Table of Contents

Preface

- Alcatel-Lucent 7950 SR-Series Router Configuration Process .. 15

Getting Started

- Alcatel-Lucent 7950 SR-Series Router Configuration Process .. 19

Multicast

- Introduction to Multicast ... 22
- Multicast Models ... 23
 - Any-Source Multicast (ASM) .. 23
 - Source Specific Multicast (SSM) ... 23
 - Multicast in IP-VPN Networks .. 24
- Multicast Features ... 25
 - Internet Group Management Protocol ..
 - IGMP Versions and Interoperability Requirements ... 26
 - IGMP Version Transition .. 26
 - Source-Specific Multicast Groups .. 26
 - Query Messages .. 27
 - Protocol Independent Multicast (PIM) ..
 - PIM-SM Functions ... 28
 - Encapsulating Data Packets in the Register Tunnel ... 28
 - PIM Bootstrap Router Mechanism .. 28
 - PIM-SM Routing Policies ... 28
 - Reverse Path Forwarding Checks .. 28
 - Anycast RP for PIM-SM .. 29
 - Distributing PIM Joins over Multiple ECMP Paths ... 29
 - Multicast Only Fast Reroute (MoFRR) .. 30
 - Multicast Source Discovery Protocol (MSDP) ..
 - Anycast RP for MSDP .. 31
 - MSDP Procedure .. 31
 - MSDP Peer Groups ... 31
 - MSDP Mesh Groups .. 31
 - MSDP Routing Policies .. 31
 - Auto-RP (discovery mode only) in Multicast VPN ... 32
 - Multicast in Virtual Private Networks ... 32
 - Dynamic Multicast Signaling over P2MP LDP ...
 - Multicast Extensions to MBGP ... 34
 - MBGP Multicast Topology Support ... 34
 - IPv6 Multicast ... 34
 - Multicast Listener Discovery (MLD v1 and v2) .. 34
 - PIM-SM Functions ... 34
 - PIM-SM Functions ... 34
 - PIM-SM Routing Policies ... 34
 - Query Messages .. 34
 - Source-Specific Multicast Groups .. 34
 - IGMP Versions and Interoperability Requirements ... 35
 - IGMP Version Transition .. 35
 - Source-Specific Multicast Groups .. 35
 - Query Messages .. 35
 - Protocol Independent Multicast (PIM) ..
 - PIM-SM Functions ... 36
 - Encapsulating Data Packets in the Register Tunnel ... 36
 - PIM Bootstrap Router Mechanism .. 36
 - PIM-SM Routing Policies ... 36
 - Reverse Path Forwarding Checks .. 36
 - Anycast RP for PIM-SM .. 36
 - Distributing PIM Joins over Multiple ECMP Paths ... 37
 - Multicast Only Fast Reroute (MoFRR) .. 37
 - Dynamic Multicast Signaling over P2MP LDP ..
 - Multicast Extensions to MBGP ..
 - MBGP Multicast Topology Support ... 38
 - IPv6 Multicast ...
Table of Contents

MCAC on Link Aggregation Group Interfaces ... 55
Multicast Debugging Tools .. 56
 Mtrace .. 56
 Mstat ... 58
 Minfo ... 58
Configuring Multicast Parameters with CLI .. 59
 Multicast Configuration Overview .. 60
 Basic Configuration ... 61
 Common Configuration Tasks ... 64
Configuring IGMP Parameters .. 64
 Enabling IGMP ... 64
 Configuring an IGMP Interface ... 66
 Configuring Static Parameters .. 67
 Configuring SSM Translation ... 69
Configuring PIM Parameters ... 70
 Enabling PIM ... 70
 Configuring PIM Interface Parameters ... 71
Importing PIM Join/Register Policies ... 76
Configuring Multicast Source Discovery Protocol (MSDP) Parameters 78
Configuring MCAC Parameters .. 79
Disabling IGMP or PIM .. 82
Multicast Command Reference .. 85

OSPF
 Configuring OSPF .. 238
 OSPF Areas .. 239
 Backbone Area ... 239
 Stub Area ... 240
 Not-So-Stubby Area .. 241
 OSPFv3 Authentication .. 247
 OSPFv3 Graceful Restart Helper ... 248
 Virtual Links ... 250
 Neighbors and Adjacencies .. 251
 Link-State Advertisements .. 252
 Metrics .. 252
 Authentication .. 253
 IP Subnets ... 254
 Preconfiguration Recommendations .. 254
 Multiple OSPF Instances ... 255
 Route Export Policies for OSPF ... 255
 Preventing Route Redistribution Loops .. 256
 Multi-Address Support for OSPFv3 ... 257
 IP Fast-reroute (IP FRR) For OSPF and IS-IS Prefixes 258
 IP FRR Configuration ... 258
 ECMP Considerations ... 259
 IP FRR and RSVP Shortcut (IGP Shortcut) .. 260
 IP FRR and BGP Next-Hop Resolution ... 260
 OSPF and IS-IS Support for Loop-Free Alternate Calculation 260
 Loop-Free Alternate Shortest Path First (LFA SPF) Policies 267
Table of Contents

Configuration of Route Next-Hop Policy Template ... 267
 Configuring Affinity or Admin Group Constraint in Route Next-Hop Policy 267
 Configuring SRLG Group Constraint in Route Next-Hop Policy .. 269
 Interaction of IP and MPLS Admin Group and SRLG .. 270
 Configuring Protection Type and Next-Hop Type Preference in Route next-hop policy template 271
Application of Route Next-Hop Policy Template to an Interface ... 271
Excluding Prefixes from LFA SPF ... 272
Modification to LFA Next-Hop Selection Algorithm ... 273
OSPF LSA Filtering ... 275
OSPF Configuration Process Overview ... 276
Configuration Notes ... 277
 General .. 277
OSPF Defaults ... 277
Configuring OSPF with CLI ... 279
OSPF Configuration Guidelines ... 280
Basic OSPF Configuration ... 281
 Configuring the Router ID .. 282
Configuring OSPF Components ... 283
 Configuring OSPF Parameters ... 283
 Configuring OSPF3 Parameters ... 284
 Configuring an OSPF or OSPF3 Area ... 285
 Configuring a Stub Area .. 286
 Configuring a Not-So-Stubby Area ... 288
 Configuring a Virtual Link ... 290
 Configuring an Interface ... 292
 Configuring Authentication .. 295
 Configuring Authentication using Keychains .. 298
 Assigning a Designated Router .. 299
 Configuring Route Summaries ... 301
 Configuring Route Preferences ... 303
OSPF Configuration Management Tasks .. 306
 Modifying a Router ID ... 306
 Deleting a Router ID .. 308
OSPF Command Reference ... 311

IS-IS
 Configuring IS-IS ... 416
 Routing ... 417
IS-IS Frequently Used Terms ... 419
ISO Network Addressing .. 420
 IS-IS PDU Configuration ... 421
 IS-IS Operations .. 421
IS-IS Route Summarization ... 423
 Partial SPF Calculation .. 423
IS-IS MT-Topology Support .. 424
 Native IPv6 Support ... 424
IS-IS Administrative Tags ... 425
 Setting Route Tags.. 425
Table of Contents

IS-IS
- Using Route Tags .. 426
- Unnumbered Interface Support 426
- IS-IS Configuration Process Overview 427
- Configuration Notes ... 428
 - General .. 428
 - Configuring IS-IS with CLI 429
- IS-IS Configuration Overview 430
 - Router Levels .. 430
 - Area Address Attributes 430
 - Interface Level Capability 431
 - Route Leaking .. 432
- Basic IS-IS Configuration ... 433
- Common Configuration Tasks 435
 - Configuring IS-IS Components 436
 - Enabling IS-IS .. 436
 - Modifying Router-Level Parameters 436
 - Configuring ISO Area Addresses 438
 - Configuring Global IS-IS Parameters 439
 - Migration to IS-IS Multi-Topology 440
 - Configuring Interface Parameters 444
 - Configuring IS-IS Link Groups 449
- IS-IS Configuration Management Tasks 450
 - Disabling IS-IS .. 450
 - Removing IS-IS .. 450
 - Modifying Global IS-IS Parameters 451
 - Modifying IS-IS Interface Parameters 452
 - Configuring Authentication using Keychains 454
 - Configuring Leaking .. 455
 - Redistributing External IS-IS Routers 458
 - Specifying MAC Addresses for All IS-IS Routers 459
- IS-IS Command Reference .. 461

BGP
- BGP Overview .. 550
- BGP Sessions .. 551
 - BGP Session States ... 552
 - Detecting BGP Session Failures 552
 - Peer Tracking .. 553
 - Bidirectional Forwarding Detection (BFD) 553
 - Fast External Failover 554
 - High Availability BGP Sessions 555
 - BGP Graceful Restart ... 555
 - BGP Session Security .. 557
 - TCP MD5 Authentication 557
 - TTL Security Mechanism 557
 - BGP Groups .. 558
 - BGP Design Concepts ... 559
 - Route Reflection .. 560
 - BGP Confederations ... 562
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising Inactive</td>
<td>606</td>
</tr>
<tr>
<td>Best-External</td>
<td>607</td>
</tr>
<tr>
<td>Add-Paths</td>
<td>608</td>
</tr>
<tr>
<td>Split-Horizon</td>
<td>609</td>
</tr>
<tr>
<td>BGP Applications</td>
<td>610</td>
</tr>
<tr>
<td>BGP Shortcuts</td>
<td>610</td>
</tr>
<tr>
<td>Handling of Control Packets</td>
<td>610</td>
</tr>
<tr>
<td>BGP Flow-Spec</td>
<td>611</td>
</tr>
<tr>
<td>Validating Received Flow Routes</td>
<td>613</td>
</tr>
<tr>
<td>Using Flow Routes to Create Dynamic Filter Entries</td>
<td>613</td>
</tr>
<tr>
<td>Configuration of TTL Propagation for BGP Label Routes</td>
<td>614</td>
</tr>
<tr>
<td>TTL Propagation for RFC 3107 Label Route at Ingress LER</td>
<td>614</td>
</tr>
<tr>
<td>TTL Propagation for RFC 3107 Label Routes at LSR</td>
<td>615</td>
</tr>
<tr>
<td>BGP Configuration Process Overview</td>
<td>616</td>
</tr>
<tr>
<td>Configuration Notes</td>
<td>620</td>
</tr>
<tr>
<td>General</td>
<td>620</td>
</tr>
<tr>
<td>BGP Defaults</td>
<td>620</td>
</tr>
<tr>
<td>BGP MIB Notes</td>
<td>621</td>
</tr>
<tr>
<td>Configuring BGP with CLI</td>
<td>623</td>
</tr>
<tr>
<td>BGP Configuration Overview</td>
<td>624</td>
</tr>
<tr>
<td>Preconfiguration Requirements</td>
<td>624</td>
</tr>
<tr>
<td>BGP Hierarchy</td>
<td>624</td>
</tr>
<tr>
<td>Internal and External BGP Configurations</td>
<td>624</td>
</tr>
<tr>
<td>Basic BGP Configuration</td>
<td>626</td>
</tr>
<tr>
<td>Common Configuration Tasks</td>
<td>628</td>
</tr>
<tr>
<td>Creating an Autonomous System</td>
<td>629</td>
</tr>
<tr>
<td>Configuring a Router ID</td>
<td>630</td>
</tr>
<tr>
<td>BGP Confederations</td>
<td>632</td>
</tr>
<tr>
<td>BGP Route Refectors</td>
<td>634</td>
</tr>
<tr>
<td>BGP Components</td>
<td>636</td>
</tr>
<tr>
<td>Configuring Group Attributes</td>
<td>636</td>
</tr>
<tr>
<td>Configuring Neighbor Attributes</td>
<td>637</td>
</tr>
<tr>
<td>Configuring Route Reflection</td>
<td>638</td>
</tr>
<tr>
<td>Configuring a Confederation</td>
<td>639</td>
</tr>
<tr>
<td>BGP Configuration Management Tasks</td>
<td>640</td>
</tr>
<tr>
<td>Modifying an AS Number</td>
<td>640</td>
</tr>
<tr>
<td>Modifying a Confederation Number</td>
<td>641</td>
</tr>
<tr>
<td>Modifying the BGP Router ID</td>
<td>641</td>
</tr>
<tr>
<td>Modifying the Router-Level Router ID</td>
<td>642</td>
</tr>
<tr>
<td>Deleting a Neighbor</td>
<td>643</td>
</tr>
<tr>
<td>Deleting Groups</td>
<td>644</td>
</tr>
<tr>
<td>BGP Command Reference</td>
<td>645</td>
</tr>
<tr>
<td>Configuring Route Policies with CLI</td>
<td>779</td>
</tr>
<tr>
<td>Route Policy Configuration Overview</td>
<td>780</td>
</tr>
<tr>
<td>When to Create Routing Policies</td>
<td>780</td>
</tr>
<tr>
<td>Default Route Policy Actions</td>
<td>781</td>
</tr>
<tr>
<td>Policy Evaluation</td>
<td>782</td>
</tr>
<tr>
<td>Basic Configurations</td>
<td>785</td>
</tr>
</tbody>
</table>
Table of Contents

Configuring Route Policy Components ... 786
Beginning the Policy Statement ... 787
Creating a Route Policy .. 788
Configuring a Default Action .. 789
Configuring an Entry ... 790
Configuring a Prefix List ... 791

Route Policy Configuration Management Tasks .. 792
Editing Policy Statements and Parameters ... 792
Deleting an Entry ... 794
Deleting a Policy Statement .. 794

Route Policies
Configuring Route Policies ... 796
Policy Statements ... 797
Routing Policy Sub-Routines .. 798
Policy Evaluation Command ... 798
Exclusive Editing for Policy Configuration ... 798
Default Action Behavior ... 799
Denied IP Prefixes ... 799
Controlling Route Flapping .. 800

Regular Expressions ... 802
BGP and OSPF Route Policy Support ... 807
BGP Route Policies ... 808
Re-advertised Route Policies .. 809
Triggered Policies .. 809
Set MED to IGP Cost using Route Policies ... 810
BGP Policy Subroutines ... 811
Route Policies for BGP Next-Hop Resolution and Peer Tracking 811
Routing Policy Parameterization .. 812
When to Use Route Policies ... 816
Route Policy Configuration Process Overview ... 817
Configuration Notes ... 818
General ... 818
Route Policy Command Reference ... 819
Table of Contents
List of Tables

Preface 15
Table 1: Configuration Process ... 19

Multicast
Table 2: Join Filter Policy Match Conditions ... 32
Table 3: Register Filter Policy Match Conditions .. 32

OSPF
Table 4: Route Preference Defaults by Route Type 303
Table 5: Route Preference Defaults by Route Type 324
Table 6: Route Preference Defaults by Route Type 330

IS-IS
Table 7: Potential Adjacency ... 431
Table 8: Potential Adjacency ... 489

BGP
Table 9: Multi-Protocol BGP support in SR-OS ... 586
Table 10: MED Comparison with always-compare-med 592
Table 11: BGP Fast Reroute Scenarios (Base Context) 595
Table 12: Subcomponents of IPv4 Flow Route NLRI 611
Table 13: Subcomponents of IPv6 Flow Route NLRI 612
Table 14: IPv4 Flowspec Actions .. 613
Table 15: 7950 SR and IETF MIB Variations ... 621
Table 16: MIB Variable with SNMP .. 621
Table 17: Default Route Policy Actions ... 781

Route Policies
Table 18: Regular Expression Operators ... 803
Table 19: AS Path and Community Regular Expression Examples 804
Table 20: Metric Set IGP Effect .. 810
List of Tables
List of Figures

Multicast
- Figure 1: Anycast RP for PIM-SM Implementation Example 35
- Figure 2: MoFRR Steady State No Failure .. 41
- Figure 3: MoFRR Switch to Standby Stream on a Link Failure 41

OSPF
- Figure 4: Backbone Area .. 240
- Figure 5: PEs Connected to an MPLS-VPN Super Backbone 243
- Figure 6: Sham Links ... 244
- Figure 7: GRACE LSA Format ... 248
- Figure 8: Example Topology with Primary and LFA Routes 261
- Figure 9: Example Topology with Broadcast Interfaces 262
- Figure 10: OSPF Configuration and Implementation Flow 276
- Figure 11: OSPF Areas ... 357

IS-IS
- Figure 12: IS-IS Routing Domain ... 416
- Figure 13: Using Area Addresses to Form Adjacencies 421
- Figure 14: IS-IS Configuration and Implementation Flow 427
- Figure 15: Configuring a Level 1 Area .. 446
- Figure 16: Configuring a Level 1/2 Area ... 448

BGP
- Figure 17: BGP Sessions ... 551
- Figure 18: Fully Meshed BGP Configuration ... 560
- Figure 19: BGP Configuration with Route Reflectors 561
- Figure 20: BGP Update Message with Path Identifier for IPv4 NLRI 608
- Figure 21: BGP Configuration and Implementation Flow 619
- Figure 22: Confederation Network Diagram Example 632
- Figure 23: Route Reflection Network Diagram Example 634
- Figure 24: Route Policy Process Example ... 783
- Figure 25: Next Policy Logic Example .. 784

Route Policies
- Figure 26: BGP Route Policy Diagram .. 807
- Figure 27: BGP Route Policy Diagram .. 808
- Figure 28: OSPF Route Policy Diagram ... 809
- Figure 29: Route Policy Past Mode of Operation 812
- Figure 30: Route Policy Parameterization using sub-policies 813
- Figure 31: Route Policy Configuration and Implementation Flow 817
List of Figures
About This Guide

This guide describes routing protocols including multicast, OSPF, IS-IS, BGP, and route policies provided by the router and presents configuration and implementation examples.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring the routers. It is assumed that the network administrators have an understanding of networking principles and configurations. Protocols, standards, and services described in this manual include the following:

- Multicast — IGMP and PIM-SM
- Open Shortest Path First (OSPF)
- Intermediate System to Intermediate System (IS-IS)
- Border Gateway Protocol (BGP)
- Route policies
List of Technical Publications

The 7950 SR documentation set is composed of the following books:

- 7950 SR OS Basic System Configuration Guide
 This guide describes basic system configurations and operations.

- 7950 SR OS System Management Guide
 This guide describes system security and access configurations as well as event logging and accounting logs.

- 7950 SR OS Interface Configuration Guide
 This guide describes line card and port provisioning.

- 7950 SR OS Router Configuration Guide
 This guide describes logical IP routing interfaces and associated attributes such as an IP address, as well as IP and MAC-based filtering, and VRRP and Cflowd.

- 7950 SR OS Routing Protocols Guide
 This guide provides an overview of routing concepts and provides configuration examples for RIP, OSPF, IS-IS, BGP, and route policies.

- 7950 SRS MPLS Guide
 This guide describes how to configure Multiprotocol Label Switching (MPLS) and Label Distribution Protocol (LDP).

- 7950 SR OS Services Guide
 This guide describes how to configure service parameters such as service distribution points (SDPs), customer information, and user services.

- 7950 SR OAM and Diagnostic Guide
 This guide describes how to configure features such as service mirroring and Operations, Administration and Management (OAM) tools.

- 7950 SR OS Quality of Service Guide
 This guide describes how to configure Quality of Service (QoS) policy management.
Technical Support

If you purchased a service agreement for your 7950 SR-Series router and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center at:

http://www.alcatel-lucent.com/wps/portal/support

Report documentation errors, omissions and comments to:

Documentation_feedback@alcatel-lucent.com

Include document name, version, part number and page(s) affected.
In This Chapter

This chapter provides process flow information to configure IP routing protocols.

