Up to 16 zone channels can be configured for a main channel.
- The audio re-ordering value in the multicast information policy must match the audio re-ordering configured on the A Server for reliable audio splicing.
- For best results, the ad should start/end with few frames of muted audio.
- The frequency of IDR frames in the network and ad streams must be less than one IDR frame every 1.3 seconds.
- Only the `splice_insert` command of SCTE-35 cue message is supported. The `splice_immediate` command is not supported.
Configuring Video Service Components with CLI

This section provides information to configure RET/FCC using the command line interface.

Topics in this section include:

- Video Services Overview on page 565
- Sample Configurations on page 571
- Configuring RET/FCC Video Features in the CLI on page 578
- Configuring ADI Components with CLI on page 591

Video Services Overview

There can be a maximum of eight ISA-MSs in a given system. The main entities of video configurations are:

- Video group
- Multicast information policy
  → A video policy to configure video interface properties
  → Multicast bundles and channels to associate bundles/channels with video groups
- Within a service, configuring a video interfaces and their associations with video groups.

Figure 50 shows various configuration elements and how they are associated by configuration.
Note that a video interface within a service can have multiple IP addresses, and their association with the video interfaces within the video policy are based on IP addresses. Support for multiple video interface IP addresses for a given video interface allows video characteristics (burst rate, retransmission format, etc.) for the channels associated with the video interface to be based on the IP address on which the request is received.

Both the bundle/channel configuration and the video interface configuration within the service are associated with a specific video group. If the request is received on a video interface for a channel not serviced by the video group associated with the video interface, the request is invalid and is dropped. Figure 50 displays an example of this is a request for mc-range2 received on IP1, IP2 or IP3. A request for mc-range2 would only be valid on IP4.

As with other multicast information policies, the bundle name default is a special bundle and is reserved for setting of default values. If a video parameter is not explicitly set in a bundle/channel, the value set in the default bundle is used.
Configuring an ISA-MS Module

The ISA-MS hardware has an MDA form factor and is provisioned in the same manner as other MDAs in the `config>card>mda>mda-type` context.

Use the following commands to configure a ISA-MS module.

**CLI Syntax:**

```
config
card slot-number
 mda slot-number
 mda-type isa-ms
```

The following output displays an ISA-MS configuration example:

```
*A:Dut-C>config>card# info
--
card-type iom2-20g
 mda 1
 mda-type isa-ms
 exit
 mda 2
 mda-type isa-ms
 exit
--
*A:Dut-C>config>card#
```
Configuring Video Service Components with CLI

Configuring a Video Group

When used for video services, ISA-MSes are logically grouped into video groups that pool the ISA buffering and processing resources into a single logical entity.

Use the following commands to configure a video group.

**CLI Syntax:**

```
config
isa
 video-group video-group-id [create]
 description description-string
 primary mda-id
 [no] shutdown
```

The example shown below shows video-group 1 with a single ISA configured in slot 2/MDA 1.

```
*A:Dut-C>config>isa# info
===
 video-group 1 create
 description "Video Group 1"
 primary 7/2
 no shutdown
 exit
===
*A:Dut-C>config>isa#
```

Within the video group configuration, there are specific video application commands to enable features. These commands are described in the configuration examples for the application. Depending on the video application, more than one primary ISA-MS is allowed increasing the egress capacity of the video group.

Note: ISA-MS in a single video group cannot be on the same IOM. An IOM can accommodate two ISA-MS modules provided that the ISA-MS are members of different video groups.
Configuring a Video SAP and Video Interface in a Service

Video features in a VPLS service require the creation of a video SAP and a video interface. A video SAP is similar to other SAPs in the system in that QoS and filter policies can be associated with the SAP on ingress (traffic leaving the ISA and ingressing the system) and egress (traffic leaving system and entering the ISA).

Note that the video SAP is associated with a video group. Channels are also associated with a video group which is what establishes the link between what channels can be referenced through the video SAP. The multicast information policy associated with the service is where the channel to video group association is defined.

For unicast VPLS services that have an associated multicast service that is cross connected downstream of the router, the multicast service needs to be identified by the service ID in the unicast VPLS service.

The video commands for are identical in the IES and VPRN service contexts. The basic IES and VPRN commands are similar to the video commands in the VPLS context and follow the same logic of associating the video SAP with a video group and the multicast information policy defining the channel to video group association.

Another parameter defined for a channel in the multicast information policy that is important for video services is the administrative bandwidth defined for the channel. Many video applications use the bandwidth to determine if sufficient ISA egress bandwidth exists to service or drop a service request.

The following output displays an example video interface configuration.

```
A:IPTV-SR7>config>service>ies# info
--
video-interface "video-100" create
 video-sap 4
 exit
 address 1.1.1.254/8
 address 100.100.0.254/8
 address 101.1.1.254/24
 adi
 channel 234.4.5.228 source 195.168.9.10 channel-name "228"
 scte35-action drop
 zone-channel 234.4.5.228 source 100.100.100.1 adi-channel-name "228-1"
 exit
 scte30
 ad-server 10.200.14.2
 local-address control 100.1.1.2 data 100.1.1.3
 exit
 exit
--
A:IPTV-SR7>config>service>ies#
```
Basic Multicast Information Policy Configuration

Multicast information policies are used by the video applications to define multicast channel attributes and video policies which contains application-specific configuration for a video interface IP address.

Note that it is within the multicast information policy bundles, channels and source-overrides that a video group is assigned to a channel. The video group association is inherited from the more general construct unless it is explicitly disabled.

The administrative bandwidth for channels at the bundle, channel or source-override level is also defined in the multicast information policy. Video applications use the administrative bandwidth here when a channel rate estimate is needed.

A video policy is defined within the multicast information policy for a specific video interface IP address. The IP address for the video policy is the key value that associates it with a specific video interface IP address within a service associated with overall multicast information policy.

Refer to the 7x50 OS Triple Play Guide for CLI command descriptions and syntax usage information to configure multicast info policies.

The following output displays a policy example.

```
A:IPTV-SR7>config>mcast-mgmt> info
--
multicast-info-policy "ies100" create
 bundle "5.6.140" create
 admin-bw 8000
 video
 video-group 1
 local-rt-server
 rt-buffer-size 3000
 exit
 channel "234.5.6.140" "234.5.6.140" create
 exit
 exit
bundle "default" create
exit
 bundle "5.6.241-5.6.243" create
 admin-bw 12000
 video
 video-group 1
 rt-buffer-size 4000
 exit
 channel "234.5.6.241" "234.5.6.243" create
 exit
 exit
--
A:IPTV-SR7>config>router#
```
Sample Configurations

The following output displays configurations of VQM with packet selection.

```
*A:SR-7/Dut-C>config>mcast-mgmt># info
--
multicast-info-policy "vqm" create
bundle "ixia" create
 channel "235.5.5.6" "235.5.5.7" create
 admin-bw 20000
 video
 video-group 4
 rt-buffer-size 1000
 analyzer
 alarms

 cc-error
 pat-repetition tnc 400 qos 600 poa 700
 pat-syntax
 pid-pmt-unref
 pmt-repetition tnc 2300 qos 2500 poa 2700
 pmt-syntax
 vid-pid-absent 5000
 non-vid-pid-absent 5000
 pc-repetition tnc 400 qos 600 poa 700
 scte-35
 tei-set
 ts-sync-loss

 exit

 exit

 stream-selection source1 192.168.2.1 intf1 "ineo-ingress1"

 exit

 source2 192.168.2.1 intf2 "ineo-ingress2"

 exit

 exit

source-override "192.168.2.1" create
exit
exit

exit

exit

bundle "default" create
exit
exit

exit

--
*A:SR-7/Dut-C>config>service# info
--
customer 1 create
description "Default customer"
exit
ies 300 customer 1 vpn 300 create
description "Default ies description for service id 300"
video-interface "video-300" create
 video-sap 4
 exit
address 20.20.255.254/16
channel 235.5.5.6 source 192.168.2.1 channel-name "Ineoquest-1"
 zone-channel 235.5.5.6 source 20.20.0.1 adi-channel-name "Ineoquest-1-1"
 exit
 adi
 exit
 no shutdown
```
exit
service-name "XYZ Ies 300"
no shutdown
exit

*A:SR-7/Dut-C>config>service#

*A:SR-7/Dut-C>config>router# info

#--------------------------------------------------

*------------------*

exit
interface "ineo-ingress1"
    address 10.200.16.1/24
    port 3/2/12
    ingress
    filter ip 100
exit
interface "ineo-ingress2"
    address 10.200.17.1/24
    port 5/1/1
    ingress
    filter ip 200
exit
interface "ixia-egress"
    address 10.200.15.1/24
    port 3/2/15
exit
interface "system"
    address 10.20.3.1/32
exit
ecmp 2
multicast-info-policy "vqm"
static-route 192.168.2.1/32 next-hop 10.200.16.2 mcast-ipv4
static-route 192.168.2.1/32 next-hop 10.200.17.2 mcast-ipv4

#------------------*

echo "IGMP Configuration"
#------------------*

igmp
    interface "video-300-D"
        static
            group 235.5.5.6
            source 192.168.2.1
        exit
exit
interface "video-300-D2"
        static
            group 235.5.5.6
            source 192.168.2.1
        exit
exit
interface "ixia-egress"
        static
            group 235.5.5.6
            source 20.20.0.1
#--------------------------------------------------
echo "PIM Configuration"
#--------------------------------------------------
pim
rpf-table rtable-m
interface "video-300"
exit
interface "ineo-ingress1"
  multicast-senders always
exit
interface "ineo-ingress2"
  multicast-senders always
exit
rp
  static
exit
  bsr-candidate
  shutdown
exit
  rp-candidate
  shutdown
exit
exit
----------------------------------------------
*A:SR-7/Dut-C>config>router#
*A:SR-7/Dut-C>config>isa# info
----------------------------------------------
video-group 4 create
  analyzer
  stream-selection
  primary 3/1
  no shutdown
exit
----------------------------------------------
*A:SR-7/Dut-C>config>isa#
The following output displays configurations of VQM without packet selection.

```
 *A:SR-7/Dut-C>config-service# info
 --
customer 1 create
description "Default customer"
exit
ies 300 customer 1 vpn 300 create
description "Default Ies description for service id 300"
interface "linux-ingress" create
 address 10.10.33.228/24
 sap 3/2/17 create
description "sap-300-10.10.33.228"
exit
exit
interface "linux-egress" create
 address 10.10.34.228/24
 sap 3/2/7 create
description "sap-300-10.10.34.228"
exit
exit
video-interface "video-300" create
 video-sap 2
 exit
 address 20.20.13.1/24
 channel 235.5.5.6 source 192.168.2.1 channel-name "A2-SP3"
 zone-channel 235.5.5.6 source 20.20.13.2 adi-channel-name "A2-SP3-1"
 exit
 adi
 exit
 no shutdown
exit
service-name "XYZ Ies 300"
no shutdown
exit

 *A:SR-7/Dut-C>config-service# /configure router
 *A:SR-7/Dut-C>config-router# info
 #--
echo "IP Configuration"
#--
interface "system"
 address 10.20.1.1/32
exit
 multicast-info-policy "A-server"
#--
echo "Static Route Configuration"
#--
 static-route 128.251.33.0/24 next-hop 10.10.33.229
 static-route 192.168.2.0/24 next-hop 10.10.33.229
#--
echo "IGMP Configuration"
#--
igmp
 interface "video-300-D"
 static
```
Video Services

```plaintext

interface "linux-egress"
 group 235.5.5.6
 source 192.168.2.1
 exit
exit

interface "linux-egress"
 group 235.5.5.6
 source 20.20.13.2
 exit
exit
exit
exit

#--
echo "PIM Configuration"
#--

pim

interface "linux-ingress"
 hello-interval 0
 multicast-senders always
 exit

interface "linux-egress"
 hello-interval 0
 exit

apply-to all

rp
 static
 exit

bsr-candidate
 shutdown
 exit

rp-candidate
 shutdown
 exit

exit
exit

--
*A:SR-7/Dut-C>config>router# /configure isa
*A:SR-7/Dut-C>config>isa# info
--

video-group 2 create
 analyzer
 primary 2/1
 no shutdown
 exit

--
*A:SR-7/Dut-C>config>isa# /configure mcast-management
*A:SR-7/Dut-C>config>mcast-mgmt># info
--

multicast-info-policy "A-server" create
 bundle "LiveTv" create
 channel "234.5.6.243" "234.5.6.243" create
 admin-bw 3000
 video
 rt-buffer-size 1000
 exit

channel "235.5.5.6" "235.5.5.6" create
```
Configuring Video Service Components with CLI

```
admin-bw 5000
video
 video-group 2
 rt-buffer-size 1000
analyzer
 alarms
 cc-error
 pat-repetition tnc 200 qos 400 poa 600
 pat-syntax
 pid-pmt-unref
 pmt-repetition
 pmt-syntax
 vid-pid-absent 1000
 non-vid-pid-absent 1000
 pcr-repetition tnc 200 qos 400 poa 600
 scte-35
 tei-set
 ts-sync-loss
 report-alarm severity tnc
 exit
 exit
 exit
 source-override "128.251.33.37" create
 exit
bundle "default" create
exit
bundle "mp2ts-ads" create
 channel "234.4.5.1" "234.4.5.254" create
 admin-bw 5000
video
 video-group 2
 rt-buffer-size 1000
 exit
 exit
 exit
--
*A:SR-7/Dut-C>config>mcast-mgmt>#
```
Configuring RET/FCC Video Components with CLI

This section provides information to configure RET/FCC using the command line interface.

Topics in this section include:

- Configuring RET/FCC Video Features in the CLI on page 578
  - Configuring the RET Client on page 578
  - Configuring the RET Server on page 582
  - Configuring the FCC Server on page 586
Configuring RET/FCC Video Features in the CLI

The following sections provide configuration examples for the RET client, RET server and FCC server.

Configuring the RET Client

This section provides an example configuration for the RET client. The configuration example has the following assumptions:

- A single ISA-MS in slot 2/1 in video group 1
- A single channel 234.0.0.1 within multicast bundle “b1” with an administrative bandwidth of 2700 Kbps defined in `multicast-info-policy multicastinfopolicyname`.
- The upstream RET server for the channel is 4.4.4.4 on UDP port 4096
- A single video interface named “v1” in the service with IP address 3.3.3.3/24
- A RET client address of 3.3.3.4 for a VPLS and 3.3.3.3 for IES and VPRN case.

The first step in the configuration is to configure video group 1 and the ISA-MS hardware.

**CLI Syntax:**
```
config>isa
 video-group video-group-id [create]
 primary mda-id
 no shutdown
```

```
*A:ALA-48config>isa# info
--
video-group 1 create
 primary 2/1
 no shutdown
exit
--
*A:ALA-48config>isa#
```

```
config# card slot-number
 mda mda-slot
 mda-type mda-type
```

```
*A:ALA-48config>card>mda# info
--
 mda-type isa-ms
exit
--
*A:ALA-48config>card>mda#
```
The channel parameters for 234.0.0.1 are configured in \textbf{multicast-info-policy}
\textit{multicastinfopolicyname}. The channel configuration includes the administrative bandwidth, the
channel’s association with video group 1 and the upstream RET server configuration for the
channel (4.4.4.4 UDP port 4096). The following output displays the configuration. Refer to the
CLI tree for a complete list of CLI commands.

*A:ALA-48config>mcast-mgmt>mcast-info-plcy# info
---------------------------------------------------
bundle "b1" create
admin-bw 2700
video
    video-group 1
    rt-server 4.4.4.4 port 4096
exit
channel "234.0.0.1" "234.0.0.1" create
exit
exit
bundle "default" create
exit
video-policy
    video-interface 3.3.3.3 create
exit
exit
---------------------------------------------------
*A:ALA-48configmcast-mgmtmcast-info-plcy#

Note that the channel parameters are actually defined for the channel bundle “b1” and the channel
inherits those values based on the multicast information policy inheritance rules.
For the RET client in a VPLS, the following commands within the service instance perform the following tasks to complete the RET client configuration:

- Associate the VPLS with `multicast-info-policy multicastinfopolicyname`.
- Create the video interface “vi”.
- Create video SAP and associate it with video group 1.
- Assigns a RET client address and gateway.
- Create a static IGMP join on SAP 3/2/13:21 for the channel 234.0.0.1.

Note that SAP 3/2/13:21 is a dummy SAP with the only purpose of attracting multicast traffic to the node to enable the caching. No subscribers are connected to it.

```
*A:ALA-48config>service>vpls# info

 igmp-snooping
 no shutdown
 exit
 video-interface "vi" create
 video-sap 1
 exit
 address 3.3.3.3/24
 gateway-ip 3.3.3.253
 rt-client-src-address 3.3.3.4
 no shutdown
 exit
 exit
 exit
 exit
 exit
 exit
 exit
 exit

*A:ALA-48config>service>vpls#

*A:ALA-48config>router# info

...
 multicast-info-policy multicastinfopolicyname
 sap 3/2/13:21 create
 igmp-snooping
 static
 group 234.0.0.1
 starg
 exit
 exit
 exit
 exit
 exit
 exit
 exit
...
*A:ALA-48config>router#
```

Note that the RET client address is 3.3.3.4 which must be within the IP subnet assigned to the video interface (3.3.3.3/24).
For the RET client in an IES or VPRN, the following commands within the service instance perform these tasks to complete the RET client configuration:

- Associate the service with `multicast-info-policy multicastinfopolicyname`.
- Create the video interface “vi” and assign IP address 3.3.3.3.
- Create video SAP and associate it with video group 1.
- Creates a static IGMP join on the video interface for the channel 234.0.0.1. (7750 only)

```
*A:ALA-48config>service>ies# info
--
video-interface "vi" create
 video-sap 1
 address 3.3.3.3/32
 no shutdown
 exit

...
*A:ALA-48config>service>ies#

*A:ALA-48config>router# info
--
...
multicast-info-policy multicastinfopolicyname
 pim (7750 only)
 interface "vi"
 exit

 igmp (7750 only)
 interface "vi"
 static
 group 234.0.0.1
 starg
 exit

 exit

*A:ALA-48config>router#
```

The RET client address is 3.3.3.3 which is the address assigned to the video interface in the video policy portion of the multicast information policy.
Configuring the RET Server

This section provides an example configuration for the RET server. The configuration example has the following assumptions:

- A single ISA-MS in slot 2/1 in video group 1
- A single channel 234.0.0.1 within multicast bundle “b1” with an administrative bandwidth of 2700 Kbps defined in `multicast-info-policy multicastinfopolicyname`.
- A retransmission buffer for the channel set to 300 milliseconds.
- The RET rate is 5% of nominal.
- Local RET server address is 3.3.3.3 with destination port is UDP 4096.

The first step in the configuration is to configure video group 1 enabling the RET server and the ISA-MS hardware.

**CLI Syntax:**
```
config>isa
 video-group video-group-id [create]
 local-rt-server
 no shutdown
```

```
*A:ALA-48config>isa# info
--
video-group 1 create
 local-rt-server
 primary 2/1
 no shutdown
 exit
--
*A:ALA-48config>isa#
```

```
*A:ALA-48config>card 2>mda 1# info
--
 mda-type isa-ms
--
*A:ALA-48config>card>mda#
```

Note the **local-rt-server** command in the above output enables the local RET server on the video group.
The channel parameters for 234.0.0.1 are configured in **multicast-info-policy** `multicastinfopolicyname`. The channel configuration includes the administrative bandwidth and the channel’s association with video group 1.

```
*A:ALA-48config>mcast-mgmt>mcast-info-plcy# info
--
bundle "default" create
 local-rt-port 4096
exit
bundle "b1" create
 admin-bw 2700
 video
 video-group 1
 local-rt-server
 rt-buffer-size 300
exit
channel "234.0.0.1" "234.0.0.1" create
exit
exit
video-policy
video-interface 3.3.3.3 create
 rt-rate 5
 hd
 local-rt-server
 exit
 sd
 local-rt-server
 exit
 pip
 local-rt-server
 exit
exit
```

Note the **local-rt-port** command in the bundle “default” defines the destination UDP port used to reach the local RET server on the service where the multicast information policy is applied. The RET server port can only be defined in the bundle “default” and applies for all bundles in the policy. If no value is specified, the default is used.

In the bundle “b1” the **local-rt-server** command enables the RET server for all channels in the bundle, and the **rt-buffer-size** command sets the retransmission buffer for all channels in the bundle to 300 milliseconds.

In the video policy above, the **local-rt-server** commands for the video interface 3.3.3.3 enables the RET server on that interface for all channel types “hd” (High Definition), “sd” (Standard Definition) and “pip” (Picture-in-Picture). The **rt-rate rt-burst-percentage** command in the policy indicates that the retransmission rate will be 5% of the nominal rate for all channel types; individual rates can be defined if desired.
For the RET server in a VPLS, these commands within the service instance perform the following tasks to complete the RET server configuration:

- Associate the VPLS with **multicast-info-policy** `multicastinfopolicyname`.
- Create the video interface “vi”.
- Create video SAP and associate it with video group 1.
- Assigns an IP address 3.3.3.3 to the video interface.
- Create a static IGMP join on SAP 3/2/13:21 for the channel 234.0.0.1.

Note that SAP 3/2/13:21 is a dummy SAP with the only purpose of attracting multicast traffic to the node to enable the caching. No subscribers are connected to it.

```
*A:ALA-48config>service>vpls# info
--
 igmp-snooping
 no shutdown
 exit
 video-interface "vi" create
 video-sap 1
 exit
 address 3.3.3.3/32
 no shutdown
 exit
 multicast-info-policy multicastinfopolicyname
 sap 3/2/13:21 create
 igmp-snooping
 static
 group 234.0.0.1
 starg
 exit
 exit
 exit
 exit
--
*A:ALA-48config>service>vpls#
```

The services available on the video interface address 3.3.3.3 are defined in the video policy in which the RET server was enabled.
For the RET server in an IES or VPRN, these commands within the service instance perform the following tasks to complete the RET server configuration:

- Associate the service with `multicast-info-policy multicastinfopolicyname`.
- Create the video interface “vi” and assign IP address 3.3.3.3.
- Create video SAP and associate it with video group 1.
- Creates a static IGMP join on video-interface “vi” for the channel 234.0.0.1.

*A:ALA-48config>service>ies# info
----------------------------------------------
  video-interface "vi" create
     video-sap 1
     address 3.3.3.3/32
     no shutdown
     exit
  multicast-info-policy multicastinfopolicyname
  pim
     interface "vi"
     exit
  igmp
     interface "vi"
     static
        group 234.0.0.1
        starg
     exit
  exit
----------------------------------------------
*A:ALA-48config>service>ies#

The services available on the video interface address 3.3.3.3 are defined in the video policy in which the RET server was enabled.
Configuring the FCC Server

This section provides an example configuration for the FCC server. The configuration example has the following assumptions:

- A single ISA-MS in slot 2/1 in video group 1.
- A single channel 234.0.0.1 within multicast bundle “b1” with an administrative bandwidth of 8000 Kbps defined in `multicast-info-policy multicastinfopolicyname`.
- The FCC mode is burst with a rate 130% of nominal for HD, 200% for SD, and disabled for PIP.
- Local FCC server address is 3.3.3.3 with destination port is UDP 4098.

**CLI Syntax:**

```
config>isa
 video-group video-group-id [create]
 fcc-server
 no shutdown
```

The first step in the configuration is to configure video group 1 enabling the RET server and the ISA-MS hardware.

```
*A:ALA-48config>isa# info
--
 video-group 1 create
 fcc-server
 primary 2/1
 no shutdown
 exit
--
*A:ALA-48config>isa#

*A:ALA-48config>card>mda# info
--
 mda-type isa-ms
--
*A:ALA-48config>card>mda#
```

Note the `fcc-server` command in the above output enables the FCC server on the video group.
The channel parameters for 234.0.0.1 are configured in **multicast-info-policy**
**multicastinfopolicyname**. The channel configuration includes the administrative bandwidth and
the channel’s association with video group 1.

```
*A:ALA-48configmcast-mgmtmcast-info-picy# info
--
bundle "default" create
 local-fcc-port 4098
exit
bundle "b1" create
 admin-bw 8000
 video
 video-group 1
 fcc-server
 fcc-channel-type hd
exit
 channel "234.0.0.1" "234.0.0.1" create
exit
exit
video-policy
 video-interface 3.3.3.3 create
 rt-rate 5
 hd
 fcc-server mode burst
 fcc-burst 30
 exit
 sd
 fcc-server mode burst
 fcc-burst 100
 exit
 pip
 no fcc-server
 exit
exit
--
A:ALA-48configmcast-mgmtmcast-info-picy#
```

Note the **local-fcc-port** command in the bundle “default” defines the destination UDP port used to reach the FCC server on the service where the multicast information policy is applied. The FCC server port can only be defined in the bundle “default” and applies for all bundles in the policy. If no value is specified, the default is used.

In the bundle “b1”, the **fcc-server** command enables the FCC server for all channels in the bundle, and the **fcc-channel-type hd** command sets the channel type for all channels in the bundle to “hd” (High Definition).

In the video policy context above, the **fcc-server** commands for the video interface 3.3.3.3 enables the FCC server on that interface for all channel types “hd” (High Definition), “sd” (Standard Definition) whereas the **no fcc-server** command disables the FCC for “pip” (Picture-in-Picture) channels on the video interface. The **fcc-burst** command in the policy indicates that the burst rate over the nominal rate for the channel type; HD at 130% (30% over nominal) and SD at 200% (100% over nominal).
For the FCC server in a VPLS, the following commands within the service instance perform the following tasks to complete the FCC server configuration:

- Associate the VPLS with **multicast-info-policy** `multicastinfopolicyname`.
- Create the video interface “vi”.
- Create video SAP and associate it with video group 1.
- Assigns an IP address 3.3.3.3 to the video interface.
- Create a static IGMP join on SAP 3/2/13:21 for the channel 234.0.0.1.

Note that SAP 3/2/13:21 is a dummy SAP with the only purpose of attracting multicast traffic to the node to enable the caching. No subscribers are connected to it.

```plaintext
*ALA-48# info

igmp-snooping
no shutdown
exit
video-interface "vi" create
 video-sap 1
 exit
 address 3.3.3.3/32
 no shutdown
exit
multicast-info-policy multicastinfopolicyname
 sap 3/2/13:21 create
 igmp-snooping
 static
 group 234.0.0.1
 starg
 exit
 exit
exit
exit

*ALA-48#
```

The services available on the video interface address 3.3.3.3 are defined in the video policy in which the FCC server was enabled.
For the FCC server in an IES or VPRN, the following commands within the service instance perform the following tasks to complete the FCC server configuration:

- Associate the service with **multicast-info-policy** `multicastinfopolicyname`.
- Create the video interface “vi” and assign IP address 3.3.3.3.
- Create video SAP and associate it with video group 1.
- Creates a static IGMP join on video-interface “vi” for the channel 234.0.0.1.

```
*A:ALA-49configserviceies# info
--
 video-interface "vi" create
 video-sap 1
 exit
 address 4.4.4.4/32
 no shutdown
 exit
--
*A:ALA-49configserviceies#

*A:ALA-48configrouter# info

 multicast-info-policy multicastinfopolicyname
 pim
 interface "vi"
 exit
 exit
 igmp
 interface "vi"
 static
 group 234.0.0.1
 starg
 exit
 exit

*A:ALA-48configrouter#
```

The services available on the video interface address 3.3.3.3 are defined in the video policy in which the FCC server was enabled.
Logging and Accounting Collection for Video Statistics

The following output displays a configuration example used in logging and accounting for video.

```
*A:SR-7/Dut-C>config>log# info
--
file-id 1
 location cf3:
 exit
accounting-policy 1
 shutdown
 record video
 collection-interval 5
 to file 1
 exit
... *
--

*A:SR-7/Dut-C>config>log#
```

Use the following CLI to enable logging and accounting to a service to collect stats for that particular service.

Example:

```
*A:SR-7/Dut-C>config>service>ies# video-interface "vi" accounting-policy 1
*A:SR-7/Dut-C>config>service>ies# info
 video-interface "vi" create
 accounting-policy "1"
 exit
```

Start ing stats collection can be enabled by executing a `no shutdown` command on the accounting policy. This starts the recording of stats and the stats will be written in an act-collect directory and a `shutdown` command on the accounting policy will move the recorded file to act directory.
Configuring ADI Components with CLI

This section provides information to configure ADI using the command line interface.

Topics in this section include:

• Configuring the RET Client on page 592
• Configuring a Video Group on page 593
• Configuring NTP on page 594
• Configuring Channel Parameters on page 594
• Configuring Service Entities on page 595
Configuring ADI in CLI

This section provides an example configuration for the ADI splicer. The configuration example makes the following assumptions:

- A single ISA-MS is configured in slot 2/1 in video group 1.
- The NTP server for the router is 192.168.15.221.
- A single channel main 234.5.6.140 within multicast bundle “b1” is defined in the `multicast-info-policy` `multicastinfopolicyname` context.
- IES service 100 is a Layer 3 service in which ADI will be performed.
- The video interface in IES 100 is 100.100.0.254/8
- The ad server address is 10.200.14.2
- The splicer’s local addresses used to communicate with the ad server are 100.1.1.2 for control traffic and 100.1.1.3 for data traffic.
- For the SCTE 30 communication in the example, the main channel is named 228 with (S,G) = (195.168.9.10,234.4.5.228) and the zone channel is named 228-1with (S,G) = (100.100.100.1,234.4.5.228).
- Must have an IGMP static entry for the network channel (S,G) on the video-interface to attract the network traffic to the video interface.
- Must have the video-interface enabled in PIM.
Configuring a Video Group

The first step in the configuration is to configure a video group (video-group-id = 1) and enabling ad insertion and the ISA-MS hardware. Note the **ad-insert** command enables the ADI splicer on the video group.

```
A:ALA-49>config>isa# info
--
...
 video-group 1 create
 description "Video Group 1"
 ad-insert
 primary 7/2
 no shutdown
 exit
...
--
A:ALA-49>config>isa#
```

The following output shows the card and MDA configuration.

```
A:ALA-49>config>card# info
--
 card-type iom2-20g
 mda 1
 shutdown
 mda-type isa-ms
 exit
 mda 2
 mda-type isa-ms
 exit
--
A:ALA-49>config>card#
```
Configuring NTP

NTP is required on the splicer to ensure that time is synchronized between it and the ad server.

```
A:ALA-49>config>system>time# info

ntp
 no authentication-check
ntp-server
 server 192.168.15.221
 no shutdown
exit
...

A:ALA-49>config>system>time#
```

Configuring Channel Parameters

The channel parameters for 234.4.5.228 are configured in the `multicast-info-policy` `multicastinfopolicyname` context. For ADI, the channel configuration required is the channel’s association with video group 1.

```
*A:ALA-49>config>mcast-mgmt# info

...
 multicast-info-policy "multicastinfopolicyname" create
 bundle "b1" create
 video
 video-group 1
exit
channel "234.4.5.228" "234.4.5.228" create
exit
bundle "default" create
exit
exit
...

*A:ALA-49>config>mcast-mgmt#
```
Configuring Service Entities

In addition to the commands needed to configure a service, the following commands within the service instance are used to perform the following ADI configuration steps. This example uses an IES service context.

- Associate IES 100 with **multicast-info-policy** `multicastinfopolicyname`.
- Create the video interface `video-100`.
- Create a video SAP and associate it with video group 1.
- Assigns an IP address 100.100.0.254 to the video interface and subnet 100.0.0.0/8.
- Name the main channel \((S,G) = (195.168.9.10,234.4.5.228)\) “228” and the zone channel \((S,G) = (100.100.100.1,234.4.5.228)\) “228-1”.
- Configure the ad server (address = 10.200.14.2) and create IP addresses within the video interface subnet for SCTE 30 control traffic (100.1.1.2) and data traffic (100.1.1.3).
- The control and data addresses must be in the video interface subnet.

```
*A:ALA-49>config>service>ies# info
--
...
video-interface "video-100" create
 video-sap 1
 exit
 address 100.100.0.254/8
 adi
 channel 234.4.5.228 source 195.168.9.10 channel-name "228"
 scte35-action drop
 zone-channel 234.4.5.228 source 100.100.100.1 adi-channel-name "228-1"
 exit
 scte30
 ad-server 10.200.14.2
 local-address control 100.1.1.2 data 100.1.1.3
 exit
 no shutdown
 exit
 no shutdown
--
*A:ALA-49>config>service>ies#
```

Note that the source address (100.100.100.1) for the zone channel \((S,G)\) and the local addresses (100.1.1.2 and 100.1.1.3) used for SCTE 30 communication must all be within the video interface subnet (100.0.0.0/8).

Connections are accepted from multiple ad-servers. This can be used for ad server redundancy.
If the main channel were a (*,G), the source address of 0.0.0.0 would have been specified.

Additional zone channels with distinct names could be configured within the service instance. In a practical configuration, the G for the main channel (234.4.5.228) will be the same for G in the zone channel (S,G) because the STBs will join the (*,G) at the A-server and D-server.

Configuring ADI for a VPRN service instance uses the same commands within the VPRN service context.
Video Command Reference

This section provides a command reference for the CLI commands for IP-TV video applications. Topics include:

- IP-TV Command Hierarchies on page 598
  - Hardware Commands on page 598
  - Video Group Commands on page 598
  - Video Policy Video Commands on page 598
  - Bundle and Channel Commands on page 600
  - Service Video Interface Commands on page 602
  - Show Commands on page 605
  - Clear Commands on page 605
  - Debug Commands on page 606
- Video Services Commands on page 607
IP-TV Command Hierarchies

Hardware Commands

```
config
 — [no] card slot-number
 — card-type card-type
 — no card-type
 — [no] mda mda-slot
 — mda-type mda-type
 — no mda-type
```

Video Group Commands

```
config
 — isa
 — lns-group lns-group-id [create]
 — no lns-group lns-group-id
 — description description-string
 — no description
 — mda mda-id [drain]
 — no mda mda-id
 — [no] shutdown
 — video-group video-group-id [create]
 — no video-group video-group-id
 — [no] ad-insert
 — [no] analyzer
 — description description-string
 — no description
 — [no] fcc-server
 — [no] local-rt-server
 — [no] primary mda-id
 — resv-ret resv-ret
 — [no] shutdown
 — [no] stream-selection
```

Video Policy Video Commands

```
config
 — mcast-management
 — multicast-info-policy policy-name [create]
 — no multicast-info-policy policy-name
 — video-policy
 — video-interface ip-address [create]
 — no video-interface ip-address
 — hd
 — dent-threshold threshold
 — no dent-threshold
 — fcc-burst burst-percentage
```
Video CLI Tree

- no fcc-burst
- fcc-server [mode {burst | dent | hybrid}]
- no fcc-server
- local-rt-server
- no local-rt-server
- mc-handover percentage
- no mc-handover
- rt-rate rt-burst-percentage
- no rt-rate

- max-sessions sessions
- no max-sessions
- pip
  - dent-threshold threshold
  - no dent-threshold
  - fcc-burst burst-percentage
  - no fcc-burst
  - fcc-server [mode {burst | dent | hybrid}]
  - no fcc-server
  - local-rt-server
  - no local-rt-server
  - mc-handover percentage
  - no mc-handover
  - rt-rate rt-burst-percentage
  - no rt-rate

- rt-mcast-reply [count count] [interval milliseconds] [hold-time milliseconds]
- no rt-mcast-reply
- rt-payload-type payload-type
- no rt-payload-type
- rt-rate rt-burst-percentage
- no rt-rate
- sd
  - dent-threshold threshold
  - no dent-threshold
  - fcc-burst burst-percentage
  - no fcc-burst
  - fcc-server [mode {burst | dent | hybrid}]
  - no fcc-server
  - local-rt-server
  - no local-rt-server
  - mc-handover percentage
  - no mc-handover
  - rt-rate rt-burst-percentage
  - no rt-rate

- subscriber-bw-limit bandwidth
- no subscriber-bw-limit
Bundle and Channel Commands

config
  — mcast-management
    — multicast-info-policy policy-name [create]
    — no multicast-info-policy policy-name
      — bundle bundle-name [create]
      — no bundle bundle-name
        — admin-bw kbps
        — no admin-bw
    — bw-activity {use-admin-bw | dynamic [falling-delay seconds]} [black-hole-rate kbps]
    — no bw-activity
    — channel ip-address [ip-address] [create]
    — no channel ip-address [ip-address]
      — admin-bw kbps
      — no admin-bw
    — video
      — fcc-channel-type {hd | sd | pip}
      — no fcc-channel-type
      — fcc-min-duration time
      — no fcc-min-duration
      — fcc-server [disable]
      — no fcc-server
      — local-fcc-port port
      — no local-fcc-port
      — local-rt-port port
      — no local-rt-port
      — local-rt-server [disable]
      — no local-rt-server
      — reorder-audio time
      — no reorder-audio
      — rt-buffer-size rt-buffer-size
      — no rt-buffer-size
      — rt-server disable
      — rt-server ip-address port port-num
      — no rt-server
      — video-group video-group-id
      — video-group disable
      — no video-group
    — source-override ip-address [create]
    — no source-override ip-address
      — admin-bw kbps
      — no admin-bw
      — video
        — fcc-channel-type {hd | sd | pip}
        — no fcc-channel-type
        — fcc-min-duration time
        — no fcc-min-duration
        — fcc-server [disable]
        — no fcc-server
        — local-fcc-port port
        — no local-fcc-port
        — local-rt-port port
        — no local-rt-port
Video CLI Tree

---

no local-rt-port
local-rt-server [disable]
no local-rt-server
reorder-audio time
no reorder-audio
rt-buffer-size rt-buffer-size
no rt-buffer-size
rt-server disable
rt-server ip-address port port-num
no rt-server
video-group video-group-id
no video-group

---

video
  fcc-channel-type {hd | sd | pip}
  no fcc-channel-type
  fcc-min-duration time
  no fcc-min-duration
  fcc-server [disable]
  no fcc-server
  local-fcc-port port
  no local-fcc-port
  local-rt-port port
  no local-rt-port
  local-rt-server [disable]
  no local-rt-server
  reorder-audio time
  no reorder-audio
  rt-buffer-size rt-buffer-size
  no rt-buffer-size
  rt-server disable
  rt-server ip-address port port-num
  no rt-server
  source-port port-num
  no source-port
  video-group video-group-id
  no video-group
  video-group disable
  no video-group
Service Video Interface Commands

VPLS Commands

```
config>service>vpls service-id
 — multicast-info-policy policy-name
 — no multicast-info-policy
 — video-interface ip-int-name [create]
 — no video-interface ip-int-name
 — [no] address ip-address/mask
 — cpu-protection policy-id
 — no cpu-protection
 — description description-string
 — no description
 — gateway-ip ip-address
 — no gateway-ip
 — multicast-service service-id
 — no multicast-service
 — rt-client-src-address ip-address
 — no rt-client-src-address
 — [no] shutdown
 — video-sap video-group-id
 — no video-sap
 — egress
 — filter ip ip-filter-id
 — no filter
 — qos egress-qos-policy-id
 — no qos
 — ingress
 — filter ip ip-filter-id
 — no filter
 — qos ingress-qos-policy-id
 — no qos
```
IES Commands

```
config>service>ies service-id
 — video-interface ip-int-name [create]
 — no video-interface ip-int-name
 — [no] address ip-address/mask
 — adi
 — channel mcast-address source ip-address [channel-name channel-name]
 — no channel mcast-address source ip-address
 — description description-string
 — no description
 — scte35-action {forward | drop}
 — zone-channel mcast-address source ip-address adi-channel-name channel-name
 — no zone-channel mcast-address source ip-address
 — scte30
 — [no] ad-server ip-address
 — local-address control ip-address data ip-address
 — no local-address
 — [no] shutdown
 — description description-string
 — no description
 — multicast-service service-id
 — no multicast-service
 — rt-client-src-address ip-address
 — no rt-client-src-address
 — [no] shutdown
 — video-sap video-group-id
 — no video-sap
 — egress
 — filter ip ip-filter-id
 — no filter
 — qos egress-qos-policy-id
 — no qos
 — ingress
 — filter ip ip-filter-id
 — no filter
 — qos ingress-qos-policy-id
 — no qos
```
VPRN Commands

Note that VPRN service commands are only applicable to the 7750 SR-Series platforms.

```
config>service>vprn service-id
 — video-interface ip-int-name [create]
 — no video-interface ip-int-name
 — [no] address ip-address/mask
 — adi
 — channel mcast-address source ip-address [channel-name channel-name]
 — no channel mcast-address source ip-address
 — description description-string
 — no description
 — scte35-action {forward | drop}
 — zone-channel mcast-address source ip-address adi-channel-name channel-name
 — no zone-channel mcast-address source ip-address
 — scte30
 — [no] ad-server ip-address
 — local-address control ip-address data ip-address
 — no local-address
 — [no] shutdown
 — description description-string
 — no description
 — multicast-service service-id
 — no multicast-service
 — rt-client-src-address ip-address
 — no rt-client-src-address
 — [no] shutdown
 — video-sap video-group-id
 — no video-sap
 — egress
 — filter ip ip-filter-id
 — no filter
 — qos ingress-qos-policy-id
 — no qos
 — ingress
 — filter ip ip-filter-id
 — no filter
 — qos ingress-qos-policy-id
 — no qos
```
Show Commands

show
   — isa
      — video-group [video-group-id]

show
   — video
      — adi [service service-id] [interface ip-int-name] [address mcast-address] [source ip-address]
          [detail]
      — channel [service service-id] [interface ip-int-name] [address mcast-address]
          [source ip-address] [summary|detail] [pid|config|analyzer[time-interval]]
      — session [service service-id] [interface ip-int-name] [address mcast-address] [source ip-address]
      — splice-status [service service-id] [interface ip-int-name] [address mcast-address] [source ip-address]
          [summary|detail]
      — channel [service service-id] [interface ip-int-name] [address mcast-address] [source ip-address]
          [summary|detail]
      — interface [service service-id] [interface ip-int-name] [stats [rt-server|fcc-server]]
      — interface [service service-id] [interface ip-int-name] summary
      — rtp-session [service service-id] [source ip-address] [detail [stats [rt-server|fcc-server]]]
      — rtp-session [service service-id] summary

Clear Commands

clear
   — video
      — id service-id
      — session all
      — session client srcAddr
      — statistics
         — id service-id
            — adi-session
            — channel all [rt-client] [rt-server] [fcc-server] [ad-insert]
            — channel grp-address [source srcAddr] [rt-client] [rt-server] [fcc-server]
               [ad-insert]
            — interface ip-int-name [address ip-address] rt-client [rt-server] [fcc-server]
               [ad-insert]
            — session all [rt-server] [fcc-server]
            — session client srcAddr [rt-server] [fcc-server]
         — isa video-group-id [mda-id]
Service Video Interface Commands

Debug Commands

debug
  — [no] service
     — id service-id
  — [no] video-interface video-ip-int-name
  — adi [zone-channel-name]
  — no adi
  — adi-packet [zone-channel-name] [type {type-name | all}]
  — no adi-packet
  — fcc-server [client client-ip [source-port src-port]]
  — no fcc-server
  — packet-rx [client client-ip [source-port src-port]] [fcc-join] [fcc-leave] [ret-nack]
  — no packet-rx
  — packet-tx [group grp-addr [source srcAddr]] [ret-nack]
  — no packet-tx
  — rt-client [group group-addr]
  — no rt-client
  — rt-server [client client-ip [source-port src-port]]
  — no rt-server
  — sg [group grp-addr [source src-addr]]
  — no sg
Video Services Commands

- Generic Commands on page 607
- Hardware Commands on page 609
- ins-group ins-group-id [create] on page 612
- Multicast Info Policy Commands on page 616
- Video Policy Commands on page 623
- Bundle and Channel Commands on page 630
- Service Video Interface Commands on page 635
- Show Commands on page 643
- Clear Commands on page 659
- Debug Commands on page 662

**GENERIC COMMANDS**

description

**Syntax**

description description-string

**no description**

**Context**

config>isa>video-group
config>service>ies>video-interface
config>service>vpls>video-interface
config>service>vprn>video-interface
config>service>ies>video-interface>adi>channel
config>service>vpls>video-interface>adi>channel
config>service>vprn>video-interface>adi>channel

**Description**

This command creates a text description stored in the configuration file for a configuration context.

The **description** command associates a text string with a configuration context to help identify the context in the configuration file.

The **no** form of this command removes any description string from the context.

**Default**

No description is associated with the configuration context.

**Parameters**

description-string — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters excluding double quotes. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
shutdown

**Syntax**  
`[no] shutdown`

**Context**  
- `config>isa>video-group`
- `config>service>ies>video-interface`
- `config>service>vpls>video-interface`
- `config>service>vprn>video-interface`
- `config>service>ies>video-interface>adi`
- `config>service>vpls>video-interface>adi`
- `config>service>vprn>video-interface>adi`

**Description**  
The `shutdown` command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the `no shutdown` command.

The `shutdown` command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they can be deleted.

Unlike other commands and parameters where the default state is not indicated in the configuration file, `shutdown` and `no shutdown` are always indicated in system generated configuration files.

**Default**  
no shutdown
HARDWARE COMMANDS

**card**

**Syntax**
```
card slot-number
no card slot-number
```

**Context**
```
config
```

**Description**
This mandatory command enables access to the chassis card Input/Output Module (IOM), slot, and MDA CLI context.

The **no** form of this command removes the card from the configuration. All associated ports, services, and MDAs must be shutdown.

**Default**
No cards are configured.

**Parameters**
```
slot-number — The slot number of the card in the chassis.
```

**Values**
```
1 — 10 depending on chassis model.
SR-1: slot-number = 1
SR-7: slot-number = 1 — 5
SR-12: slot-number = 1 — 10
ESS-1: slot-number = 1
ESS-6: slot-number = 1 — 4
ESS-7: slot-number = 1 — 5
ESS-12: slot-number = 1 — 10
```

**card-type**

**Syntax**
```
card-type card-type
no card-type
```

**Context**
```
config>card
```

**Description**
This mandatory command adds an IOM to the device configuration for the slot. The card type can be preprovisioned, meaning that the card does not need to be installed in the chassis.

A card must be provisioned before an MDA or port can be configured.

A card can only be provisioned in a slot that is vacant, meaning no other card can be provisioned (configured) for that particular slot. To reconfigure a slot position, use the **no** form of this command to remove the current information.

If a card is inserted that does not match the configured card type for the slot, then a medium severity alarm is raised. The alarm is cleared when the correct card type is installed or the configuration is modified.
A high severity alarm is raised if an administratively enabled card is removed from the chassis. The alarm is cleared when the correct card type is installed or the configuration is modified. A low severity trap is issued when a card is removed that is administratively disabled.

Because the IOM-3 integrated card does not have the capability in install separate MDAs, the configuration of the MDA is automatic. This configuration only includes the default parameters such as default buffer policies. Commands to manage the MDA such as `shutdown`, named buffer pool etc will remain in the MDA configuration context.

An appropriate alarm is raised if a partial or complete card failure is detected. The alarm is cleared when the error condition ceases.

The `no` form of this command removes the card from the configuration.

**Default**
No cards are preconfigured for any slots.

**Parameters**
- `card-type` — The type of card to be configured and installed in that slot.
  - **Values**
    - 7750 SR: iom-20g, iom2-20g, iom-20g-b, iom3-xp
    - 7450 ESS: iom-20g, iom-20g-b, iom3-xp

### mda

**Syntax**
```
mda mda-slot
no mda mda-slot
```

**Context**
`config>card`

**Description**
This mandatory command enables access to a card’s MDA CLI context to configure MDAs.

**Default**
No MDA slots are configured by default.

**Parameters**
- `mda-slot` — The MDA slot number to be configured. Slots are numbered 1 and 2. On vertically oriented slots, the top MDA slot is number 1, and the bottom MDA slot is number 2. On horizontally oriented slots, the left MDA is number 1, and the right MDA slot is number 2.
  - **Values**
    - 1, 2

### mda-type

**Syntax**
```
mda-type mda-type
no mda-type
```

**Context**
`config>card>mda`

**Description**
This mandatory command provisions a specific MDA type to the device configuration for the slot. The MDA can be preprovisioned but an MDA must be provisioned before ports can be configured. Ports can be configured once the MDA is properly provisioned.

A maximum of two MDAs can be provisioned on an IOM. Only one MDA can be provisioned per IOM MDA slot. To modify an MDA slot, shut down all port associations.
An MDA can only be provisioned in a slot if the MDA type is allowed in the MDA slot. An error message is generated when an MDA is provisioned in a slot where it is not allowed.

A medium severity alarm is generated if an MDA is inserted that does not match the MDA type configured for the slot. This alarm is cleared when the correct MDA is inserted or the configuration is modified.

A high severity alarm is raised when an administratively enabled MDA is removed from the chassis. This alarm is cleared if the either the correct MDA type is inserted or the configuration is modified. A low severity trap is issued if an MDA is removed that is administratively disabled.

An alarm is raised if partial or complete MDA failure is detected. The alarm is cleared when the error condition ceases.

All parameters in the MDA context remain and if non-default values are required then their configuration remains as it is on all existing MDAs.

The no form of this command deletes the MDA from the configuration. The MDA must be administratively shut down before it can be deleted from the configuration.

The no form of this command deletes the MDA from the configuration. The MDA must be administratively shut down before it can be deleted from the configuration.

Default
No MD types are configured for any slots by default.

Parameters

```
mda-type — The type of MDA selected for the slot position.

7750: m60-10/100eth-tx, m10-1gb-sfp, m16-oc12/3-sfp, m8-oc12/3-sfp, m16-oc3-sfp, m8-oc3-sfp, m4-oc48-sfp, m1-oc192, m5-1gb-sfp, m12-chds3, m1-choc12-sfp, m1-10gb, m4-choc3-sfp, m2-oc48-sfp, m20-100eth-sfp, m20-1gb-tx, m2-10gb-xfp, m4-atmoc12/3-sfp, m16-atmoc3-sfp, m20-1gb-sfp, m4-chds3, m1-10gb-xfp, vsm-cca, 5-1gb-sfp-b, m10-1gb-sfp-b, m4-choc3-as-sfp, m10-1gb+1-10gb, isa-ipsec, m1-choc12-as-sfp, m12-chds3-as, m4-chds3-as, m10-1gb-hs-sfp, m1-10gb-hs-xfp, m4-choc3-ces-sfp, m1-choc3-ces-sfp, m4-10gb-xfp, m2-10gb-xfp, m1-10gb-xfp, m10-1gb-xfp-sfp, m20-1gb-xfp-sfp, m20-1gb-xp-tx, m1-choc12-ces-sfp, imm24-1gb-xfp-sfp, imm24-1gb-xfp-tx, imm4-10gb-xfp-xfp, imm2-10gb-xfp-xfp, imm4-10gb-xp-xfp, imm2-10gb-xp-xfp, isa-ms

7450: m60-10/100eth-tx, m10-1gb-sfp, m16-oc12/3-sfp, m8-oc12/3-sfp, m16-oc3-sfp, m4-oc48-sfp, m1-10gb, m2-oc48-sfp, m20-100eth-sfp, m20-1gb-tx, m2-10gb-xfp, m20-1gb-sfp, m1-10gb-sfp, vsm-cca, m5-1gb-sfp-b, m10-1gb-sfp-b, m10-1gb+1-10gb, m10-1gb-hs-sfp, m1-10gb-hs-sfp, m4-10gb-xfp, m2-10gb-xfp, m1-10gb-xfp, m10-1gb-xfp-sfp, m20-1gb-xfp-sfp, m20-1gb-xp-xfp, m1-10gb-xp-xfp, m10-1gb-xp-xfp-sfp, m20-1gb-xp-xfp-sfp, m20-1gb-xp-tx, m1-choc12-ces-sfp, imm24-1gb-xfp-sfp, imm24-1gb-xfp-tx, imm4-10gb-xfp-xfp, imm2-10gb-xfp-xfp, imm4-10gb-xp-xfp, imm2-10gb-xp-xfp, isa-ms
```
LNS GROUP COMMANDS

Ins-group

Syntax

**Ins-group** ins-group-id [create]
**no Ins-group** ins-group-id

Context config>isa

Description This command configures the ISA LNS group.

Parameters ins-group-id — Specified the LNS group ID.

Values 1 — 4

create — Keyword required when first creating the configuration context. Once the context is created, one can navigate into the context without the create keyword.

mda

Syntax

**mda** mda-id [drain]
**no mda** mda-id

Context config>isa>Ins-group

Description This command configures an ISA LNS group MDA.

Parameters mda-id — Specifies the slot and MDA number for the primary video group ISA.

Values slot/mda

- slot 1 — 10 (depending on the chassis model)
- mda 1 — 2
**video-group**

**Syntax**

video-group video-group-id [create]

no video-group video-group-id

**Context**

cfg>isa

**Description**

This command configures an ISA video group.

**Parameters**

video-group-id — Specifies a video group ID.

**Values**

1 — 4

create — Keyword required when first creating the configuration context. Once the context is created, one can navigate into the context without the create keyword.

**ad-insert**

**Syntax**

[no] ad-insert

**Context**

cfg>isa>video-group

**Description**

This command enables the ad insert server for the group. Ad insertion cannot be enabled if an FCC server or local RT server is enabled.

The no form of the command disables the server.

**analyzer**

**Syntax**

[no] analyzer

**Context**

cfg>isa>video-group

**Description**

This command specifies whether or not the video analyzer is enabled for all streams on this video group.

The no form of the command disables the analyzer for the group.

**Default**

no analyzer

**fcc-server**

**Syntax**

[no] fcc-server

**Context**

cfg>isa>video-group
Description: This command enables the FCC server capability for the ISA video group. FCC server cannot be enabled if ad insertion or the local RET server is enabled.

FCC Server parameters can be configured in a multicast information policy or a service, but the parameters will have no effect if the FCC server is disabled or if the video group is administratively disabled (shutdown).

The no form of the command disables the FCC server.

Default: no fcc-server

local-rt-server

Syntax: [no] local-rt-server

Context: config>isa>video-group

Description: This command enables the local RET server for the group. A local RET server cannot be enabled if an FCC server or ad insertion is enabled.

The no form of the command disables the server.

primary

Syntax: [no] primary mda-id

Context: config>isa>video-group

Description: This command configures the primary video group ISA. Only one primary can be configured per video group when ad insertion is enabled. The maximum number of primaries per video-group for FCC and RD is 4.

Parameters:

- mda-id — Specifies the slot and MDA number for the primary video group ISA.
  - slot 1 — 10 (depending on the chassis model)
  - mda 1 — 2

resv-ret

Syntax: resv-ret resv-ret

Context: config>isa>video-group

Description: This command provides a mechanism to reserve an explicit amount of egress bandwidth for RET for all the ISAs within a video group. If the amount of egress bandwidth is less than the reserved amount, FCC requests are discarded and only RET requests processed. The bandwidth is dynamically adjusted per ISA within the video group if an ISA becomes operational/non-operational within the group.
stream-selection

Syntax        [no] stream-selection
Context       config>isa>video-group
Description   This command specifies whether or not stream selection is enabled on this video group. The no form of the command disables stream-selection for the group.

Default       no stream-selection
MULTICAST INFO POLICY COMMANDS

multicast-info-policy

Syntax

multicast-info-policy policy-name [create]

no multicast-info-policy policy-name

Context

config>mcast-management

Description

This command configures a multicast information policy. Multicast information policies are used to manage parameters associated with Layer 2 and Layer 3 multicast records. Multiple features use the configured information within the policy. The multicast ingress path manager uses the policy to decide the inactive and active state behavior for each multicast record using the ingress paths to the switch fabric. The egress multicast CAC function may use the policy information as a basis for allowing or disallowing downstream nodes to join multicast streams. The system’s multicast ECMP join decisions are influenced by the channel information contained within the policy.

Multicast Bundles:

A multicast information policy consists of one or multiple named bundles. Multicast streams are mapped to a bundle based on matching the destination address of the multicast stream to configured channel ranges defined within the bundles. Each policy has a bundle named ‘default’ that is used when a destination address does not fall within any of the configured channel ranges.

Each bundle has a set of default parameters used as the starting point for multicast channels matching the bundle. The default parameters may be overridden by optional exception parameters defined under each channel range. Further optional parameter overrides are possible under explicit source address contexts within each channel range.

Default Multicast Information Policy

A multicast information policy always exists with the name ‘default’ and cannot be edited or deleted. The following parameters are contained in the default multicast information policy:

Policy Description: Default policy, cannot be edited or deleted.
Bundle: default
Bundle Description: Default Bundle, cannot be edited or deleted.
Congestion-Priority-Threshold: 4
ECMP-Optimization-Limit-Threshold: 7

Bundle Defaults:

- Administrative Bandwidth: 0 (undefined)
- Preference: 0
- CAC-Type: Optional
- Bandwidth Activity: Dynamic with no black-hole rate
- Explicit Ingress SF Path: None (undefined)
- Configured Channel Ranges: None

The default multicast information policy is applied to all VPLS and VPRN services and all routing contexts until an explicitly defined multicast information policy has been mapped.

Explicit Multicast Information Policy Associations

Each VPLS service and each routing context (including VPRN routing contexts) supports an explicit association with an pre-existing multicast information policy. The policy may need to be

OS Multi-Service ISA Guide
unique per service or routing context due to the fact that each context has its own multicast address space. The same multicast channels may be and most likely will be used for completely different multicast streams and applications in each forwarding context.

Interaction with Ingress Multicast Path Management

When ingress multicast path management is enabled on an MDA, the system automatically creates a bandwidth manager context that manages the multicast path bandwidth into the switch fabric used by the ingress ports on the MDA. As routing or snooping protocols generate L2 or L3 multicast FIB records that will be populated on the MDA’s forwarding plane, they are processed though the multicast information policy that is associated with the service or routing context associated with the record. The policy will return the following information for the record to be used by the ingress bandwidth manager:

- The records administrative bandwidth (‘0’ if undefined)
- Preference level (0 to 7 with 7 being highest)
- Bandwidth activity monitoring setting (use admin bw or dynamic monitoring)
  If admin bw is indicated, will also return active and inactive thresholds
- Initial switch fabric multicast path (primary, secondary or ancillary)
  If ancillary path is indicated, will also return an SF destination threshold
- Explicit switch fabric multicast path (primary, secondary, ancillary or none)

Interaction with Egress Multicast CAC

The egress multicast CAC feature has its own multicast CAC policy that is applied to egress IP interfaces or egress VPLS interfaces. The policy contains bundles, each with their own sets of channel ranges defined. When a multicast joint event occurs on the interface, the system searches the multicast CAC policy to determine how that join event should be processed. The information returned from the CAC lookup provides the bundles allowed bandwidth and the channels administrative bandwidth. Since the allowed bundle bandwidth may change between differing egress interfaces, multiple policies with the same channel information may be needed.

With the addition of the multicast information policy, managing the CAC feature is simplified. The CAC monitor for the egress interface first searches the multicast CAC policy to determine if the multicast join event matches a configured channel range. If a match is found, it simply uses the local policy information. If a match is not found, it then searches the multicast information policy associated with the service or routing context to which the join event is associated. The multicast information policy returns the following information to the interfaces CAC manager:

- Bundle name
- Administrative bandwidth (‘0’ if undefined)
- Congestion Priority Threshold (high or low)
- CAC Type (mandatory or optional)

The CAC manager evaluates the returned results according to the following rules:

- If the returned administrative bandwidth = ‘0’, all results are ignored
- If the returned bundle name is not found in the local multicast CAC policy, all results are ignored
- The administrative bandwidth is interpreted as channel ‘bw’
- A value of ‘high’ for congestion priority threshold is interpreted as ‘class high’
- A value of ‘low’ for congestion priority threshold is interpreted as ‘class low’
- A value of ‘mandatory’ for CAC type is interpreted as ‘type mandatory’
• A value of ‘optional’ for CAC type is interpreted as ‘type optional’
• Bundle bandwidth is always derived from the local multicast CAC policy

Using the multicast information policy to store the CAC information allows a single centralized managed policy for all channel information, allowing the multicast CAC policies to only have bundle defined with the appropriate bundle bandwidth. The multicast CAC policy still may be for channel information in exception cases.

Interaction with Multicast ECMP Optimization

The multicast information policy is used by the multicast ECMP optimization function to derive each channels administrative bandwidth. The ECMP function tallies all bandwidth information for channels joined and attempts to equalize the load between the various paths to the sender. The multicast information policy returns the following information to the ECMP path manager:

3. Administrative bandwidth (‘0’ if undefined)
4. Preference (0 to 7 with 7 the highest preference value)

**Parameters**

`policy-name` — Identifies the name of the policy to be either created or edited. Each multicast information policy must be uniquely named within the system. Names of up to 32 ASCII characters are supported with the normal character restrictions.

`create` — The create keyword is required if creating a new multicast information policy when the system is configured to require the explicit use of the keyword to prevent accidental object creation. Objects may be accidentally created when this protection is disabled and an object name is mistyped when attempting to edit the object. This keyword is not required when the protection is disabled. The keyword is ignored when the multicast information policy name already exists.

**multicast-info-policy**

**Syntax**

```
multicast-info-policy policy-name
```

```
no multicast-info-policy
```

**Context**

```
config>service>ies
config>service>vpls
config>service>vprn
config>router
```

**Description**

This command overrides the default multicast information policy on a service or routing context. When the policy association is changed, all multicast channels in the service or routing context must be reevaluated.

If a multicast information policy is not explicitly associated with the service or routing context, the default multicast information policy is used when ingress multicast path management is enabled.

While a multicast information policy is associated with a service or routing context, the policy cannot be deleted from the system.

The `no` form of the command removes an explicit multicast information policy from the service or routing context and restores the default multicast information policy.

**Parameters**

`policy-name` — The policy-name parameter is required and specifies an existing multicast information policy that should be associated with the service or routing context.

**Default**

```
default
```
bundle

**Syntax**  
`bundle bundle-name [create]`
`no bundle bundle-name`

**Context**  
`config>mcast-mgmt>mcast-info-plcy`

**Description**  
The bundle command is used to create or edit channel bundles within a multicast information policy. Bundles are used for two main purposes. First, bundles are used by the multicast CAC function to group multicast channels into a common bandwidth context. The CAC function limits the ability for downstream nodes to join multicast channels based on the egress interfaces ability to handle the multicast traffic. Bundling allows multicast channels with common preference or application to be managed into a certain percentage of the available bandwidth.

The second function of bundles is to provide a simple provisioning mechanism. Each bundle within a multicast information policy has a set of default channel parameters. If each channel provisioned in to the bundle is able to use the default parameters for the bundle, the provisioning and configuration storage requirements are minimized.

Up to 31 explicit bundles may be defined within a multicast information policy (32 including the default bundle).

Once a bundle is created, the default channel parameters should be configured and the individual channel ranges should be defined. Within each channel range, override parameters may be defined that override the default channel parameters. Further overrides are supported within the channel range based on explicit source overrides.

A bundle may be deleted at anytime (except for the default bundle). When a bundle is deleted, all configuration information within the bundle is removed including multicast channel ranges. Any multicast records using the bundle should be reevaluated. Multicast CAC and ECMP managers should also be updated.

**Default Bundle**

Each multicast information policy contains a bundle named **default**. The default bundle cannot be deleted. Any multicast channel that fails to match a channel range within an explicit bundle is automatically associated with the default bundle.

The `no` form of the command removes a bundle from the multicast information policy. The default bundle cannot be removed from the policy.

**Default**

default

`bundle-name` — Specifies bundle expressed as an ASCII string with up to 16 characters and must follow normal naming conventions. If bundle-name already exists, the system will enter the bundle context for editing purposes. If bundle-name does not exist, the system will create the defined bundle in the policy and enter the bundle context for editing purposes.

`create` — The create keyword is required if creating a new multicast information policy bundle when the system is configured to require the explicit use of the keyword to prevent accidental object creation. Objects may be accidentally created when this protection is disabled and an object name is mistyped when attempting to edit the object. This keyword is not required when the protection is disabled. The keyword is ignored when the bundle name already exists.
admin-bw

Syntax admin-bw kbps
no admin-bw

Context config>mcast-mgmt>mcast-info-plcy
config>mcast-mgmt>mcast-info-plcy>channel

Description This command configures the administrative bandwidth.

Parameters kbps — Specifies the administrative bandwidth in Kbps.

Values 1 — 40000000

bw-activity

Syntax bw-activity {use-admin-bw | dynamic [falling-delay seconds]} [black-hole-rate kbps]
no bw-activity

Context config>mcast-mgmt>mcast-info-plcy>bundle
config>mcast-mgmt>mcast-info-plcy>channel

Description This command defines how the multicast ingress path manager determines the amount of bandwidth required by a multicast channel. The default setting is dynamic which causes the bandwidth manager to adjust the path bandwidth based on the current ingress multicast bandwidth. The alternative setting is use-admin-bw which causes the bandwidth manager to use the configured admin-bw associated with the channel. The use-admin-bw setting is enabled once the channels ingress bandwidth reaches the bandwidth-policy admin-bw-threshold value. The bandwidth manager uses the dynamic method until the threshold has been reached. If the ingress bandwidth falls below the threshold, the bandwidth manager reverts back to the dynamic method.

While operating in dynamic bandwidth mode, the bandwidth manager uses the falling-delay threshold to hold on to the previous highest bandwidth until the delay time has expired. This allows the bandwidth manager ignore momentary drops in channel bandwidth.

The bw-activity command in the bundle context defines how the current bandwidth is derived for all channels associated with the bundle unless the channel has an overriding bw-activity defined in the channel context. The channel context may also be overridden by the bw-activity command in the source-override context for a specific channel or channel range. The channel and source-override bw-activity settings default to ‘null’ (undefined) and have no effect unless explicitly set. The default-channel-info bw-activity default value is set to dynamic.