Alcatel-Lucent 7950 SR-Series Router Configuration Process

Table 1 lists the tasks necessary to configure OSPF, and IS-IS, BGP, and multicast protocols, and route policies. This guide is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

Table 1: Configuration Process

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol configuration</td>
<td>Configure routing protocols:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multicast</td>
<td>Multicast on page 21</td>
</tr>
<tr>
<td></td>
<td>• OSPF</td>
<td>OSPF on page 237</td>
</tr>
<tr>
<td></td>
<td>• IS-IS</td>
<td>IS-IS on page 415</td>
</tr>
<tr>
<td></td>
<td>• BGP</td>
<td>BGP on page 549</td>
</tr>
<tr>
<td>Policy configuration</td>
<td>• Configure route policies</td>
<td>Route Policies on page 795</td>
</tr>
<tr>
<td>Reference</td>
<td>List of IEEE, IETF, and other proprietary entities.</td>
<td>Standards and Protocol Support on page 947</td>
</tr>
</tbody>
</table>

Note: In SR OS 12.0.R4 any function that displays an IPv6 address or prefix changes to reflect rules described in RFC 5952, A Recommendation for IPv6 Address Text Representation. Specifically, hexadecimal letters in IPv6 addresses are now represented in lowercase, and the
correct compression of all leading zeros is displayed. This changes visible display output compared to previous SR OS releases. Previous SR OS behavior can cause issues with operator scripts that use standard IPv6 address expressions and with libraries that have standard IPv6 parsing as per RFC 5952 rules. See the section on IPv6 Addresses in the Router Configuration Guide for more information.
In This Chapter

This chapter provides information about IPv6, Internet Group Management Protocol (IGMP) and Protocol Independent Multicast (PIM).

Topics in this chapter include:

- Introduction to Multicast on page 22
 - Multicast Models on page 23
 - Multicast in IP-VPN Networks on page 24
- Multicast Features on page 25
 - Internet Group Management Protocol on page 25
 - Protocol Independent Multicast (PIM) on page 28
 - Multicast Source Discovery Protocol (MSDP) on page 43
 - Dynamic Multicast Signaling over P2MP LDP on page 49
 - Multicast Extensions to MBGP on page 50
 - IPv6 Multicast on page 51
 - Multicast Debugging Tools on page 56
 - Multicast Connection Admission Control (MCAC) on page 53
 - Multicast Debugging Tools on page 56
Introduction to Multicast

IP multicast provides an effective method of many-to-many communication. Delivering unicast datagrams is fairly simple. Normally, IP packets are sent from a single source to a single recipient. The source inserts the address of the target host in the IP header destination field of an IP datagram, intermediate routers (if present) simply forward the datagram towards the target in accordance with their respective routing tables.

Sometimes distribution needs individual IP packets be delivered to multiple destinations (like audio or video streaming broadcasts). Multicast is a method of distributing datagrams sourced from one (or possibly more) host(s) to a set of receivers that may be distributed over different (sub) networks. This makes delivery of multicast datagrams significantly more complex.

Multicast sources can send a single copy of data using a single address for the entire group of recipients. The routers between the source and recipients route the data using the group address route. Multicast packets are delivered to a multicast group. A multicast group specifies a set of recipients who are interested in a particular data stream and is represented by an IP address from a specified range. Data addressed to the IP address is forwarded to the members of the group. A source host sends data to a multicast group by specifying the multicast group address in the datagram’s destination IP address. A source does not have to register in order to send data to a group nor do they need to be a member of the group.

Routers and Layer 3 switches use the Internet Group Management Protocol (IGMP) to manage membership for a multicast session. When a host wants to receive one or more multicast sessions it will send a join message for each multicast group it wants to join. When a host wants to leave a multicast group, it will send a leave message.

To extend multicast to the Internet, the multicast backbone (Mbone) is used. The Mbone is layered on top of portions of the Internet. These portions, or islands, are interconnected using tunnels. The tunnels allow multicast traffic to pass between the multicast-capable portions of the Internet. As more and more routers in the Internet are multicast-capable (and scalable) the unicast and multicast routing table will converge.

The original Mbone was based on Distance Vector Multicast Routing Protocol (DVMRP) and was very limited. The Mbone is, however, converging around the following protocol set:

- IGMP
- Protocol Independent Multicast (Sparse Mode) (PIM-SM)
- Border Gateway Protocol with multi-protocol extensions (MBGP)
- Multicast Source Discovery Protocol (MSDP)
Multicast Models

Alcatel-Lucent routers support two models to provide multicast:

- Any-Source Multicast (ASM) on page 23
- Source Specific Multicast (SSM) on page 23
- Multicast in IP-VPN Networks on page 24

Any-Source Multicast (ASM)

Any-Source Multicast (ASM) is the IP multicast service model defined in RFC 1112, *Host extensions for IP Multicasting*. An IP datagram is transmitted to a host group, a set of zero or more end-hosts identified by a single IP destination address (224.0.0.0 through 239.255.255.255 for IPv4). End-hosts can join and leave the group any time and there is no restriction on their location or number. This model supports multicast groups with arbitrarily many senders. Any end-host can transmit to a host group even if it is not a member of that group.

To combat the vast complexity and scaling issues that ASM represents, the IETF is developing a service model called Source Specific Multicast (SSM).

Source Specific Multicast (SSM)

The Source Specific Multicast (SSM) service model defines a channel identified by an (S,G) pair, where S is a source address and G is an SSM destination address. In contrast to the ASM model, SSM only provides network-layer support for one-to-many delivery.

The SSM service model attempts to alleviate the following deployment problems that ASM has presented:

- **Address allocation** — SSM defines channels on a per-source basis. For example, the channel (S1,G) is distinct from the channel (S2,G), where S1 and S2 are source addresses, and G is an SSM destination address. This averts the problem of global allocation of SSM destination addresses and makes each source independently responsible for resolving address collisions for the various channels it creates.

- **Access control** — SSM provides an efficient solution to the access control problem. When a receiver subscribes to an (S,G) channel, it receives data sent only by the source S. In contrast, any host can transmit to an ASM host group. At the same time, when a sender picks a channel (S,G) to transmit on, it is automatically ensured that no other sender will be transmitting on the same channel (except in the case of malicious acts such as address spoofing). This makes it harder to spam an SSM channel than an ASM multicast group.
• Handling of well-known sources — SSM requires only source-based forwarding trees. This eliminates the need for a shared tree infrastructure. In terms of the IGMP, PIM-SM, MSDP, MBGP protocol suite, this implies that neither the RP-based shared tree infrastructure of PIM-SM nor the MSDP protocol is required. Thus, the complexity of the multicast routing infrastructure for SSM is low, making it viable for immediate deployment. Note that MBGP is still required for distribution of multicast reachability information.

• Anticipating that point-to-multipoint applications such as Internet TV will be significant in the future, the SSM model is better suited for such applications.

Multicast in IP-VPN Networks

Multicast can be deployed as part of IP-VPN networks. For details on multicast support in IP-VPNs see SROS Services Guide.
Multicast Features

This section describes the multicast requirements when an Alcatel-Lucent router is deployed as part of the user’s core network.

The required protocol set is as follows:

- Source Specific Multicast Groups (SSM on page 26)
- Protocol Independent Multicast (Sparse Mode) (PIM-SM on page 28)
- Multicast Extensions to MBGP (Multicast Extensions to MBGP on page 50)

Internet Group Management Protocol

Internet Group Management Protocol (IGMP) is used by IPv4 hosts and routers to report their IP multicast group memberships to neighboring multicast routers. A multicast router keeps a list of multicast group memberships for each attached network, and a timer for each membership.

Multicast group memberships include at least one member of a multicast group on a given attached network, not a list of all of the members. With respect to each of its attached networks, a multicast router can assume one of two roles, querier or non-querier. There is normally only one querier per physical network.

A querier issues two types of queries, a general query and a group-specific query. General queries are issued to solicit membership information with regard to any multicast group. Group-specific queries are issued when a router receives a leave message from the node it perceives as the last group member remaining on that network segment.

Hosts wanting to receive a multicast session issue a multicast group membership report. These reports must be sent to all multicast enabled routers.
IGMP Versions and Interoperability Requirements

If routers run different versions of IGMP, they will negotiate the lowest common version of IGMP that is supported on their subnet and operate in that version.

Version 1 — Specified in RFC-1112, *Host extensions for IP Multicasting*, was the first widely deployed version and the first version to become an Internet standard.

Version 2 — Specified in RFC-2236, *Internet Group Management Protocol*, added support for “low leave latency”, that is, a reduction in the time it takes for a multicast router to learn that there are no longer any members of a particular group present on an attached network.

Version 3 — Specified in RFC-3376, *Internet Group Management Protocol*, adds support for source filtering, that is, the ability for a system to report interest in receiving packets only from specific source addresses, as required to support Source-Specific Multicast (See Source Specific Multicast (SSM)), or from all but specific source addresses, sent to a particular multicast address.

IGMPv3 must keep state per group per attached network. This group state consists of a filter-mode, a list of sources, and various timers. For each attached network running IGMP, a multicast router records the desired reception state for that network.

IGMP Version Transition

Alcatel-Lucent’s routers are capable of interoperating with routers and hosts running IGMPv1, IGMPv2, and/or IGMPv3. RFC 5186, *Internet Group Management Protocol Version 3 (IGMPv3)/Multicast Listener Discovery Version 2 (MLDv2) and Multicast Routing Protocol Interaction* explores some of the interoperability issues and how they affect the various routing protocols.

IGMP version 3 specifies that if at any point a router receives an older version query message on an interface that it must immediately switch into a compatibility mode with that earlier version. Since none of the previous versions of IGMP are source aware, should this occur and the interface switch to Version 1 or 2 compatibility mode, any previously learned group memberships with specific sources (learned via the IGMPv3 specific INCLUDE or EXCLUDE mechanisms) MUST be converted to non-source specific group memberships. The routing protocol will then treat this as if there is no EXCLUDE definition present.

Source-Specific Multicast Groups

IGMPv3 permits a receiver to join a group and specify that it only wants to receive traffic for a group if that traffic comes from a particular source. If a receiver does this, and no other receiver on
the LAN requires all the traffic for the group, then the designated router (DR) can omit performing a (*,G) join to set up the shared tree, and instead issue a source-specific (S,G) join only.

The range of multicast addresses from 232.0.0.0 to 232.255.255.255 is currently set aside for source-specific multicast in IPv4. For groups in this range, receivers should only issue source-specific IGMPv3 joins. If a PIM router receives a non-source-specific join for a group in this range, it should ignore it.

An Alcatel-Lucent router PIM router must silently ignore a received (*,G) PIM join message where G is a multicast group address from the multicast address group range that has been explicitly configured for SSM. This occurrence should generate an event. If configured, the IGMPv2 request can be translated into IGMPv3. The router allows for the conversion of an IGMPv2 (*,G) request into a IGMPv3 (S,G) request based on manual entries. A maximum of 32 SSM ranges is supported.

IGMPv3 also permits a receiver to join a group and specify that it only wants to receive traffic for a group if that traffic does not come from a specific source or sources. In this case, the DR will perform a (*,G) join as normal, but can combine this with a prune for each of the sources the receiver does not wish to receive.

Query Messages

The IGMP query source address is configurable at two hierarchal levels. It can be configured globally at each router instance IGMP level and can be configured at individual at the group-interface level. The group-interface level overrides the src-ip address configured at the router instance level.

By default, subscribers with igmp-policies sends IGMP queries with an all zeros src-ip address (0.0.0.0). However, some systems would only accept and process IGMP query message with non-zero src-ip address. This feature allows the BNG to interoperate with such systems.
Protocol Independent Multicast (PIM)

PIM-SM leverages the unicast routing protocols that are used to create the unicast routing table, OSPF, IS-IS, BGP, and static routes. Because PIM uses this unicast routing information to perform the multicast forwarding function it is effectively IP protocol independent. Unlike DVMRP, PIM does not send multicast routing tables updates to its neighbors.

PIM-SM uses the unicast routing table to perform the Reverse Path Forwarding (RPF) check function instead of building up a completely independent multicast routing table.

PIM-SM only forwards data to network segments with active receivers that have explicitly requested the multicast group. PIM-SM in the ASM model initially uses a shared tree to distribute information about active sources. Depending on the configuration options, the traffic can remain on the shared tree or switch over to an optimized source distribution tree. As multicast traffic starts to flow down the shared tree, routers along the path determine if there is a better path to the source. If a more direct path exists, then the router closest to the receiver sends a join message toward the source and then reroutes the traffic along this path.

As stated above, PIM-SM relies on an underlying topology-gathering protocol to populate a routing table with routes. This routing table is called the Multicast Routing Information Base (MRIB). The routes in this table can be taken directly from the unicast routing table, or it can be different and provided by a separate routing protocol such as MBGP. Regardless of how it is created, the primary role of the MRIB in the PIM-SM protocol is to provide the next hop router along a multicast-capable path to each destination subnet. The MRIB is used to determine the next hop neighbor to whom any PIM join/prune message is sent. Data flows along the reverse path of the join messages. Thus, in contrast to the unicast RIB that specifies the next hop that a data packet would take to get to some subnet, the MRIB gives reverse-path information, and indicates the path that a multicast data packet would take from its origin subnet to the router that has the MRIB.

PIM-SM Functions

PIM-SM functions in three phases:

- Phase One on page 29
- Phase Two on page 29
- Phase Three on page 30
Phase One

In this phase, a multicast receiver expresses its interest in receiving traffic destined for a multicast group. Typically it does this using IGMP or MLD, but other mechanisms might also serve this purpose. One of the receiver’s local routers is elected as the DR for that subnet. When the expression of interest is received, the DR sends a PIM join message towards the RP for that multicast group. This join message is known as a (*,G) join because it joins group G for all sources to that group. The (*,G) join travels hop-by-hop towards the RP for the group, and in each router it passes through the multicast tree state for group G is instantiated. Eventually the (*,G) join either reaches the RP or reaches a router that already has (*,G) join state for that group. When many receivers join the group, their join messages converge on the RP and form a distribution tree for group G that is rooted at the RP. This is known as the RP tree and is also known as the shared tree because it is shared by all sources sending to that group. Join messages are resent periodically as long as the receiver remains in the group. When all receivers on a leaf-network leave the group, the DR will send a PIM (*,G) prune message towards the RP for that multicast group. However if the prune message is not sent for any reason, the state will eventually time out.

A multicast data sender starts sending data destined for a multicast group. The sender’s local router (the DR) takes those data packets, unicast-encapsulates them, and sends them directly to the RP. The RP receives these encapsulated data packets, de-encapsulates them, and forwards them onto the shared tree. The packets then follow the (*,G) multicast tree state in the routers on the RP tree, being replicated wherever the RP tree branches, and eventually reaching all the receivers for that multicast group. The process of encapsulating data packets to the RP is called registering, and the encapsulation packets are known as PIM register packets.

At the end of phase one, multicast traffic is flowing encapsulated to the RP, and then natively over the RP tree to the multicast receivers.

Phase Two

In this phase, register-encapsulation of data packets is performed. However, register-encapsulation of data packets is unsuitable for the following reasons:

- Encapsulation and de-encapsulation can be resource intensive operations for a router to perform depending on whether or not the router has appropriate hardware for the tasks.
- Traveling to the RP and then back down the shared tree can cause the packets to travel a relatively long distance to reach receivers that are close to the sender. For some applications, increased latency is unwanted.

Although register-encapsulation can continue indefinitely, for these reasons, the RP will normally switch to native forwarding. To do this, when the RP receives a register-encapsulated data packet from source S on group G, it will normally initiate an (S,G) source-specific join towards S. This join message travels hop-by-hop towards S, instantiating (S,G) multicast tree state in the routers along the path. (S,G) multicast tree state is used only to forward packets for group G if those
packets come from source S. Eventually the join message reaches S’s subnet or a router that already has (S,G) multicast tree state, and then packets from S start to flow following the (S,G) tree state towards the RP. These data packets can also reach routers with (*,G) state along the path towards the RP - if so, they can short-cut onto the RP tree at this point.

While the RP is in the process of joining the source-specific tree for S, the data packets will continue being encapsulated to the RP. When packets from S also start to arrive natively at the RP, the RP will be receiving two copies of each of these packets. At this point, the RP starts to discard the encapsulated copy of these packets and it sends a register-stop message back to S’s DR to prevent the DR unnecessarily encapsulating the packets. At the end of phase 2, traffic will be flowing natively from S along a source-specific tree to the RP and from there along the shared tree to the receivers. Where the two trees intersect, traffic can transfer from the shared RP tree to the shorter source tree.

Note that a sender can start sending before or after a receiver joins the group, and thus, phase two may occur before the shared tree to the receiver is built.

Phase Three

In this phase, the RP joins back towards the source using the shortest path tree. Although having the RP join back towards the source removes the encapsulation overhead, it does not completely optimize the forwarding paths. For many receivers the route via the RP can involve a significant detour when compared with the shortest path from the source to the receiver.

To obtain lower latencies, a router on the receiver’s LAN, typically the DR, may optionally initiate a transfer from the shared tree to a source-specific shortest-path tree (SPT). To do this, it issues an (S,G) Join towards S. This instantiates state in the routers along the path to S. Eventually this join either reaches S’s subnet or reaches a router that already has (S,G) state. When this happens, data packets from S start to flow following the (S,G) state until they reach the receiver.

At this point the receiver (or a router upstream of the receiver) will be receiving two copies of the data - one from the SPT and one from the RPT. When the first traffic starts to arrive from the SPT, the DR or upstream router starts to drop the packets for G from S that arrive via the RP tree. In addition, it sends an (S,G) prune message towards the RP. The prune message travels hop-by-hop instantiating state along the path towards the RP indicating that traffic from S for G should NOT be forwarded in this direction. The prune message is propagated until it reaches the RP or a router that still needs the traffic from S for other receivers.

By now, the receiver will be receiving traffic from S along the shortest-path tree between the receiver and S. In addition, the RP is receiving the traffic from S, but this traffic is no longer reaching the receiver along the RP tree. As far as the receiver is concerned, this is the final distribution tree.
Encapsulating Data Packets in the Register Tunnel

Conceptually, the register tunnel is an interface with a smaller MTU than the underlying IP interface towards the RP. IP fragmentation on packets forwarded on the register tunnel is performed based upon this smaller MTU. The encapsulating DR can perform path-MTU discovery to the RP to determine the effective MTU of the tunnel. This smaller MTU takes both the outer IP header and the PIM register header overhead into consideration.

PIM Bootstrap Router Mechanism

For proper operation, every PIM-SM router within a PIM domain must be able to map a particular global-scope multicast group address to the same RP. If this is not possible, then black holes can appear (this is where some receivers in the domain cannot receive some groups). A domain in this context is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary.

The bootstrap router (BSR) mechanism provides a way in which viable group-to-RP mappings can be created and distributed to all the PIM-SM routers in a domain. Each candidate BSR originates bootstrap messages (BSMs). Every BSM contains a BSR priority field. Routers within the domain flood the BSMs throughout the domain. A candidate BSR that hears about a higher-priority candidate BSR suppresses its sending of further BSMs for a period of time. The single remaining candidate BSR becomes the elected BSR and its BSMs inform the other routers in the domain that it is the elected BSR.

It is adaptive, meaning that if an RP becomes unreachable, it will be detected and the mapping tables will be modified so the unreachable RP is no longer used and the new tables will be rapidly distributed throughout the domain.

PIM-SM Routing Policies

Multicast traffic can be restricted from certain source addresses by creating routing policies. Join messages can be filtered using import filters. PIM join policies can be used to reduce denial of service attacks and subsequent PIM state explosion in the router and to remove unwanted multicast streams at the edge of the network before it is carried across the core. Route policies are created in the config>router>policy-options context. Join and register route policy match criteria for PIM-SM can specify the following:

- Router interface or interfaces specified by name or IP address.
- Neighbor address (the source address in the IP header of the join and prune message).
- Multicast group address embedded in the join and prune message.
• Multicast source address embedded in the join and prune message.

Join policies can be used to filter PIM join messages so no *.,G or S,G state will be created on the router.

Table 2: Join Filter Policy Match Conditions

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Matches the:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>RTR interface by name</td>
</tr>
<tr>
<td>Neighbor</td>
<td>The neighbors source address in the IP header</td>
</tr>
<tr>
<td>Group Address</td>
<td>Multicast Group address in the join/prune message</td>
</tr>
<tr>
<td>Source Address</td>
<td>Source address in the join/prune message</td>
</tr>
</tbody>
</table>

PIM register message are sent by the first hop designated router that has a direct connection to the source. This serves a dual purpose:

• Notifies the RP that a source has active data for the group
• Delivers the multicast stream in register encapsulation to the RP and its potential receivers.
• If no one has joined the group at the RP, the RP will ignore the registers.

In an environment where the sources to particular multicast groups are always known, it is possible to apply register filters at the RP to prevent any unwanted sources from transmitting multicast stream. You can apply these filters at the edge so that register data does not travel unnecessarily over the network towards the RP.

Table 3: Register Filter Policy Match Conditions

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Matches the:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>RTR interface by name</td>
</tr>
<tr>
<td>Group Address</td>
<td>Multicast Group address in the join/prune message</td>
</tr>
<tr>
<td>Source Address</td>
<td>Source address in the join/prune message</td>
</tr>
</tbody>
</table>
Reverse Path Forwarding Checks

Multicast implements a reverse path forwarding check (RPF). RPF checks the path that multicast packets take between their sources and the destinations to prevent loops. Multicast requires that an incoming interface is the outgoing interface used by unicast routing to reach the source of the multicast packet. RPF forwards a multicast packet only if it is received on an interface that is used by the router to route to the source.

If the forwarding paths are modified due to routing topology changes then any dynamic filters that may have been applied must be re-evaluated. If filters are removed then the associated alarms are also cleared.
Anycast RP for PIM-SM

The implementation of Anycast RP for PIM-SM environments enable fast convergence when a PIM rendezvous point (RP) router fails by allowing receivers and sources to rendezvous at the closest RP. It allows an arbitrary number of RPs per group in a single shared-tree protocol Independent Multicast-Sparse Mode (PIM-SM) domain. This is, in particular, important for triple play configurations that opt to distribute multicast traffic using PIM-SM, not SSM. In this case, RP convergence must be fast enough to avoid the loss of multicast streams which could cause loss of TV delivery to the end customer.

Anycast RP for PIM-SM environments is supported in the base routing/PIM-SM instance of the service router. In the SR-OS nodes, this feature is supported in Layer 3-VPRN instances that are configured with PIM.

Implementation

The Anycast RP for PIM-SM implementation is defined in draft-ietf-pim-anycast-rp-03, Anycast-RP using PIM, and is similar to that described in RFC 3446, Anycast RP Mechanism Using PIM and MSDP, and extends the register mechanism in PIM so Anycast RP functionality can be retained without using Multicast Source Discovery Protocol (MSDP) (see on page 48).

The mechanism works as follows:

- An IP address is chosen to use as the RP address. This address is statically configured, or distributed using a dynamic protocol, to all PIM routers throughout the domain.
- A set of routers in the domain are chosen to act as RPs for this RP address. These routers are called the Anycast-RP set.
- Each router in the Anycast-RP set is configured with a loopback interface using the RP address.
- Each router in the Anycast-RP set also needs a separate IP address to be used for communication between the RPs.
- The RP address, or a prefix that covers the RP address, is injected into the unicast routing system inside of the domain.
- Each router in the Anycast-RP set is configured with the addresses of all other routers in the Anycast-RP set. This must be consistently configured in all RPs in the set.
Figure 1: Anycast RP for PIM-SM Implementation Example

Assume the scenario in Figure 1 is completely connected where R1A, R1B, and R2 are receivers for a group, and S1 and S2 send to that group. Assume RP1, RP2, and RP3 are all assigned the same IP address which is used as the Anycast-RP address (for example, the IP address is RPA).

Note, the address used for the RP address in the domain (the Anycast-RP address) must be different than the addresses used by the Anycast-RP routers to communicate with each other.

The following procedure is used when S1 starts sourcing traffic:

- S1 sends a multicast packet.
- The DR directly attached to S1 will form a PIM register message to send to the Anycast-RP address (RPA). The unicast routing system will deliver the PIM register message to the nearest RP, in this case RP1A.
- RP1 will receive the PIM register message, de-encapsulate it, send the packet down the shared-tree to get the packet to receivers R1A and R1B.
- RP1 is configured with RP2 and RP3’s IP address. Since the register message did not come from one of the RPs in the anycast-RP set, RP1 assumes the packet came from a DR. If the register message is not addressed to the Anycast-RP address, an error has occurred and it should be rate-limited logged.
- RP1 will then send a copy of the register message from S1’s DR to both RP2 and RP3. RP1 will use its own IP address as the source address for the PIM register message.
- RP1 may join back to the source-tree by triggering a (S1,G) Join message toward S1. However, RP1 must create (S1,G) state.
- RP2 receives the register message from RP1, de-encapsulates it, and also sends the packet down the shared-tree to get the packet to receiver R2.
- RP2 sends a register-stop message back to the RP1. RP2 may wait to send the register-stop message if it decides to join the source-tree. RP2 should wait until it has received data from the source on the source-tree before sending the register-stop message. If RP2
decides to wait, the register-stop message will be sent when the next register is received. If RP2 decides not to wait, the register-stop message is sent now.

- RP2 may join back to the source-tree by triggering a (S1,G) Join message toward S1. However, RP2 must create (S1,G) state.
- RP3 receives the register message from RP1, de-encapsulates it, but since there are no receivers joined for the group, it can discard the packet.
- RP3 sends a register-stop message back to the RP1.
- RP3 creates (S1,G) state so when a receiver joins after S1 starts sending, RP3 can join quickly to the source-tree for S1.
- RP1 processes the register-stop message from each of RP2 and RP3. RP1 may cache on a per-RP/per-(S,G) basis the receipt of register-stop message messages from the RPs in the anycast-RP set. This option is performed to increase the reliability of register message delivery to each RP. When this option is used, subsequent register messages received by RP1 are sent only to the RPs in the Anycast-RP set which have not previously sent register-stop message messages for the (S,G) entry.
- RP1 sends a register-stop message back to the DR the next time a register message is received from the DR and (when the option in the last bullet is in use) if all RPs in the Anycast-RP set have returned register-stop messages for a particular (S,G) route.

The procedure for S2 sending follows the same as above but it is RP3 which sends a copy of the register originated by S2’s DR to RP1 and RP2. Therefore, this example shows how sources anywhere in the domain, associated with different RPs, can reach all receivers, also associated with different RPs, in the same domain.

Distributing PIM Joins over Multiple ECMP Paths

Commonly used multicast load-balancing method is per bandwidth/round robin, but the interface in an ECMP set can also be used for a particular channel to be predictable without knowing anything about the other channels using the ECMP set.

The `mc-ecmp-hashing-enabled` command enables PIM joins to be distributed over the multiple ECMP paths based on a hash of S and G. When a link in the ECMP set is removed, the multicast streams that were using that link are re-distributed over the remaining ECMP links using the same hash algorithm. When a link is added to the ECMP set, new joins may be allocated to the new link based on the hash algorithm, but existing multicast streams using the other ECMP links stay on those links until they are pruned.

The default is `no mc-ecmp-hashing-enabled`, which means that the use of multiple ECMP paths (if enabled at the config>service>vprn context) is controlled by the existing implementation and CLI commands, that is, `mc-ecmp-balance`.
The **mc-ecmp-hasing-enabled** command is mutually exclusive with the **mc-ecmp-balance** command in the same context.

To achieve distribution of streams across the ECMP links, following are the hashings steps:

1. For a given S, G get all possible nHops.
2. Sort these nHops based on nhops address.
3. xor S and G addresses.
4. Hash the xor address over number of pim next hops.
5. Use the hash value obtained in step 4, and get that element, in the sorted list, we obtained in step 2 as the preferred nHop.
6. If this element is not available/is not a pim Next hop (pim neighbor), the next available next hop is chosen.

The following example displays pim status indicating ECMP Hashing is disabled

```
*B:BB# show router 100 pim status

===============================================================================
PIM Status ipv4
===============================================================================
Admin State : Up
Oper State : Up
IPv4 Admin State : Up
IPv4 Oper State : Up
BSR State : Accept Any
Elected BSR
  Address : None
  Expiry Time : N/A
  Priority : N/A
  Hash Mask Length : 30
  Up Time : N/A
  RPF Intf towards E-BSR : N/A
Candidate BSR
  Admin State : Down
  Oper State : Down
  Address : None
  Priority : 0
  Hash Mask Length : 30
Candidate RP
  Admin State : Down
  Oper State : Down
  Address : 0.0.0.0
  Priority : 192
  Holdtime : 150
SSM-Default-Range : Enabled
```
SSM-Group-Range
 None
MC-ECMP-Hashing : Disabled
Policy : None
RPF Table : rtable-u
Non-DR-Attract-Traffic : Disabled

--

*B:BB>config>service>vprn>pim# no mc-ecmp-balance mc-ecmp-balance-hold
*B:BB>config>service>vprn>pim# mc-ecmp-balance-hold mc-ecmp-hash-enabled
*B:BB>config>service>vprn>pim# mc-ecmp-balance
*B:BB>config>service>vprn>pim# info
--

apply-to all
 rp
 static
 address 3.3.3.3
 group-prefix 224.0.0.0/4
 exit
 exit
 bsr-candidate
 shutdown
 exit
 rp-candidate
 shutdown
 exit
 exit
 no mc-ecmp-balance
 mc-ecmp-hash-enabled

--

*B:BB>config>service>vprn>pim#
 apply-to
 [no] import
 [no] interface
 [no] mc-ecmp-balance
 [no] mc-ecmp-balance-hold
 [no] mc-ecmp-hash-enabled
 [no] non-dr-attract
 [no] shutdown
 [no] spt-switchover
 [no] ssm-default-ra
 [no] ssm-groups

The following example shows distribution of PIM joins over multiple ECMP paths.

*A:BA# show router 100 pim group
PIM Groups ipv4

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>Type</th>
<th>Spt</th>
<th>Bit</th>
<th>Inc</th>
<th>Intf</th>
<th>No.Oifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.1.1.1</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1.2</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1.3</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1.4</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1.5</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1.6</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1.1</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1.2</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1.3</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1.4</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1.5</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1.6</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1.1</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1.2</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1.3</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1.4</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1.5</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1.6</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1.1</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1.2</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1.3</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1.4</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1.5</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1.6</td>
<td>170.0.100.33</td>
<td>(S,G)</td>
<td>spt</td>
<td>to_C3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multicast Only Fast Reroute (MoFRR)

With large scale multicast deployments, a link or nodal failure impacts multiple subscribers or a complete region/segment of receivers. This failure interrupts the receiver client experience. Besides the impact on user experience, though multicast client applications may buffer streams for short period of time, the loss of stream data may trigger unicast request for the missing stream data to the source in certain middleware implementations. Those requests can overload the network resources, if a traffic loss persists for a prolonged period.

To minimize service interruption to end-users and protect the network from sudden surge of unicast requests, SROS implements a fast failover scheme for native IP networks. SROS MoFRR implementation is based on http://tools.ietf.org/html/draft-karan-mofrr-02 and relies on:

- Sending a JOIN to a primary and a single standby upstream nodes over disjoined paths.
- Fast failover to a standby stream upon detection of a failure.

The functionality relies on failure detection on the primary path to switch to forwarding the traffic from the standby path. The traffic failure can happen with or without physical links or nodes going down. Various mechanisms for link/node failure detections are supported; however, to achieve best performance and resilience, it is recommended to enable MoFRR on every node in the network and use hop-by-hop BFD for fast link failure or data plane failure detection on each upstream link. Without BFD, the PIM adjacency loss or route change could be used to detect traffic failure.

The following pictures depict MoFRR behavior:
The MoFRR functionality on SROS routers supports the following:

- IPv4 link/node failure protection in global routing instance.
- Rosen PIM SSM with MDT SAFI
- Active and a single standby stream JOINs L3 over disjoint ECMP paths
- Active and a single standby stream JOINs over ISIS/OSPF Loop Free Alternative paths.
• When enabled, MoFRR is enabled on all regular PIM interfaces supporting MoFRR for all multicast streams. Tunnel interfaces are ignored.
Multicast Source Discovery Protocol (MSDP)

MSDP-speaking routers in a PIM-SM (RFC 2362, Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification) domain have MSDP peering relationship with MSDP peers in another domain. The peering relationship is made up of a TCP connection in which control information is exchanged. Each domain has one or more connections to this virtual topology.

When a PIM-SM RP learns about a new multicast source within its own domain from a standard PIM register mechanism, it encapsulates the first data packet in an MSDP source-active message and sends it to all MSDP peers.

The source-active message is flooded (after an RPF check) by each peer to its MSDP peers until the source-active message reaches every MSDP router in the interconnected networks. If the receiving MSDP peer is an RP, and the RP has a (*.G) entry (receiver) for the group, the RP creates state for the source and joins to the shortest path tree for the source. The encapsulated data is de-encapsulated and forwarded down the shared tree of that RP. When the packet is received by the last hop router of the receiver, the last hop router also may join the shortest path tree to the source.

The MSDP speaker periodically sends source-active messages that include all sources.

Anycast RP for MSDP

MSDP is a mechanism that allows rendezvous points to share information about active sources. When RPs in remote domains hear about the active sources, they can pass on that information to the local receivers and multicast data can be forwarded between the domains. MSDP allows each domain to maintain an independent RP that does not rely on other domains but enables RPs to forward traffic between domains. PIM-SM is used to forward the traffic between the multicast domains.

Using PIM-SM, multicast sources and receivers register with their local RP by the closest multicast router. The RP maintains information about the sources and receivers for any particular group. RPs in other domains do not have any knowledge about sources located in other domains.

MSDP is required to provide inter-domain multicast services using Any Source Multicast (ASM). Anycast RP for MSDP enables fast convergence when should an MSDP/PIM PR router fail by allowing receivers and sources to rendezvous at the closest RP.
MSDP Procedure

When an RP in a PIM-SM domain first learns of a new sender, for example, by PIM register messages, it constructs a source-active (SA) message and sends it to its MSDP peers. The SA message contains the following fields:

- Source address of the data source
- Group address the data source sends to
- IP address of the RP

Note that an RP that is not a designated router on a shared network do not originate SAs for directly-connected sources on that shared network. It only originates in response to receiving register messages from the designated router.

Each MSDP peer receives and forwards the message away from the RP address in a peer-RPF flooding fashion. The notion of peer-RPF flooding is with respect to forwarding SA messages. The Multicast RPF Routing Information Base (MRIB) is examined to determine which peer towards the originating RP of the SA message is selected. Such a peer is called an RPF peer.

If the MSDP peer receives the SA from a non-RPF peer towards the originating RP, it will drop the message. Otherwise, it forwards the message to all its MSDP peers (except the one from which it received the SA message).

When an MSDP peer which is also an RP for its own domain receives a new SA message, it determines if there are any group members within the domain interested in any group described by an (S,G) entry within the SA message. That is, the RP checks for a (*,G) entry with a non-empty outgoing interface list. This implies that some system in the domain is interested in the group. In this case, the RP triggers an (S,G) join event toward the data source as if a join/prune message was received addressed to the RP. This sets up a branch of the source-tree to this domain. Subsequent data packets arrive at the RP by this tree branch and are forwarded down the shared-tree inside the domain. If leaf routers choose to join the source-tree they have the option to do so according to existing PIM-SM conventions. If an RP in a domain receives a PIM join message for a new group G, the RP must trigger an (S,G) join event for each active (S,G) for that group in its SA cache.

This procedure is called flood-and-join because if any RP is not interested in the group, the SA message can be ignored, otherwise, they join a distribution tree.
MSDP Peering Scenarios

Draft-ietf-mboned-msdp-deploy-nn.txt, Multicast Source Discovery Protocol (MSDP) Deployment Scenarios, describes how protocols work together to provide intra- and inter-domain ASM service.

Inter-domain peering:

- Peering between PIM border routers (single-hop peering)
- Peering between non-border routers (multi-hop peering)
- MSDP peering without BGP
- MSDP peering between mesh groups
- MSDP peering at a multicast exchange

Intra-domain peering:

- Peering between routers configured for both MSDP and MBGP
- MSDP peer is not BGP peer (meaning, no BGP peer)

MSDP Peer Groups

MSDP peer groups are typically created when multiple peers have a set of common operational parameters. Group parameters not specifically configured are inherited from the global level.

MSDP Mesh Groups

MSDP mesh groups are used to reduce source active flooding primarily in intra-domain configurations. When a number of speakers in an MSDP domain are fully meshed they can be configured as a mesh group. The originator of the source active message forwards the message to all members of the mesh group. Because of this, forwarding the SA between non-originating members of the mesh group is not necessary.
MSDP Routing Policies

MSDP routing policies allow for filtering of inbound and/or outbound active source messages. Policies can be configured at different levels:

- Global level — Applies to all peers
- Group level — Applies to all peers in peer-group
- Neighbor level — Applies only to specified peer

The most specific level is used. If multiple policy names are specified, the policies are evaluated in the order they are specified. The first policy that matches is applied. If no policy is applied source active messages are passed.

Match conditions include:

- Neighbor — Matches on a neighbor address is the source address in the IP header of the source active message.
- Route filter — Matches on a multicast group address embedded in the source active message
- Source address filter — Matches on a multicast source address embedded in the source active message
Auto-RP (discovery mode only) in Multicast VPN

Auto-RP is a vendor proprietary protocol to dynamically learn about availability of Rendezvous Point (RP) in network. Auto-RP protocol consists of announcing, mapping and discovery functions. SROS supports the discovery mode of Auto-RP that includes mapping and forwarding of RP-mapping and RP-candidate messages. Discovery mode also includes receiving RP-mapping messages locally to learn and maintain RP-candidate database.

Auto-RP protocol is supported with multicast VPN and global routing instance. Either BSR or Auto-RP is allowed to be configured per routing instance. Both mechanisms cannot be enabled together.
Draft Rosen

RFC2547bis, *BGP/MPLS IP VPNs*, describes a method of providing a VPN service. A VPN provides secure connections to the network, allowing more efficient service to remote users without compromising the security of firewalls. The Rosen draft specifies the protocols and procedures which must be implemented in order for a service provider to provide a unicast VPN. The draft extends that specification by describing the protocols and procedures which a service provider must implement in order to support multicast traffic in a VPN, assuming that PIM [PIMv2] is the multicast routing protocol used within the VPN, and the SP network can provide PIM as well.

IGMP is not supported for receivers or senders directly attached to the PE.

For further information, refer to the Virtual Private Routed Network Service section of the Services Guide.
Dynamic Multicast Signaling over P2MP LDP

This feature provides a flexible multicast signaling solution to connect native IP multicast source and receivers that are running PIM multicast protocol via an intermediate MPLS (P2MP LDP LSP) network. It allows each native IP multicast flow to be connected via an intermediate P2MP LSP by dynamically mapping each PIM multicast flow to a P2MP LDP LSP.

It is not required to manually configure a mapping of (S,G) to a P2MP LSP on the edge node of MPLS network. A signaling method is defined that allows dynamic mapping of PIM signaling to P2MP LDP tree setup on the leaf node of P2MP LSP and also P2MP LDP signaling to be handed back to PIM on root node of P2MP LSP. Due to dynamic mapping of multicast IP flow to P2MP LSP, provisioning and maintenance overhead is eliminated as multicast distribution services are added and removed from the network.