The use-admin-bw setting requires that the channel be configured with an admin-bw value that is not equal to ‘0’ in the same context as the bw-activity command using the setting. If use-admin-bw is defined in the default-channel-info context, then the default-channel-info admin-bw setting must not be set to ‘0’. A similar rule applies for channel and source-override bw-activity and admin-bw settings. Once a context has use-admin-bw configured, the context’s admin-bw value cannot be set to ‘0’ and the no admin-bw command will fail for that context.

The bw-activity command also supports an optional black-hole-rate kilobits-per-second keyword and parameter that defines at which current rate a channel should be placed in the black-hole state. This is intended to provide a protection mechanism against multicast channels that exceed a reasonable rate and cause outages in other channels.
The no form of the command reverts to the default parameters.

channel

**Syntax**

```
channel ip-address [ip-address] [create]
no channel ip-address [ip-address]
```

**Context**

```
config>mcast-mgmt>mcast-info-plcy>bundle
```

**Description**

This command defines explicit channels or channel ranges that are associated with the containing bundle. A channel or channel range is defined by their destination IP addresses. A channel may be defined using either IPv4 or IPv6 addresses. If a channel range is being defined, both the start and ending addresses must be the same type.

A specific channel may only be defined within a single channel or channel range within the multicast information policy. A defined channel range cannot overlap with an existing channel range.

If a channel range is to be shortened, extended, split or moved to another bundle, it must first be removed from its existing bundle.

Each specified channel range creates a containing context for any override parameters for the channel range. By default, no override parameters exist.

The no form of the command removes the specified multicast channel from the containing bundle.

**Parameters**

```
start-channel-ip-address [end-channel-ip-address]
```

— The start-channel-ip-address parameter and optional end-channel-ip-address parameters define the starting and ending destination IP addresses for a channel range.

If only the start-channel-ip-address is given, the channel ranges comprises of a single multicast channel.

If both the starting and ending address are specified, all addresses within the range including the specified address are part of the channel range.

IPv4 or IPv6 addresses may be defined. All specified addresses must be valid multicast destination addresses. The starting IP address must be numerically lower then the ending IP address. [What do we do with 224.0.0.x addresses?]

**Values**

Any valid IP multicast destination address

**Default**

None

create — The create keyword is required if creating a new multicast channel range when the system is configured to require the explicit use of the keyword to prevent accidental object creation. Objects may be accidentally created when this protection is disabled and an object name is mistyped when attempting to edit the object. This keyword is not required when the protection is disabled. The keyword is ignored when the specified channel range already exists.
Video Services Command Descriptions

source-override

**Syntax**

source-override *ip-address* [create]

no source-override *ip-address*

**Context**

config>mcast-mgmt>mcast-info-plcy>bundle>channel

**Description**

This command defines a multicast channel parameter override context for a specific multicast sender within the channel range. The specified senders IP address must be of the same type (IPv4 or IPv6) as the containing channel range.

The **no** form of the command removes the specified sender override context from the channel range.

**Default**

none

**Parameters**

*ip-address* — Specifies either an IPv4 or IPv6 address and it must be the same type as the containing channel range.

**Values**

- ipv4-address: `a.b.c.d`
- ipv6-address: `x:x:x:x:x:x:x:`  (eight 16-bit pieces)
  `x:x:x:x:d.d.d.d`
  `x - [0..FFFF]H`
  `d - [0..255]D`

**create** — The `create` keyword is required if creating a new source override when the system is configured to require the explicit use of the keyword to prevent accidental object creation. Objects may be accidentally created when this protection is disabled and an object name is mistyped when attempting to edit the object. This keyword is not required when the protection is disabled. The keyword is ignored when the specified source override IP address already exists.
**VIDEO POLICY COMMANDS**

**video-policy**

Syntax  
video-policy

Context  
config>mcast-mgmt>mcast-info-plcy

Description  
This command enables the context to configure video interfaces and video services.

**video-interface**

Syntax  
video-interface ip-address [create]  
no video-interface ip-address

Context  
config>mcast-mgmt>mcast-info-plcy>video-policy

Description  
This command creates a video interface policy context that correlates to the IP address assigned for a video interface. This interface is created in a subscriber service to which the Multicast Information Policy is assigned. If the specified IP address does not correlate to a video interface ip address, the parameters defined within this context have no effect.

The no form of the command deletes the video interface policy context.

Parameters  
*ip-address* — The IP address of a video interface provisioned within the context of a service to which the Multicast Information Policy is assigned. If the IP address does not match the IP address assigned to a video interface, the parameters defined within this context have no effect.

*create* — Mandatory keyword needed when creating a new video interface within the video policy.

**hd**

Syntax  
hd

Context  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if

Description  
This command configures properties relating to requests received by the video interface for High Definition (HD) channel requests.

Default  
none

**dent-threshold**

Syntax  
dent-threshold threshold  
no dent-threshold

Context  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>hd
This command sets the threshold value below which the FCC server will dent/drop unicast data sent to the FCC client during a fast channel change. Within the RTP extension header, the packet priority (PRI) (2 bits) and the fine-grained priority (FPRI) (3 bits) indicate the “importance” of the frame as to how essential it is to the video stream.

This parameter is only applicable if the FCC server mode is dent.

The no form of the command returns the parameter to the default value.

Default: 16 (only B frames are dropped)

Parameters:

- **threshold** — The threshold value is used by the FCC server to compare with the concatenation of the PRI and FPRI to determine whether to send the packet to the FCC client. If the PRI and FPRI expressed as a decimal integer is greater than or equal to the threshold value, the packet will be sent.

  - Values: 1 — 31

---

### fcc-burst

**Syntax**

```
fcc-burst burst-percentage
no fcc-burst
```

**Context**

```
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>hd
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>pip
```

**Description**

This command sets the burst rate at which the Fast Channel Change (FCC) server will send unicast data to the FCC client above the received rate to allow the client to catch up to the multicast stream.

This parameter is only applicable if the FCC server mode is burst.

The no form of the command returns the parameter to the default value.

**Default**: 25

**Parameters**

- **burst-percentage** — Specifies the percentage of nominal bandwidth used to catch up to the multicast stream.

  - Values:
    - HD: 0 — 100
    - SD and PIP: 0 — 600

  - **Default**: 25

---

### fcc-server

**Syntax**

```
fcc-server [mode {burst | dent | hybrid}]
no fcc-server
```

**Context**

```
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>hd
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>pip
```
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>sd

Description
This command enables the Fast Channel Change (FCC) server and sets the mode to send the FCC unicast stream.

The mode indicates how the FCC server will send information to the client. When **burst** is specified, the FCC server will send the channel at a nominally faster rate than the channel was received based on the applicable fcc-burst setting. When **dent** is specified, the FCC server will selectively discard frames from the original stream based on the applicable dent-threshold setting. If no mode is specified, burst is the default mode.

The **no** form of the command disables the FCC server at that context and subordinate contexts.

Default  
no fcc-server

Parameters
- **mode burst** — Sets the mode of the FCC server to burst when sending the channel to the FCC client.
- **mode dent** — Sets the mode of the FCC server to dent when sending the channel to the FCC client.
- **mode hybrid** — Combines the burst and dent modes.

local-rt-server

Syntax  
```
[no] local-rt-server
```

Context  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>hd  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>pip  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>sd

Description
This command enables the local retransmission server function for requests directed to the IP address.

The **no** form of the command disables the retransmission server.

Default  
no local-rt-server

mc-handover

Syntax  
```
mc-handover percentage
no mc-handover
```

Context  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>hd  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>pip  
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>sd

Description
This command sets the rate at which the Fast Channel Change (FCC) server will send unicast data to the FCC client during the handover to the multicast stream.

The **no** form of the command returns the parameter to the default value.

Parameters
- **percentage** — Specifies the percentage of nominal bandwidth.

Values
- HD: 0 — 100
- SD and PIP: 0 — 600

Default  
25
rt-mcast-reply

**Syntax**

```
rt-mcast-reply [count count] [interval milliseconds] [hold-time milliseconds]
```

**no rt-mcast-reply**

**Context**  
```
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if
```

**Description**  
This command enables the use of multicast retransmission packets by the retransmission server in response to a number of identical retransmission requests.

By default, the retransmission server replies to all retransmission requests with a unicast stream directed to the client requesting retransmission. Enabling multicast retransmission on the retransmission server is an optimization where a number of identical retransmission requests received will trigger the retransmission server to service the retransmission request with a single multicast reply stream with packets of Payload Type 33. An example of where multiple clients will request retransmission for identical packets is if there is a packet loss in the Access Network which affects multiple clients.

For clients that received the original packets or requested retransmission and had the retransmission serviced in unicast, the multicast retransmission will look like duplicate packets and discard the multicast retransmitted packets. For other clients, the multicast retransmission will look like out-of-sequence multicast packets, so the client must support reception of out of sequence multicast for multicast retransmission for multicast retransmission to be used.

The threshold value for identical retransmission requested received by the retransmission server is configured when enabling multicast retransmission along with a sample interval and a hold time. The sample interval is the elapsed time over which the retransmission requests are counted. The hold time is a quiet period after a multicast retransmission is triggered on the retransmission server where an identical retransmission request will be ignored. After the hold time expires, a new sampling interval is started. Sampling intervals will be restarted until the packets for the multicast request are cleared from the retransmission buffer.

To illustrate the threshold count, sample interval and hold time, suppose the values are 5, 100 ms and 50 ms, respectively. The first retransmission request arrives at time = 0. In one scenario, assume the fifth identical retransmission request arrives at the server at time = 60 ms. In this case, the first four retransmission requests are serviced as unicast and the arrival of the fifth retransmission request triggers a multicast retransmission. All identical retransmission requests received between time = 60 and 110 ms are ignored. At time = 110 ms, a new sampling period is started and retransmission requests are serviced in unicast unless the threshold is passed again in the new sampling period. For a second scenario, assume the fifth identical retransmission request arrives at time = 25 ms. In this scenario, the behavior is the same except the new sampling period starts at time = 75 ms even though this is before the original sampling period was set to expire.

The `no` form of the command disables retransmissions using multicast, so all retransmissions will be sent as unicast.

**Parameters**

- **count count** — Specifies the number of identical retransmission requests received for a packet in a sampling interval after which a reply will be sent as multicast Payload Type 33.

  **Values**  
  2 – 1024

  **Default**  
  5

- **interval milliseconds** — Specifies the number of milliseconds for a sampling interval.
Values 100 – 8000 ms

Default 100 ms

**hold-time milliseconds** — Specifies the number of milliseconds after a multicast reply is sent that the retransmission server will wait before starting a new sampling period

---

**rt-payload-type**

**Syntax**

```text
rt-payload-type payload-type
no rt-payload-type
```

**Context**

```
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if
```

**Description**

This command describes the format to be used by Retransmission (RT) server to send retransmission packets. The RET server interface allows the payload type within the retransmission packets to be configured.

**Default**

99 — Indicates that the frames will be sent in the RFC 4588, *RTP Retransmission Payload Format*, format.

**Parameters**

payload-type — Indicates the format expected for received retransmission packets. The value 33 indicates that the frames will be received as originally sent. A value between 96 and 127 indicates the dynamic payload type value (per RFC 3551) to be used for RFC 4588 formatted retransmission packets.

**Values**

33, 96 – 127

---

**rt-rate**

**Syntax**

```text
rt-rate rt-burst-percentage
no rt-rate
```

**Context**

```
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>hd
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>pip
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if>sd
config>mcast-mgmt>mcast-info-plcy>video-policy>video-if
```

**Description**

This command sets the rate of nominal bandwidth at which retransmission packets are sent to the retransmission client for requests directed to the IP address.

The no form of the command returns the parameter to the default value.

**Default**

5

**Parameters**

rt-burst-percentage — Specifies the percentage of nominal bandwidth to send retransmission packets.

**Values**

1—100

**Default**

5
max-sessions

Syntax: `max-sessions sessions`  
`no max-sessions`

Context: `config>mcast-mgmt>mcast-info-plcy>video-policy>video-if`

Description: This command configures the per-client maximum number of sessions.  
The `no` form of the command reverts to the default value.

Parameters:  
- `sessions` — Specifies the per-client maximum number of sessions.
  - Values: `1 — 65536`
  - Default: `256`

pip

Syntax: `pip`

Context: `config>mcast-mgmt>mcast-info-plcy>video-policy>video-if`

Description: This command enables the context within a video interface policy to configure properties relating to requests received by the video interface for Picture-in-Picture (PIP) channel requests.

Default: `none`

sd

Syntax: `sd`

Context: `config>mcast-mgmt>mcast-info-plcy>video-policy>video-if`

Description: This command enables the context within a video interface policy to configure properties relating to requests received by the video interface for Standard Definition (SD) channel requests.

subscriber-bw-limit

Syntax: `subscriber-bw-limit bandwidth`  
`no subscriber-bw-limit`

Default: `config>mcast-mgmt>mcast-info-plcy>video-policy>video-if`

Description: This command configures an egress per-subscriber bandwidth limit for the combined retransmission and Fast Channel Change (FCC) replies for requests received directed to the IP address. If the bandwidth for a request will exceed the bandwidth limit, the request is logged and dropped.  
The `no` form of the command disables enforcement of an egress bandwidth limit.
Default 4294967295

Parameters

`bandwidth` — The per-subscriber egress bandwidth limit for retransmission and FCC packets in kilobits per second expressed as an integer indicates infinity or no limit.

Values 1 — 4294967295 kbps
**BUNDLE AND CHANNEL COMMANDS**

### video

**Syntax**

```yaml
video
```

**Context**

```yaml
config>mcast-mgmt>mcast-info-plcy>bundle
config>mcast-mgmt>mcast-info-plcy>bundle>channel
config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override
```

**Description**

This command enables the context to configure video parameters.

### fcc-channel-type

**Syntax**

```yaml
fcc-channel-type {hd | sd | pip}
nof fcc-channel-type
```

**Context**

```yaml
config>mcast-mgmt>mcast-info-plcy>bundle>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override>video
```

**Description**

This command configures the channel type for the bundle/channel. The channel type is used in the video policy to set various Fast Channel Change (FCC) parameters including the type of FCC and various FCC rates.

The no form of the command returns the parameter to the default value.

**Parameters**

- **hd** — The channel type is High-Definition (HD) (Default).
- **sd** — The channel type is Standard Definition (SD).
- **pip** — The channel type is Picture in Picture (PIP).

### fcc-min-duration

**Syntax**

```yaml
fcc-min-duration time
noff ccc-min-duration
```

**Context**

```yaml
config>mcast-mgmt>mcast-info-plcy>bundle>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
```

**Description**

This command configures the minimum time duration, in milliseconds, of the Fast Channel Change (FCC) burst. The value of this object determines the starting point of the FCC burst. If the current Group of Pictures (GOP) has less than the minimum duration worth of data, FCC burst begins from the previous GOP.

The no form of the command reverts to the default value.
Default 300

Parameters time — Specifies the FCC burst minimum duration, in milliseconds.

Values 300 — 8000

```
fcc-server

Syntax fcc-server [disable]
 no fcc-server

Context config>mcast-mgmt>mcast-info-plcy>bundle>video
 config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
 config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override>video

Description This command enables Fast Channel Change (FCC) for a multicast bundle or channel. Note that additional parameters such as fcc-channel-type should also be configured to match the characteristics of the bundle/channel.

The no form of the command disables the FCC configuration for the bundle/channel context and implies the setting is inherited from a higher context or the default policy.

Default no fcc

Parameters disable — Explicitly disables the FCC server within the policy. For the default bundle within the default multicast information policy, the no form of the command and the disable keyword have the same meaning and imply that the server is disabled.

local-fcc-port

Syntax local-fcc-port port
 no local-fcc-port

Context config>mcast-mgmt>mcast-info-plcy>bundle>video
 config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
 config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override>video

Description This command configures the local port on which Fast Channel Change (FCC) requests are received. The value of this object can only be set for the default bundle and will be used by all bundles and channels.

The local-fcc-port port value is the only configuration parameter in the bundle “default” context.

The no form of the command removes the port from the video configuration.

Parameters port — Specifies a local port for FCC requests.

Values 1024 — 65535
local-rt-port

Syntax
local-rt-port port
no local-rt-port

Context
config>mcast-mgmt>mcast-info-plcy>bundle>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override>video

Description
This command configures the local port on which retransmission (RET) requests are received. The value of this object can only be set for the default bundle and will be used by all channels. The local-rt-port port value is the only configuration parameter in the bundle “default” context.

The no form of the command removes the port from the video configuration.

Parameters
port — Specifies a local port for RT requests.

Values
1024 — 65535

local-rt-server

Syntax
local-rt-server [disable]
no local-rt-server

Context
config>mcast-mgmt>mcast-info-plcy>bundle>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override>video

Description
This command enables the local retransmission server capability on the ISA video group. RET server parameters can be configured in a multicast information policy or a service, but the parameters will have no effect if the RET server is disabled or if the video group is administratively disabled (shutdown).

The no form of the command returns the parameter to the default value where the RET server is disabled on the video group.

Default
no local-rt-server

Parameters
disable — Specifies to disable the RET server.

reorder-audio

Syntax
reorder-audio time
no reorder-audio

Context
config>mcast-mgmt>mcast-info-plcy>bundle>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>video

Description
This command configures the time, in milliseconds, by which the audio packets are reordered in the ad stream.
Configuring this parameter depends on what is configured on the A Server and the GOP sizes of the network stream. Typically, this configuration should match the A Server configuration.

The **no** form of the command removes the time value from the configuration.

Parameters

- **time** — Specifies the audio reorder time, in milliseconds.
 - **Values**: 100 — 1000

rt-buffer-size

Syntax

```
rt-buffer-size  rt-buffer-size
no rt-buffer-size
```

Context

- `config>mcast-mgmt>mcast-info-plcy>bundle>channel>video`
- `config>mcast-mgmt>mcast-info-plcy>bundle>channel<source-override>video`

Description

This command configures the retransmission buffer for channels within the bundle or channel range. The **no** form of the command returns the parameter to the default value.

Default

- **300**

Parameters

- **rt-buffer-size** — Specifies the buffer size, in milliseconds, to store channel packets.
 - **Values**: 300 — 8000

rt-server

Syntax

```
rt-server disable
rt-server ip-address port port-num
no rt-server
```

Context

- `config>mcast-mgmt>mcast-info-plcy>bundle>video`
- `config>mcast-mgmt>mcast-info-plcy>bundle>channel>video`
- `config>mcast-mgmt>mcast-info-plcy>bundle>channel<source-override>video`

Description

This command enables and configures the upstream retransmission server configuration parameters. The **no** form of the command removes the upstream retransmission server configuration and implies the configuration is inherited from a higher context or from the default policy.

Default

- **no rt-server** — The upstream retransmission server settings are inherited.

Parameters

- **disable** — This keyword explicitly disables the upstream retransmission server within the policy. For the default bundle within the default Multicast Information Policy, the **no** form of the command and the disable keyword have the same meaning and imply the server is disabled.
 - **Values**: 1024 — 65535
- **ip-address** — The IP address of the upstream retransmission server.
- **port** — The UDP port to use to send RET requests to the upstream RET server.
source-port

Syntax

- source-port port-num
- no source-port

Context

config>mcast-mgmt>mcast-info-plcy>bundle>video

Description

This command configures the source port for upstream RET requests. The source-port port-num value is the only configuration parameter in the bundle “default” context. The no form of the command removes the value from the configuration.

Parameters

- port-num — Specifies the source port in the received RTP multicast stream.
 - Values: 1024 — 65535

video-group

Syntax

- video-group video-group-id
- video-group disable
- no video-group

Context

config>mcast-mgmt>mcast-info-plcy>bundle>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>video
config>mcast-mgmt>mcast-info-plcy>bundle>channel>source-override>video

Description

This command assigns a video group ID to the channel.

Parameters

- video-group-id — Specifies the identifier for this video group. The video group must have been configured in the config>isa context.
 - Values: 1 — 4
- disable — Explicitly disables the video group within the policy.
SERVICE VIDEO INTERFACE COMMANDS

video-interface

```
Syntax       video-interface ip-int-name [create]
             no video-interface ip-int-name

Context      config>service>ies
             config>service>vpls
             config>service>vprn

Description  This command creates a video interface within the service. The video interface and associated IP addresses are the addresses to which clients within the service will send requests.

The video interface must be associated with an ISA group using the video-sap command and have IP addresses for it to be functional.

The no form of the command deletes the video interface. The video interface must be administratively shut down before issuing the no video-interface command.

Default      none

Parameters   ip-int-name — Specifies the name of the video interface up to 32 characters in length. An interface name cannot be in the form of an IP address. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

create — This keyword is mandatory when creating a video interface.
```

description

```
Syntax       [no] address ip-address/mask

Context      config>service>ies>video-interface
             config>service>vpls>video-interface
             config>service>vprn>video-interface

Description  This command assigns an IP address to the video interface within the service. Video interface IP addresses are used by video service clients to direct requests for video server services. Up to 16 IP address/subnets can be defined. Note that the addresses defined must all be distinct and cannot be contained within a previously defined address.

In the VPLS context, only one IP address can be defined for a video interface.

The no form of the command deletes the IP address/subnet from the video interface.

Default      none

Parameters   ip-address — The IP address/subnet of the video interface in dotted decimal notation.

mask — The subnet mask length for the IP address expressed as an integer.
```
Video Services Command Descriptions

adi

Syntax
adi

Context
config>service>ies>video-interface
config>service>vprn>video-interface

Description
This command enables the context to configure ad insertion (ADI) for the video interface.

channel

Syntax
channel
no channel

Context
config>service>ies>video-interface>adi
config>service>vprn>video-interface>adi

Description
This command configures channel parameters for ad insertion.

Parameters

- mcast-address — Specifies the multicast address.
- source ip-address — Specifies the source IP address.
- channel-name channel-name — Specifies the channel name up to 32 characters in length.

cpu-protection

Syntax
cpu-protection
no cpu-protection

Context
config>service>vpls>video-if
config>service>ies>video-if
config>service>vprn>video-if

Description
This command assigns an existing CPU protection policy to the associated service video interface. The CPU protection policies are configured in the config>sys>security>cpu-protection>policy cpu-protection-policy-id context. The number of RTCP messages per client will be limited to the number as configured under the policy.

Default
none

Parameters

- policy-id — Specifies a CPU protection policy.

 Values
 1 — 255

scte35-action

Syntax
scte35-action {forward | drop}

Context
config>service>ies>video-interface>adi>channel
config>service>vprn>video-interface>adi>channel

Description
This command specifies whether the Society of Cable Telecommunications Engineers 35 (SCTE 35) cue avails in the stream need to be forwarded or not. When specified to forward, SCTE 35 messages will be forwarded downstream. When specified to drop, SCTE 35 messages will not be forwarded downstream. They will be still be processed for local splicing decisions.

Parameters
forward — Forwards SCTE 35 messages downstream.

drop — Drops SCTE 35 messages.

zone-channel

Syntax
zone-channel mcast-address source ip-address adi-channel-name channel-name
no zone-channel mcast-address source ip-address

Context
config>service>ies>video-interface>adi>channel
config>service>vprn>video-interface>adi>channel

Description
This command configures zone-channel parameters or ad insertion. The channel configuration along with the zone-channel configuration associates a network channel to a zone-channel and builds the store and forward relationship.

Parameters
mcast-address — Specifies the IP multicast group address for which this entry contains information.
source ip-address — Specifies the type of address to be used for a source address/
adi-channel-name channel-name — Specifies the name for this zone channel.

scte30

Syntax
scte30

Context
config>service>ies>video-interface>adi
config>service>vprn>video-interface>adi

Description
This command enables the context to configure SCTE 30 parameters.

ad-server

Syntax
[no] ad-server ip-address

Context
config>service>ies>video-interface>adi>scte30
config>service>vprn>video-interface>adi>scte30

Description
This command configures the ad server address. A TCP session will be accepted for SCTE 30 messaging only for IP addresses that appear in this configuration.

The no form of the command removes the address from the ad server configuration.

Parameters
ip-address — Specifies the IP address of the ad server.
local-address

Syntax:
local-address control ip-address data ip-address
no local-address

Context:
config>service>ies>video-interface>adi>scte30
config>service>vprn>video-interface>adi>scte30

Description:
SCTE 30 requires a TCP session per zone-channel between the ad server and splicer for control communication and it requires UDP sessions on which the video ad stream is sent. This command specifies the splicer’s control IP address to which the ad-server(s) should setup TCP connections and the data IP address to which the video ad streams should be sent.

The no form of the command removes the address information from the local address configuration.

Parameters:
control ip-address — Specifies the local IP address to which ad servers send Society of Cable Telecommunications Engineers 30 (SCTE 30) ad control streams. This address should be in the same subnet as the ip address assigned to the video interface.

The values of control ip-address and the data ip-address specify the local IP address to which ad servers send SCTE 30 ad data streams, must be set together in the same SNMP request PDU or else the set request will fail with an inconsistent value error.

data ip-address — Specifies the local IP address to which ad servers send Society of Cable Telecommunications Engineers 30 (SCTE 30) ad data streams. This address should be in the same subnet as the ip address assigned to the video interface.

The values of the control ip-address and the data ip-address specify the local IP address to which ad servers send SCTE 30 ad control streams, must be set together in the same SNMP request PDU or else the set request will fail with an inconsistent value error.

multicast-service

Syntax:
multicast-service service-id
no multicast-service

Context:
config>service>ies>video-interface
config>service>vpls>video-interface
config>service>vprn>video-interface

Description:
This command adds a multicast service association to the video interface. This parameter is not required on the video interface when the service carries both unicast and multicast traffic.

When multicast and unicast are carried in separate service instances, the operator can set this parameter on the unicast video interface to form an association with the multicast service when replies need to be sent in the multicast service instance.

When multicast and unicast are carried in separate services when a downstream device (such as a DSLAM) can perform a service cross connect between the services and performs multicast replication.

The no form of the command removes the multicast service association.

Default: none
Parameters

- **service-id** — The service ID of the associated multicast service.

Values

- **service-id**: 1 — 2147483647
- **svc-name**: 64 characters maximum

rt-client-src-address

Syntax

- `rt-client-src-address ip-address`
- `no rt-client-src-address`

Context

- `config>service>ies>video-interface`
- `config>service>vpls>video-interface`
- `config>service>vprn>video-interface`

Description

This command assigns the IP address for the retransmission client on the video interface within the service. The RET client IP address is the originating address used for communication with upstream RET servers. If no RET client address is assigned, the RT client is operationally down as the RET client configuration is incomplete.

For a VPLS service, the RET client address cannot be the same as an existing address for the video interface, but it must be an address within a video interface subnet.

For IES and VPRN, the RET client address can be the same as an existing address for the video interface or an address within a video interface subnet.

The **no** form of the command deletes the RT client address from the video interface.

Default

- none

Parameters

- **ip-address** — Specifies the IP address for the retransmission client on the video interface within the service.

video-sap

Syntax

- `video-sap video-group-id`
- `no video-sap`

Context

- `config>service>ies>video-interface`
- `config>service>vpls>video-interface`
- `config>service>vprn>video-interface`

Description

This command configures a service video interface association with a video group.

The **no** form of the command removes the video group association.

Parameters

- none

Parameters

- **video-group-id** — Specifies the video group ID number.

Values

- 1 — 4
egress

Syntax egress

Context config>service>ies>video-interface>video-sap
config>service>vpls>video-interface>video-sap
config>service>vprn>video-interface>video-sap

Description This command enables the context to configure egress parameters for the service’s video SAP.

ingress

Syntax ingress

Context config>service>ies>video-interface>video-sap
config>service>vpls>video-interface>video-sap
config>service>vprn>video-interface>video-sap

Description This command enables the context to configure in parameters for the service’s video SAP.

qos

Syntax qos policy-id
no qos

Context config>service>ies>video-interface>video-sap>egress
config>service>vpls>video-interface>video-sap>egress
config>service>vprn>video-interface>video-sap>egress
config>service>ies>video-interface>video-sap>ingress
config>service>vpls>video-interface>video-sap>ingress
config>service>vprn>video-interface>video-sap>ingress

Description This command associates an existing egress or ingress QoS policy to a video interface. If the policy-id does not exist, an error will be returned. Attempts to associate a QoS policy of the wrong type returns an error.

Only one QoS policy can be associated with a video interface at one time in the ingress and egress contexts. Attempts to associate a second QoS policy of a given type will return an error.

The no form of the command removes the QoS policy association from the video interface, and the QoS policy reverts to the default.

Default default QoS policy

Parameters policy-id — The sap-egress or sap-ingress policy ID to associate with the video interface on ingress/egress. The policy ID must already exist.

Values 1 — 65535
filter

Syntax

```text
filter ip ip-filter-id
no filter
```

Context

```text
config>service>ies>video-interface>video-sap>egress
config>service>vpls>video-interface>video-sap>egress
config>service>vprn>video-interface>video-sap>egress
config>service>ies>video-interface>video-sap>ingress
config>service>vpls>video-interface>video-sap>ingress
config>service>vprn>video-interface>video-sap>ingress
```

Description

This command associates an existing IP filter policy with an ingress or egress video SAP. Filter policies control the forwarding and dropping of packets based on the matching criteria. Filters applied to SAPs (ingress or egress) apply to all packets on the SAP. One exception is non-IP packets are not applied to the match criteria, so the default action in the filter policy applies to these packets.

The `no` form of this command removes any configured filter ID association with the SAP. The filter ID itself is not removed from the system.

Parameters

- `ip ip-filter-id` — Specifies the ID for the IP filter policy.
 - Values: 1 — 65535

gateway-ip

Syntax

```text
[no] gateway-ip ip-address
```

Context

```text
config>service>vpls>video-interface
```

Description

This command assigns a gateway IP address for the video interface within the VPLS service. Because VPLS is a Layer 2 service and the video interface is modeled like a host within the service, the video interface needs a gateway IP to send requests to devices outside of the VPLS subnet. The `no` form of the command deletes the gateway IP address from the VPLS video interface.

Parameters

- `ip-address` — Specifies the gateway IP address of the VPLS video interface.
Show Commands

video-group

Syntax
`video-group [video-group-id]`

Context
`show>isa`

Description
This command displays ISA IPSec group information.

Parameters
`ipsec-aa-group-id` — Specifies the ISA video group ID.

Sample Output

A:SR-7/Dut-C# show isa video-group
===
<table>
<thead>
<tr>
<th>ISA Video Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Group Id</td>
</tr>
<tr>
<td>Oper State</td>
</tr>
<tr>
<td>FCC Server State</td>
</tr>
<tr>
<td>RT Resv Bandwidth (Mbps)</td>
</tr>
<tr>
<td>MDA</td>
</tr>
<tr>
<td>Admin State</td>
</tr>
<tr>
<td>Used Cache (bytes)</td>
</tr>
<tr>
<td>Mem alloc failures</td>
</tr>
<tr>
<td>Failed Chnl Allocs</td>
</tr>
<tr>
<td>Bandwidth in use (kbps)</td>
</tr>
<tr>
<td>Egress stream resets</td>
</tr>
<tr>
<td>Ad stream resets</td>
</tr>
<tr>
<td>SSRC collisions</td>
</tr>
<tr>
<td>Received data octets</td>
</tr>
<tr>
<td>Transmitted data octets</td>
</tr>
<tr>
<td>TX data packet errors</td>
</tr>
<tr>
<td>Active RTCP sessions</td>
</tr>
<tr>
<td>RTCP Parse Errors</td>
</tr>
<tr>
<td>RTCP IPC Errors</td>
</tr>
<tr>
<td>RTCP Subscriber Errors</td>
</tr>
<tr>
<td>Total RET BW (Kbps)</td>
</tr>
<tr>
<td>Total FCC BW (Kbps)</td>
</tr>
<tr>
<td>Mcast RET Req for RTCP</td>
</tr>
<tr>
<td>Mcast RET Created</td>
</tr>
<tr>
<td>HighPkt pool limit hit</td>
</tr>
<tr>
<td>Pkts Lost (2-10)</td>
</tr>
<tr>
<td>Pkts Lost (21-30)</td>
</tr>
<tr>
<td>Pkts Lost (>40)</td>
</tr>
</tbody>
</table>

* indicates that the corresponding row element may have been truncated.
A:SR-7/Dut-C#
Show Commands

adi

Syntax: adi [service service-id] [interface ip-int-name] [address mcast-address] [source ip-address] [detail]

Context: show>video

Description: This command displays ad insertion channel information.

Parameters:
- service service-id — Displays information pertaining to the specified service ID.
 - Values: service-id: 1 — 2147483648
 - svc-name — a string up to 64 characters in length.
- interface ip-int-name — Displays information pertaining to the specified interface.
- address mcast-address — Displays information pertaining to the specified multicast channel address.
- source ip-address — Displays information pertaining to the source IP address.
- detail — The output displays detailed information.

channel

Syntax: channel [service service-id] [interface ip-int-name] [address mcast-address] [source ip-address] [summary|detail] [pid|config|analyzer[|interval time-interval]]

Context: show>video
 - show>video>adi

Description: This command displays video channel information.

Parameters:
- service service-id — Displays video channel information pertaining to the specified service ID.
 - Values: service-id: 1 — 2147483648
 - svc-name: A string up to 64 characters in length.
 - router-name: Base, management, vpls-management
 - Default: Base
- interface ip-int-name — Displays video channel information pertaining to the specified interface.
- address mcast-address — Displays video channel information pertaining to the specified multicast channel address.
- source ip-address — Displays video channel information pertaining to the source IP address.
- summary — The output displays summarized video channel information.
- detail — The output displays detailed video channel information.

Sample Output

*A:SR-7/Dut-C# show video channel analyzer
===
Video channel analyzer summary
Video Channel Analyzer Detail

Channel number : 1

- **Service Id**: 300
- **Interface Name**: video-300
- **Group Address**: 235.5.5.6
- **Source Address**: 20.20.13.2
- **MDI Delay Factor**: N/A
- **MDI Loss Rate**: N/A
- **Good Secs**: 1

Channel number : 2

- **Service Id**: 300
- **Interface Name**: video-300
- **Group Address**: 235.5.5.6
- **Source Address**: 192.168.2.1
- **MDI Delay Factor**: N/A
- **MDI Loss Rate**: N/A
- **Good Secs**: 2

Number of channels : 2

```
*A:*SR-7/Dut-C# show video channel analyzer detail
```

GOP Stats

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOP Length</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frames/Sec</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Frame Stats

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>Good</th>
<th>Bad</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-Frame</td>
<td>1</td>
<td>0</td>
<td>427</td>
</tr>
<tr>
<td>P-Frame</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B-Frame</td>
<td>427</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Error Stats

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Secs</th>
<th>Deg Secs</th>
<th>Imp Secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PAT Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMT Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCR Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PAT Syntax</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMT Syntax</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Secs</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Loss</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unref PID</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Loss</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Service Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>300</td>
</tr>
<tr>
<td>Interface Name</td>
<td>video-300</td>
</tr>
<tr>
<td>Group Address</td>
<td>235.5.5.6</td>
</tr>
<tr>
<td>Source Address</td>
<td>192.168.2.1</td>
</tr>
<tr>
<td>MDI Delay Factor</td>
<td>3</td>
</tr>
<tr>
<td>MDI Loss Rate</td>
<td>0</td>
</tr>
<tr>
<td>Good Secs</td>
<td>17</td>
</tr>
</tbody>
</table>

GOP Stats

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOP Length</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frames/Sec</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Frame Stats

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>Good</th>
<th>Bad</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-Frame</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Frame</td>
<td>3</td>
<td>0</td>
<td>439</td>
</tr>
<tr>
<td>B-Frame</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Error Stats

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Err Secs</th>
<th>Deg Secs</th>
<th>Imp Secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PAT Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMT Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCR Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PAT Syntax</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMT Syntax</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Secs</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Loss</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unref PID</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Loss</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A:SR-7/Dut-C# show video channel analyzer address 235.5.5.6 source 20.20.13.2 interface video-300 detail

Video Channel Analyzer Detail

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>300</td>
</tr>
<tr>
<td>Interface Name</td>
<td>video-300</td>
</tr>
<tr>
<td>Group Address</td>
<td>235.5.5.6</td>
</tr>
<tr>
<td>Source Address</td>
<td>20.20.13.2</td>
</tr>
<tr>
<td>MDI Delay Factor</td>
<td>1</td>
</tr>
<tr>
<td>MDI Loss Rate</td>
<td>0</td>
</tr>
<tr>
<td>Good Secs</td>
<td>39</td>
</tr>
</tbody>
</table>

GOP Stats

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOP Length</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frames/Sec</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
GOP Length 1 1 1
Frames/Sec 0 0 0

===
Frame Stats
===
<table>
<thead>
<tr>
<th></th>
<th>I-Frame</th>
<th>P-Frame</th>
<th>B-Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>1</td>
<td>8</td>
<td>1155</td>
</tr>
<tr>
<td>Bad</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

===
Error Stats
===
<table>
<thead>
<tr>
<th></th>
<th>Err Secs</th>
<th>Deg Secs</th>
<th>Imp Secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PAT Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMT Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCR Rep</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PAT Syntax</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMT Syntax</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Secs</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Loss</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unref PID</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Loss</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of channels : 1

*A:SR-7/Dut-C# show video channel pid

Video Channel PID

Service Id	300	Interface Name : video-300
Group Address	235.5.5.6	Source Address : 20.20.13.2
PID	0	PID Type : pat
MPEG Stream Type : 0	Is PCR PID : No	
Cc Err Secs	0	TEI Err Secs : 0
Absent Err Secs	0	PID Bitrate : 0

Service Id	300	Interface Name : video-300
Group Address	235.5.5.6	Source Address : 20.20.13.2
PID	110	PID Type : pmt
MPEG Stream Type : 0	Is PCR PID : No	
Cc Err Secs	0	TEI Err Secs : 0
Absent Err Secs	0	PID Bitrate : 0

Service Id	300	Interface Name : video-300
Group Address	235.5.5.6	Source Address : 20.20.13.2
PID	4096	PID Type : video
MPEG Stream Type : 2	Is PCR PID : Yes	
Cc Err Secs	2	TEI Err Secs : 0
Absent Err Secs	0	PID Bitrate : 18530784
Show Commands

Group Address : 235.5.5.6 Source Address : 20.20.13.2
PID : 4097 PID Type : audio
MPEG Stream Type : 129 Is PCR PID : No
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 0 PID Bitrate : 231616

Service Id : 300 Interface Name : video-300
Group Address : 235.5.5.6 Source Address : 20.168.2.1
PID : 0 PID Type : pat
MPEG Stream Type : 0 Is PCR PID : No
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 0 PID Bitrate : 0

Group Address : 235.5.5.6 Source Address : 192.168.2.1
PID : 110 PID Type : pmt
MPEG Stream Type : 0 Is PCR PID : No
Cc Err Secs : 2 TEI Err Secs : 0
Absent Err Secs : 0 PID Bitrate : 0

Service Id : 300 Interface Name : video-300
Group Address : 235.5.5.6 Source Address : 20.168.2.1
PID : 4096 PID Type : video
MPEG Stream Type : 2 Is PCR PID : Yes
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 0 PID Bitrate : 1853296

Group Address : 235.5.5.6 Source Address : 192.168.2.1
PID : 4097 PID Type : audio
MPEG Stream Type : 129 Is PCR PID : No
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 0 PID Bitrate : 231616

>A: SR-7/Dut-C# show video channel config

Analyzer State : Enabled Cc Error : Enabled
PAT Rep Err : Enabled TNC PAT Rep : 200
QOS PAT Rep : 400 POA PAT Rep : 600
PAT Syntax : Enabled PCR Rep Err : Enabled
TNC PCR Rep : 200 QOS PCR Rep : 400
POA PCR Rep : 600 Vid PID Absent : 1000
PMT PID Unref : Enabled PMT Rep Err Secs : Enabled
PMT Rep : 400 QOS PMT Rep : 800
PMT Syntax : Enabled PMT Syntax : Enabled
TS Sync Loss : Enabled Non-Vid Pid Absent : 1000

--
Service Id : 300 Interface Name : video-300
Group Address : 235.5.5.6 Source Address : 192.168.2.1
Analyzer State : Enabled Cc Error : Enabled
PAT Rep Err : Enabled TNC PAT Rep : 200
QOS PAT Rep : 400 POA PAT Rep : 600
PAT Syntax : Enabled PCR Rep Err : Enabled
TNC PCR Rep : 200 QOS PCR Rep : 400
POA PCR Rep : 600 Vid PID Absent : 1000
PID PMT Unref : Enabled PMT Rep Err Secs : Enabled
TNC PMT Rep : 400 QOS PMT Rep : 800
POA PMT Rep : 2000 PMT Syntax : Enabled
SCTE35 Err Secs : Enabled TEI Err Secs : Enabled
TS Sync Loss : Enabled Non-Vid Pid Absent: 1000

Number of channels : 2
**
* indicates that the corresponding row element may have been truncated.
*A:SR-7/Dut-C#

*A:SR-7/Dut-C# show video channel analyzer

Video channel analyzer summary
**

Channel number : 1

<table>
<thead>
<tr>
<th>Service Id</th>
<th>300</th>
<th>Interface Name</th>
<th>video-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>235.5.5.6</td>
<td>Source Address</td>
<td>20.20.0.1</td>
</tr>
<tr>
<td>MDI Delay Factor</td>
<td>1</td>
<td>MDI Loss Rate</td>
<td>0</td>
</tr>
<tr>
<td>Good Secs</td>
<td>68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Channel number : 2

<table>
<thead>
<tr>
<th>Service Id</th>
<th>300</th>
<th>Interface Name</th>
<th>video-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>235.5.5.6</td>
<td>Source Address</td>
<td>192.168.2.1</td>
</tr>
<tr>
<td>MDI Delay Factor</td>
<td>2</td>
<td>MDI Loss Rate</td>
<td>0</td>
</tr>
<tr>
<td>Good Secs</td>
<td>68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Channel number : 3

<table>
<thead>
<tr>
<th>Service Id</th>
<th>300</th>
<th>Interface Name</th>
<th>video-300-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>235.5.5.6</td>
<td>Source Address</td>
<td>192.168.2.1</td>
</tr>
<tr>
<td>MDI Delay Factor</td>
<td>3</td>
<td>MDI Loss Rate</td>
<td>0</td>
</tr>
<tr>
<td>Good Secs</td>
<td>69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:SR-7/Dut-C#

*A:SR-7/Dut-C# show video channel pid

Video Channel PID
**

<table>
<thead>
<tr>
<th>Service Id</th>
<th>300</th>
<th>Interface Name</th>
<th>video-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>235.5.5.6</td>
<td>Source Address</td>
<td>20.20.0.1</td>
</tr>
<tr>
<td>PID</td>
<td>0</td>
<td>PID Type</td>
<td>pat</td>
</tr>
</tbody>
</table>

Number of channels : 3
**

A:SR-7/Dut-C#
<table>
<thead>
<tr>
<th>Service Id</th>
<th>Interface Name</th>
<th>Group Address</th>
<th>Source Address</th>
<th>PID</th>
<th>PID Type</th>
<th>MPEG Stream Type</th>
<th>Is PCR PID</th>
<th>Cc Err Secs</th>
<th>TEI Err Secs</th>
<th>Absent Err Secs</th>
<th>PID Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>video-300</td>
<td>235.5.5.6</td>
<td>20.20.0.1</td>
<td>110</td>
<td>pmt</td>
<td>0</td>
<td>No</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>video-300</td>
<td>235.5.5.6</td>
<td>20.20.0.1</td>
<td>4096</td>
<td>video</td>
<td>2</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18538304</td>
</tr>
<tr>
<td>300</td>
<td>video-300</td>
<td>235.5.5.6</td>
<td>192.168.2.1</td>
<td>4097</td>
<td>audio</td>
<td>129</td>
<td>No</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>231616</td>
</tr>
<tr>
<td>300</td>
<td>video-300</td>
<td>235.5.5.6</td>
<td>192.168.2.1</td>
<td>4096</td>
<td>pat</td>
<td>0</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>video-300</td>
<td>235.5.5.6</td>
<td>192.168.2.1</td>
<td>4097</td>
<td>audio</td>
<td>129</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>231616</td>
</tr>
<tr>
<td>300</td>
<td>video-300</td>
<td>235.5.5.6</td>
<td>192.168.2.1</td>
<td>4096</td>
<td>video</td>
<td>2</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18539808</td>
</tr>
</tbody>
</table>
Show Commands

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Group Address</th>
<th>PID Type</th>
<th>MPEG Stream Type</th>
<th>Cc Err Secs</th>
<th>TEI Err Secs</th>
<th>Absent Err Secs</th>
<th>PID Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>pmt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>video</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>video</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>audio</td>
<td>129</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

```bash
*A:SR-7/Dut-C# show video channel config interface "video-300-S"*
```

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Group Address</th>
<th>PID Type</th>
<th>MPEG Stream Type</th>
<th>Cc Err Secs</th>
<th>TEI Err Secs</th>
<th>Absent Err Secs</th>
<th>PID Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>ENABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>ENABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>ENABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>ENABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>ENABLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Group Address</th>
<th>PID Type</th>
<th>MPEG Stream Type</th>
<th>Cc Err Secs</th>
<th>TEI Err Secs</th>
<th>Absent Err Secs</th>
<th>PID Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>video</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>video</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>audio</td>
<td>129</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* indicates that the corresponding row element may have been truncated.

```bash
*A:SR-7/Dut-C# show video channel pid interface video-300-S address 235.5.5.6 source 192.168.2.1*
```

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Group Address</th>
<th>PID Type</th>
<th>MPEG Stream Type</th>
<th>Cc Err Secs</th>
<th>TEI Err Secs</th>
<th>Absent Err Secs</th>
<th>PID Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>235.5.5.6</td>
<td>pat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of channels 1

* indicates that the corresponding row element may have been truncated.

Show Commands

MPEG Stream Type : 0 Is PCR PID : No
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 0 PID Bitrate : 0

Service Id : 300 Interface Name : video-300-S
Group Address : 235.5.5.6 Source Address : 192.168.2.1
PID : 4096 PID Type : video
MPEG Stream Type : 2 Is PCR PID : Yes
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 84 PID Bitrate : 0

Service Id : 100 Interface Name : video-100
Group Address : 234.4.5.228 Source Address : 192.168.9.10
PID : 100 PID Type : network
MPEG Stream Type : 2 Is PCR PID : Yes
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 84 PID Bitrate : 0

Service Id : 100 Interface Name : video-100
Group Address : 234.4.5.240 Source Address : 192.168.9.10
PID : 100 PID Type : network
MPEG Stream Type : 2 Is PCR PID : No
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 84 PID Bitrate : 0

Service Id : 100 Interface Name : video-100
Group Address : 234.4.5.241 Source Address : 192.168.9.10
PID : 100 PID Type : network
MPEG Stream Type : 2 Is PCR PID : No
Cc Err Secs : 0 TEI Err Secs : 0
Absent Err Secs : 84 PID Bitrate : 0

Adi Channel Info

<table>
<thead>
<tr>
<th>SvcId</th>
<th>Interface Name</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Channel Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>video-100</td>
<td>234.4.5.228</td>
<td>195.168.9.10</td>
<td>228</td>
</tr>
<tr>
<td>100</td>
<td>video-100</td>
<td>234.4.5.240</td>
<td>195.168.9.10</td>
<td>240</td>
</tr>
<tr>
<td>100</td>
<td>video-100</td>
<td>234.4.5.241</td>
<td>195.168.9.10</td>
<td>241</td>
</tr>
</tbody>
</table>

Video channel

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Group Address</th>
<th>Stream</th>
<th>SSRCId</th>
<th>RxPackets</th>
<th>TxPackets</th>
<th>RxBytes</th>
<th>TxBytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>234.0.0.1</td>
<td>Network</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vi</td>
<td>1.0.102.102</td>
<td>1</td>
<td>33333/40005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>234.0.0.2</td>
<td>Network</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vi</td>
<td>1.0.102.102</td>
<td>1</td>
<td>33333/40005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>234.0.0.3</td>
<td>Network</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vi</td>
<td>1.0.102.102</td>
<td>1</td>
<td>33333/40005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>234.0.0.4</td>
<td>Network</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vi</td>
<td>1.0.102.102</td>
<td>1</td>
<td>33333/40005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>234.0.0.5</td>
<td>Network</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vi</td>
<td>1.0.102.102</td>
<td>1</td>
<td>33333/40005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>234.0.0.6</td>
<td>Network</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vi</td>
<td>1.0.102.102</td>
<td>1</td>
<td>33333/40005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
interface

Syntax

interface [service service-id] [interface ip-int-name] [stats {rt-server | fcc-server}]

Context

show>video

Description

This command displays video interface information.

Parameters

service service-id — Displays video interface information pertaining to the specified service ID.
Show Commands

Values
1 — 2147483648

svc-name — a string up to 64 characters in length.

interface ip-int-name — Displays video interface information pertaining to the specified interface.

stats — Displays video interface statistics.

Values
rt-server — Displays video interface statistics for the RET server.
fcc-server — Displays video interface statistics for the FCC server.

Sample Output

```
*A:Dut-C# show video interface
===============================================================================
<table>
<thead>
<tr>
<th>Video interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id      : 1</td>
</tr>
<tr>
<td>Name            : vi</td>
</tr>
<tr>
<td>Admin/Oper State: Up/Up</td>
</tr>
<tr>
<td>Video Group Id  : 1</td>
</tr>
<tr>
<td>Sessions        : 2000</td>
</tr>
<tr>
<td>Address         : 3.3.3.3/32</td>
</tr>
<tr>
<td>Tx Failed Pkts  : 0</td>
</tr>
<tr>
<td>SD RT Srvr State: Enabled</td>
</tr>
<tr>
<td>SD RT Requests  : 0</td>
</tr>
<tr>
<td>SD RTPPktsReq   : 0</td>
</tr>
<tr>
<td>TX SD Bytes     : 0</td>
</tr>
<tr>
<td>HD RT Srvr State: Enabled</td>
</tr>
<tr>
<td>HD RT Requests  : 0</td>
</tr>
<tr>
<td>HD RTPPktsReq   : 0</td>
</tr>
<tr>
<td>TX HD Bytes     : 0</td>
</tr>
<tr>
<td>PIP RT Srvr State: Enabled</td>
</tr>
<tr>
<td>PIP RT Requests : 0</td>
</tr>
<tr>
<td>PIP RTPPktsReq  : 0</td>
</tr>
<tr>
<td>TX PIP Bytes    : 0</td>
</tr>
<tr>
<td>SD FCC Srvr State: Enabled</td>
</tr>
<tr>
<td>HD FCC Srvr State: Enabled</td>
</tr>
<tr>
<td>HD FCC Requests : 448820</td>
</tr>
<tr>
<td>SD FCC Requests : 0</td>
</tr>
<tr>
<td>TX HD Bytes     : 17150845788</td>
</tr>
<tr>
<td>HD FCC Replies  : 448820</td>
</tr>
<tr>
<td>PIP FCCSvr State: Enabled</td>
</tr>
<tr>
<td>PIP FCC Requests: 0</td>
</tr>
<tr>
<td>TX PIP Bytes    : 0</td>
</tr>
<tr>
<td>PIP FCC Replies : 0</td>
</tr>
<tr>
<td>Interfaces      : 1</td>
</tr>
</tbody>
</table>
*A:Dut-C#`
```
show Commands

session

Syntax

```
session [service  service-id] [interface  ip-int-name] [address  mcast-address] [source  ip-address]
```

Context

```
show>video>adi
```

Description

This command displays ADI video session information.

Parameters

- `service service-id` — Displays video session information pertaining to the specified service ID.

 Values

 - 1 — 2147483648
 - `svc-name` — a string up to 64 characters in length.

- `interface ip-int-name` — Displays session information for the specified interface.

- `address mcast-address` — Displays session information for the specified multicast address.

- `source ip-address` — Displays session information for the specified IP address.

Sample Output

```
*B:IPTV-SR7# show video adi session
===============================================================================
Adi Session
===============================================================================
Service Id       : 100                  Interface Name   : video-100
Group Address    : 234.4.5.241          Source Address   : 100.100.100.1
Ad Server Addr   : 10.200.14.2          Up Time          : 0d 13:30:02
Init Requests    : 1                    Succ/Unsucc Resp : 1/0
Alive Requests   : 0                    Succ/Unsucc Resp : 0/0
Cue Requests     : 0                    Succ/Unsucc Resp : 0/0
Abort Requests   : 0                    Succ/Unsucc Resp : 0/0
Splice Requests  : 910                  Succ/Unsucc Resp : 906/4
-----------------------------------------------------------------------------
Successful splice-in complete responses     : 902
Successful splice-out complete responses    : 894
Unsuccessful splice-out complete responses  : 11
Invalid SCTE30 R*: 0
-----------------------------------------------------------------------------
Number of adi sessions : 1
```

splice-status

Syntax

```
splice-status [service  service-id] [interface  ip-int-name] [address  mcast-address] [source
ip-address] [start-time  start-time [interval  time-interval]]
```

Context

```
show>video>adi
```

Description

This command displays ADI slice information.

Parameters

- `service service-id` — Displays splice status information pertaining to the specified service ID.

 Values

 - 1 — 2147483648
 - `svc-name` — a string up to 64 characters in length.
interface ip-int-name — Displays splice status information for the specified interface.

address mcast-address — Displays splice status information for the specified multicast address.

source ip-address — Displays splice status information for the specified IP address.

start-time start-time — Enter the start time.

Values 1 — 4294967295 minutes earlier

interval time-interval — Enter the interval time.

Values 1 — 4294967295 minutes

Sample Output

*B:IPTV-SR7# show video adi splice-status
===
Service Id	100	Interface Name	video-100
Group Address	234.4.5.241	Source Address	100.100.100.1
Status	Complete	Rate	8936 kbps
Duration Req	30 sec	Duration Played	29 sec
Session Id	1	Prior Session Id	4294967295
SpliceIn SeqNum	378	SpliceOut SeqNum	29727
Abort Reason	None	Black Frames	0
First black frame PTS	1530		
Max Ad Stream PTS	0		
Min Network Stream PTS	0		
Service Id	100	Interface Name	video-100
Group Address	234.4.5.241	Source Address	100.100.100.1
Status	Complete	Rate	0 kbps
Duration Req	30 sec	Duration Played	0 sec
Session Id	2	Prior Session Id	1
SpliceIn SeqNum	29727	SpliceOut SeqNum	0
Abort Reason	Session incomplete	Black Frames	0
First black frame PTS	1530		
Max Ad Stream PTS	0		
Min Network Stream PTS	0		
--			
*B:IPTV-SR7#

rtp-session

Syntax rtp-session [service service-id] [source ip-address] [detail [stats (rt-server | fcc-server)]]
rtp-session [service service-id] summary

Context show>video

Description This command displays video session information.

Parameters service service-id — Displays video session information pertaining to the specified service ID.
Values

- **1** — 2147483648
- **svc-name** — a string up to 64 characters in length.

source ip-address

Displays session information for the specified IP address.

detail

The output displays detailed video session information.

stats

Displays video session statistics.

Values

- **rt-server** — Displays video session statistics for the RT server.
- **fcc-server** — Displays video session statistics for the FCC server.

summary

The output displays summarized video session information.

Sample Output

```plaintext
*A:Dut-C# show video rtp-session

Video RTP session

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Source address</th>
<th>SSRC Id (hex)</th>
<th>RT reqs</th>
<th>FCC reqs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0.103.103</td>
<td>1</td>
<td>0</td>
<td>225</td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of RTP sessions : 10

*A:Dut-C#

*A:Dut-C# show video rtp-session summary

Video RTP session summary

<table>
<thead>
<tr>
<th>Num Sessions</th>
<th>Rx RT Requests</th>
<th>Tx RT Packets</th>
<th>Tx RT Replies</th>
<th>Tx RT Octets</th>
<th>Rx FCC Requests</th>
<th>Tx FCC Packets</th>
<th>Tx FCC Replies</th>
<th>Tx FCC Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>371068</td>
<td>243011904</td>
<td>368259</td>
<td>14152149376</td>
</tr>
</tbody>
</table>

Interfaces : 1
```
Show Commands

*A:Dut-C# show video rtp-session detail

Video RTP session detail

<table>
<thead>
<tr>
<th>Service Id</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>vi</td>
</tr>
<tr>
<td>Source Address</td>
<td>1.0.103.103</td>
</tr>
<tr>
<td>Source Port</td>
<td>1000</td>
</tr>
<tr>
<td>Destination Addr</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>SSRC Id (hex)</td>
<td>1</td>
</tr>
<tr>
<td>CName</td>
<td>ixiaPort</td>
</tr>
<tr>
<td>Up Time</td>
<td>0d 00:07:08</td>
</tr>
<tr>
<td>Time to Expire</td>
<td>0d 00:04:59</td>
</tr>
<tr>
<td>Num RT Requests</td>
<td>0</td>
</tr>
<tr>
<td>RT Packets Sent</td>
<td>0</td>
</tr>
<tr>
<td>RT Failed Pkts</td>
<td>0</td>
</tr>
<tr>
<td>Req RTP Packets</td>
<td>0</td>
</tr>
<tr>
<td>Num FCC Requests</td>
<td>212</td>
</tr>
<tr>
<td>FCC Packets Sent</td>
<td>138582</td>
</tr>
<tr>
<td>FCC Failed Pkts</td>
<td>1</td>
</tr>
<tr>
<td>FCC Octets Sent</td>
<td>8145140</td>
</tr>
</tbody>
</table>

A:Dut-C#
Clear Commands

id

Syntax id service-id
Context clear>video
Description This command clears video information pertaining to the specified service ID.
Parameters service service-id — Specifies the service ID to clear.
Values 1 — 2147483648
 svc-name — a string up to 64 characters in length.

session

Syntax session all
 session client srcAddr
Context clear>video
Description This command clears session information.
Parameters all — Clears all sessions.
 client srcAddr — Clears information for the client source address.

statistics

Syntax statistics
Context clear>video
Description This command clears video related statistics.

id

Syntax id service-id
Context clear>video>statistics
Description This command clears video statistics for a particular service.
Parameters service service-id — Specifies the service ID to clear statistics.
Values 1 — 2147483648
 svc-name — a string up to 64 characters in length.
Clear Commands

adi-session

Syntax adi-session
Context clear>video>statistics>id
Description This command clears video statistics for an ADI session.

channel

Syntax channel all [rt-client] [rt-server] [fcc-server] [ad-insert]
channelGRP-address [source srcAddr] [rt-client] [rt-server] [fcc-server] [ad-insert]
Context clear>video>statistics>id
Description This command clears video statistics for a particular channel.
Parameters all — Clears statistics for all channels.
rt-client — Clears all RET client related statistics.
rt-server — Clears all RET server related statistics.
fcc-server — Clears all FCC server related statistics.
ad-insert — Clears all ad insert related statistics.
grp-address — Clears statistics for the specified channel group address.
source srcAddr — Clears statistics for the specified source address.

interface

Syntax interface ip-int-name [address ip-address] rt-client [rt-server] [fcc-server] [ad-insert]
Context clear>video>statistics>id
Description This command clears video statistics for a particular channel.
Parameters ip-int-name — Clears statistics for the specified interface.
address ip-address — Clears statistics for the specified IP address.
rt-client — Clears all RET client related statistics.
rt-server — Clears all RET server related statistics.
fcc-server — Clears all FCC server related statistics.
ad-insert — Clears all ad insert related statistics.
grp-address — Clears statistics for the specified channel group address.
source srcAddr — Clears statistics for the specified source address.
session

Syntax

- `session all [rt-server] [fcc-server]`
- `session client srcAddr [rt-server] [fcc-server]`

Context

- `clear>video>statistics>id`

Description

This command clears video statistics for a particular channel.

Parameters

- `all` — Clears statistics for all sessions.
- `rt-server` — Clears all RET server related statistics.
- `fcc-server` — Clears all FCC server related statistics.
- `client srcAddr` — Clears statistics for the specified source address.

isa

Syntax

- `isa video-group-id [mda-id]`

Context

- `clear>video>statistics`

Description

This command clears statistics for a particular ISA video group.

Parameters

- `video-group-id` — statistics for a particular ISA video group a video group ID.
- `mda-id` — Specifies the card/slot identifying a provisioned ISA.

Values

- `mda-id: slot/mda`
- `slot: 1 — 10` (depending on the chassis model)
- `mda: 1 — 2`
Debug Commands

video-interface

Syntax: [no] video-interface video-ip-int-name
Context: debug>service>id
Description: This command enables debugging for video interfaces.
The no form of the command disables the video interface debugging.
Parameters: video-ip-int-name — Specifies the video interface name.

adi

Syntax: adi [zone-channel-name]
no adi
Context: debug>service>id>video-interface
Description: This command enables debugging for the ad insert server.
Parameters: zone-channel-name — Specifies the channel name up to 32 characters in length.

adi-packet

Syntax: adi-packet [zone-channel-name] [type {type-name [type-name]|all}]
no adi-packet
Context: debug>service>id>video-interface
Description: This command enables debugging for ADI packets exchanged between the splicer and the ad-server
over scte30 session(s)
Parameters: zone-channel-name — Specifies the channel name up to 32 characters in length.
type type-name — Specifies the ADI packet type.
Values: alive, abort, init, splice, cue, all

Sample Output

A:IPTV-SR7# debug service id 100 video-interface video-100 adi-packet 240-1 type init
A:IPTV-SR7# show debug
debug
service id 100
 video-interface video-100
 adi-packet 240-1 type init
Debug Commands

exit
exit
exit
A:IPTV-SR7# debug service id 100 video-interface video-100 adi-packet 240-1 type alive
A:IPTV-SR7# show debug
debug
 service id 100
 video-interface video-100
 adi-packet 240-1 type alive
exit
exit

fcc-server

Syntax

fcc-server [client client-ip [source-port src-port]]

no fcc-server

Context

debug>service>id>video-interface

Description

This command enables debugging the FCC server.

Parameters

client client-ip — Specifies the client IP address.

source-port src-port — Specifies the source port’s IP address.

packet-rx

Syntax

packet-rx [client client-ip [source-port src-port]] [fcc-join] [fcc-leave] [ret-nack]

no packet-rx

Context

debug>service>id>video-interface

Description

This command enables debugging of received RTCP messages. The options for this command allow the user to filter only certain types of messages to appear in the debug traces.

Parameters

client client-ip — Specifies the client IP address.

source-port src-port — Specifies the source port’s IP address.

fcc-join — Enables debugging for FCC joins.

fcc-leave — Enables debugging for FCC leaves.

ret-nack — Enables debugging for retransmission nack packets.

packet-tx

Syntax

packet-tx [group grp-addr [source srcAddr]] [ret-nack]

no packet-tx

Context

debug>service>id>video-interface
Debug Commands

Description
This command enables debugging transmitted RTCP packets.

Parameters
- **client client-ip** — Specifies the client IP address.
- **source src-srcAddr** — Specifies the source port.

Values
1 — 65535

rt-client

Syntax
rt-client [group group-addr]
no rt-client

Context
debug>service>id>video-interface

Description
This command enables debugging the RET client.

Parameters
- **group group-addr** — Specifies the multicast group address.

rt-server

Syntax
rt-server [client client-ip [source-port src-port]]
no rt-server

Context
debug>service>id>video-interface

Description
This command enables debugging for the RET server.

Parameters
- **client client-ip** — Specifies the client IP address.
- **source src-srcAddr** — Specifies the source port.

Values
1 — 65535

sg

Syntax
sg [group grp-addr [source src-addr]]
no sg

Context
debug>service>id>video-interface

Description
This command enables channel debugging.

Parameters
- **group grp-addr** — Specifies the multicast channel address.
- **source src-addr** — Specifies the source address.
In This Chapter

This chapter provides information about Network Address Translation (NAT) and implementation notes.

Topics in this chapter include:

- Terminology on page 666
- Network Address Translation (NAT) Overview on page 668
- NAT Point-to-Point Tunneling Protocol (PPTP) Application Layer Gateway (ALG) on page 670
- Large Scale NAT on page 677
- L2-Aware NAT on page 685
- Port Control Protocol (PCP) on page 687
- DS-Lite and NAT64 Fragmentation on page 689
- NAT Logging on page 692
- NAT Stateless Dual-Homing on page 709
- Deterministic NAT on page 716
- Enhanced Statistics in NAT — Histogram on page 737
- NAT – Multiple NAT Policies per Inside Routing Context on page 741
- ISA Feature Interactions on page 751
BNG Subscriber — A broader term than the ESM Subscriber, independent of the platform on which the subscriber is instantiated. It includes ESM subscribers on 7750 SR as well as subscribers instantiated on third party BNGs. Some of the NAT functions, such as Subscriber Aware Large Scale NAT44 utilizing standard RADIUS attribute work with subscribers independently of the platform on which they are instantiated.

Deterministic NAT — A mode of operation where mappings between the NAT subscriber and the outside IP address and port range are allocated at the time of configuration. Each subscriber is permanently mapped to an outside IP and a dedicated port block. This dedicated port block is referred to as deterministic port block. Logging is not needed as the reverse mapping can be obtained using a known formula. The subscriber’s ports can be expanded by allocating a dynamic port block in case that all ports in deterministic port block are exhausted. In such case logging for the dynamic port block allocation/de-allocation is required.

Enhanced Subscriber Management (ESM) subscriber — A host or a collection of hosts instantiated in 7750 SR Broadband Network Gateway (BNG). The ESM subscriber represents a household or a business entity for which various services with committed Service Level Agreements (SLA) can be delivered. NAT function is not part of basic ESM functionality.

L2-Aware NAT — In the context of 7750 SR platform combines Enhanced Subscriber Management (ESM) subscriber-id and inside IP address to perform translation into a unique outside IP address and outside port. This is in contrast with classical NAT technique where only inside IP is considered for address translations. Since the subscriber-id alone is sufficient to make the address translation unique, L2-Aware NAT allows many ESM subscribers to share the same inside IP address. The scalability, performance and reliability requirements are the same as in LSN.

Large Scale NAT (LSN) — Refers to a collection of network address translation techniques used in service provider network implemented on a highly scalable, high performance hardware that facilitates various intra and inter-node redundancy mechanisms. The purpose of LSN semantics is to make delineation between high scale and high performance NAT functions found in service provider networks and enterprise NAT that is usually serving much smaller customer base at smaller speeds. The following NAT techniques can be grouped under the LSN name:

- Large Scale NAT44 or Carrier Grade NAT (CGN)
- DS-Lite
- NAT64

Each distinct NAT technique is referred to by its corresponding name (Large Scale NAT44 [or CGN], DS-Lite and NAT64) with the understanding that in the context of 7750 SR platform, they are all part of LSN (and not enterprise based NAT).
Large Scale NAT44 term can be interchangeably used with the term Carrier Grade NAT (CGN) which in its name implies high reliability, high scale and high performance. These are again typical requirements found in service provider (carrier) network.

L2-Aware NAT term refers to a separate category of NAT defined outside of LSN.

NAT RADIUS accounting — Reporting (or logging) of address translation related events (port-block allocation/de-allocation) via RADIUS accounting facility. NAT RADIUS accounting is facilitated via regular RADIUS accounting messages (star/interim-update/stop) as defined in RFC 2866, *RADIUS Accounting*, with NAT specific VSAs.

NAT RADIUS accounting — Can be interchangeably used with the term NAT RADIUS logging.

NAT Subscriber — in NAT terminology a NAT subscriber is an inside entity whose true identity is hidden from the outside. There are a few types of NAT implementation in 7750 and subscribers for each implementation are defined as follows:

- Large Scale NAT44 (or CGN) — The subscriber is an inside IPv4 address.
- L2-Aware NAT — The subscriber is an ESM subscriber which can spawn multiple IPv4 inside addresses.
- DS-Lite — The subscriber in DS-lite can be identified by the CPE’s IPv6 address (B4 element) or an IPv6 prefix. The selection of address or prefix as the representation of a DS-Lite subscriber is configuration dependent.
- NAT64 — The subscriber is an IPv6 prefix.

Non-deterministic NAT — A mode of operation where all outside IP address and port block allocations are made dynamically at the time of subscriber instantiation. Logging in such case is required.

Port block — A collection of ports that is assigned to a subscriber. A deterministic LSN subscriber can have only one deterministic port block that can be extended by multiple dynamic port blocks. Non-deterministic LSN subscriber can be assigned only dynamic port blocks. All port blocks for a LSN subscriber must be allocated from a single outside IP address.

Port range — A collection of ports that can spawn multiple port blocks of the same type. For example, deterministic port range includes all ports that are reserved for deterministic consumption. Similarly dynamic port range is a total collection of ports that can be allocated in the form of dynamic port blocks. Other types of port ranges are well-known ports and static port forwards.
Network Address Translation (NAT) Overview

The Alcatel-Lucent 7750 SR supports Network Address (and port) Translation (NAPT) to provide continuity of legacy IPv4 services during the migration to native IPv6. By equipping the Multiservice ISA (MS ISA) in an IOM3-XP, the 7750 SR can operate in two different modes, known as:

- Large Scale NAT, and;
- Layer 2-Aware NAT

These two modes both perform source address and port translation as commonly deployed for shared Internet access. The 7750 SR with NAT is used to provide consumer broadband or business Internet customers access to IPv4 internet resources with a shared pool of IPv4 addresses, such as may occur around the forecast IPv4 exhaustion. During this time it is expected that native IPv6 services will still be growing and a significant amount of Internet content will remain IPv4.

Principles of NAT

Network Address Translation devices modify the IP headers of packets between a host and server, changing some or all of the source address, destination address, source port (TCP/UDP), destination port (TCP/UDP), or ICMP query ID (for ping). The 7750 SR in both NAT modes performs Source Network Address and Port Translation (S-NAPT). S-NAPT devices are commonly deployed in residential gateways and enterprise firewalls to allow multiple hosts to share one or more public IPv4 addresses to access the Internet. The common terms of inside and outside in the context of NAT refer to devices inside the NAT (that is behind or masqueraded by the NAT) and outside the NAT, on the public Internet.

TCP/UDP connections use ports for multiplexing, with 65536 ports available for every IP address. Whenever many hosts are trying to share a single public IP address there is a chance of port collision where two different hosts may use the same source port for a connection. The resultant collision is avoided in S-NAPT devices by translating the source port and tracking this in a stateful manner. All S-NAPT devices are stateful in nature and must monitor connection establishment and traffic to maintain translation mappings. The 7750 SR NAT implementation does not use the well-known port range (1..1023).

In most circumstances, S-NAPT requires the inside host to establish a connection to the public Internet host or server before a mapping and translation will occur. With the initial outbound IP packet, the S-NAPT knows the inside IP, inside port, remote IP, remote port and protocol. With this information the S-NAPT device can select an IP and port combination (referred to as outside IP and outside port) from its pool of addresses and create a unique mapping for this flow of data.
Any traffic returned from the server will use the outside IP and outside port in the destination IP/port fields – matching the unique NAT mapping. The mapping then provides the inside IP and inside port for translation.

The requirement to create a mapping with inside port and IP, outside port and IP and protocol will generally prevent new connections to be established from the outside to the inside as may occur when an inside host wishes to be a server.

Application Compatibility

Applications which operate as servers (such as HTTP, SMTP, etc) or peer-to-peer applications can have difficulty when operating behind an S-NAPT because traffic from the Internet can reach the NAT without a mapping in place.

Different methods can be employed to overcome this, including:

- Port Forwarding;
- STUN support; and,
- Application Layer Gateways (ALG)

The 7750 SR supports all three methods following the best-practice RFC for TCP (RFC 5382, *NAT Behavioral Requirements for TCP*) and UDP (RFC 4787, *Network Address Translation (NAT) Behavioral Requirements for Unicast UDP*). Port Forwarding is supported on the 7750 SR to allow servers which operate on well-known ports <1024 (such as HTTP and SMTP) to request the appropriate outside port for permanent allocation.

STUN is facilitated by the support of Endpoint-Independent Filtering and Endpoint-Independent Mapping (RFC 4787) in the NAT device, allowing STUN-capable applications to detect the NAT and allow inbound P2P connections for that specific application. Many new SIP clients and IM chat applications are STUN capable.

Application Layer Gateways (ALG) allows the NAT to monitor the application running over TCP or UDP and make appropriate changes in the NAT translations to suit. The 7750 SR has an FTP ALG enabled following the recommendation of the IETF BEHAVE RFC for NAT (RFC 5382).

Even with these three mechanisms some applications will still experience difficulty operating behind a NAT. As an industry-wide issue, forums like UPnP the IETF, operator and vendor communities are seeking technical alternatives for application developers to traverse NAT (including STUN support). In many cases the alternative of an IPv6-capable application will give better long-term support without the cost or complexity associated with NAT.
PPTP is defined in RFC 2637, *Point-to-Point Tunneling Protocol (PPTP)*, and is used to provide VPN connection for home/mobile users to gain secure access to the enterprise network. Encrypted payload is transported over GRE tunnel that is negotiated over TCP control channel. In order for PPTP traffic to pass through NAT, the NAT device must correlate the TCP control channel with the corresponding GRE tunnel. This mechanism is referred to as PPTP ALG.

PPTP Protocol

There are two components of PPTP:

1. TCP control connection between the two endpoints.
2. An IP tunnel operating between the same endpoints. These are used to transport GRE encapsulated PPP packets for user sessions between the endpoints. PPTP uses an extended version of GRE to carry user PPP packets.

The control connection is established from the PPTP clients (for example, home users behind the NAT) to the PPTP server which is located on the outside of the NAT. Each session that carries data between the two endpoints can be referred as call. Multiple sessions (or calls) can carry data in a multiplexed fashion over a tunnel. The tunnel protocol is defined by a modified version of GRE. Call ID in the GRE header is used to multiplex sessions over the tunnel. The Call-ID is negotiated during the session/call establishment phase.

Supported Control Messages

This section discusses PPTP ALG supported control messages.

Control Connection Management — The following messages are used to maintain the control connection.

- Start-Control-Connection-Request
- Start-Control-Connection-Reply
- Stop-Control-Connection-Request
- Stop-Control-Connection-Reply
- Echo-Request
- Echo-Reply
The remaining control message types are sent over the established TCP session to open/maintain sessions and to convey information about the link state:

- **Call Management** — Call management messages are used to establish/terminate a session/call and to exchange information about the multiplexing field (Call-id). Call-IDs must be captured and translated by the NAT. The call management messages are:
 - Outgoing-Call-Request (contains Call ID)
 - Outgoing-Call-Reply (contains Call ID and peer’s Call-ID)
 - Call-Clear-Request (contains Call ID)
 - Call-Disconnect-Notify (contains Call ID)

- **Error Reporting** — This message is sent by the client to indicate WAN error conditions that occur on the interface supporting PPP.
 - Wan-Error-Notify (contains Call ID and Peer’s Call ID)

- **PPP Session Control** — This message is sent in both directions to setup PPP-negotiated options.
 - Set-Link-Info (contains Call ID and Peer’s Call ID)

Once Call-ID is negotiated by both endpoints, it is inserted in GRE header and used as multiplexing filed in the tunnel that carries data traffic.

GRE Tunnel

A GRE tunnel is used to transport data between two PPTP endpoints. The packet transmitted over this tunnel has the following general structure:

```
+-------------------------------+     +-------------------+
|      Media Header             |     | Tunnel endpoints |
+-------------------------------+     +-------------------+
|     IP Header                 |     | See following example |
+-------------------------------+     +-------------------+
|    GRE Header                 |     +-------------------+
+-------------------------------+     +-------------------+
|    PPP Packet                 |     +-------------------+
```

- Ethernet header, for example
- Tunnel endpoints
- See following example
- Packet payload including PPP header
The GRE header contains the Call ID of the peer for the session for which the GRE packet belongs.

```
+--------------------+--------------------+
| C | R | K | S | Recur | A |
```

PPTP ALG Operation

PPTP ALG is aware of the control session (Start Control Connection Request/Replay) and consequently it captures the Call ID field in all PPTP messages that carry that field. In addition to translating inside IP and TCP port, the PPTP ALG process data beyond the TCP header in order to extract the Call ID field and translate it inside of the Outgoing Call Request messages initiated from the inside of the NAT.

The GRE packets with corresponding Call IDs are translated through the NAT as follows:

- The inside source IP address is replaced by the outside IP address and vice versa for traffic in the opposite direction. This is standard IP address translation technique. The key is to keep the outside IP address of the control packets and corresponding data packets (GRE tunnel) the same.

- The Call-ID in the GRE packets in the direction outside to inside will be translated by the NAT according to the mappings that were created during session negotiation.

In addition, the following applies:

- GRE packets are translated and passed through the NAT only if they can be matched to an existing PPTP call for which the mapping already exists.

- Translation of the Call-IDs advertised by the PPTP server in the Outgoing Call Reply control message (this message is sent from the outside of the NAT to the inside) are not translated. Subsequently the Call ID in such messages are transparently passed through the NAT. There is no need to translate those Call IDs as their uniqueness between the two endpoints are guaranteed by the selection algorithm of the PPTP server. This can be thought of as destination TCP/UDP ports. They are not translated in the NAT. Instead only the source ports are translated.
• PPTP session initiation in the outside to inside direction through the NAT is not supported.

• Call-ID’s are allocated and used in the same fashion as the outside TCP/UDP ports (random with parity). They are taken from the same port range as ICMP ports.

The basic principle of PPTP NAT ALG is shown in Figure 51.
Figure 51: NAT PPTP Operation
The scenario where multiple clients behind the NAT are terminated to the same PPTP server is shown in Figure 52. In this case, it is possible that the source IP addresses of the two PPTP clients are mapped to the same outside address of the NAT. Since the endpoints of the GRE tunnel from the NAT to the PPTP server will be the same for both PPTP clients (although their real source IP addresses are different), the NAT must ensure the uniqueness of the Call-IDs in the outbound data connection. This is where Call-ID translation in the NAT becomes crucial.

Since both inside IP addresses (IP1 and IP2) are mapped to the same outside IP address (IP3), the NAT must ensure that those keys are translated into unique keys per GRE tunnel (outside IP address PPTP Server pair).

Advertise key-id = 300 in O-C-Req for GRE1
xslate cid 300 to cid 400
Advertise key-id = 300 in O-C-Req for GRE2
xslate cid 300 to cid 500

Figure 52: Merging of Endpoints in NAT

Advertise key-id = 100 in O-C-Reply for GRE1 and key-id = 200 for GRE2. Uniqueness of the advertised keys between the same tunnel endpoints is ensured by L2TP server. No need to be translated by NAT.

Advertise key-id = 100 in O-C-Reply for GRE1 and key-id = 200 for GRE2. Uniqueness of the advertised keys between the same tunnel endpoints is ensured by L2TP server. No need to be translated by NAT.
Multiple Sessions Initiated From the Same PPTP Client Node

The 7x50 supports a deployment scenario where multiple calls (or tunnels) are established from a single PPTP node within a single control connection. In this case, there is only one set of Start-Control-Connection-Req/Reply messages (one control channel) and multiple sets of Outgoing-Call-Req/Reply messages.

Selection of Call IDs in NAT

Call-Id are taken from the same pool as the ICMP port ranges. Port-ranges and Call-IDs are both 16-bit values. Call-id selection mechanism is the same as the outside TCP/UDP port selection mechanism (random with parity).
Large Scale NAT

Large Scale NAT represents the most common deployment of S-NAPT in carrier networks today, it is already employed by mobile operators around the world for handset access to the Internet.

A Large Scale NAT is typically deployed in a central network location with two interfaces, the inside towards the customers, and the outside towards the Internet. A Large Scale NAT functions as an IP router and is located between two routed network segments (the ISP network and the Internet).

Traffic can be sent to the Large Scale NAT function on the 7750 SR using IP filters (ACL) applied to SAPs or by installing static routes with a next-hop of the NAT application. These two methods allow for increased flexibility in deploying the Large Scale NAT, especially those environments where IP MPLS VPN are being used in which case the NAT function can be deployed on a single PE and perform NAT for any number of other PE by simply exporting the default route.

The 7750 SR NAT implementation supports NAT in the base routing instance and VPRN, and through NAT traffic may originate in one VPRN (the inside) and leave through another VPRN or the base routing instance (the outside). This technique can be employed to provide customer’s of IP MPLS VPN with Internet access by introducing a default static route in the customer VPRN, and NATing it into the Internet routing instance.

As Large Scale NAT is deployed between two routed segments, the IP addresses allocated to hosts on the inside must be unique to each host within the VPRN. While RFC1918 private addresses have typically been used for this in enterprise or mobile environments, challenges can occur in fixed residential environments where a subscriber has existing S-NAPT in their residential gateway. In these cases the RFC 1918 private address in the home network may conflict with the address space assigned to the residential gateway WAN interface. Some of these issues are documented in draft-shirasaki-nat444-isp-shared-addr-02. Should a conflict occur, many residential gateways will fail to forward IP traffic.
Port Range Blocks

The S-NAPT service on the 7750 BNG incorporates a port range block feature to address scalability of a NAT mapping solution. With a single BNG capable of hundreds of thousands of NAT mappings every second, logging each mapping as it is created and destroyed logs for later retrieval (as may be required by law enforcement) could quickly overwhelm the fastest of databases and messaging protocols. Port range blocks address the issue of logging and customer location functions by allocating a block of contiguous outside ports to a single subscriber. Rather than log each NAT mapping, a single log entry is created when the first mapping is created for a subscriber and a final log entry when the last mapping is destroyed. This can reduce the number of log entries by 5000x or more. An added benefit is that as the range is allocated on the first mapping, external applications or customer location functions may be populated with this data to make real-time subscriber identification, rather than having to query the NAT as to the subscriber identity in real-time and possibly delay applications.

Port range blocks are configurable as part of outside pool configuration, allowing the operator to specify the number of ports allocated to each subscriber when a mapping is created. Once a range is allocated to the subscriber, these ports are used for all outbound dynamic mappings and are assigned in a random manner to minimise the predictability of port allocations (draft-ietf-tsvwg-port-randomization-05).

Port range blocks also serve another useful function in a Large Scale NAT environment, and that is to manage the fair allocation of the shared IP resources among different subscribers.

When a subscriber exhausts all ports in their block, further mappings will be prohibited. As with any enforcement system, some exceptions are allowed and the NAT application can be configured for reserved ports to allow high-priority applications access to outside port resources while exhausted by low priority applications.

Reserved Ports and Priority Sessions

Reserved ports allows an operator to configure a small number of ports to be reserved for designated applications should a port range block be exhausted. Such a scenario may occur when a subscriber is unwittingly subjected to a virus or engaged in extreme cases of P2P file transfers. In these situations, rather than block all new mappings indiscriminately the 7750 NAT application allows operators to nominate a number of reserved ports and then assign a 7750 forwarding class as containing high priority traffic for the NAT application. Whenever traffic reaches the NAT application which matches a priority session forwarding class, reserved ports will be consumed to improve the chances of success. Priority sessions could be used by the operator for services such as DNS, web portal, e-mail, VoIP, etc to permit these applications even when a subscriber exhausted their ports.
Preventing Port Block Starvation

Dynamic Port Block Starvation in LSN

The outside IP address is always shared for the subscriber with a port forward (static or via PCP) and the dynamically allocated port block, insofar as the port from the port forward is in the range >1023. This behavior can lead to starvation of dynamic port blocks for the subscriber. An example for this scenario is shown in Figure 53.

- A static port forward for the WEB server in Home 1 is allocated in the CPE and the CGN. At the time of static port forward creation, no other dynamic port blocks for Home 1 exist (PCs are powered off).
- Assume that the outside IP address for the newly created static port forward in the CGN is 3.3.3.1.
- Over time dynamic port blocks are allocated for a number of other homes that share the same outside IP address, 3.3.3.1. Eventually those dynamic port block allocations will exhaust all dynamic port block range for the address 3.3.3.1.
- Once the dynamic port blocks are exhausted for outside IP address 3.3.3.1, a new outside IP address (for example, 3.3.3.2) will be allocated for additional homes.

Eventually the PCs in Home 1 come to life and they try to connect to the Internet. Due to the dynamic port block exhaustion for the IP address 3.3.3.1 (that is mandated by static port forward – Web Server), the dynamic port block allocation will fail and consequently the PCs will not be able to access the Internet. There will be no additional attempt within CGN to allocate another outside IP address. Note that in the CGN there is no distinction between the PCs in Home 1 and the Web Server when it comes to source IP address. They both share the same source IP address 2.2.2.1 on the CPE.

- The solution for this is to reserve a port block (or blocks) during the static port forward creation for the given subscriber.
Figure 53: Dynamic Port Block Starvation in LSN
Dynamic Port Block Reservation

To prevent starvation of dynamic port blocks for the subscribers that utilize port forwards, a dynamic port block (or blocks) will be reserved during the lifetime of the port forward. Those reserved dynamic port blocks will be associated with the same subscriber that created the port forward. However, a log would not be generated until the dynamic port block is actually used and mapping within that block are created.

At the time of the port forward creation, the dynamic port block will be reserved in the following fashion:

• If the dynamic port block for the subscriber does not exist, then a dynamic port block for the subscriber will be reserved. No log for the reserved dynamic port block is generated until the dynamic port block starts being utilized (mapping created due to the traffic flow).

• If the corresponding dynamic port block already exists, then it will be reserved even after the last mapping within the last port block had expired.

The reserved dynamic port block (even without any mapping) will continue to be associated with the subscriber as long as the port forward for the subscriber is present. The log (syslog or RADIUS) will be generated only when there is not active mapping within the dynamic port block AND all port forwards for the subscriber are deleted.

Additional considerations with dynamic port block reservation:

• The port block reservation should be triggered only by the first port forward for the subscriber. The subsequent port forwards will not trigger additional dynamic port block reservation.

• Only a single dynamic port block for the subscriber is reserved (i.e no multiple port-block reservations for the subscriber are possible).

• This feature is enabled with the configuration command port-forwarding-dyn-block-reservation under the `configure>service>vprn>nat>outside>pool` and the `configure>router>nat>outside>pool` CLI hierarchy. This command can be enabled only if the maximum number of configured port blocks per outside IP is greater or equal then the maximum configured number of subscribers per outside IP address. This will guarantee that all subscribers (up the maximum number per outside IP address) configured with port forwards will be able to reserve a dynamic port block.

• In case that the port-reservation is enabled while the outside pool is operational and subscribers traffic is already present, the following two cases will have to be considered:

 → The configured number of subscribers per outside IP is less or equal than the configured number of port blocks per outside IP address (this is permitted) but all dynamic port blocks per outside IP address are occupied at the moment when port reservation is enabled. This will leave existing subscribers with port forwards that do
not have any dynamic port blocks allocated (orphaned subscribers), unable to reserve dynamic port blocks. In this case the orphaned subscribers will have to wait until dynamic port blocks allocated to the subscribers without port forwards are freed.

The configured number of subscribers per outside IP is greater than the configured number of port blocks per outside IP address. In addition, all dynamic port blocks per outside IP address are allocated. Before the port reservation is even enabled, the subscriber-limit per outside IP address will have to be lowered (by configuration) so that it is equal or less than the configured number of port blocks per outside IP address. This action will cause random deletion of subscribers that do not have any port forwards. Such subscribers will be deleted until the number of subscriber falls below the newly configured subscriber limit. Note that subscribers with static port forwards will not be deleted, regardless of the configured subscriber-limit number. Once the number of subscriber is within the newly configured subscriber-limit, the port-reservation can take place under the condition that the dynamic port blocks are available. If certain subscribers with port forwards have more than one dynamic port block allocated, the orphaned subscribers will have to wait for those additional dynamic port blocks to expire and consequently be released.

- This feature is supported on the following applications: CGN, DS-Lite and NAT64.
Timeouts

Creating a NAT mapping is only one half of the problem – removing a NAT mapping at the appropriate time maximizes the shared port resource. Having ports mapped when an application is no longer active reduces solution scale and may impact the customer experience should they exhaust their port range block. The NAT application provides timeout configuration for TCP, UDP and ICMP.

TCP state is tracked for all TCP connections, supporting both three-way handshake and simultaneous TCP SYN connections. Separate and configurable timeouts exist for TCP SYN, TCP transition (between SYN and Open), established and time-wait state. Time-wait assassination is supported and enabled by default to quickly remove TCP mappings in the TIME WAIT state.

UDP does not have the concept of connection state and is subject to a simple inactivity timer. Alcatel-Lucent-sponsored research into applications and NAT behavior suggested some applications, like the Bittorrent Distributed Hash Protocol (DHT) can make a large number of outbound UDP connections that are unsuccessful. Rather than wait the default five (5) minutes to time these out, the 7750 NAT application supports an udp-initial timeout which defaults to 15 seconds. When the first outbound UDP packet is sent, the 15 second time starts – it is only after subsequent packets (inbound or outbound) that the default UDP timer will become active, greatly reducing the number of UDP mappings.
Watermarks

It is possible to define watermarks to monitor the actual usage of sessions and/or ports.

For each watermark, a high and a low value has to be set. Once the high value is reached, a notification will be sent. As soon as the usage drops below the low watermark, another notification will be send.

Watermarks can be defined on nat-group, pool and policy level.

- **Nat-group**: Watermarks can be placed to monitor the total number of sessions on an MDA.
- **Pool**: Watermarks can be placed to monitor the total number of blocks in use in a pool.
- **Policy**: In the policy it is possible to define watermarks on session and port usage. In both cases, it is the usage per subscriber (for l2-aware nat) or per host (for large-scale nat) that will be monitored.
L2-Aware NAT

In an effort to address issues of conflicting address space raised in draft-shirasaki-nat444-isp-shared-addr-02 Alcatel-Lucent co-developed an enhancement to Large Scale NAT to give every broadband subscriber their own NAT mapping table, yet still share a common outside pool of IPs.

Layer-2 Aware (or subscriber aware) NAT is combined with Enhanced Subscriber Management on the 7750 BNG to overcome the issues of colliding address space between home networks and the inside routed network between the customer and Large Scale NAT.

Layer-2 Aware NAT permits every broadband subscriber to be allocated the exact same IPv4 address on their residential gateway WAN link and then proceeds to translate this into a public IP through the NAT application. In doing so, L2-Aware NAT avoids the issues of colliding address space raised in draft-shirasaki without any change to the customer gateway or CPE.
Layer-2-Aware NAT is supported on any of the ESM access technologies, including PPPoE, IPoE (DHCP) and L2TP LNS. For IPoE both n:1 (VLAN per service) and 1:1 (VLAN per subscriber) models are supported. A subscriber device operating with L2-Aware NAT needs no modification or enhancement – existing address mechanisms (DHCP or PPP/IPCP) are identical to a public IP service, the 7750 BNG simply translates all IPv4 traffic into a pool of IPv4 addresses, allowing many L2-Aware NAT subscribers to share the same IPv4 address.

More information on L2-Aware NAT can be found in draft-miles-behave-l2nat-00.
Port Control Protocol (PCP)

PCP is a protocol that operates between subscribers and the NAT directly. This makes the protocol similar to DHCP or PPP in that the subscriber has a limited but direct control over the NAT behavior.

PCP is designed to allow the configuration of static port-forwards, obtain information about existing port forwards and to obtain the outside IP address from software running in the home network or on the CPE.

PCP runs on each MS-ISA as its own process and make use of the same source-IP hash algorithm as the NAT mappings themselves. The protocol itself is UDP based and is request/response in nature, in some ways, similar to UPnP.

PCP operates on a specified loopback interface in a similar way to the local DHCP server. It operates on UDP and a specified (in CLI) port. As Epoch is used to help recover mappings, a unique PCP service must be configured for each NAT group.

Note that when epoch is lowered, there is no mechanism to inform the clients to refresh their mappings en-masse. External synchronization of mappings is possible between two chassis (epoch does not need to be synchronized). If epoch is unsynchronized then the result will be clients re-creating their mapping on next communication with the PCP server.

The R-bit (0) indicates request and (1) indicates response. This is a request so (0).

OpCode defined as:

Requested Lifetime: Lifetime 0 means delete.
Port Control Protocol (PCP)

<table>
<thead>
<tr>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>+--</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+--</td>
</tr>
<tr>
<td>;</td>
</tr>
<tr>
<td>; (optional) OpCode-specific response data ;</td>
</tr>
<tr>
<td>;</td>
</tr>
<tr>
<td>+--</td>
</tr>
<tr>
<td>; (optional) Options ;</td>
</tr>
<tr>
<td>+--</td>
</tr>
</tbody>
</table>

As this is a response, \(R = (1) \).

The Epoch field increments by 1 every second and can be used by the client to determine if state needs to be restored. On any failure of the PCP server or the NAT to which it is associated Epoch must restart from zero (0).

Result Codes:

0 SUCCESS, success.
1 UNSUPP_VERSION, unsupported version.
2 MALFORMED_REQUEST, a general catch-all error.
3 UNSUPP_OPCODE, unsupported OpCode.
4 UNSUPP_OPTION, unsupported option. Only if the Option was mandatory.
5 MALFORMED_OPTION, malformed option.
6 UNSPECIFIED_ERROR, server encountered an error
7 MISORDERED_OPTIONS, options not in correct order

Creating a Mapping

Client Sends

MAP4 opcode is (1). Protocols: 0 – all; 1 – ICMP; 6 – TCP; 17 – UDP.

MAP4 (1), PEER4 (3) and PREFER_FAILURE are supported. FILTER and THIRD_PARTY are not supported.
DS-Lite and NAT64 Fragmentation

Overview

In general, fragmentation functionality is invoked when the size of a fragmentation eligible packet exceeds the size of the MTU of the egress interface/tunnel. Packets eligible for fragmentation are:

- IPv4 packets/fragments with the DF bit in the IPv4 header cleared. Fragmentation can be performed on any routing node between the source and the destination of the packet.
- IPv6 packets on the source node. Fragmentation of IPv6 packet on the transient routing nodes is not allowed.

The best practice is to avoid fragmentation in the network by ensuring adequate MTU size on the transient/source nodes. Drawbacks of the fragmentation are:

- Increased processing and memory demands to the network nodes (especially during reassembly process)
- Increased byte overhead
- Increased latency.

Fragmentation can be particularly deceiving in a tunneled environment whereby the tunnel encapsulation adds extra overhead to the original packet. This extra overhead could tip the size of the resulting packet over the egress MTU limit.

Fragmentation could be one solution in cases where the restriction in the mtu size on the packet’s path from source to the destination cannot be avoided. 7x50 supports IPv6 fragmentation in DS-Lite and NAT64 with some enriched capabilities, such as optional packet IPv6 fragmentation even in cases where DF-bit in corresponding IPv4 packet is set.

In general, the lengths of the fragments must be chosen such that resulting fragment packets fit within the MTU of the path to the packets destination(s).

In downstream direction fragmentation can be implemented in two ways:

- IPV4 packet can be fragmented in the carrier IOM before it reaches ISA for any NAT function.
- IPv6 packet can be fragmented in the ISA, once the IPv4 packet is IPv6 encapsulated in DS-lite or IPv6 translated in NAT64.

In upstream direction, IPv4 packets can be fragmented once they are de-capsulated in DS-lite or translated in NAT64. The fragmentation will occur in the IOM.
IPv6 Fragmentation in DS-Lite

In the downstream direction, the IPv6 packet carrying IPv4 packet (IPv4-in-IPv6) is fragmented in the ISA in case the configured DS-lite tunnel-mtu is smaller than the size of the IPv4 packet that is to be tunneled inside of the IPv6 packet. The maximum IPv6 fragment size will be 48 bytes larger than the value set by the tunnel-mtu. The additional 48 bytes is added by the IPv6 header fields: 40 bytes for the basic IPv6 header + 8 bytes for extended IPv6 fragmentation header. NAT implementation in 7x50 does not insert any extension IPv6 headers other than fragmentation header.

In case that the IPv4 packet is larger than the value set by the tunnel-mtu, the fragmentation action will depend on the configuration options and the DF bit setting in the header of the received IPv4 header:

- The IPv4 packet can be dropped regardless of the DF bit setting. IPv6 fragmentation is disabled.
- The IPv4 packet can be encapsulated in IPv6 packet and then the IPv6 can be fragmented regardless of the DF bit setting in the IPv4 tunneled packet. The IPv6 fragment payload is limited to the value set by the tunnel-mtu.
- The IPv4 packet can be encapsulated in IPv6 packet and then the IPv6 can be fragmented ONLY if the DF bit is cleared. The IPv6 fragment payload is limited to the value set by the tunnel-mtu.

In case that the IPv4 packet is dropped due to fragmentation not being allowed, an ICMPv4 Datagram Too Big message will be returned to the source. This message will carry the information...
about the size of the MTU that is supported, in essence notifying the source to reduce its MTU size to the requested value (tunnel-mtu).

The maximum number of supported fragments per IPv6 packet is 8. Considering that the minimum standard based size for IPv6 packet is 1280 bytes, 8 fragments is enough to cover jumbo Ethernet frames.

```
configure [router] | [service vprn]
  nat
  inside
dual-stack-lite
address <IPv6 Addr>
  tunnel-mtu bytes
    ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
```

NAT64

Downstream fragmentation in NAT64 works in similar fashion. The difference between DS-lite is that in NAT64 the configured ipv6-mtu represents the mtu size of the ipv6 packet (as opposed to payload of the IPv6 tunnel in DS-lite). In addition, IPv4 packet in NAT64 is not tunneled but instead IPv4/v6 headers are translated. Consequently, the fragmented IPv6 packet size will be 28 bytes larger than the translated IPv4 packet? 20 bytes difference in basic IP header sizes (40 bytes IPv6 header vs 20 byte IPv4 header) plus 8 bytes for extended fragmentation IPv6 header. Note than the only extended IPv6 header that NAT64 generates is the fragmentation header.

In case that the IPv4 packet is dropped due to the fragmentation not being allowed, the returned ICMP message will contain MTU size of ipv6-mtu minus 28 bytes.

Otherwise the fragmentation options are the same as in DS-lite.

```
configure [router] | [service vprn]
  nat
  inside
  nat64
  ipv6-mtu bytes
    ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
```
NAT Logging

LSN logging is extremely important to the Service Providers (SP) who are required by the government agencies to track source of suspicious Internet activities back to the users that are hidden behind the LSN device.

The 7750-SR supports several modes of logging for LSN applications. Choosing the right logging model will depend on the required scale, simplicity of deployment and granularity of the logged data.

For most purposes logging of allocation/de-allocation of outside port-blocks and outside IP address along with the corresponding LSN subscriber and inside service-id will suffice.

In certain cases port-block based logging is not satisfactory and per flow logging is required.

Syslog/SNMP/Local-File Logging

The simplest form of LSN and L2-Aware NAT logging is via logging facility in the 7750-SR, commonly called logger. Each port-block allocation/de-allocation event will be recorded and send to the system logging facility (logger). Such an event can be:

- Recorded in the system memory as part of regular logs.
- Written to a local file.
- Sent to an external server via syslog facility.
- Sent to a SNMT trap destination.

In this mode of logging, all applications in the system share the same logger.

Syslog/SNMP/Local-File logging on LSN is mutually exclusive with NAT RADIUS-based logging.

Syslog/SNMP/local-file logging must be separately enabled for LSN and L2-Aware NAT in log even-control. The following displays relevant MIB events:

- 2012 tmnxNatPlBlockAllocationLsn
- 2013 tmnxNatPlBlockAllocationL2Aw
Filtering LSN Events to System Memory

In this example a single port-block [1884-1888] is allocated/de-allocated for the inside IP address 5.5.5.5 which is mapped to the outside IP address 80.0.0.1. Consequently the event is logged in the memory as.

```
2 2012/07/12 16:40:58.23 WEST MINOR: NAT #2012 Base NAT
"{2} Free 80.0.0.1 [1884-1888] -- vprn10 5.5.5.5 at 2012/07/12 16:40:58"

1 2012/07/12 16:39:55.15 WEST MINOR: NAT #2012 Base NAT
"{1} Map 80.0.0.1 [1884-1888] -- vprn10 5.5.5.5 at 2012/07/12 16:39:55"
```

Once the desired LSN events are enabled for logging via event-control configuration, they can be logged to memory via standard log-id 99 or be filtered via a custom log-id, such as in this example (log-id 5):

Configuration:

```
*A:left-a20>config>log# info
----------------------------------------------
filter 1
  default-action drop
  entry 1
    action forward
    match
      application eq "nat"
      numbr eq 2012
    exit
  exit
  exit
  event-control "nat" 2001 suppress
  event-control "nat" 2002 suppress
  event-control "nat" 2003 suppress
  event-control "nat" 2004 suppress
  event-control "nat" 2005 suppress
  event-control "nat" 2006 suppress
  event-control "nat" 2007 suppress
  event-control "nat" 2008 suppress
  event-control "nat" 2009 suppress
  event-control "nat" 2010 suppress
  event-control "nat" 2011 suppress
  event-control "nat" 2012 generate
  event-control "nat" 2014 suppress
  event-control "nat" 2015 suppress
  event-control "nat" 2017 suppress
  syslog 10
  exit
  log-id 5
    filter 1
    from main
    to memory
  exit
----------------------------------------------
```
The event description is given below:

tmnxNatPlL2AwBlockUsageHigh
The **tmnxNatPlL2AwBlockUsageHigh** notification is sent when the block usage of a Layer-2-Aware NAT address pool reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatIsaMemberSessionUsageHigh
The **tmnxNatIsaMemberSessionUsageHigh** notification is sent when the session usage of a NAT ISA group member reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatPlLsnMemberBlockUsageHigh
The **tmnxNatPlLsnMemberBlockUsageHigh** notification is sent when the block usage of a Large Scale NAT address pool reaches its high watermark ('true') or when it reaches its low watermark again ('false') on a particular member MDA of its ISA group.

tmnxNatLsnSubIcmpPortUsageHigh
The **tmnxNatLsnSubIcmpPortUsageHigh** notification is sent when the ICMP port usage of a Large Scale NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatLsnSubUdpPortUsageHigh
The **tmnxNatLsnSubUdpPortUsageHigh** notification is sent when
the UDP port usage of a Large Scale NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatLsnSubTcpPortUsageHigh
The tmnxNatLsnSubTcpPortUsageHigh notification is sent when the TCP port usage of a Large Scale NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatL2AwSubUdpPortUsageHigh
The tmnxNatL2AwSubUdpPortUsageHigh notification is sent when the UDP port usage of a Layer-2-Aware NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatL2AwSubTcpPortUsageHigh
The tmnxNatL2AwSubTcpPortUsageHigh notification is sent when the TCP port usage of a Layer-2-Aware NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatL2AwSubIcmpPortUsageHigh
The tmnxNatL2AwSubIcmpPortUsageHigh notification is sent when the ICMP port usage of a Layer-2-Aware NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatL2AwSubUdpPortUsageHigh
The tmnxNatL2AwSubUdpPortUsageHigh notification is sent when the UDP port usage of a Layer-2-Aware NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatL2AwSubTcpPortUsageHigh
The tmnxNatL2AwSubTcpPortUsageHigh notification is sent when the TCP port usage of a Layer-2-Aware NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatL2AwSubSessionUsageHigh
The tmnxNatL2AwSubSessionUsageHigh notification is sent when the session usage of a Layer-2-Aware NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatLsnSubSessionUsageHigh
The tmnxNatLsnSubSessionUsageHigh notification is sent when the session usage of a Large Scale NAT subscriber reaches its high watermark ('true') or when it reaches its low watermark again ('false').

tmnxNatPlBlockAllocationLsn
The tmnxNatPlBlockAllocationLsn notification is sent when an outside IP address and a range of ports is allocated to a NAT subscriber associated with a Large Scale NAT (LSN) pool, and when this allocation expires.

tmnxNatPlBlockAllocationL2Aw
The tmnxNatPlBlockAllocationL2Aw notification is sent when an outside IP address and a range of ports is allocated to a NAT subscriber associated with a Layer-2-Aware NAT pool, and when this allocation expires.

tmnxNatResourceProblemDetected
The tmnxNatResourceProblemDetected notification is sent when the value of the object tmnxNatResourceProblem changes.

tmnxNatResourceProblemCause
The tmnxNatResourceProblemCause notification is to describe the cause of a NAT resource problem.
NAT Logging

The tmnxNatPlAddrFree notification is sent when a range of outside IP addresses becomes free at once.

The tmnxNatPlLsnRedActiveChanged notification is related to NAT Redundancy sent when the value of the object tmnxNatPlLsnRedActive changes. The cause is explained in the tmnxNatNotifyDescription which is a printable character string.

NAT Logging to a Local File

In this case, the destination of log-id 5 in the following example would be a local file instead of memory:

```
*A:left-a20>config>log# info
----------------------------------------------
file-id 5
  description "nat logging"
  location cf3:
    rollover 15 retention 12
  exit

log-id 5
  filter 1
  from main
to file 5
  exit
```

The events will be logged to a local file on the compact flash cf3 in a file under the /log directory.
SNMP Trap Logging

In case of SNMP logging to a remote node, the log destination should be set to SNMP destination. Allocation de-allocation of each port block will trigger sending a SNMP trap message to the trap destination.

*A:left-a20>config>log# info

filter 1
 default-action drop
 entry 1
 action forward
 match
 application eq "nat"
 number eq 2012
 exit
 exit
snmp-trap-group 6
 trap-target "nat" address 114.0.1.10 port 9001 snmpv2c notify-community "private"

| Internet protocol version 4, src: 1.1.1.1 (1.1.1.1), dst: 114.0.1.10 (114.0.1.10) |
| User Datagram Protocol, Src Port: snmptrap (162), Dst Port: et1servicemgr (9001) |
| Source port: snmptrap (162) |
| Destination port: et1servicemgr (9001) |
| Length: 358 |
| checksum: 0x0e2c [correct] |

Simple Network Management Protocol

Version: v2c (1) Community: private |

Data: snmpv2-trap (7) snmpv2-trap

request-id: 1
error-status: noError (0)
error-index: 0

variable-bindings: 14 items

| 1.3.6.1.2.1.1.3.0:15054340 |
| 1.3.6.1.6.3.1.1.4.1.0:15054340 |
| 1.3.6.1.2.1.2.1.0:32.6.1.4.1.6527.3.1.3.65.0.12 (15054340) |
| 1.3.6.1.2.1.2.5.0:5000000 |
| 1.3.6.1.4.1.6527.3.1.2.65.2.8.0:1894 |
| 1.3.6.1.4.1.6527.3.1.2.65.2.9.0:1898 |
| 1.3.6.1.4.1.6527.3.1.2.65.2.10.0:07dc070d00321b0002b0000 |
| 1.3.6.1.4.1.6527.3.1.2.65.2.11.0:1 |
| 1.3.6.1.4.1.6527.3.1.2.65.2.12.0: |
| 1.3.6.1.4.1.6527.3.1.2.65.2.13.0: |
| 1.3.6.1.4.1.6527.3.1.2.65.2.14.0: |
| 1.3.6.1.4.1.6527.3.1.2.65.2.15.0: |
| 1.3.6.1.4.1.6527.3.1.2.65.2.16.0: |
| 1.3.6.1.4.1.6527.3.1.2.65.2.17.0: |

OS Multi-Service ISA Guide

Page 697
NAT Syslog

NAT logs can be sent to a syslog remote facility. A separate syslog message is generated for every port-block allocation/de-allocation.

*A:left-a20>config>log#info
--
... filter 1
default-action drop
entry 1
 action forward
 match
 application eq "nat"
 number eq 2012
 exit
 exit
syslog 7
 address 114.0.1.10
 exit

Severity level for this event can be changed via CLI:

*A:left-a20# configure log event-control "nat" 2012 generate <severity-level>
cleared indeterminate critical major minor warning
LSN RADIUS Logging

LSN RADIUS logging (or accounting) is based on RADIUS accounting messages as defined in RFC 2866. It requires an operator to have RADIUS accounting infrastructure in place. For that reason, LSN RADIUS logging and LSN RADIUS accounting terms can be used interchangeably.

This mode of logging operation is introduced so that the shared logging infrastructure in 7750 SR can be offloaded by disabling syslog/SNMP/Local-file LSN logging. The result is increased performance and higher scale, particularly in cases when multiple BB-ISA cards within the same system are deployed to perform aggregated LSN functions.

An additional benefit of LSN RADIUS logging over syslog/SNMP/local-file logging is reliable transport. Although RADIUS accounting relies on unreliable UDP transport, each accounting message from the RADIUS client must be acknowledged on the application level by the receiving end (accounting server).

Each port-block allocation or de-allocation is reported to an external accounting (logging) server in the form of start, interim-update or stop messages. The type of accounting messages generated depends on the mode of operation:

- **START and STOP per port-block.** An accounting START is generated when a new port-block for the LSN subscriber is allocated. Similarly, the accounting STOP is generated when the port-block is released. Each accounting START/STOP pair of messages that are triggered by port block allocation/de-allocation within the same subscriber will have the same multi-acct-session-id (subscriber significant) but a different acct-session-id (port-block significant). This mode of operation is enabled by inclusion of multi-acct-session-id within the nat-accounting-policy.

- **START and STOP per subscriber.** An accounting START will be generated when the first port-block for the NAT subscriber is allocated. Each consecutive port-block allocation/de-allocation will trigger an INTERIM-UPDATE messages with the same acct-session-id (subscriber significant). The termination cause attribute in acct STOP messages will indicate the reason for port-block de-allocation. De-allocation of the last port-block for the LSN subscriber will trigger an acct STOP message. There is no multi-acct-session-id present in this mode of operation.

The accounting messages are generated and reported directly from the BB-ISA card, therefore bypassing accounting infrastructure residing on the Control Plane Module (CPM).

LSN RADIUS logging is enabled per nat-group. To achieve the required scale, each BB-ISA card in the nat-group group with LSN RADIUS logging enabled runs a RADIUS client with its own IP address. Accounting messages can be distributed to up to 5 accounting servers that can be accessed in round-robin fashion. Alternatively, in direct access mode, only one accounting server in the list is used. When this server fails, the next one in the list is used.
Configuration steps:

1. Configure nat-accounting-policy which defines:
 - accounting destination
 - inclusion of RADIUS attributes that will be sent in accounting messages to the destination
 - source IP addresses per BB-ISA card (RADIUS client) in the nat-group

2. Apply nat-accounting-policy to the nat-group. This will automatically enable RADIUS accounting on every BB-ISA card in the group, provided that each BB-ISA card has an IP address.

*A:left-a20>config>aaa>nat-acct-plcy# info detail
 description "nat-acct-basic policy"
 include-radius-attribute
 framed-ip-addr
 nas-identifier
 no nat-subscriber-string => only relevant when subscriber aware NAT is enabled
 user-name
 inside-service-id
 outside-service-id
 outside-ip
 port-range-block
 hardware-timestamp
 release-reason
 multi-session-id
 frame-counters
 octet-counters
 session-time
 called-station-id
 no subscriber-data => only relevant when subscriber aware NAT is enabled
 exit
 radius-accounting-server
 access-algorithm direct
 retry 3
 router "Base"
 source-address-range 114.0.1.20 114.0.1.20
 timeout sec 5
 server 1 address 114.0.1.10 secret "KlWIBi08CkTyM/YXaU2gQitOu8GfSD70j5hjese27A"
 exit

Each BB-ISA card is assigned one IPv4 address from the source-address-range command and this IPv4 address must be accessible from the accounting server. In the following example there is only one BB-ISA card in the nat-group 1. It source ip address is 114.0.1.20.

*A:left-a20# show router route-table
===
= Route Table (Router: Base) =
===
= Dest Prefix[Flags] Type Proto Age Pref Next Hop[Interface Name] Metric =
===
80.0.0.1/32 Remote NAT 02d18h24m 0 NAT outside: group 1 member 1 0
114.0.1.0/28 Local Local 02d20h25m 0 radius 0
It is possible to load-balance accounting messages over multiple logging servers by configuring
the access-algorithm to round-robin mode. Once the LSN RADIUS accounting policy is defined,
it will have to be applied to a nat-group:

*A:left-a20>config>isa>nat-group# info
--
active-mda-limit 1
radius-accounting-policy "nat-acct-basic"
mda 1/2
no shutdown

The RADIUS accounting messages for the case where a Large Scale NAT44 subscriber has
allocated two port blocks in a logging mode where acct start/stop is generated per port-block is
shown below.

Port-blocks allocation for the NAT44 subscriber:

Fri Jul 13 09:55:15 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Start
Acct-Multi-Session-Id = "500052cd2edcaeb97c2dad3d7c2dad3d"
Acct-Session-Id = "500052cd2edcaeb96206475d7c2dad3d"
Called-Station-Id = "00-00-00-00-01-01"
User-Name = "LSN44@26.0.0.58"
Alc-Serv-Id = 10
Acct-Input-Packets = 0
Acct-Input-Octets = 0
Acct-Output-Packets = 0
Acct-Output-Octets = 0
Acct-Input-Gigawords = 0
Acct-Output-Gigawords = 0
Acct-Session-Time = 0
Event-Timestamp = "Jul 13 2012 09:54:37 PDT"
Acct-Unique-Session-Id = "21c45a8b92709fb8"
Timestamp = 1342198515
Request-Authenticator = Verified

Fri Jul 13 09:55:16 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Start
Acct-Multi-Session-Id = "500052cd2edcaeb97c2dad3d7c2dad3d"
Acct-Session-Id = "500052cd2edcaeb9620647297c2dad3d"
Called-Station-Id = "00-00-00-00-01-01"
User-Name = "LSN44@26.0.0.58"
Alc-Serv-Id = 10
Framed-IP-Address = 26.0.0.58
NAT Logging

```
Alc-Nat-Outside-Ip-Addr = 80.0.0.1
Alc-Nat-Port-Range = "80.0.0.1 2029-2033 router base"
Acct-Input-Packets = 0
Acct-Output-Packets = 5
Acct-Input-Octets = 0
Acct-Output-Octets = 370
Acct-Input-Gigawords = 0
Acct-Output-Gigawords = 0
Acct-Session-Time = 1
Event-Timestamp = "Jul 13 2012 09:54:38 PDT"
Acct-Unqiue-Session-Id = "baf26e8a35e31020"
Timestamp = 1342198516
Request-Authenticator = Verified

Port-blocks de-allocation:

Fri Jul 13 09:56:18 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Stop
Acct-Multi-Session-Id = "500052cd2edcaeb97c2dad3d7c2dad3d"
Acct-Session-Id = "500052cd2edcaeb96206475d7c2dad3d"
Called-Station-Id = "00-00-00-01-01"
User-Name = "LSN44@26.0.0.58"
Alc-Serv-Id = 10
Framed-IP-Address = 26.0.0.58
Alc-Nat-Outside-Ip-Addr = 80.0.0.1
Alc-Nat-Port-Range = "80.0.0.1 2024-2028 router base"
Acct-Terminate-Cause = Port-Unneeded
Acct-Input-Packets = 0
Acct-Output-Packets = 25
Acct-Input-Octets = 0
Acct-Output-Octets = 1850
Acct-Input-Gigawords = 0
Acct-Output-Gigawords = 0
Acct-Session-Time = 64
Event-Timestamp = "Jul 13 2012 09:55:41 PDT"
Acct-Unqiue-Session-Id = "21c45a8b92709fb8"
Timestamp = 1342198578
Request-Authenticator = Verified

Fri Jul 13 09:56:20 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Stop
Acct-Multi-Session-Id = "500052cd2edcaeb97c2dad3d7c2dad3d"
Acct-Session-Id = "500052cd2edcaeb9620647297c2dad3d"
Called-Station-Id = "00-00-00-01-01"
User-Name = "LSN44@26.0.0.58"
Alc-Serv-Id = 10
Framed-IP-Address = 26.0.0.58
Alc-Nat-Outside-Ip-Addr = 80.0.0.1
Alc-Nat-Port-Range = "80.0.0.1 2029-2033 router base"
Acct-Terminate-Cause = Host-Request
Acct-Input-Packets = 0
```
Acct-Output-Packets = 25
Acct-Input-Octets = 0
Acct-Output-Octets = 1850
Acct-Input-Gigawords = 0
Acct-Output-Gigawords = 0
Acct-Session-Time = 65
Event-Timestamp = "Jul 13 2012 09:55:42 PDT"
Acct-Unique-Session-Id = "baf26e8a35e31020"
Timestamp = 1342198580
Request-Authenticator = Verified

The inclusion of acct-multi-session-id in the NAT accounting policy will enable generation of start/stop messages for each allocation/de-allocation of a port-block within the subscriber. Otherwise, only the first and last port-block for the subscriber would generate a pair of start/stop messages. All port-block in between would trigger generation of interim-update messages.

The User-Name attribute in accounting messages is set to app-name@inside-ip-address, whereas the app-name can be any of the following: LSN44, DS-Lite or NAT64.

RADIUS Logging and L2-Aware NAT

Logging of L2-Aware NAT is supported via accounting policy associated with the ESM subscriber (outside of NAT). In addition to ESM subscriber specific attributes, the NAT port-ranges and outside IP address (nat-port-range command in regular ESM accounting policy) are reported in the same accounting messages.

Fri Jul 13 11:57:38 2012
Acct-Status-Type = Start
NAS-IP-Address = 1.1.1.1
User-Name = "l2-aware-nat"
Framed-IP-Address = 25.0.1.100
Framed-IP-Netmask = 255.255.255.0
Class = 0x6c322d61776172652d636c737373
Calling-Station-Id = "remote-l2-aware0"
NAS-Identifier = "left-a20"
Acct-Session-Id = "D896FF0000001150006F7C"
Event-Timestamp = "Jul 13 2012 11:57:00 PDT"
NAS-Port-Type = Ethernet
NAS-Port-Id = "1/1:5.13"
ADSL-Agent-Circuit-Id = "l2-aware-nat"
ADSL-Agent-Remote-Id = "remote-l2-aware0"
Alc-Subsc-ID-Str = "l2-aware-1"
Alc-Subsc-Prof-Str = "l2-aware-nat"
Alc-SLA-Prof-Str = "tp_sla_prem"
Alc-Nat-Port-Range = "83.0.0.1 1024-1079 router base"
Alc-Client-Hardware-Addr = "00:00:65:05:13:01"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS
Acct-Unique-Session-Id = "6bbbd5a110313b47"
Timestamp = 1342205858
Request-Authenticator = Verified

RADIUS accounting initiated by BB-ISA card is not supported for L2-Aware NAT.
Syslog/SNMP/Local-file logging can be enabled simultaneously with L2-aware NAT RADIUS accounting (which is in this case regular ESM RADIUS accounting).

LSN and L2-Aware NAT Flow Logging

LSN and L2-Aware NAT Flow logging is a facility that allows each BB-ISA card to export the creation and deletion of NAT flows to an external server. A NAT flow or a Fully Qualified Flow consists of the following parameters: Inside IP, inside port, outside IP, outside port, foreign IP, foreign port, protocol (UDP, TCP, ICMP).

```
+-------------+------------------+
| Owner       | LSN-Host@10.0.0.15 |
| Router      | 10                |
| FlowType    | UDP               |
| Inside IP Addr | 10.0.0.15     |
| Outside IP Addr | 80.0.0.1       |
| Foreign IP Addr | 10.0.3.2      |
| Dest IP Addr   | 10.0.3.2         |
| Timeout (sec) | 11               |
| Inside Port  | 100               |
| Outside Port | 1164              |
| Foreign Port | 5000              |
| Dest Port    | 5000              |
```

In addition, the inside/outside service-id and subscriber string will be added to a flow record.

Flow logging can be deployed as an alternative to the port-range logging or can be complementary (providing a more granular log for offline reporting or compliance). Certain operators have legal and compliance requirements that require extremely detailed logs, created per flow, to be exportable from the NAT node.

Because the setup rate of new flows is excessive, logging to an internal facility (like compact flash) is not possible except in a debugging mode (which must specify match criteria down to the inside-IP and service level).

Flow logging can be enabled per nat-policy and consequently it is initiated from each BB-ISA card independently as a UDP stream, unlike a centralized Netflow/Cflowd application.

Flows are formatted according to IETF IPFIX RFC 5101, *Specification of the IP Flow Information Export (IPFIX) Protocol*, for the Exchange of IP Traffic Flow Information. Data structures are contained in RFC5102, *Information Model for IP Flow Information Export*. NAT flow logging is sent to up to two different IP addresses both of which must be unicast IPv4 destinations. These UDP streams are stateless due to the significant volume of transactions. However they do contain sequence numbers such that packet loss can be identified. They egress the chassis at FC NC.

IPFIX defines two different type of messages that will be sent from the IPFIX exporter (7750 SR NAT node). The first contains Template Set – an IPFIX message that defines fields for subsequent IPFIX messages but contains no actual data of its own. The second IPFIX message type is that containing Data Sets – here the data is passed using the previous Template Set message to define the fields. This means an IPFIX message is NOT passed as sets of TLV, but instead data is encoded with a scheme defined through the Template Set message.
While an IPFIX message can contain both Template Set and Data Set, 7750 sends Template Set messages periodically without any data, whereas the Data Set messages are sent on demand and as required. When IPFIX is used over UDP, the default retransmission frequency of the Template Set messages defaults to 10 minutes. The interval for retransmission is configurable in CLI with a minimum interval of 1 minute and a maximum interval of 10 minutes. When the exporter first initializes, or when a configuration change occurs the Template Set is sent out three times, one second apart. Templates are sent before any data sets, assuming that the collector is enabled, so that an IPFIX collector can establish the data template set.

Although the UDP transport is unreliable, the IPFIX Sequence Number is a 32bit number that contains the total number of IPFIX Data Records sent for the UDP transport session prior to the receipt of the new IPFIX message. The sequence number starts with 0 and it will roll over once it reaches 4,294,967,268.

The default packet size is 1500B unless another value has been defined in config (range is 512B through 9212B inclusive). Traffic is originated from a random high-port to the collector on port 4739. Multiple create/delete flow records will be stuffed into a single IPFIX packet (although the mapping creates are not delayed) until stuffing an additional data record would exceed MTU or a timer expires. The timer is not configurable and is set to 250ms (that is, should any mapping occur a packet will be sent within 250ms of that mapping being created).

Each collector has a 50 packet buffering space. In case that due to excessive logging the buffering space becomes unavailable, new flows will be denied and the deletion of flows will be delayed until buffering space becomes available.

Two collector nodes can be defined in the same IPFIX export policy for redundancy purposes.

Large Scale NAT44 Flow Logging Configuration Example

1. A collector node along with other local transport parameters must be defined through an IPFIX export-policy.

   ```
   *A:left-a20>config>service>ipfix# info detail
   ----------------------------------------------
   ipfix-export-policy "ipxif-policy" create
   description "external IPFIX collector"
   collector router "Base" ip 114.0.1.10 create
   mtu 1500
   source-address 114.0.1.20
   template-refresh-timeout min 10
   no shutdown
   exit
   exit
   ```

To export flow records via UDP stream, the BB-ISA card must be configured with appropriate IPv4 address within a designated VPRN. This address (/32) will act as the source for sending all IPFIX records and is shared by all ISA.

2. Once the IPFIX export policy is defined, it must be applied within the nat-policy:
The capture of IPFIX packet for an ICMP flow creation and expiry is given below:

Flow creation:

```
*A:left-a20>config>service>nat>nat-policy# info
----------------------------------------------
pool "base" router Base
ipfix-export-policy "ipxif-policy"
```

Flow creation:

```
Packet capture level: IPFIX
version: 2a
Length: 72

Flow Creation:
- Observation domain: 41178630
- IP address: 10.0.0.0/8
- Protocol: 1 (ICMP)
- Source Port: 50001
- Destination Port: 50002
- Source Address: 10.0.0.1
- Destination Address: 10.0.0.2
- Protocol: 1 (ICMP)
- Source Port: 50001
- Destination Port: 50002
```

Flow destruction:

```
Packet capture level: IPFIX
version: 2a
Length: 72

Flow Destruction:
- Observation domain: 41178630
- IP address: 10.0.0.0/8
- Protocol: 1 (ICMP)
- Source Port: 50001
- Destination Port: 50002
```

OS Multi-Service ISA Guide

Page 706
Table 13: Template Set Values

<table>
<thead>
<tr>
<th>Description</th>
<th>Flow Creation Template Set</th>
<th>Flow Deletion Templates Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlowID</td>
<td>8</td>
<td>FlowID</td>
</tr>
<tr>
<td>IP_SRC_ADDR</td>
<td>4</td>
<td>IP_SRC_ADDR</td>
</tr>
<tr>
<td>IP_DST_ADDR</td>
<td>4</td>
<td>IP_DST_ADDR</td>
</tr>
<tr>
<td>L4_SRC_PORT</td>
<td>2</td>
<td>L4_SRC_PORT</td>
</tr>
<tr>
<td>L4_DST_PORT</td>
<td>2</td>
<td>L4_DST_PORT</td>
</tr>
<tr>
<td>flowStartMilliseconds</td>
<td>8</td>
<td>flowEndMilliseconds</td>
</tr>
<tr>
<td>PROTOCOL</td>
<td>1</td>
<td>PROTOCOL</td>
</tr>
<tr>
<td>PADDING</td>
<td>1</td>
<td>flowEndReason</td>
</tr>
<tr>
<td>aluInsideServiceID</td>
<td>2</td>
<td>aluInsideServiceID</td>
</tr>
<tr>
<td>aluOutsideServiceID</td>
<td>2</td>
<td>aluOutsideServiceID</td>
</tr>
<tr>
<td>aluNatSubString</td>
<td>var</td>
<td>aluNatSubString</td>
</tr>
</tbody>
</table>
Field descriptions:

Export Timestamp: The timestamp derived from chassis NTP, per RFC 5101.

Sequence Id: Sequence Number contains the total number of IPFIX Data Records sent for the UDP transport session prior to the receipt of the new IPFIX message (modulo 232), per RFC 5101.

Observation Domain Id: Is uniquely set per ISA in the 7750SR chassis.

FlowId: A unique (per observation domain ID) ID for this flow. Used for tracking purposes only (opaque value). The flow ID in a create and a delete mapping record must be the same for a specific NAT mapping.

SourceIpv4Address: The Outside IP address used in the NAT mapping

DestinationIpv4Address: The destination or remote IP address used in the NAT mapping

FlowStartMilliseconds: The timestamp of when the flow was created (chassis NTP derived) in milliseconds from epoch, per RFC 5102.

DestinationTransportPort: The destination port used in the NAT mapping.

ProtocolIdentifier: The protocol ID, TCP, UDP or ICMP, Per RFC 5102.

FlowEndMilliseconds: The timestamp of when the flow was destroyed (chassis NTP derived) in milliseconds from epoch, per RFC 5102.

FlowEndReason: The following Flow End Reasons are supported: 0x01: Idle Timeout. A mapping expired (because of UDP or TCP timeout)

0x03: end of Flow Detected. A mapping closed (only used for TCP after a FIN or RST).

0x04: forced end. Collects all other reasons included administrative or failure case.

aluInsideServiceId: The 16-bit service ID representing the inside service ID (not applicable in L2-aware NAT – set to null in this case).

aluOutsideServiceId: The 16-bit service ID representing the outside service ID (not applicable in L2-aware NAT – set to null in this case).

aluNatSubString: A variable 8B aligned string that represents the NAT subscriber construct (as currently used in the tools dump service nat session commands).
NAT Stateless Dual-Homing

Multi-chassis stateless NAT redundancy is based on a switchover of the NAT pool that can assume active (master) or standby state. The inside/outside routes that attract traffic to the NAT pool are always advertised from the active node (the node on which the pool is active).

This dual-homed redundancy based on the pool mastership state works well in scenarios where each inside routing context is configured with a single nat-policy (NATed traffic within this inside routing context will be mapped to a single NAT pool).

However, in cases where the inside traffic is mapped to multiple pools, the basic per pool multi-chassis redundancy mode can cause the inside traffic within the same routing instance to fail since some pools referenced from the routing instance might be active on one node while other pools might be active on the other node.

Imagine a case where traffic ingressing the same inside routing instance is mapped as follows (this mapping can be achieved via filters):

- Source ip-address A —> Pool 1 (nat-policy 1) active on Node 1
- Source ip-address B —> Pool 2 (nat-policy 2) active on Node 2

Traffic for the same destination is normally attracted only to one NAT node (the destination route is advertised only from a single NAT node). Let assume that this node is Node 1 in out example. Once the traffic arrives to the NAT node, it will be mapped to the corresponding pool according to the mapping criteria (routing based or filter based). But if active pools are not co-located, traffic destined to the pool that is active on the neighboring node would fail. In our example traffic from the source ip-address B would arrive to the Node 1, while the corresponding Pool 2 is inactive on that node. Consequently the traffic forwarding would fail.

To remedy this situation, a group of pools targeted from the same inside routing context must be active on the same node simultaneously. In other words, the active pools referenced from the same inside routing instance must be co-located. This group of pools is referred to as Pool Fate Sharing Group (PFSG). The PFSG is defined as a group of all NAT pools referenced by inside routing contexts whereby at least one of those pools is shared by those inside routing contexts. This is shown in Figure 56.

Even though only Pool 2 is shared between subscribers in VRF 1 and VRF 2, the remaining pools in VRF 1 and VRF 2 must be made part of PFSG 1 as well.

This will ensure that the inside traffic will be always mapped to pools that are active in a single box.

1. In case of Deterministic NAT and in case when multiple NAT policies are configured per inside routing context.
There is always one lead pool in PFSG. The Lead pool is the only pool that is exporting/monitoring routes. Other pools in the PFSG are referencing the lead pool and they inherit its (activity) state. If any of the pools in PFSG fails, all the pools in the PFSG will switch the activity, or in another words they will share the fate of the lead pool (active/standby/disabled).

There is one lead pool per PFSG per node in a dual-homed environment. Each lead pool in a PFSG will have its own export route that must match the monitoring route of in the lead pool in the corresponding PFSG on the peering node.

PFSG is implicitly enabled by configuring multiple pools to follow the same lead pool.
Configuration Considerations

Attracting traffic to the active NAT node (from inside and outside) is based on the routing.

On the outside, the active pool address range will be advertised. On the inside, the destination prefix or steering route (in case of filter based diversion to the NAT function) will be advertised by the node with the active pool.

The advertisement of the routes will be driven by the activity of the pools in the pool fate sharing group:

```
configure
   router/service vprn
      nat
         outside
            pool <name>
            redundancy
            export <ip-prefix/length>
            monitor <ip-prefix/length>[no] shutdown
            follow router  <rtr-id> pool <master-pool>
```

For example:

```
router/service vprn
   nat
      outside
         pool "nat0-pool" nat-group 1 type large-scale create
         port-reservation ports 252
         redundancy
         follow router 500 pool "nat500-pool"
      exit
      address-range 128.251.12.0 128.251.12.10 create
      exit
      no shutdown
      exit
      exit
      exit
```

A pool can be one of the following:

- A leading pool: configure export- and monitor-route and put in no shutdown
- A following pool: configure follow

Both sets of options are thus mutually exclusive.
For a leading pool redundancy will only be enabled when the redundancy node is in no shutdown. For a following pool, the administrate has no effect, and the redundancy will only be enabled when the leading pool is enabled.

Before a lead pool is enabled, consistency check will be performed to make sure that PFSG is properly configured and that the all pools in the given PFSG belong to the same NAT isa-group. PFSG is implicitly enabled by configuring multiple pools to follow the same lead pool. Adding or removing pools from the fate-share-group is only possible when the leading pool is disabled.

For example in the following case, the consistency check would fail since pool 1 is not part of the PFSG 1 (where it should be).

![Figure 57: Consistency Check](image)
Troubleshooting Commands

The following command displays the state of the leading pool (dual-homing section towards the bottom of the command output):

*ADut-B# show router 500 nat pool "nat500-pool"