P2MP LDP LSP signaling is initiated from node that receives PIM JOIN from a downstream node. p2mp-ldp-tree-join must be configured on PIM outgoing interface that received PIM JOIN to enable handover of multicast tree signaling from PIM to P2MP LDP LSP.

Leaf node of P2MP LDP LSP selects the upstream-hop as the root node of LDP FEC based on route table lookup. On the root node of P2MP LDP LSP, multicast tree signaling is handed back to PIM and propagated upstream as native-IP PIM JOIN.

Only PIM-SSM is supported with this feature. A single instance of P2MP LDP LSP is supported between the root and leaf nodes per multicast flow, that is, no stitching of dynamic trees.

If multiple criteria exist to setup a multicast flow then following priority is given:

1. Multicast (statically provisioned) over P2MP LSP (RSVP-TE or LDP)
2. Dynamic multicast signaling over P2MP LDP
3. PIM native-IP multicast
Multicast Extensions to MBGP

This section describes the implementation of extensions to MBGP to support multicast. Rather than assuming that all unicast routes are multicast-capable, some routed environments, in some cases, some ISPs do not support or have limited support for multicast throughout their AS.

BGP is capable of supporting two sets of routing information, one set for unicast routing and the other for multicast routing. The unicast and multicast routing sets either partially or fully overlay one another. To achieve this, BGP has added support for IPv4 and mcast-IPv4 address families. Routing policies can be imported or exported.

The multicast routing information can subsequently be used by the Protocol Independent Multicast (PIM) protocol to perform its Reverse Path Forwarding (RPF) lookups for multicast-capable sources. Thus, multicast traffic can only be routed across a multicast topology and not a unicast topology.

MBGP Multicast Topology Support

Recursive Lookup for BGP Next Hops

The next hop for multicast RPF routes learned by MBGP is not always the address of a directly-connected neighbor. For unicast routing, a router resolves the directly-connected next-hop by repeating the IGP routes. For multicast RPF routes, there are different ways to find the real next-hops.

- Scanning to see if a route encompasses the BGP next hop. If one exists, this route is used. If not, the tables are scanned for the best matching route.
- Check to see if the recursed next hop is taken from the protocol routing table with the lowest administrative distance (protocol preference). This means that the operating system algorithm must perform multiple lookups in the order of the lowest admin distance. Note that unlike recursion on the unicast routing table, the longest prefix match rule does not take effect; protocol preference is considered prior to prefix length. For example, the route 12.0.0.0/14 learned via MBGP will be selected over the route 12.0.0.0/16 learned via BGP.
IPv6 Multicast

IPv6 multicast enables multicast applications over native IPv6 networks. There are two service models: Any Source Multicast (ASM) and Source Specific Multicast (SSM) which includes PIM SSM and MLD (v1 and v2). SSM does not require source discovery and only supports single source for a specific multicast stream. As a result, SSM is easier to operate in a large scale deployment that uses the one-to-many service model.

Multicast Listener Discovery (MLD v1 and v2)

MLD is the IPv6 version of IGMP. The purpose of MLD is to allow each IPv6 router to discover the presence of multicast listeners on its directly attached links, and to discover specifically which multicast groups are of interest to those neighboring nodes.

MLD is a sub-protocol of ICMPv6. MLD message types are a subset of the set of ICMPv6 messages, and MLD messages are identified in IPv6 packets by a preceding Next Header value of 58. All MLD messages are sent with a link-local IPv6 source address, a Hop Limit of 1, and an IPv6 Router Alert option in the Hop-by-Hop Options header.

Similar to IGMPv2, MLDv1 reports only include the multicast group addresses that listeners are interested in, and don’t include the source addresses. In order to work with PIM SSM model, a similar SSM translation function is required when MLDv1 is used.

SSM translation allows an IGMPv2 device to join an SSM multicast network through the router that provides such a translation capability. Currently SSM translation can be done at a box level, but this does not allow a per-interface translation to be specified. SSM translation per interface offers the ability to have a same (*,G) mapped to two different (S,G) on two different interfaces to provide flexibility.

MLDv2 is backward compatible with MLDv1 and adds the ability for a node to report interest in listening to packets with a particular multicast group only from specific source addresses or from all sources except for specific source addresses.

PIM SSM

The IPv6 address family for SSM model is supported. This includes the ability to choose which RTM table to use (unicast RTM, multicast RTM, or both). OSPF3, IS-IS and static-route have extensions to support submission of routes into the IPv6 multicast RTM.
IPv6 PIM ASM

IPv6 PIM ASM is supported. All PIM ASM related functions such as bootstrap router, RP, etc., support both IPv4 and IPv6 address-families. IPv6 specific parameters are configured under `configure>router>pim>rp>ipv6`.

Embedded RP

The detailed protocol specification is defined in RFC 3956, *Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address*. This RFC describes a multicast address allocation policy in which the address of the RP is encoded in the IPv6 multicast group address, and specifies a PIM-SM group-to-RP mapping to use the encoding, leveraging, and extending unicast-prefix-based addressing. This mechanism not only provides a simple solution for IPv6 inter-domain ASM but can be used as a simple solution for IPv6 intra-domain ASM with scoped multicast addresses as well. It can also be used as an automatic RP discovery mechanism in those deployment scenarios that would have previously used the Bootstrap Router protocol (BSR).
Multicast Connection Admission Control (MCAC)

Multicast Connection Admission Control (MCAC) allows a router to limit bandwidth used by multicast channels, either on a router or on access links, by controlling the number of channels that are accepted. When a pre-configured limit is reached, the router prevents receivers from joining any new channels not currently established. As result, running the MCAC function might cause some channels to be temporarily unavailable to receivers under overload. However, by rejecting new channel establishment during an overload condition, the degradation of the quality of the existing multicast service offering is avoided.

Operators can configure one or more MCAC policies (configure>router>mcac) to specify multicast channel admission rules and then reference a required policy on multicast-enabled IPv4 interfaces or group-interfaces. In addition operators can configure per-interface MCAC behavior.

Multicast CAC is supported on ESM subscriber interfaces as well as multicast interfaces in base router instance and in MVPNs. MCAC is supported for IGMP, IGMP-snooping, and PIM. When a MCAC policy is applied to a split horizon group, then member SAPs do not permit policy enforcement configurations.

MCAC Policy Overview

MCAC policy is used to define MCAC rules to be applied on an interface when receivers are trying to join multicast channels. Within each policy, an operator can define:

- Multicast channel:
 - A channel can be defined using multicast group address only or both source and group addresses. Ranges can be used to group multiple multicast channels into a single MCAC channel. When ranges are used, each multicast channel within range will use the same channel BW, class, and priority configuration.
 - Channel BW: a bandwidth value to be used for a channel in MCAC.
 - Channel type (mandatory or optional): mandatory channels have BW pre-reserved on interfaces as soon as they are defined in MCAC policy, while optional channels consume BW on-demand; only when there are active receivers for that channel and the remaining BW allows for channels to be admitted.
 - Channel class: two classes are supported: high and low. For LAG interfaces, the class parameter allows further prioritizing of the mandatory or optional channels. This brings the number of priority levels to four during reshuffles of the joined channels when LAG ports are changing state.

NOTE: Multicast channels not specified in an MCAC policy applicable on a given interface are not subject to MCAC. Treatment of such channels is configurable as either accept or discard.
Multicast Features

- Multicast channel bundle:
 - Multicast bundle defines multicast channels as described above. A channel can only be part of one bundle.
 - Maximum bundle BW – the maximum bandwidth the channels forming a given bundle can consume on an interface.
 - MCAC constraints – set of rules governing available BW for multicast channels over LAG as LAG ports are changing state.

MCAC Algorithm

It is important to point out that the MCAC algorithm is based on configured BW values. The configured channel BW based on MCAC policy is CAC-ed against pre-configured maximum bundle BW and pre-configured interface multicast BW limits. A channel must pass all levels of CAC before it is accepted. The statements outline the CAC algorithm for a multicast channel defined in MCAC policy:

A join for a particular multicast channel is accepted if:

1. Mandatory channels:

 A sufficient bandwidth exists on the interface according to the policy settings for the interface (Interface-level MCAC) and BW setting for a channel (Bundle-level MCAC). Note, there is always sufficient BW available on the bundle level, because mandatory channels get pre-reserved bandwidth.

2. A sufficient BW exists on both interface (Interface-level MCAC) and bundle level (Bundle-Level MCAC) based on channel configured BW and currently available BW on both interface and bundle.

When a policy is evaluated over a set of existing channels (adding policy MCAC on LAG), the channels are evaluated and admitted/dropped based on the following priority order: mandatory-high, mandatory-low, optional-high, optional low.

This method does not guarantee that all bundles are fully allocated while others are not. However it does ensure that all mandatory high channels are allocated before any mandatory lows ones are allocated.
Interface-level MCAC details

Interface-level MCAC constraints are applied to the interface on which the join was received. The channel is allowed when:

- If it is defined as mandatory and the bandwidth for the already accepted mandatory channels plus the bandwidth of this channel is not greater than the configured mandatory bandwidth on this interface.

- If it is defined optional and the bandwidth for the already accepted optional channels plus the bandwidth of this channel is not greater than the configured amount of unconstrained bandwidth less the configured amount of mandatory bandwidth on this interface.

Bundle-Level MCAC details

Bundle-level CAC is applied to the bundle to which the channel belongs that triggered the MCAC algorithm. The channel is allowed when:

- If it is defined as mandatory – always.

- If it is defined as optional, then the allocated bundle bandwidth cannot exceed the configured bandwidth. The allocated bandwidth equals the bandwidth of all the mandatory channels belonging to that bundle plus the bandwidth of the optional channels already accepted plus the bandwidth of this optional channel.

MCAC on Link Aggregation Group Interfaces

When MCAC enabled interfaces reside on a LAG, SROS allows operators to change MCAC behavior when the number of active ports in a LAG changes. Both MCAC policy bundle and MCAC interface allows operators to define multiple MCAC levels per LAG based on the number of active ports in the LAG. For each level, operators can configure corresponding BW limits.

When MCAC LAG constraints are enabled, the level to use is selected automatically based on the configuration and a currently active number of LAG ports. In a case of the available bandwidth reduction (for example, a LAG link failure causes change to a level with smaller BW configured), MCAC attempts first to fit all mandatory channels (in an arbitrary order). If there is no sufficient capacity to carry all mandatory channels in the degraded mode, some channels are dropped and all optional channels are dropped. If after evaluation of mandatory channels, there remains available bandwidth, then all optional channels are re-evaluated (in an arbitrary order). Channel re-evaluation employs the above-described MCAC algorithm applied at the interface and bundle levels that use the constraints for the degraded mode of operation.
Multicast Debugging Tools

This section describes multicast debugging tools requirement for the router family of products.

The debugging tools for multicast consist out of three elements; mtrace, mstat, and mrinfo.

Mtrace

Assessing problems in the distribution of IP multicast traffic can be difficult. The mtrace feature utilizes a tracing feature implemented in multicast routers that is accessed via an extension to the IGMP protocol. The mtrace feature is used to print the path from the source to a receiver; it does this by passing a trace query hop-by-hop along the reverse path from the receiver to the source. At each hop, information such as the hop address, routing error conditions and packet statistics should be gathered and returned to the requestor.

Data added by each hop includes:

- Query arrival time
- Incoming interface
- Outgoing interface
- Previous hop router address
- Input packet count
- Output packet count
- Total packets for this source/group
- Routing protocol
- TTL threshold
- Fowarding/error code

The information enables the network administrator to determine:

- Where multicast flows stop
- the flow of the multicast stream

When the trace response packet reaches the first hop router (the router that is directly connected to the source’s net), that router sends the completed response to the response destination (receiver) address specified in the trace query.

If some multicast router along the path does not implement the multicast traceroute feature or if there is some outage, then no response is returned. To solve this problem, the trace query includes
a maximum hop count field to limit the number of hops traced before the response is returned. This allows a partial path to be traced.

The reports inserted by each router contain not only the address of the hop, but also the TTL required to forward and some flags to indicate routing errors, plus counts of the total number of packets on the incoming and outgoing interfaces and those forwarded for the specified group. Taking differences in these counts for two traces separated in time and comparing the output packet counts from one hop with the input packet counts of the next hop allows the calculation of packet rate and packet loss statistics for each hop to isolate congestion problems.

Finding the Last Hop Router

The trace query must be sent to the multicast router which is the last hop on the path from the source to the receiver. If the receiver is on the local subnet (as determined using the subnet mask), then the default method is to multicast the trace query to all-routers.mcast.net (224.0.0.2) with a TTL of 1. Otherwise, the trace query is multicast to the group address since the last hop router will be a member of that group if the receiver is. Therefore, it is necessary to specify a group that the intended receiver has joined. This multicast is sent with a default TTL of 64, which may not be sufficient for all cases.

When tracing from a multihomed host or router, the default receiver address may not be the desired interface for the path from the source. In that case, the desired interface should be specified explicitly as the receiver.

Directing the Response

By default, mtrace first attempts to trace the full reverse path, unless the number of hops to trace is explicitly set with the hop option. If there is no response within a 3 second timeout interval, a "*" is printed and the probing switches to hop-by-hop mode. Trace queries are issued starting with a maximum hop count of one and increasing by one until the full path is traced or no response is received. At each hop, multiple probes are sent. The first attempt is made with the unicast address of the host running mtrace as the destination for the response. Since the unicast route may be blocked, the remainder of attempts request that the response be multicast to mtrace.mcast.net (224.0.1.32) with the TTL set to 32 more than what’s needed to pass the thresholds seen so far along the path to the receiver. For the last attempts the TTL is increased by another 32.

Alternatively, the TTL may be set explicitly with the TTL option.

For each attempt, if no response is received within the timeout, a "*" is printed. After the specified number of attempts have failed, mtrace will try to query the next hop router with a DVMRP_ASK_NEIGHBORS2 request (as used by the mrinfo program) to determined the router type.
The output of mtrace is a short listing of the hops in the order they are queried, that is, in the reverse of the order from the source to the receiver. For each hop, a line is printed showing the hop number (counted negatively to indicate that this is the reverse path); the multicast routing protocol; the threshold required to forward data (to the previous hop in the listing as indicated by the up-arrow character); and the cumulative delay for the query to reach that hop (valid only if the clocks are synchronized). The response ends with a line showing the round-trip time which measures the interval from when the query is issued until the response is received, both derived from the local system clock.

Mtrace/mstat packets use special IGMP packets with IGMP type codes of 0x1E and 0x1F.

Mstat

The mstat command adds the capability to show the multicast path in a limited graphic display and provide drops, duplicates, TTLs and delays at each node. This information is useful to the network operator because it identifies nodes with high drop & duplicate counts. Duplicate counts are shown as negative drops.

The output of mstat provides a limited pictorial view of the path in the forward direction with data flow indicated by arrows pointing downward and the query path indicated by arrows pointing upward. For each hop, both the entry and exit addresses of the router are shown if different, along with the initial ttl required on the packet in order to be forwarded at this hop and the propagation delay across the hop assuming that the routers at both ends have synchronized clocks. The output consists of two columns, one for the overall multicast packet rate that does not contain lost/sent packets and a column for the (S,G)-specific case. The S,G statistics do not contain lost/sent packets.

Mrinfo

mrinfo is a simple mechanism based on the ask_neighbors igmp to display the configuration information from the target multicast router. The type of information displayed includes the Multicast of the router, code version, metrics, ttl-thresholds, protocols and status. This information, for instance, can be used by network operators to verify if bi-directional adjacencies exist. Once the specified multicast router responds, the configuration is displayed.
Configuring Multicast Parameters with CLI

This section provides information to configure multicast, IGMP, and PIM.

Topics in this section include:

- Multicast Configuration Overview on page 60
- Basic Configuration on page 61
- Common Configuration Tasks on page 64
- Disabling IGMP or PIM on page 82
Multicast Configuration Overview

The routers use IGMP to manage membership for a given multicast session. IGMP is not enabled by default. When enabled, at least one interface must be specified in the IGMP context as IGMP is an interface function. Creating an interface enables IGMP. Traffic can only flow away from the router to an IGMP interface and to and from a PIM interface. A router directly connected to a source must have PIM enabled on the interface to that source. The traffic travels in a network from PIM interface to PIM interface and arrives finally on an IGMP enabled interface.

The IGMP CLI context allows you to specify an existing IP interface and modify the interface-specific parameters. Static IGMP group memberships can be configured to test multicast forwarding without a receiver host. When IGMP static group membership is enabled, data is forwarded to an interface without receiving membership reports from host members.

When static IGMP group entries on point-to-point links that connect routers to a rendezvous point (RP) are configured, the static IGMP group entries do not generate join messages toward the RP. When a host wants to receive multicast sessions it sends a join message for each multicast group it wants to join. Then, a leave message may be sent for each multicast group it no longer wishes to participate with.

A multicast router keeps a list of multicast group memberships for each attached network, and an interval timer for each membership. Hosts issue a Multicast Group Membership Report when they want to receive a multicast session. The reports are sent to all multicast routers.

PIM is not enabled by default. When PIM is enabled, data is forwarded to network segments with active receivers that have explicitly requested the multicast group. When enabled, at least one interface must be specified in the PIM context as PIM is an interface function. Creating an interface enables PIM.
Basic Configuration

Perform the following basic multicast configuration tasks:

For IGMP:
- Enable IGMP (required)
- Configure IGMP interfaces (required)
- Specify IGMP version on the interface (optional)
- Configure static (S,G)/(*,G) (optional)
- Configure SSM translation (optional)

For PIM:
- Enable PIM (required)
- Add interfaces so the protocol establishes adjacencies with the neighboring routers (required)
- Configure a way to calculate group-to-RP mapping (required) by either:
 → Static group-to-RP mapping
 → Enable Candidate RP/Bootstrap mechanism on some routers.
- Enable unicast routing protocols to learn routes towards the RP/source for reverse path forwarding (required)
- Add SSM ranges (optional)
- Enable Candidate BSR (optional)
- Enable Candidate RP (optional)
- Change hello interval (optional)
- Configure route policies (bootstrap-export, bootstrap-import, import join and register)

For MSDP:
- Enable MSDP (required)
- Configure peer
- Configure local address

For MCAC:
- Configure policy name
- Configure bundle parameters
- Specify default action
The following example displays the enabled IGMP and PIM configurations:

A:LAX>config>router>igmp# info
--
interface "lax-vls"
 exit
interface "p1-ix"
 exit
--
A:LAX>config>router>igmp# info detail
--
interface "lax-vls"
 no import
 version 3
 no shutdown
 exit
interface "p1-ix"
 no import
 version 3
 no shutdown
 exit
query-interval 125
query-last-member-interval 1
query-response-interval 10
robust-count 2
 no shutdown
--
A:LAX>config>router>igmp# exit
A:LAX>config>router# pim
A:LAX>config>router>pim# info
--
interface "system"
 exit
interface "lax-vls"
 exit
interface "lax-sjc"
 exit
interface "p1-ix"
 exit
rp
 static
 address 2.22.187.237
 group-prefix 224.24.24.24/32
 exit
 exit
bsr-candidate
 shutdown
exit
rp-candidate
 shutdown
exit
exit
--
A:LAX>config>router>pim# info detail
--
no import join-policy
no import register-policy
interface "system"
priority 1
hello-interval 30
multicast-senders auto
no tracking-support
bsm-check-rtr-alert
no shutdown
exit
interface "lax-vls"
priority 1
hello-interval 30
multicast-senders auto
no tracking-support
bsm-check-rtr-alert
no shutdown
exit
interface "lax-sjc"
priority 1
hello-interval 30
multicast-senders auto
no tracking-support
bsm-check-rtr-alert
no shutdown
exit
interface "pl-ix"
priority 1
hello-interval 30
multicast-senders auto
no tracking-support
bsm-check-rtr-alert
no shutdown
exit
apply-to none
rp
no bootstrap-import
no bootstrap-export
static
address 2.22.187.237
no override
group-prefix 224.24.24.24/32
exit
exit
bsr-candidate
shutdown
priority 0
hash-mask-len 30
no address
exit
rp-candidate
shutdown
no address
holdtime 150
priority 192
exit
exit
no shutdown

A:LAX>config>router>pim#
Common Configuration Tasks

The following sections describe basic multicast configuration tasks.