```
NAT Pool nat500-pool

Description                           : (Not Specified)
ISA NAT Group                         : 1
Pool type                             : largeScale
Admin state                           : inService
Mode                                  : auto (napt)
Port forwarding dyn blocks reserved   : 0
Port forwarding range                 : 1 - 1023
Port reservation                      : 2300 blocks
Block usage High Watermark (%)        : (Not Specified)
Block usage Low Watermark (%)         : (Not Specified)
Subscriber limit per IP address       : 65535
Active                                : true
Deterministic port reservation        : (Not Specified)
Last Mgmt Change                      : 02/17/2014 09:41:43

===============================================================================
NAT address ranges of pool nat500-pool
===============================================================================
Range                                                          Drain Num-blk
-------------------------------------------------------------------------------
81.81.1.0 - 81.81.1.255                                              0
-------------------------------------------------------------------------------
No. of ranges: 1

===============================================================================
NAT members of pool nat500-pool ISA NAT group 1
===============================================================================
Member                                                        Block-Usage-% Hi
-------------------------------------------------------------------------------
1                                                             < 1           N
2                                                             < 1           N
3                                                             < 1           N
4                                                             < 1           N
5                                                             < 1           N
6                                                             < 1           N
-------------------------------------------------------------------------------
No. of members: 6

===============================================================================
Dual-Homing
===============================================================================
Type                                  : Leader
Export route                          : 170.0.0.3/32
Monitor route                         : 170.0.0.2/32
Admin state                           : inService
Dual-Homing State                     : Active
```
Dual-Homing fate-share-group

<table>
<thead>
<tr>
<th>Router</th>
<th>Pool</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>nat0-pool</td>
<td>Follower</td>
</tr>
<tr>
<td>vprn500</td>
<td>nat500-pool</td>
<td>Leader</td>
</tr>
<tr>
<td>vprn501</td>
<td>nat501-pool</td>
<td>Follower</td>
</tr>
<tr>
<td>vprn502</td>
<td>nat502-pool</td>
<td>Follower</td>
</tr>
</tbody>
</table>

No. of pools: 4

The following command displays the state of the follower pool (dual-homing section towards the bottom of the command output):

```
*A:Dut-B# show router 501 nat pool "nat501-pool"
```

NAT Pool nat501-pool

Description	(Not Specified)
Pool type	largeScale
Admin state	inService
Mode	auto (napt)
Port forwarding dyn blocks reserved	0
Port forwarding range	1 - 1023
Port reservation	2300 blocks
Block usage High Watermark (%)	(Not Specified)
Block usage Low Watermark (%)	(Not Specified)
Subscriber limit per IP address	65535
Active	true
Deterministic port reservation	(Not Specified)
Last Mgmt Change	02/17/2014 09:41:43

NAT address ranges of pool nat501-pool

<table>
<thead>
<tr>
<th>Range</th>
<th>Drain Num-blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.81.2.0 - 81.81.2.255</td>
<td>0</td>
</tr>
<tr>
<td>81.81.3.0 - 81.81.3.255</td>
<td>0</td>
</tr>
</tbody>
</table>

No. of ranges: 2

NAT members of pool nat501-pool ISA NAT group 1

<table>
<thead>
<tr>
<th>Member</th>
<th>Block-Usage-% Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 1</td>
</tr>
<tr>
<td>2</td>
<td>< 1</td>
</tr>
<tr>
<td>3</td>
<td>< 1</td>
</tr>
<tr>
<td>4</td>
<td>< 1</td>
</tr>
<tr>
<td>5</td>
<td>< 1</td>
</tr>
<tr>
<td>6</td>
<td>< 1</td>
</tr>
</tbody>
</table>
No. of members: 6

Dual-Homing

Type: Follower
Follow-pool: "nat500-pool" router 500
Dual-Homing State: Active

Dual-Homing fate-share-group

Router	Pool	Type
Base | nat0-pool | Follower
vprn500 | nat500-pool | Leader
vprn501 | nat501-pool | Follower
vprn502 | nat502-pool | Follower

No. of pools: 4

The following command lists all the pools that are configured along with the NAT inside/outside routing context.

*A:Dut-B# show service nat overview

Inside/Outside	Policy/Pool	Type
vprn550 Base | lsn-policy_unused | default
vprn550 nat0-pool | destination prefix
vprn550 nat500-pool | destination prefix
vprn550 nat501-pool | destination prefix
vprn551 Base | lsn-policy_nat3 | default
vprn551 nat0-pool | destination prefix
vprn551 nat501-pool | destination prefix
vprn552 Base | lsn-policy_nat5 | destination prefix
vprn552 nat0-pool | destination prefix
vprn552 nat502-pool | destination prefix
Deterministic NAT

Overview

In deterministic NAT the subscriber is deterministically mapped into an outside IP address and a port block. The algorithm that performs this deterministic mapping is revertive, which means that a NAT subscriber can be uniformly derived from the outside IP address and the outside port (and the routing instance). Thus, logging in deterministic NAT is not needed.

The deterministic [subscriber <-> outside-ip, deterministic-port-block] mapping can be automatically extended by a dynamic port-block in case that deterministic port block becomes exhausted of ports. By extending the original deterministic port block of the NAT subscriber by a dynamic port block yields a satisfactory compromise between a deterministic NAT and a non-deterministic NAT. There will be no logging as long as the translations are in the domain of the deterministic NAT. Once the dynamic port block is allocated for port extension, logging will be automatically activated.

NAT subscribers in deterministic NAT are not assigned outside IP address and deterministic port-block on a first come first serve basis. Instead, deterministic mappings will be pre-created at the time of configuration regardless of whether the NAT subscriber is active or not. In other words we can say that overbooking of the outside address pool is not supported in deterministic NAT. Consequently, all configured deterministic subscribers (for example, inside IP addresses in LSN44 or IPv6 address/prefix in DS-Lite) will be guaranteed access to NAT resources.

Supported Deterministic NAT Flavors

7x50 supports Deterministic LSN44 and Deterministic DS-Lite. The basic deterministic NAT principle is applied equally to both NAT flavors. The difference between the two stem from the difference in interpretation of the subscriber – in LSN44 a subscriber is an IPv4 address, whereas in DS-Lite the subscriber is an IPv6 address or prefix (configuration dependent).

With the exception of classic-lsn-max-subscriber-limit and dslite-max-subscriber-limit commands in the inside routing context, the deterministic NAT configuration blocks are for the most part common to LSN44 and DS-Lite.

Deterministic DS-Lite section at the end of this section will focus on the features specific to DS-Lite.
Number of Subscribers per Outside IP and per Pool

The outside pools in deterministic NAT can contain an arbitrary number of address ranges, where each address range can contain an arbitrary number of IP addresses (up to the ISA maximum).

The maximum number of NAT subscribers that can be mapped to a single outside IP address is configurable using a **subscriber-limit** command under the pool hierarchy. For Deterministic NAT, this number is restricted to the power of 2 \(2^n\). The consequence of this is that the number of NAT subscribers must be configuration-wise organized in ranges with the boundary that must be power of 2.

For example, in LSN44 where the NAT subscriber is an IP address, the deterministic subscribers would be configured with prefixes (for example, 10.10.10.0/24 – 256 subscribers) rather than an IP address range that would contain an arbitrary number of addresses (e.g. 10.10.10.10 – 10.10.10.50).

On the other hand, in DS-Lite the deterministic subscribers are for the most part already determined by the prefix with the **subscriber-prefix-length** command under the DS-Lite configuration node.

The number of subscribers per outside IP (the **subscriber-limit** command \([2^n]\)) multiplied by the number of IP addresses over all address-range in an outside pool will determine the maximum number of subscribers that a deterministic pool can support.

Referencing a Pool

In deterministic NAT, the outside pool can be shared amongst subscribers from multiple routing instances. Also, NAT subscribers from a single routing instance can be selectively mapped to different outside pools.

Outside Pool Configuration

The number of deterministic mappings that a single outside IP address can sustain is determined through the configuration of the outside pool.

The port allocation per an outside IP is shown in **Figure 58**.
The well-known ports are predetermined and are in the range 0 — 1023.

The upper limit of the port range for static port forwards (wildcard range) is determined by the existing port-forwarding-range command.

The range of ports allocated for deterministic mappings (DetP) is determined by multiplying the number of subscribers per outside IP (subscriber-limit command) with the number of ports per deterministic block (deterministic>port-reservation command). Note that the number of subscribers per outside IP in deterministic NAT must be power of 2 (2^n).

The remaining ports, extending from the end of the deterministic port range to the end of the total port range (65,535) are used for dynamic port allocation. The size of each dynamic port block is determined with the existing port-reservation command.

The deterministic>port-reservation command enables deterministic mode of operation for the pool.

Examples:

The follow show three examples with deterministic Large Scale NAT44 where the requirements are:

- 300, 500 or 700 (three separate examples) ports in each deterministic port block.
- A subscriber (an inside IPv4 address in LSN44) can extend its deterministic ports by a minimum of one dynamic port-block and by a maximum of four dynamic port blocks.
- Each dynamic port-block contains 100 ports.
Oversubscription of dynamic port blocks is 4:1. This means that 1/4th of inside IP addresses may be starved out of dynamic port blocks in worst case scenario.

The wildcard (static) port range is 3000 ports.

In the first case, the ideal case will be examined where an arbitrary number of subscribers per outside IP address is allocated according to our requirements outlined above. Then the limitation of the number of subscribers being power of 2 will be factored in.

Table 14: Contiguous Number of Subscribers

<table>
<thead>
<tr>
<th>Well-Known Ports</th>
<th>Static Port Range*</th>
<th>Number of Ports in Deterministic Block*</th>
<th>Number of Deterministic Blocks</th>
<th>Number of Ports in Dynamic Block*</th>
<th>Number of Dynamic Blocks</th>
<th>Number of Inside IP Addresses per Outside IP Address*</th>
<th>Block Limit per Inside IP Address*</th>
<th>Wasted Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>300</td>
<td>153</td>
<td>100</td>
<td>153</td>
<td>153</td>
<td>5</td>
<td>312</td>
</tr>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>500</td>
<td>102</td>
<td>100</td>
<td>102</td>
<td>102</td>
<td>5</td>
<td>312</td>
</tr>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>700</td>
<td>76</td>
<td>100</td>
<td>76</td>
<td>76</td>
<td>5</td>
<td>712</td>
</tr>
</tbody>
</table>

The example in Table 14 shows how port ranges would be carved out in ideal scenario.

* — Signifies the fixed parameters (requirements).

The other values are calculated according to the fixed requirements.

Note that port-block-limit includes the deterministic port block plus all dynamic port-blocks.

Next, a more realistic example with the number of subscribers being equal to 2^n are considered. The ratio between the deterministic ports and the dynamic ports per port-block just like in the example above: 3/1, 5/1 and 7/1 are preserved. In this case, the number of ports per port-block is dictated by the number of subscribers per outside IP address.
* — Signifies the fixed parameters (requirements).

The final example is similar as Table 15 with the difference that the number of deterministic port blocks fixed are kept, as in the original example (300, 500 and 700).

<table>
<thead>
<tr>
<th>Well-Known Ports</th>
<th>Static Port Range</th>
<th>Number of Deterministic Blocks</th>
<th>Number of Dynamic Blocks</th>
<th>Number of Inside IP Addresses per Outside IP Address</th>
<th>Block Limit per Inside IP Address</th>
<th>Wasted Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>180</td>
<td>256</td>
<td>60</td>
<td>256</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>400</td>
<td>128</td>
<td>80</td>
<td>128</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>840</td>
<td>64</td>
<td>120</td>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
</tbody>
</table>

Table 15: Preserving Det/Dyn Port Ratio with 2^n Subscribers
The three examples from above should give us a perspective on the size of deterministic and dynamic port blocks in relation to the number of subscribers \(2^n\) per outside IP address. Operators should run a similar dimensioning exercise before they start configuring their deterministic NAT.

The CLI for the highlighted case in the Table 16 is displayed:

```
configure
  service
    vprn
      nat
        outside
          pool mypool
            port-reservation ports 180
deterministic
          port-reservation 300
            subscriber-limit 128
            port-forwarding-range 4023
```

Where:

128 subs * 300ports = 38,400 deterministic port range

Table 16: Fixed Number of Deterministic Ports with \(2^n\) Subscribers

<table>
<thead>
<tr>
<th>Well-Known Ports</th>
<th>Static Port Range</th>
<th>Number of Deterministic Blocks</th>
<th>Number of Dynamic Blocks</th>
<th>Number of Inside IP Addresses per Outside IP Address</th>
<th>Block Limit per Inside IP Address</th>
<th>Wasted Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>300</td>
<td>128</td>
<td>128</td>
<td>5</td>
<td>72</td>
</tr>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>1024</td>
<td>64</td>
<td>64</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>0-1023</td>
<td>1024-4023</td>
<td>1024</td>
<td>64</td>
<td>64</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-1023</td>
<td>1024</td>
<td>64</td>
<td>64</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0-1023</td>
<td>1024</td>
<td>64</td>
<td>64</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

The three examples from above should give us a perspective on the size of deterministic and dynamic port blocks in relation to the number of subscribers \(2^n\) per outside IP address. Operators should run a similar dimensioning exercise before they start configuring their deterministic NAT.
128 subs * 180 ports = 23,040 dynamic port range

Det+dyn available ports = 65,536 – 4024 = 61,512

Det+dyn usable pots = 128*300 + 128 *180 = 61,440 ports

72 ports per outside-ip are wasted.

This configuration will allow 128 subscribers (inside IP addresses in LSN44) for each outside address (compression ratio is 128:1) with each subscriber being assigned up to 1020 ports (300 deterministic and 720 dynamic ports over 4 dynamic port blocks).

The outside IP addresses in the pool and their corresponding port ranges are organized as shown in Figure 59.

Assuming that the above graph depicts an outside deterministic pool, the number of subscribers that can be accommodated by this deterministic pool is represented by purple squares (number of IP addresses in an outside pool * subscriber-limit). The number of subscribers across all configured prefixes on the inside that are mapped to the same deterministic pool must be less than the outside pool can accommodate. In other words, an outside address pool in deterministic NAT cannot be oversubscribed.
The following is a CLI representation of a deterministic pool definition including the outside IP ranges:

```
pool 'mypool' nat-group 1 type large-scale
    port-reservation {blocks <dynBlocks>} | {ports <ports>}
    deterministic
    port-reservation <ports>
    subscriber-limit <sub-limit>
    port-forwarding-range <pfRange>
    address-range <start-ip-address> <end-ip-address>
    address-range <start-ip-address> <end-ip-address>
```

Mapping Rules and the map Command in Deterministic LSN44

The common building block on the inside in the deterministic LSN44 configuration is a IPv4 prefix. The NAT subscribers (inside IPv4 addresses) from the configured prefix will be deterministically mapped to the outside IP addresses and corresponding deterministic port-blocks. Any inside prefix in any routing instance can be mapped to any pool in any routing instance (including the one in which the inside prefix is defined).

The mapping between the inside prefix and the deterministic pool is achieved through a nat-policy that can be referenced per each individual inside IPv4 prefix. IPv4 addresses from the prefixes on the inside will be distributed over the IP addresses defined in the outside pool referenced by the nat-policy.

The mapping itself is represented by the `map` command under the prefix hierarchy:

```
router/service vprn
    nat
        inside
deterministic
        prefix <ip-prefix/length> subscriber-type <nat-sub-type> nat-policy <nat-policy-name>
        map start <inside-ip-address> end <inside-ip-address> to <outside-ip-address>
```

The purpose of the map statement is to split the number of subscribers within the configured prefix over available sequences of outside IP addresses. The key parameter that governs mappings between the inside IPv4 addresses and outside IPv4 addresses in deterministic LSN44 is defined by the `outside>pool>subscriber-limit` command. This parameter must be power of 2 and it limits the maximum number of NAT subscribers that can be mapped to the same outside IP address.

The follow are rules governing the configuration of the map statement:
1. If the number of subscribers per configured prefix is greater than the subscriber-limit per outside IP parameter \(2^n\), then the lowest \(n\) bits of the map start inside-ip-address must be set to 0.

2. If the number of subscribers per configured prefix is equal or less than the subscriber-limit per outside IP parameter \(2^n\), then only one map command for this prefix is allowed. In this case there is no restriction on the lower \(n\) bits of the map start inside-ip-address. The range of the inside IP addresses in such map statement represents the prefix itself.

3. The outside-ip-address in the map statements must be unique amongst all map statements referencing the same pool. In other words, two map statements cannot reference the same outside-ip-address in the pool.

In case that the number of subscribers (IP addresses in LSN44) in the map statement is larger than the subscriber-limit per outside IP, then the subscribers must be split over a block of consecutive outside IP addresses where the outside-ip-address in the map statement represent only the first outside IP address in that block.

The number of subscribers (range of inside IP addresses in LSN44) in the map statement does not have to be a power of 2. Rather it has to be a multiple of a power of two \(m \times 2^n\), where \(m\) is the number of consecutive outside IP addresses to which the subscribers are mapped and the \(2^n\) is the subscriber-limit per outside IP.

An example of the map statement is given below:

```
router
nat
    outside
        pool 'my-det-pool' nat-group 1 type large-scale
        subscriber-limit 128
deterministic
        port-reservation 400
        address-range 128.251.0.0 128.251.0.10

service vprn 10
nat
    inside
deterministic
    prefix 10.0.0.0/24 subscriber-type classic-lsn-sub nat-policy det
    map start 10.0.0.0 end 10.0.0.255 to 128.251.0.1
```

In this case, the configured 10.0.0.0/24 prefix is represented by the range of IP addresses in the map statement (10.0.0.0-10.0.0.255). Since the range of 256 IP addresses in the map statement cannot be mapped into a single outside IP address (subscriber-limit=128), this range must be further implicitly split within the system and mapped into multiple outside IP addresses. The implicit split will create two IP address ranges, each with 128 IP addresses (10.0.0.0/25 and 10.0.0.128/25) so that addresses from each IP range are mapped to one outside IP address. The hosts from the range 10.0.0.0-10.0.0.127 will be mapped to the first IP address in the pool (128.251.0.1) as explicitly stated in the map statement (to statement). The hosts from the second
range, 10.0.0.128-10.0.0.255 will be implicitly mapped to the next consecutive IP address (128.251.0.2).

Alternatively, the `map` statement can be configured as:

```plaintext
service vprn 10
  nat
    inside
deterministic
  prefix 10.0.0.0/24 subscriber-type classic-lsn-sub nat-policy det
  map start 10.0.0.0 end 10.0.0.127 to 128.251.0.1
  map start 10.0.0.128 end 10.0.0.255 to 128.251.0.5
```

In this case the IP address range in the map statement is split into two non-consecutive outside IP addresses. This gives the operator more freedom in configuring the mappings.

However, the following configuration is not supported:

```plaintext
service vprn 10
  nat
    inside
deterministic
  prefix 10.0.0.0/24 subscriber-type classic-lsn-sub nat-policy det
  map start 10.0.0.0 end 10.0.0.63 to 128.251.0.1
  map start 10.0.0.64 end 10.0.0.127 to 128.251.0.3
  map start 10.0.0.128 end 10.0.0.255 to 128.251.0.5
```

Considering that the subscriber-limit = 128 (2^n; where $n=7$), the lower n bits of the start address in the second map statement (map start 10.0.0.64 end 10.0.0.127 to 128.251.0.3) are not 0. This is in violation of the rule #1 that governs the provisioning of the map statement.

Assuming that we use the same pool with 128 subscribers per outside IP address, the following scenario is also not supported (note that configured prefix in this example is different than in previous example):

```plaintext
service vprn 10
  nat
    inside
deterministic
  prefix 10.0.0.0/26 subscriber-type classic-lsn-sub nat-policy det
  map start 10.0.0.0 end 10.0.0.63 to 128.251.0.1
  prefix 10.0.1.0/26 subscriber-type classic-lsn-sub nat-policy det
  map start 10.0.1.0 end 10.0.1.63 to 128.251.0.1
```

Although the lower n bits in both map statements are 0, both statements are referencing the same outside IP (128.251.0.1). This is violating rule #2 that governs the provisioning of the map statement. Each of the prefixes in this case will have to be mapped to a different outside IP...
address, which will lead to underutilization of outside IP addresses (half of the deterministic port-blocks in each of the two outside IP addresses will be not be utilized).

In conclusion, considering that the number of subscribers per outside IP (subscriber-limit) must be 2^n, the inside IP addresses from the configured prefix will be split on the 2^n boundary so that every deterministic port-block of an outside IP is utilized. In case that the originally configured prefix contains less subscribers (IP addresses in LSN44) than an outside IP address can accommodate (2^n), all subscribers from such configured prefix will be mapped to a single outside IP. Since the outside IP cannot be shared with NAT subscribers from other prefixes, some of the deterministic port-blocks for this particular outside IP address will not be utilized.

Note that each configured prefix can evaluate into multiple map commands. The number of map commands will depend on the length of the configured prefix, the subscriber-limit command and fragmentation of outside address-range within the pool with which the prefix is associated.

Hashing Considerations in Deterministic LSN44

Support for multiple MS-ISAs in the nat-group calls for traffic hashing on the inside in the ingress direction. This will ensure fair load balancing of the traffic amongst multiple MS-ISAs. While hashing in non-deterministic LSN44 can be performed per source IP address, hashing in deterministic LSN44 is based on subnets instead of individual IP addresses. The length of the hashing subnet is common for all configured prefixes within an inside routing instance. In case that a prefixes from an inside routing instances is referencing multiple pools, the common hashing prefix length will be chosen according to the pool with the highest number of subscribers per outside IP address. This will ensure that subscribers mapped to the same outside IP address will be always hashed to the same MS-ISA.

In general, load distribution based on hashing is dependent on the sample. Large and more diverse sample will ensure better load balancing. Therefore the efficiency of load distribution between the MS-ISAs is dependent on the number and diversity of subnets that hashing algorithm is taking into consideration within the inside routing context.

A simple rule for good load balancing is to configure a large number of subscribers relative to the largest t subscriber-limit parameter in any given pool that is referenced from this inside routing instance.
The configuration example shown Figure 60 depicts a case in which prefixes from multiple routing instances are mapped to the same outside pool and at the same time the prefixes from a single inside routing instance are mapped to different pools (we do not support the latter with non-deterministic NAT).

Important to note in this example is the inside prefix 10.10.10.0/24 that is present in VPRN 1 and VPRN 2. In both VPRNs, this prefix is mapped to the same pool - pool-1 with the subscriber-limit of 64. Four outside IP addresses per prefix per VPRN (eight in total) are allocated to accommodate the mappings for all hosts in prefix 10.10.10.0/24. But the hashing prefix length in VPRN1 is based on the subscriber-limit 64 (VPRN1 references only pool-1) while the hashing prefix length in VPRN2 is based on the subscriber-limit 256 in pool-2 (VPRN2 references both pools, pool-1 and pool-2 and we must select the larger subscriber-limit). The consequence of this is that the traffic from subnet 10.10.10.0/24 in VPRN 1 can be load balanced over 4 MS-ISA (hashing prefix length is 26) while traffic from the subnet 10.10.10.0/24 in VPRN 2 is always sent to the same MS-ISA (hashing prefix length is 24).
Deterministic NAT

Distribution of Outside IP Addresses Across MS-ISAs in an MS-ISA NA Group

Distribution of outside IP addresses across the MS-ISAs is dependent on the ingress hashing algorithm. Since traffic from the same subscriber is always pre-hashed to the same MS-ISA, the corresponding outside IP address also must reside on the same ISA. CPM runs the hashing algorithm in advance to determine on which MS-ISA the traffic from particular inside subnet will land and then the corresponding outside IP address (according to deterministic NAT mapping algorithm) will be configured in that particular MS-ISA.

Sharing of Deterministic NAT Pools

Sharing of the deterministic pools between LSN44 and DS-Lite is supported.

Simultaneous support of dynamic and deterministic NAT

Simultaneous support for deterministic and non-deterministic NAT inside of the same routing instance is supported. However, an outside pool can be only deterministic (although expandable by dynamic ports blocks) or non-deterministic at any given time.

Ingress hashing for all NATed traffic within the VRF will in this case be performed based on the subnets driven by the classic-lsn-max-subscriber-limit parameter.

Selecting Traffic for NAT

Deterministic NAT does not change the way how traffic is selected for the NAT function but instead only defines a predictable way for translating subscribers into outside IP addresses and port-blocks.

Traffic is still diverted to NAT using the existing methods:

- **routing based** – traffic is forwarded to the NAT function if it matches a configured destination prefix that is part of the routing table. In this case inside and outside routing context must be separated.
- **filter based** – traffic is forwarded to the NAT function based on any criteria that can be defined inside an IP filter. In this case the inside and outside routing context can be the same.
Inverse Mappings

The inverse mapping can be performed with a MIB locally on the 7x50 node or externally via a script sourced in 7x50. In both cases, the input parameters are <outside routing instance, outside IP, outside port. The output from the mapping is the subscriber and the inside routing context in which the subscriber resides.

MIB approach

Reverse mapping information can be obtained using the following command:

```
tools dump nat deterministic-mapping outside-ip <ipv4-address> router <router-instance> outside-port <[1..65535]>
<ipv4-address>       : a.b.c.d
<router-instance>    : <router-name>|<service-id>
router-name    - "Base"
service-id     - [1..2147483647]
```

Example:

```
tools dump nat deterministic-mapping outside-ip 85.0.0.2 router "Base" outside-port 2333
```

Output:

```
Inside router 10 ip 20.0.5.171 -- outside router Base ip 85.0.0.2 port 2333 at Mon Jan 7 10:02:02 PST 2013
```

Off-line Approach to Obtain Deterministic Mappings

Instead of querying the system directly, there is an option where a Python script can be generated on 7x50 and exported to an external node. This Python script contains mapping logic for the configured deterministic NAT in 7x50. The script can be then queried off-line to obtain mappings in either direction. The external node must have installed Python scripting language with the following modules: getopt, math, os, socket and sys.

The purpose of such offline approach is to provide fast queries without accessing 7x50. Exporting the Python script for reverse querying is a manual operation that needs to be repeated every time there is configuration change in deterministic NAT.

The script is exported outside of the box to a remote location (assuming that writing permissions on the external node are correctly set). The remote location is specified with the following command:
Deterministic NAT

```
config service nat deterministic-script location <remote-url>
<remote-url>     - [{ftp://|tftp://}<login>:<pswd>@<remote-locn>/][<file-path>]

The status of the script is shown using the following command:
```

```
show service nat deterministic-script
```

```
Deterministic NAT script data
Location            : ftp://10.10.10.10/pub/det-nat-script/det-nat.py
Save needed         : yes
Last save result    : none
Last save time      : N/A
```

Once the script location is specified, the script can be exported to that location with the following command:
```
admin nat save-deterministic-script
```

This needs to be repeated manually every time the configuration affecting deterministic NAT changes.

Once the script is exported (saved), the status of the script is changed as well:
```
show service nat deterministic-script
```

```
Deterministic NAT script data
Location            : ftp://10.10.10.10/pub/det-nat-script/det-nat.py
Save needed         : no
Last save result    : sucess
Last save time      : 2013/01/07 10:33:43
```

The script itself can be run to obtain mapping in forward or backward direction:
```
user@external-server:/home/ftp/pub/det-nat-script$ ./det-nat.py
Usage: det-nat-.py {{DIRECTION PARAMS} | -h[elp] }
where  DIRECTION := { -f[orward] | -b[ackward] }
where  PARAMS := { -s[ervice] -a[ddress] -p[ort] }
```

The following displays an example in which source addresses are mapped in the following manner:
```
Router 10, Source-ip:  20.0.5.0-20.0.5.127   to router base, outside-ip  85.0.0.1
Router 10 Source-ip: 20.0.5.128-20.0.5.255 to router base outside-ip 85.0.0.2
```

The forward query for this example will be performed as:

```
user@external-server:/home/ftp/pub/det-nat-script$ ./det-nat.py -f -s 10 -a 20.0.5.10

Output:

subscriber has public ip address 85.0.0.1 from service 0 and is using ports [1324 - 1353]

The reverse query for this example will be performed as:

user@external-server:/home/ftp/pub/det-nat-script$ ./det-nat.py -b -s 0 -a 85.0.0.1 -p 3020

Output:

subscriber has private ip address 20.0.5.66 from service 10

---

**Logging**

Every configuration change concerning the deterministic pool will be logged and the script (if configured for export) will be automatically updated (although not exported). This is needed to keep current track of deterministic mappings. In addition, every time a deterministic port-block is extended by a dynamic block, the dynamic block will be logged just as it is today in non-deterministic NAT. The same logic is followed when the dynamic block is de-allocated.

All static port forwards (including PCP) are also logged.

PCP allocates static port forwards from the wildcard-port range.

---

**Deterministic DS-Lite**

A subscriber in non-deterministic DS-Lite is defined as v6 prefix, with the prefix length being configured under the DS-Lite NAT node:

```
config>service>vprn>nat>inside>dslite#
 subscriber-prefix-length [32..64 | 128](default is 128)
```

All incoming IPv6 traffic with source IPv6 addresses falling under a unique v6 prefix that is configured with subscriber-prefix-length command will be considered as a single subscriber. As a result, all source IPv4 addresses carried within that IPv6 prefix will be mapped to the same outside IPv4 address.

The concept of deterministic DS-Lite is very similar to deterministic LSN44. The DS-lite subscribers (IPv6 addresses/prefixes) are deterministically mapped to outside IPv4 addresses and corresponding deterministic port-blocks.
Although the subscriber in DS-Lite is considered to be either a B4 element (IPv6 address) or the aggregation of B4 elements (IPv6 prefix determined by the subscriber-prefix-length command), only the IPv4 source addresses and ports carried inside of the IPv6 tunnel are actually translated.

The prefix statement for deterministic DS-lite remains under the same deterministic CLI node as for the deterministic LSN44. However, the prefix statement parameters for deterministic DS-Lite differ from the one for deterministic LSN44 in the following fashion:

- DS-Lite prefix will be a v6 prefix (instead of v4). The DS-lite subscriber whose traffic is mapped to a particular outside IPv4 address and the deterministic port block is deduced from the prefix statement and the subscriber-prefix-length statement.

- Subscriber-type is set to dslite-lsn-sub.

```plaintext
config>service>vprn>nat>inside>deterministic#
prefix <v6-prefix/length> subscriber-type dslite-lsn-sub nat-policy <policy-name>
```

Example:

```plaintext
config>service>vprn>nat>inside>deterministic#
prefix ABCD:FF::/56 subscriber-type dslite-lsn-sub nat-policy det-policy
```

```plaintext
config>service>vprn>nat>inside>dslite#
subscriber-prefix-length 60
```

In this case, 16 v6 prefixes (from ABCD:FF::/60 to ABCD:FF:00:F0::/60) are considered DS-Lite subscribers. The source IPv4 addresses/ports inside of the IPv6 tunnels is mapped into respective deterministic port blocks within an outside IPv4 address according to the map statement.

The map statement contains minor modifications as well. It maps DS-Lite subscribers (IPv6 address or prefix) to corresponding outside IPv4 addresses. Continuing on the previous example:

```plaintext
map start ABCD:FF::/60 end ABCD:FF:00:F0::/60 to 128.251.1.1
```

The prefix length (/60) in this case MUST be the same as configured subscriber-prefix-length. If we assume that the subscriber-limit in the corresponding pool is set to 8 and outside IP address range is 128.251.1.1 - 128.251.1.10, then the actual mapping is the following:

- ABCD:FF::/60  to ABCD:FF:00:70::/60 to 128.151.1.1
- ABCD:FF:00:80::/60  to ABCD:FF:00:F0::/60 to 128.151.1.2

---

### Hashing Considerations in DS-Lite

The ingress hashing and load distribution between the ISAs in Deterministic DS-Lite is governed by the highest number of configured subscribers per outside IP address in any pool referenced within the given inside routing context.

This limit is configured under:
configure
router/service vprn
    nat
        inside
deterministic
dslite-max-subscriber-limit <1,2,4,8...32768>

While ingress hashing in non-deterministic DS-Lite is governed by the subscriber-prefix-length command, in deterministic DS-Lite the ingress hashing is governed by the combination of dslite-max-subscriber-limit and subscriber-prefix-length commands. This is to ensure that all DS-Lite subscribers that are mapped to a single outside IP address are always sent to the same MS-ISA (on which that outside IPv4 address resides). In essence, as soon as deterministic DS-Lite is enabled, the ingress hashing is performed on an aggregated set of n = log2(dslite-max-subscriber-limit) contiguous subscribers. n is the number of bits used to represent the largest number of subscribers within an inside routing context, that is mapped to the same outside IP address in any pool referenced from this inside routing context (referenced through the nat-policy).

Once the deterministic DS-lite is enabled (a prefix command under the deterministic CLI node is configured), the ingress hashing influenced by the dslite-max-subscriber-limit will be in effect for both flavors of DS-Lite (deterministic AND non-deterministic) within the inside routing context assuming that both flavors are configured simultaneously.

With introduction of deterministic DS-lite, the configuration of the subscriber-prefix-length must adhere to the following rule:

- The configured value for the subscriber-prefix-length minus the number of bits representing the dslite-max-subscriber-limit value, must be in the range [32..64,128]. Or:

\[
\text{subscriber-prefix-length} - n = [32..64,128]
\]

where \( n = \log_2(\text{dslite-max-subscriber-limit}) \)

[or \( \text{dslite-max-subscriber-limit} = 2^n \)]

This can be clarified by the two following examples:

- dslite-max-subscriber-limit = 64 — n=6 \([\log_2(64) = 6]\).

This means that 64 DS-Lite subscribers will be mapped to the same outside IP address. Consequently the prefix length of those subscribers must be reduced by 6 bits for hashing purposes (so that chunks of 64 subscribers are always hashed to the same ISA).

According to our rule, the prefix of those subscribers (subscriber-prefix-length) can be only in the range of [38..64], and no longer in the range [32..64, 128].

- dslite-max-subscriber-limit = 1 > n=0 \([\log_2(1) = 0]\)

This means that each DS-lite subscriber will be mapped to its own outside IPv4 address. Consequently there is no need for the aggregation of the subscribers for hashing purposes, since each DS-lite subscriber is mapped to an entire outside IPv4 address (with all ports). Since the
subscriber prefix length will not be contracted in this case, the prefix length can be configured in the range [32..64, 128].

In other words the largest configured prefix length for the deterministic DS-lite subscriber will be 32+n, where n = \log_2(dslite-max-subscriber-limit). The subscriber prefix length can extend up to 64 bits. Beyond 64 bits for the subscriber prefix length, there is only one value allowed: 128. In the case n must be 0, which means that the mapping between B4 elements (or IPv6 address) and the IPv4 outside addresses is in 1:1 ratio (no sharing of outside IPv4 addresses).

The dependency between the subscriber definition in DS-Lite (based on the subscriber-prefix-length) and the subscriber hashing mechanism on ingress (based on the dslite-max-subscriber-limit value), will influence the order in which deterministic DS-lite is configured.

---

**Order of Configuration Steps in Deterministic DS-Lite**

Configure deterministic DS-Lite in the following order.

1. Configure DS-lite subscriber-prefix-length
2. Configure dslite-max-subscriber-limit
3. Configure deterministic prefix (using a nat-policy)
4. Optionally configure map statements under the prefix
5. Configure DS-lite AFTR endpoints
6. Enable (no shutdown) DS-lite node

Modifying the dslite-max-subscriber-limit requires that all nat-policies be removed from the inside routing context.

To migrate a non-deterministic DS-Lite configuration to a deterministic DS-Lite configuration, the non-deterministic DS-Lite configuration must be first removed from the system. The following steps should be followed:

1. Shutdown DS-lite node
2. Remove DS-lite AFTR endpoints
3. Remove global nat-policy
4. Configure/modify DS-lite subscriber-prefix-length
5. Configure dslite-max-subscriber-limit
6. Reconfigure global nat-policy
7. Configure deterministic prefix
8. Optionally configure a manual map statement(s) under the prefix
9. Reconfigure DS-lite AFTR endpoints
10. Enable (no shutdown) DS-lite node
11. Configuration Restrictions in Deterministic NAT

NAT Pool
To modify nat pool parameters, the nat pool must be in a shutdown state.

Shutting down the nat pool by configuration (shutdown command) is not allowed in case that any nat-policy referencing this pool is active. In other words, all configured prefixes referencing the pool via the nat-policy must be deleted system-wide before the pool can be shut down. Once the pool is enabled again, all prefixes referencing this pool (with the nat-policy) will have to be recreated. For a large number of prefixes, this can be performed with an offline configuration file executed using the exec command.

NAT Policy

• All NAT policies (deterministic and non-deterministic) in the same inside routing-instance must point to the same nat-group.

• A nat-policy (be it a global or in a deterministic prefix) must be configured before one can configure an AFTR endpoint.

NA Group

• The active-mda-limit in a nat-group cannot be modified as long as a deterministic prefix using that NAT group exists in the configuration (even if that prefix is shutdown). In other words, all deterministic prefixes referencing (with the nat-policy) any pool in that nat-group, must be removed.

Deterministic Mappings (prefix ans map statements)

• Non-deterministic policy must be removed before adding deterministic mappings.

• Modifying, adding or deleting prefix and map statements in deterministic DS-Lite require that the corresponding nat pool is enabled (in no-shutdown state).

• Removing an existing prefix statement requires that the prefix node is in a shutdown state.

```
config>service>vprn>nat>inside>deterministic# info
--
classic-lsn-max-subscriber-limit 128
prefix 10.0.5.0/24 subscriber-type classic-lsn-sub nat-policy "det"
 map start 10.0.5.0 end 10.0.5.127 to 128.251.0.7
 map start 10.0.5.128 end 10.0.5.255 to 128.251.0.2
shutdown

config>service>vprn>nat>inside>deterministic# info
--
classic-lsn-max-subscriber-limit 128
prefix 10.0.5.0/24 subscriber-type classic-lsn-sub nat-policy "det"
 map start 10.0.5.0 end 10.0.5.127 to 128.251.0.7
 map start 10.0.5.128 end 10.0.5.255 to 128.251.0.2
shutdown

config>service>vprn>nat>inside>ds-lite# info
--
dslite-max-subscriber-limit 128
prefix 2001:db8::/64 subscriber-type dslite-lsn-sub nat-policy "det"
 map start 2001:BD8::/64 end 2001:BD8::FF:0:0:0:0/64 to 85.0.0.5
shutdown

config>service>vprn>nat>inside>ds-lite# info
--
subscriber-prefix-length 64
no shutdown
```
Similarly, the map statements can be added or removed only if the prefix node is in a shutdown state.

- There are a few rules governing the configuration of the map statement:
  - If the number of subscribers per configured prefix is greater than the subscriber-limit per outside IP parameter \(2^n\), then the lowest \(n\) bits of the map start <inside-ip-address> must be set to 0.
  - If the number of subscribers per configured prefix is equal or less than the subscriber-limit per outside IP parameter \(2^n\), then only one map command for this prefix is allowed. In this case there is no restriction on the lower \(n\) bits of the map start <inside-ip-address>. The range of the inside IP addresses in such map statement represents the prefix itself.

The outside-ip-address in the map statements must be unique amongst all map statements referencing the same pool. In other words, two map statements cannot reference the same <outside-ip-address> in a pool.

Configuration Parameters

- The subscriber-limit in deterministic nat pool must be a power of 2.
- The nat inside classic-lsn-max-subscriber-limit must be power of 2 and at least as large as the largest subscriber-limit in any deterministic nat pool referenced by this routing instance. In order to change this parameter, all nat-policies in that inside routing instance must be removed.
- The nat inside ds-lite-max-subscriber-limit must be power of 2 and at least as large as the largest subscriber-limit in any deterministic nat pool referenced by this routing instance. In order to change this parameter, all nat-policies in that inside routing instance must be removed.
- In DS-lite, the \([\text{subscriber-prefix-length} - \log_2(\text{dslite-max-subscriber-limit})]\) value must fall within \([32 \ldots 64, 128]\).
- In Ds-Lite, the subscriber-prefix-length can be only modified if the DS-lite CLI node is in shutdown state and there are no deterministic DS-lite prefixes configured.

Miscellaneous

- Deterministic NAT is not supported in combination with 1:1 NAT. Therefore the nat pool cannot be in mode 1:1 when used as deterministic pool. Even if each subscriber is mapped to its own unique outside IP (sub-limit=1, det-port-reservation ports (65535-1023), NAPT (port translation) function is still performed.
- Wildcard port forwards (including PCP) will map to the wildcard port ranges and not the deterministic port range. Consequently logs will be generated for static port forwards using PCP.
Enhanced Statistics in NAT — Histogram

The NAT command `histogram` displays compartmentalized port distribution per protocol for an aggregated number of subscribers. This allows operators to trend port usage over time and consequently adjust the configuration as the port demand per subscriber increase/decrease. For example, an operator may find that the port usage in a pools has increased over a period of time. Accordingly, the operator may plan to increase the number of ports per port block.

The feature is applicable to deterministic and non-deterministic pools.

The output is organized in port buckets with the number of subscribers in each bucket.

```bash
tools dump nat histogram
- histogram router <router-instance> pool <pool-name> bucket-size <[1..65536]> num-buckets <[2..50]>

<router-instance> : <router-name>|<service-id>
 router-name - "Base"
 service-id - [1..2147483647]
<pool-name> : [32 chars max]

For example:

tools dump nat histogram router "Base" pool "det" bucket-size 20 num-buckets 20
==Usage histogram
NAT pool "det" router "Base"
==
<table>
<thead>
<tr>
<th>Num-ports</th>
<th>Sub-TCP</th>
<th>Sub-UDP</th>
<th>Sub-ICMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20-39</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40-59</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60-79</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100-119</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120-139</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>140-159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>160-179</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>180-199</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200-219</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>220-239</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>240-259</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>260-279</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>280-299</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300-319</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>320-339</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>340-359</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>360-379</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>380-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The output of the **histogram** command can be periodically exported to an external destination via cron. The following is an example:

```
*A:CPM>config>cron# info
----------------------------------------------
script "nat_histogram"
    location "ftp://*:138.203.8.62/nat-histogram.txt"
    no shutdown
exit
action "dump_nat_histogram"
    results "ftp://*:138.203.8.62/nat_histogram_results.txt"
    script "nat_histogram"
    no shutdown
exit
schedule "nat_histogram_schedule"
    interval 600
    action "dump_nat_histogram"
    no shutdown
exit
----------------------------------------------
*A:CPM>config>cron#
```

The `nat-histogram.txt` file contains the command execution line. For example:

```
tools dump nat histogram router 4 pool "deterministic" bucket-size 10 num-buckets 10
```

This command will be executed every 10 minutes (600 seconds) and the output of the command will be written into a set of files on an external FTP server:

```
[root@ftp]# ls nat_histogram_results.txt*
nat_histogram_results.txt_20130117-153548.out
nat Histogram_results.txt_20130117-153648.out
nat_histogram_results.txt_20130117-153748.out
nat_histogram_results.txt_20130117-153848.out
nat_histogram_results.txt_20130117-153948.out
nat_histogram_results.txt_20130117-154048.out
[root@ftp]#
```
configuration

```
tools dump nat histogram router <router-instance> pool <pool-name> bucket-size <[1..65536]> num-buckets <[2..50]>
```

The output of this command displays the port usage in a given pool per protocol per subscriber. The output is organized in a configurable number of port-buckets.

In the following example there is 1 subscriber that is using between 20 and 39 UDP ports in the pool named det. The pool is configured in the Base routing instance.

```
tools dump nat histogram router "Base" pool "det" bucket-size 20 num-buckets 40
```

```
Usage histogram NAT pool "det" router "Base"
 Num-ports Sub-TCP Sub-UDP Sub-ICMP
-------------------------------------------------------------------------------
 0-19   0  0  0
 20-39  0  1  0
 40-59  0  0  0
 60-79  0  0  0
 80-99  0  0  0
100-119 0  0  0
120-139 0  0  0
140-159 0  0  0
160-179 0  0  0
180-199 0  0  0
200-219 0  0  0
220-239 0  0  0
240-259 0  0  0
260-279 0  0  0
280-299 0  0  0
300-319 0  0  0
320-339 0  0  0
340-359 0  0  0
360-379 0  0  0
380-399 0  0  0
400-419 0  0  0
420-439 0  0  0
440-459 0  0  0
460-479 0  0  0
480-499 0  0  0
500-519 0  0  0
520-539 0  0  0
540-559 0  0  0
560-579 0  0  0
580-599 0  0  0
600-619 0  0  0
620-639 0  0  0
640-659 0  0  0
660-679 0  0  0
680-699 0  0  0
700-719 0  0  0
720-739 0  0  0
```
Enhanced Statistics in NAT — Histogram

<table>
<thead>
<tr>
<th>Range</th>
<th>Count 1</th>
<th>Count 2</th>
<th>Count 3</th>
<th>Count 4</th>
<th>Count 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>740-759</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>760-779</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>780-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. of entries: 40

======================================
NAT – Multiple NAT Policies per Inside Routing Context

Restrictions

The following restrictions apply to multiple NAT policies per inside routing context:

- There is no support for L2-aware NAT.
- DS-Lite and NAT64 diversion to NAT is supported only through IPv6 filters.
- A maximum of 8 different NAT policies per inside routing context are supported. For routing based NAT diversion, this limit is enforced during the configuration of the NAT policies within the inside routing context. In case of a filter-based NAT diversion, the filter instantiation will fail if the number of different nat-policies per inside routing context exceeds 8.
- The default NAT policy is counted towards this limit (8).

Multiple NAT Policies Per Inside Routing Context

The selection of the NAT pool and the outside routing context is performed through the NAT policy. Multiple NAT policies can be used within an inside routing context. This feature effectively allows selective mapping of the incoming traffic within an inside routing context to different NAT pools (with different mapping properties) and to different outside routing contexts. NAT policies can be configured:

- via filters as part of the `action nat` command.
- via routing with the `destination-prefix` command within the inside routing context

The concept of the NAT pool selection mechanism based on the destination of the traffic via routing is shown in Figure 61.

2. Port-block size, subscriber-limit per pool, address-range, port-forwarding-range, deterministic vs non-deterministic behavior, port-block watermarks, etc.
Diversion of the traffic to NAT based on the source of the traffic is shown in Figure 62.

Only filter-based diversion solution is supported for this case. The filter-based solution can be extended to a 5 tuple matching criteria.
The following considerations must be taken into account when deploying multiple NAT policies per inside routing context:

- The inside IP address can be mapped into multiple outside IP addresses based on the traffic destination. The relationship between the inside IP and the outside IP is 1:N.
- In case where the source IP address is selected as a matching criteria for a NAT policy (or pool) selection, the inside IP address will always stay mapped to the same outside IP address (relationship between the inside IP and outside IP address is, in this case, 1:1)
- Static Port Forwards (SPF) — Each SPF can be created only in one pool. This means that the pool (or NAT policy) must be an input parameter for SPF creation.

Routing Approach for NAT Diversion

The routing approach relies on upstream traffic being directed (or diverted) to the NAT function based on the `destination-prefix` command in the `configure>service>vprn/router>nat>inside` CLI context. In other words, the upstream traffic will be NATed only if it matches a preconfigured destination IP prefix. The `destination-prefix` command creates a static route in the routing table of the inside routing context. This static route will divert all traffic with the destination IP address that matches the created entry, towards the MS-ISA. The NAT function itself will be performed once the traffic is in the proper context in the MS-ISA.

The CLI for multiple NAT policies per inside routing context with routing based diversion to NAT is the following:

```plaintext
service vprn/router
    nat
        inside
            destination-prefix <ip-prefix/length>  nat-policy <policy-name>

or, for example:

service vprn/router
    nat
        inside
            destination-prefix 20.20.10.0/24  nat-policy policy-1
            destination-prefix 30.30.30.0/24  nat-policy policy-1
            destination-prefix 40.40.40.0/24  nat-policy policy-2
```

Note that different destination prefixes can reference a single NAT policy (policy-1 in this case).

In case that the destination-policy does not directly reference the NAT policy, the default NAT policy will be used. The default nat-policy is configured directly in the `vprn/router>nat>inside` context.
Once that destination-prefix command referencing the nat-policy is configured, an entry in the routing table will be created that will direct the traffic to the MS-ISA.

Filter-Based Approach

A filter-based approach will divert traffic to NAT based on the ip matching criteria shown in the CLI below.

*A:right-a21>config>filter>ip-filter>entry# match
 - match [protocol <protocol-id>]
 - no match

<protocol-id> : protocol numbers - [0..255] (Decimal, Hexadecimal, or Binary representation).
 Supported IANA IP protocol names -
 none|crtp|crudp|eigrp|encap|ether-ip|gre|icmp|idrp|igmp|igp|ip|ipv6|ipv6-frag|ipv6-icmp|
 ipv6-no-nxt|ipv6-opts|ipv6-route|isis|iso-ip|l2tp|
 ospf-igp|pim|pnni|ptp|rdp|rsvp|sctp|stp/tcp|udp|vrrp
 * - udp/tcp wildcard

[no] dst-ip - Configure dest. ip match condition
[no] dst-port - Configure destination port match condition
[no] port - Configure port match condition
[no] src-ip - Configure source ip match condition
[no] src-port - Configure source port match condition

The CLI for the filter-based diversion in conjunction with multiple NAT policies is shown below:

filter
 entry
 action nat [nat-policy <nat-policy-name>]

The association with the NAT policy is made once the filter is applied to the SAP.
Multiple NAT Policies with DS-Lite and NAT64

DS-Lite and NAT64 diversion to NAT with multiple nat-policies is supported only through IPv6 filters:

```
configure
  filter
    ipv6-filter
      entry <entry-id> [time-range <time-range-name>] [create]
        action nat nat-type <nat-type> [nat-policy <nat-policy-name>]
      exit
    exit
  exit
```  

Where the `nat-type` parameter can be either `dslite` or `nat64`.

The DS-Lite AFTR address and NAT64 destination prefix configuration under the corresponding (DS-Lite or NAT64) `router/vprn>nat>inside` context is mandatory. Note that this is even in the case when only filters are desired for traffic diversion to NAT.

For example, every AFTR address and NAT64 prefix that is configured as a match criteria in the filter, must also be duplicated in the `router/vprn>nat>inside` context. However, the opposite is not required.

IPv6 traffic with the destination address outside of the AFTR/NAT64 address/prefix will follow normal IPv6 routing path within the 7750 SR.

Default NAT Policy

The default `nat-policy` is always mandatory and must be configured under the `router/vprn>nat>inside` context. This default NAT policy can reference any configured pool in the desired ISA group. The pool referenced in the default `nat-policy` can be then overridden by the `nat-policy` associated with the destination-prefix in LSN44 or by the `nat-policy` referenced in the ipv4/ipv6-filter used for NAT diversion in LSN44/DS-Lite/NAT64.

The NAT CLI nodes will fail to activate (be brought out of the no shutdown state), unless a valid nat-policy is referenced in the `router/vprn>nat>inside` context.
Scaling Considerations

Each subscriber using multiple policies is counted as 1 subscriber for the inside resources scaling limits (such as the number of subscribers per MS-ISA), and counted as 1 subscriber per (subscriber + policy combination) for the outside limits (subscriber-limit ➔ subscribers per IP; port-reservation ➔ port/block reservations per subscriber).

Multiple NAT Policies and SPF Configuration Considerations

Any given Static Port Forward (SPF) can be created only in one pool. This pool, which is referenced through the nat-policy, has to be specified at the SPF creation time, either explicitly through the configuration request or implicitly via defaults.

Explicit request will be submitted either via SAM or via CLI:

```plaintext
tools perform nat port-forwarding-action lsn
  - lsn create router <router-instance> [b4 <ipv6-address>] [aftr <ipv6-address>] ip <ip-address> protocol {tcp|udp} [port <port>] lifetime <lifetime> [outside-ip <ipv4-address>] [outside-port <port>] [nat-policy <policy-name>]
```

In the absence of the nat-policy referenced in the SPF creation request, the default nat-policy under the vprn/router>nat>inside context will be used.

The consequence of this is that the operator must know the nat-policy in which the SPF is to be created. The SPF cannot be created via PCP outside of the pool referenced by the default nat-policy, since PCP does not provide means to communicate nat-policy name in the SPF creation request.

The static port forward creation and their use by the subscriber types must follow these rules:

- Default nat-policy — Any subscriber type can use an SPF created in the pool referenced by the default nat-policy
- Deterministic LSN44 nat-policy — Only deterministic LSN44 subscribers matching the configured prefix can use the SPF created in the pool referenced by the deterministic LSN44 prefix nat-policy
- Deterministic DS-Lite nat-policy — Only deterministic DS-Lite subscribers matching the configured prefix can use the SPF created in the pool referenced by the deterministic DS-Lite prefix nat-policy
- LSN44 filter based nat-policy — Only LSN44 subscribers matching the configured filter entry can use the SPF created in the pool referenced by the non-deterministic LSN44 nat-policy within the filter
• DS-Lite filter based nat-policy — Only DS-Lite subscribers matching the configured filter entry can use the SPF created in the pool referenced by the DS-Lite nat-policy within the filter

• NAT64 filter based nat-policy — Only NAT64 subscribers matching the configured filter entry can use the SPF created in the pool referenced by the NAT64 nat-policy within the filter

When the last relevant policy for a certain subscriber type is removed from the virtual router, the associated port forwards are automatically deleted.

Multiple NAT Policies and Forwarding Considerations

Figure 63 and Figure 64 describe certain scenarios that are more theoretical and are less likely to occur in reality. However, they are described here for the purpose of completeness.

Figure 63 represents the case where traffic from the WEB server 1.1.1.1 is initiated toward the destined network 11.0.0.0/8. Such traffic will end up translated in the Pool B and forwarded to the 11.0.0.0/8 network even though the static port forward has been created in Pool A. In this case the nat-policy rule (dest 11.0.0.0/8 ➔ pool B) will determine the pool selection in the upstream direction (even though the SPF for the WEB server already exists in the Pool A).

Figure 63: SPF With Multiple NAT Policies

<table>
<thead>
<tr>
<th>Flow 1 Destined to 10.10.10.1</th>
<th>Flow 2 Destined to 11.11.11.1</th>
</tr>
</thead>
</table>
| **Inside**
Src: 1.1.1.1:80 Dest 10.10.10.1:4000 | **Inside**
Src: 1.1.1.1:80 Dest 11.11.11.1:5000 |
| **Outside**
Src: 2.2.2.2:80 Dest 10.10.10.1:4000 | **Outside**
Src: 3.3.3.3:80 Dest 11.11.11.1:5000 |

WEB 1.1.1.1:80

7x50 NAT

NAT inside VRF1 (or GRT)

Subscriber 1
Source IP = 1.1.1.1

Dest A
10.0.0.0/8

Dest B
11.0.0.0/8

Pool A
2.2.2.2

Pool B
3.3.3.3

NAT Outside VRF1 (or GRT)

Network 10.0.0.0/8

Network 11.0.0.0/8

SPF Mapping:
Inside 1.1.1.1:80 ➔ Outside 2.2.2.2:80
The next example in Figure 64 shows a case where the Flow 1 is initiated from the outside. Since the partial mapping matching this flow already exist (created by SPF) and there is no more specific match (FQF)\(^3\) present, the downstream traffic will be mapped according to the SPF (through Pool A to the Web server). At the same time, a more specific entry (FQF) will be created (initiated by the very same outside traffic). This FQF will now determine the forwarding path for all traffic originating from the inside that is matching this flow. This means that the Flow 2 (reverse of the Flow 1) will not be mapped to an IP address from the pool B (as the policy dictates) but instead to the Pool A which has a more specific match.

<table>
<thead>
<tr>
<th>Flow 1 Destined to 2.2.2.2:80</th>
<th>Flow 2 Destined to 11.11.11.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Src:11.11.11.12:2000 Dest 2.2.2.2:80</td>
<td>Inside Src:1.1.1.1:80 Dest 11.11.11.12:2000</td>
</tr>
<tr>
<td>Inside Src:11.11.12:2000 Dest 1.1.1.1:80</td>
<td>Outside Src:2.2.2.2:80 Dest 11.11.11.12:2000</td>
</tr>
</tbody>
</table>

Figure 64: Bypassing Nat Policy Rule

Logging

When multiple NAT policies per inside routing context are deployed, a new *policy-id* parameter is added to certain syslog messages. The format of the policy-id is:

\[\text{plcy-id XX} \]

where XX is an arbitrary unique number per inside routing context assigned by 7x50. This number, represents the corresponding nat-policy. Since the maximum number of NAT policies in the inside routing context is 8, the *policy-id* value is also a numerical value in the range 1 — 8.

\(^3\) More specific match would be in this case fully qualified flows (FQF) that contains information about the foreign host: <host,inside IP/port, outside IP/port, foreign IP address/port, protocol>.
Introduction of the policy-id in logs is necessary due to the bulk-operations associated with multiple NAT policies per inside routing context. A bulk operation, for example, represents the removal of the nat-policy from the configuration, shutting down the NAT pool, or removing an IP address range from the pool. Note that removing a NAT accounting policy in case of RADIUS NAT logging will not trigger a summarization log since an acct-off message is sent. Such operations have a tendency to be heavy on NAT logging since they affect a large number of NAT subscribers at once. Summarization logs are introduced to prevent excessive logging during bulk operations. For example, the nat-policy deletion can be logged with a single (summarized) entry containing the policy-id of the nat-policy that was removed and the inside srvc-id. Since all logs contain the policy-id, a single summarization free log can be compared to all map logs containing the same policy-id to determine for which subscribers the NAT mappings have ceased.

Summarization log is always generated on the CPM, regardless of whether the RADIUS logging is enabled or not. A summarization log simply cannot be generated via RADIUS logging since the RADIUS accounting message streams (start/interim-updates/stop) are always generated per subscriber. In other words, for RADIUS logging, the summarization log would need to be sent to each subscriber, which defeats the purpose of the summarization logs.

A summarization log on the CPM is generated:

- When the nat-policy is removed — With a single nat-policy per inside routing context, a summarization log is generated with only one field: inside srvc-id (vprn or base). This is sufficient since there is only one nat-policy per inside routing context. To determine subscribers for which NAT mappings are terminated, the operator should search all most recent map logs matching the service-id from the summarization log.

 With multiple NAT policies per inside routing context, the inside srvc-id and the policy-id are included in the summarization log (no outside IPs, outside srvc-id, port-block or source IP).

 A log search based on the policy-id and inside srvc-id should reveal all subscribers whose mappings were affected by the nat-policy removal.

- When the pool is shutdown — The 7x50 will send a summarization log that includes the outside srvc-id and all IP address ranges configured in the pool. No other parameters are included in the summarization log.

 A log search based on the outside IP address and outside srvc-id should reveal all subscribers for which the NAT mappings have ceased.

- When an IP address-range is removed from the pool. The 7x50 will send a summarization log that includes the outside srvc-id and the IP address range that has been removed. No other parameters are included in the summarization log.

 A log search based on the outside IP addresses in the range and the outside srvc id should reveal all subscribers for which the NAT mappings have ceased.

4. Map and Free logs are generated when the port-block for the subscribers are allocated and de-allocated.
• When the last AFTR address is removed.
• When DS-Lite/NAT64 node is shutdown.
• When deterministic NAT prefixes are created or removed.

Summarization logs in RADIUS logging

The summarization log for bulk operation while RADIUS logging is in effect will be generated only in the CPM (syslog). This means that for bulk operations with RADIUS logging, the operator will have to rely on RADIUS logging as well as on the CPM logging.

An open log sequence in RADIUS, for example a map for the <inside IP 1, outside IP 1, port-block 1> followed at some later time with a map for <inside IP 2, outside IP 1, port-block 1>, is an indication that the free log for <inside IP 1, outside IP 1, port-block 1> is missing. This means that either the free log for <inside IP 1, outside IP 1, port-block 1> was lost or that a policy/pool/address-range was removed from the configuration. In the latter case, the operator should look in the CPM log for the summarization message.

The summarization logs are enabled via the event control 2021 tmnxNatLsnSubBlksFree which is by default suppressed. The even control 2021 is also used to report when all blocks for the subscriber are freed.
ISA Feature Interactions

This section describes the interaction between MS-ISA applications and other system features.

MS-ISA Use with Service Mirrors

All MS-ISA uses include support for service mirroring running with no feature interactions or impacts. For example, any service diverted to AA, IPsec, NAT, LNS, or supported combinations of MS-ISA application also supports service mirroring simultaneously.

LNS, Application Assurance and NAT

Multiple uses of MS-ISAs can be combined at one time by daisy-chaining use of the MS-ISAs. Services and subscribers terminated on the LNS ISA are full supported by Application Assurance per AA subscriber and service capabilities, and by the full NAT capabilities.

When Application Assurance and NAT are used in combination (for both ESM and SAP service contexts):

- AA is always on subscriber of NAT to be able to see the original (inside) subscriber IP tuple (IP + port numbers).
- AA subscriber ID includes the VRF context from the service, so shared or private subscriber IP as seen in Layer-2 Aware NAT is compatible with AA subscriber contexts.
Subscriber Aware Large Scale NAT44

Subscriber aware Large Scale NAT44 attempts to combine the positive attributes of Large Scale NAT44 and L2-Aware NAT, namely:

- The ability for some traffic to bypass the NAT function, such as IPTV traffic and VoIP traffic whenever a unique IP address per subscriber is used (ie, not L2-aware NAT where all subs share the same IP). This can be achieved using existing Large Scale NAT44 mechanisms (ingress IP-filters)
- The use of RADIUS Acct for logging of port-ranges, including multiple port-range blocks.
- The use of subscriber-identification/RADIUS user-name to identify the customer to simplify management of Large Scale NAT44 subscribers.

Subscriber awareness in Large Scale NAT44 will facilitate release of NAT resources immediately after the BNG subscriber is terminated, without having to wait for the last flow of the subscriber to expire on its own (TCP timeout is 4hours by default).

The subscriber aware Large Scale NAT44 function leverages RADIUS accounting proxy built-in to the 7750SR. The RADIUS accounting proxy allows the 7750SR to inform Large Scale NAT44 application about individual BNG subscribers from the RADIUS accounting messages generated by a remote BNG and use this information in the management of Large Scale NAT44 subscribers. The combination of the two allows, for example, the 7750SR running as a Large Scale NAT44 to make the correlation between the BNG subscriber (represented in the Large Scale NAT44 by the Inside IP Address) and RADIUS attributes such as User-Name, Alc-Sub-Ident-String, Calling-Station-Id or Class. These attributes can subsequently be used for either management of the Large Scale NAT44 subscriber, or in the NAT RADIUS Accounting messages generated by the 7750SR Large Scale NAT44 application. Doing so will simplify both the administration of the Large Scale NAT44 and the logging function for port-range blocks.

As BNG subscribers authenticate and come online, the RADIUS accounting messages are ‘snoop’ed via RADIUS accounting proxy which creates a cache of attributes from the BNG subscriber. BNG subscribers are correlated with the NAT subscriber via framed-ip address, and one of the following attributes that must be present in the accounting messages generated by BNG:

- User-name
- Subscriber id
- RADIUS Class attribute
- Calling-Station-id
- IMSI
- IMEI

Framed-ip address must also be present in the accounting messages generated by BNG.
Large Scale NAT44 Subscriber Aware application will receive a number of cached attributes which will then be used for appropriate management of Large Scale NAT44 subscribers, for example:

- Delete the Large Scale NAT44 subscriber when the BNG subscriber is terminated
- Report attributes in Large Scale NAT44 accounting messages according to configuration options

Creation and removal of RADIUS accounting proxy cache entries related to BNG subscriber is triggered by the receipt of accounting start/stop messages sourced by the BNG subscriber. Modification of entries can be triggered by interim-update messages carrying updated attributes. Cached entries can also be purged via CLI.

In addition to passing one of the above attributes in Large Scale NAT44 RADIUS accounting messages, a set of opaque BNG subscriber RADIUS attributes can optionally be passed in Large Scale NAT44 RADIUS accounting messages. Up to 128B of such opaque attributes will be accepted. The remaining attributes will be truncated.

Large Scale NAT44 subscriber instantiation can optionally be denied in case that corresponding BNG subscriber cannot be identified in Large Scale NAT44 via RADIUS accounting proxy.

Configuration guidelines:

1. Configure RADIUS accounting proxy functionality in a routing instance that will receive accounting messages from the remote or local BNG. Optionally forward received accounting message received by RADIUS accounting proxy to the final accounting destination (accounting server).

2. Point the BNG RADIUS accounting destination to the RADIUS accounting proxy – this way RADIUS accounting proxy will receive and ‘snoop’ BNG RADIUS accounting data.

 BNG subscriber can be associated with two accounting policies, therefore pointing to two different accounting destinations. For example, one to the RADIUS accounting proxy, the other one to the real accounting server.

3. Configure subscriber aware Large Scale NAT44. From Large Scale NAT44 Subscriber Aware application reference the RADIUS Proxy accounting server and define the string that will be used to correlate BNG subscriber with the Large Scale NAT44 subscriber.

4. Optionally enable NAT RADIUS accounting that will include BNG subscriber relevant data.

 (1) *A:left-a20>config>service>vprn#
radius-proxy
server "proxy-acct" purpose accounting create
default-accounting-server-policy "lsn-policy"
description "two side server -interface:client ; default-plcy:real
server"
interface "rad-proxy-loopback"
secret "TEg1UEZzemRMyZXD1HvvQGKeGfoQ58MF" hash2
no shutdown
exit
exit

RADIUS accounting proxy will listen to accounting messages on interface ‘rad-proxy-loopback’.

The name ‘proxy-acct’ as defined by the server command will be used to reference this proxy
accounting server from Large Scale NAT44.

Received accounting messages can be relayed further from RADIUS accounting proxy to the
accounting server which can be indirectly referenced in the default-accounting-policy ‘lsn-policy’.

The lsn-policy is defined as:
*A:left-a20>config>aaa#
radius-server-policy "lsn-policy" create
servers
router "Base"
source-address 114.0.1.12
server 1 name "114"
exit
exit

This lsn-policy can then reference an external RADIUS accounting server with its own security
credentials. This external accounting server can be configured in any routing instance.

*A:left-a20>config>router>radius-server# info
--
server "114" address 114.0.1.10 secret "KRr7H.K3i0s9O/hj2BUSmdJUdl.zWrkE" hash2
port 1813 create
description "real radius or acct server"
exit

(2) Two RADIUS accounting policies can be configured in BNG – one to the real radius server, the
other one to the RADIUS accounting proxy.

*A:left-a20>config>subscr-mgmt>sub-prof# info
--
radius-accounting-policy "real-acct-srvr" duplicate "lsn"
egress
agg-rate-limit 10000
exit

--
*A:left-a20>config>subscr-mgmt>acct-plcy# info
--
description "lsn radius-acct-policy"
update-interval 5
include-radius-attribute
 acct-authentic
 acct-delay-time
 called-station-id
 calling-station-id remote-id
 circuit-id
 framed-interface-id
 framed-ip-addr
 framed-ip-netmask
 mac-address
 nas-identifier
 nas-port-id
 nas-port-type
 nat-port-range
 remote-id
 sla-profile
 sub-profile
 subscriber-id
 user-name
 alc-acct-triggered-reason
exit
session-id-format number
radius-accounting-server
 router 10 (service id where proxy radius is configured)
 server 1 address 5.5.5.5 secret "cViLisidvH28Pd9QoN1f1E" hash2
 (radius proxy IP address is 5.5.5.5 on interface "rad-proxy-loopback"; the 'secret' is
 the same as configured on RADIUS accounting proxy)
exit

(3) Sub-aware Large Scale NAT44 references the RADIUS accounting proxy server ‘proxy-acct’ and
defines the calling-station-id attribute from the BNG subscriber as the matching attribute:

*A:left-a20>config>service>vprn>nat>inside# info
--
nat-policy "nat-base"
 destination-prefix 10.0.0.0/16
 subscriber-identification
 attribute vendor "standard" attribute-type "station-id"
 description "sub-aware CGN"
 radius-proxy-server router 10 name "proxy-acct"
 no shutdown
exit

--

(4) Optionally RADIUS NAT accounting can be enabled:

*A:left-a20>config>isa>nat-group# info
--
 active-mda-limit 1
 radius-accounting-policy "nat-acct-basic"
 mda 1/2
 no shutdown

*A:left-a20>config>aaa>nat-acct-plcy# info detail
--
description "nat-acct-basic policy"
include-radius-attribute
framed-ip-addr
nas-identifier
nat-subscriber-string
user-name
inside-service-id
outside-service-id
outside-ip
port-range-block
hardware-timestamp
release-reason
multi-session-id
frame-counters
octet-counters
session-time
called-station-id
subscriber-data
exit
radius-accounting-server
 access-algorithm direct
 retry 3
 router "Base"
 source-address-range 114.0.1.20 114.0.1.20
 timeout sec 5
 server 1 address 114.0.1.10 secret "K1WIBi08CtYm/
YxaU2gQltOu8Gg5D7cJ5bJese27A" hash2 port 1813
exit

Such setup would produce a stream of following Large Scale NAT44 RADIUS accounting messages:

Mon Jul 16 10:59:27 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Start
Acct-Multi-Session-Id = "500456500365a4de7c29a9a07c29a9a0"
Acct-Session-Id = "00-00-00-00-01-01"
Called-Station-Id = "00-00-00-00-01-01"
User-Name = "remote0"
Calling-Station-Id = "remote0"
Alc-Serv-Id = 10
Framed-IP-Address = 26.0.0.7
Alc-Nat-Outside-IP-Addr = 80.0.0.1
Alc-Nat-Port-Range = "80.0.0.1 1054-1058 router base"
Acct-Input-Packets = 0
Acct-Output-Packets = 0
Acct-Input-Octets = 0
Acct-Output-Octets = 0
Acct-Input-Gigawords = 0
Acct-Output-Gigawords = 0
Acct-Session-Time = 0
Event-Timestamp = "Jul 16 2012 10:58:40 PDT"
NAS-IP-Address = 1.1.1.1
User-Name = "cgn_1_ipoe"
Framed-IP-Netmask = 255.255.255.0
Class = 0x63676e2d636c6173732d7375622d6177617265
NAS-Identifier = "left-a20"
Acct-Session-Id = "DB96FF000000550045E40"
Event-Timestamp = "Jul 16 2012 10:58:24 PDT"
NAS-Port-Type = Ethernet
NAS-Port-Id = "1/1/5:5.10"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS
Acct-Unique-Session-Id = "10f8bce6e5e7eb41"
Timestamp = 1342461567
Request-Authenticator = Verified

Mon Jul 16 11:03:56 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Interim-Update
Acct-Multi-Session-Id = "500456500365a4de7c29a9a07c29a9a0"
Acct-Session-Id = "500456500365a4de6201d7b87c29a9a0"
Called-Station-Id = "00-00-00-00-01-01"
User-Name = "remote0"
Calling-Station-Id = "remote0"
Acct-Serv-Id = 10
Framed-IP-Address = 26.0.0.7
Acct-Output-Packets = 0
Acct-Mult-Session-Id = "500456500365a4de7c29a9a07c29a9a0"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS
Acct-Unique-Session-Id = "10f8bce6e5e7eb41"
Timestamp = 1342461836
Request-Authenticator = Verified

Mon Jul 16 11:04:34 2012
NAS-IP-Address = 1.1.1.1
NAS-Identifier = "left-a20"
NAS-Port = 37814272
Acct-Status-Type = Stop
Acct-Unique-Session-Id = "500456500365a4de7c29a9a07c29a9a0"
Acct-Session-Id = "500456500365a4de6201d7b87c29a9a0"
Called-Station-Id = "00-00-00-00-01-01"
User-Name = "remote0"
Calling-Station-Id = "remote0"
Alc-Serv-Id = 10
Framed-IP-Address = 26.0.0.7
Alc-Nat-Outside-IP-Addr = 80.0.0.1
Alc-Nat-Port-Range = "80.0.0.1 1054-1058 router base"
Acct-Terminate-Cause = Host-Request
Acct-Input-Packets = 0
Acct-Output-Packets = 1321
Acct-Input-Octets = 0
Acct-Output-Octets = 97754
Acct-Input-Gigawords = 0
Acct-Output-Gigawords = 0
Acct-Session-Time = 307
Event-Timestamp = "Jul 16 2012 11:03:47 PDT"
NAS-IP-Address = 1.1.1.1
User-Name = "cgn_1_ipoe"
Framed-IP-Netmask = 255.255.255.0
Class = 0x63676e2d636c6173732d7375622d6177617265
NAS-Identifier = "left-a20"
Acct-Session-Id = "DB96FF0000000550045640"
Acct-Session-Time = 279
Event-Timestamp = "Jul 16 2012 11:03:04 PDT"
NAS-Port-Type = Ethernet
NAS-Port-Id = "1/1/5.10"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS
Acct-Unique-Session-Id = "10f8bce6e5e7eb41"
Timestamp = 1342461874
Request-Authenticator = Verified

The matching accounting stream generated on the BNG is given below:

Mon Jul 16 10:59:11 2012
Acct-Status-Type = Start
NAS-IP-Address = 1.1.1.1
User-Name = "cgn_1_ipoe"
Framed-IP-Address = 26.0.0.7
Framed-IP-Netmask = 255.255.255.0
Class = 0x63676e2d636c6173732d7375622d6177617265
Calling-Station-Id = "remote0"
NAS-Identifier = "left-a20"
Acct-Session-Id = "DB96FF0000000550045640"
Event-Timestamp = "Jul 16 2012 10:58:24 PDT"
NAS-Port-Type = Ethernet
NAS-Port-Id = "1/1/5.10"
ADSL-Agent-Circuit-Id = "cgn_1_ipoe"
ADSL-Agent-Remote-Id = "remote0"
Alc-Subsc-ID-Str = "CGN1"
Alc-Subsc-Prof-Str = "nat"
Alc-SLA-Prof-Str = "tp_sla_prem"
Alc-Client-Hardware-Addr = "00:00:65:05:10:01"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS
Acct-Unique-Session-Id = "9c1723d05e87c043"
Timestamp = 1342461551
Request-Authenticator = Verified
Mon Jul 16 11:03:51 2012
Acct-Status-Type = Interim-Update
NAS-IP-Address = 1.1.1.1
User-Name = "cgw_1_ipoe"
Framed-IP-Address = 26.0.0.7
Framed-IP-Netmask = 255.255.255.0
Class = 0x63676e2d636c6173732d7375622d6177617265
Calling-Station-Id = "remote0"
NAS-Identifier = "left-a20"
Acct-Session-Id = "D896FF0000000550045640"
Acct-Session-Time = 279
Event-Timestamp = "Jul 16 2012 11:03:04 PDT"
NAS-Port-Type = Ethernet
NAS-Port-Id = "1/1/5.10"
ADSL-Agent-Circuit-Id = "cgw_1_ipoe"
ADSL-Agent-Remote-Id = "remote0"
Alc-Subsc-ID-Str = "CGN1"
Alc-Subsc-Prof-Str = "nat"
Alc-SLA-Prof-Str = "tp_sla_prem"
Alc-Client-Hardware-Addr = "00:00:65:05:10:01"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS
Alcatel-IPD-Attr-163 = 0x00000001
Alc-Acct-I-Inprof-Octets-64 = 0x00001000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00001000000000000000000000
Alc-Acct-I-Inprof-Octets-64 = 0x00010000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00010000000000000000000000
Alc-Acct-I-Inprof-Octets-64 = 0x00030000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00030000000000000000000000
Alc-Acct-I-Inprof-Octets-64 = 0x00050000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00050000000000000000000000
Alc-Acct-O-Inprof-Octets-64 = 0x00001000000000000000000000
Alc-Acct-O-Outprof-Octets-64 = 0x00001000000000000000000000
Alc-Acct-O-Inprof-Octets-64 = 0x00003000000000000000000000
Alc-Acct-O-Outprof-Octets-64 = 0x00003000000000000000000000
Alc-Acct-O-Inprof-Octets-64 = 0x00005000000000000000000000
Alc-Acct-O-Outprof-Octets-64 = 0x00005000000000000000000000
Acct-Unique-Session-Id = "9c1723d05e87c043"
Timestamp = 1342461831
Request-Authenticator = Verified

Mon Jul 16 11:04:34 2012
Acct-Status-Type = Stop
NAS-IP-Address = 1.1.1.1
User-Name = "cgw_1_ipoe"
Framed-IP-Address = 26.0.0.7
Framed-IP-Netmask = 255.255.255.0
Class = 0x63676e2d636c6173732d7375622d6177617265

Calling-Station-Id = "remote0"
NAS-Identifier = "left-a20"
Acct-Session-Id = "D896FF00000000050045640"
Acct-Session-Time = 322
Acct-Terminate-Cause = User-Request
Event-Timestamp = "Jul 16 2012 11:03:47 PDT"
NAS-Port-Type = Ethernet
NAS-Port-Id = "1/1/5:10"
ADSL-Agent-Circuit-Id = "cg_1_ipoe"
ADSL-Agent-Remote-Id = "remote0"
Alc-Subsc-ID-Str = "CGN1"
Alc-Subsc-Prof-Str = "nat"
Alc-SLA-Prof-Str = "tp_sla_prem"
Alc-Client-Hardware-Addr = "00:00:65:05:10:01"
Acct-Delay-Time = 0
Acct-Authentic = RADIUS

Alc-Acct-I-Inprof-Octets-64 = 0x00010000000000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00010000000000000000000000000000
Alc-Acct-I-Inprof-Pkts-64 = 0x00010000000000000000000000000000
Alc-Acct-I-Outprof-Pkts-64 = 0x00010000000000000000000000000000
Alc-Acct-I-Inprof-Octets-64 = 0x00030000000000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00030000000000000000000000000000
Alc-Acct-I-Inprof-Pkts-64 = 0x00030000000000000000000000000000
Alc-Acct-I-Outprof-Pkts-64 = 0x00030000000000000000000000000000
Alc-Acct-I-Inprof-Octets-64 = 0x00050000000000000000000000000000
Alc-Acct-I-Outprof-Octets-64 = 0x00050000000000000000000000000000
Alc-Acct-I-Inprof-Pkts-64 = 0x00050000000000000000000000000000
Alc-Acct-I-Outprof-Pkts-64 = 0x00050000000000000000000000000000
Alc-Acct-O-Inprof-Octets-64 = 0x00010000000000000000000000000000
Alc-Acct-O-Outprof-Octets-64 = 0x00010000000000000000000000000000
Alc-Acct-O-Inprof-Pkts-64 = 0x00010000000000000000000000000000
Alc-Acct-O-Outprof-Pkts-64 = 0x00010000000000000000000000000000
Alc-Acct-O-Inprof-Octets-64 = 0x00030000000000000000000000000000
Alc-Acct-O-Outprof-Octets-64 = 0x00030000000000000000000000000000
Alc-Acct-O-Inprof-Pkts-64 = 0x00030000000000000000000000000000
Alc-Acct-O-Outprof-Pkts-64 = 0x00030000000000000000000000000000
Alc-Acct-O-Inprof-Octets-64 = 0x00050000000000000000000000000000
Alc-Acct-O-Outprof-Octets-64 = 0x00050000000000000000000000000000
Alc-Acct-O-Inprof-Pkts-64 = 0x00050000000000000000000000000000
Alc-Acct-O-Outprof-Pkts-64 = 0x00050000000000000000000000000000
Acct-Unique-Session-Id = "9c1723d05e87c043"
Timestamp = 1342461874
Request-Authenticator = Verified
Configuring NAT

This section provides information to configure NAT using the command line interface.

Topics in this section include:

- ISA Redundancy on page 761
- NAT Layer 2-Aware Configurations on page 764
- Large Scale NAT Configuration on page 766
- NAT Configuration Examples on page 768

ISA Redundancy

The 7750 SR supports ISA redundancy to provide reliable NAT even when an MDA fails. The active-mda-limit allows an operator to specify how many MDAs will be active in a given NAT group. Any number of MDAs configured above the active-mda-limit will be spare MDAs; they take over the NAT function if one of the current active MDAs fail.

A sample configuration is as follows:

```
Configure
isa
   nat-group 1 create
   active-mda-limit 1
   mda 1/2
   mda 2/2
   no shutdown
exit
exit
exit

Show commands are available to display the actual state of a nat-group and its corresponding MDAs:

```
show isa nat-group 1
===
ISA NAT Group 1
===
Admin state : inService Operational state : inService
Active MDA limit : 1 Reserved sessions : 0
High Watermark (%) : (Not Specified) Low Watermark (%) : (Not Specified)
Last Mgmt Change : 01/11/2010 15:05:36
===
ISA NAT Group 1 members
===
Group Member State Mda Addresses Blocks Se-% Hi Se-Prio

1 1 active 1/2 0 0 0 N 0

No. of members: 1
===
```
A maximum of four nat-groups can be configured. This gives the operator the ability to differentiate between different traffic types. Normal traffic could be routed to nat-group one, where a limited number of MDA without spare MDAs are available, while high priority traffic could make use of nat-group two, where several active MDAs and a spare MDA are configured. A maximum of six MDAs per nat-group can be configured.

A nat-group cannot become active (no shutdown) if the number of configured MDAs is lower that the active-mda-limit.

A given MDA can be configured in several nat-groups but it can only be active in a single nat-group at any moment in time. Spare MDAs can be shared in several nat-groups, but a spare can only become active in one nat-group at a time. Changing the active-mda-limit, adding or removing MDAs can only be done when the nat-group is shutdown.

Nat-groups that share spare MDAs must be configured with the same list of MDAs. It is possible to remove/add spare MDAs to a nat-group while the nat-group is admin enabled.

```plaintext
Configure
 isa
 nat-group 1 create
 active-mda-limit 1
 mda 1/2
 mda 2/2
 mda 3/1
 no shutdown
 exit
 nat-group 2 create
 active-mda-limit 1
 mda 1/2
 mda 2/2
 mda 3/1
 no shutdown
 exit
 exit
```

Through show commands, it is possible to display an overview of all the nat-groups and MDAs.

```plaintext
show isa nat-group
===
ISA NAT Group Summary
===
Mda Group 1 Group 2

1/1 active busy
2/2 busy active
3/1 standby standby
===
```

If an MDA fails, the spare (if available) will take over. All active sessions will be lost, but new incoming sessions will make use of the spare MDA.

In case of an MDA failure in a nat-group without any spare MDA, all traffic towards that MDA will be black-holed.
For L2-aware NAT, the operator has the possibility to clear all the subscribers on the affected MDA (clear nat isa), terminating all the subscriber leases. New incoming subscribers will make use of the MDAs that are still available in the nat-group.
NAT Layer 2-Aware Configurations

The following sections provide NAT Layer 2-Aware configurations.

```
#--
#--
#--
#--
#--

#--
echo "Card Configuration"
#--

 card 1
 card-type iom3-xp
 mda 1
 mda-type m60-10/100eth-tx
 exit
 mda 2
 mda-type isa-bb
 exit
 exit

 card 2
 card-type iom3-xp
 mda 1
 mda-type m60-10/100eth-tx
 exit
 mda 2
 mda-type isa-bb
 exit
 exit

#--
#--
#--
#--
#--
#--

#--
echo "ISA Configuration"
#--

 isa
 nat-group 1 create
 description "1 active + 1 spare"
 active-mda-limit 1
 mda 1/2
 mda 2/2
 no shutdown
 exit

#--
#--
#--
#--
#--
#--

#--
echo "Router (Network Side) Configuration"
#--

#--
#--
#--
#--

#--
echo "NAT (Network Side) Configuration"
#--

 nat
 outside
 pool "pool1" nat-group 1 type l2-aware create
 address-range 81.81.0.0 81.81.0.200 create
 exit
 no shutdown
 exit
 exit

#--
#--
#--
#--

#--
echo "Service Configuration"
#--

 service
 customer 1 create
```
description "Default customer"
exit
...
vprn 100 customer 1 create
... nat
  outside
    pool "pool2" nat-group 1 type l2-aware create
    address-range 82.0.0.0 82.0.0.200 create
    exit
  no shutdown
exit
exit
exit
exit
vprn 101 customer 1 create
... nat
  inside
    l2-aware
    # Hosts in this service with IP addresses in these ranges
    # will be subject to l2-aware NAT.
    address 10.0.0.1/29
    address 10.1.0.1/29
  exit
exit
exit
exit
exit
exit
... nat-policy "l2-aware-nat-policy1" create
  pool "pool1" router Base
exit
nat-policy "l2-aware-nat-policy2" create
  pool "pool2" router 100
exit
exit
exit
#--------------------------------------------------
# Subscriber-mgmt Configuration
#--------------------------------------------------
subscriber-mgmt
  
  # Subscribers using these sub-profiles will be subject to l2-aware NAT.
  # The configured nat-policies will determine which IP pool will be used.
  sub-profile "l2-aware-profile1" create
    nat-policy "l2-aware-nat-policy1"
  exit
  sub-profile "l2-aware-profile2" create
    nat-policy "l2-aware-nat-policy2"
  exit
... exit
The following sections provide Large Scale NAT configuration examples.

```plaintext
configure
#--
echo "Card Configuration"
#--
card 3
card-type iom3-xp
mda 1
 mda-type isa-bb
 exit
mda 2
 mda-type isa-bb
 exit
exit
#--
echo "ISA Configuration"
#--
isa
 nat-group 1 create
 active-mda-limit 2
 mda 3/1
 mda 3/2
 no shutdown
 exit
exit
#--
echo "Filter Configuration"
#--
filter
 ip-filter 123 create
 entry 10 create
 match
 src-ip 13.0.0.1/8
 exit
 action nat
 exit
exit
#--
echo "NAT (Declarations) Configuration"
#--
service
 nat
 nat-policy "ls-outPolicy" create
 exit
exit
#--
echo "Service Configuration"
#--
service
customer 1 create
customer 1 description "Default customer"
exit
vprn 500 customer 1 create
 interface "ip-113.0.0.1"
 exit
```
nat
outside
  pool "nat1-pool" nat-group 1 type large-scale create
  port-reservation ports 200
  address-range 81.81.0.0 81.81.6.0 create
  exit
  no shutdown
  exit
  exit
  exit
  exit
vprn 550 customer 1 create
  interface "ip-13.0.0.1" create
  exit
exit
nat
  nat-policy "ls-outPolicy" create
  pool "nat1-pool" router 500
  timeouts
    udp hrs 5
    udp-initial min 4
  exit
  exit
  exit
vprn 500 customer 1 create
  router-id 10.21.1.2
  route-distinguisher 500:10
  vrf-target export target:500:1 import target:500:1
  interface "ip-113.0.0.1" create
    address 113.0.0.1/24
    static-arp 113.0.0.5 14:99:01:01:00:01
    sap 1/1/1:200 create
  exit
  exit
  no shutdown
exit
vprn 550 customer 1 create
  router-id 10.21.1.2
  route-distinguisher 550:10
  vrf-target export target:550:1 import target:550:1
  interface "ip-13.0.0.1" create
    address 13.0.0.1/8
    sap 1/2/1:900 create
    ingress
      filter ip 123
  exit
  exit
  exit
  nat
  inside
    nat-policy "ls-outPolicy"
  exit
  exit
  no shutdown
  exit
exit
exit all
NAT Configuration Examples

The following output displays example configurations.

VPRN service example:

configure service vprn 100 nat
    inside
    nat-policy "priv-nat-policy"
    destination-prefix 0.0.0.0/0
    dual-stack-lite
      subscriber-prefix-length 128
      address 2001:470:1F00:FFFF::190
      tunnel-mtu 1500
    exit
    no shutdown
    exit
    redundancy
      no peer
      no steering-route
    exit
    subscriber-identification
      shutdown
      no attribute
      no description
      no radius-proxy-server
    exit
    l2-aware
    exit
    outside
    no mtu
    exit

Router NAT example:

configure router nat
    outside
    no mtu
    pool "privpool" nat-group 3 type large-scale create
      no description
      port-reservation blocks 128
      port-forwarding-range 1023
    redundancy
      no export
      no monitor
    exit
    subscriber-limit 65535
    no watermarks
    mode auto
    address-range 13.0.0.5 13.0.0.6 create
      no description
      no drain
    exit
    no shutdown
    exit
    pool "pubpool" nat-group 1 type large-scale create
      no description
port-reservation blocks 1
port-forwarding-range 1023
redundancy
  no export
  no monitor
exit
subscriber-limit 65535
no watermarks
mode auto
address-range 138.203.8.241 138.203.8.247 create
  no description
  no drain
exit
no shutdown
exit
exit
subscriber-limit 65535
no watermarks
mode auto
address-range 138.203.8.241 138.203.8.247 create
  no description
  no drain
exit
no shutdown
exit
exit

Service NAT example:

configure service nat
  nat-policy "priv-nat-policy" create
    alg
      ftp
      rtsp
      sip
    exit
    block-limit 4
    no destination-nat
    no description
    filtering endpoint-independent
    pool "privpool" router Base
    no ipfix-export-policy
    port-limits
      forwarding 64
      no reserved
      no watermarks
    exit
    priority-sessions
    exit
    session-limits
      max 65535
      no reserved
      no watermarks
    exit
    timeouts
      icmp-query min 1
      sip min 2
      no subscriber-retention
      tcp-established hrs 2 min 4
      tcp-syn sec 15
      no tcp-time-wait
      tcp-transitory min 4
      udp min 5
      udp-initial sec 15
      udp-dns sec 15
    exit
    no tcp-mss-adjust
    no udp-inbound-refresh
  exit
  nat-policy "pub-nat-policy" create
alg
ftp
no rtsp
no sip
exit
block-limit 1
no destination-nat
no description
filtering endpoint-independent
pool "pubpool" router Base
no ipfix-export-policy
port-limits
  no forwarding
  no reserved
  no watermarks
exit
priority-sessions
exit
session-limits
  max 65535
  no reserved
  no watermarks
exit
timeouts
  icmp-query min 1
  sip min 2
  no subscriber-retention
  tcp-established hrs 2 min 4
  tcp-syn sec 15
  no tcp-time-wait
  tcp-transitory min 4
  udp min 5
  udp-initial sec 15
  udp-dns sec 15
exit
no tcp-mss-adjust
no udp-inbound-refresh
exit
NAT Command Reference

Command Hierarchies

- ISA Configuration Commands on page 771
- NAT Service Configuration Commands on page 772
  - ISA RADIUS Policy Commands on page 774
  - VPRN Commands on page 776
- NAT Subscriber Management Commands on page 778
- NAT Router Configuration Commands on page 779
- Show Commands on page 781
- Filter Commands on page 782
- Clear Commands on page 781
- Tools Commands on page 782
- Filter Commands on page 782

ISA Configuration Commands

```
config
 — isa
 — nat-group nat-group-id [create]
 — no nat-group
 — active-mda-limit number
 — no active-mda-limit
 — description description-string
 — no description
 — [no] mda mda-id
 — radius-accounting-policy nat-accounting-policy
 — no radius-accounting-policy
 — session-limits
 — reserved num-sessions
 — no reserved
 — watermarks high percentage low percentage
 — no watermarks
 — [no] shutdown
```
configure
   service
      nat
         — deterministic-script
         — location remote-url
         — no location
         — session-limits
         — reserved num-ports
         — no reserved
         — watermarks high percentage low percentage
         — no watermarks
         — nat-policy nat-policy-name [create]
         — no nat-policy nat-policy-name
            — alg
            — [no] ftp
            — [no] pptp
            — [no] rtsp
            — [no] sip
            — block-limit [1..40]
            — no block-limit
            — description description-string
            — no description
            — filtering filtering-mode
            — no filtering
            — ipfix-export-policy [32 chars max]
            — no ipfix-export-policy
            — pool nat-pool-name service-name service-name
            — pool nat-pool-name router router-instance
            — no pool
            — port-limits
            — forwarding limit
            — no forwarding
            — reserved num-ports
            — no reserved
            — watermarks high percentage-high low percentage-low
            — no watermarks
            — [no] priority-sessions
            — [no] fc fc-name
            — session-limits
            — max num-sessions
            — no max
            — reserved num-sessions
            — no reserved
            — watermarks high percentage-high low percentage-low
            — no watermarks
            — tcp-mss-adjust segment-size
            — no tcp-mss-adjust
            — [no] timeouts
            — icmp-query [min minutes] [sec<seconds]
            — no icmp-query
            — sip min minutes] [sec<seconds]
            — no sip
            — subscriber-retention [hrs hours] [min minutes]
configure
  — service
    — ipfix
      — ipfix-export-policy policy-name [create]
      — no ipfix-export-policy policy-name
        — collector router router-instance ip ip-address [create]
        — no collector router router-instance ip ip-address
          — mtu [512..9212]
          — no mtu
          — [no] shutdown
            — source-address ip-address
            — no source-address
            — template-refresh-timeout [hrs hours] [min minutes] [sec seconds]
            — no template-refresh-timeout
              — description description-string
              — no description
ISA RADIUS Policy Commands

configure
  — aaa
    — isa-radius-policy name [create]
    — no isa-radius-policy name
    — [no] acct-include-attributes
    — [no] acct-delay-time
    — [no] acct-trigger-reason
    — [no] called-station-id
    — [no] calling-station-id
    — [no] circuit-id
    — [no] dhcp-options
    — [no] dhcp-vendor-class-id
    — [no] frame-counters
    — [no] framed-ip-addr
    — [no] framed-ip-netmask
    — [no] hardware-timestamp
    — [no] inside-service-id
    — [no] mac-address
    — [no] multi-session-id
    — [no] nas-identifier
    — [no] nas-port-id
    — [no] nas-port-type
    — [no] nat-subscriber-string
    — [no] octet-counters
    — [no] outside-ip
    — [no] outside-service-id
    — [no] port-range-block
    — [no] release-reason
    — [no] remote-id
    — [no] session-time
    — [no] subscriber-data
    — [no] subscriber-id
    — [no] ue-creation-type
    — [no] user-name
    — [no] wifi-rssi
    — [no] wifi-ssid-vlan

  — [no] auth-include-attributes
    — [no] called-station-id
    — [no] calling-station-id
    — [no] circuit-id
    — [no] dhcp-options
    — [no] dhcp-vendor-class-id
    — [no] framed-ip-addr
    — [no] mac-address
    — [no] nas-identifier
    — [no] nas-port-id
    — [no] nas-port-type
    — [no] remote-id
    — [no] wifi-ssid-vlan

  — description description-string
  — no description
  — nas-ip-address-origin {isa-ip|system-ip}
  — no nas-ip-address-origin
— **password** password [hash|hash2]
— **no password**
— **servers**
  — access-algorithm {direct|round-robin|hash-based}
  — **no access-algorithm**
  — retry count
  — **no retry**
  — router router-instance
  — router service-name service-name
  — **no router**
  — server server-index [create]
  — **no server** server-index
    — accounting [port udp-port]
    — **no accounting**
    — authentication [port udp-port]
    — **no authentication**
    — coa [port udp-port]
    — **no coa**
    — ip-address ip-address
    — **no ip-address**
    — secret secret-key | hash-key [hash|hash2]
    — **no secret**
    — [no] shutdown
  — source-address-range start-ip-address
  — **no source-address-range**
  — timeout [sec seconds] [min minutes]
  — **no timeout**
— user-name-format user-name-format [mac-format mac-format]
— **no user-name-format**
VPRN Commands

```
config
 service
 vprn service-id customer cust-id create
 nat
 inside
 [no] destination-prefix ip-prefix/length
 deterministic
 classic-lsn-max-subscriber-limit max
 no classic-lsn-max-subscriber-limit
 dslite-max-subscriber-limit max
 no dslite-max-subscriber-limit
 prefix ip-prefix/length subscriber-type nat-subtype nat-policy nat-policy-name [create]
 prefix ip-prefix/length subscriber-type nat-subtype
 no prefix ip-prefix/length subscriber-type nat-subtype
 map start inside-ip-address end inside-ip-address to outside-ip-address
 no map start inside-ip-address end inside-ip-address
 [no] shutdown
 dual-stack-lite
 [no] address ipv6-address
 ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
 no ip-fragmentation
 tunnel-mtu mtu-bytes
 no tunnel-mtu
 [no] shutdown
 subscriber-prefix-length prefix-length
 no subscriber-prefix-length
 12-aware
 [no] address ip-address/mask
 nat-policy nat-policy-name
 no nat-policy
 [no] nat64
 [no] drop-zero-ipv4-checksum
 [no] ignore-tos
 [no] insert-ipv6-fragment-header
 ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
 no ip-fragmentation
 ipv6-mtu [1280..9212]
 no ipv6-mtu
 prefix ipv6-prefix/prefix-length
 no prefix
 set-tos [0..255]
 no set-tos
 [no] shutdown
 subscriber-prefix-length prefix-length
 no subscriber-prefix-length
 redundancy
```
— peer ip-address
— no peer
— steering-route ip-prefix/length
— no steering-route

— outside
— mtu [512..9000]
— no mtu
— pool nat-pool-name [nat-group nat-group-id type pool-type
    create]
— no pool nat-pool-name
— address-range start-ip-address end-ip-address
    [create]
— no address-range start-ip-address end-ip-address
— description description-string
— no description
— [no] drain
— description description-string
— no description
— deterministic
— port-reservation num-ports
— no port-reservation
— mode {auto|napt|one-to-one}
— no mode
— [no] port-forwarding-dyn-block-reservation
— port-forwarding-range range-end
— no port-forwarding-range
— port-reservation blocks num-blocks
— port-reservation ports num-ports
— no port-reservation
— redundancy
— export ip-prefix/length
— no export
— follow router router-instance pool name
— no follow
— monitor ip-prefix/length
— no monitor
— [no] shutdown
— subscriber-limit [1..65535]
— no subscriber-limit
— watermarks high percentage-high low percentage-
    low
— no watermarks
— upstream-ip-filter filter-id
— no upstream-ip-filter
NAT Command Reference

NAT Subscriber Management Commands

configure
   — subscriber-mgmt
      — sub-profile
         — nat-policy policy-name
         — no nat-policy

NAT Router Configuration Commands

config
   — router
      — nat
      — inside
         — [no] destination-prefix ip-prefix/length
         — dual-stack-lite
            — [no] address ipv6-address
               — tunnel-mtu mtu-bytes
               — no tunnel-mtu
               — ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
                  — no ip-fragmentation
            — [no] shutdown
            — subscriber-prefix-length prefix-length
            — no subscriber-prefix-length
      — 12-aware
         — [no] address ip-address/mask
         — nat-policy nat-policy-name
         — no nat-policy
      — [no] nat64
         — [no] drop-zero-ipv4-checksum
         — [no] ignore-tos
         — [no] insert-ipv6-fragment-header
         — ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
            — no ip-fragmentation
            — ipv6-mtu [1280..9212]
            — no ipv6-mtu
            — prefix ipv6-prefix/prefix-length
            — no prefix
            — set-tos [0..255]
            — no set-tos
            — [no] shutdown
            — subscriber-prefix-length prefix-length
            — no subscriber-prefix-length
      — redundancy
         — peer ip-address
         — no peer
         — steering-route ip-prefix/length
         — no steering-route
      — subscriber-identification
— attribute [vendor vendor-id] attribute-type attribute-type
— no attribute
— description description-string
— no description
— [no] drop-unidentified-traffic
— radius-proxy-server router router-instance name server-name
— no radius-proxy-server
— [no] shutdown

— outside
— mtu [512..9000]
— no mtu
— pool nat-pool-name [nat-group nat-group-id type pool-type create]
— no pool nat-pool-name
— address-range start-ip-address end-ip-address [create]
— no address-range start-ip-address end-ip-address
— description description-string
— no description
— [no] drain
— description description-string
— no description
— mode {auto | napt | one-to-one}
— no mode
— [no] port-forwarding-dyn-block-reservation
— port-forwarding-range range-end
— no port-forwarding-range
— port-reservation blocks num-blocks
— port-reservation ports num-ports
— no port-reservation
— redundancy
— export ip-prefix/length
— no export
— follow router router-instance pool name
— no follow
— monitor ip-prefix/length
— no monitor
— [no] shutdown
— subscriber-limit [1..65535]
— no subscriber-limit
— watermarks high percentage-high low percentage-low
— no watermarks

NAT Admin Configuration Commands

admin
 — nat
 — save-deterministic-script
Tools Commands

```
tools
 — dump
 — nat
 — histogram router router-instance pool pool-name bucket-size [1..65536] num-buckets [2..50]
```
Show Commands

show
   — aaa
   — nat-accounting-policy
   — nat-accounting-policy policy-name
   — nat-accounting-policy policy-name associations
   — nat-accounting-policy
   — isa
   — nat-group
   — nat-group nat-group-id [associations]
   — nat-group nat-group-id member [1..255] [statistics]
   — nat-group [nat-group-id] members
   — service
   — nat
      — l2-aware-hosts [outside-router router-instance] [outside-ip outside-ip-address]
      — inside-ip-prefix ip-prefix/mask
      — l2-aware-subscribers [nat-policy nat-policy-name] [nat-group nat-group-id]
      — member [1..255] [outside-router router-instance] [outside-ip outside-ip-address]
      — l2-aware-subscribers subscriber sub-ident
      — nat-policy nat-policy-name associations
      — nat-policy nat-policy-name statistics
      — nat-policy nat-policy-name
      — nat-policy
      — pcp-server-policy
      — pcp-server-policy name
      — port-forwarding-entries

Clear Commands

clear
   — nat
NAT Command Reference

— isa
  — nat-group nat-group-id member [1..255] l2-aware-subscribers
  — nat-group nat-group-id member [1..255] statistics

Tools Commands

tools
  — dump
    — nat

  — isa
    — resources mda mda-id

  — sessions [nat-group nat-group-id] [mda mda-id] [protocol {icmp|tcp|udp}]
    [inside-ip ip-address] [inside-router router-instance] [inside-port port-number]
    [outside-ip ip-address] [outside-port port-number] [foreign-ip ip-address] [foreign-port port-number]

  — perform
    — nat

    — port-forwarding-action

      — l2-aware create subscriber sub-ident-string ip ip-address protocol
         {tcp|udp} [port port] lifetime lifetime [outside-ip ip-address] [outside-port port]

      — l2-aware delete subscriber sub-ident-string ip ip-address protocol
         {tcp|udp} port port

      — l2-aware modify subscriber sub-ident-string ip ip-address protocol
         {tcp|udp} port port lifetime lifetime

      — lsn create router router-instance [b4 ipv6-address] [aftr ipv6-address]
         ip ip-address protocol {tcp|udp} [port port] lifetime lifetime [outside-ip ipv4-address] [outside-port port]

      — lsn delete router router-instance [b4 ipv6-address] ip ip-address protocol
         {tcp|udp} port port

      — lsn modify router router-instance [b4 ipv6-address] ip ip-address protocol
         {tcp|udp} port port lifetime lifetime

Filter Commands

configure
  — filter
    — ip-filter filter-id
    — ipv6-filter filter-id
      — entry entry-id
        — action nat [nat-policy-name nat-policy-name]
        — no action
Network Address Translation Configuration Commands

Generic Commands

description

**Syntax**  
description description-string  
no description  

**Context**  
config>service>vprn>nat>outside>pool>address-range  
config>service>vprn>nat>outside>pool  
config>router>nat>outside>pool>address-range  
config>router>nat>outside>pool  
config>router>nat>inside>subscriber-id  
config>service>ipfix>export-policy  
config>aaa>isa-radius-plcy>servers>server

**Description**  
This command creates a text description which is stored in the configuration file to help identify the content of the entity.

The **no** form of the command removes the string from the configuration.

**Default**  
none  

**Parameters**  
*string* — The description character string. Allowed values are any string composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

shutdown

**Syntax**  
[no] shutdown  

**Context**  
config>service>vprn>nat>outside>pool>address-range  
config>service>vprn>nat>outside>pool  
config>router>nat>outside>pool>address-range  
config>router>nat>outside>pool  
config>router>nat>inside>dual-stack-lite  
config>router>nat>inside>nat64  
config>router>nat>inside>redundancy>subscriber-identification  
config>service>vprn>nat>inside>nat64  
config>router>nat>inside>subscriber-id  
config>service>ipfix>export-policy
**Description**

This command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the `no shutdown` command.

The `shutdown` command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.
ISA Configuration Commands

nat-group

Syntax  
nat-group nat-group-id [create]
no nat-group nat-group-id

Context  
config>isa

Description  
This command configures an ISA NAT group.

active-mda-limit

Syntax  
active-mda-limit number
no active-mda-limit

Context  
config>isa>nat-group

Description  
This command configures the number of MDAs in this NAT ISA group that are intended for active use.

Parameters  
number — Specifies the active MDA limit.

mda

Syntax  
[no] mda mda-id

Context  
config>isa>nat-group

Description  
This command configures an ISA NAT group MDA.

Parameters  
mda-id — Specifies the MDA ID in the slot/mda format.

Values  
slot: 1 — 10
mda: 1 — 2

radius-accounting-policy

Syntax  
radius-accounting-policy nat-accounting-policy
no radius-accounting-policy

Context  
config>isa>nat-group

Description  
This command specifies the RADIUS accounting policy to use for each MDA in this ISA group.
The **no** form of the command removes the policy ID from the configuration.

**Default**

`none`

**Parameters**

`nat-accounting-policy` — Reference to the nat-accounting-policy which defines:

- Source IP addresses that will be assigned to BB-ISA cards.
- Parameters related to RADIUS server itself.
- List of RADIUS attributes that will be included in accounting messages.

### session-limits

**Syntax**

`session-limits`

**Context**

`config>isa>nat-group`
`config>service>nat`

**Description**

This command configures the ISA NAT group session limits.

### reserved

**Syntax**

`reserved num-sessions`

`no reserved`

**Context**

`config>isa>nat-group>session-limits`
`config>service>nat`

**Description**

This command configures the number of sessions per block that will be reserved for prioritized sessions.

**Parameters**

`num-sessions` — Specifies the number of sessions reserved for prioritized sessions.

**Values**

`0 — 4194303`

### watermarks

**Syntax**

`watermarks high percentage low percentage`

`no watermarks`

**Context**

`config>isa>nat-group>session-limits`
`config>service>nat`

**Description**

This command configures the ISA NAT group watermarks.

`high percentage` — Specifies the high watermark of the number of sessions for each MDA in this NAT ISA group.

**Values**

`1 — 100`
low percentage — Specifies the low watermark of the number of sessions for each MDA in this NAT ISA group.

Values

0—99
NAT Configuration Commands

nat

Syntax  
[no] nat

Context  
config>service>vprn
config>router

Description  
This command configures, creates or deletes a NAT instance.

deterministic-script

Syntax  
deterministic-script

Context  
config>service>nat

Description  
This command configures the script generated for deterministic NAT.

location

Syntax  
location remote-url
do location

Context  
config>service>nat>>deterministic-script

Description  
This command configures the remote location where the Python script will be exported. The Python script is then used offline to perform reverse query. If this command is configured, the Python script generation is triggered by any modification of the deterministic NAT configuration. The new script reflects the change in mappings caused by configuration change. However, the script must be manually exported to the outside location with the admin nat save-deterministic-nat command. The script cannot be stored locally on the system.

The script allows two forms of queries:

- **Forward** - input is NAT inside parameters, output is NAT outside parameters.
- **Backward** - input is NAT outside parameters, output is NAT inside parameters.

Forward Query:

```
user@external-server:/home/ftp/pub/det-nat-script$./det-nat.py -f -s 10 -a 20.0.5.10
```

output:

```
subscriber has public ip address 85.0.0.1 from service 0 and is using ports [1324 - 1353]
```
Reverse Query:
```
user@external-server:/home/ftp/pub/det-nat-script$./det-nat.py -b -s 0 -a 85.0.0.1 - p 3020
```
output:
```
subscriber has private ip address 20.0.5.66 from service 10
```

### Parameters

**remote-url** — A remote location where the script is stored:
```
[{ftp://|tftp://}<login>:<pswd>@ <remote-locn>/[<file-path>]
```

Maximum length is 180 characters.

---

### inside

**Syntax**
```
inside
```

**Context**
```
config>service>vprn>nat
config>router>nat
```

**Description**
This command enters the “inside” context to configure the inside NAT instance.

### outside

**Syntax**
```
outside
```

**Context**
```
config>service>vprn>nat
config>router>nat
```

**Description**
This command enters the “outside” context to configure the outside NAT instance.

### mtu

**Syntax**
```
mtu [512..9000]
o mtu
```

**Context**
```
config>service>vprn>nat>outside
```

**Description**
This command configures the Maximum Transmission Unit (MTU) for downstream traffic flowing through this router (as outside NAT router). The system fragments IP datagrams exceeding the MTU. The **no** form of the command reverts to the default.

**Default**
```
0
```

**Parameters**
```
[512..9000] — Specifies the MTU for downstream traffic.
```
destination-prefix

**Syntax**  
[no] destination-prefix ip-prefix/length

**Context**  
config>service>vprn>nat>inside  
config>router>nat>inside

**Description**  
This command configures a destination prefix. An (internal) static route will be created for this prefix. All traffic that hits this route will be subject to NAT. The system will not allow a destination-prefix to be configured if the configured nat-policy refers to an IP pool that resides in the same service (as this would result in a routing loop).

**Parameters**  
- **ip-prefix** — Specifies the IP prefix; host bits must be zero (0).
  - **Values**  
    - a.b.c.d
  - **length** — Specifies the prefix length.
  - **Values**  
    - 0 — 32

deterministic

**Syntax**  
deterministic

**Context**  
config>service>vprn>nat>inside

**Description**  
This command enables the context to configure deterministic NAT.

classic-lsn-max-subscriber-limit

**Syntax**  
classic-lsn-max-subscriber-limit max  
no classic-lsn-max-subscriber-limit

**Context**  
config>service>vprn>nat>inside>deterministic  
configure>router>nat>inside>deterministic

**Description**  
This command affects ingress hashing of the subscribers for deterministic NAT. It will also affect hashing of the subscribers for non-deterministic NAT if both types of NAT are configured simultaneously. The hashing will ensure that traffic load is distributed over multiple MS-ISAs in the system. For deterministic LSN44, \((32 - n)\) bits of the source IP address will be considered for hashing, where \(2^n = \text{classic-lsn-max-subscriber-limit}\).

The scope of this command is the inside routing instance. This command must match the largest subscriber limit of all pools that are referenced by nat-policies configured within the corresponding inside routing instance.

This parameter must be configured before any prefix is configured and can be modified only if there are no prefixes configured under the deterministic NAT CLI hierarchy.

If non-deterministic NAT is not used simultaneously with deterministic NAT within a routing context, then hashing for non-deterministic NAT will be performed based on the subscriber.
### dslite-max-subscriber-limit

**Syntax**

```
dslite-max-subscriber-limit max
no dslite-max-subscriber-limit
```

**Context**

```
config>service>vprn>nat>inside>.dslite
configure>router>nat>inside>.dslite
```

**Description**

This command sets the value for the number of high order bits of the source IPv6 address that will be considered as DS-Lite subscriber. The remaining bits of the source IPv6 address will be masked off, effectively aggregation all IPv6 source addresses under the configured prefix length into a single DS-Lite subscriber. Source IPv4 addresses/ports of the traffic carried within the DS-Lite subscriber will be translated into a single outside IPv4 address and the corresponding deterministic port-block (port-blocks can be extended).

The range of values for subscriber-prefix-length in non-deterministic DS-Lite is limited from 32 to 64 (a prefix will be considered as a DS-Lite subscriber) or it can be set to a value of 128 (the source IPv6 address is considered as a DS-Lite subscriber).

In cases where deterministic DS-Lite is enabled in a giver inside routing context, the range of values of the subscriber-prefix-length depends on the value of dslite-max-subscriber-limit parameter as follows:

\[
\text{subscriber-prefix-length} - n = [32..64,128]
\]

where \( n = \log_2(\text{dslite-max-subscriber-limit}) \)

[or in an alternate form: \( \text{dslite-max-subscriber-limit} = 2^n \).]

In other words the largest prefix length for the deterministic DS-lite subscriber will be \( 32+n \), where \( n = \log_2(\text{dslite-max-subscriber-limit}) \). The subscriber prefix length can extend up to 64 bits. Beyond 64 bits for the subscriber prefix length, there only one value is allowed: 128. In the case \( n \) must be 0, which means that the mapping between B4 elements (or IPv6 address) and the IPv4 outside addresses is in 1:1 ratio (no sharing of outside IPv4 addresses).

This parameter can be changed only when there are no deterministic prefixes configured in the same routing context.

**Default**

128

**Parameters**

\( max \) — In non-deterministic DS-Lite this value can be 32 — 64,128 , assuming that the deterministic DS-Lite is not concurrently enabled in the same inside routing context.

In case that deterministic DS-Lite is enabled, this value can be within the range \([32+n)..<64,128] \) where \( n = \log_2(\text{dslite-max-subscriber-limit}) \). The value of 128 is allowed only when \( n=0 \) (each subscriber is mapped to a single outside IPv4 IP address).
prefix

**Syntax**

- `prefix ip-prefix/length subscriber-type nat-sub-type nat-policy-name [create]`
- `prefix p-prefix/length subscriber-type nat-sub-type`
- `no prefix ip-prefix/length subscriber-type nat-sub-type`

**Context**

- `config>service>vprn>nat>inside>deterministic`
- `configure>router>nat>inside>deterministic`

**Description**

This command is applicable only to deterministic NAT (LSN44 or DS-Lite). It configures prefixes on the inside and their association with outside deterministic pools via the nat-policy. Subscribers within the prefix will be deterministically mapped to outside IP addresses and corresponding port-ranges in the associated pool.

Multiple prefixes within an inside routing instance can be defined and they can reference different nat-policies (and therefore outside pools and routing instances). Moreover, prefixes from multiple routing instances can share the same deterministic pool.

Non-deterministic NAT can be used simultaneously with deterministic NAT within the same inside routing instance. However, they cannot share the same pool.

Prefixes can be added/removed under the condition that the associated deterministic pool is in a ‘no shutdown’ mode.

Removing a prefix or modifying the map statement under it requires that the prefix be in a ‘shutdown’ mode.

The subscribers under the prefix are mapped deterministically into the outside IPv4 addresses and port ranges. Note that the subscribers in LSN44 are the IPv4 addresses under the configured prefix, while in DS-Lite the subscribers are IPv6 source addresses that fall under the configured prefix OR IPv6 sub-prefixes whose length is determined by the DS-Lite subscriber-prefix-length command.

Prefixes can be added/removed under the condition that the associated deterministic pool is in a ‘no shutdown’ mode.

Removing a prefix or modifying the map statement under it requires that the prefix be in a ‘shutdown’ mode.

The subscribers under the prefix are mapped deterministically into the outside IPv4 addresses and port ranges. Note that the subscribers in LSN44 are the IPv4 addresses under the configured prefix, while in DS-Lite the subscribers are IPv6 source addresses that fall under the configured prefix OR IPv6 sub-prefixes whose length is determined by the DS-Lite subscriber-prefix-length command.

**Default**

- `no prefix`

**Parameters**

- `ip-prefix/length` — A prefix on the inside encompassing subscribers that will be deterministically mapped to an outside IP address and port block in the corresponding pool.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;ip-prefix/ip-prefix*&gt;</code></td>
<td><code>&lt;ipv4-prefix&gt;/ipv4-prefix-length</code></td>
</tr>
<tr>
<td><code>&lt;ipv4-prefix&gt;</code></td>
<td>a.b.c.d (host bits must be 0)</td>
</tr>
<tr>
<td><code>&lt;ipv4-prefix-length&gt;</code></td>
<td><code>[0..32]</code></td>
</tr>
<tr>
<td><code>&lt;ipv6-prefix&gt;</code></td>
<td>x:x:x:x:x:x:x (eight 16-bit pieces)</td>
</tr>
<tr>
<td></td>
<td>x:x:x:x:d.d.d.d</td>
</tr>
<tr>
<td></td>
<td>x: [0..FF]H</td>
</tr>
<tr>
<td></td>
<td>d: [0..255]D</td>
</tr>
<tr>
<td><code>&lt;ipv6-prefix-length&gt;</code></td>
<td><code>[0..128]</code></td>
</tr>
<tr>
<td><code>&lt;nat-sub-type&gt;</code></td>
<td>`classic-lsn-sub</td>
</tr>
<tr>
<td><code>&lt;nat-policy-name&gt;</code></td>
<td>Reference to a nat-policy that points to an outside pool and outside routing instance up to 32 characters in length.</td>
</tr>
</tbody>
</table>
map

Syntax

```
map start inside-ip-address end inside-ip-address to outside-ip-address
no map start inside-ip-address end inside-ip-address
```

Context

```
config>service>vprn>nat>inside>deterministic
configure>router>nat>inside>deterministic>prefix
```

Description

This command is applicable to prefixes in deterministic NAT (LSN44 and DS-Lite). Its purpose is to split the number of subscribers within the configured prefix over available sequence of outside IP addresses.

There are several rules guiding the usage of the map statement:

- If the number of subscribers\(^1\) per configured prefix is greater than the subscriber-limit per outside IP parameter \(2^n\), then the lowest \(n\) bits of the map start <inside-addr-start> must be set to 0.

- If the number of subscribers per configured prefix is equal or less than the subscriber-limit per outside IP parameter \(2^n\), then only one map command for this prefix is allowed. In this case there is no restriction on the lower \(n\) bits of the map start <inside-ip-address>. The range of the inside IP addresses in such map statement represents the prefix itself.

- <outside-ip-address> in the map statements must be unique amongst all map statements referencing the same pool. In other words, two map statements cannot reference the same <outside-ip-address> in a pool.

To modify map statements, the corresponding prefix must be in a shutdown mode.

Map statements can be configured automatically by the system, as soon as the prefix is enabled (no shutdown state) or they can be configured manually by the operator while the prefix is disabled.

The following is an example of the map statement for the LSN44 case:

- The subscriber-limit in the pool is 128
- The pool has an address range 128.251.0.1 - 128.251.0.10
- The prefix is 10.0.0.0/24
- The map statement is configured as:

```
map start 10.0.0.0 end 10.0.0.255 to 128.251.0.1
```

Since each outside IP address can accommodate only 128 hosts, the subscribers (IPv4 addresses in LSN44) from the 10.0.0.0/24 prefix will be split and mapped into two outside IP addresses

\[
10.0.0.0 \rightarrow 10.0.0.127 (10.0.0.0/25) - 128.251.0.1
10.0.0.128 \rightarrow 10.0.0.255 (10.0.0.128/25) - 128.251.0.2
\]

The first IP address range will be mapped to the ‘to’ address in the map statement \(\Rightarrow\) 128.251.0.1. The second IP address range will be mapped into the next consecutive IP address in the pool

---

\(^1\)Subscriber in LSN44 is equals to an inside IPv4 address, while in DS-Lite, the subscriber can be an IPv6 address or IPv6 prefix. If the subscriber-prefix-length command is set to 128, then the subscriber in DS-Lite is an IPv6 address. Otherwise it will be an IPv6 prefix with length in the range \([32..64]\) as set by the subscriber-prefix-length command.
assuming that this IP address is free. In this case this consecutive address (128.251.0.2) would not be shown in the map statement.

For Deterministic DS-Lite, the example would be:

- The subscriber-limit in the pool is 128
- The pool has an address range 128.251.0.1 - 128.251.0.10
- The prefix is 2001:DB8::/56
- The subscriber-prefix-length = 64
- The map statement is configured as:

  map start 2001:BD8::/64 end 2001:BD8::FF:0:0:0:0/64 to 128.251.0.1

There are 256 DS-Lite subscribers within the 2001:DB8::/56 prefix. Each subscriber will be a /64 IPv6 prefix as dictated by the subscriber-prefix-length command.

Since each outside IP address can accommodate only 128 hosts, the subscribers from the 2001:DB8::/56 prefix will be split and mapped into two outside IP addresses

  2001:DB8:: – 2001:DB8:0:7F:: (2001:DB8::/57) - 128.251.0.1
  2001:DB8:0:80:: – 2001:DB8:0:FF::(2001:DB8:0:FF::/57) - 128.251.0.2

The first IP prefix range will be mapped to the ‘to’ address in the map statement => 128.251.0.1. The second IP prefix range will be mapped into the next consecutive IP address in the pool assuming that this IP address is free. In this case this consecutive address (128.251.0,2) would not be shown in the map statement.

_default_

By default, the system will automatically divide the prefix and create the map statements when the prefix command is enabled (no shutdown). However, this automatic map provisioning can be overruled by manual configuration.

Parameters

- **inside-ip-start** — Start IPv4/v6 address or IPv6 prefix on the inside.
- **inside-ip-end** — End IPv4/v6 address or IPv6 prefix on the inside. The number of subscribers (range of inside IPv4 addresses in LSN44 or IPv6 addresses or prefixes in DS-Lite) in the map statement does not have to be a power of 2. Rather it has to be a multiple of a power of two \( m \times 2^n \), where \( m \) is the number of consecutive outside IP addresses to which the subscribers are mapped and the \( 2^n \) is the subscriber-limit per outside IP.
- **outside-ip-start** — The first outside IPv4 address in the pool to which the subscribers are mapped. In case that the number of subscribers in the map statement is larger than the subscriber-limit for the outside-ip address, the consecutive outside IPv6 addresses will be used for additional mappings. Those additional (consecutive) outside IP addresses are not shown in the map statement (only the first address is shown in the map statement).

dual-stack-lite

Syntax  dual-stack-lite

Context  config>service>vprn>nat>inside
        config>router>nat>inside
**address**

**Syntax**  

```
[no] address ipv6-address
```

**Context**  

```
config>router>nat>inside>dual-stack-lite
config>service>vprn>nat>inside>dual-stack-lite
```

**Description**  

This command configures the IP address of the NAT redundancy peer in the realm of this virtual router instance.

**subscriber-prefix-length**

**Syntax**  

```
subscriber-prefix-length prefix-length
no subscriber-prefix-length
```

**Context**  

```
config>router>nat>inside>dual-stack-lite
```

**Description**  

This command sets the value for the number of high order bits of the source IPv6 address that will be considered as DS-Lite subscriber. The remaining bits of the source IPv6 address will be masked off, effectively aggregation all IPv6 source addresses under the configured prefix length into a single DS-Lite subscriber. Source IPv4 addresses/ports of the traffic carried within the DS-Lite subscriber will be translated into a single outside IPv4 address and the corresponding deterministic port-block (port-blocks can be extended).

The range of values for subscriber-prefix-length in non-deterministic DS-Lite is limited from 32 to 64 (a prefix will be considered as a DS-Lite subscriber) or it can be set to a value of 128 (the source IPv6 address is considered as a DS-Lite subscriber).

In cases where deterministic DS-Lite is enabled in a giver inside routing context, the range of values of the subscriber-prefix-length depends on the value of dslite-max-subscriber-limit parameter as follows:

\[
\text{subscriber-prefix-length} - n = [32..64,128]
\]

\[
\text{where } n = \log_2(\text{dslite-max-subscriber-limit})
\]

[or in an alternate form: dslite-max-subscriber-limit = 2^\text{n}]

In other words the largest prefix length for the deterministic DS-lite subscriber will be 32+n, where n = log2(dslite-max-subscriber-limit). The subscriber prefix length can extend up to 64 bits. Beyond 64 bits for the subscriber prefix length, there only one value is allowed: 128. In the case n must be 0, which means that the mapping between B4 elements (or IPv6 address) and the IPv4 outside addresses is in 1:1 ratio (no sharing of outside IPv4 addresses).

This parameter can be changed only when there are no deterministic prefixes configured in the same routing context.
The no form of the command reverts to the default.

**Default**

128

**Parameters**

`prefix-length` — In non-deterministic DS-Lite this value can be [32..64,128], assuming that the deterministic DS-Lite is not concurrently enabled in the same inside routing context. In case that deterministic DS-Lite is enabled, this value can be within the range [(32+n)..64,128] where n = log2(dslite-max-subscriber-limit). The value of 128 is allowed only when n=0 (each subscriber is mapped to a single outside IPv4 IP address).

**Values**

32 — 64

### ip-fragmentation

**Syntax**

```
ip-fragmentation {disabled|fragment-ipv6|fragment-ipv6-unless-ipv4-df-set}
no ip-fragmentation
```

**Context**

```
configure>router>nat>inside>dslite>address
configure>router>nat>inside>nat64
configure>service>vprn>nat>inside>nat64
configure>service>vprn>nat>inside>dslite>address
```

**Description**

This command configures downstream IPv6 fragmentation behavior in DS-lite and NAT64. IPv6 fragmentation is performed in the ISA. IPv4 fragmentation is not affected by this command. If desired, downstream IPv4 packet can be fragmented in the carrier IOM before the packet reaches ISA (and the NAT function). The IPv4 fragmentation in the downstream direction can be set by the `configure>router/vprn>nat>outside>mtu` command.

**DS-Lite IPv6 Fragmentation in Downstream Direction (IPv4 to IPv6)**

In case that the length of the received IPv4 packet is larger than the configured tunnel-mtu value while fragmentation is allowed, the resulting IPv6 packet will be fragmented (IPv4 is tunneled within IPv6). The maximum size of the of the fragmented IPv6 packet will be 48bytes larger than the configured tunnel-mtu value. This is due to the size of the tunneling IPv6 header: 40bytes basic IPv6 header + 8 bytes of extended fragmentation IPv6 header.

In case that fragmentation is not allowed while the IPv4 packet size is larger than configured tunnel-mtu size, the IPv4 packet will be dropped and an ICMPv4 Datagram Too Big message will be generated towards the source. The advertised mtu size in that ICMP message will be set to configured tunnel-mtu value.

**NAT64 IPv6 Fragmentation in Downstream Direction (IPv4 to IPv6)**

In contrast to DS-lite, NAT64 transport is not based on tunneling. Instead, IP headers are translated between IPv4 and IPv6. Consequently, NAT64 fragmentation operates based on the ipv6-mtu, as opposed to tunnel-mtu in DS-lite which represents the size of the tunnel payload (IPv4 packet).

In case that the length of the translated IPv6 packet exceeds the size of the configured ipv6-mtu value while fragmentation is allowed, the resulting IPv6 packet will be fragmented. The maximum size of the of the fragmented IPv6 packet will be the configured ipv6-mtu value.

In case that fragmentation is not allowed while the translated IPv6 packet size is larger than configured ipv6-mtu size, the IPv4 packet (that is supposed to be translated into IPv6) will be dropped and an ICMPv4 Datagram Too Big message will be generated towards the source. The...
advertised mtu size in that ICMP message will be set to the ipv6-mtu value minus 28 bytes. The 28 bytes comes from the size of the IPv6 overhead of the translated packet (20 bytes difference between the IP header sizes ? 40 bytes in IPv6 vs 20 bytes in IPv4; 8 bytes for extended IPv6 fragmentation header).

**Default**

disabled

**Parameters**

- **disabled** — IPv6 Fragmentation is disabled. In case that the packet size is larger than what is set by the mtu value (tunnel-mtu or ipv6-mtu), the IPv4 packet will be dropped and ICMPv4 Datagram Too Big messages will be sent back to the source.

- **fragment-ipv6** — IPv6 fragmentation will be performed in all cases, regardless of the DF bit setting in the tunneled/translated IPv4 packet.

- **fragment-ipv6-unless-ipv4-df-set** — IPv6 Fragmentation will be performed only in cases when DF bit in tunneled/translated IPv4 packet is cleared.

### tunnel-mtu

**Syntax**

```
tunnel-mtu mtu-bytes
no tunnel-mtu
```

**Context**

```
config>router>nat>inside>dual-stack-lite>address
config>service>vprn>nat>inside>dual-stack-lite
```

**Description**

This command sets the size of the payload in IPv6 packet in downstream DS-lite direction. The payload is, in essence, the tunneled IPv4 packet.

### l2-aware

**Syntax**

```
l2-aware
```

**Context**

```
config>router>nat>inside
```

**Description**

This command enters the “l2-aware” context for configuration specific to Layer 2-aware NAT.

### address

**Syntax**

```
[no] address ip-address/mask
```

**Context**

```
config>router>nat>inside
```

**Description**

This command configures the IP address and mask of the subnet. The **no** form of the command removes the IP address and prefix length from the configuration.

**Default**

none

**Parameters**

- **ip-address/mask** — Specifies the IP address and mask of the subnet.
Network Address Translation Configuration Commands

Values

- ip-address: `a.b.c.d`
- mask: `16 — 32`

nat64

Syntax  [no] nat64
Context  config>service>vprn>inside
Description  This command enables the context to configure NAT64. The **no** form of the command disables NAT64.

drop-zero-ipv4-checksum

Syntax  [no] drop-zero-ipv4-checksum
Context  config>service>vprn>inside>nat64
Description  This command specifies if UDP datagrams with zero IPv4 checksum are dropped. If this command is disabled, the system calculates the IPv6 checksum for each such datagram.

goto-tos

Syntax  [no] ignore-tos
Context  config>service>vprn>inside>nat64
Description  This command specifies if the IPv4 Type Of Service (TOS) is ignored and the IPv6 traffic class bits set to zero. If this command is disabled, the system copies the IPv4 TOS into the IPv6 traffic class.

Default  disabled

insert-ipv6-fragment-header

Syntax  [no] insert-ipv6-fragment-header
Context  config>service>vprn>inside>nat64
Description  This command specifies if the system always inserts an IPv6 fragment header, to indicate that the sender allows fragmentation. The **no** form of the command does not allow the system to insert an IPv6 fragment header.

Default  disabled
l2-aware

Syntax  l2-aware
Context  config>services>vprn>nat>inside
Description  This command enters the “l2-aware” context for configuration specific to Layer 2-aware NAT.

address

Syntax  [no] address ip-address/mask
Context  config>services>vprn>nat>inside>l2-aware
Description  This command configures a Layer 2-aware NAT address. This address will act as a local address of the system. Hosts connected to the inside service will be able to ARP for this address. To verify connectivity, a host can also ping the address. This address is typically used as next hop of the default route of a Layer 2-aware host. The given mask defines a Layer 2-aware subnet. The (inside) IP address used by an Layer 2-aware host must match one of the subnets defined here or it will be rejected.

Parameters  
- ip-address — Specifies the IP address in a.b.c.d format.
- mask — Specifies the mask.

Values  16 — 32

nat-policy

Syntax  nat-policy nat-policy-name
no nat-policy
Context  config>services>vprn>nat>inside
config>router>nat>inside
Description  This command configures the NAT policy that will be used for large-scale NAT in this service. The no form of the command removes the policy name from the configuration.

Parameters  
- nat-policy-name — Specifies the NAT policy name.

Values  32 chars max

nat64

Syntax  [no] nat64
Context  config>service>vprn>nat>inside
config>router>nat>inside
**Network Address Translation Configuration Commands**

**drop-zero-ipv4-checksum**

**Syntax**

```
[no] drop-zero-ipv4-checksum
```

**Context**

```config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64```

Description

This command enables the NAT64 node to drop received UDP datagrams with zero IPv4 checksum. By default, checksum is re-calculated for non-fragmented datagrams. The **no** form of the command disables the command.

Default

disabled

ignore-tos

Syntax

```
[no] ignore-tos
```

Context

```config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64```

**Description**

This command specifies whether the IPv4 Type Of Service (TOS) is ignored and the IPv6 traffic class bits set to zero. When disabled, the system copies the IPv4 TOS into the IPv6 traffic class. The **no** form of the command recognizes the IPv4 Type Of Service (TOS).