- Configuring IGMP Parameters on page 64
 - Enabling IGMP on page 64
 - Configuring an IGMP Interface on page 66
 - Configuring Static Parameters on page 67
 - Configuring SSM Translation on page 69
- Configuring PIM Parameters on page 70
 - Enabling PIM on page 70
 - Configuring PIM Interface Parameters on page 71
 - Importing PIM Join/Register Policies on page 76
- Configuring Multicast Source Discovery Protocol (MSDP) Parameters on page 78
- Configuring MCAC Parameters on page 79
- Disabling IGMP or PIM on page 82

Configuring IGMP Parameters

Enabling IGMP

Use the following CLI syntax to enable IGMP.

CLI Syntax: config>router# igmp

The following example displays the detailed output when IGMP is enabled.

```
A:LAX>>config>router# info detail
...
#------------------------------------------
echo "IGMP Configuration"
#------------------------------------------
igmp
  query-interval 125
  query-last-member-interval 1
```
query-response-interval 10
robust-count 2
no shutdown
exit

#--
A:LAX>>config>system#
Configuring an IGMP Interface

To configure an IGMP interface:

CLI Syntax:
```
config>router# igmp
  interface ip-int-name
  max-groups value
  import policy-name
  version version
  no shutdown
```

Use the following CLI syntax to configure IGMP interfaces:

Example:
```
config>router#
  config>router>igmp# interface "lax-vls"
  config>router>igmp>if? no shutdown
  config>router>igmp>if# exit
  config>router>igmp# interface "pl-ix"
  config>router>igmp>if? no shutdown
  config>router>igmp>if# exit
  config>router>igmp# interface "lax-sjc"
  config>router>igmp>if? no shutdown
  config>router>igmp>if# exit
```

The following example displays the IGMP configuration:

```
A:LAX>config>router>igmp# info
----------------------------------------------
  interface "lax-sjc"
  exit
  interface "lax-vls"
  exit
  interface "pl-ix"
  exit
----------------------------------------------
A:LAX>config>router>igmp# exit
```
Configuring Static Parameters

To add an IGMP static multicast source:

CLI Syntax:
```
config>router# igmp
    interface ip-int-name
    no shutdown
    static
        group grp-ip-address
        source ip-address
```

Use the following CLI syntax to configure static group addresses and source addresses for the SSM translate group ranges:

Example:
```
config>router>igmp# interface lax-vls
config>router>igmp>if# static
config>router>igmp>if>static# group 229.255.0.2
config>router>igmp>if>static>group# source 172.22.184.197
config>router>igmp>if>static>group# exit
config>router>igmp>if>static# exit
config>router>igmp>if# exit
```

The following example displays the configuration:

```
A:LAX>config>router>igmp# info
----------------------------------------------
    interface "lax-sjc"
        exit
    interface "lax-vls"
        static
            group 229.255.0.2
                source 172.22.184.197
            exit
        exit
    interface "p1-ix"
        exit
----------------------------------------------
A:LAX>config>router>igmp#
```
To add an IGMP static starg entry:

CLI Syntax:
```
config>router# igmp
    interface ip-int-name
    no shutdown
    static
    group grp-ip-address
    starg
```

Use the following CLI syntax to configure static group addresses and add a static (*,G) entry:

Example:
```
config>router>igmp# interface lax-sjc
config>router>igmp>if# static
config>router>igmp>if>static# group 230.1.1.1
config>router>igmp>if>static>group# starg
config>router>igmp>if>static>group# exit
config>router>igmp>if>static# exit
config>router>igmp>if# exit
config>router>igmp#
```

The following example displays the configuration:
```
A:LAX>config>router>igmp# info
----------------------------------------------
interface "lax-sjc"
    static
        group 230.1.1.1
        starg
        exit
    exit
interface "lax-vls"
    static
        group 229.255.0.2
        source 172.22.184.197
        exit
    exit
interface "p1-ix"
    exit
----------------------------------------------
A:LAX>config>router>igmp#
```
Configuring SSM Translation

To configure IGMP parameters:

CLI Syntax:
```
config>router# igmp
    ssm-translate
    grp-range start end
    source ip-address
```

The following example displays the command usage to configure IGMP parameters:

Example:
```
config>router# igmp
    config>router>igmp# ssm-translate
    config>router>igmp>ssm# grp-range 229.255.0.1 231.2.2.2
    config>router>igmp>ssm>grp-range# source 10.1.1.1
```

The following example displays the SSM translation configuration:
```
A:LAX>config>router>igmp# info
----------------------------------------------
  ssm-translate
    grp-range 229.255.0.1 231.2.2.2
    source 10.1.1.1
  exit
exit
interface "lax-sjc"
  static
    group 230.1.1.1
    starg
  exit
exit
interface "lax-vls"
  static
    group 229.255.0.2
    source 172.22.184.197
  exit
exit
interface "p1-ix"
  exit
----------------------------------------------
A:LAX>config>router>igmp# exit
```
Configuring Multicast Parameters with CLI

Configuring PIM Parameters

- Enabling PIM on page 70
- Configuring PIM Interface Parameters on page 71
- Importing PIM Join/Register Policies on page 76

Enabling PIM

When configuring PIM, make sure to enable PIM on all interfaces for the routing instance, otherwise multicast routing errors can occur.

Use the following CLI syntax to enable PIM.

CLI Syntax: config>router# pim

The following example displays the detailed output when PIM is enabled.

```
A:LAX>>config>router# info detail
...  
#------------------------------------------
echo "PIM Configuration"
#------------------------------------------
pim
   no import join-policy
   no import register-policy
   apply-to none
   rp
     no bootstrap-import
     no bootstrap-export
     static
     exit
   bsr-candidate
     shutdown
     priority 0
     hash-mask-len 30
     no address
     exit
   rp-candidate
     shutdown
     no address
     holdtime 150
     priority 192
     exit
   exit
   exit
   no shutdown
exit
#------------------------------------------
...  
A:LAX>>config>system#
```
Configuring PIM Interface Parameters

The following example displays the command usage to configure PIM interface parameters:

Example:
```
A:LAX>config>router# pim
A:LAX>config>router>pim# interface "system" exit
A:LAX>config>router>pim# interface "lax-vls" exit
A:LAX>config>router>pim# interface "lax-sjc" exit
A:LAX>config>router>pim# interface "pl-ix" exit
A:LAX>config>router>pim# rp
A:LAX>config>router>pim>rp# static
A:LAX>config>router>pim>rp>static# address 2.22.187.237
A:LAX>config>router>pim>rp>static# group-prefix 224.24.24.24/32
A:LAX>config>router>pim>rp>static# exit
A:LAX>config>router>pim>rp>static# exit
A:LAX>config>router>pim>rp# exit
A:LAX>config>router>pim#
```

The following example displays the PIM configuration:
```
A:LAX>config>router>pim# info
```
```
interface "system" exit
interface "lax-vls" exit
interface "lax-sjc" exit
interface "pl-ix" exit
rp static
   address 2.22.187.237
      group-prefix 224.24.24.24/32
   exit
address 10.10.10.10
exit
exit
bsr-candidate
shutdown
exit
rp-candidate
shutdown
exit
exit
```

A:LAX>config>router>pim#
Example:

A:SJC>config>router# pim
A:SJC>config>router>pim# interface "system"
A:SJC>config>router>pim>if# exit
A:SJC>config>router>pim# interface "sjc-lax"
A:SJC>config>router>pim>if# exit
A:SJC>config>router>pim# interface "sjc-nyc"
A:SJC>config>router>pim>if# exit
A:SJC>config>router>pim# interface "sjc-sfo"
A:SJC>config>router>pim>if# exit
A:SJC>config>router>pim# rp
A:SJC>config>router>pim>rp# static
A:SJC>config>router>pim>rp>static# address 2.22.187.237
A:SJC>config>router>pim>rp>static# address# group-prefix 224.24.24.24/32
A:SJC>config>router>pim>rp>static# exit
A:SJC>config>router>pim>rp# exit
A:SJC>config>router>pim# info

--
interface "system"
exit
interface "sjc-lax"
exit
interface "sjc-nyc"
exit
interface "sjc-sfo"
exit
rp
static
address 2.22.187.237
 group-prefix 224.24.24.24/32
exit
exit
bsr-candidate
shutdown
exit
rp-candidate
shutdown
exit
exit
--
A:SJC>config>router>pim#
Example:

A: MV> config> router> pim
A: MV> config> router> pim# interface "system"
A: MV> config> router> pim> if# exit
A: MV> config> router> pim# interface "mv-sfo"
A: MV> config> router> pim> if# exit
A: MV> config> router> pim# interface "mv-vlc"
A: MV> config> router> pim> if# exit
A: MV> config> router> pim# interface "p3-ix"
A: MV> config> router> pim> if# exit
A: MV> config> router> pim# rp
A: MV> config> router> pim> rp# static
A: MV> config> router> pim> rp> static# address 2.22.187.237
A: MV> config> router> pim> rp> static> address# group-prefix 224.24.24.24/32
A: MV> config> router> pim> rp> static> address# exit
A: MV> config> router> pim> rp# static
A: MV> config> router> pim> rp# static# exit
A: MV> config> router> pim# info

A: MV> config> router> pim# info
--
interface "system"
exit
interface "mv-sfo"
exit
interface "mv-vlc"
exit
interface "p3-ix"
exit
rp
static
 address 2.22.187.237
 group-prefix 224.24.24.24/32
exit
exit
bsr-candidate
 address 2.22.187.236
 no shutdown
exit
rp-candidate
 address 2.22.187.236
 no shutdown
exit
exit
--
A: MV> config> router> pim#
Example:

A:SFO>config>router# pim
A:SFO>config>router>pim# interface "system"
A:SFO>config>router>pim>if# exit
A:SFO>config>router>pim# interface "sfo-sfc"
A:SFO>config>router>pim>if# exit
A:SFO>config>router>pim# interface "sfo-was"
A:SFO>config>router>pim>if# exit
A:SFO>config>router>pim# interface "sfo-mv"
A:SFO>config>router>pim>if# exit
A:SFO>config>router>pim# rp
A:SFO>config>router>pim>rp# static
A:SFO>config>router>pim>rp>static# address 2.22.187.237
A:SFO>config>router>pim>rp>static>address# group-prefix 224.24.24.24/32
A:SFO>config>router>pim>rp>static>address# exit
A:SFO>config>router>pim>rp# exit
A:SFO>config>router>pim# info

--
interface "system"
exit
interface "sfo-sjc"
exit
interface "sfo-was"
exit
interface "sfo-mv"
exit
rp
static
 address 2.22.187.237
 group-prefix 224.24.24.24/32
exit
exit
bsr-candidate
 address 2.22.187.239
 no shutdown
exit
rp-candidate
 address 2.22.187.239
 no shutdown
exit
exit
--
A:SFO>config>router>pim#
Example:

A:WAS>config>router# pim
A:WAS>config>router>pim# interface "system"
A:WAS>config>router>pim>if# exit
A:WAS>config>router>pim# interface "was-sfo"
A:WAS>config>router>pim>if# exit
A:WAS>config>router>pim# interface "was-vic"
A:WAS>config>router>pim>if# exit
A:WAS>config>router>pim# interface "p4-ix"
A:WAS>config>router>pim>if# exit
A:WAS>config>router>pim# rp
A:WAS>config>router>pim>rp# static
A:WAS>config>router>pim>rp>static# address 2.22.187.237
A:WAS>config>router>pim>rp>static# group-prefix 224.24.24.32
A:WAS>config>router>pim>rp>static# exit
A:WAS>config>router>pim>rp# exit
A:WAS>config>router>pim# info

```
----------------------------------------------
interface "system"
exit
interface "was-sfo"
exit
interface "was-vic"
exit
interface "p4-ix"
exit
rp
    static
        address 2.22.187.237
        group-prefix 224.24.24.32
        exit
    exit
bsr-candidate
    address 2.22.187.240
    no shutdown
    exit
rp-candidate
    address 2.22.187.240
    no shutdown
    exit
exit
----------------------------------------------
```
A:WAS>config>router>pim#
Importing PIM Join/Register Policies

The import command provides a mechanism to control the (*,G) and (S,G) state that gets created on a router. Import policies are defined in the config>router>policy-options context.

Note, in the import policy, if an action is not specified in the entry then the default-action takes precedence. If no entry matches then the default-action also takes precedence. If no default-action is specified, then the default default-action is executed.

Use the following commands to configure PIM parameters:

CLI Syntax:
```
config>router# pim
    import {join-policy|register-policy} [policy-name [.. policy-name]]
```

The following example displays the command usage to apply the policy statement which does not allow join messages for group 229.50.50.208/32 and source 192.168.0.0/16 but allows join messages for 192.168.0.0/16, 229.50.50.208 (see Configuring Route Policy Components on page 786):

Example:
```
config>router# pim
    config>router>pim# import join-policy "foo"
    config>router>pim# no shutdown
```

The following example displays the PIM configuration:
```
A:LAX>config>router>pim# info
--------------------------------------------------------------
    import join-policy "foo"
    interface "system"
        exit
    interface "lax-vls"
        exit
    interface "lax-sjc"
        exit
    interface "p1-ix"
        exit
    rp
        static
            address 2.22.187.237
                group-prefix 224.24.24.24/3
            exit
        address 10.10.10.10
            exit
        exit
    bsr-candidate
    shutdown
```
exit
rp-candidate
 shutdown
exit
exit
--
A:LAX>config>router>pim#
Configuring Multicast Source Discovery Protocol (MSDP) Parameters

Use the following commands to configure basic MSDP parameters:

CLI Syntax:
```
cfg>router# msdp
   peer ip-address
   active-source-limit number
   authentication-key [authentication-key|hash-key] [hash|hash2]
   default-peer
   export policy-name [policy-name...(up to 5 max)]
   import policy-name [policy-name...(up to 5 max)]
   local-address ip-address
   receive-msdp-msg-rate number interval seconds [threshold threshold]
   no shutdown
   no shutdown
```

Use the following CLI syntax to configure MSDP parameters.

Example:
```
cfg>router>msdp# peer 10.20.1.1
cfg>router>msdp>peer# local-address 10.20.1.6
cfg>router>msdp>peer# no shutdown
cfg>router>msdp>peer# exit
cfg>router>msdp# no shutdown
```

The following example displays the MSDP configuration:

```
ALA-48>config>router>msdp# info
--------------------------------------------------------------------------------
   peer 10.20.1.1
   local-address 10.20.1.6
   exit
--------------------------------------------------------------------------------
ALA-48>config>router>msdp#
```
Configuring MCAC Parameters

The MCAC policies can be added to a SAP, spoke SDP, mesh SDP, an IGMP interface, and a PIM interface.

The following example displays the command usage to create MCAC policies.

Example:
```
config>router# mcac
config>router>mcac# policy "btv_fr"
config>router>mcac>policy# description "foreign TV offering"
config>router>mcac>policy# bundle "FOR" create
config>router>mcac>policy>bundle# bandwidth 30000
config>router>mcac>policy>bundle# channel 224.0.3.1 224.0.3.1 bw 4000
config>router>mcac>policy>bundle# channel 224.0.3.2 224.0.3.2 bw 4000
config>router>mcac>policy>bundle# channel 224.0.4.1 224.0.4.1 bw 3500 class high type mandatory
config>router>mcac>policy>bundle# channel 224.0.4.2 224.0.4.2 bw 3500 class high
config>router>mcac>policy>bundle# channel 224.0.4.3 224.0.4.3 bw 2800 type mandatory
config>router>mcac>policy>bundle# channel 224.0.4.4 bw 2800
config>router>mcac>policy>bundle# mc-constraints
config>router>mcac>policy>bundle>mc-constraints# level 1 bw 20000
config>router>mcac>policy>bundle>mc-constraints# level 2 bw 20000
config>router>mcac>policy>bundle>mc-constraints# level 3 bw 20000
config>router>mcac>policy>bundle>mc-constraints# level 4 bw 20000
config>router>mcac>policy>bundle>mc-constraints# level 5 bw 20000
config>router>mcac>policy>bundle>mc-constraints# level 6 bw 20000
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 1 number-down 1 level 1
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 1 number-down 2 level 3
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 2 number-down 1 level 1
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 2 number-down 2 level 3
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 2 number-down 3 level 5
config>router>mcac>policy>bundle>mc-constraints# exit
config>router>mcac>policy>bundle# no shutdown
config>router>mcac>policy>bundle# exit
config>router>mcac>policy# exit
config>router>mcac# policy "btv_vl"
config>router>mcac>policy# description "eastern TV offering"
config>router>mcac>policy# bundle "VRT" create
config>router>mcac>policy>bundle# bandwidth 120000
config>router>mcac>policy>bundle# channel 224.1.2.0 224.1.2.4 bw 40000 class high type mandatory
config>router>mcac>policy>bundle# channel 224.1.2.5 224.1.2.5 bw 20000 type mandatory
config>router>mcac>policy>bundle# channel 224.1.2.10 224.1.2.10 bw 8000 type mandatory
config>router>mcac>policy>bundle# channel 224.2.2.0 224.2.2.4 bw 4000
config>router>mcac>policy>bundle# channel 224.2.2.5 224.2.2.5 bw 10000 class high
config>router>mcac>policy>bundle# channel 224.2.2.6 224.2.2.6 bw 10000 class high
config>router>mcac>policy>bundle# channel 224.2.2.7 224.2.2.7 bw 10000
config>router>mcac>policy>bundle# channel 224.2.2.8 224.2.2.8 bw 10000
config>router>mcac>policy>bundle# mc-constraints
config>router>mcac>policy>bundle>mc-constraints# level 1 bw 60000
config>router>mcac>policy>bundle>mc-constraints# level 2 bw 50000
config>router>mcac>policy>bundle>mc-constraints# level 3 bw 40000
config>router>mcac>policy>bundle>mc-constraints# level 4 bw 30000
config>router>mcac>policy>bundle>mc-constraints# level 5 bw 20000
```
Configuring Multicast Parameters with CLI

```plaintext
config>router>mcac>policy>bundle>mc-constraints# level 6 bw 10000
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 1 number-down 1 level 1
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 1 number-down 2 level 3
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 1 number-down 3 level 5
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 2 number-down 1 level 1
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 2 number-down 2 level 3
config>router>mcac>policy>bundle>mc-constraints# lag-port-down 2 number-down 3 level 5
config>router>mcac>policy>bundle>mc-constraints# exit
config>router>mcac>policy>bundle# no shutdown
config>router>mcac>policy>bundle# exit
config>router>mcac>policy# exit
```