**Default**

disabled

**insert-ipv6-fragment-header**

**Syntax**

```
[no] insert-ipv6-fragment-header
```

**Context**

```config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64```

Description

This command specifies whether the NAT64 node will insert IPv6 fragment header to IPv6 packets for which the DF bit is not set in the corresponding IPv4 packet, and is not already a fragment. The **no** form of the command disables the insertion.

Default

disabled

ipv6-mtu
ipv6-mtu

Syntax

```
ipv6-mtu [1280..9212]
no ipv6-mtu
```

Context

```
config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64
```

Description

This command sets the size of the IPv6 downstream packet in NAT64. This packet is translated from IPv4.

The **no** form of the command reverts to the default.

Default

11520

Parameters

- `[1280..9212]` — Specifies the IPv6 MTU.

 Values

 1280 — 9212

prefix

Syntax

```
prefix ipv6-prefix/prefix-length
no prefix
```

Context

```
config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64
```

Description

This command configures the IPv6 prefix used to derive the IPv6 address from the IPv4 address, and is same as the prefix used by DNS64 to generate AAAA record returned for IPv4 endpoint resolution. NAT64 node announces this prefix in routing to attract traffic from IPv6 hosts. If the prefix is not configured, then a well known prefix, 64:FF9B::/96, is used.

The **no** form of the command removes the prefix from the NAT64 configuration.

Parameters

- `ipv6-prefix/prefix-length` — Specifies the NAT64 destination prefix.

 Values

<table>
<thead>
<tr>
<th>ipv6-prefix</th>
<th>prefix-length</th>
</tr>
</thead>
<tbody>
<tr>
<td>x:x:x:x:x:x</td>
<td>32, 40, 48, 56, 64, 96</td>
</tr>
<tr>
<td>x:x:x:x:d.d.d</td>
<td></td>
</tr>
<tr>
<td>d - [0..255]D</td>
<td></td>
</tr>
</tbody>
</table>

set-tos

Syntax

```
set-tos [0..255]
no set-tos
```

Context

```
config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64
```

Description

This command specifies the value of the IPv4 Type Of Service (TOS) field. When enabled, the NAT64 node ignores IPv6 traffic-class and sets IPv4 TOS to supplied tos-value in the translated IPv4 packet.
The **no** form of the command reverts to the default.

Default

0

Parameters

\[0..255\] — Sets the IPv4 TOS to a fixed value the IPv6 Traffic Class and set the IPv4 TOS to a fixed value and ignores the IPv6 traffic class.

subscriber-prefix-length

Syntax

```
subscriber-prefix-length prefix-length
```

no subscriber-prefix-length

Context

```
config>service>vprn>nat>inside>nat64
config>router>nat>inside>nat64
```

Description

This command specifies the IPv6 address prefix length to be used for the NAT64 subscribers in this virtual router instance.

The **no** form of the command

Default

128

Parameters

`prefix-length` — Specifies the subscriber identification for Large Scale NAT.

Values

32 — 64

redundancy

Syntax

```
redundancy
```

Context

```
config>router>nat>inside
config>service>vprn>nat>inside
```

Description

This command enables the context to configure redundancy parameters.

peer

Syntax

```
peer ip-address
```

no peer

Context

```
config>router>nat>inside>redundancy
config>service>vprn>nat>inside>redundancy
```

Description

This command configures the IP address of the NAT redundancy peer in the realm of this virtual router instance.

While the import prefix of the outside NAT router instance associated with this virtual router instance is present, this system redirects the traffic received for the NAT function in this virtual router instance to the NAT peer.
NAT Commands

steering-route

Syntax

steering-route ip-prefix/length
no steering-route

Context

config>router>nat>inside>redundancy
config>service>vprn>nat>inside>redundancy

Description

This command configures the IP address of the steering route.

The steering route is used in the realm of this virtual router instance as an indirect next-hop for all the traffic that must be routed to the Large Scale NAT function.

The **no** form of the command removes the ip-prefix/length from the configuration.

Parameters

- **ip-prefix/length** — Specifies the IP address and length of the steering route.

 Values

 - ip-prefix: a.b.c.d
 - ip-prefix-length: 0 — 32

subscriber-identification

Syntax

subscriber-identification

Context

config>router>nat>inside

Description

This command enables the context to configure subscriber identification for Large Scale NAT.

attribute

Syntax

attribute [vendor vendor-id] attribute-type attribute-type
no attribute

Context

config>router>nat>inside>subscriber-id
config>service>vprn>nat>inside>subscriber-identification

Description

This command defines the attribute that will in addition to framed-ip-address (inside IP address) and service-id be used for correlating BNG subscriber with the NAT subscriber.

Only a single attribute at the time can be configured. The attribute will be extracted from the BNG accounting start and/or interim-update messages via Radius accounting proxy server. This attribute can be then optionally passed to the Large Scale NAT44 accounting server. User-name attribute (if included) in Large Scale NAT44 accounting messages will be automatically set to the subscriber-id string.
The attribute parameter can be changed at any given time and the change will be reflected automatically when the next interim-update message from the BNG host is received by Radius accounting proxy.

In case that the BNG accounting message in RADIUS accounting proxy does not contain this attribute, subscriber aware Large Scale NAT44 functionality for this particular subscriber will be disabled.

Default

attribute vendor "alu" attribute-type "alc-sub-string"

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vendor</td>
<td>vendor-id — specifies the RADIUS vendor ID.</td>
</tr>
<tr>
<td>Values</td>
<td>standard, alu, 3gpp</td>
</tr>
<tr>
<td>Default</td>
<td>alu</td>
</tr>
</tbody>
</table>

attribute-type — Specifies the RADIUS attribute to be used as subscriber identifier

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alc-sub-string (alu)</td>
<td>Subscriber-id string (Alc-Subsc-ID-Str) is cached in Large Scale NAT44 application and used to correlate Large Scale NAT44 subscriber to BNG subscriber.</td>
</tr>
<tr>
<td>user-name (stnd)</td>
<td>User-Name standard Radius attribute is cached in Large Scale NAT44 application and is used to correlate Large Scale NAT44 subscriber to BNG subscriber.</td>
</tr>
<tr>
<td>class (stnd)</td>
<td>Class standard Radius attribute is cached in Large Scale NAT44 application and is used to correlate Large Scale NAT44 subscriber to BNG subscriber. Class attribute is initially set and send by Radius server. As such it must be echoed by BNG in all accounting messages.</td>
</tr>
<tr>
<td>station-id (stnd)</td>
<td>Calling-Station-Id Radius attribute is cached in Large Scale NAT44 application and is used to correlate Large Scale NAT44 subscriber to BNG subscriber.</td>
</tr>
<tr>
<td>imsi (3gpp)</td>
<td>International Mobile Subscriber Identification is used in WiFi Offload applications as a SIM card identifier.</td>
</tr>
<tr>
<td>imei (3gpp)</td>
<td>International Mobile Equipment Identification is used in WiFi Offload applications as a physical phone device identifier.</td>
</tr>
</tbody>
</table>

drop-unidentified-traffic

Syntax

[no] drop-unidentified-traffic

Context

config>router>nat>inside>subscriber-id

Description

When this command denies address translation to subscribers that have not been identified via accounting messages sent by BNG and received by Radius accounting proxy. This command has effect only in Subscriber Aware Application.

Default

no drop-unidentified-traffic

radius-proxy-server
Syntax

```
radius-proxy-server router router-instance name server-name
no radius-proxy-server
```

Context

- `config>router>nat>inside>subscriber-id`
- `configure>service>vprn>nat>inside>subscriber-identification`

Description

This command configures RADIUS proxy server parameters. This is a reference to a RADIUS accounting proxy server in Subscriber Aware Large Scale NAT44 application. RADIUS accounting proxy server will cache attributes related to a BNG subscriber as they are received in standard accounting messages (RFC 2866). Radius accounting proxy server can be configured in any routing instance within 7750 SR.

Default

none

Parameters

- `router router-instance` — Specifies the routing instance in which the RADIUS accounting proxy is configured.
- `name server-name` — Specifies the name reference to the RADIUS accounting proxy server that is instantiated in 7750 SR.

mtu

Syntax

```
mtu [512..9000]
no mtu
```

Context

`config>router>nat>outside`

Description

This command configures the MTU for downstream traffic flowing through this router (as outside NAT router). The system fragments IP datagrams exceeding the MTU.

Default

none

Parameters

- `[512..9000]` — Specifies the MTU for downstream traffic.

pool

Syntax

```
pool nat-pool-name [nat-group nat-group-id type pool-type create]
no pool nat-pool-name
```

Context

- `config>service>vprn>nat>outside`
- `config>router>nat>outside`

Description

This command configures a NAT pool.

Parameters

- `nat-pool-name` — Specifies the NAT pool name.
 - **Values**: 32 chars max
- `nat-group-id` — Specifies the NAT group ID.
 - **Values**: 1 — 4
create — This parameter must be specified to create the instance.

pool-type — Species the pool type, either large-scale or L2-aware.

address-range

Syntax
address-range start-ip-address end-ip-address [create]
no address-range start-ip-address end-ip-address

Context
config>service>vprn>nat>outside>pool
config>router>nat>outside>pool

Description
This command configures a NAT address range.

Parameters
start-ip-address — Specifies the beginning IP address in a.b.c.d form.

end-ip-address — Specifies the ending IP address in a.b.c.d. form.

create — This parameter must be specified to create the instance.

drain

Syntax
[no] drain

Context
config>service>vprn>nat>outside>pool>address-range
config>router>nat>outside>pool>address-range

Description
This command starts or stops draining this NAT address range. When an address-range is being drained, it will not be used to serve new hosts. Existing hosts, however, will still be able to use the address that was assigned to them even if it is being drained. An address-range can only be deleted if the parent pool is shut down or if the range itself is effectively drained (no hosts are using the addresses anymore).

mode

Syntax
mode {auto | napt | one-to-one}
no mode

Context
config>router>nat>outside>pool

Description
This command specifies the mode of operation of this NAT address pool. The no form of the command reverts to the default.

Default
auto

Parameters
{auto | napt | one-to-one} — Specifies the mode of operation of this NAT pool.
port-forwarding-range

Syntax
```
port-forwarding-range range-end
no port-forwarding-range
```

Context
```
config>router>nat>outside>pool>address-range
```

Description
This command configures the end of the port range available for port forwarding. The start of the range is always equal to one. Note that the number of ports that can be configured is half of the available block => 64512 : 2 = 32256

In combination with port-forwarding-range the formulas are:

```
"max port-reservation blocks" = 65535 - "port-forwarding-range"
"max port-reservation ports" = (65535 - "port-forwarding-range") / 2
```

with:

the default min value for "port-forwarding-range" = 1023

Also, the same applies for max port-forwarding-range if the port-reservation is already configured:

```
"max port-forwarding-range" = 65535 - "port-reservation blocks"
"max port-forwarding-range" = 65535 - ("port-reservation ports" * 2)
```

The no form of the command reverts to the default.

Default
1023

Parameters
- **range-end** — Specifies the end of the port range available for port forwarding.

Values
1023 — 65535

deterministic

Syntax
```
deterministic
```

Context
```
config>service>vprn>nat>outside>pool
```

Description
This command configures deterministic NAT for this pool

port-reservation

Syntax
```
port-reservation num-ports
no port-reservation
```

Context
```
config>service>vprn>nat>outside>pool>deterministic
```

Description
This command is applicable only to deterministic NAT. It configures the number of deterministic ports per subscriber (for example a subscriber is an inside IP address in LSN44 or IPv6 address or prefix in DS-lite). Once this command is enabled, the pool will transition into deterministic mode of
operation. This means that the subscribers can use dynamic port-blocks in the pool only as a mean to expand the range of originally assigned deterministic ports. A pool with such property is referred to as deterministic pool. However, deterministic NAT and non-deterministic NAT cannot use the same pool simultaneously.

All subscribers in deterministic pool are pre-mapped during the configuration phase to outside IP addresses and deterministic port-blocks. Because of this, the deterministic pool cannot be oversubscribed with subscribers (first-come, first-served).

Once the deterministic pool becomes operational (no shutdown) a log is created. The same applies if the pool is disabled (shutdown). As a result of this 'one time' logging, there will be no additional logging when a subscriber starts using ports from the pre-assigned deterministic port block. This drastically reduces the logging overhead. However, when a deterministic port block is expanded by a dynamic port block, a log will be created on any allocation/de-allocation of the dynamic port block. The logs are also created for static port forwards (including PCP).

The number of subscribers per outside IP address (subscriber-limit) multiplied by the number of deterministic ports per subscriber (port-reservation) will determine the port range of an outside IP address that will be dedicated to deterministic mappings. The number of subscribers per outside IP address in deterministic NAT must be power of 2 (2^ⁿ). Once the deterministic ports are allocated, the dynamic ports are carved out of the remaining port space of the same outside IP address according to the existing port-reservation command under the same hierarchy.

Parameters

- **num-ports** — Specifies the number of ports in a deterministic port block that is allocated and dedicated to a single subscribers during the configuration phase.

 Values
 1 — 65535

port-reservation

Syntax

```
port-reservation blocks num-blocks
port-reservation ports num-ports
no port-reservation
```

Context

```
config>service>vprn>nat>outside>pool
config>router>nat>outside>pool
```

Description

This command configures the size of the port-block that will be assigned to a host that is served by this pool. The number of ports configured here will be available to UDP, TCP and ICMP (as identifiers).

Parameters

- **blocks num-blocks** — Specifies the number of port-blocks per IP address. Setting num-blocks to one (1) for large scale NAT will enable 1:1 NAT for IP addresses in this pool.

 Values
 1 — 65535

- **ports num-ports** — Specifies the number of ports per block.

 Values
 1 — 32256

mode
Syntax

```
mode {auto|napt|one-to-one}
no mode
```

Context
```
config>service>vprn>nat>outside>pool
```

Description
This command configures the mode of operation of this NAT pool.

Parameters

- `napt` — Specifies NAPT (Network Address Port Translation)
- `auto` — The system selects the actual mode based upon other configuration parameters; the actual mode can be NAPT or 1:1 NAT (also known as 'Basic NAT').
- `oneToOne` — Indicates 1:1 NAT (also known as 'Basic NAT')

port-forwarding-dyn-block-reservation

Syntax
```
[no] port-forwarding-dyn-block-reservation
```

Context
```
configure>service>vprn>nat>outside>pool
configure>service>router>nat>outside>pool
```

Description
This command will enable the reservation of the dynamic port blocks when the first port forward for the subscriber is created. The dynamic port block allocation is logged only if the block is being utilized (mapping are created). In other words, dynamic port block reservation due to the port forward creation but without any dynamic mapping, will not be logged.

The reserved port block will be released only when the last mapping in the block expires AND there is not port forward associated with the subscriber. The de-allocation log (syslog or Radius) will be generated when the dynamic port block is completely released.

Dynamic port block reservation can be enabled only if the configured maximum number of subscriber per outside IP address is less or equal then the maximum number of configured port blocks per outside IP address.

Default
```
port-forwarding-dyn-block-reservation
```

port-forwarding-range

Syntax
```
port-forwarding-range range-end
no port-forwarding-range
```

Context
```
config>service>vprn>nat>outside>pool
```

Description
This command specifies the end of the port range available for port forwarding. The start of the range is always equal to one.

Parameters

- `range-end` — Specifies the port forwarding range end.

Values
```
1023 — 65535
```
redundancy

Syntax redundancy

Context config>router>nat>outside>pool

Description This command enables the context to configure NAT pool redundancy parameters.

export

Syntax export ip-prefix/length
 no export

Context config>router>nat>outside>pool>redundancy

Description This command configures the route to export to the peer. While the export prefix is configured and the value of the object tmnxNatPLsnRedActive is equal to true, the system exports this prefix in the realm of the virtual router instance associated with this pool; to the NAT redundancy peer, the presence of this prefix is an indication that the Large Scale NAT function in this virtual router instance is active; hence, the export prefix of this system is the monitor prefix of the peer.

The export prefix must be different from the monitor prefix.

Parameters

| ip-prefix/length — Specifies the IP address and length of the prefix to be exported. |
| Values |
| ip-prefix: a.b.c.d |
| ip-prefix-length: 0 — 32 |

follow

Syntax follow router router-instance pool name
 no follow

Context configure>service>vprn>nat>outside>pool>redundancy
 configure>router>nat>outside>pool>redundancy

Description This command implicitly enables Pool Fate-Sharing Group (PFSG) which is required in case of multiple NAT policies per inside routing context. A NAT pool configured with this command will not advertize or monitor any route in order to change its (activity) state but instead it will directly follow the state of the lead pool in the PFSG. Once the lead pool changes its (activity) state, all the remaining pools following the lead pool will change their state accordingly.

Default no follow

Parameters

| router router-instance — Specifies the routing instance where the lead pool resides. |
| Values |
| <router-name>|<service-id>| |
| router-name: "Base" |
| service-id: [1..2147483647] |

| pool name — The pool whose activity state is being shared up to 32 characters in length. |
monitor

Syntax

```plaintext
monitor ip-prefix/length
no monitor
```

Context

```plaintext
cfg>router>nat>outside>pool>redundancy
```

Description

This command configures the IP address of the prefix to be monitored.

While the monitor prefix is configured, the system monitors the presence of this prefix in the routing table of the virtual router instance associated with this pool; the presence of this prefix is an indication that the NAT redundancy peer is active; the monitor prefix of this system is the export prefix of the peer.

The monitor prefix must be different from the export prefix.

Parameters

```plaintext
ip-prefix/length — Specifies the peer route to monitor.
```

- **Values**
 - ip-prefix: a.b.c.d
 - ip-prefix-length: 0 — 32

subscriber-limit

Syntax

```plaintext
subscriber-limit [1..65535]
no subscriber-limit
```

Context

```plaintext
config>service>vprn>nat>outside
config>nat>outside>pool
```

Description

This command configures the maximum number of subscribers per outside IP address. In case multiple port blocks per subscriber are used, the block size is typically small; all blocks assigned to a given subscriber belong to the same IP address; the subscriber limit guarantees that any subscriber can get a minimum number of ports.

Default

```plaintext
65535
```

Parameters

```plaintext
limit — Specify the maximum number of subscribers per IP address.
```

- **Values**
 - 1 — 65535

watermarks

Syntax

```plaintext
watermarks high percentage-high low percentage-low
no watermarks
```

Context

```plaintext
config>service>vprn>nat>outside>pool
config>router>nat>outside>pool
```

Description

This command configures the watermarks for this NAT pool.

Parameters

```plaintext
high percentage-high — Specifies the high percentage.
```
Values

1 — 100

low percentage-low — Specifies the low percentage.

Values

0 — 99

upstream-ip-filter

Syntax

upstream-ip-filter filter-id
no upstream-ip-filter

Context

config>service>vprn>nat>outside

Description

This command configures the ip-filter for upstream traffic. This filter is applied to the upstream traffic after the NAT function and before it enters the outside virtual router instance; it is useful for traffic that bypasses the ingress filters applied in the inside virtual router instance, such as DSLite traffic.

Default

none

Parameters

filter-id — Specifies the identifier of an IP filter.
NAT Service Configuration Commands

nat-policy

Syntax

```
nat-policy nat-policy-name [create]
no nat-policy nat-policy-name
```

Context

config>service>nat

Description

This command configures a NAT policy.

Parameters

`nat-policy-name` — Specifies the NAT policy name.

Values

32 chars max

alg

Syntax

`alg`

Context

config>service>nat

Description

This command enables the context to configure Application Level Gateway parameters of this policy.

ftp

Syntax

`[no] ftp`

Context

config>service>nat>alg

Description

This command enables FTP ALG.

The `no` form of the command disables FTP ALG.

Default

ftp

pptp

Syntax

`[no] pptp`

Context

config>service>nat>alg

Description

This command enables PPTP application-level gateway (ALG).

The call-id is captured in the outgoing call management messages and along with the source IP address and the source TCP, is translated by NAT. Once the PPTP call is established, the call-id in the associated GRE packet in the incoming direction (from outside to inside) is correspondingly
translated so that it matches the call-id mapping established during the call establishment phase. The call-ids used in the mappings are selected randomly and they try to honor parity (odds/even).

A PPTP session can be initiated only from the inside of NAT.

GRE traffic is allowed through NAT only if the corresponding mapping exists. This mapping is created during the call negotiation phase.

There can be seven calls (GRE tunnels) per control session.

Default disabled

rtsp

Syntax [no] rtsp
Context config>service>nat>alg
Description This command enables RTSP ALG.
The no form of the command disables RTSP ALG.
Default no rtsp

sip

Syntax [no] sip
Context config>service>nat>alg
Description This command enables SIP ALG.
The no form of the command disables SIP ALG.
Default no sip

block-limit

Syntax block-limit [1..40]
no block-limit
Context config>service>nat>alg
Description This command configures the maximum number of port blocks per subscriber.
The no form of the command reverts to the default.
Default 1
filtering

Syntax
filtering filtering-mode
 no filtering

Context config>service>nat>nat-policy

Description This command configures the filtering of the NAT policy.

Parameters
filtering-mode — Specifies the way that inbound traffic is filtered.

Values address-and-port-dependent | endpoint-independent

ipfix-export-policy

Syntax
ipfix-export-policy [32 chars max]
 no ipfix-export-policy

Context config>service>nat>nat-policy

Description This command configures the IP flow information export protocol. The no form of the command removes the

pool

Syntax
pool nat-pool-name service-name
 pool nat-pool-name router router-instance
 no pool

Context config>service>nat>nat-policy

Description This command configures the NAT pool of this policy.

Parameters nat-pool-name — Specifies the name of the NAT pool.

Values 32 chars max

router-instance — Specifies the router instance the pool belongs to, either by router name or service ID.

Values router-name: “Base” | “management”

Default Base

Values 1 — 2147483648

svc-name — a string up to 64 characters in length.

Values 64 chars max

service-name — Specifies the name of the service.
Network Address Translation Configuration Commands

port-limits

Syntax:

```
port-limits
```

Context:

```
config>service>nat>nat-policy
```

Description:

This command configures the port limits of this policy.

forwarding

Syntax:

```
forwarding limit
no forwarding
```

Context:

```
config>service>nat>nat-policy>port-limits
```

Description:

This command configures the maximum number of port forwarding entries.

Parameters:

```
limit — Specifies the maximum number of port forwarding entries per subscriber.
```

Default:

```
0
```

reserved

Syntax:

```
reserved num-ports
no reserved
```

Context:

```
config>service>nat>nat-policy>port-limits
```

Description:

This command configures the number of ports per block that will be reserved for prioritized sessions.

Parameters:

```
um-ports — Specifies the number of ports to reserve for prioritized sessions.
```

Values:

```
1 — 65534
```

watermarks

Syntax:

```
watermarks high percentage-high low percentage-low
no watermarks
```

Context:

```
config>service>nat>nat-policy port-limits
```

Description:

This command configures the port usage watermarks for the NAT policy.

Parameters:

```
percentage-high — Specifies the high percentage.
```

Values:

```
1 — 100
```

```
percentage-low — Specifies the low percentage.
```

Values:

```
0 — 99
```
priority-sessions

Syntax
[no] priority-sessions

Context config>service>nat>nat-policy

Description This command configures the prioritized sessions of this NAT policy.

fc

Syntax [no] fc fc-name

Context config>service>nat>nat-policy>prioritize-sessions

Description This command configures the forwarding classes that have their sessions prioritized.

Parameters
fc-name — Specifies the forwarding class.

Values be | l2 | af | l1 | h2 | cf | h1 | nc

max

Syntax max num-sessions

Context config>service>nat>nat-policy>session-limits

Description This command configures the session limit of this policy. The session limit is the maximum number of sessions allowed for a subscriber associated with this policy.

Parameters
um-sessions — Specifies the session limit.

Values 1 — 65535

tcp-mss-adjust

Syntax tcp-mss-adjust segment-size

Context config>service>nat>nat-policy

Description This command configures the value to adjust the TCP Maximum Segment Size (MSS) option. The no form of the command returns the segment size to the default.

Parameters segment-size — Specifies the value to put into the TCP Maximum Segment Size (MSS) option if not already present, or if the present value is higher.

Default 0
Network Address Translation Configuration Commands

Values 0, 160 — 10240

timeouts

Syntax [no] timeouts

Context config>service>nat>nat-policy

Description This command configures session idle timeouts for this policy.

icmp-query

Syntax icmp-query [min minutes] [sec seconds]

no icmp-query

Context config>service>nat>nat-policy>timeouts

Description This command configures the timeout applied to an ICMP query session.

Parameters

- **min minutes** — Specifies the timeout, in minutes, applied to an ICMP query session
 Values 1 — 4
 Default 1

- **sec seconds** — Specifies the timeout, in seconds, applied to an ICMP query session
 Values 1 — 59

sip

Syntax sip min minutes] [sec seconds]

no sip

Context config>service>nat>nat-policy>timeouts

Description This command configures the SIP inactive media timeout.

Parameters

- **min minutes** — Specifies the SIP inactive media timeout, in minutes.
 Values 1 — 4
 Default 1

- **sec seconds** — Specifies the SIP inactive media timeout, in seconds.
 Values 1 — 59

subscriber-retention
NAT Commands

subscriber-retention

Syntax

```
subscriber-retention [hrs hours] [min minutes]
```

no subscriber-retention

Context

```
config>service>nat>nat-policy>timeouts
```

Description

This command specifies the subscriber retention timeout, the time a NAT subscriber and its associated IP address is kept after all hosts and associated port blocks have expired. If a NAT subscriber host appears before the retention timeout has elapsed, it will be given the same outside IP address.

Parameters

- **hrs hours** — Configures the hours a subscriber’s IP address is kept after all hosts and port blocks have expired.
 - **Values** 1 — 24

- **min minutes** — Configures the minutes a subscriber’s IP address is kept after all hosts and port blocks have expired.
 - **Values** 1 — 59

icmp-query

Syntax

```
icmp-query [min minutes] [sec seconds]
```

no icmp

Context

```
config>service>nat>nat-policy>timeouts
```

Description

This command configures the timeout applied to an ICMP query session.

Parameters

- **minutes** — Specifies the timeout in minutes.
 - **Values** 1 — 4

- **seconds** — Specifies the timeout in seconds.
 - **Values** 1 — 59

tcp-established

Syntax

```
tcp-established [hrs hours] [min minutes] [sec seconds]
```

no tcp-established

Context

```
config>service>nat>nat-policy>timeouts
```

Description

This command configures the idle timeout applied to a TCP session in the established state.

Parameters

- **hours** — Specifies the timeout hours field.
 - **Values** 1 — 24

- **minutes** — Specifies the timeout minutes field.
 - **Values** 1 — 59
Network Address Translation Configuration Commands

seconds — Specifies the timeout seconds field.

Values 1 — 59

tcp-syn

Syntax tcp-syn [hrs hours] [min minutes] [sec seconds]
no tcp-syn

Context config>service>nat>nat-policy>timeouts

Description This command configures the timeout applied to a TCP session in the SYN state.

Parameters hours — Specifies the timeout hours field.

Values 1 — 24

minutes — Specifies the timeout minutes field.

Values 1 — 59

seconds — Specifies the timeout seconds field.

Values 1 — 59

tcp-time-wait

Syntax tcp-time-wait [min minutes] [sec seconds]
no tcp-time-wait

Context config>service>nat>nat-policy>timeouts

Description This command configures the timeout applied to a TCP session in a time-wait state.

Parameters minutes — Specifies the timeout minutes field.

Values 1 — 4

seconds — Specifies the timeout seconds field.

Values 1 — 59

tcp-transitory

Syntax tcp-transitory [hrs hours] [min minutes] [sec seconds]
no tcp-transitory

Context config>service>nat>nat-policy>timeouts

Description This command configures the idle timeout applied to a TCP session in a transitory state.

Parameters hours — Specifies the timeout hours field.
udp

Syntax

```
udp [hrs hours] [min minutes] [sec seconds]
```

no udp

Context config>service>nat>nat-policy>timeouts

Description This command configures the UDP mapping timeout.

Parameters

- **hours** — Specifies the timeout hours field.

 Values

 1 — 24

- **minutes** — Specifies the timeout minutes field.

 Values

 1 — 59

- **seconds** — Specifies the timeout seconds field.

 Values

 1 — 59

udp-dns

Syntax

```
udp-dns [hrs hours] [min minutes] [sec seconds]
```

no udp-dns

Context config>service>nat>nat-policy>timeouts

Description This command configures the timeout applied to a UDP session with destination port 53.

Parameters

- **hours** — Specifies the timeout hours field.

 Values

 1 — 24

- **minutes** — Specifies the timeout minutes field.

 Values

 1 — 59

- **seconds** — Specifies the timeout seconds field.

 Values

 1 — 59
udp-initial

Syntax
```
udp-initial [min minutes] [sec seconds]
no udp-initial
```

Context
config>service>nat>nat-policy>timeouts

Description
This command configures the UDP mapping timeout applied to new sessions.

Parameters
- `minutes` — Specifies the timeout minutes field.
 - **Values**
 - 1 — 4
 - `seconds` — Specifies the timeout seconds field.
 - **Values**
 - 1 — 59

udp-inbound-refresh

Syntax
```
[no] udp-inbound-refresh
```

Context
config>service>nat>nat-policy>timeouts

Description
This command specifies the NAT inbound refresh behavior.

Default
disabled
IPFlow Information Export Protocol Commands

ipfix

Syntax ipfix

Context config>service

Description This command enables the context to configure IPFIX parameters.

ipfix-export-policy

Syntax ipfix-export-policy policy-name [create]
 no ipfix-export-policy policy-name

Context config>service>ipfix

Description This command creates an IPFIX export policy with a set of transport parameters that will be used to transmit IPFIX records generated by an application within 7750 SR node to an external collector node. This policy name can be referenced from each application within 7750 SR that requires flow logging.

Default none

Parameters policy-name — Specifies the name of the policy that can be referenced within an application in 7750 SR node that requires flow logging.

collector

Syntax collector router router-instance ip ip-address [create]
 no collector router router-instance ip ip-address

Context config>service>ipfix>export-policy

Description This command defines an external collector node that will collect IPFIX records sent by 7750 SR node. The IPFIX records will be streamed to the collector node using UDP transport. Traffic is originated from a random ephemeral UDP port to the destination port 4739. Up to two collector nodes can be defined for redundancy purposes.

UDP streams are stateless due to the significant volume of transactions. However they do contain 32bit sequence numbers such that packet loss can be identified.

Multiple IPFIX records are sent in a single UDP packet. UDP packet transmission is triggered when the packet size containing IPFIX records exceeds the configured MTU value or the internal timer which is set to 250ms, whichever occurs first.

Default none
Network Address Translation Configuration Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>Router instance from which the collector node is reachable.</td>
</tr>
<tr>
<td>router-instance</td>
<td></td>
</tr>
</tbody>
</table>

Values

- <router-name>|<service-id>
- router-name: "Base"
- service-id: 1 — 2147483647

ip ip-address — IPv4 address of the external collector node to which IPFIX records will be sent.

mtu

Syntax

mtu [512..9212]

no mtu

Context

config>service>ipfix>export-policy

Description

This command sets the MTU size of the UDP packet containing IPFIX records destined for the collector node. Multiple records will be stuffed into a single IP packet until stuffing an additional data record would exceed MTU or the internal timer of 250ms expires.

Default

1500

Parameters

[512..9212] — Specifies the the Maximum Transmission Unit range.

source-address

Syntax

source-address ip-address

no source-address

Context

config>service>ipfix>export-policy

Description

This command configures the source address from which UDP streams containing IPFIX flow records will be sourced.

Default

none

Parameters

ip-address — Source IPv4 address from which UDP streams are sent.

template-refresh-timeout

Syntax

template-refresh-timeout [hrs hours] [min minutes] [sec seconds]

no template-refresh-timeout

Context

config>service>ipfix>export-policy

Description

This command configures the time interval in which Template Set messages are sent to the collector node. Template sets is an IPFIX message that defines fields for subsequent IPFIX messages but contains no data of its own. In other words, IPFIX data is NOT passed as set of TLVs, but instead data is encoded with a scheme defined through the Template Set message.
Default

10 minutes

Parameters

hrs *hours* — Specifies the time interval, in hours, after which IPFIX templates are resent to this collector.

Values 1 — 24

min *minutes* — Specifies the time interval, in minutes, after which IPFIX templates are resent to this collector.

Values 1 — 59

sec *seconds* — Specifies the time interval, in seconds, after which IPFIX templates are resent to this collector.

Values 1 — 59
AAA Policy Commands

isa-radius-policy

Syntax

```
isa-radius-policy name [create]
no isa-radius-policy name
```

Context

```
config>aaa
```

Description

This command creates a policy template related to transport of accounting messages from the BB-ISA card to the accounting server. It also defines accounting attributes that will be included in accounting messages. The policy template will be instantiated once it is applied to the BB-ISA cards in the nat-group.

The `no` form of the command removes the policy name from the configuration.

Default

none

Parameters

`name` — Specifies the name of the ISA RADIUS policy that can be referenced by a NAT application.

acct-include-attributes

Syntax

```
[no] acct-include-attributes
```

Context

```
config>aaa>isa-radius-plcy
```

Description

This command configures attributes to be included in RADIUS accounting messages.

auth-include-attributes

Syntax

```
auth-include-attributes
```

Context

```
config>aaa>isa-radius-plcy
```

Description

This command configures attributes to be included in RADIUS authentication messages.

acct-delay-time

Syntax

```
[no] acct-delay-time
```

Context

```
config>aaa>isa-radius-plcy>acct-include-attributes
```

Description
acct-trigger-reason
Syntax
\[no\] acct-trigger-reason
Context config>aaa>isa-radius-plcy>acct-include-attributes
Description

called-station-id
Syntax \[no\] called-station-id
Context config>aaa>isa-radius-plcy>acct-include-attributes
\config>aaa>isa-radius-plcy>auth-include-attributes
Description This command includes called station id attributes.
The no form of the command excludes called station id attributes.

calling-station-id
Syntax \[no\] calling-station-id
Context config>aaa>isa-radius-plcy>acct-include-attributes
\config>aaa>isa-radius-plcy>auth-include-attributes
Description This command enables the inclusion of the calling-station-id attribute in RADIUS authentication requests and RADIUS accounting messages.
Default no calling-station-id

circuit-id
Syntax \[no\] circuit-id
Context config>aaa>isa-radius-plcy>acct-include-attributes
\config>aaa>isa-radius-plcy>auth-include-attributes
Description This command enables the generation of the agent-circuit-id for RADIUS.

dhcp-options
Syntax \[no\] dhcp-options
Context config>aaa>isa-radius-plcy>acct-include-attributes
\config>aaa>isa-radius-plcy>auth-include-attributes
Description
This command enables insertion of RADIUS VSA containing all dhcp-options from dhcp-discover (or dhcp-request) message. The VSA contains all dhcp-options in a form of the string. If required (the total length of all dhcp-options exceeds 255B), multiple VSAs are included.

Default
no dhcp-options

dhcp-vendor-class-id

Syntax
```
[no] dhcp-vendor-class-id
```

Context
```
config>aaa>isa-radius-plcy>acct-include-attributes
config>aaa>isa-radius-plcy>auth-include-attributes
```

Description
This command includes the “[26-6527-36] Alc-DHCP-Vendor-Class-Id” attribute in RADIUS accounting messages. The content of the DHCP Vendor-Class-Identifier option (60) is mapped in this attribute.

Default
no dhcp-vendor-class-id

include-radius-attribute

Syntax
```
[no] include-radius-attribute
```

Context
```
config>aaa
```

Description
This command enables the context to specify the RADIUS parameters that the system should include into RADIUS authentication-request messages.

frame-counters

Syntax
```
[no] frame-counters
```

Context
```
config>aaa>isa-radius-plcy>acct-include-attributes
config>aaa>isa-radius-plcy>auth-include-attributes
```

Description
This command includes the frame-counters attribute.
The `no` form of the command excludes frame-counters attribute.

framed-ip-addr

Syntax
```
[no] framed-ip-addr
```

Context
```
config>aaa>isa-radius-plcy>acct-include-attributes
config>aaa>isa-radius-plcy>auth-include-attributes
```

Description
This command enables the inclusion of the framed-ip-addr attribute.
The no form of the command excludes framed-ip-addr attributes.

framed-ip-netmask

Syntax
[no] framed-ip-netmask

Context
config>aaa>isa-radius-plcy>acct-include-attributes

Description
This command enables the inclusion of the framed-ip-netmask attribute. The no form of the command disables the inclusion.

hardware-timestamp

Syntax
[no] hardware-timestamp

Context
config>aaa>isa-radius-plcy>acct-include-attributes

Description
This command enables the inclusion of the hardware timestamp attributes. The no form of the command excludes the hardware timestamp attributes.

inside-service-id

Syntax
[no] inside-service-id

Context
config>aaa>isa-radius-plcy>acct-include-attributes

Description
This command enables the inclusion of the NAT inside service ID attributes. The no form of the command excludes NAT inside service ID attributes.

mac-address

Syntax
[no] mac-address

Context
config>aaa>isa-radius-plcy>acct-include-attributes
config>aaa>isa-radius-plcy>auth-include-attributes

Description
This command enables the generation of the client MAC address RADIUS attribute.

multi-session-id

Syntax
[no] multi-session-id

Context
config>aaa>isa-radius-plcy>acct-include-attributes
Network Address Translation Configuration Commands

nas-identifier

Description
This command enables the inclusion of the multi-session-id attributes. The `no` form of the command excludes the multi-session-id attributes.

Syntax

```
[no] nas-identifier
```

Context

```
config>aaa>isa-radius-plcy>acct-include-attributes
config>aaa>isa-radius-plcy>auth-include-attributes
```

Description
This command enables the inclusion of the NAS-Identifier attributes. The `no` form of the command excludes NAS-Identifier attributes.

nas-ip-address-origin

Syntax

```
nas-ip-address-origin {isa-ip|system-ip}
```

Context

```
config>aaa>isa-radius-plcy
```

Description
This command specifies the RADIUS NAS-IP-Address attribute. The `no` form of the command reverts to the default.

Default

```
systemip
```

Parameters

- `systemip` — Specifies that the value of the object TIMETRA-VRTR-MIB::vRiaIpAddress.1.1.1 is used.
- `isaip` — Specifies that a value in the range specified by tmnxRadIsaPlcySrvSrcAddrStart and tmnxRadIsaPlcySrvSrcAddrEnd is used that corresponds to the ISA card that transmits the Access-Request packet or the Accounting-Request packet.

nas-port-id

Syntax

```
[no] nas-port-id
```

Context

```
config>aaa>isa-radius-plcy>acct-include-attributes
config>aaa>isa-radius-plcy>auth-include-attributes
```

Description
This command enables the generation of the nas-port-id RADIUS attribute. Optionally, the value of this attribute (the SAP-id) can be prefixed by a fixed string and suffixed by the circuit-id or the remote-id of the client connection. If a suffix is configured, but no corresponding data is available, the suffix used will be 0/0/0/0/0/0.

nas-port-type

```
Syntax  

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nas-port-type</td>
<td><code>[no] nas-port-type</code></td>
<td>config&gt;aaa&gt;isa-radius-plcy&gt;acct-include-attributes</td>
<td>This command enables the generation of the NAS-Port-Type RADIUS attribute. The <code>no</code> form of the command disables the generation.</td>
</tr>
<tr>
<td>nat-subscriber-string</td>
<td><code>[no] nat-subscriber-string</code></td>
<td>config&gt;aaa&gt;isa-radius-plcy&gt;acct-include-attributes</td>
<td>This command enables the inclusion of the NAT subscriber string attributes. The <code>no</code> form of the command excludes NAT subscriber string attributes.</td>
</tr>
<tr>
<td>octet-counters</td>
<td><code>[no] octet-counters</code></td>
<td>config&gt;aaa&gt;isa-radius-plcy&gt;acct-include-attributes</td>
<td>This command enables the inclusion of the octet-counters attributes. The <code>no</code> form of the command excludes octet-counters attributes.</td>
</tr>
<tr>
<td>outside-ip</td>
<td><code>[no] outside-ip</code></td>
<td>config&gt;aaa&gt;isa-radius-plcy&gt;acct-include-attributes</td>
<td>This command enables the inclusion of the outside IP attributes. The <code>no</code> form of the command excludes outside IP attributes.</td>
</tr>
<tr>
<td>outside-service-id</td>
<td><code>[no] outside-service-id</code></td>
<td>config&gt;aaa&gt;isa-radius-plcy&gt;acct-include-attributes</td>
<td>This command enables the inclusion of the NAT outside service ID attributes. The <code>no</code> form of the command excludes NAT outside service ID attributes.</td>
</tr>
</tbody>
</table>
port-range-block

**Syntax**  
[no] port-range-block

**Context**  
config>aaa>isa-radius-plcy>acct-include-attributes

**Description**  
This command enables the inclusion of the NAT port range block attributes. The no form of the command excludes NAT port range block attributes.

release-reason

**Syntax**  
[no] release-reason

**Context**  
config>aaa>isa-radius-plcy>acct-include-attributes

**Description**  
This command enables the inclusion of the release reason attributes. The no form of the command excludes release reason attributes.

remote-id

**Syntax**  
[no] remote-id

**Context**  
config>aaa>isa-radius-plcy>acct-include-attributes  
config>aaa>isa-radius-plcy>auth-include-attributes

**Description**  
This command enables the sending of remote ID option. The client DHCP Unique Identifier (DUID) is used as the remote ID. The no form of the command disables the sending of remote ID option relay packet.

wifi-ssid-vlan

**Syntax**  
[no] wifi-ssid-vlan

**Context**  
config>aaa>isa-radius-plcy>auth-include-attributes

**Description**  
This command enables including the per-SSID VLAN ID in Alc-Wlan-SSID-VLAN.

password

**Syntax**  
password password [hash|hash2]  
no password

**Context**  
config>aaa>isa-radius-plcy
This command specifies the password that is used in the RADIUS access requests. It shall be specified as a string of up to 32 characters in length.

The `no` form of the command resets the password to its default of ALU and will be stored using hash/hash2 encryption.

**Parameters**

- `password` — Specifies a password string up to 32 characters in length.
- `hash` — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.
- `hash2` — Specifies the key is entered in a more complex encrypted form. If the `hash2` parameter is not used, the less encrypted `hash` form is assumed.

### session-time

**Syntax**

```bash
[no] session-time
```

**Context**

```
config>aaa>isa-radius-plcy>acct-include-attributes
```

**Description**

This command enables the inclusion of the session-time attributes. The `no` form of the command excludes session-time attributes.

### subscriber-data

**Syntax**

```bash
[no] subscriber-data
```

**Context**

```
config>aaa>isa-radius-plcy>acct-include-attributes
```

**Description**

This command enables the inclusion of subscriber data attributes. The `no` form of the command excludes subscriber data attributes.

### subscriber-id

**Syntax**

```bash
[no] subscriber-id
```

**Context**

```
config>aaa>isa-radius-plcy>acct-include-attributes
```

**Description**

This command specifies that subscriber ID attributes should be included into RADIUS accounting messages.

### ue-creation-type

NAT Commands

OS Multi-Service ISA Guide
Syntax  [no] ue-creation-type
Context  config>aaa>isa-radius-plcy>acct-include-attributes
Description  This command enables including the Alc-Wlan-Ue-Creation-Type.

user-name
Syntax  [no] user-name
Context  config>aaa>isa-radius-plcy>acct-include-attributes
Description  This command enables the inclusion of user name attributes.
The no form of the command excludes user name attributes.

wifi-rssi
Syntax  [no] wifi-rssi
Context  config>aaa>isa-radius-plcy>acct-include-attributes
Description  This command enables including the Alc-RSSI.

wifi-ssid-vlan
Syntax  [no] wifi-ssid-vlan
Context  config>aaa>isa-radius-plcy>acct-include-attributes
Description  This command enables including the per-SSID VLAN ID in the Alc-Wlan-SSID-VLAN.

radius-accounting-server
Syntax  radius-accounting-server
Context  config>aaa>nat-acct-plcy
Description  This command creates the context for defining RADIUS accounting server attributes under a given session authentication policy.
access-algorithm

Syntax  
access-algorithm \{direct | round-robin | hash-based\}
no access-algorithm

Context  
config>aaa>isa-radius-plcy>servers

Description  
This command configures the algorithm used to access the list of configured RADIUS servers.

Default  
direct

Parameters  
direct — Specifies that the first server will be used as primary server for all requests, the second as secondary and so on.

round-robin — Specifies that the first server will be used as primary server for the first request, the second server as primary for the second request, and so on. If the router gets to the end of the list, it starts again with the first server.

hash-based — Specifies that the selection is based on the hash-based procedures.

retry

Syntax  
retry count

Context  
config>aaa>isa-radius-plcy>servers

Description  
This command configures the number of times the router attempts to contact the RADIUS server for authentication, if not successful the first time.

The no form of the command reverts to the default value.

Default  
3

Parameters  
count — Specifies the retry count.

Values  
1 — 10

router

Syntax  
router router-instance
router service-name service-name
no router

Context  
config>aaa>isa-radius-plcy>servers

Description  
This command specifies the number of times the router attempts to contact the RADIUS server for authentication, if not successful the first time.

The no form of the command reverts to the default value.
server

Syntax

server server-index [create]
no server server-index

Context

config>aaa>isa-radius-plcy>servers

Description

This command adds a RADIUS server and configures the RADIUS server IP address, index, and key values.

Up to five RADIUS servers can be configured at any one time. RADIUS servers are accessed in order from lowest to highest index for authentication requests until a response from a server is received. A higher indexed server is only queried if no response is received from a lower indexed server (which implies that the server is not available). If a response from a server is received, no other RADIUS servers are queried.

The no form of the command removes the server from the configuration.

Default

none

Parameters

server-index — The index for the RADIUS server. The index determines the sequence in which the servers are queried for authentication requests. Servers are queried in order from lowest to highest index.

Values

1 — 16 (a maximum of 5 accounting servers)

source-address-range

Syntax

source-address-range start-ip-address
no source-address

Context

config>aaa>isa-radius-plcy>servers

Description

This command configures the source address of the RADIUS packet. The system IP address must be configured in order for the RADIUS client to work. See Configuring a System Interface in the 7750 SR OS Router Configuration Guide. Note that the system IP address must only be configured if the source-address is not specified. When the no source-address command is executed, the source address is determined at the moment the request is sent. This address is also used in the nas-ip-address attribute: over there it is set to the system IP address if no sourceaddress was given.

The no form of the command reverts to the default value.

Default

systemIP address

Parameters

ip-address — The IP prefix for the IP match criterion in dotted decimal notation.

Values

0.0.0.0 - 255.255.255.255
timeout

Syntax  
```
timeout [sec seconds] [min minutes]
no timeout
```

Context  
```
config>aaa>isa-radius-plcy>servers
```

Description  
This command configures the number of seconds the router waits for a response from a RADIUS server.

The `no` form of the command reverts to the default value.

Default  
5

Parameters  
- `sec seconds` — Specifies the wait for a response from a RADIUS server in seconds.
- `min minutes` — Specifies the wait for a response from a RADIUS server in minutes.

accounting

Syntax  
```
accounting [port udp-port]
no accounting
```

Context  
```
config>aaa>isa-radius-plcy>servers>server
```

Description  
This command configures accounting for this server.

port `port` — Specifies the UDP port number on which to contact the RADIUS server for authentication.

Values  
1 — 65535

authentication

Syntax  
```
authentication [port udp-port]
no authentication
```

Context  
```
config>aaa>isa-radius-plcy>servers>server
```

Description  
This command configures authentication for this server.

port `port` — Specifies the UDP port number on which to contact the RADIUS server for authentication.

Values  
1 — 65535

coa
Syntax: coa [port udp-port]  
no coa  

Context: config>aaa>isa-radius-plcy>servers>server  

Description: This command configures Change of Authorization (CoA) messages.

**ip-address**  

Syntax: ip-address  
nop ip-address  

Context: config>aaa>isa-radius-plcy>servers>server  

Description: Configures the IP address of the RADIUS server. Two RADIUS servers cannot have the same IP address. An error message is generated if the server address is a duplicate.

**secret**  

Syntax: secret secret-key | hash-key [hash|hash2]  
nno secret  

Context: config>aaa>isa-radius-plcy>servers>server  

Description: This command configures the secret key to access the RADIUS server. This secret key must match the password on the RADIUS server.  

- **hash** — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.

- **hash2** — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.

**user-name-format**  

Syntax: user-name-format user-name-format [mac-format mac-format]  
nno user-name-format  

Context: config>aaa>isa-radius-plcy  

Description: This command defines the format of the “user-name” field in the session authentication request sent to the RADIUS server.

The no form of the command switches to the default format, mac.
By default, the MAC source address of the DHCP DISCOVER message is used in the user-name field.

**Parameters**

*user-name-format* — Specifies the user name format in RADIUS message. This is only used while the value of is equal to the DHCP client vendor options and if the MAC address is used by default of the DHCP client vendor options.

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab:</td>
<td>00:0c:f1:99:85:b8</td>
<td>Alcatel-Lucent 7xxx style</td>
</tr>
<tr>
<td>XY-</td>
<td>00-0C-F1-99-85-B8</td>
<td>IEEE canonical style</td>
</tr>
<tr>
<td>mmmm.</td>
<td>0002.03aa.abff</td>
<td>Cisco style</td>
</tr>
</tbody>
</table>
NAT Subscriber Management Commands

nat-policy

Syntax

nat-policy policy-name
no nat-policy

Context

cfg>subscriber-mgmt>sub-profile

Description

This command configures the NAT policy to be used for subscribers associated with this subscriber profile.

Parameters

policy-name — Specifies the policy name.

Values

32 chars max

save-deterministic-script

Syntax

save-deterministic-script

Context

admin>nat

Description

This command saves the script that calculates Deterministic NAT map entries.

Once the location for the Python deterministic NAT script is configured, the script is generated/updated every time deterministic NAT configuration is modified. However, the script must be manually exported to the remote location. This command triggers the export of the script to a remote location.
NAT Show Commands

nat-accounting-policy

Syntax nat-accounting-policy
       nat-accounting-policy policy-name
       nat-accounting-policy policy-name associations
       nat-accounting-policy

Context show>aaa

Description This command displays NAT accounting policy information.

Parameters policy-name — Specifies the NAT policy name.

   Values  32 chars max

associations — Keyword that displays the router instances and/or subscriber profiles associated with the NAT policy.

Sample Output

A:SR12_PPPOE# show aaa nat-accounting-policy "my-acct-plcy"
===============================================================================
NAT accounting policy "my-acct-plcy"
===============================================================================
Description                 : my accounting policy
-------------------------------------------------------------------------------
RADIUS accounting server settings
-------------------------------------------------------------------------------
Access algorithm            : direct
Retry                       : 3
Router                      : 101
Source address start        : 10.10.10.10
Source address end          : 10.10.10.20
Timeout (s)                 : 5
Last management change      : 01/28/2012 14:47:59
Include attributes          : framed-ip-addr nas-identifier nat-subscriber-
                             string user-name inside-service-id outside-
                             service-id outside-ip port-range-block hardware-
                             timestamp release-reason multi-session-id frame-
                             counters octet-counters session-time
===============================================================================
===============================================================================
Servers for "my-acct-plcy"
===============================================================================
Index Address         Port
-------------------------------------------------------------------------------
1     17.0.0.5        1813
2     17.0.0.1        1813
===============================================================================

Servers ISA group connection status for "my-acct-plcy"
Network Address Translation Configuration Commands

<table>
<thead>
<tr>
<th>Index</th>
<th>Group</th>
<th>Member</th>
<th>State</th>
<th>Tx-rq</th>
<th>Rq-timeout</th>
<th>Send-retry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>out-of-service</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>out-of-service</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>in-service</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>out-of-service</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

A:SR12_PPPOE#

A:SR12_PPPOE# show aaa nat-accounting-policy "my-acct-plcy" associations

NAT groups associated with "my-acct-plcy"

No. of groups: 2

A:SR12_PPPOE#

nat-group

Syntax

```
nat-group
nat-group nat-group-id [associations]
nat-group nat-group-id member [1..255] [statistics]
nat-group [nat-group-id] members
```

Context show>isa

Description This command displays ISA NAT group information.

Parameters

- `nat-group-id` — Specifies the NAT group ID.
- `statistics` — Keyword; displays NAT group statistics.

Values 1 — 4

Sample Output

```
show isa nat-group
ISA NAT Group Summary
Mda Group 1 Group 2 Group 3
3/1 active - -
3/2 - active busy
4/1 - busy active
4/2 - standby standby
```
NAT Commands

*A:SR12_PPPOE>config>isa>nat-group# show isa nat-group
-----------------------------------------------------------------------------
ISA NAT Group 1
-----------------------------------------------------------------------------
Admin state : inService
Operational state : inService
Active MDA limit : 2
-----------------------------------------------------------------------------
NAT specific information for ISA group 1
-----------------------------------------------------------------------------
Reserved sessions : 0
High Watermark (%) : (Not Specified)
Low Watermark (%) : (Not Specified)
Accounting policy : my-acct-plcy
Last Mgmt Change : 01/28/2012 14:47:59
-----------------------------------------------------------------------------
ISA Group 1 members
-----------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Group Member</th>
<th>State</th>
<th>Mda Addresses</th>
<th>Blocks</th>
<th>Se-%</th>
<th>Hi Se-Prio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>active</td>
<td>3/1 3</td>
<td>3</td>
<td>&lt; 1</td>
<td>N 0</td>
</tr>
<tr>
<td>2</td>
<td>active</td>
<td>3/2 4</td>
<td>4</td>
<td>&lt; 1</td>
<td>N 0</td>
</tr>
</tbody>
</table>
No. of members: 2
-----------------------------------------------------------------------------
A:SR12_PPPOE#

*A:SR12_PPPOE>config>isa>nat-group# show isa nat-group
-----------------------------------------------------------------------------
ISA NAT Group Summary
-----------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Mda</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>-</td>
<td>provisioned</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3/1</td>
<td>active</td>
<td>-</td>
<td>up</td>
<td>-</td>
</tr>
<tr>
<td>3/1</td>
<td>active</td>
<td>-</td>
<td>up</td>
<td>-</td>
</tr>
<tr>
<td>3/2</td>
<td>active</td>
<td>-</td>
<td>up</td>
<td>-</td>
</tr>
<tr>
<td>3/2</td>
<td>active</td>
<td>-</td>
<td>up</td>
<td>-</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------
A:SR12_PPPOE#

*A:SR12_PPPOE>config>isa>nat-group# show isa nat-group
-----------------------------------------------------------------------------
ISA NAT Group 1
-----------------------------------------------------------------------------
Admin state : inService
Operational state : inService
Active MDA limit : 2
-----------------------------------------------------------------------------
NAT specific information for ISA group 1
-----------------------------------------------------------------------------
Reserved sessions : 0
High Watermark (%) : (Not Specified)
Low Watermark (%) : (Not Specified)
Accounting policy           : my-acct-plcy
Last Mgmt Change            : 01/28/2012 14:47:59

===============================================================================
ISA Group 1 members
===============================================================================
<table>
<thead>
<tr>
<th>Group Member</th>
<th>State</th>
<th>Mda</th>
<th>Addresses</th>
<th>Blocks</th>
<th>Se-%</th>
<th>Hi</th>
<th>Se-Prio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>active</td>
<td>3/1</td>
<td>3</td>
<td>3</td>
<td>&lt; 1</td>
<td>N</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>active</td>
<td>3/2</td>
<td>4</td>
<td>4</td>
<td>&lt; 1</td>
<td>N</td>
<td>0</td>
</tr>
</tbody>
</table>

No. of members: 2

A:SR12_PPPOE#

A:SR12_PPPOE# show isa nat-group 3 member 1 statistics

ISA NAT Group 3 Member 1

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>no resource</td>
<td>0</td>
</tr>
<tr>
<td>pkt rx on wrong port</td>
<td>0</td>
</tr>
<tr>
<td>unsupported protocol</td>
<td>0</td>
</tr>
<tr>
<td>no host or host group</td>
<td>0</td>
</tr>
<tr>
<td>no ip or port</td>
<td>0</td>
</tr>
<tr>
<td>no matching flow</td>
<td>3</td>
</tr>
<tr>
<td>max flow exceeded</td>
<td>0</td>
</tr>
<tr>
<td>TCP no flow for RST</td>
<td>0</td>
</tr>
<tr>
<td>TCP no flow for FIN</td>
<td>0</td>
</tr>
<tr>
<td>TCP no flow</td>
<td>0</td>
</tr>
<tr>
<td>addr. dep. filtering</td>
<td>0</td>
</tr>
<tr>
<td>ICMP type unsupported</td>
<td>0</td>
</tr>
<tr>
<td>ICMP local unsupported</td>
<td>0</td>
</tr>
<tr>
<td>ICMP checksum error</td>
<td>0</td>
</tr>
<tr>
<td>ICMP embedded checksum error</td>
<td>0</td>
</tr>
<tr>
<td>ICMP unsupported L4</td>
<td>0</td>
</tr>
<tr>
<td>ICMP too short</td>
<td>0</td>
</tr>
<tr>
<td>ICMP length error</td>
<td>0</td>
</tr>
<tr>
<td>Pkt not IPv4 or IPv6</td>
<td>0</td>
</tr>
<tr>
<td>Pkt not IPv4 or IPv6</td>
<td>0</td>
</tr>
<tr>
<td>Pkt rcv error</td>
<td>0</td>
</tr>
<tr>
<td>Pkt error</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 header checksum violation</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 header malformed</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 malformed packet</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 ttl zero</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 opt /IPv6 ext headers</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 undefined error</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 fragments unsupported</td>
<td>0</td>
</tr>
<tr>
<td>TCP/UDP malformed</td>
<td>0</td>
</tr>
<tr>
<td>TCP/UDP checksum failure</td>
<td>0</td>
</tr>
<tr>
<td>TCP/UDP length error</td>
<td>0</td>
</tr>
<tr>
<td>Pkt send error</td>
<td>0</td>
</tr>
<tr>
<td>no buf to copy pkt</td>
<td>0</td>
</tr>
<tr>
<td>no policy</td>
<td>0</td>
</tr>
<tr>
<td>locked by mgmt core</td>
<td>0</td>
</tr>
<tr>
<td>port range log failed</td>
<td>0</td>
</tr>
<tr>
<td>MTU exceeded</td>
<td>0</td>
</tr>
<tr>
<td>DS Lite unrecognized next hdr</td>
<td>0</td>
</tr>
<tr>
<td>DS Lite unknown APTR</td>
<td>0</td>
</tr>
</tbody>
</table>
too many fragments for IP packet : 0
too many fragmented packets : 0
too many fragment holes : 0
too many frags buffered : 0
fragment list expired : 0
fragment rate too high : 0
flow log failed : 0
no multiple host or subscr. IPs allowed : 0
to local : 1
to local ignored : 0
NAT64 disabled : 0
NAT64 invalid src addr : 0
NAT64 frag has zero checksum : 0
NAT64 v4 has zero checksum : 0
NAT64 ICMP frag unsupported : 0
CPM out of memory : 0
new flow : 1
TCP closed : 1
TCP expired : 0
UDP expired : 0
ICMP expired : 0
ICMP local : 0
found flow : 34
ARPs ignored : 4
Fragments RX L2A : 0
Fragments RX LSN : 0
Fragments RX DSL : 0
Fragments RX OUT : 0
Fragments TX L2A : 0
Fragments TX LSN : 0
Fragments TX DSL : 0
Fragments TX NAT64 : 0
Fragments TX OUT : 0
flow create logged : 0
flow delete logged : 0
flow log pkt tx : 0

A:SR12_PPPOE#

config>isa# show isa nat-group 1 member 1 statistics

ISA NAT Group 1 Member 1

no resource : 0
  [eNatFlowNoResource] "no resource",
  -> the default, all errors without more specific reason
  [eNatFlowWrongPort] "pkt rx on wrong port",
  -> packet came in on wrong port on ISA
  [eNatFlowWrongProt] "unsupported protocol",
  -> protocol is not UDMP/TCP/ICMP
  [eNatFlowNoHostGrp] "no host or host group",
  -> can not create new host group because out of resources, or
  current host group is not usable at the moment (because in a transient
  state)
  [eNatFlowNoIpOrPort] "no ip or port","
Network Address Translation Configuration Commands

- no Ip or port range available
  - [eNatFlowNoMatchingFlow] "no matching flow",
  - no matching flow found

- max flows for subscriber exceeded
  - [eNatFlowMaxExceeded] "max flow exceeded",
  - max flows for subscriber exceeded

- TCP state machine problem
  - [eNatFlowTcpUnexpectedRst] "TCP no flow for RST",
  - [eNatFlowTcpUnexpectedFin] "TCP no flow for FIN",
  - [eNatFlowTcpUnexpected] "TCP no flow",
  - TCP state machine problem

- addr. dep. filtering
  - [eNatFlowAddressDependentFiltering] "addr. dep. filtering",
  - pkt dropped because of addr. dependent filtering

- unsupported icmp type
  - [eNatFlowUnsupportedICMP] "ICMP type unsupported",
  - unsupported icmp type

- packet to ip address on ISA is not an echo request
  - [eNatFlowUnsupportedLocalICMP] "ICMP local unsupported",
  - packet to ip address on ISA is not an echo request

- ICMP checksum error
  - [eNatFlowIcmpChecksumError] "ICMP checksum error",
  - ICMP checksum error

- checksum error on embedded IP header
  - [eNatFlowIcmpEmbeddedPktChecksumError] "ICMP embedded checksum error",
  - checksum error on embedded IP header

- packet too short to include the ICMP header
  - [eNatFlowIcmpTooShort] "ICMP too short",
  - packet too short to include the ICMP header

- packet too short to include the embedded header
  - [eNatFlowIcmpLengthError] "ICMP length error",
  - packet too short to include the embedded header

- IPv4 header checksum violation,
  - [eNatFlowPacketErrorIpv4HdrChk] "IPv4 header checksum violation",
  - IPv4 header checksum violation

- IPv4 header malformed,
  - [eNatFlowPacketErrorIpv4HdrMal] "IPv4 header malformed",
  - IPv4 header malformed

- IPv4 malformed packet,
  - IPv4 malformed packet

- IPv4 ttl zero,
  - [eNatFlowPacketErrorIpv4TtlZero] "IPv4 ttl zero",
  - IPv4 ttl zero

- IPv4 opt /IPv6 ext headers,
  - [eNatFlowPacketErrorIpv4Optv6Ext] "IPv4 opt /IPv6 ext headers",
  - IPv4 opt /IPv6 ext headers

- IPv4 undefined error,
  - [eNatFlowPacketErrorIpv4Bad] "IPv4 undefined error",
  - IPv4 undefined error

- IPv6 fragments unsupported,
  - [eNatFlowPacketErrorIpv6Frag] "IPv6 fragments unsupported",
  - IPv6 fragments unsupported

- TCP/UDP malformed,
  - [eNatFlowPacketErrorTcpUdpMal] "TCP/UDP malformed",
  - TCP/UDP malformed

- TCP/UDP checksum failure,
  - [eNatFlowPacketErrorTcpUdpChk] "TCP/UDP checksum failure",
  - TCP/UDP checksum failure

- TCP/UDP length error,
  - [eNatFlowPacketErrorTcpUdpLen] "TCP/UDP length error",
  - TCP/UDP length error

- failed to tx the packet
  - [eNatFlowPacketSendError] "Pkt send error",
  - failed to tx the packet

- failed to copy the packet to another buffer needed for
NAT Commands

correct processing

[eNatFlowLockedByMgmtCore] "locked by mgmt core",
    -> resources temp. locked by the mgmt core

[eNatFlowPRLogFailed] "port range log failed",
    -> port range log failed

[eNatFlowMtueExceeded] "MTU exceeded",
    -> outgoing packet too big for DS-Lite tunnel or nat64 mtu

[eNatFlowDslUnrecNextHdr] "DS Lite unrecognized next hdr",
    -> ipv6 pkt has wrong next header

[eNatFlowDslUnknownAFTR] "DS Lite unknown AFTR",
    -> AFTR address is unrecognised

[eNatFlowTooManyFragForIpPkt] "too many fragments for IP packet",
[eNatFlowTooManyFragmentedPkts] "too many fragmented packets",

[eNatFlowTooManyFragHoles] "too many fragment holes",
[eNatFlowFraglistExpire] "fragment list expired",
[eNatFlowTooManyFragBuufs] "too many frags buffered",
[eNatFlowFragRateTooHigh] "fragment rate too high",
    -> various fragment problems

[eNatFlowNoPolicy] "no policy",
    -> vrf not mapped to a policy

[eNatFlowLogFailed] "flow log failed",
    -> flow logging can not follow the setup rate

[eNatFlowMultiHostOrSubscrIp] "no multiple host or subscr. IPs allowed",
    -> multiple hosts or subscribers on the inside in use without port translation

[eNatFlowToLocalError] "to local ignored",
    -> radius authentication failure (?)

[eNatFlow64Disabled] "NAT64 disabled",
    -> nat64 was disabled

[eNatFlow64InvalidSource] "NAT64 invalid src addr",
    -> source address matches pref64

[eNatFlow64FragZeroChecksum] "NAT64 frag has zero checksum",
    -> v4 UDP frag has zero checksum

[eNatFlow64ZeroChecksum] "NAT64 v4 has zero checksum",
    -> v4 UDP has zero checksum, and policy configured to drop

[eNatFlow64FragIcmp] "NAT64 ICMP frag unsupported",
    -> v4 fragmented ICMP
Network Address Translation Configuration Commands

I2-aware-hosts

**Syntax**

```
l2-aware-hosts [outside-router router-instance] [outside-ip outside-ip-address] [inside-ip-prefix ip-prefix/mask]
```

**Context**

```
show>service>nat
```

**Description**

This command displays layer-2 aware NAT hosts.