The following example displays the configuration:

```
*A:ALA-48>config>router>mcac# info
---------------
policy "btv_fr"
  description "foreign TV offering"
  bundle "FOR" create
  bandwidth 30000
    channel 224.0.3.1 224.0.3.1 bw 4000
    channel 224.0.3.2 224.0.3.2 bw 4000
    channel 224.0.4.1 224.0.4.1 bw 3500 class high type mandatory
    channel 224.0.4.2 224.0.4.2 bw 3500 class high
    channel 224.0.4.3 224.0.4.3 bw 2800 type mandatory
    channel 224.0.4.4 224.0.4.4 bw 2800
  mc-constraints
    level 1 bw 20000
    level 2 bw 20000
    level 3 bw 20000
    level 4 bw 20000
    level 5 bw 20000
    level 6 bw 20000
    lag-port-down 1 number-down 1 level 1
    lag-port-down 1 number-down 2 level 3
    lag-port-down 1 number-down 3 level 5
    lag-port-down 2 number-down 1 level 1
    lag-port-down 2 number-down 2 level 3
    lag-port-down 2 number-down 3 level 5
  exit
  no shutdown
  exit
policy "btv_vl"
  description "eastern TV offering"
  bundle "VRT" create
  bandwidth 120000
    channel 224.1.2.0 224.1.2.4 bw 4000 class high type mandatory
    channel 224.1.2.5 224.1.2.5 bw 20000 type mandatory
    channel 224.1.2.10 224.1.2.10 bw 8000 type mandatory
    channel 224.2.2.0 224.2.2.4 bw 4000
    channel 224.2.2.5 224.2.2.5 bw 10000 class high
    channel 224.2.2.6 224.2.2.6 bw 10000 class high
    channel 224.2.2.7 224.2.2.7 bw 10000
    channel 224.2.2.8 224.2.2.8 bw 10000
  mc-constraints
    level 1 bw 60000
```

Page 80 7950 SR OS Routing Protocols Guide
level 2 bw 50000
level 3 bw 40000
level 4 bw 30000
level 5 bw 20000
level 6 bw 10000
lag-port-down 1 number-down 1 level 1
lag-port-down 1 number-down 2 level 3
lag-port-down 1 number-down 3 level 5
lag-port-down 2 number-down 1 level 1
lag-port-down 2 number-down 2 level 3
lag-port-down 2 number-down 3 level 5
exit
no shutdown
exit
exit

--
*A:ALA-48>config>router>mcac#
Disabling IGMP or PIM

Use the following CLI syntax to disable IGMP and PIM:

CLI Syntax:
```
config>router#
    igmp
    shutdown
    msdp
    shutdown
    pim
    shutdown
```

The following example displays the command usage to disable multicast:

Example:
```
config>router# igmp
config>router>igmp# shutdown
config>router>igmp# exit
config>router#
config>router>msdp# shutdown
config>router>msdp# exit
config>router# pim
config>router>pim# shutdown
config>router>pim# exit
```
The following example displays the configuration output:

```
A:LAX>config>router# info
----------------------------------------------
... 
#------------------------------------------
echo "IGMP Configuration"
#------------------------------------------
  igmp
    shutdown
    ssm-translate
      grp-range 229.255.0.1 231.2.2.2
      source 10.1.1.1
    exit
exit
interface "lax-sjc"
  static
    group 230.1.1.1
    starg
  exit
exit
interface "lax-vls"
  static
    group 229.255.0.2
    source 172.22.184.197
  exit
exit
interface "p1-ix"
  exit
#------------------------------------------
#--------------------------------------------------
echo "MSDP Configuration"
#--------------------------------------------------
  msdp
    shutdown
    peer 10.20.1.1
      local-address 10.20.1.6
    exit
    group "test"
      active-source-limit 50000
      receive-msdp-msg-rate 100 interval 300 threshold 5000
      export "LDP-export"
      import "LDP-import"
      local-address 10.10.10.103
      mode mesh-group
    peer 10.10.10.104
    exit
  exit
#------------------------------------------

#--------------------------------------------------
echo "PIM Configuration"
#--------------------------------------------------
  pim
```
shutdown
import join-policy "foo"
interface "system"
exit
interface "lax-sjc"
exit
interface "lax-vls"
exit
interface "p1-ix"
exit
rp
 static
 address 2.22.187.237
 group-prefix 224.24.24.24/32
 exit
 address 10.10.10.10
 exit
 exit
bsr-candidate
 shutdown
 exit
rp-candidate
 shutdown
 exit
 exit
 exit
 exit
#--
....
--
A:LAX>config>router#
Multicast Command Reference

Command Hierarchies

- Configuration Commands on page 85
 - IGMP Commands on page 85
 - PIM Commands on page 87
 - MSDP Commands on page 90
 - Multicast CAC Policy Commands on page 92
 - Multicast Listener Discovery (MLD) Commands on page 93
- Operational Commands on page 95
- Show Commands on page 95
 - Clear Commands on page 96
- Debug Commands on page 98

Configuration Commands

```
config
  — router
    — [no] ip-fast-reroute
    — mc-maximum-routes number [log-only] [threshold threshold]
    — no mc-maximum-routes
    — multicast-info policy-name
    — no multicast-info
```

IGMP Commands

```
config
  — router
    — [no] igmp
      — grp-if-query-src-ip ip-address
      — no grp-if-query-src-ip
      — [no] interface ip-int-name
        — [no] disable-router-alert-check
        — [no] shutdown
        — import policy-name
        — no import
        — max-groups
        — no max-groups
        —
        — mcac
          — mc-constraints
            — level level-id bw bandwidth
            — no level level-id
            — number-down number-lag-port-down level level-id
            — no number-down number-lag-port-down
```
— [no] shutdown
— policy mcac-policy-name
— no policy
— unconstrained-bw bandwidth mandatory-bw mandatory-bw
— no unconstrained-bw
— [no] shutdown
— ssm-translate
— [no] grp-range start end
— [no] source ip-address
— static
— [no] group grp-ip-address
— [no] source ip-address
— [no] starg
— [no] subnet-check
— version version
— no version
— query-interval seconds
— no query-interval
— query-last-member-interval seconds
— no query-last-member-interval
— query-response-interval seconds
— no query-response-interval
— robust-count robust-count
— no robust-count
— [no] shutdown
— ssm-translate
— [no] grp-range start end
— [no] source ip-address
— [no] tunnel-interface rsvp-p2mp lsp-name
— static
— [no] group grp-ip-address
— [no] source ip-address
— [no] starg
Multicast

PIM Commands

cfg router
 - [no] pim
 - apply-to [ies | non-ies | all | none]
 - [no] enable-mdt-spt
 - import [join-policy | register-policy] policy-name [.. policy-name]
 - no import [join-policy | register-policy]
 - [no] interface ip-int-name
 - assert-period assert-period
 - no assert-period
 - [no] bfd-enable [ipv4 | ipv6]
 - [no] bsm-check-rtr-alert
 - hello-interval hello-interval
 - no hello-interval
 - hello-multiplier deci-units
 - no hello-multiplier
 - [no] improved-assert
 - [no] ipv4-multicast-disable
 - [no] ipv6-multicast-disable
 - max-groups value
 - no max-groups
 - mcac
 - mc-constraints
 - level level bw bandwidth
 - no level level
 - number-down number-lag-port-down level level-id
 - no number-down number-lag-port-down
 - [no] shutdown
 - policy policy-name
 - no policy
 - unconstrained-bw bandwidth mandatory-bw mandatory-bw
 - no unconstrained-bw
 - multicast-senders [auto | always | never]
 - no multicast-senders
 - no p2mp-ldp-tree-join
 - priority dr-priority
 - no priority
 - [no] shutdown
 - sticky-dr [priority dr-priority]
 - no sticky-dr
 - three-way-hello [compatibility-mode]
 - no three-way-hello
 - [no] tracking-support
 - [no] ipv4-multicast-disable
 - ipv6-multicast-disable
 - [no] lag-usage-optimization
 - [no] mc-eemp-balance
 - mc-eemp-balance-hold minutes
 - no mc-eemp-balance-hold
 - [no] mc-eemp-hashing-enabled
 - [no] multicast-fast-failover
 - [no] non-dr-attract-traffic
 - rp

7950 SR OS Routing Protocols Guide Page 87
— [no] **anycast** rp-ip-address
 — [no] **rp-set-peer** ip-address
— [no] **auto-rp-discovery**
— **bootstrap-export** policy-name [... policy-name]
— [no] **bootstrap-export**
— **bootstrap-import** policy-name [... policy-name]
— [no] **bootstrap-import**
— **bsr-candidate**
 — address ip-address
 — no address
 — hash-mask-len hash-mask-length
 — no hash-mask-len
 — priority bootstrap-priority
 — no priority
 — [no] **shutdown**
— **ipv6**
 — [no] **anycast** rp-ip-address
 — [no] **rp-set-peer** ip-address
— **bsr-candidate**
 — address ip-address
 — no address
 — hash-mask-len hash-mask-length
 — no hash-mask-len
 — priority bootstrap-priority
 — no priority
 — [no] **shutdown**
— [no] **embedded-rp**
 — [no] **group-range** ipv6-address/prefix-length
 — [no] **shutdown**
— **rp-candidate**
 — address ip-address
 — no address
 — [no] **group-range** {grp-ip-address/mask | grp-ip-address netmask}
 — holdtime holdtime
 — no holdtime
 — priority priority
 — no priority
 — [no] **shutdown**
— **static**
 — [no] **address** ip-address
 — [no] **group-prefix** {grp-ip-address/mask | grp-ip-address netmask}
 — [no] **override**
— **rp-candidate**
 — address ip-address
 — no address
 — [no] **group-range** {grp-ip-address/mask | grp-ip-address netmask}
 — holdtime holdtime
 — no holdtime
 — priority priority
 — no priority
 — [no] **shutdown**
— **static**
— [no] address ip-address
 — [no] group-prefix {grp-ip-address/mask | grp-ip-address netmask}
 — [no] override
— rpf-rtm rtm-id | rtm-name
— [no] rpf6-table {rtable6-m | rtable6-u | both}
— rpfv core
— rpfv mvpn
— rpfv core mvpn
— no rpfv [core] [mvpn]
— [no] shutdown
— spt-switchover-threshold {grp-ip-address/mask | grp-ip-address netmask} spt-threshold
— no spt-switchover-threshold {grp-ip-address/mask | grp-ip-address netmask}
— [no] ssm-groups
 — [no] group-range {ip-prefix/mask | ip-prefix netmask}
— [no] tunnel-interface {rsvp-p2mp lsp-name | ldp-p2mp p2mp-id} [sender ip-address]
MSDP Commands

```plaintext
config
    — router
        — [no] msdp
            — [no] active-source-limit number
            — [no] data-encapsulation
            — export policy-name...(up to 5 max)
            — no export
            — [no] group group-name
                — [no] active-source-limit number
                — export policy-name [policy-name...(up to 5 max)]
                — no export
                — import policy-name [policy-name...(up to 5 max)]
                — no import
                — local-address address
                — no local-address
                — mode {mesh-group | standard}
                — [no] peer peer-address
                    — [no] active-source-limit number
                    — authentication-key [authentication-key | hash-key]
                        [hash/hash2]
                    — no authentication-key
                    — [no] default-peer
                    — export policy-name [policy-name...(up to 5 max)]
                    — no export
                    — import policy-name [policy-name...(up to 5 max)]
                    — no import
                    — local-address address
                    — no local-address
                    — [no] shutdown
                    — receive-msdp-msg-rate number interval seconds [threshold number]
                    — no receive-msdp-msg-rate
                    — [no] shutdown
                    — import policy-name [policy-name...(up to 5 max)]
                    — no import
                    — local-address address
                    — no local-address
                    — [no] peer peer-address
                        — [no] active-source-limit number
                        — authentication-key [authentication-key | hash-key] [hash | hash2]
                        — no authentication-key
                        — [no] default-peer
                        — export policy-name [policy-name...(up to 5 max)]
                        — no export
                        — import policy-name [policy-name...(up to 5 max)]
                        — no import
                        — local-address address
                        — no local-address
                        — receive-msdp-msg-rate number interval seconds [threshold number]
                        — no receive-msdp-msg-rate
                        — [no] shutdown
                        — receive-msdp-msg-rate number interval seconds [threshold number]
                        — no receive-msdp-msg-rate
                        — rpf6-table {rtable-m | rtable-u | both}
```
— no rpf6-table
— sa-timeout seconds
— no sa-timeout
— [no] shutdown
— [no] source prefix/mask
 — active-source-limit number
 — no active-source-limit number
Multicast CAC Policy Commands

config
 — [no] router
 — mcac
 — [no] policy policy-name
 — [no] bundle bundle-name
 — bandwidth bandwidth
 — no bandwidth
 — channel start-address end-address bw bandwidth [class {high | low}] [type {mandatory | optional}] [source source-prefix]
 — no channel start-address end-address [source source-prefix]
 — description description-string
 — no description
 — mc-constraints
 — lag-port-down lag-id number-down number-lag-port-down level level-id
 — no lag-port-down lag-id number-down number-lag-port-down
 — level level bw bandwidth
 — no level level
 — [no] shutdown
 — default-action {accept | discard}
 — description description-string
 — no description
Multicast Listener Discovery (MLD) Commands

For more information about MLD commands, refer to the SR OS Triple Play Guide.

```plaintext
config
    [no] router
    [no] mld
        [no] group-interface ip-int-name
        [no] disable-router-alert-check
        import policy-name
        no import
        max-groups value
        no max-groups
        mcac
            mc-constraints
                [no] shutdown
                policy policy-name
                no policy
                unconstrained-bw bw bandwidth mandatory-bw mandatory-bw
                no unconstrained-bw
                query-src-ip ipv6-address
                no query-src-ip
                [no] subnet-check
                version version
                no version
                grp-if-query-src-ip ipv6-address
                no grp-if-query-src-ip
        [no] interface ip-int-name
    [no] disable-router-alert-check
    import policy-name
    no import
    max-groups value
    no max-groups
    query-interval seconds
    no query-interval
    query-last-member-interval seconds
    no query-last-member-interval
    query-response-interval seconds
    no query-response-interval
    [no] shutdown
    static
        [no] group grp-ipv6-address
            [no] source src-ipv6-address
            [no] starg
            version version
            no version
        query-interval seconds
        no query-interval
        query-last-member-interval seconds
        no query-last-member-interval
        query-response-interval seconds
        no query-response-interval
        robust-count robust-count
```
— no robust-count
— [no] shutdown
— ssm-translate
 — [no] grp-range start end
 — [no] source src-ipv6-address
Operational Commands

<GLOBAL>

- **mrinfo** ip-address [router router-name | service]
- **mstat** source ip-address [group grp-ip-address] [destination dst-ip-address] [hop hop] [router router-name | service] [wait-time wait-time]
- **mtrace** source ip-address [group grp-ip-address] [destination dst-ip-address] [hop hop] [router router-name | service] [wait-time wait-time]

Show Commands

show
- **router**
 - **igmp**
 - **group** grp-ip-address
 - **group summary**
 - **hosts** [group grp-address] [detail] [fwd-service service-id] [grp-interface ip-int-name]
 - **hosts** host ip-address [group grp-address] [detail]
 - **hosts summary**
 - **interface** [ip-int-name | ip-address] [group grp-address] [detail]
 - **ssm-translate**
 - **ssm-translate interface** interface-name
 - **static** [ip-int-name | ip-addr]
 - **statistics** [ip-int-name | ip-address]
 - **statistics host** ip-address
 - **status**

show
- **router**
 - **pim**
 - **anycast** [detail]
 - **crp** ip-address
 - **s-pmsi** [data-mt-interface-name] [detail]
 - **group** [grp-ip-address] [source ip-address] [type {starstarrp|starg|sg}] [detail] [family]
 - **interface** [ip-int-name | mt-int-name | ip-address] [group grp-ip-address] source ip-address [type {starstarrp|starg|sg}] [detail] [family]
 - **neighbor** [ip-address | ip-int-name [address ip-address]] [detail] [family]
 - **rp** ip-address
 - **rp-hash** grp-ip-address
 - **statistics** [ip-int-name | mt-int-name | ip-address] [family]
 - **status** [detail] [family]

show
- **router**
 - **mld**
 - **group** grp-ipv6-address
 - **interface** [ip-int-name | ip-address] [group] [grp-ipv6-address] [detail]
 - **ssm-translate**
 - **static** ip-int-name | ip-address
 - **statistics** [ip-int-name | ipv6-address]
 - **status**
show
 — router
 — msdp
 — group [group-name] [detail]
 — peer [ip-address] [group group-name] [detail]
 — source [ip-address/mask] [type {configured | dynamic | both}] [detail]
 — source-active [group ip-address | local | originator ip-address | peer ip-address]
 — source-ip-address [group ip-address source-ip-address] [detail]
 — source-active-rejected [peer-group name] [group ip-address] [source ip-address]
 — statistics [peer ip-address]
 — status
 — mcac
 — policy [policy-name [bundle bundle-name] [protocol protocol-name] [interface if-name] [detail]]
 — statistics
 show
 — router {router-instance}
 — mvpn
 show
 — router
 — tunnel-table [ip-address [/mask]] [protocol | sdp sdp-id]
 — tunnel-table [summary]

Clear Commands

clear
 — router
 — igmp
 — database [interface ip-int-name] [ip-address] group grp-ip-address [source src-ip-address]
 — database grp-interface interface-name [fwd-service service-id]
 — database [interface ip-int-name] [ip-address] group grp-ip-address source src-ip-address
 — database host [ip-address]
 — database interface ip-int-name [ip-address] group grp-ip-address [source src-ip-address]
 — statistics [interface ip-int-name | ip-address]
 — version [interface ip-int-name | ip-address]
 — mld
 — database [interface ip-int-name] [ipv6-address] [group ip-address] [source ip-address]
 — statistics [ip-int-name] [ipv6-address]
 — version [ip-int-name | ip-address]
 — msdp
 — cache [peer ip-address] [group ip-address] [source ip-address] [originarp ip-address]
 — statistics [peer ip-address]
— **pim**

 — **database**

    ```
    [interface ip-int-name | ip-address | mt-int-name] [group grp-ip-address
    [source ip-address]] [family]]
    ```

 — **neighbor**

    ```
    [interface ip-int-name | ip-address] [family]
    ```

 — **s-pmsi**

    ```
    [mdSrcAddr] [mdGrpAddr] [vprnSrcAddr] [vprnGrpAddr]
    ```

 — **statistics**

    ```
    [{interface ip-int-name | ip-address | mt-int-name}] [{group grp-ip-
    address [source ip-address]] [family]]
    ```

clear

 — **service**

 — **id**

 — **igmp-snooping**

        ```
        [port-db sap sap-id [group grp-address [source ip-address]]]
        ```

 — **port-db**

        ```
        [sdp sd-id:vc-id [group grp-address [source ip-address]]]
        ```

 — **querier**

 — **statistics**

        ```
        [all | sap sap-id | sd p sd-id:vc-id]
        ```

 — **pim-snooping**

    ```
    [database [{sap sap-id | sd p sd-id:vc-id] [group grp-ip-address
    [source src-ip-address]]]
    ```

 — **neighbor**

      ```
      [ip-address | sap sap-id | sd p sd-id:vc-id]
      ```

 — **statistics**

      ```
      [sap sap-id | sd p sd-id:vc-id]
      ```
Multicast Command Reference

Debug Commands

```
default
    debug
        — router
            igmp
                [no] group-interface [fwd-service service-id] [ip-int-name]
                host [ip-address]
                host [fwd-service service-id] group-interface ip-int-name
                no host [ip-address]
                no host [fwd-service service-id] group-interface ip-int-name
                [no] interface [ip-int-name] | ip-address
                mcs [ip-int-name]
                no mcs
                [no] interface
            host
                ip-address
                host [fwd-service service-id] group-interface ip-int-name
            no host
                ip-address
                host [fwd-service service-id] group-interface ip-int-name
            packet
                query | v1-report | v2-report | v2-leave
                host ip-address
                [no] packet
                [query | v1-report | v2-report | v2-leave] [ip-int-name] | ip-address
            — mcs
                ip-int-name
            — no mcs
            — misc
                ip-int-name
            — packet
                query | v1-report | v2-report | v2-leave
                host ip-address
                [no] packet
                [query | v1-report | v2-report | v2-leave] [ip-int-name] | ip-address
        pim
            [no] adjacency
            all [group grp-ip-address] [source ip-address] [detail]
            no all
            assert [group grp-ip-address] [source ip-address] [detail]
            no assert
            bsr [detail]
            no bsr
            data [group grp-ip-address] [source ip-address] [detail]
            no data
            db [group grp-ip-address] [source ip-address] [detail]
            no db
            interface [ip-int-name | mt-int-name] ip-address [detail]
            no interface
            jp [group grp-ip-address] [source ip-address] [detail]
            no jp
            mrib [group grp-ip-address] [source ip-address] [detail]
            no mrib
            msg [detail]
            no msg
            packet [hello | register | register-stop] | jp | bsr | assert | crp [ip-int-name | ip-address]
            no packet
            register [group grp-ip-address] [source ip-address] [detail]
            no register
            rtm [detail]
            no rtm
            s-pmsi [vpnSrcAddr [vpnGrpAddr]] [mdSrcAddr] [detail]
            no s-pmsi
        [no] msdp
            packet [pkt-type] [peer ip-address]
            no packet
```
— **pim** [grp-address]
— **no pim**
— **rtm** [rp-address]
— **no rtm**
— **sa-db** [group grpAddr] [source srcAddr] [rp rpAddr]
— **no sa-db**
Configuration Commands

Generic Commands

shutdown

Syntax [no] shutdown

Context config>router>igmp
 config>router>igmp>interface
 config>router>igmp>if>mcac>mc-constraints
 config>router>pim
 config>router>pim>interface
 config>router>pim>rp>rp-candidate
 config>router>pim>rp>bsr-candidate
 config>router>pim>rp>ipv6>rp-candidate
 config>router>pim>rp>ipv6>bsr-candidate
 config>router>pim>if>mcac>mc-constraints
 config>router>msdp
 config>router>msdp>peer
 config>router>msdp>group
 config>router>mcac>policy>bundle
 config>router>mld
 config>router>mld>group-interface>mcac>mc-constraints
 config>router>mld>group-interface
 config>router>mld>interface

Description The shutdown command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the no shutdown command.