**Parameters**

- `nat-policy-name` — Specifies the NAT policy name.
  - **Values**
    - 32 chars max
  
- `nat-group-id` — Specifies the NAT group ID.
  - **Values**
    - 1 — 4

- `router-instance` — Specifies the router instance.
  - **Values**
    - `router-name`: Base, management
    - `service-id`: 1 — 2147483647
    - `svc-name`: A string up to 64 characters in length.

- `outside-ip-address` — Specifies the outside IP address.
  - **Values**
    - a.b.c.d

- `sub-ident` — Specifies the identifier.
  - **Values**
    - 32 chars max

**Sample Output**

```
show service nat l2-aware-hosts
--
Layer-2-Aware NAT hosts
--
Inside IP Out-Router Outside IP Subscriber
--
13.0.0.100 Base 81.81.0.0 Sub001
13.0.0.102 Base 81.81.0.0 Sub001
13.0.0.101 Base 81.81.0.203 Sub002
13.0.0.103 Base 81.81.0.0 Sub003
--
No. of hosts: 4
--
```

I2-aware-subscribers

**Syntax**

```
l2-aware-subscribers [nat-policy nat-policy-name] [nat-group nat-group-id] [member [1..255]] [outside-router router-instance] [outside-ip outside-ip-address]
l2-aware-subscribers subscriber sub-ident
```

**Context**

```
show>service>nat
```
Description
This command displays layer-2 aware NAT subscribers.

Parameters

- **nat-policy-name** — Specifies the NAT policy name.
  - **Values** 32 chars max

- **nat-group-id** — Specifies the NAT group ID.
  - **Values** 1 — 4

- **router-instance** — Specifies the router instance.
  - **Values**
    - **router-name:** Base, management
    - **service-id:** 1 — 2147483647
    - **svc-name:** A string up to 64 characters in length.

- **outside-ip-address** — Specifies the outside IP address.
  - **Values** a.b.c.d

- **sub-ident** — Specifies the identifier.
  - **Values** 32 chars max

Sample Output

```
show service nat l2-aware-subscribers
--
Layer-2-Aware NAT subscribers
--
Subscriber Policy Group/Member Outside IP Router Ports
--
Sub001 outPolicy 1/1 81.81.0.0 Base 32-33
Sub002 outPolicy2 1/1 81.81.0.203 Base 32-41
Sub003 outPolicy 1/1 81.81.0.0 Base 34-35
--
No. of subscribers: 3
--

show service nat l2-aware-subscribers subscriber "Sub881"
--
Layer-2-Aware NAT subscriber Sub001
--
Policy : outPolicy
ISA NAT group : 1
ISA NAT group member : 1
Outside router : Base
Outside IP : 81.81.0.0
ICMP Port usage (%) : < 1
ICMP Port usage high : false
UDP Port usage (%) : < 1
UDP Port usage high : false
TCP Port usage (%) : < 1
TCP Port usage high : false
```

NAT Commands

OS Multi-Service ISA Guide
nat-policy

Syntax  nat-policy  nat-policy-name associations
        nat-policy  nat-policy-name
        nat-policy  nat-policy-name statistics
        nat-policy

Context  show>service>nat

Description  This command displays NAT policy information.

Parameters  nat-policy-name — Specifies the NAT Policy name.

Values  32 chars max

associations — Keyword; displays the router instances and/or subscriber profiles associated with the
              NAT policy.

statistics — Keyword; displays statistics of the specified NAT policy.

Sample Output

show service nat nat-policy
-----------------------------------------------------------------------------
NAT policies
-----------------------------------------------------------------------------
Policy Description
-----------------------------------------------------------------------------
outPolicy
outPolicy2
outPolicy3
-----------------------------------------------------------------------------
No. of NAT policies: 3
-----------------------------------------------------------------------------

*A:*SR12_PPPOE>show>router>nat#  show service nat nat-policy "priv-nat-policy"
-----------------------------------------------------------------------------
NAT Policy priv-nat-policy
-----------------------------------------------------------------------------
Pool                                  : privpool
Router                                : Base
Filtering                             : endpointIndependent
Block limit                           : 4
Reserved ports                        : 0
Port usage High Watermark (%)         : (Not Specified)
Port usage Low Watermark (%)          : (Not Specified)
Port forwarding limit                 : 64
Session limit : 65535
Reserved sessions : 0
Session usage High Watermark (%) : (Not Specified)
Session usage Low Watermark (%) : (Not Specified)
ALG enabled : ftp rtsp sip
Prioritized forwarding classes : (Not Specified)
Timeout TCP established (s) : 7440
Timeout TCP transitory (s) : 240
Timeout TCP SYN (s) : 15
Timeout TCP TIME-WAIT (s) : 0
Timeout UDP mapping (s) : 300
Timeout UDP initial (s) : 15
Timeout UDP DNS (s) : 15
Timeout ICMP Query (s) : 60
Timeout SIP Inactive Media (s) : 120
Subscriber retention (s) : 0
UDP inbound refresh : false
TCP MSS Adjust : (Not Specified)
Destination-NAT IP : (Not Specified)
IPFIX export policy : (Not Specified)
Last Mgmt Change : 01/28/2012 14:47:59

show service nat nat-policy "outPolicy2" associations
NAT Policy outPolicy2 Subscriber Profile Associations
sub_prof_B_3
No. of subscriber profiles: 1

show service nat nat-policy "outPolicy2" statistics
NAT Policy outPolicy2 Statistics
mda 3/1
hostsActive : 1
hostsPeak : 1
sessionsTcpCreated : 0
sessionsTcpDestroyed : 0
sessionsUdpCreated : 0
sessionsUdpDestroyed : 0
sessionsIcmpQueryCreated : 0
sessionsIcmpQueryDestroyed : 0

pcp-server-policy
Syntax `pcp-server-policy`  
`pcp-server-policy name`  

Context `show>router>nat`  

Description This command displays PCP server policy information.

**port-forwarding-entries**  

Syntax `port-forwarding-entries`  
Context `show>router>nat`  

Description This command displays port forwarding entries.

Sample Output

```
*A:SR12_PPPOE# show service nat port-forwarding-entries
===
NAT port forwarding entries
===
Subscriber iRtr iAddress prot iPort type
 oRtr oAddress persist-id oPort expiry

100 1.2.3.4 tcp 666 classic-lsn-sub
 Base 13.0.0.6 N/A 666 N/A
100 1.2.3.4 udp 666 classic-lsn-sub
 Base 13.0.0.6 N/A 666 N/A

No. of entries: 2
===
*A:SR12_PPPOE#`
```

**dual-stack-lite-subscribers**

Syntax `dual-stack-lite-subscribers subscriber dslite-sub-id`  
`dual-stack-lite-subscribers [nat-policy nat-policy-name] [nat-group nat-group-id]`  
`[member [1..255]] [outside-router router-instance] [outside-ip outside-ip-address] [inside-ip-prefix ipv6-prefix]`  

Context `show>router>nat`  

Description This command displays Dual Stack Lite subscriber information.

Parameters `subscriber dslite-sub-id` — Specifies the identification of LSN subscribers of a particular virtual router instance.
Values
dslite-sub-id: ipv6-address - x:x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:x:d.d.d
d - [0..FFFF]H
Values
member [1..255] — Identifies the member ID of a NAT ISA group.
outside-router router-instance — Specifies the router instance.
outside-ip outside-ip-address — Specifies the outside IP address.
inside-ip-prefix ipv6-prefix — Specifies the inside IP address.

Sample Output

*A:SR12_PPPOE# show router 100 nat dual-stack-lite-subscribers
-------------------------------------------------------------------
Large-Scale NAT subscribers
-------------------------------------------------------------------
Subscriber Policy Group/Member
Outside IP Router Ports
-------------------------------------------------------------------
2001:470:1F00:FFFF::189 priv-nat-policy 3/2
13.0.0.5 Base 504
-------------------------------------------------------------------
No. of subscribers: 1
-------------------------------------------------------------------
*A:SR12_PPPOE#

l2-aware-blocks

Syntax l2-aware-blocks [outside-ip-prefix ip-prefix/length] [outside-port [1..65535]] [pool pool-name]

Context show>router>nat

Description This command displays Layer 2 aware NAT blocks.

Parameters ip-prefix — Specifies the IP prefix.

Values a.b.c.d (host bits must be 0)

length — Specifies the IP prefix length.

Values 1 — 32
pool-name — Specifies the pool name.

Values 32 chars max

Sample Output

show router nat l2-aware-blocks

Layer-2-Aware NAT blocks for Base

81.81.0.0 [32..33]
Pool : MyPool
Policy : outPolicy
Started : 2010/02/04 16:24:55
Subscriber ID : Sub001

81.81.0.0 [34..35]
Pool : MyPool
Policy : outPolicy
Started : 2010/02/04 16:25:24
Subscriber ID : Sub003

81.81.0.203 [32..41]
Pool : MyPool2
Policy : outPolicy2
Started : 2010/02/04 16:25:21
Subscriber ID : Sub002

Number of blocks: 3

lsn-blocks

Syntax lsn-blocks [inside-router router-instance] [inside-ip ip-address] [outside-ip-prefix ip-prefix/length] [outside-port [1..65535]] [pool pool-name]

Context show>router>nat

Description This command displays large scale NAT blocks.

Parameters router-instance — Specifies the router instance name and service ID.

Values router-name: Base, management
service-id: 1 — 2147483647
svc-name: A string up to 64 characters in length.

ip-address — Specifies the IP address in a.b.c.d format.

Values a.b.c.d (host bits must be 0)

ip-prefix — Specifies the IP prefix length.

Values 1 — 32

pool-name — Specifies the pool name.
### Isn-hosts

**Syntax**

*lsn-hosts host ip-address*

*lsn-hosts [outside-router router-instance] [outside-ip ip-address] [inside-ip-prefix ip-prefix/mask]*

**Context**

`show>router`

**Description**

This command displays large scale NAT hosts.

**Parameters**

- **router-instance** — Specifies the router instance name and service ID.
  
  **Values**
  
  router-name: Base , management

  service-id: 1 — 2147483647

  svc-name: A string up to 64 characters in length.

- **ip-address** — Specifies the IP address in a.b.c.d format.
  
  **Values**
  
  a.b.c.d (host bits must be 0)

- **ip-prefix** — Specifies the IP prefix.
  
  **Values**
  
  1 — 32

- **pool-name** — Specifies the pool name.
  
  **Values**
  
  32 chars max

**Sample Output**

`show router 588 nat lsn-hosts`

```
===
Large-Scale NAT hosts for router 550
===
Number of blocks: 1
===
```

---

### NAT Commands

**Values**

32 chars max

**Sample Output**

`*A:SR12_PPPOE>show>router>nat# show router Base nat lsn-blocks`

```
===
Large-Scale NAT blocks for Base
===
13.0.0.5 [1024..1527]
Pool : privpool
Policy : priv-nat-policy
Started : 2012/01/28 19:10:17
Inside router : vprn100
Inside IP address : 2001:470:1F00:FFFF::189

Number of blocks: 1
===
```
### Network Address Translation Configuration Commands

Inside IP Out-Router Outside IP

<table>
<thead>
<tr>
<th>Inside IP</th>
<th>Out-Router</th>
<th>Outside IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.0.0.5</td>
<td>500</td>
<td>81.81.0.0</td>
</tr>
<tr>
<td>13.0.0.6</td>
<td>500</td>
<td>81.81.3.1</td>
</tr>
<tr>
<td>13.0.0.7</td>
<td>500</td>
<td>81.81.0.0</td>
</tr>
<tr>
<td>13.0.0.8</td>
<td>500</td>
<td>81.81.0.0</td>
</tr>
<tr>
<td>13.0.0.9</td>
<td>500</td>
<td>81.81.3.1</td>
</tr>
<tr>
<td>13.0.0.10</td>
<td>500</td>
<td>81.81.0.0</td>
</tr>
</tbody>
</table>

---

No. of hosts: 6

---

show router 558 nat lsn-hosts host 13.8.8.5

---

Large-Scale NAT host details

---

Policy : ls-outPolicy
ISA NAT group : 1
ISA NAT group member : 1
Outside router : vprn500
Outside IP : 81.81.0.0
ICMP Port usage (%) : < 1
ICMP Port usage high : false
UDP Port usage (%) : 2
UDP Port usage high : false
TCP Port usage (%) : < 1
TCP Port usage high : false
Session usage (%) : < 1
Session usage high : false
Number of sessions : 5
Number of reserved sessions : 0
Ports : 1432-1631

---

**pool**

**Syntax**

```
pool pool-name
```

**Context**

```
show>router>nat
```

**Description**

This command displays NAT pool information.

**Parameters**

`pool-name` — Specifies the pool name.

**Values**

32 chars max

---

**Sample Output**

```
show router nat pool
```

---

**NAT pools**

---

Pool NAT-group Type Admin-state
NAT Commands

MyPool 1 l2Aware inService
MyPool2 1 l2Aware inService

No. of pools: 2

*A:SR12_PPPOE>show>router>nat# show router "Base" nat pool "privpool"

isa nat group: 3
pool type: largeScale
admin state: inService
mode: auto (napt)
port forwarding range: 1 - 1023
port reservation: 128 blocks
block usage high watermark (%): (not specified)
block usage low watermark (%): (not specified)
subscriber limit per IP address: 65535
active: true
last mgmt change: 01/28/2012 14:47:59

NAT address ranges of pool privpool

<table>
<thead>
<tr>
<th>Range</th>
<th>Drain Num-blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.0.0.5 - 13.0.0.6</td>
<td>1</td>
</tr>
</tbody>
</table>

No. of ranges: 1

NAT members of pool privpool ISA NAT group 3

<table>
<thead>
<tr>
<th>Member</th>
<th>Block-Usage-% Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&lt; 1</td>
</tr>
<tr>
<td>2</td>
<td>&lt; 1</td>
</tr>
</tbody>
</table>

No. of members: 2

*A:SR12_PPPOE#

summary

Syntax summary

Context show>router>nat

Description This command displays the NAT information summary.

Sample Output

*A:SR12_PPPOE>show>router>nat# show router Base nat summary

NAT pools
### Network Address Translation Configuration Commands

<table>
<thead>
<tr>
<th>Pool</th>
<th>NAT-group</th>
<th>Type</th>
<th>Admin-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>privpool</td>
<td>3</td>
<td>largeScale</td>
<td>inService</td>
</tr>
<tr>
<td>pubpool</td>
<td>1</td>
<td>largeScale</td>
<td>inService</td>
</tr>
</tbody>
</table>

---

No. of pools: 2

---

A:SR12_PPPOE#
NAT Tools Commands

**nat-group**

**Syntax**

```
nat-group nat-group-id member [1..255] l2-aware-subscribers
nat-group nat-group-id member [1..255] statistics
```

**Context**

```
clear>nat>isa
```

**Description**

This command clears ISA nat-group commands related statistics or removes all the subscribers that are associated with a specific nat-group member.

**Parameters**

- **nat-group-id** — Specifies the NAT group ID to clear.
  - **Values**
    - 1 — 4
- **statistics** — Specifies to clear the NAT group ID’s statistics.
- **l2-aware-subscribers** — Specifies to clear the NAT group ID’s l2-aware subscribers.
NAT Tools Commands

nat

Syntax nat

Context tools>dump
tools>perform

Description This command enables the dump or perform tools for NAT.

isa

Syntax isa

Context tools>dump>nat

Description This command enables the dump tools for NAT ISA.

resources

Syntax resources mda mda-id

Context tools>dump>nat>isa

Description This command enables dump ISA resources for an MDA.

Sample Output

AR12_PPPOE# tools dump nat isa resources mda 3/1

Resource Usage for Slot #3 Mda #1:

<table>
<thead>
<tr>
<th>Total</th>
<th>Allocated</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows</td>
<td>6291456</td>
<td>0</td>
</tr>
<tr>
<td>Policies</td>
<td>256</td>
<td>2</td>
</tr>
<tr>
<td>Port-ranges</td>
<td>1310720</td>
<td>128</td>
</tr>
<tr>
<td>Ports</td>
<td>12884901888</td>
<td>0</td>
</tr>
<tr>
<td>IP-addresses</td>
<td>65536</td>
<td>1</td>
</tr>
<tr>
<td>Large-scale hosts</td>
<td>524288</td>
<td>0</td>
</tr>
<tr>
<td>L2-aware subscribers</td>
<td>65536</td>
<td>0</td>
</tr>
<tr>
<td>L2-aware hosts</td>
<td>65536</td>
<td>0</td>
</tr>
<tr>
<td>Delayed ICMP's</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>ALG session</td>
<td>1572864</td>
<td>0</td>
</tr>
<tr>
<td>LI entries</td>
<td>8191</td>
<td>0</td>
</tr>
<tr>
<td>Upstream fragment lists</td>
<td>16384</td>
<td>0</td>
</tr>
</tbody>
</table>
### Session Commands

**Syntax**
```
sessions [nat-group nat-group-id] [mda mda-id] [protocol {icmp|tcp|udp}] [inside-ip ip-address] [inside-router router-instance] [inside-port port-number] [outside-ip ip-address] [outside-port port-number] [foreign-ip ip-address] [foreign-port port-number]
```

**Context**
```
tools>dump>nat
```

**Description**
This command dumps ISA sessions.

### Sample Output
```
*A:SR12_PPPOE# tools dump nat sessions
===
Matched 2 sessions on Slot #3 MDA #1
===
Owner : LSN-Host@1.2.3.4
Router : 100
Protocol : UDP PortFwd
Inside IP Addr : 1.2.3.4 Inside Port : 666
Outside IP Addr : 13.0.0.6 Outside Port : 666
Foreign IP Addr : * Foreign Port : *
Dest IP Addr : * Dest Port : *

Owner : LSN-Host@1.2.3.4
Router : 100
Protocol : TCP PortFwd
Inside IP Addr : 1.2.3.4 Inside Port : 666
Outside IP Addr : 13.0.0.6 Outside Port : 666
Foreign IP Addr : * Foreign Port : *
Dest IP Addr : * Dest Port : *

Matched 1 session on Slot #3 MDA #2

Owner : LSN-Host@2001:470:1F00:FFFF::189
Router : 100
Protocol : TCP
Inside IP Addr : 138.203.16.218 Inside Port : 41555
Outside IP Addr : 13.0.0.6 Outside Port : 666
Foreign IP Addr : * Foreign Port : *
Dest IP Addr : * Dest Port : *

```
Network Address Translation Configuration Commands

Outside IP Addr     : 13.0.0.5          Outside Port        : 1529
Foreign IP Addr     : 15.0.0.1          Foreign Port        : 22
Dest IP Addr        : 15.0.0.1          Dest Port           : 22

histogram

Syntax    histogram router router-instance pool pool-name bucket-size [1..65536] num-buckets [2..50]
Context   tools>dump>nat
Description This command displays a NAT pool port usage histogram
Parameters router router-instance —
    pool pool-name — Specifies the identification of the NAT pool.
    bucket-size [1..65536] — Specifies the unit of the X-axis of the histogram; a value of ten, for example, would return in a histogram with results for [0-9], [10-19], [20-29], ... ports.
    num-buckets [2..50] — Specifies the size of the histogram; a value of five, for example, would result in five results: [0-9], [10-19], [20-29], [30-39], [40-infinite].

port-forwarding-action

Syntax    port-forwarding-action
Context   tools>dump>nat
Description This command displays NAT port forwarding actions.

l2-aware

Syntax    l2-aware create subscriber sub-ident-string ip ip-address protocol {tcp|udp} [port port]
lifetime lifetime [outside-ip ip-address] [outside-port port]
l2-aware delete subscriber sub-ident-string ip ip-address protocol {tcp|udp} port port
l2-aware modify subscriber sub-ident-string ip ip-address protocol {tcp|udp} port port
lifetime lifetime
Context   tools>perform>nat>port-forwarding-action
Description This command Layer-2-Aware NAT port forwarding action.
**lsn**

**Syntax**

```plaintext
lsn create router router-instance [b4 ipv6-address] [aftr ipv6-address] ip ip-address protocol (tcp|udp) [port port] lifetime lifetime [outside-ip ipv4-address] [outside-port port]
lsn delete router router-instance [b4 ipv6-address] ip ip-address protocol (tcp|udp) port
lsn modify router router-instance [b4 ipv6-address] ip ip-address protocol (tcp|udp) port
```

**Context**

tools>perform>nat>port-forwarding-action

**Description**

This command enables large-scale NAT port forwarding actions.

**Sample Output**

```
*A:SR12_PPPOE# tools perform nat port-forwarding-action lsn create router 100 ip 1.2.3.4 protocol tcp lifetime infinite outside-port 666
*A:SR12_PPPOE# tools perform nat port-forwarding-action lsn create router 100 ip 1.2.3.4 protocol udp lifetime infinite outside-port 666
*A:SR12_PPPOE# configure system persistence nat-port-forwarding location cf3:
*A:SR12_PPPOE# tools dump persistence nat-port-forwarding
```

---

Persistence Info
----------------
Client : nat-fwds
File Info : 
Filename : cf3:\nat_fwds.002
File State : CLOSED (Not enough space on disk)
Subsystem Info :
Nbr Of Registrations : 524288
Registrations In Use : 2
Subsystem State : NOK
*A:SR12_PPPOE#
NAT Filter Commands

action

Syntax  action nat [nat-policy-name nat-policy-name]
        no action

Context  config>filter>ip-filter>entry

Description  This command specifies packets matching the entry criteria will be subject to large-scale NAT.

Default  no action nat

Parameters

        nat — Specifies that traffic matching the specified criteria will be diverted to NAT.

        policy-name nat-policy-name — Specifies the NAT policy to be used.
In This Chapter

This chapter provides information about L2TP Network Server (LNS) aspects, including configuration process overview, and implementation notes.

Topics in this chapter include:

- Subscriber agg-rate-limit on LNS on page 866
- MLPPPoE, MLPPP(oE)oA with LFI on LNS on page 873
Subscriber agg-rate-limit on LNS

In non-LNS ESM environment, the existing `agg-rate-limit` command is applied to the subscriber within the subscriber profile (sub-profile). However, the agg-rate-limit cannot be the highest level in subscriber’s HQoS hierarchy. The agg-rate-limit will be only effective if it is applied to a subscriber that is tied to a port-scheduler. In other words, the port-scheduler in subscriber’s HQoS hierarchy is a prerequisite for successful operation of agg-rate-limit. On regular MDAs, the port-scheduler is directly applied to a physical port. The port between the carrier IOM and the ISA is an internal port that is not exposed in the CLI. This is shown in Figure 65.

![Figure 65: QoS Hierarchy on LNS](image)

**Figure 65: QoS Hierarchy on LNS**
The port-scheduler will be applied to the internal lns-esm port in the egress direction. The lns-esm egress port is a port between the carrier IOM and the ISA that is passing traffic from all VRFs that have subscriber L2TP sessions terminated in the corresponding ISA.

The port-scheduler will be applied to each lns-esm port with the following CLI:

**CLI Syntax:**
```
configure
port-policy <port-policy-name>
 egress-scheduler-policy <port-scheduler-policy-name>
```

Port-policy at the root CLI level will create a port policy manager that can apply various policies (port scheduler) to hidden, dynamically created ports for WLAN GW/LNS/NAT.

**CLI Syntax:**
```
configure
isa
 lns-group <grp-id>
 mda <card>/<slot>
 mda <card>/<slot>
 :
 port-policy <port-policy-name>
```

The port policy itself will be applied to internal LNS port under the lns-group CLI hierarchy. The port scheduler will automatically be applied to egress lns-esm ports on carrier IOMs towards every LNS ISA in the lns-group. The port schedulers will have the same configuration on every lns-esm port in the lns group but will operate independently on each port.

**Additional consideration:**

- An ISA can be assigned to a single lns-group. In other words, two or more LNS-groups cannot contain the same ISA. However, an ISA can belong simultaneously to an LNS-group and a NAT group. The port scheduler will affect only LNS traffic.

- The port scheduler rates are wire rates that are based on the encapsulation between the carrier IOM and the ISA which is Ethernet QinQ. However, the queue rates, the billing stats and the agg-rate-limit rates can be optionally based on the last mile encapsulation in the same way as they have been supported in non-LNS environment with `queue-frame-based-accounting` and `encap-offset` commands.

  The ability to calculate queue rates or the agg-rate-limit based on the last mile encapsulation is referred to as Last Mile Aware Shaping.

  For example, the `encap-offset` command will cause the queue rates, the billing stats and the agg-rate-limit to be based on the wire encapsulation in the last mile. For ATM in the last mile, the wire overhead will be calculated per each packet (including ATM cellification overhead and padding). For Ethernet in the first mile, a fixed last mile
encapsulation (defined with the **encap-offset** command or the RFC 5515, *Layer 2 Tunneling Protocol (L2TP) Access Line Information Attribute Value Pair (AVP) Extensions*) wire overhead will be considered in rate calculation. In essence the length of the PPPoE Ethernet QinQ header that is used on the link between the carrier IOM and the ISA will be artificially modified so that it matches the length of the header used in the last mile. The net effect is rate shaping on LNS based on the virtual packet length that is present in the last mile.

The last mile encapsulation information that is used in Last Mile Aware Shaping can be obtained either statically through the explicit value in the **encap-offset** command or dynamically by the RFC 5515 method (AVP 144 in ICRQ). The latter will be the case if the **encap-offset** command does not have any explicitly configured value.

In the absence of the **encap-offset** command, the queue rates, the billing stats and the agg-rate-limit rates will be based on the Ethernet QinQ encapsulation between the carrier IOM and the ISA. Depending on the queue-frame-based-accounting configuration option, those rates can be wire based or data based (Layer 2 encapsulation only).

- The agg-rate-limit is not applicable to ingress direction (LNS or non LNS ESM).
- V-Port is not applicable in LNS configuration.
In certain cases PPPoE clients do not honor the negotiated MRU during the LCP phase and consequently they will send packets larger than the negotiated MRU. This applies to control and data packets.

In this case, the LAC will fragment IPv4 packets which will then have to be reassembled in LNS.

In general, reassembly processing applies only to the end nodes that are receiving fragments. In tunneled environment a fragmented packet must be reassembled before it is de-capsulated.

Reassembly Function

LNS reassembly is implemented through a generic IPv4 reassembly function that can be shared across multiple ISAs in a nat-group. The same ISA can be independently part of an lns-group and a nat-group.

Traffic that needs to be reassembled is steered to the nat-group via filters. Once the fragmented traffic is in the nat-group, it will be reassembled and injected back within the same routing context to the lns-group for further L2TP processing.

Configuration steps:

- Configure two isa groups, a nat-group providing generic reassembly function and a lns-group providing the L2TP services. The ISAs can be shared amongst the groups, or they can be separated per each group:

  CLI Syntax:  
  ```
 configure
 isa
 nat-group 1
 active-mda-limit 2
 mda 1/1
 mda 1/1
 lnsgroup 1
 mda 1/1
 mda 1/2
  ```

- Configure redirection of the L2TP traffic to the nat-group performing reassembly:

  CLI Syntax:  
  ```
 configure
 filter
  ```
ip-filter 10
  entry 5
    match
dst-ip 10.10.10.10 - traffic classification criteria; in this case LNS tunnel endpoint.
    action reassemble
    default-action forward

- Apply 'reassembly' filter on the incoming L2TP traffic:

  CLI Syntax: configure
              router
              interface from-lac
              address 10.0.0.1/24
              port 2/2/2
              ingress
              filter ip 10

- Associate the reassembly context with the same service where LNS is configured.

  CLI Syntax: configure
              service
              vprn 10
              reassembly-group 1
              l2tp
              group "lns-vrf-10" create
              ppp
              authentication-policy "lns"
              proxy-authentication
              proxy-lcp
              tunnel "lns-test-tunnel" create
              lns-group 1
              no shutdown

              subscriber-interface "int1" create
              address 10.20.20.254/24
              group-interface "lns-grp-10" lns create
              sap-parameters
              sub-sla-mgmt
              sub-ident-policy "sub-ident"
              dhcp
              server 192.168.1.1
              trusted
              client-applications ppp
              gi-address 10.20.20.1
Load Sharing Between the ISAs

All traffic matching the criteria associated with the filter action reassemble will be forwarded to the reassembly function, regardless of whether the traffic is fragmented or not.

In case that there are multiple ISAs in the NAT-group, traffic is load shared between them based on the source IP address and the incoming service id (routing context).

Inter-chassis ISA Redundancy

In case that an active ISA fails in a nat-group, the standby ISA will take over the reassembly function. However, the switchover is not statefull and consequently traffic destined to the failed ISA will be lost until it is restarted.
MLPPPoE, MLPPP(oE)oA with LFI on LNS

MLPPPoX is generally used to address bandwidth constraints in the last mile. The following are other uses for MLPPPoX:

- To increase bandwidth in the access network by bundling multiple links/VCs together. For example it is less expensive for a customer with an E1 access to add another E1 link in order to increase the access b/w, rather than to upgrade to the next circuit speed (E3).
- LFI on a single link to prioritize small packet size traffic over traffic with large size packets. This is needed in the upstream and downstream direction.

PPPoE and PPPoEoA/PPPoA v4/v6 host types are supported.

Terminology

The term MLPPPoX is used to reference MLPPP sessions over ATM transport (oA), Ethernet over ATM transport (oEoA) or Ethernet transport (oE). Although MLPPP in subscriber management context is not supported natively over PPP/HDLC links, the terms MLPPP and MLPPPoX terms can be used interchangeably. The reason for this is that link bundling, MLPPP encapsulation, fragmentation and interleaving can be in a broader scope observed independently of the transport in the first mile. However, MLPPPoX terminology will be prevailing in this document in an effort to distinguish MLPPP functionality on ASAP MDA (outside of ESM) and MLPPPoX in LNS (inside of ESM).

Terms speed and rate are interchangeably used throughout this section. Usually speed refers to the speed of the link in general context (high or low) while rate usually quantitatively describes the link speed and associates it with the specific value in bps.
LNS MLPPPoX

This functionality is supported through LNS on BB-ISA. LNS MLPPPoX can be used then as a workaround for PTA deployments, whereby LAC and LNS can be run back-to-back in the same system (connected via an external loop or a VSM2 module), and thus locally terminate PPP sessions.

MLPPPoX can:

- Increase bandwidth in the last mile by bundling multiple links together.
- LFI/reassembly over a single MLPPPoX capable link (plain PPP does not support LFI).
MLPPP Encapsulation

Once the MLPPP bundle is created in the 7750 SR, traffic can be transmitted by using MLPPP encapsulation. However, MLPPP encapsulation is not mandatory over an MLPPP bundle.

MLPPP header is primarily required for sequencing the fragments. But in case that a packet is not fragmented, it can be transmitted over the MLPPP bundle using either plain PPP encapsulation or MLPPP encapsulation.
MLPPPoX Negotiation

MLPPPoX is negotiated during the LCP session negotiation phase by the presence of the Max-Received-Reconstructed Unit (MRRU) field in the LCP ConfReq. MRRU option is a mandatory field required in MLPPPoX negotiation. It represents the maximum number of octets in the Information field of a reassembled packet. The MRRU value negotiated in the LCP phase must be the same on all member links and it can be greater or lesser than the PPP negotiated MRU value of each member link. This means that the reassembled payload of the PPP packet can be greater than the transmission size limit imposed by individual member links within the MLPPPoX bundle. Packets will always be fragmented so that the fragments are within the MRU size of each member link.

Another field that could be optionally present in an MLPPPoX LCP Conf Req is an Endpoint Discriminator (ED). Along with the authentication information, this field can be used to associate the link with the bundle.

The last MLPPPoX negotiated option is the Short Sequence Number Header Format Option which allows the sequence numbers in MLPPPoX encapsulated frames/fragments to be 12-bit long (instead 24-bit long, by default).

Once the multilink capability is successfully negotiated via LCP, PPP sessions can be bundled together over MLPPPoX capable links.

The basic operational principles are:

- LCP session is negotiated on each physical link with MLPPPoX capabilities between the two nodes.
- Based on the ED and/or the authentication outcome, a bundle is created. A subsequent IPCP negotiation is conveyed over this bundle. User traffic is sent over the bundle.
- If a new link tries to join the bundle by sending a new MLPPPoX LCP Conf Request, the LCP session will be negotiated, authentication performed and the link will be placed under the bundle containing the links with the same ED and/or authentication outcome.
- IPCP/IPv6CP will be in the whole process negotiated only once over the bundle. This negotiation will occur at the beginning, when the first link is established and MLPPPoX bundle created. IPCP and IPv6CP messages are transmitted from the 7750 LNS without MLPPPoX encapsulation, while they can be received as MLPPPoX encapsulated or non-MLPPPoX encapsulated.
Enabling MLPPPoX

The lowest granularity at which MLPPPoX can be enabled is an L2TP tunnel. An MLPPPoX enabled tunnel is not limited to carrying only MLPPPoX sessions but can carry normal PPP(oE) sessions as well.

In addition to enabling MLPPPoX on the session terminating LNS node, MLPPPoX can also be enabled on the LAC via PPP policy. The purpose of enabling MLPPPoX on the LAC is to negotiate MLPPPoX LCP parameters with the client. Once the LAC receives the MRRU option from the client in the initial LCP ConfReq, it will change its tunnel selection algorithm so that all sessions of an MLPPPoX bundle are mapped into the same tunnel.

The LAC will negotiate MLPPPoX LCP parameters regardless of the transport technology connected to it (ATM or Ethernet). LCP negotiated parameters are passed by the LAC to the LNS via Proxy LCP in ICCN message. In this fashion the LNS has an option to accept the LCP parameters negotiated by the LAC or to reject them and restart the negotiation directly with the client.

The LAC will transparently pass session traffic handed to it by the LNS in the downstream direction and the MLPPPoX client in the upstream direction. The LNS and the MLPPPoX client will perform all data processing functions related to MLPPPoX such as fragmentation and interleaving.

Once the LCP negotiation is completed and the LCP transition into an open state (configuration ACKs are sent and received), the Authentication phase on the LAC will begin. During the Authentication phase the L2TP parameters will become known (l2tp group, tunnel, etc), and the session will be extended by the LAC to the LNS via L2TP. In case that the Authentication phase does not return L2TP parameters, the session will be terminated because the 7750 does not support directly terminated MLPPPoX sessions.

In the case that MLPPPoX is not enabled on the LAC, the LAC will negotiate plain PPP session with the client. In case that the client accepts plain PPP instead of MLPPPoX as offered by the LAC, when the session is extended to the LNS, the LNS will re-negotiate MLPPPoX LCP with the client on a MLPPPoX enabled tunnel. The LNS will learn about the MLPPPoX capability of the client via Proxy LCP message in ICCN (first Conf Req received from the client is also send in Proxy LCP). If there is no indication of the MLPPPoX capability of the client, the LNS will establish a plain PPP(oE) session with the client.

Note that there is no dependency between ATM autosensing on LAC and MLPPPoX since autosensing operates on a lower layer than PPP (LCP).
Link Fragmentation and Interleaving (LFI)

The purpose of LFI is to ensure that short high priority packets are not delayed by the transmission delay of large low priority packets on slow links.

For example it takes ~150ms to transmit a 5000B packet over a 256Kbps link, while the same packet is transmitted in only 40us over a 1G link (~4000 times faster transmission). To avoid the delay of a high priority packet by waiting in the queue while the large packet is being transmitted, the large packet can be segmented into smaller chunks. The high priority packet can be then interleaved with the smaller fragments. This approach can significantly reduce the delay of high priority packets.

The interleaving functionality is only supported on MLPPPoX bundles with a single link. If more than one link is added into a interleaving capable MLPPPoX bundle, then interleaving will be internally disabled and the tmnxMlpppBundleIndicatorsChange trap will be generated.

With interleaving enabled on an MLPPPoX enabled tunnel, the following session types are supported:

- Multiple LCP sessions tied into a single MLPPPoX bundle. This scenario assumes multiple physical links on the client side. Theoretically it would be possible to have multiple sessions running over the same physical link in the last mile. For example, two PPPoE sessions going over the same Ethernet link in the last mile, or two ATM VCs on the same last mile link. Whichever the case might be, the LAC/LNS is unaware of the physical topology in the last mile (single or multiple physical links). Interleaving functionality will be internally disabled on such MLPPPoX bundle.

- A single LCP session (including dual stack) over the MLPPPoX bundle. This scenario assumes a single physical link on the client side. Interleaving will be supported on such single session MLPPPoX bundle as long as the conditions for interleaving are met. Those conditions are governed by max-fragment-delay parameter and calculation of the fragment size as described in subsequent sections.

- An LCP session (including dual stack) over a plain PPP/PPPoE session. This type of session is a regular PPP(oE) session outside of any MLPPPoX bundle and therefore its traffic is not MLPPPoX encapsulated.

Packets on an MLPPPoX bundle are MLPPPoX encapsulated unless they are classified as high priority packets when interleaving is enabled.
MLPPPoX Fragmentation, MRRU and MRU Considerations

A packet of the size greater than the internally calculated fragment length cannot be natively transmitted over an MLPPPoX bundle. Such packet will be MLPPPoX encapsulated and consequently fragmented. This is irrespective of whether the fragmentation is enabled or disabled. The size of the internally calculated fragment length depends on:

- The desired transmission delay in the last mile.
- The fragment “payload to encapsulation overhead” efficiency ratio.
- Various MTU sizes in the 7750 dictated mainly by received MRU, received MRRU and configured PPP MTU under the following hierarchy:
  
  - configure service vprn l2tp group ppp mtu
  - configure service vprn l2tp group tunnel ppp mtu
  - configure router l2tp group ppp mtu
  - configure router l2tp group tunnel ppp mtu

In cases where MLPPPoX fragmentation is disabled with the no max-fragment-delay command, it is expected that packets are not MLPPPoX fragmented but rather only MLPPPoX encapsulated in order to be load balanced over multiple physical links in the last mile. However, even if MLPPPoX fragmentation is disabled, it is possible that fragmentation occurs under certain circumstances. This behavior is related to the calculation of the MTU values on an MLPPPoX bundle.

MLPPPoX in the 7750 is concerned with two MTUs:

- bundle-mtu determines the maximum length of the original IP packet that can be transmitted over the entire bundle (collection of links) before any MLPPPoX processing takes place on the transmitting side. This is also the maximum size of the IP packet that the receiving node can accept once it de-encapsulates and assembles received MLPPPoX fragments of the same packet. Bundle-mtu is relevant in the context of the collection of links.
- link-mtu determines the maximum length of the payload before it is PPP encapsulated and transmitted over an individual link within the bundle. Link-mtu is relevant in the context of the single link within the bundle.

Assuming that the CPE advertised MRRU and MRU values are smaller than any configurable mtu on MLPPPoX processing modules in the 7750 (carrier IOM and BB-ISA), the bundle-mtu and the link-mtu will be based on the received MRRU and MRU values, respectively. For example, the bundle-mtu will be set to the received MRRU value while link-bundle will be set to the MRU value minus the MLPPPoX encapsulation overhead (4 or 6 bytes).

Consider an example where received MRRU value sent by CPE is 1500B while received MRU is 1492B. In this case, our bundle-mtu will be set to 1500B and our link-mtu will be set to 1488B (or
1486B) to allow for the additional 4/6B of MLPPPoX encapsulation overhead. Consequently, IP payload of 1500B can be transmitted over the bundle but only 1488B can be transmitted over any individual link. In case that an IP packet with the size between 1489B and 1500B needs to be transmitted from the 7750 towards the CPE, this packet would be MLPPPoX fragmented in the 7750 as dictated by the link-mtu. This is irrespective of whether MLPPPoX fragmentation is enabled or disabled (as set by no max-fragment-delay flag).

To entirely avoid MLPPPoX fragmentation in this case, the received MRRU sent by CPE should be lower than the received MRU for the length of the MLPPPoX header (4 or 6 bytes). In this case, for IP packets larger than 1488B, IP fragmentation would occur (assuming that DF flag in the IP header allows it) and MLPPPoX fragmentation would be avoided.

On the 7750 side, it is not possible to set different advertised MRRU and MRU values with the ppp-mtu command. Both MRRU and MRU advertised values adhere to the same configured ppp mtu value.
LFI Functionality Implemented in LNS

As mentioned in the previous section, LFI on LNS is implemented only on MLPPPoX bundles with a single LCP session.

There are two major tasks associated with LFI\(^1\) on the LNS:

- Executing subscriber QoS in the carrier IOM based on the last mile conditions. The subscriber QoS rates are the last mile on-the-wire rates. Once traffic is QoS conditioned, it is sent to the BB-ISA for further processing.
- Fragmentation and artificial delay (queuing) of the fragments so that high priority packets can be injected in-between low priority fragments (interleaved). This operation is performed by the BB-ISA.

Examine an example to further clarify functionality of LFI. The parameters, conditions and requirements that will be used in our example to describe the desired behavior are the following:

- High priority packets must not be delayed for more than 50ms in the last mile due to the transmission delay of the large low priority packets. Considering that tolerated end-to-end VoIP delay must be under 150ms, limiting the transmission delay to 50ms on the last mile link is a reasonable choosing.
- The link between the LNS and LAC is 1Gbps Ethernet.
- The last mile link rate is 256kbps.
- Three packets arrive back-to-back on the network side of the LNS (in the downstream direction). The large 5000B low priority packet P1 arrives first, followed by two smaller high priority packets P2 and P3, each 100B in length. Note that packets P1, P2 and P3 can be originated by independent sources (PCs, servers, etc.) and therefore can theoretically arrive in the LNS from the network side back-to-back at the full network link rate (10Gbps or 100Gbps).
- The transmission time on the internal 10G link between the BB-ISA and the carrier IOM for the large packet (5000B) is 4us while the transmission time for the small packet (100B) is 80ns.
- The transmission time on the 1G link (LNS->LAC) for the large packet (5000B) is 40us while the transmission time for the small packet (100B) is 0.8us.
- The transmission time in the last mile (256kbps) for the large packet is ~150ms while the transmission time for the small packet on the same link is ~3ms.
- Last mile transport is ATM.

---

1. Most of this is also applicable to non-LFI case. The only difference between LFI and non-LFI is that there is no artificial delay performed in non-LFI case.
To satisfy the delay requirement for the high priority packets, the large packets will be fragmented into three smaller fragments. The fragments will be carefully sized so that their individual transmission time in the last mile does not exceed 50ms. After the first 50ms interval, there will be a window of opportunity to interleave the two smaller high priority packets.

This entire process is further clarified by the five points (1-5) in the packet route from the LNS to the Residential Gateway (RG).

The five points are:

1. Last Mile QoS Awareness in the LNS on page 883
2. BB-ISA Processing on page 885
3. LNS-LAC Link on page 886
4. AN-RG Link on page 886
5. Home Link on page 886
Last Mile QoS Awareness in the LNS

By implementing MLPPPoX in LNS, we are effectively transferring the traffic treatment functions (QoS/LFI) of the last mile to the node (LNS) that is multiple hops away.

The success of this operation depends on the accuracy at which we can simulate the last mile conditions in the LNS. The assumption is that the LNS is aware of the two most important parameters of the last mile:

- The last mile encapsulation — This is needed for the accurate calculation of the overhead associated of the transport medium in the last mile for traffic shaping and interleaving.
- The last mile link rate — This is crucial for the creation of artificial congestion and packet delay in the LNS.

The subscriber QoS in the LNS is implemented in the carrier IOM and is performed on a per packets basis before the packet is handed over to the BB-ISA. Per packet, rather than per fragment QoS processing will ensure a more efficient utilization of network resources in the downstream direction. Discarding fragments in the LNS would have detrimental effects in the RG as the RG would be unable to reconstruct a packet without all of its fragments.

High priority traffic within the bundle is classified into the high priority queue. This type of traffic is not MLPPPoX encapsulated unless its packet size exceeds the link MTU as described in MLPPPoX Fragmentation, MRRU and MRU Considerations on page 879. Low priority traffic is classified into a low priority queue and is always MLPPPoX encapsulated. In case that the high priority traffic becomes MLPPPoX encapsulated/fragmented, the MLPPPoX processing module (BB-ISA) will consider it as low-priority. The assumption is that the high priority traffic is small in size and consequently MLPPPoX encapsulation/fragmentation an degradation in priority can be avoided. The aggregate rate of the MLPPPoX bundle is on-the-wire rate of the last mile as shown in Figure 3.

ATM on-the-wire overhead for non-MLPPPoX encapsulated high priority traffic will include:

- ATM encapsulation (VC-MUX, LLC/NLPID, LLC/SNAP).
- AAL5 trailer (8B).
- AAL5 padding to 48B cell boundary (this makes the overhead dependent on the packet size).
- Multiplication by 53/48 to account for the ATM cell headers.

For low priority traffic which is always MLPPPoX encapsulated, an additional overhead related to MLPPPoX encapsulation and possibly fragmentation must be added (blue arrow in Figure 3). In other words, each fragment carries ATM+MLPPPoX overhead.
Note that we can avoid the 48B boundary padding for all fragments except the last one. This can be done by choosing the fragment length so that it is aligned on the 48B boundary (rounded down if based on max-fragment-delay or rounded up if based on the encapsulation/utilization.

For Ethernet in the last mile, our implementation always assures that the fragment size plus the encapsulation overhead is always larger or equal to the minimum Ethernet packet length (64B).
BB-ISA Processing

MLPPP encapsulation, fragmentation and interleaving are performed by the LNS in BB-ISA. If we refer to our example, a large low priority packet (P1) is received by the BB-ISA, immediately followed by the two small high priority packets (P2 and P3). Since our requirement stipulates that there is no more than 50ms of transmission delay in the last mile (including on-the-wire overhead), the large packet must be fragmented into three smaller fragments each of which will not cause more than 50ms of transmission delay.

The BB-ISA would normally send packets/fragments to the carrier IOM at the rate of 10Gbps. In other words, by default the three fragments of the low priority packet would be sent out of the BB-ISA back-to-back at the very high rate before the high priority packets even arrive in the BB-ISA. In order to interleave, the BB-ISA must simulate the last mile conditions by delaying the transmission of the fragments. The fragments will be paced out of the BB-ISA (and out of the box) at the rate of the last mile. High priority packets will get the opportunity to be injected in front of the fragments while the fragments are being delayed.

As shown in Figure 65 (point 2) the first fragment F1 is sent out immediately (transmission delay at 10G is in the 1us range). The transmission of the next fragment F2 is delayed by 50ms. While the transmission of the second fragment F2 is being delayed, the two high priority packets (P1 and P2 in red) are received by the BB-ISA and are immediately transmitted ahead of fragments F2 and F3. This approach relies on the imperfection of the IOM shaper which is releasing traffic in bursts (P2 and P3 right after P1). The burst size is dependent on the depth of the rate token bucket associated with the IOM shaper.

Note that by the time the second fragment F2 is transmitted, the first fragment F1 has traveled a long way (50ms) on high rate links towards the Access Node (assuming that there is no queuing delay along the way), and its transmission on the last mile link has already begun (if not already completed).

This is not applicable for this discussion, but nonetheless worth noticing is that the LNS BB-ISA also adds the L2TP encapsulation to each packet/fragment. The L2TP encapsulation is removed in the LAC before the packet/fragment is transmitted towards the AN.
LNS-LAC Link

This is the high rate link (1Gbps) on which the first fragment F1 and the two consecutive high priority packets, P2 and P3, are sent back-to-back by the BB-ISA


The remaining fragments (F2 and F3) are still waiting in the BB-ISA to be transmitted. They are artificially delayed by 50ms each.

Additional QoS based on the L2TP header can be performed on the egress port in the LNS towards the LAC. This QoS is based on the classification fields inside of the packet/fragment headers (DSCP, dot1.p, EXP).

Note that the LAC-AN link is not really relevant for the operation of LFI on the LNS. This link can be either Ethernet (in case of PPPoE) or ATM (PPPoE or PPP). The rate of the link between the LAC and the AN is still considered a high speed link compared to the slow last mile link.

AN-RG Link

Finally, this is the slow link of the last mile, the reason why LFI is performed in the first place. Assuming that LFI played its role in the network as designed, by the time the transmission of one fragment on this link is completed, the next fragment arrives just in time for unblocked transmission. In between the two fragments, we can have one or more small high priority packets waiting in the queue for the transmission to complete.

Note on the AN-RG link in Figure 65 that packets P2 and P3 are ahead of fragments F2 and F3. Therefore the delay incurred on this link by the low priority packets is never greater than the transmission delay of the first fragment (50ms). The remaining two fragments, F2 and F3, can be queued and further delayed by the transmission time of packets P2 and P3 (which is normally small, in our example 3ms for each).

Note that if many low priority packets are waiting in the queue, then they would have caused delay and would have further delayed the fragments that are in transit from the LNS to the LAC. This condition is normally caused by bursts and it should clear itself out over time.

Home Link

High priority packets P2 and P3 are transmitted by the RG into the home network ahead of the packet P1 although the fragment F1 has arrived in the RG first. The reason for this is that the RG must wait for the fragments F2 and F3 before it can re-assemble packet P1.
Optimum Fragment Size Calculation by LNS

Fragmentation in LFI is based on the optimal fragment size. LNS implementation calculates the two optimal fragment sizes, based on two different criteria:

- Optimal fragment size based on the payload efficiency of the fragment given the fragmentation/transportation header overhead associated with the fragment ?encapsulation based fragment size.
- Optimal fragment size based on the maximum transmission delay of the fragment set by configuration ?delay based fragment size.

At the end only one optimal fragment size will be is selected. The actual fragments length will be of the optimal fragment size.

- The parameters required to calculate the optimal fragment sizes are known to the LNS either via configuration or via signaling. These, in-advance known parameters are:
  - Last mile maximum transmission delay (max-fragment-delay obtained via CLI)
  - Last mile ATM Encapsulation (in our example the last mile is ATM but in general it can be Ethernet for MLPPPoE)
  - MLPPP encapsulation length (depending on the fragment sequence number format)
  - The last mile on-the-wire rate for the MLPPPoX bundle

Examine closer each of the two optimal fragment sizes.

Encapsulation Based Fragment Size

One needs to be mindful of the fact that fragmentation may cause low link utilization. In other words, during fragmentation a node may end up transporting mainly overhead bytes in the fragment as opposed to payload bytes. This would only intensify the problem that fragmentation is intended to solve, especially on an ATM access link that tend to carry larger encapsulation overhead.

To reduce the overhead associated with fragmentation, the following is enforced in the 7750:

The minimum fragment payload size will be at least 10times greater than the overhead (MLPPP header, ATM Encapsulation and AAL5 trailer) associated with the fragment.

The optimal fragment length (including the MLPPP header, the ATM Encapsulation and the AAL5 trailer) is a multiple of 48B. Otherwise, the AAL5 layer would add an additional 48B boundary padding to each fragment which would unnecessary expand the overhead associated with fragmentation. By aligning all-but-last fragments to a 48B boundary, only the last fragment will potentially contain the AAL5 48B boundary padding which is no different from a non-
fragmented packet. For future reference we will refer to all fragments except for the last fragment as non-padded fragments. The last fragment will obviously be padded if it is not already natively aligned to a 48B boundary.

As an example, calculate the optimal fragment size based on the encapsulation criteria with the maximum fragment overhead of 22B. To achieve >10x transmission efficiency the fragment payload size must be 220B (10*22B). To avoid the AAL5 padding, the entire fragment (overhead + payload) will be rounded UP on a 48B boundary. The final fragment size will be 288B [22B + 22B*10 + 48B_allignment].

In conclusion, an optimal fragment size was selected that will carry the payload with at least 90% efficiency. The last fragment of the packet cannot be artificially aligned on a 48B boundary (it is a natural reminder), so it will be padded by the AAL5 layer. Therefore the efficiency of the last fragment will probably be less than 90% in our example. In the extreme case, the efficiency of this last fragment may be only 2%.

Note that the fragment size chosen in this manner is purely chosen based on the overhead length. The maximum transmission delay did not play any role in the calculations.

For Ethernet based last mile, the CPM always makes sure that the fragment size plus encapsulation overhead is larger or equal to the minimum Ethernet packet length of 64B.

---

**Fragment size based on the max transmission delay**

The first criterion in selecting the optimal fragment size based on the maximum transmission delay mandates that the transmission time for the fragment, including all overheads (MLPPP header, ATM encapsulation header, AAL5 overhead and ATM cell overhead) must be less than the configured max-fragment-delay time.

The second criterion mandates that each fragment, including the MLPPP header, the ATM Encapsulation header, the AAL5 trailer and the ATM cellification overhead be a multiple of 48B. The fragment size is rounded down to the nearest 48B boundary during the calculations in order to minimize the transmission delay. Aligning the fragment on the 48B boundary eliminates the AAL5 padding and therefore reduces the overhead associated with the fragment. The overhead reduction will not only improve the transmission time but it will also increase the efficiency of the fragment.

Given these two criteria along with the configuration parameters (ATM Encapsulation, MLPPP header length, max-fragment-delay time, rate in the last mile), the implementation calculates the optimal non-padded fragment length as well as the transmission time for this optimal fragment length.
Selection of the Optimum Fragment Length

So far the implementation has calculated the two optimum fragment lengths, one based on the length of the MLPPP/transport encapsulation overhead of the fragment, the other one based on the maximum transmission delay of the fragment. Both of them are aligned on a 48B boundary. The larger of the two is chosen and the BB-ISA will perform LFI based on this selected optimal fragment length.
Upstream Traffic Considerations

Fragmentation and interleaving is implemented on the originating end of the traffic. In other words, in the upstream direction the CPE (or RG) is fragmenting and interleaving traffic. There is no interleaving or fragmentation processing in the upstream direction in the 7750. The 7750 will be on the receiving end and is only concerned with the reassembly of the fragments arriving from the CPE. Fragments will be buffered until the packet can be reconstructed. If all fragments of a packet are not received within a preconfigured timeframe, the received fragments of the partial packet will be discarded (a packet cannot be reconstructed without all of its fragments). This time-out and discard is necessary in order to prevent buffer starvation in the BB-ISA. Two values for the time-out can be configured: 100ms and 1s.

Multiple Links MLPPPoX With No Interleaving

Interleaving over MLPPPoX bundles with multiple links will not be supported. However, fragmentation is supported.

In order to preserve packet order, all packets on an MLPPPoX bundle with multiple links will be MLPPPoX encapsulated (monotonically increased sequence numbers).

We will not support multiclass MLPPP (RFC 2686, The Multi-Class Extension to Multi-Link PPP). Multiclass MLPPP would require another level of intelligent queuing in the BB-ISA which we do not have.

MLPPPoX Session Support

The following session types in the last mile will be supported:

- MLPPPoE — Single physical link or multilink. The last mile encapsulation is Ethernet over copper (This could be Ethernet over VDSL or HSDSL). The access rates (especially upstream) are still limited by the xDSL distance limitation and as such interleaving is required on a slow speed single link in the last mile. It is possible that the last mile encapsulation is Ethernet over fiber (FTTH) but in this case, users would not be concerned with the link speed to the point where interleaving and link aggregation is required.

Finally, this is the slow link of the last mile, the reason why LFI is performed in the first place. Assuming that LFI played its role in the network as designed, by the time the transmission of one fragment on this link is completed, the next fragment arrives just in time for unblocked transmission. In between the two fragments, we can have one or more small high priority packets waiting in the queue for the transmission to complete.
We can see on the AN-RG link in Figure 2 that packets P2 and P3 are ahead of fragments F2 and F3. Therefore the delay incurred on this link by the low priority packets is never greater than the transmission delay of the first fragment (50ms). The remaining two fragments, F2 and F3, can be queued and further delayed by the transmission time of packets P2 and P3 (which is normally small, in our example 3ms for each).

Note that if many low priority packets were waiting in the queue, then they would have caused delay for each other and would have further delayed the fragments in transit from the LNS to the LAC. This condition is normally caused by bursts and it should clear itself out over time.

- MLPPP(oEo)A — A single physical link or multilink. The last mile encapsulation is ATM over xDSL.

Some other combinations are also possible (ATM in the LAST mile, Ethernet in the aggregation) but they all come down to one of the above models that are characterized by:

- Ethernet or ATM in the last mile.
- Ethernet or ATM access on the LAC.
- LPPP/PPPoE termination on the LNS
Session Load Balancing Across Multiple BB-ISAs

PPP/PPPoE sessions are by default load balanced across multiple BB-ISAs (max 6) in the same group. The load balancing algorithm considers the number of active session on each BB-ISA in the same group².

With MLPPPoX, it is important that multiple sessions per bundle be terminated on the same LNS BB-ISA. This can be achieved by per tunnel load balancing mode where all sessions of a tunnel are terminated in the same BB-ISA. Per tunnel load balancing mode is mandatory on LNS BB-ISAs that are in the group that supports MLPPPoX.

On the LAC side, all sessions in an MLPPPoX bundle are automatically assigned to the same tunnel. In other words an MLPPPoX bundle is assigned to the tunnel. There can be multiple tunnels created between the same pair of LAC/LNS nodes.

² The load balancing algorithm does not take into account the number of queues consumed on the carrier IOM. Therefore a session can be refused if queues are depleted on the carrier IOM even though the BB-ISA may be lightly loaded in terms of the number of sessions that is hosting.
BB-ISA Hashing Considerations

All downstream traffic on an MLPPPoX bundle with multiple links is always MLPPPoX encapsulated. Some traffic is fragmented and served in a octet oriented round robin fashion over multiple member links. However, fragments are never delayed in case that the bundle contains multiple links.

In a per fragment/packet load sharing algorithm, there is always the possibility that there is uneven load utilization between the member links. A single link overload will most likely go unnoticed in the network all the way to the Access Node. The access node is the only node in the network that actually has multiple physical links connected to it. All other session-aware nodes\(^3\) (LAC and LNS) only see MLPPPoX as a bundle with multiple sessions without any mechanism to shape traffic per physical link.

If one of the member sessions is perpetually overloaded by the LNS, traffic will be dropped in the last mile since the corresponding physical link cannot absorb traffic beyond its physical capabilities. This would have detrimental effects on the whole operation of the MLPPPoX bundle. To prevent this perpetual overloading of the member links that can be caused by per packet/fragment load balancing scheme, the load balancing scheme that takes into account the number of octets transmitted over each member link. The octet counter of a new link will be initialized to the lowest value of any existing link counter. Otherwise the load balancing mechanism would show significant bias towards the new link until the byte counter catches up with the rest of the links.

---

Last Mile Rate and Encapsulation Parameters

The last mile rate information along with the encapsulation information is used for fragmentation (to determine the maximum fragment length) and interleaving (delaying fragments in the BB-ISA). In addition, the aggregate subscriber rate (aggregate-rate-limit) on the LNS is automatically adjusted based on the last mile link rate and the number of links in the MLPPPoX bundle.

Downstream Data Rate in the Last Mile

The subscriber aggregate rates (agg-rate-limit) used in (H)QoS on the carrier IOM and in the BB-ISA (for interleaving) must be wire based in the last mile. This rule applies equally to both, the LAC and LNS.

The last mile on-the-wire rates of the subscriber can be submitted to the LAC and the LNS via various means. Here is the break down on how the last mile wire rates will be passed to each entity:

---

3. Other nodes in this case being 7750s. Other vendors may have the ability to condition (shape) traffic per session.
The last mile link rate is taken via the following methods in the order of listed priority:

- **LUDB** — rate-down command under the host hierarchy in LUDB.
- **RADIUS Alc-Access-Loop-Rate-Down VSA**. Although this VSA is stored in the state of plain PPP(oE) sessions (MLPPPoX bundled or not), it is applicable only to MLPPPoX bundles.
- **PPPoE tags** — Vendor Specific Tags (RFC 2516, *A Method for Transmitting PPP Over Ethernet (PPPoE)*; tag type 0x0105; tag value is Enterprise Number 3561 followed by the TLV sub-options as specified in TR-101 -> Actual Data Rate Downstream 0x82)

As long as the link rate information is available in the LAC, it will always be passed to the LNS in the ICRQ message using the standard L2TP encoding. This cannot be disabled.

In addition, an option is available to control the source of the rate information can be conveyed to the LNS via TX Connect Speed AVP in the ICCN message. This can be used for compatibility reasons with other vendors that can only use TX Connect Speed to pass the link rate information to the LNS. By default, the maximum port speed (or the sum of the maximum speeds of all member ports in the LAG) will be reported in TX Connect Speed. Unlike the rate conveyed in ICRQ message, The TX Connect Speed content is configurable via the following command:

```
config>subscriber-management>
 sla-profile <name>
 egress
 report-rate agg-rate-limit | scheduler <scheduler-name> | pppoe-actual-rate
 | rfc5515-actual-rate
```

The report-rate configuration option will dictate which rate will be reported in the TX Connect Speed as follows:

- **agg-rate-limit** => statically configured agg-rate-limit value or RADIUS QoS override will be reported
- **scheduler <scheduler-name>** => virtual schedulers are not supported in MLPPPoX
- **pppoe-actual-rate** => rate taken from PPPoE Tags will be reported. Note that rate reported via RFC5515 can still be different if the source for both methods is not the same.
- **rfc5515-actual-speed** => the rate is taken from RFC5515.

The RFC 5515 relies on the same encoding as PPPoE tags (vendor id is ADSL Forum and the type for Actual Data Rate Downstream is 0x82). Note that the two methods of passing the line rate to the LNS are using different message types (ICRQ and ICCN).

The LAC on the 7750 is not aware of MLPPPoX bundles. As such, the aggregate subscriber bandwidth on the LAC is configured statically via usual means (sub-profile, scheduler-policy) or dynamically modified via RADIUS. The aggregate subscriber (or MLPPPoX bundle) bandwidth on the LAC is not automatically adjusted according to the rates of the individual links in the
bundle and the number of the links in the bundle. As such, an operator must ensure that the 
statistically provided rate value for aggregate-rate-limit is the sum of the bandwidth of each member 
link in the MLPPPoX bundle. The number of member links and their bandwidth must be therefore 
known in advance. The alternative is to have the aggregate rate of the MLPPPoX bundle set to a 
high value and rely on the QoS treatment performed on the LNS.

LNS

The sources of information for the last mile link rate on the LNS will be taken in the following 
order:

- LUDB (during user authentication phase, same as in LAC)
- RADIUS (same as in LAC)
- ICRQ message — Actual Data Downstream Rate (RFC 5515)
- ICCN message — TX Connect Speed

There will be no configuration option to determine the priority of the source of information for the 
last mile link rate. TX Connect Speed in ICCN message will only be taken into consideration as a 
last resort in absence of any other source of last mile rate information.

Once the last mile rate information is obtained, the subscriber aggregate rate (aggregate-rate-limit 
will be automatically adjusted to the minimum value of:

- The smallest link speed in the MLPPPoX bundle multiplied by the number of links in the bundle.
- Statically configured aggregate-rate-limit

The link speed of each link in the bundle must be the same, i.e. different link speeds within the 
bundle are not supported. In the case that we receive different link speed values for last mile links 
within the bundle, we will adopt the minimum received speed and apply it to all links.

In case that the obtained rate information from the last mile for a session within the MLPPP 
bundle is out of bounds (1Kbps to 100Mbs), the session within the bundle will be terminated.

Encapsulation

Wire-rates are dependent on the encapsulation of the link to which they apply. The last mile 
encapsulation information can be extracted via various means.

LAC

- Static configuration via LUDB.
- RADIUS — Alc-Access_Loop-Encap-Offset VSA.
• PPPoE tags — Vendor Specific Tags (RFC 2516; tag type 0x0105; tag value is Enterprise Number 3561 followed by the TLV sub-options as specified in TR-101 -> Actual Data Rate Downstream 0x82).

The LAC will pass the line encapsulation information to the LNS via ICRQ message using the encoding defined in the RFC 5515.

LNS

The LNS will extract the encapsulation information in the following order:

• Static configuration via LUDB.
• RADIUS — Alc-Access-Loop-Encap-Offset VSA.
• ICRQ message (RFC 5515)

In case that the encapsulation information is not provided by any of the existing means (LUDB, RADIUS, AVP signaling, PPPoE Tags), then by default pppoa-null encapsulation will be in effect. This applies to LAC and LNS.

---

**Link Failure Detection**

The link failure in the last mile is detected via the expiration of session keepalives (LCP). The LNS will tear down the session over the failed link and notify the LAC via a CDN message.

---

**CoA Support**

CoA request for the subscriber aggregate-rate-limit change is honored on the LAC and the LNS.

CoA for the rate change of an individual link within the bundle is supported through the same VSA that can be used to initially assign the rate parameter to each member link. This is supported only on LNS. The rate override via CoA is applied to all active link members within the bundle.

Change of the access link parameters via CoA is be supported in the following fashion:

• Change of access loop encap: refused (NAK)
• Change of access loop rate down:
• On L2TP LAC session: refused (NAK). On LAC the access loop rate down is not locally used for any rate limiting function but instead it is just passed to the LNS at the beginning when the session is first established. Mid-session changes on LAC via CoA are not propagated to the LNS.
• On L2TP LNS session:
  → Plain session: ignored. The rate is stored in the MIB table but no rate limiting action is taken. In other words, this parameter is internally excluded from rate calculations and advertisements. However, it is shown in the output of the relevant show commands.

• Bundle session: applied on all link sessions. The aggregate rate limit of the bundle is set to the minimum of the:
  • CoA obtained local loop down rate multiplied by the number of links in the bundle
  • The aggregate rate limit configured statically or obtained via CoA.

• Fragment length will be affected by this change. In case that interleaving is enabled on a single link bundle, the interleave interval will be affected.

• Non-L2TP: ignored. The rate is stored in the MIB table but no rate limiting action is taken. In other words, this parameter is internally excluded from rate calculations and advertisements. However, it will be shown in the output of the relevant show commands.

Similar behavior is exhibited if at midsession, the parameters are changed via LUDB with the exception of the rate-down parameter in LAC. If this parameter is changed on the LAC, all sessions are disconnected.

---

**Accounting**

Accounting counters on the LNS include all packet overhead (wire overhead from the last mile). There is only one accounting session per bundle.