The shutdown command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Unlike other commands and parameters where the default state is not indicated in the configuration file, shutdown and no shutdown are always indicated in system generated configuration files.

The no form of the command puts an entity into the administratively enabled state.

Default no shutdown:
 config>router>igmp
 config>router>igmp>interface ip-int-name
 config>router>pim
 config>router>pim>rp>rp-candidate

shutdown:
 config>router>pim>rp>bsr-candidate
Multicast Commands

ssm-translate

Syntax ssm-translate
Context config>router>igmp>interface>shutdown
Description This command adds or removes ssm-translate group ranges.

source

Syntax [no] source ip-address
Context config>router>igmp>interface>shutdown>ssm-translate>grp-range
Description This command adds or removes source addresses for the SSM translate group range.
Parameters ip-address — a.b.c.d - unicast source address

grp-range

Syntax [no] grp-range start end
Context config>router>igmp>interface>shutdown>ssm-translate
Description This command adds or removes SSM translate group range entries.
Parameters start — a.b.c.d - multicast group range start address
 end — a.b.c.d - multicast group range end address

description

Syntax description description-string
 no description
Context config>router>mcac>policy
 config>router>mcac>policy>bundle
Description This command creates a text description stored in the configuration file for a configuration context.
 The description command associates a text string with a configuration context to help identify the context in the configuration file.
 The no form of the command removes any description string from the context.
Multicast

Default
No description associated with the configuration context.

Parameters
string — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

ip-fast-reroute

Syntax
[no] ip-fast-reroute

Context
config>router

Description
This command configures IP fast reroute.

mc-maximum-routes

Syntax
mc-maximum-routes number [log-only] [threshold threshold]
no mc-maximum-routes

Context
config>router

Description
This command specifies the maximum number of multicast routes that can be held within a VPN routing/forwarding (VRF) context. When this limit is reached, a log and SNMP trap are sent. If the **log-only** parameter is not specified and the maximum-routes value is set below the existing number of routes in a VRF, then no new joins will be processed.

The **no** form of the command disables the limit of multicast routes within a VRF context. Issue the **no** form of the command only when the VPRN instance is shutdown.

Default
no mc-maximum-routes

Parameters
number — Specifies the maximum number of routes to be held in a VRF context.

Values
1 — 2147483647

log-only — Specifies that if the maximum limit is reached, only log the event. **log-only** does not disable the learning of new routes.

threshold threshold — The percentage at which a warning log message and SNMP trap should be sent.

Values
0 — 100

Default
1
multicast-info

Syntax multicast-info-policy policy-name
 no multicast-info-policy

Context configure>router

Description This command configures multicast information policy.

Parameters policy-name — Specifies the policy name.

Values 32 chars max
Router IGMP Commands

igmp

Syntax [no] igmp
Context config>router
Description This command enables the Internet Group Management Protocol (IGMP) context. When the context is created, the IGMP protocol is enabled.

The Internet Group Management Protocol (IGMP) is used by IPv4 systems (hosts and routers) to report their IP multicast group memberships to neighboring multicast routers. An IP multicast router can be a member of one or more multicast groups, in which case it performs both the “multicast router part” of the protocol which collects the membership information needed by its multicast routing protocol, and the “group member part” of the protocol which informs itself and other neighboring multicast routers of its memberships.

The no form of the command disables the IGMP instance. To start or suspend execution of IGMP without affecting the configuration, use the no shutdown command.

Default none

grp-if-query-src-ip

Syntax grp-if-query-src-ip ip-address
no grp-if-query-src-ip
Context config>router>igmp
Description This command configures the query source IP address for all group interfaces.

The no form of the command removes the IP address.

Default none

interface

Syntax [no] interface ip-int-name
Context config>router>igmp
Description This command enables the context to configure an IGMP interface. The interface is a local identifier of the network interface on which reception of the specified multicast address is to be enabled or disabled.

The no form of the command deletes the IGMP interface. The shutdown command in the config>router>igmp>interface context can be used to disable an interface without removing the configuration for the interface.
Router IGMP Commands

Default
- `no interface` — No interfaces are defined.

Parameters
- `ip-int-name` — The IP interface name. Interface names must be unique within the group of defined IP interfaces for `config router interface` and `config service ies interface` commands. An interface name cannot be in the form of an IP address. Interface names can be any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

If the IP interface name does not exist or does not have an IP address configured an error message will be returned.

If the IP interface exists in a different area it will be moved to this area.

disable-router-alert-check

Syntax
- `[no] disable-router-alert-check`

Context
- `config>router>igmp>if`

Description
This command enables the router alert checking for IGMP messages received on this interface. The `no` form of the command disables the IGMP router alert check option.

import

Syntax
- `import policy-name`
- `no import`

Context
- `config>router>igmp>interface`
- `config>service>vprn>igmp>interface`

Description
This command applies the referenced IGMP policy (filter) to an interface. An IGMP filter is also known as a black/white list and it is defined under the `config>router>policy-options`

The `no` form of the command removes the policy association from the IGMP instance.

Default
- `no import` — No import policy specified.

Parameters
- `policy-name` — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the `config>router>policy-options` context.

max-groups

Syntax
- `max-groups [1..16000]`
- `no max-groups`

Context
- `config>router>igmp>if`
config>router>pim>if

Description
This command specifies the maximum number of groups for which IGMP can have local receiver information based on received IGMP reports on this interface. When this configuration is changed dynamically to a value lower than the currently accepted number of groups, the groups that are already accepted are not deleted. Only new groups will not be allowed. This command is applicable for IPv4 and IPv6.

Default
0, no limit to the number of groups.

Parameters
value — Specifies the maximum number of groups for this interface.

Values
1 — 16000

static

Syntax static

Context config>router>igmp>if

Description
This command tests multicast forwarding on an interface without a receiver host. When enabled, data is forwarded to an interface without receiving membership reports from host members.

Default
none

group

Syntax [no] group grp-ip-address

Context config>router>igmp>if>static

Description
This command enables the context to add a static multicast group either as a (*,G) or one or more (S,G) records. Use IGMP static group memberships to test multicast forwarding without a receiver host. When IGMP static groups are enabled, data is forwarded to an interface without receiving membership reports from host members.

When static IGMP group entries on point-to-point links that connect routers to a rendezvous point (RP) are configured, the static IGMP group entries do not generate join messages toward the RP.

Default
none

Parameters
grp-ip-address — Specifies an IGMP multicast group address that receives data on an interface. The IP address must be unique for each static group.
source

Syntax

```
[no] source ip-address
```

Context

```
config>router>igmp>if>static>group
config>router>igmp>ssm-translate>grp-range
```

Description

This command specifies an IPv4 unicast address that sends data on an interface. This enables a multicast receiver host to signal a router the group to receive multicast traffic from, and from the source(s) that the traffic is expected.

The `source` command is mutually exclusive with the specification of individual sources for the same group. The source command in combination with the group is used to create a specific (S,G) static group entry. Use the `no` form of the command to remove the source from the configuration.

Default

none

Parameters

- `ip-address` — Specifies the IPv4 unicast address.

starg

Syntax

```
[no] starg
```

Context

```
config>router>igmp>if>static>group
```

Description

This command adds a static (*,G) entry. This command can only be enabled if no existing source addresses for this group are specified.

Use the `no` form of the command to remove the starg entry from the configuration.

Default

none

subnet-check

Syntax

```
[no] subnet-check
```

Context

```
config>router>igmp>interface
config>router>mld>group-interface
```

Description

This command enables subnet checking for IGMP messages received on this interface. All IGMP packets with a source address that is not in the local subnet are dropped.

Default

enabled
version

Syntax
```
version version
no version
```

Context
```
config>router>igmp>if
config>router>mld>group-interface
```

Description
This command specifies the IGMP version. If routers run different versions of IGMP, they will negotiate the lowest common version of IGMP that is supported by hosts on their subnet and operate in that version. For IGMP to function correctly, all routers on a LAN should be configured to run the same version of IGMP on that LAN.

For IGMPv3, note that a multicast router that is also a group member performs both parts of IGMPv3, receiving and responding to its own IGMP message transmissions as well as those of its neighbors.

Default
3

Parameters
- `version` — Specifies the IGMP version number.
 - **Values**
 - 1, 2, 3
 - `>= 1000`

query-interval

Syntax
```
query-interval seconds
no query-interval
```

Context
```
config>router>igmp
```

Description
This command specifies the frequency that the querier router transmits general host-query messages. The host-query messages solicit group membership information and are sent to the all-systems multicast group address, 224.0.0.1.

Default
125

- `seconds` — The time frequency, in seconds, that the router transmits general host-query messages.
 - **Values**
 - 2 — 1024

query-last-member-interval

Syntax
```
query-last-member-interval seconds
```

Context
```
config>router>igmp
```

Description
This command configures the frequency at which the querier sends group-specific query messages including messages sent in response to leave-group messages. The lower the interval, the faster the detection of the loss of the last member of a group.

Default
1
Parameters

seconds — Specifies the frequency, in seconds, at which query messages are sent.

Values 1 — 1024

query-response-interval

Syntax

`query-response-interval seconds`

Context

`config>router>igmp`

Description

This command specifies how long the querier router waits to receive a response to a host-query message from a host.

Default 10

Parameters

seconds — Specifies the length of time to wait to receive a response to the host-query message from the host.

Values 1 — 1023

robust-count

Syntax

`robust-count robust-count`

`no robust-count`

Context

`config>router>igmp`

Description

This command configures the robust count. The robust-count variable allows tuning for the expected packet loss on a subnet. If a subnet anticipates losses, the robust-count variable can be increased.

Default 2

Parameters

robust-count — Specify the robust count value.

Values 2 — 10

ssm-translate

Syntax

`ssm-translate`

Context

`config>router>igmp`

Description

This command enables the context to configure group ranges which are translated to SSM (S,G) entries. If the static entry needs to be created, it has to be translated from a IGMPv1 IGMPv2 request to a Source Specific Multicast (SSM) join. An SSM translate source can only be added if the starg command is not enabled. An error message is generated if you try to configure the source command with starg command enabled.
grp-range

Syntax

```plaintext
[no] grp-range start end
```

Context

`config>router>igmp>ssm-translate`

Description

This command is used to configure group ranges which are translated to SSM (S,G) entries.

Parameters

- `start` — An IP address that specifies the start of the group range.
- `end` — An IP address that specifies the end of the group range. This value should always be greater than or equal to the value of the `start` value.

source

Syntax

```plaintext
[no] source ip-address
```

Context

`config>router>igmp>ssm-translate>grp-range`

Description

This command specifies the source IP address for the group range. Whenever a (*,G) report is received in the range specified by `grp-range` `start` and `end` parameters, it is translated to an (S,G) report with the value of this object as the source address.

Parameters

- `ip-address` — Specifies the IP address that will be sending data.

tunnel-interface

Syntax

```plaintext
[no] tunnel-interface {rsvp-p2mp lsp-name | ldp-p2mp p2mp-id sender sender-address [root-node]}
```

Context

`config>router`

`config>router>igmp`

Description

This command creates a tunnel interface associated with an RSVP P2MP LSP. IPv4 multicast packets are forwarded over the P2MP LSP at the ingress LER based on a static join configuration of the multicast group against the tunnel interface associated with the originating P2MP LSP. At the egress LER, packets of a multicast group are received from the P2MP LSP via a static assignment of the specific <S,G> to the tunnel interface associated with a terminating LSP.

At ingress LER, the tunnel interface identifier consists of a string of characters representing the LSP name for the RSVP P2MP LSP. The user can create one or more tunnel interfaces in PIM and associate each to a different RSVP P2MP LSP. P2mp-ID is required to configure LDP P2MP LSP tunnel interfaces. Sender address for a tunnel interface must be specified only on the leaf node.

At egress LER, the tunnel interface identifier consists of a couple of string of characters representing the LSP name for the RSVP P2MP LSP followed by the system address of the ingress LER. The LSP name must correspond to a P2MP LSP name configured by the user at the ingress LER. The LSP name string must not contain “::” (two :) nor contain a “.” (single “.”) at the end of the LSP name. However, a “:” (single “:”) can appear anywhere in the string except at the end of the name.
Router IGMP Commands

Default none

Parameters

- **rsvp-p2mp lsp-name** — Specifies the LSP. The LSP name can be up to 32 characters long and must be unique.
- **p2mp-id** — Identifier used for signaling mLDP P2MP LSP.

Values

- 1 - 4294967296 (On Leaf Node)
- 1-8192 (On Root Node)

static

Syntax static

Context config>router>igmp>tunnel-interface

Description This command provides the context to configure static multicast receiver hosts on a tunnel interface associated with an RSVP P2MP LSP.

When enabled, data is forwarded to an interface without receiving membership reports from host members.

Default none

group

Syntax [no] group grp-ip-address

Context config>router>igmp>tunnel-interface>static

Description This command enables the context to add a static multicast group either as a (*,G) or one or more (S,G) records.

The user can assign static multicast group joins to a tunnel interface associated with an RSVP P2MP LSP. Note that a given <*,G> or <S,G> can only be associated with a single tunnel interface.

A multicast packet which is received on an interface and which succeeds the RPF check for the source address will be replicated and forwarded to all OIFs which correspond to the branches of the P2MP LSP. The packet is sent on each OIF with the label stack indicated in the NHLFE of this OIF. The packets will also be replicated and forwarded natively on all OIFs which have received IGMP or PIM joins for this <S,G>.

The multicast packet can be received over a PIM or IGMP interface which can be an IES interface, a spoke SDP terminated IES interface, or a network interface.

Default none

Parameters

- **grp-ip-address** — Specifies a multicast group address that receives data on a tunnel interface. The IP address must be unique for each static group.
source

Syntax [no] source ip-address

Context config>router>igmp>tunnel-interface>static>group

Description This command specifies a IPv4 unicast address of a multicast source. The source command is mutually exclusive with the specification of individual sources for the same group. The source command in combination with the group is used to create a specific (S,G) group entry in a static group join on a tunnel interface associated with a P2MP RSVP LSP.

The no form of the command removes the source from the configuration.

Default none

Parameters ip-address — Specifies the IPv4 unicast address.

starg

Syntax [no] starg

Context config>router>igmp>tunnel-interface>static>group

Description This command adds a static (*,G) group entry in a static group join on a tunnel interface associated with a P2MP RSVP LSP.

This command can only be enabled if no existing source addresses for this group are specified.

The no form of the command removes the starg entry from the configuration.

Default none
Router PIM Commands

pim

Syntax [no] pim

Context config>router

Description This command configures a Protocol Independent Multicast (PIM) instance.

PIM is used for multicast routing within the network. Devices in the network can receive the multicast feed requested and non-participating routers can be pruned. The router OS supports PIM sparse mode (PIM-SM).

Default not enabled

interface

Parameters [no] interface ip-int-name

Context config>router>pim

Description This command creates a logical IP routing interface.

Interface names are case-sensitive and must be unique within the group of defined IP interfaces defined for config router interface and config service ies interface. Interface names must not be in the dotted decimal notation of an IP address. For example, the name “1.1.1.1” is not allowed, but “int-1.1.1.1” is allowed. Show commands for router interfaces use either the interface names or the IP addresses. Ambiguity can exist if an IP address is used as an IP address and an interface name. Duplicate interface names can exist in different router instances, although this is not recommended because it is confusing.

The no form of the command removes the IP interface and all the associated configurations.

Default No interfaces or names are defined within PIM.

Parameters ip-int-name — The name of the IP interface. Interface names must be unique within the group of defined IP interfaces for config router interface and config service ies interface commands. An interface name cannot be in the form of an IP address. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

Values 1 — 32 alphanumeric characters.

If the ip-int-name already exists, the context is changed to maintain that IP interface. If ip-int-name does not exist, the interface is created and the context is changed to that interface for further command processing.
apply-to

Syntax apply-to {ies | non-ies | all | none}

Context config>router>pim

Description This command creates a PIM interface with default parameters.
If a manually created or modified interface is deleted, the interface will be recreated when (re)processing the apply-to command and if PIM is not required on a specific interface a shutdown should be executed.
The apply-to command is first saved in the PIM configuration structure. Then, all subsequent commands either create new structures or modify the defaults as created by the apply-to command.

Default none (keyword)

Parameters ies — Creates all IES interfaces in PIM.
non-ies — Non-IES interfaces are created in PIM.
all — All IES and non-IES interfaces are created in PIM.
none — Removes all interfaces that are not manually created or modified. It also removes explicit no interface commands if present.

assert-period

Syntax assert-period assert-period
no assert-period

Context config>router>pim>if

Description This command configures the period for periodic refreshes of PIM Assert messages on an interface.
The no form of the command removes the assert-period from the configuration.

Default no assert-period

Parameters assert-period — Specifies the period for periodic refreshes of PIM Assert messages on an interface.

Values 1 — 300 seconds

bfd-enable

Parameters [no] bfd-enable [ipv4 | ipv6]

Context config>router>pim>interface

Description This command enables the use of IPv4 or IPv6 bi-directional forwarding (BFD) to control the state of the associated protocol interface. By enabling BFD on a given protocol interface, the state of the protocol interface is tied to the state of the BFD session between the local node and the remote node. The parameters used for the BFD are set via the BFD command under the IP interface.
The no form of this command removes BFD from the associated IGP protocol adjacency.

Default

no bfd-enable

enable-mdt-spt

Syntax

```plaintext
[no] enable-mdt-spt
```

Context

config>router>pim

Description

This command is used to enable SPT switchover for default MDT. On enable, PIM instance resets all MDTs and reinitiate setup.

The no form of the command disables SPT switchover for default MDT. On disable, PIM instance resets all MDTs and reinitiate setup.