On the LAC, there is one accounting session per pppoe session (link).

In tunnel-accounting mode there is one accounting session per link.

On LNS only the stop-link of the last link of the bundle will carry all accounting data for the bundle.

---

**Filters and Mirroring**

Filters and mirrors (LI) are not supported on an MLPPPoX bundle on LAC. However, filters and ip-only mirror type are supported on the LNS.
PTA Considerations

Locally terminated MLPPPoX (PTA) solution is offered based on the LAC and the LNS hosted in the same system. An external loop (or VSM2) is used to connect the LAC to the LNS within the same box. The subscribers will be terminated on the LNS.

QoS Considerations

Dual-Pass

HQoS and LFI are performed in two stages that involve double traversal (dual-pass) of traffic through the carrier IOM and the BB-ISA. The following are the functions performed in each pass:

- In the first pass through the carrier IOM, traffic is marked (dot1p bits) as high or low priority. This will play crucial role in the execution of LFI in the BB-ISA.
- In the first pass through the BB-ISA this prioritization from the 1st step, will be an indication (along with the internally calculated fragment size) of whether the traffic will be interleaved (non MLPPP encapsulated) or not (MLPPP encapsulated). Consequently the BB-ISA will add the necessary padding related to last mile wire overhead to each packet. This padding will be used in the second pass on the carrier IOM to perform last mile wire based QoS functions.
- In the second pass through the carrier IOM, the last mile wire based HQoS will be performed based on the padding added in the first pass through the BB-ISA.
- In the second pass through the BB-ISA, previously added overhead will be stripped off and LFI/MLPPP encapsulation functions will be performed.

Traffic Prioritization in LFI

The delivery of high priority traffic within predefined delay bounds on a slow speed last mile link is ensured by proper QoS classification and prioritization. High priority traffic will be interleaved with low priority fragments on a single link MLPPPoX bundle with LFI enabled. The classification of traffic into proper (high or low priority) forwarding class is performed on the downstream ingress interface. However, traffic can be re-classified (re-mapped into another forwarding class) on the egress access interface of the carrier IOM, just before packets are transmitted to the BB-ISA for MLPPPoX processing. This can be achieved via QoS sap-egress policy referenced in the LNS sla-profile.
The priority of the forwarding class in regular QoS (on IOM) is determined by the properties\(^4\) of the queue to which the forwarding class is mapped. In contracts, traffic prioritization in LFI domain (in BB-ISA) is determined by the outer dot1p bits that are set by the carrier IOM while transmitting packets towards the BB-ISA. The outer dot1p bits are marked based on the forwarding class information determined by classification/re-classification on ingress/carrier IOM. This marking of outer dot1p bits in the Ethernet header between the carrier IOM and the BB-ISA is fixed and defined in the default sap-egress LNS ESM policy 65537. The marking definition is as follows:

\[
\begin{align*}
\text{FC be} & \rightarrow \text{dot1p 0} \\
\text{FC l2} & \rightarrow \text{dot1p 1} \\
\text{FC af} & \rightarrow \text{dot1p 2} \\
\text{FC l1} & \rightarrow \text{dot1p 3} \\
\text{FC h2} & \rightarrow \text{dot1p 4} \\
\text{FC ef} & \rightarrow \text{dot1p 5} \\
\text{FC h1} & \rightarrow \text{dot1p 6} \\
\text{FC nc} & \rightarrow \text{dot1p 7}
\end{align*}
\]

In LFI (on BB-ISA), dot1p bits [0,1,2 and 3] are considered low priority while dot1p bits (4,5,6 and 7) are considered high priority. Consequently, forwarding classes BE, L2, AF and L1 are considered low priority while forwarding classes H2, EF, H1 and NC are considered high priority. High priority traffic\(^5\) will be interleaved with low priority traffic.

The following describes the reference points in traffic prioritization for the purpose of LFI in the 7750:

- Classification on downstream ingress interface (entrance point into the 7750) - packets can be classified into one of the following eight forwarding classes: be, l2, af, l1, h2, ef, h1 and nc. Depending on the type of the ingress interface (access or network), traffic can be classified based on dot1p, exp, DSCP, TOS bits or ip-match criteria (dscp, dst-ip, dst-port, fragment, src-ip, src-port and protocol-id).

- Re-classification on downstream access egress interface between the carrier IOM and the BB-ISA - in the carrier IOM, downstream traffic can be re-classified into another forwarding class, just before it is forwarded to the BB-ISA. Re-classification on access egress is based on the same fields as on ingress except for the dot1p and exp bits since Ethernet or MPLS headers from ingress are not carried from ingress to egress.

- Marking on downstream access egress interface between the carrier IOM and the BB-ISA - once the forwarding class is available on the carrier IOM in the egress direction (towards BB-ISA), it will be used to mark outer dot1p bits in the new Ethernet header that will be used to transport the frame from the carrier IOM to the BB-ISA. The marking of the dot1p bits on the egress SAP between the carrier IOM and the BB-ISA cannot be changed for MLPPoX even if the no qos-marking-from-sap command is configured under the sla-profile on egress.

---

4. Expedited, non-expedited queue type, CIR and PIR rates.
5. Assuming that the packet size does not exceed maximum fragment size.
Shaping Based on the Last Mile Wire Rates

Accurate QoS, amongst other things, require that the subscriber rates in the first mile on an MLPPPoX bundle be properly represented in the LNS. In other words, the rate limiting functions in the LNS must account for the last mile on-the-wire encapsulation overhead. The last mile encapsulation can be Ethernet or ATM.

For ATM in the last mile, the LNS will account for the following per fragment overhead:

- PID
- MLPPP encapsulation header
- ATM Fixed overhead (ATM encap + fixed AAL5 trailer)
- 48B boundary padding as part of AAL5 trailer
- 5B per each 48B of data in ATM cell.

In case of Ethernet encapsulation in the last mile, the overhead will be:

- PID
- MLPPP header per fragment
- Ethernet Header + FCS per fragment
- Preamble + IPG overhead per fragment

The encap-offset command under the sub-profile egress CLI node will be ignored in case of MLPPPoX. MLPPPoX rate calculation will be by default always based on the last mile wire overhead.

The HQoS rates (port-scheduler, aggregate-rate-limit and scheduler) on LNS are based on the wire overhead of the entity to which the HQoS is applied. For example, if the port-scheduler is managing bandwidth on the link between the BB-ISA and the carrier IOM, then the rate of such scheduler will account for the q-in-q Ethernet encapsulation on that link along with the preamble and inter packet gap (20B).

While virtual schedulers (attached via sub-profile) are supported on LNS for plain PPPoX sessions, they are not supported for MLPPPoX bundles. Only aggregate-rate-limit along with the port-scheduler can be used in MLPPPoX deployments.
Downstream Bandwidth Management on Egress Port

Bandwidth management on the egress physical ports (Physical Port 1 and Physical Port 2 in Figure 8) is performed at the egress port itself on the egress IOM instead on the carrier IOM. By default, the forwarding class (FC) information is preserved from network ingress to network egress. However, this can be changed via QoS configuration applied to the egress SAP of the carrier IOM towards the BB-ISA.

L2TP traffic originated locally in LNS can be marked via the router/service vprn->sgt-qos hierarchy.

Sub/Sla-Profile Considerations

Sub-profile

In the MLPPPoX case on LNS, multiple sessions are tied into the same subscriber aggregate-rate-limit via a sub-profile. The consequence is that the aggregate rate of the subscriber can be adjusted dynamically depending on the advertised link speed in the last mile and the number of links in the bundle. Note that shaping in the LNS is performed per the entire MLPPPoX bundle (subscriber) rather than per individual member links within the bundle. The exception is obviously a MLPPPoX bundle with the single member link (interleaving case) where the relationship between the session and the MLPPPoX bundle is 1:1.

In the LAC, the subscriber aggregate rate cannot be dynamically changed based on the number of links in the bundle and their rate. The LAC has no notion of MLPPPoX bundles. However, multiple sessions that in reality belong to an MLPPPoX bundle under the subscriber are shaped as an aggregate (agg-rate-limit under the sub-profile). This in essence yields the same shaping behavior as on LNS.

Sla-profile

Sessions within the MLPPPoX bundle in LNS share a single sla-profile instances (queues).

In the LAC, as long as the sessions within the subscriber6 are on the same SAP, they can also share the same sla-profile. This will be the case in MLPPPoX.

The manner in which sub/sla-profile are applied to MLPPPoX bundles and the individual sessions within results in aggregate shaping per MLPPPoX bundle as well as allocation of unique set of queues per MLPPPoX bundle. This is valid irrespective of the location where shaping is executed (LAC or LNS). Other vendors may have implemented shaping per session within the bundle and this is something that needs to be taken into consideration during the migration process.
Example of MLPPPoX Session Setup Flow

LAC behavior

• A new PPP(oEoA) session request will arrive to the LAC (PADI or LCP Conf Req).
• The LAC will negotiate PADx session if applicable.
• The LAC may negotiate MLPPPoX LCP phase with its own endpoint discriminator, or it may reject MLPPPoX specific options in LCP if MLPPPoX on the LAC is disabled (i.e. no accept-mrru in the LAC’s ppp-policy). If MLPPPoX options (seq num header format, ED, MRRU) are rejected, the assumption is that the client will renegotiate plain PPP(oEoA) session with the LAC.
• Once LCP (MLPPPoX capable or not) is negotiated, the session will be authenticated (PAP/CHAP).
• Upon successful authentication, an L2TP tunnel will be identified to which the session belongs.
• If the session is a non-L2TP session (PTA MLPPPoX capable session for which the tunnel cannot be determined), the session will be terminated.
• Otherwise, the QoS constructs will be created for the subscriber hosts: the session will be assigned to a sub/sla-profiles.
• The session LCP parameters will be sent to the LNS via call management messages.
• Note that if another LCP session is requested on the same bundle, the LAC will create a new LCP session and join this session to the existing subscriber as another host. In other words, the LAC is bundle agnostic and the two sessions will appear as two hosts under the same subscriber.

The following assumes that MLPPPoX is configured on the LNS under the L2TP group or the tunnel hierarchy.

LNS behavior

• The LNS have the option to accept the LCP parameters or to reject them and start renegotiating LCP parameters directly with the client.
• If the LNS choose to renegotiate LCP parameters with the client directly, this renegotiation will be completely transparent to the LAC by the means of a T-bit (control vs. data) in the L2TP header. LCP will be renegotiated on the LNS with all the options necessary to support MLPPPoX. Note that Endpoint Discriminator is not mandatory in the MLPPPoX negotiation. If the client rejects it, the LNS must still be able to negotiate MLPPPoX capable session (same is valid for the LAC). If the client’s endpoint discriminator is invalid (bad format, invalid class, etc.), the 7750 will not negotiate MLPPPoX and instead a plain PPP session will be created.
• If the LNS is configured to accept the LCP Proxy parameters, the LNS will determine the capability of the client.
If there is no indication of MLPPPoX capability in the Proxy LCP (not even in the original ConfReq), the LNS may accept plain (non MLPPPoX capable) LCP session or renegotiate from scratch the non MLPPPoX capable session.

If there is an indication of MLPPPoX capability in the Proxy LCP (either completely negotiated on the LAC or at least attempted from the client), the LNS will try to either accept the MLPPPoX negotiated session by the LAC or renegotiate the MLPPPoX capable session directly with the client.

If the LCP Proxy parameters with MLPPPoX capability are accepted by the LNS, then the endpoint as negotiated on the LAC will also be accepted.

- Once the MLPPPoX capable LCP session is negotiated or accepted, authentication can be performed on the LNS. Authentication on the LNS can be restarted (CHAP challenge/response with the client), or accepted (chap challenge/response accepted and verified by the LNS via RADIUS).
- If the authentication is successful, depending on the evaluation of the parameters negotiated up to this point a new MLPPPoX bundle will be created or an existing MLPPPoX bundle will be joined. In case that a new bundle is established, the QoS constructs for the subscriber(-host) will be created (sub/sla-profile). Session negotiation will advance to IPCP phase.
- The decision whether a new session should join an existing MLPPPoX bundle, or trigger creation of a new one is governed by RFC 1990, *The PPP Multilink Protocol (MP)*, section 5.1.3, page 16, cases 1,2,3, and 4.
- Note that interleaving is supported only on MLPPPoX bundles with single session in them.
Other Considerations

- IPv6 is supported.
- AA is supported at LNS where full IP packets can be redirected via AA policies.
- Intra-chassis redundancy is supported:
  - CPM stateful failover
  - BB-ISA — non-stateful failover
Configuration Notes

MLPPP in subscriber management context is supported only over ATM, Ethernet over ATM or plain Ethernet transport (MLPPPoX). Native MLPPP over PPP/HDLC links is supported outside of the subscriber management context on the ASAP MDA.

MLPPPoX is supported only on LNS.

Interleaving is supported only on MLPPPoX bundles with a single member link. If more than one link is present in an MLPPPoX bundle, the interleaving will be automatically disabled and a SNMP trap will be generated. The MIB for this even is defined as tmnxMlpppBundleIndicatorsChange.

If MLPPPoX is enabled on LNS, the load balancing mode between the BB-ISAs within the group should be set to per tunnel. This will ensure that all sessions of the same MLPPPoX bundle are terminated on the same BB-ISA. On the LAC, sessions of the same bundle are setup in the same tunnel.

Virtual schedulers are not supported on MLPPPoX tunnels on LNS. However, aggregate-rate-limit is supported.

The aggregate-rate-limit on LNS will be automatically adjusted to the minimum value of:

- configured aggregate-rate-limit
- minimum last mile rate (obtained via LUDB, RADIUS or PPPoE tags) multiplied by the number of links in the bundle.

The aggregate-rate-limit on the LAC is not adjusted automatically. Therefore, if configured it should be set to a high value and thus the traffic treatment should rely on QoS performed on the LNS.

The rate (rate-down information) of the member links within the bundle must be the same. Otherwise the lowest rate is selected and applied to all member links.

A single CoA for a rate change (Alc-Access-Loop-Rate-Down) of an individual link in an MLPPPoX bundle will modify rates of all links in the bundle. This is applicable on LNS only.

The range of supported last mile rate (rate-down information) for the member links on an MLPPPoX session is 1kbps — 100mbps. On the LNS the last mile rate can be obtained:

- From the LAC via Tx-Connect-Speed AVP or by standard L2TP encoding as described in the RFC 5515, *Layer 2 Tunneling Protocol (L2TP) Access Line Information Attribute Value Pair (AVP) Extensions*.
- From the LAC via LUDB or RADIUS
- Directly on the LNS via LUDB or RADIUS.
The session will fail to come up if the obtained rate-down information is outside of the allowable range (1kbps — 100mbps).

A session within the MLPPPoX bundle will be terminated if the rate-down information for the session is out of bounds (1Kbps — 100Mbps).

If a member link in the last mile fails, traffic will be blackholed until the LNS is notified of this failure. The failure detection in the LNS relies on PPP keepalives.

Shaping is performed per MLPPPoX bundle and not individually per member links.

If encapsulation overhead associated with fragmentation is too large in comparison to payload, the fragments will be sized based on the encapsulation overhead (to increase link efficiency) rather than on maximum transmission delay.

There can be only a single MLPPPoX bundle per subscriber.

MLPPPoX bundles and non-MLPPPoX (plain L2TP PPPoE) sessions cannot coexist under the same subscriber.

Filters and mirrors (LI) are not supported on MLPPPoX bundles on LAC.

**ip-only** type mirrors are supported on MLPPPoX bundles.

In MLPPP scenario, downstream traffic is traversing Carrier IOM and BB-ISA twice. This is referred to as dual-pass and effectively cuts the throughput for MLPPP in half (for example, 5Gbps of MLPPP traffic on a 10Gbps capable BB-ISA).
ISA Commands

config
— isa
— ins-group ins-group-id [create]
— no ins-group ins-group-id
— description description-string
— no description
— mda mda-id [drain]
— no mda mda-id
— port-policy policy-name
— no port-policy
— [no] shutdown

config
— port-policy policy-name [create]
— no port-policy policy-name
— description description-string
— no description
— egress-scheduler-policy port-sched-plcy
— no egress-scheduler-policy
MLPPP on LNS Commands

```plaintext
config
 — subscriber-mgmt
 — ppp-policy ppp-policy-name [create]
 — no ppp-policy ppp-policy-name
 — mlppp
 — [no] accept-mrru
 — [no] short-sequence-numbers
 — local-user-db local-user-db-name [create]
 — no local-user-db local-user-db-name
 — ppp
 — host host-name [create]
 — no host host-name
 — [no] access-loop
 — encap-offset [type encap-type]
 — no encap-offset
 — rate-down rate
 — no rate-down

config
 — router
 — 12tp
 — group tunnel-group-name [create]
 — no group tunnel-group-name
 — load-balance-method {session | tunnel}
 — no load-balance-method
 — mlppp
 — endpoint ip ip-address
 — endpoint mac ieee-address
 — endpoint system-ip
 — endpoint system-mac
 — [no] endpoint
 — [no] interleave
 — max-fragment-delay mili-seconds
 — no max-fragment-delay
 — max-link max-links
 — no max-link
 — reassembly-timeout {100 | 1000} milliseconds
 — no reassembly-timeout
 — tunnel tunnel-name [create]
 — no tunnel tunnel-name
 — load-balance-method {session | tunnel}
 — no load-balance-method
 — mlppp
 — admin-state {up | down}
 — no admin-state
 — endpoint ip ip-address
 — endpoint mac ieee-address
 — endpoint system-ip
 — endpoint system-mac
 — no endpoint
 — [always|never]
 — [no] interleave
 — max-fragment-delay mili-seconds
 — no max-fragment-delay
 — max-link max-links
```
— no max-link
— reassembly-timeout \{100 | 1000\} milliseconds
— no reassembly-timeout

config
  — service
    — vprn
      — 12tp
        — group
          — load-balance-method \{session | tunnel\}
          — no load-balance-method
          — mlppp
            — admin-state \{up | down\}
            — no admin-state
            — endpoint ip ip-address
            — endpoint mac ieee-address
            — endpoint system-ip
            — endpoint system-mac
            — no endpoint
            — interleave \{always/never\}
            — no interleave
            — max-fragment-delay mili-seconds
            — no max-fragment-delay
            — max-link max-links
            — no max-link
            — reassembly-timeout \{100 | 1000\} milliseconds
            — no reassembly-timeout

— tunnel
  — load-balance-method \{session | tunnel\}
  — no load-balance-method
  — mlppp
    — admin-state \{up | down\}
    — no admin-state
    — endpoint ip ip-address
    — endpoint mac ieee-address
    — endpoint system-ip
    — endpoint system-mac
    — no endpoint
    — interleave \{always/never\}
    — no interleave
    — load-balance-method \{session | tunnel\}
    — no load-balance-method
    — max-fragment-delay mili-seconds
    — no max-fragment-delay
    — max-link max-links
    — no max-link
    — reassembly-timeout \{100 | 1000\} milliseconds
    — no reassembly-timeout
L2TP Network Server Commands

Generic Commands

description

Syntax  
\[ \text{description} \text{ description-string} \]
\[ \text{no description} \]

Context  
config>isa>>lns-group

Description  
This command creates a text description which is stored in the configuration file to help identify the content of the entity.

The no form of the command removes the string from the configuration.

Default  
none

Parameters  
string — The description character string. Allowed values are any string composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

shutdown

Syntax  
\[ \text{[no]} \text{ shutdown} \]

Context  
config>isa>lns-group

Description  
This command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the no shutdown command.

The shutdown command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

LNS Commands

lns-group

Syntax  
lns-group \text{lns-group-id} \text{[create]}
no lns-group  

**Context**  config>isa

**Description**  This command configures an LNS group.

The **no** form of the command removes the LNS group ID from the configuration.

**Default**  none

**Parameters**  

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>lns-group-id</strong></td>
<td>1 — 4</td>
</tr>
</tbody>
</table>

**create** — Mandatory keyword used when creating tunnel group in the ISA context. The create keyword requirement can be enabled/disabled in the **environment>create** context.

---

**mda**

**Syntax**  

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mda</strong></td>
<td>mda  mda-id [drain]</td>
</tr>
<tr>
<td><strong>no mda</strong></td>
<td>mda-id</td>
</tr>
</tbody>
</table>

**Context**  config>isa>lns-group

**Description**  This command configures an L2TP ISA Media Dependent Adapter (MDA) for the L2TP ISA group.

The **no** form of the command removes the MDA ID from the configuration.

**Parameters**  

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mda-id</strong></td>
<td>slot 1 — 10, mda 1 — 2</td>
</tr>
</tbody>
</table>

**drain** — Specifies that this MDA is drained from LNS tunnels.

---

**port-policy**

**Syntax**  

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>port-policy</strong></td>
<td>policy-name</td>
</tr>
<tr>
<td><strong>no port-policy</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Context**  config>isa>lns-group

**Description**  This command enables policies referenced in the **configure>port-policy** context to be created under **ports**. These are the ports that link the carrier IOM to the ISA, and are hidden within the system (they cannot be created through the CLI). They are created automatically. Use the **show port** command to view information.

Currently only the port scheduler policy is supported. Each lns-esm port in the lns-group receives an independent port scheduler instance. The port schedulers are instantiated in the carrier IOM on the lns-esm ports that carry PPPoE traffic in the downstream direction towards the ISA before the PPPoE traffic is L2TP encapsulated.
The **no** form of the command removes the policy name from the configuration.

**Default** none  
**Parameters** `policy-name` — specifies the port policy of this LNS group.

### port-policy

**Syntax**  
```bash  
port-policy
policy-name
no port-policy
```  
**Context** `config`

**Description**  
This command instantiates a port policy manager that applies policies (port scheduler) to be hidden, dynamically created ports for WLAN GW/LNS/NAT. The no form of the command removes the policy name from the configuration.

**Default** no port-policy  
**Parameters** `policy-name` — specifies the port policy of this LNS group.

### egress-scheduler-policy

**Syntax**  
```bash  
egress-scheduler-policy
port-sched-plcy
no egress-scheduler-policy
```  
**Context** `config>isa>port-policy`

**Description**  
This command references a port scheduler policy that is defined under the `configure>qos>port-scheduler-policy>` hierarchy. Port schedulers are instantiated on carrier IOMs towards all ISAs that are part of the lns-group. The no form of the command removes the port scheduler policy from the configuration.

**Default** no egress-scheduler-policy  
**Parameters** `port-sched-plcy` — Specifies the the egress scheduler policy up to 32 characters in length.

### mda

**Syntax**  
```bash  
mda
mda-id [drain]
no mda
mda-id
```  
**Context** `config>isa>lns-group`

**Description**  
This command configures an ISA LNS group MDA. The no form of the command removes the MDA ID from the LNS group configuration.

**Parameters** `mda-id` —
**Values**

<table>
<thead>
<tr>
<th>mda-id:</th>
<th>slot/mda</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot: 1 — 10</td>
<td></td>
</tr>
<tr>
<td>mda: 1, 2</td>
<td></td>
</tr>
</tbody>
</table>

**drain** — Prevents new L2TP sessions being associated with the ISA. If an ISA is removed from the lns-group or if the lns-group be shutdown all associated L2TP sessions will be immediately terminated (and L2TP CDN messages sent to the L2TP peer). View show commands to determine which ISA is terminating which session (**show router l2tp session**).
Network Address Translation (NAT) Commands

nat-group

Syntax
- `nat-group nat-group-id [create]`
- `no nat-group nat-group-id`

Context `config>isa`

Description
This command configures an ISA NAT group.

The `no` form of the command removes the ID from the configuration.

Default none

Parameters
- `nat-group` — Specifies the ISA NAT group ID.
  - Values 1 — 4

active-mda-limit

Syntax
- `active-mda-limit number`
- `no active-mda-limit`

Context `config>isa`

Description
This command configures the ISA NAT group maximum number of MDA.

The `no` form of the command removes the number from the configuration.

Default none

Parameters
- `number` — Specifies the active MDA limit.
  - Values 1 — 6

mda

Syntax
- `[no] mda mda-id`

Context `config>isa>nat-group`

Description
This command configures an ISA NAT group MDA.

Parameters
- `mda-id` — Specifies the MDA ID in the `slot/mda` format.
  - Values 1 — 10
  - mda: 1 — 2
session-limits

**Syntax**  
`session-limits`  

**Context**  
`config>isa>nat-group`  

**Description**  
This command configures the ISA NAT group session limits.

reserved

**Syntax**  
`reserved num-sessions`  
`no reserved`  

**Context**  
`config>isa>nat-group>session-limits`  

**Description**  
This command configures the number of sessions per block that will be reserved for prioritized sessions.  

**Parameters**  
`num-sessions` — Specifies the number of sessions reserved for prioritized sessions.  

**Values**  
0 — 4194303

watermarks

**Syntax**  
`watermarks high percentage low percentage`  
`no watermarks`  

**Context**  
`config>isa>nat-group>session-limits`  

**Description**  
This command configures the ISA NAT group watermarks.  

**Parameters**  
`high percentage` — Specifies the high watermark of the number of sessions for each MDA in this NAT ISA group.  

**Values**  
1 — 100  

`low percentage` — Specifies the low watermark of the number of sessions for each MDA in this NAT ISA group.  

**Values**  
0 — 99
accept-mrru

Syntax  
[no] accept-mrru

Context  
configure>subscr-mgt>ppp-policy>mlppp

Description  
This command is applicable only to LAC. MRRU option is an indication that the session is of MLPPPoX type. The 7750 LAC will never initiate MRRU option in LCP negotiation process. However, it will respond to MRRU negotiation request by the client.

This command provides an option to specifically enable or disable negotiation of MLPPPoX on a capture SAP level or on a group-interface level.

Default  
no accept-mrru — The MRRU option in LCP will not be negotiated by LAC.

admin-state

Syntax  
admin-state {up | down}

no admin-state

Context  
configure>router>l2tp>group>tunnel>mlppp
configure>service>vprn>l2tp>group>tunnel>mlppp

Description  
This command is applicable only to LNS.

The tunnel can be explicitly activated (assuming that the parent group is in a no shutdown state) or deactivated by the up and down keywords.

If case that there is no admin-state configured, the tunnel will inherit its administrative state from its parent (group).

Default  
no admin-state — Tunnel administrative state is inherited from the group.

up — Tunnel is in administratively up.

down — Tunnel is administratively down.

cap-offset

Syntax  
encap-offset [type encap-type]

no encap-offset

Context  
configure>subscriber-mgmt>local-user-db>ppp>host>access-loop

Description  
This command is applicable within the LAC/LNS context. It provides the last mile link encapsulation information that is needed for proper (shaping) rate calculations and interleaving delay in the last mile.
The encapsulation value will be taken from the following sources in the order of priority:

- Statically provisioned value in local user database (LUDB).
- RADIUS
- PPPoE tags on LAC or ICRQ message (RFC 5515) on LNS

In case that the encapsulation information is not provided by any of the existing means (LUDB, RADIUS, AVP signaling, PPPoE Tags), then by default pppoe-null encapsulation will be in effect.

The following values are supported encapsulation values on LNS in the 7750.

```plaintext
encap-type:
 pppoa-llc LLC (NLPID) PPPoA encapsulation.
 pppoa-null VC-MUX PPPoA encapsulation.
 pppoeoa-llc LLC/SNAP based bridged Ethernet PPPoEoA encapsulation without FCS.
 pppoeoa-llc-fcs LLC/SNAP based bridged Ethernet PPPoEoA encapsulation with FCS.
 pppoeoa-null VC-MUX PPPoEoA encapsulation without FCS.
 pppoeoa-null-fcs VC-MUX PPPoEoA encapsulation with FCS.
 pppoe PPPoE encapsulation.
 pppoe-tagged Tagged PPPoE Encapsulation.
```

The values are not supported encapsulation values on LNS in the 7750.

```plaintext
 pppoeoa-llc-tagged
 pppoeoa-llc-tagged-fcs
 pppoeoa-null-tagged
 pppoeoa-null-tagged-fcs
 ipoa-llc
 ipoa-null
 ipoeoa-llc
 ipoeoa-llc-fcs
 ipoeoa-llc-tagged
 ipoeoa-llc-tagged-fcs
 ipoeoa-null
 ipoeoa-null-fcs
 ipoeoa-null-tagged
 ipoeoa-null-tagged-fcs
 ipoe
 ipoe-tagged
```

Default: no encap-offset No offset is configured.

### endpoint

**Syntax**

```plaintext
endpoint ip ip-address
endpoint mac ieee-address
endpoint system-ip
endpoint system-mac
no endpoint
```

**Context**

configure>router>l2tp>group>mlppp
configure>router>l2tp>group>tunnel>mlppp
configure>service>vprn>l2tp>group>mlppp
configure>service>vprn>l2tp>group>tunnel>mlppp
configure>subscr-mgt>ppp-policy>mlppp

**Description**
When configured under the l2tp hierarchy, this command is applicable to LNS. Within the ppp-policy, this command is applicable only to LAC.

The endpoint, according to RFC 1990, represents the system transmitting the packet. It is used during MLPPPox negotiation phase to distinguish this peer from all others.

In the case that the client rejects the endpoint option during LCP negotiation, the LAC and the LNS must be able to negotiate the LCP session without the endpoint option.

The **no** form of this command disables sending endpoint option in LCP negotiation.

**Default**
no endpoint

**Parameters**
- **ip ip-address** — Specifies the IPv4 address (class 2)
- **system-ip** — Specifies to use the system IPv4 address (class 2)
- **mac ieee-address** — Specifies the MAC address of the interface (class 3)
- **system-mac** — Specifies to use the MAC address of the system (class 3)

**interleave**

**Syntax**
```plaintext
[no] interleave
```

**Context**
configure>router>l2tp>group>mlppp
configure>service>vprn>l2tp>group>mlppp

**Description**
This command is applicable only to LNS. Interleaving is supported only on MLPPPox bundles that contain a single member link. If more than one link is present in the MLPPPox bundle, interleaving will be automatically disabled and a TRAP/log (tmnxMlpppBundleIndicatorsChange) will be generated.

The minimum supported rate of the link on which interleaving is performed is 1kbps.

If configured at this level, interleaving will be enabled on all tunnels within the group, unless it is explicitly disable per tunnel.

**Default**
no interleave — Interleaving per group is disabled.

**interleave**

**Syntax**
```plaintext
interleave {always | never}
```
```
no interleave
```

**Context**
configure>router>l2tp>group>tunnel>mlppp
configure>service>vprn>l2tp>group>tunnel>mlppp

**Description**
This command is applicable only to LNS. Interleaving is supported only on MLPPPox bundles that contain a single member link. If more than one link is present in the MLPPPox bundle, interleaving
will be automatically disabled and a TRAP/log (tmnxMlpppBundleIndicatorsChange) will be generated.

The minimum supported rate of the link on which interleaving is performed is 1kbps.

Interleaving configured on this level will overwrite the configuration option under the group hierarchy. If the no form of the command is configured for interleaving at this level, the interleaving configuration will inherit the configuration option configured under the l2tp group.

**Default**

no interleave — Interleaving configuration is inherited from the group.

**Parameters**

always — Always perform interleaving on single linked MLPPPoX sessions within this tunnel, regardless of the configuration option for interleaving under the group level.

never — Never perform interleaving on single linked MLPPPoX sessions within this tunnel, regardless of the configuration option for interleaving under the group level.

---

**load-balance-method**

**Syntax**

```
load-balance-method {session | tunnel}
no load-balance-method
```

**Context**

```
configure>router>l2tp>group
configure>router>l2tp>group>tunnel
configure>service>vprn>l2tp>group
configure>service>vprn>l2tp>group>tunnel
```

**Description**

This command is applicable only to LNS. By default traffic load balancing between the BB-ISAs is based on sessions. Each session is individually assigned to an BB-ISA during session establishment phase.

By introducing MLPPPoX, all sessions of a bundle must be terminated on the same LNS BB-ISA. This is necessary for two reasons:

- QoS in the carrier IOM has a uniform view of the subscriber
- a single BB-ISA is responsible for MLPPPoX encapsulation/fragmentation for a given bundle.

Therefore, if fragmentation is enabled, load-balancing per tunnel must be configured. In the per tunnel load-balancing mode, all sessions within the same tunnel are terminated on the same LNS BB-ISA.

In the case that we have MLPPPoX sessions with a single member link, both load-balancing methods are valid.

The **no** form of this command set the per session load balancing.

**Default**

session — Per session load balancing is enabled by default.

**Parameters**

session — Traffic load balancing between the LNS BB-ISAs is based on individual PPPoE sessions.

```
tunnel — Traffic load balancing between the LNS BB-ISAs is based on tunnels.
```
max-fragment-delay

**Syntax**

```
max-fragment-delay mili-seconds
no max-fragment-delay
```

**Context**

```
configure>router>l2tp>group>mlppp
configure>router>l2tp>group>tunnel>mlppp
configure>service>vprn>l2tp>group>mlppp
configure>service>vprn>l2tp>group>tunnel>mlppp
```

**Description**

This command is applicable only to LNS. It determines the maximum fragment delay caused by the transmission that will be imposed on a link.

Fragmentation can be used to interleave high priority packet in-between low priority fragments on a MLPPPoX session with a single link or on a MLPPPoX session with multiple links to better load balance traffic over multiple member links.

**Default**

`no max-fragment-delay` — Fragmentation is disabled.

**Parameters**

`mili-seconds` — Specifies the interval in mili-seconds.

```
Values 5-1000ms
```

max-link

**Syntax**

```
max-links max-links
no max-links
```

**Context**

```
configure>router>l2tp>group>mlppp
configure>router>l2tp>group>tunnel>mlppp
configure>service>vprn>l2tp>group>mlppp
configure>service>vprn>l2tp>group>tunnel>mlppp
```

**Description**

This command is applicable only to LNS. It determines the maximum number of links that can be put in a bundle.

Any attempt of a session to join a bundle that is above the max-link limit will be rejected.

If interleaving is configured, it is recommended that max-links be set to 1 or a ?o?version of the command is used (no max-links). Both have the same effect.

The configuration under the tunnel hierarchy will override the configuration under the group hierarchy.

The `no` form of this command limits the number of links in the bundle to 1.

**Default**

`no max-links` — A single link per bundle is allowed.

**Parameters**

`max-links` — Specifies the maximum number of links in a bundle.

```
Values 1 — 8
```
reassembly-timeout

Syntax: `reassembly-timeout \{100 \text{ or } 1000\} \text{ milliseconds}\`

**Context**
- `configure>router>l2tp>group>mlppp`
- `configure>router>l2tp>group>tunnel>mlppp`
- `configure>service>vprn>l2tp>group>mlppp`
- `configure>service>vprn>l2tp>group>tunnel>mlppp`

**Description**
This command is applicable only to LNS. It determines the time during which the LNS keeps fragments of the same packet in the buffer before it discards them. The assumption is that if the fragments do not arrive within certain time, the chance is that they were lost somewhere in the network. In this case the partial packet cannot be reassembled and all fragments that has arrived up to this point and are stored in the buffer will be discarded in order to free up the buffer. Otherwise, a condition will arise in which partial packets will be held in the buffer until the buffer is exhausted.

The configuration under the tunnel hierarchy will override the configuration under the group hierarchy.

The **no** form of this command also sets the time-out to 1000ms.

**Default**
1000

**Parameters**
\{100 \text{ or } 1000\} \text{ milliseconds}\ — Specifies the reassembly timeout value.

rate-down

Syntax: `rate-down rate`

**Context**
`configure>subscriber-mgmt>local-user-db>ppp>host>access-loop`

**Description**
This command is applicable to LAC and LNS. It provides the last mile link rate in the downstream direction that is needed for proper shaping and calculating the interleaving delay.

The rate information in the last mile will be taken from the following sources in the order of priority:

- Statically provisioned value in local user database (LUDB).
- RADIUS.
- PPPoE tags on LAC or ICRQ message (RFC 5515) /ICCN message (TX Connect Seed) on LNS.

**Default**
no rate-down

**Parameters**
`rate` — Specifies last mile link downstream rate in the access loop

**Values**
1 — 100000 kbps

short-sequence-numbers

Syntax: `[no] short-sequence-numbers`
Configure a peer request to send short sequence numbers. This command is applicable to LAC and LNS. By default, MLPPPoX will negotiate 24-bit long sequence numbers. This command allows this to be changed to shorter, 12-bit sequence numbers.

Default: short-sequence-numbers
Threat Management Service

In This Section

This section describes how to configure the Threat Management Service applications.

Topics include:

- TMS Service Introduction on page 926
- Configuration Guidelines and Example on page 927
- Dynamic Control of IP Filter Entries on page 930
The ISA-TMS supports routed redirect mode on IOM3, which means that traffic based on destination IP address (under attack) is filtered (scrubbed) by a variety of DDoS filtering rules provided by 3rd party code from Arbor Networks.

When a DDoS attack is detected by the Arbor Networks CP (based on cflowd counters) a notification is send to the 7750 SR CPM. This is the trigger for the 7750 SR CPM to attract the traffic under attack via the advertisement of a route with prefix the destination IP address under attack and with next-hop the scrubber. This process is called off-ramping.

At that point all destination traffic to the IP address under attack is forwarded to the 7750 SR where:

- DDoS traffic is dropped in the ISA-TMS
- Clean (non DDoS) traffic is returned back into the network. This process is called on-ramping.
Configuration Guidelines and Example

TMS Image Location

The TMS images should be stored in the same location as the other images (cpm.tim, iom.tim, etc). This is to where the BOF points.

The name of the file is peakflow-tms.tim

Configuration Example For TMS Interfaces on the SR OS

```plaintext
configure service vprn 1
 tms-interface "mda-1-1" create
 address 20.folk.43/32
 description "tms-1-1"
 port 1/1
 password "password=arbor zone-secret=admin"
 exit
exit

configure router
 interface "itfToArborCP"
 address 10.12.0.1/24
 port 3/2/4
 exit
exit

configure router policy-options
 policy-statement "exporttmsgrt"
 entry 1
 from
 protocol vpn-leak
 exit
 action accept
 exit
exit
 entry 2
 from
 protocol tms
 exit
 action accept
 exit
exit
exit
```
Follow the usage guidelines listed below:

- **Use mda-type isa-tms**
- The tms-interface address 20.12.0.43/32 should be configured on the ArborSP via "Administration> Peakflow Appliances"
- The port is the card/MDA ID
- The tms-interface address 20.12.0.43/32 results in a static-route in the Base instance
  
  ```bash
 *A:Dut-C# show router route-table 20.12.0.43/32
  ```

<table>
<thead>
<tr>
<th>Dest Prefix[Flags]</th>
<th>Type</th>
<th>Proto</th>
<th>Age</th>
<th>Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h08m49s</td>
<td>5</td>
</tr>
<tr>
<td>20.12.0.43/32</td>
<td>Remote</td>
<td>Static</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vprn1:mda-1-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The tms-interface zone-secret=admin should match with the zone-secret used on the ArborSP
- The tms-interface password=arbor should be used as password during SSH/Telnet to TMS
- The tms-interface ipv6. This is a prerequisite for adding IPv6 TMS routes and scrubbing IPv6 traffic
- The connectivity SR/ArborSP goes via port 3/2/4 interface itfToArborCP (10.12.0.1) to an interface (10.12.0.2) of the ArborSP. On the ArborSP, to reach the TMS, a static route like this is needed: 20.12.0.0/24 with next-hop 10.12.0.1 On the SR, to reach the ArborSP a static-route like this is needed (with 138.203.71.202 the management IP address of the ArborSP (eth0)): static-route 138.203.71.202/32 next-hop 10.12.0.2
- Use the same NTP server on both SR/ArborSP and enable the NTP server (because the CPM is the NTP server for isa-tms)
- A policy (in this example “exporttmsgrt”) is needed to leak TMS routes to BGP
- If you want to Telnet/ping to TMS, first enable the following services:
  - `ssh 127.1.mda.slot -l admin router management`
  - `ip access add ping all 0.0.0.0/0`
  - `ip access add telnet all 0.0.0.0/0`
  - `ip access commit`
  - `services telnet start`
  - `config write`
- On the ArborSP
  
  Use a TMS cluster which holds the relevant isa-tms’ Administration> Mitigation> TMS-ISA Clusters
Put the TMS cluster in a TMS group Administration> Mitigation> TMS Groups

Use the TMS Group in the mitigation rule (Mitigation> Threat Management>Add> TMS Appliances)
Dynamic Control of IP Filter Entries

The following requirement will enhance the performance and scale of DDoS protection via a tight integration between the Arbor TMS DDoS scrubbing application and the 7750 highly scalable IP filters.

The Arbor TMS application uses a wide variety of methods for identifying specific flows that are part of a network or application Denial of Service attack. These techniques include network and application behavior analysis as well as specific packet-based content detection.

Once a specific flow has been identified as part of the attack, one of the common methods of mitigation includes host-based (source-IP), IP blacklisting. Instead of continuing to analyze every packet of that flow up to Layer 7 analysis, based on the initial detection TMS will use IP host-based blacklisting to temporarily block traffic from that source toward the destination under attack.

This feature adds the ability to have the TMS application within the 7750 signal the 7750 through the ALU API controlling highly scalable IP filters for hardware-based, source-IP blacklisting in order to significantly enhance the scale and performance of the blacklisting function.

Note: R6.0p4 or later of Arbor TMS is required to support this feature on the 7750.

This feature exemplifies how Arbor Networks and ALU continue to improve the overall DDoS detection and mitigation function.
Threat Management Service Command Reference

- Card Commands on page 931
- MDA Commands on page 931
- TMS Commands on page 931
- Policy Commands on page 932

Card Commands

```
cfg
 — card slot-number
 — mda mda-slot
 — mda-type isa-tms
```

MDA Commands

```
cfg
 — card slot-number
 — mda mda-slot
```

TMS Commands

```
cfg
 — service
 — ies service-id [customer customer-id]
 — no ies service-id
 — tms-interface interface-name [create] [off-ramp-vprn off-ramp-svc] [mgmt-vprn mgmt-svc]
 — no tms-interface interface-name
 — address {ip-address/mask|ip-address netmask}
 — no address
 — description long-description-string
 — no description
 — [no] ipv6
 — password [password]
 — no password
 — port mda-id
 — no port
 — [no] shutdown
 — vprn router-instance
 — tms-interface interface-name [create] [off-ramp-vprn off-ramp-svc] [mgmt-vprn mgmt-svc]
 — address {ip-address/mask|ip-address netmask}
 — no address
 — description long-description-string
 — no description
```
Policy Commands

config
  — router
    — policy-option
      — policy-statement
        — entry
          — from
            — protocol
              — tms

Show Commands

show
  — filter ip
    — ip
    — port slot/mda2 (offramp port)
    — port slot/mda3 (onramp port)
  — router
    — interface tms-interface-name [detail]
    — tms routes [tms-interface interface-name] [family] [active|inactive]
    — protocol tms
    — route-table summary
Threat Management Service Commands

- Card Commands on page 933
- MDA Commands on page 934
- Threat Management Service Interface Commands on page 935
- Policy Commands on page 939

Card Commands

card

**Syntax**

- `card slot-number`
- `no card slot-number`
- `card slot-number`

**Context**

config

**Description**

This mandatory command enables access to the chassis card Input/Output Control Forwarding Module (IOM/CFM), slot, MCM and MDA CLI context.

The `no` form of this command removes the card from the configuration. All associated ports, services, and MDAs must be shutdown.

**Default**

No cards are configured.

**Parameters**

`slot-number` — The slot number of the card in the chassis.

Values

- 1 — 10 depending on chassis model.
- SR-12: `slot-number = 1 — 10`
MDA Commands

mda

Syntax

mda mda-slot
no mda mda-slot

Context config>card

Description This mandatory command enables access to a card’s MDA CLI context to configure MDAs.

Default No MDA slots are configured by default.

Parameters

mda-slot — The MDA slot number to be configured. Slots are numbered 1 and 2. On vertically oriented slots, the top MDA slot is number 1, and the bottom MDA slot is number 2. On horizontally oriented slots, the left MDA is number 1, and the right MDA slot is number 2. For 7750 SR-c12/4 systems, MDAs may not be provisioned before MCMs are configured for the same slot. MCMs are not required for CMA provisioning.

Values 1, 2

mda-type

Syntax

mda-type mda-type
no mda-type

Context config>card>mda

Description This mandatory command provisions a specific MDA type to the device configuration for the slot. The MDA can be preprovisioned but an MDA must be provisioned before ports can be configured. Ports can be configured once the MDA is properly provisioned. The no form of this command deletes the MDA from the configuration. The MDA must be administratively shut down before it can be deleted from the configuration.

Default No MDA/CMA types are configured for any slots by default.

Parameters mda-type — The type of MDA selected for the slot position.

Values isa-tms
Threat Management Service Interface Commands

Syntax

```plaintext
ies service-id customer customer-id [vpn vpn-id] [create]
no ies service-id
```

Context

cfg>service

Description

This command creates or edits an IES service instance.

The `ies` command is used to create or maintain an Internet Enhanced Service (IES). If the `service-id` does not exist, a context for the service is created. If the `service-id` exists, the context for editing the service is entered.

IES services allow the creation of customer facing IP interfaces in the same routing instance used for service network core routing connectivity. IES services require that the IP addressing scheme used by the subscriber must be unique between it and other addressing schemes used by the provider and potentially the entire Internet.

While IES is part of the routing domain, the usable IP address space may be limited. This allows a portion of the service provider address space to be set aside for service IP provisioning, becoming administered by a separate but subordinate address authority. This feature is defined using the `config router service-prefix` command.

IP interfaces defined within the context of an IES service ID must have a SAP created as the access point to the subscriber network. This allows a combination of bridging and IP routing for redundancy purposes.

When a service is created, the `customer` keyword and `customer-id` must be specified and associates the service with a customer. The `customer-id` must already exist having been created using the `customer` command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the `customer customer-id` is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect `customer-id` specified will result in an error.

Multiple IES services are created to separate customer owned IP interfaces. More than one IES service may be created for a single customer ID. More than one IP interface may be created within a single IES service ID. All IP interfaces created within an IES service ID belongs to the same customer.

By default, no IES service instances exist until they are explicitly created.

The `no` form of this command deletes the IES service instance with the specified `service-id`. The service cannot be deleted until all the IP interfaces defined within the service ID have been shutdown and deleted.

Parameters

- `service-id` — The unique service identification number or string identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The `service-id` must be the same number used for every 7750 SR, 7450 ESS and 7710 SR on which this service is defined.
Values

- **service-id**: 1 — 2147483648
- **svc-name**: 64 characters maximum

**customer**

- **customer-id**: Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

  Values
  - 1 — 2147483647

**vpn**

- **vpn-id**: Specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN identification number.

  Values
  - 1 — 2147483647

Default

- **null** (0)

### tms-interface

**Syntax**

```
tms-interface interface-name [create] [off-ramp-vprn off-ramp-svc] [mgmt-vprn mgmt-svc]
```

**Context** `config>service>vprn`

**Description**

This command configures a Threat Management Service interface. The no form of the command removes the interface name from the configuration.

**Parameters**

- **interface-name**: Specifies the interface name up to 22 characters in length.
- **create**: Keyword used to create the interface name. The create keyword requirement can be enabled/disabled in the `environment>create` context.
- **off-ramp-vprn**
- **off-ramp-svc**: Identifies the off-ramp VPRN name or number.
- **mgmt-vprn**
- **mgmt-svc**: Identifies the management VPRN name or number.

### address

**Syntax**

```
address {ip-address/mask|ip-address netmask}
```

**Context** `config>service>vprn>tms-if`

**Description**

This command assigns an IP address/IP subnet/broadcast address to the TMS instance for communications between Arbor CP collectors/managers and the TMS instance operating within the Service Router. The no form of the command removes the IP address information from the interface configuration.

**Parameters**

- **ip-address/mask**
- **ip-address netmask**: Specifies IP address information.
Values

- `<ip-address[/mask]> ip-address a.b.c.d
  mask 32
  <netmask> a.b.c.d (all 1 bits)`

**description**

**Syntax**

description long-description-string

**no description**

**Context**

config>service>vprn>tms-if

**Description**

This command configures a description for the interface.

The **no** form of the command removes the description from the interface configuration.

**ipv6**

**Syntax**

[no] ipv6

**Context**

config>service>vprn>tms-if

**Description**

This command configures IPv6 for a threat-management service interface.

The **no** form of the command removes the IP address information from the interface configuration.

**password**

**Syntax**

password [password]

**no password**

**Context**

config>service>vprn>tms-if

**Description**

This command configures a password for the user.

The **no** form of the command removes the password.

**Parameters**

password — Specifies the password for the TMS configuration.

**Values**

- `<password>key1<delim>value1 key2<delim>value2 ...
  <delim> is one of the following:
  '=.' value is unencrypted and remain unencrypted
  ':.' value is unencrypted and to be encrypted
  '%$' value is encrypted and remain encrypted`
port

Syntax  

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>port mda-id</td>
<td>This command specifies a chassis slot and MDA to bind the interface to a physical port. The no form of the command removes the MDA ID from the interface configuration.</td>
<td>mda-id — Specifies the chassis slot and MDA. &lt;slot&gt;/&lt;mda&gt; slot [1..10] mda [1..2]</td>
</tr>
</tbody>
</table>

Context  
config>service>vprn>tms-if

Values  

<slot>/<mda>  slot  [1..10]  mda  [1..2]
## protocol

**Syntax**  
```
protocol [protocol] {all | instance instance}
```

**Context**  
`config>router>policy-options>policy-statement>entry>from`

**Description**  
This command configures a routing protocol as a match criterion for a route policy statement entry. This command is used for both import and export policies depending how it is used.

If no protocol criterion is specified, any protocol is considered a match.

The **no** form of the command removes the protocol match criterion.

**Default**  
```
no protocol — Matches any protocol.
```

**Parameters**  
- **protocol** — The protocol name to match on.
  - **Values**  
    - direct, static, bgp, isis, ospf, rip, aggregate, bgp-vpn, igmp, pim, ospf3, ldp, sub-mgmt, mld, managed, vpn-leak, tms, nat
  - **instance** — The OSPF or IS-IS instance.
    - **Values**  
      - 1 — 31
  - **all** — OSPF- or ISIS-only keyword.
TMS-Related Show Commands

**tms**

**Syntax**

tms routes [tms-interface interface-name] [family] [active|inactive]

**Context**

show>router

**Description**

This command displays TMS route information.

**Parameters**

- **tms-interface interface-name** — Specifies the interface name, up to 32 chars in length.
- **family** — Specifies an address family: ipv4|ipv6
- **active** — <<TBD>>
- **inactive** — <<TBD>>

**Sample Output**

```
*A:Dut-C# show router 1 tms routes
===
TMS Routes (IPv4)
===
Status Network Next Hop[Interface Name]

Active 100.0.0.1/32 mda-2-1

No. of Routes: 1
===
```

**interface**

**Syntax**

interface tms-interface-name [detail]

**Context**

show>router

**Description**

This command displays information about the TMS interface.

**Parameters**

- **tms-interface-name** — Specifies the interface name, up to 32 chars in length.
- **detail** — Specifies displaying of detailed information.

**Sample Output**

```
*A:Dut-C# show router 1 interface "mda-2-1" detail
===
Interface Table (Service: 1)
===
Interface
```
protocol
t

description

Sample Output

A:Dut-C# show router route-table protocol tms

Route Table (Router: Base)

<table>
<thead>
<tr>
<th>Dest Prefix[Flags]</th>
<th>Type</th>
<th>Proto</th>
<th>Age</th>
<th>Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0.0.1/32</td>
<td></td>
<td></td>
<td>00h23m07s 167</td>
<td>0</td>
</tr>
</tbody>
</table>
route-table

**Syntax**  
route-table summary

**Context**  
show>router

**Description**  
This command displays the router’s route table, including the TMS routes.

**Parameters**  
summary — Displays summary information.

### Sample Output

*A:Dut-C# show router route-table summary

A Route Table Summary (Router: Base)

<table>
<thead>
<tr>
<th>Active</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>5</td>
</tr>
<tr>
<td>Direct</td>
<td>12</td>
</tr>
<tr>
<td>Host</td>
<td>11</td>
</tr>
<tr>
<td>BGP</td>
<td>0</td>
</tr>
<tr>
<td>BGP (Backup)</td>
<td>0</td>
</tr>
<tr>
<td>VPN Leak</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0</td>
</tr>
<tr>
<td>ISIS</td>
<td>6</td>
</tr>
<tr>
<td>ISIS (LFA)</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0</td>
</tr>
<tr>
<td>LDP</td>
<td>0</td>
</tr>
<tr>
<td>Aggregate</td>
<td>0</td>
</tr>
<tr>
<td>Sub Mgmt</td>
<td>0</td>
</tr>
<tr>
<td>Managed</td>
<td>0</td>
</tr>
<tr>
<td>NAT</td>
<td>0</td>
</tr>
<tr>
<td>TMS</td>
<td>1</td>
</tr>
</tbody>
</table>

---

Total 24 35

---

NOTE: ISIS LFA routes and BGP Backup routes are not counted towards the total.

port

**Syntax**  
port slot/mda\2 (offramp port)  
port slot/mda\3 (onramp port)

**Context**  
show

**Description**  
This command display TMS offramp and onramp port information.
Parameters

- slot/mda/2 — <<TBD>>
- slot/mda/3 — <<TBD>>
- offramp port — <<TBD>>
- onramp port — <<TBD>>

Sample Output

*A:Dut-C# show port 2/1/2

ISA-TMS Port

Description        : TMS
Port               : 2/1/2                      Admin State      : up
Last State Change  : 09/14/2011 07:03:49        Oper State       : up

Configured Mode    : network                    Net. Egr. Queue *: default

* indicates that the corresponding row element may have been truncated.

Port Statistics

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast Packets</td>
<td>35365</td>
</tr>
<tr>
<td>Multicast Packets</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast Packets</td>
<td>0</td>
</tr>
<tr>
<td>Discards</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Proto Discards</td>
<td>0</td>
</tr>
</tbody>
</table>

Ethernet-like Medium Statistics

Alignment Errors	0	Sngl Collisions	0
FCS Errors	0	Late Collisions	0
SQE Test Errors	0	Excess Collisions	0
CSE	0	Late Collisions	0
Too long Frames	0	Excess Collisions	0
Symbol Errors	0	Int MAC Tx Errs	0

*A:Dut-C# show port 2/1/3

ISA-TMS Port

Description        : TMS
Port               : 2/1/3                      Admin State      : up
Last State Change  : 09/14/2011 07:03:49        Oper State       : up

Configured Mode    : network                    Net. Egr. Queue *: default

* indicates that the corresponding row element may have been truncated.

Port Statistics

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast Packets</td>
<td>0</td>
</tr>
<tr>
<td>Multicast Packets</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast Packets</td>
<td>0</td>
</tr>
<tr>
<td>Discards</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Proto Discards</td>
<td>0</td>
</tr>
</tbody>
</table>
**Application Assurance Command Descriptions**

---

<table>
<thead>
<tr>
<th>Unicast Packets</th>
<th>1</th>
<th>35710</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast Packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discards</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Proto Discards</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

---

**Ethernet-like Medium Statistics**

<table>
<thead>
<tr>
<th>Alignment Errors</th>
<th>0</th>
<th>Sngl Collisions</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS Errors</td>
<td>0</td>
<td>Mult Collisions</td>
<td>0</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>0</td>
<td>Late Collisions</td>
<td>0</td>
</tr>
<tr>
<td>CSE</td>
<td>0</td>
<td>Excess Collisns</td>
<td>0</td>
</tr>
<tr>
<td>Too long Frames</td>
<td>0</td>
<td>Int MAC Tx Errs</td>
<td>0</td>
</tr>
<tr>
<td>Symbol Errors</td>
<td>0</td>
<td>Int MAC Rx Errs</td>
<td>0</td>
</tr>
</tbody>
</table>

---

**filter ip**

**Syntax**: `filter ip`

**Context**: `show>filter`

**Description**: This command displays IP filter information.

**Sample Output**

```
*A:Dut-C# show filter ip

Configured IP Filters Total: 0

Filter-Id Scope Applied Description

No Matching Entries

System IP Filters Total: 8

Filter-Id Description

_ _ _ _ _ _ _ _ _ _ _

(tmnx_tms-egr-1/1-F) Egress TMS filter
(tmnx_tms-egr-2/1-F) Egress TMS filter
(tmnx_tms-egr-2/2-F) Egress TMS filter
(tmnx_tms-egr-3/1-F) Egress TMS filter
(tmnx_tms-ing-1/1-F) Ingress TMS filter
(tmnx_tms-ing-2/2-F) Ingress TMS filter
(tmnx_tms-ing-2/1-F) Ingress TMS filter
(tmnx_tms-ing-3/1-F) Ingress TMS filter

Num IP filters: 8
```

*A:Dut-C#*
Clear Commands

interface

Syntax  interface tms-interface-name [statistics]

Context  clear>router

Description  This command clears TMS interface statistics or status.

Parameters  
  interface-name — Clears the interface name, up to 32 chars in length.
  statistics — Clears application assurance system and subscriber statistics.
Debug Commands

tms

Syntax: \texttt{tms tms-interface \textit{tms-interface-name} [detail]}

Context: debug>router

Description: This command enables or disables and configures debugging for Threat Management System information.

Parameters:
- \texttt{tms-interface \textit{interface-name}} — Specifies the interface name, up to 32 chars in length.
- \texttt{detail} — Configures detailed debugging.
Appendix A: Common CLI Command Descriptions

In This Chapter

This section provides information about common Command Line Interface (CLI) syntax and command usage.

Topics in this chapter include:

• SAP syntax on page 950
Common Service Commands

sap

Syntax  
\[no\] sap sap-id

Description  This command specifies the physical port identifier portion of the SAP definition.

Parameters  sap-id — Specifies the physical port identifier portion of the SAP definition.

The sap-id can be configured in one of the following formats:

<table>
<thead>
<tr>
<th>Type</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-id</td>
<td>slot/mda/port[,channel]</td>
<td>1/1/5</td>
</tr>
</tbody>
</table>
| null     | [port-id | bundle-id | bgpgrp-id | lag-id | aps-id]:qtag1 | port-id: 1/1/3  
|          |                                 |                          | bundle-id: bundle-ppp-1/1.1  
|          |                                 |                          | bgpgrp-id: bgpgrp-ima-1  
|          |                                 |                          | lag-id: lag-3  
|          |                                 |                          | aps-id: aps-1  
| dot1q    | [port-id | bundle-id | bgpgrp-id | lag-id | aps-id]:qtag1 | port-id:qtag1: 1/1/3:100  
|          |                                 |                          | bundle-id: bundle-ppp-1/1.1  
|          |                                 |                          | bgpgrp-id: bgpgrp-ima-1  
|          |                                 |                          | lag-id:qtag1:lag-3:102  
|          |                                 |                          | aps-id:qtag1: aps-1:27  
| qinq     | [port-id | bgpgrp-id | lag-id]:qtag1.qtag2 | port-id:qtag1.qtag2: 1/1/3:100.10  
|          |                                 |                          | bgpgrp-id: bgpgrp-ima-1  
|          |                                 |                          | lag-id:qtag1.qtag2: lag-10:  
| atm      | [port-id | aps-id | bundle-id | bgpgrp-id][:vpi/vci |vpi |vpi1.vpi2] | port-id: 1/1/1  
|          |                                 |                          | aps-id: aps-1  
|          |                                 |                          | bundle-id: bundle-ima-1/1.1  
|          |                                 |                          | bundle-ppp-1/1.1  
|          |                                 |                          | bgpgrp-id: bgpgrp-ima-1  
|          |                                 |                          | vpi/vci: 16/26  
|          |                                 |                          | vpi: 16  
|          |                                 |                          | vpi1.vpi2: 16.200  
| frame-relay | [port-id | aps-id]:dlci | port-id: 1/1/1:100  
|          |                                 |                          | bundle-id: bundle-fr-3/1.1:100  
|          |                                 |                          | aps-id: aps-1  
|          |                                 |                          | dlci: 16  
| cisco-hdlc | slot/mda/port.channel | port-id: 1/1/3.1  

Page 950  OS Multi-Service ISA Guide
7750 SR:

**Values:** sap-id

null

*port-id | bundle-id | bpgrp-id | lag-id | aps-id]*

dot1q

*port-id | bundle-id | bpgrp-id | lag-id | aps-id* | qtag1

qinq

*port-id | bundle-id | bpgrp-id | lag-id* | qtag1.qtag2

atm

*port-id | aps-id* | [vpi/vci|vpi1.vpi2]

frame

*port-id | aps-id*:dlci

cisco-hdlc

*slot/mda/port.channel*

cem

*slot/mda/port.channel*

ima-grp

*port-id* | [bundle-id]:vpi|vpi1.vpi2

port-id

*slot/mda/port[.channel]*

bundle-id

bundle-type-slot/mda|bundle-num

type ima, fr, ppp

bundle-num 1 — 336

bpgrp-id

bpgrp-type-bpgrp-num

bpgrp

type ima, ppp

bpgrp-num 1 — 2000

aps-id

aps-group-id[.channel]

aps

keyword

group-id 1 — 64

ccag-id

ccag-id:path-id[cc-type]:cc-id

ccag

keyword

id 1 — 8

path-id a, b

cc-type .sap-net, .net-sap

cc-id 0 — 4094

eth-tunnel

eth-tunnel-id[eth-tun-sap-id]

id 1 — 1024

eth-tun-sap-id 0 — 4094

lag-id

lag

keyword

id 1 — 200

qtag1 0 — 4094

qtag2 *

vpi NNI: 0 — 4095

UNI: 0 — 255

vci 1, 2, 5 — 65535

dlci 16 — 1022

ipsec-id

ipsec-id[private | public]:tag

ipsec

keyword

id 1 — 4

tag 0 — 4094
7450 ESS:

**Values:** sap-id

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>[port-id</td>
</tr>
<tr>
<td>dot1q</td>
<td>(port-id</td>
</tr>
<tr>
<td>qinq</td>
<td>(port-id</td>
</tr>
<tr>
<td>atm</td>
<td>(port-id</td>
</tr>
<tr>
<td>frame</td>
<td>(port-id</td>
</tr>
<tr>
<td>cisco-hdlc</td>
<td>slot/mda/port.channel</td>
</tr>
<tr>
<td>ima-grp</td>
<td>[bundle-id][vpi/vci][vpi1.vpi2]</td>
</tr>
<tr>
<td>port-id</td>
<td>slot/mda/port[.channel]</td>
</tr>
</tbody>
</table>

**bundle-id**

- bundle-type-slot/mda.bundle-num
- bundle keyword
- type ima, fr, ppp
- bundle-num 1 — 336

**bpgrp-id**

- bpgrp-type-bpgrp-num
- bpgrp keyword
- type ima, ppp
- bpgrp-num 1 — 2000

**aps-id**

- aps-group-id[.channel]
- aps keyword
- group-id 1 — 64

**ccag-id**

- ccag-id,path-id[cc-type]:cc-id
- ccag keyword
- id 1 — 8
- path-id a, b
- cc-type .sap-net, .net-sap
- cc-id 0 — 4094

**eth-tunnel**

- eth-tunnel-id[eth-tun-sap-id]
- id 1 — 1024
- eth-tun-sap-id 0 — 4094

**lag-id**

- lag-id
- lag keyword
- id 1 — 200

**qtag1**

- 0 — 4094
- *0 — 4094

**vtag2**

- NNI: 0 — 4095
- UNI: 0 — 255

**vci**

- 1, 2, 5 — 65535

**dlci**

- 16 — 1022
The following terms and acronyms describe the operation and maintenance of RET/FCC and ad insertion configurations are presented for reference purposes.

**AA-ISA**
Application Aware Integrated Service Adapter

**AA-Sub**
The AA-ISA view of the AA context. Supported AA-subs types include ESM and SAPs, which mapped directly to divert contexts, spoke-SDP as AA-sub divert context, transit AA-sub type within a parent AA-sub divert context.

**Parent AA-Sub**
A SAP/SDP diverted to AA containing transit AA subs.

**Transit AA Sub**
An ISA local AA sub contained within a parent AA sub. There will be two types of transit AA subs:

- Transit IP AA-subs—Defined by transit IP policy as one or more /32 IP addresses per sub.

**ADI**
Ad Insertion

**ADI-LZ**
Ad Insertion Local and Zoned

**Avail**
An “available” part of the program stream where an authorized operator is allowed to replace the stream.

A time space offered to cable operators by cable programming services during a program for use by the CATV operator; the time can be sold to local advertisers or used for channel self promotion.

**BTV**
Broadcast Television

**DPI**
Digital Program Insertion

**Duplicate stream**
Two or more streams where the SSRC and group are identical.

**DRM**
Digital Rights Management
**DSLAM**  
Digital Subscriber Line Access Multiplexer

**ES**  
Elementary Stream

**ESM**  
Enhanced Subscriber Management

**FCC**  
Fast Channel Change

**GOP**  
Group of Pictures

**HD**  
High Definition

**HGW**  
Home Gateway

**IPTV**  
Internet Protocol Television

**ISA**  
Integrated Services Adapter

**LoT**  
Loss of Transmission

**MSTV**  
Microsoft Television

**NTP**  
Network Time Protocol

**PID**  
Packet Identifier

**PMT**  
Program Map Table

**PON**  
Passive Optical Network

**RAM**  
Reporting and analysis manager

**RG**  
Routed Gateway

**RET**  
Retransmission

**RTCP**  
RTP Control Protocol

**RTP**  
Real-Time Transport Protocol

**SAP**  
Subscriber or service access point

**Service Selection**  
One service may have many component streams (which undergo selection).

**SSRC**  
Synchronization source

**Stream Source**  
A sequence of packets which comprise a service. A stream can have different sources.
**STB**	Set Top Box
**TS**	Transport Stream
**VoD**	Video-on-Demand
**VQM**	Video Quality Monitoring