Default

no enable-mdt-spt

import

Syntax

```plaintext
import {join-policy | register-policy} [policy-name [.. policy-name]]
no import {join-policy | register-policy}
```

Context

config>router>pim

Description

This command specifies the import route policy to be used. Route policies are configured in the config>router>policy-options context.

When an import policy is not specified, BGP routes are accepted by default. Up to five import policy names can be specified.

The no form of the command removes the policy association from the instance.

Default

no import join-policy
no import register-policy

Parameters

- `join-policy` — Use this command to filter PIM join messages which prevents unwanted multicast streams from traversing the network.

- `register-policy` — This keyword filters register messages. PIM register filters prevent register messages from being processed by the RP. This filter can only be defined on an RP. When a match is found, the RP immediately sends back a register-stop message.

- `policy-name` — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the config>router>policy-options context.
ipv4-multicast-disable

Syntax
[no] ipv4-multicast-disable

Context
configure>router>pim
configure>router>pim>interface

Description
This command administratively disables/enables PIM operation for IPv4.

Default
no ipv4-multicast-disable

lag-usage-optimization

Syntax
[no] lag-usage-optimization

Context
configure>router>pim

Description
This command specifies whether the router should optimize usage of the LAG such that traffic for a given multicast stream destined to an IP interface using the LAG is sent only to the forwarding complex that owns the LAG link on which it will actually be forwarded.

Changing the value causes the PIM protocol to be restarted.

If this optimization is disabled, the traffic will be sent to all the forwarding complexes that own at least one link in the LAG.

Note that changes made for 9G multicast hashing causes Layer 4 multicast traffic to not hashed. This is independent whether `lag-usage-optimization` is enabled or disabled.

mc-ecmp-balance

Syntax
[no] mc-ecmp-balance

Context
configure>router>pim

Description
This command enables multicast balancing of traffic over ECMP links. When enabled, each multicast stream that needs to be forwarded over an ECMP link will be re-evaluated for the total multicast bandwidth utilization. Re-evaluation occurs on the ECMP interface in question.

The `no` form of the command disables the multicast balancing.

mc-ecmp-balance-hold

Syntax
mc-ecmp-balance-hold minutes
no mc-ecmp-balance-hold

Context
configure>router>pim

Description
This command configures the hold time for multicast balancing over ECMP links.
Router PIM Commands

Parameters

minutes — Specifies the hold time, in minutes, that applies after an interface has been added to the ECMP link.

mc-ecmp-hashing-enabled

Syntax

```
[no] mc-ecmp-hashing-enabled
```

Context

```
configure>router>pim
```

Description

This command enables hash-based multicast balancing of traffic over ECMP links and causes PIM joins to be distributed over the multiple ECMP paths based on a hash of S and G (and possibly next-hop IP). When a link in the ECMP set is removed, the multicast streams that were using that link are re-distributed over the remaining ECMP links using the same hash algorithm. When a link is added to the ECMP set new joins may be allocated to the new link based on the hash algorithm, but existing multicast streams using the other ECMP links stay on those links until they are pruned.

Hash-based multicast balancing is supported for both IPv4 and IPv6.

This command is mutually exclusive with the `mc-ecmp-balance` command in the same context.

The no form of the command disables the hash-based multicast balancing of traffic over ECMP links.

Default

```
no mc-ecmp-hashing-enabled
```

multicast-fast-failover

Syntax

```
[no] multicast-fast-failover
```

Context

```
configure>router>pim
```

Description

This command configures the option to enable multicast only fast failover functionality for IPv4 PIM SSM interfaces in the global routing table instance.

The no version of this command disables MoFRR for PIM interfaces.

Default

```
no multicast-fast-failover
```

ipv6-multicast-disable

Syntax

```
ipv6-multicast-disable
```

Context

```
configure>router>pim
configure>router>pim>interface
```

Description

This command administratively disables/enables PIM operation for IPv6.

Default

```
ipv6-multicast-disable
```
bsm-check-rtr-alert

Syntax [no] bsm-check-rtr-alert
Context config>router>pim>interface
Description This command enables the checking of the router alert option in the bootstrap messages received on this interface.
Default no bsm-check-rtr-alert

hello-interval

Syntax hello-interval hello-interval
 no hello-interval
Context config>router>pim>interface
Description This command configures the frequency at which PIM Hello messages are transmitted on this interface. The no form of this command reverts to the default value of the hello-interval.
Default 30
Parameters hello-interval — Specifies the hello interval in seconds. A 0 (zero) value disables the sending of hello messages (the PIM neighbor will never timeout the adjacency).
 Values 0 — 255 seconds

hello-multiplier

Syntax hello-multiplier deci-units
 no hello-multiplier
Context config>router>pim>interface
Description This command configures the multiplier to determine the holdtime for a PIM neighbor on this interface. The hello-multiplier in conjunction with the hello-interval determines the holdtime for a PIM neighbor.
Parameters deci-units — Specify the value, specified in multiples of 0.1, for the formula used to calculate the hello-holdtime based on the hello-multiplier:
 (hello-interval * hello-multiplier) / 10
 This allows the PIMv2 default timeout of 3.5 seconds to be supported.
 Values 20 — 100
 Default 35
improved-assert

Syntax

```
[no] improved-assert
```

Context

```
config>router>pim>interface
```

Description

The PIM assert process establishes a forwarder for a LAN and requires interaction between the control and forwarding planes. The assert process is started when data is received on an outgoing interface meaning that duplicate traffic is forwarded to the LAN until the forwarder is negotiated among the routers.

When the `improved-assert` command is enabled, the PIM assert process is done entirely in the control plane. The advantages are that it eliminates duplicate traffic forwarding to the LAN. It also improves performance since it removes the required interaction between the control and data planes.

NOTE: improved-assert is still fully interoperable with the draft-ietf-pim-sm-v2-new-xx, *Protocol Independent Multicast - Sparse Mode (PIM-SM): Revised*, and RFC 2362, *Protocol Independent Multicast-Sparse Mode (PIM-SM)*, implementations. However, there may be conformance tests that may fail if the tests expect control-data plane interaction in determining the assert winner. Disabling the `improved-assert` command when performing conformance tests is recommended.

Default

enabled

multicast-senders

Syntax

```
multicast-senders {auto | always | never}
no multicast-senders
```

Context

```
config>router>pim>interface
```

Description

This command configures how traffic from directly-attached multicast sources should be treated on broadcast interfaces. It can also be used to treat all traffic received on an interface as traffic coming from a directly-attached multicast source. This is particularly useful if a multicast source is connected to a point-to-point or unnumbered interface.

Default

auto

Parameters

- **auto** — Specifies that, on broadcast interfaces, the forwarding plane performs subnet-match check on multicast packets received on the interface to determine if the packet is from a directly-attached source. On unnumbered/point-to-point interfaces, all traffic is implicitly treated as coming from a remote source.

- **always** — Treats all traffic received on the interface as coming from a directly-attached multicast source.

- **never** — Specifies that, on broadcast interfaces, traffic from directly-attached multicast sources will not be forwarded. Note that traffic from a remote source will still be forwarded if there is a multicast state for it. On unnumbered/point-to-point interfaces, it means that all traffic received on that interface must not be forwarded.
p2mp-ldp-tree-join

Syntax [no] p2mp-ldp-tree-join

Context config>router>pim>interface

Description This command configures the option to join P2MP LDP tree towards the multicast source. If p2mp-ldp-tree-join is enabled, a PIM multicast join received on an interface is processed to join P2MP LDP LSP using the in-band signaled P2MP tree for the same multicast flow. LDP P2MP tree is setup towards the multicast source. Route to source of the multicast node is looked up from the RTM. The next-hop address for the route to source is set as the root of LDP P2MP tree.

The no form of command disables joining P2MP LDP tree.

Default no p2mp-ldp-tree-join

priority

Syntax priority dr-priority

no priority

Context config>router>pim>interface

Description This command sets the priority value to elect the designated router (DR). The DR election priority is a 32-bit unsigned number and the numerically larger priority is always preferred.

The no form of the command restores the default values.

Default 1

Parameters priority — Specifies the priority to become the designated router. The higher the value, the higher the priority.

Values 1 — 4294967295

priority

Syntax priority bootstrap-priority

no priority

Context config>router>pim>rp>bsr-candidate

Description This command configures the bootstrap priority of the router. The RP is sometimes called the bootstrap router. The priority determines if the router is eligible to be a bootstrap router. In the case of a tie, the router with the highest IP address is elected to be the bootstrap router.

Default 0
Parameters

bootstrap-priority — Specifies the priority to become the bootstrap router. The higher the value, the higher the priority. A 0 value the router is not eligible to be the bootstrap router. A value of 1 means router is the least likely to become the designated router.

Values

0 — 255

priority

Syntax

priority priority
no priority

Context

config>router>pim>rp>rp-candidate
config>router>pim>rp>ipv6>rp-candidate

Description

This command configures the Candidate-RP priority for becoming a rendezvous point (RP). This value is used to elect RP for a group range.

Default

192

Parameters

priority — Specifies the priority to become a rendezvous point (RP). A value of 0 is considered as the highest priority.

Values

0 — 255

sticky-dr

Syntax

sticky-dr [priority dr-priority]
no sticky-dr

Context

config>router>pim>interface

Description

This command enables sticky-dr operation on this interface. When enabled, the priority in PIM hellos sent on this interface when elected as the designated router (DR) will be modified to the value configured in *dr-priority*. This is done to avoid the delays in forwarding caused by DR recovery, when switching back to the old DR on a LAN when it comes back up.

By enabling *sticky-dr* on this interface, it will continue to act as the DR for the LAN even after the old DR comes back up.

The *no* form of the command disables sticky-dr operation on this interface.

Default

disabled

Parameters

priority dr-priority — Sets the DR priority to be sent in PIM Hello messages following the election of that interface as the DR, when sticky-dr operation is enabled.

Values

1 — 4294967295
three-way-hello

Syntax three-way-hello [compatibility-mode]
 no three-way-hello
Context config>router>pim>interface
Description This command configures the compatibility mode to enable three-way hello. By default value is disabled on all interface which specifies that the standard two-way hello is supported. When enabled, the three way hello is supported.
Default no three-way-hello

tracking-support

Syntax [no] tracking-support
Context config>router>pim>interface
Description This command sets the the T bit in the LAN Prune Delay option of the Hello Message. This indicates the router's capability to enable join message suppression. This capability allows for upstream routers to explicitly track join membership.
Default no tracking-support

rp

Syntax rp
Context config>router>pim
Description This command enables the context to configure rendezvous point (RP) parameters. The address of the root of the group's shared multicast distribution tree is known as its RP. Packets received from a source upstream and join messages from downstream routers rendezvous at this router.
 If this command is not enabled, then the router can never become the RP.

ipv6

Syntax ipv6
Context config>router>pim>rp
Description This command enables the context to configure IPv6 parameters.
anycast

Syntax
[no] anycast rp-ip-address

Context
config>router>pim>rp
config>router>pim>rp>ipv6

Description
This command configures a PIM anycast protocol instance for the RP being configured. Anycast enables fast convergence when a PIM RP router fails by allowing receivers and sources to rendezvous at the closest RP.

The no form of the command removes the anycast instance from the configuration.

Default
none

Parameters
rp-ip-address — Configure the loopback IP address shared by all routes that form the RP set for this anycast instance. Only a single address can be configured. If another anycast command is entered with an address then the old address will be replaced with the new address. If no ip-address is entered then the command is simply used to enter the anycast CLI level.

Values
Any valid loopback address configured on the node.

auto-rp-discovery

Syntax
[no] auto-rp-discovery

Context
config>router>pim>rp

Description
This command enables Auto-RP protocol in discovery mode. In discovery mode, RP-mapping and RP-candidate messages are received and forwarded to downstream nodes. RP-mapping messages are received locally to learn about availability of RP nodes present in the network.

The no form of the command disables auto RP.

Default
no auto-rp-discovery

r set-peer

Syntax
[no] rp-set-peer ip-address

Context
config>router>pim>rp>anycast
config>router>pim>rp>ipv6>anycast

Description
This command configures a peer in the anycast rp-set. The address identifies the address used by the other node as the RP candidacy address for the same multicast group address range as configured on this node.

This is a manual procedure. Caution should be taken to produce a consistent configuration of an RP-set for a given multicast group address range. The priority should be identical on each node and be a higher value than any other configured RP candidate that is not a member of this rp-set.
Although there is no set maximum number of addresses that can be configured in an rp-set, up to 15 IP addresses is recommended.

The no form of the command removes an entry from the list.

Default None

Parameters

- **ip-address** — Specifies a peer in the anycast rp-set.

Values Any valid ip-address within the scope outlined above.

bsr-candidate

Syntax `bsr-candidate`

Context `config>router>pim>rp`

- `config>router>pim>rp>ipv6`

Description This command enables the context to configure Candidate Bootstrap (BSR) parameters.

rp-candidate

Syntax `rp-candidate`

Context `config>router>pim>rp`

- `config>router>pim>rp>ipv6`

Description This command enables the context to configure the Candidate RP parameters.

Routers use a set of available rendezvous points distributed in Bootstrap messages to get the proper group-to-RP mapping. A set of routers within a domain are also configured as candidate RPs (C-RPs); typically these will be the same routers that are configured as candidate BSRs.

Every multicast group has a shared tree through which receivers learn about new multicast sources and new receivers learn about all multicast sources. The rendezvous point (RP) is the root of this shared tree.

Default shutdown

static

Syntax `static`

Context `config>router>pim>rp`

- `config>router>pim>rp>ipv6`

Description This command enables the context to configure static Rendezvous Point (RP) addresses for a multicast group range.
Entries can be created or destroyed. If no IP addresses are configured in the `config>router>pim>rp>static>address` context, then the multicast group to RP mapping is derived from the RP-set messages received from the Bootstrap Router.

address

Syntax

```
address ip-address
```

Context

```
config>router>pim>rp>bsr-candidate
config>router>pim>rp>ipv6>bsr-cand
```

Description

This command is used to configure the candidate BSR IP address. This address is for Bootstrap router election.

Default

none

Parameters

- `ip-address` — The `ip-address` portion of the `address` command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation.

Values

1.0.0.0 – 223.255.255.255

address

Syntax

```
address ip-address
[no] address ip-address
```

Context

```
config>router>pim>rp>rp-candidate
config>router>pim>rp>ipv6>bsr-cand
```

Description

This command configures the local RP address. This address is sent in the RP candidate advertisements to the bootstrap router.

Default

none

Parameters

- `ip-address` — The `ip-address`.

Values

1.0.0.0 – 223.255.255.255

address

Syntax

```
address ip-address
no address
```

Context

```
config>router>pim>rp>static
config>router>pim>rp>ipv6>static
```

Description

This command indicates the Rendezvous Point (RP) address that should be used by the router for the range of multicast groups configured by the range command.
Default
none

Parameters
ip-address — The static IP address of the RP. The *ip-addr* portion of the *address* command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation.

Values
1.0.0.0 – 223.255.255.255

embedded-rp

Syntax
[no] embedded-rp

Context
config>router>pim>rp>ipv6

Description
This command enables the context to configure embedded RP parameters. Embedded RP is required to support IPv6 inter-domain multicast because there is no MSDP equivalent in IPv6.

The detailed protocol specification is defined in RFC 3956, *Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address*. This RFC describes a multicast address allocation policy in which the address of the RP is encoded in the IPv6 multicast group address, and specifies a PIM-SM group-to-RP mapping to use the encoding, leveraging, and extending unicast-prefix-based addressing. This mechanism not only provides a simple solution for IPv6 inter-domain ASM but can be used as a simple solution for IPv6 intra-domain ASM with scoped multicast addresses as well. It can also be used as an automatic RP discovery mechanism in those deployment scenarios that would have previously used the Bootstrap Router protocol (BSR).

The **no** form of the command disables embedded RP.

group-range

Syntax
[no] group-range ipv6-address/prefix-length

Context
config>router>pim>ipv6>rp>embedded-rp

Description
This command defines which multicast groups can embed RP address information besides FF70::/12. Embedded RP information is only used when the multicast group is in FF70::/12 or the configured group range.

Parameters
ipv6-address/prefix-length — Specifies the group range for embedded RP.

Values
ipv6-address:
x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:x:d.d.d
x: [0..FFFF]H
d: [0..255]D

prefix-length:
16 — 128
group-range

Syntax

[no] group-range {grp-ip-address/mask | grp-ip-address netmask}

Context

config>router>pim>rp>rp-candidate
config>router>pim>rp>static>rp>ipv6>rp-candidate

Description

This command configures the address ranges of the multicast groups for which this router can be an RP.

Default

none

Parameters

grp-ip-address — The multicast group IP address expressed in dotted decimal notation.

Values

224.0.0.0 — 239.255.255.255

mask — The mask associated with the IP prefix expressed as a mask length or in dotted decimal notation; for example /16 for a sixteen-bit mask. The mask can also be entered in dotted decimal notation (255.255.0.0).

Values

4 — 32

netmask — The subnet mask in dotted decimal notation.

Values

0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

group-range

Syntax

[no] group-range {ip-prefix/mask | ip-prefix netmask}

Context

config>router>pim>ssm-groups

Description

This command configures the address ranges of the multicast groups for this router. When there are parameters present, the command configures the SSM group ranges for IPv6 addresses and netmasks.

Default

none

Parameters

ip-prefix/mask — The IP prefix in dotted decimal notation for the range used by the ABR to advertise that summarizes the area into another area.

Values

ipv4-prefix: a.b.c.d
ipv4-prefix-le: 0 — 32
ipv6-prefix: x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:x:d.d.d.d
x: [0..FFFF]H
d: [0..255]D
ipv6-prefix-le: 0 — 128

Values

0 — 32 (mask length), 0.0.0.0 — 255.255.255.255 (dotted decimal)

netmask — The subnet mask in dotted decimal notation.

Values

0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)
holdtime

Syntax

```
holdtime holdtime
no holdtime
```

Context
```
config>router>pim>rp>rp-candidate
config>router>pim>rp>ipv6>rp-candidate
```

Description
This command configures the length of time, in seconds, that neighbors should consider the sending router to be operationally up. A local RP cannot be configured on a logical router.

Parameters
```
holdtime — Specifies the hold time, in seconds.
```

Values
```
5 — 255
```

group-prefix

Syntax
```
[no] group-prefix {grp-ip-address/mask | grp-ip-address netmask}
```

Context
```
config>router>pim>rp>static>address
config>router>pim>rp>ipv6>static>address
```

Description
This command specifies the range of multicast group addresses which should be used by the router as the Rendezvous Point (RP). The `config>router>pim>rp>static>address a.b.c.d` implicitly defaults to deny all for all multicast groups (224.0.0.0/4). A group-prefix must be specified for that static address. This command does not apply to the whole group range.

The `no` form of the command removes the group-prefix from the configuration.

Default
```
one
```

Parameters
```
grp-ip-address — The multicast group IP address expressed in dotted decimal notation.
```

Values
```
224.0.0.0 — 239.255.255.255
```

```
mask — The mask associated with the IP prefix expressed as a mask length or in dotted decimal notation; for example /16 for a sixteen-bit mask. The mask can also be entered in dotted decimal notation (255.255.0.0).
```

Values
```
4 — 32
```

```
netmask — The subnet mask in dotted decimal notation.
```

Values
```
0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)
```

override

Syntax
```
[no] override
```

Context
```
config>router>pim>rp>static>address
config>router>pim>rp>ipv6>static>address
```
non-dr-attract-traffic

Syntax
[no] non-dr-attract-traffic

Context
config>router>pim

Description
This command specifies whether the router should ignore the designated router state and attract traffic even when it is not the designater router.

An operator can configure an interface (router or IES or VPRN interfaces) to IGMP and PIM. The interface state will be synchronized to the backup node if it is associated with the redundant peer port. The interface can be configured to use PIM which will cause multicast streams to be sent to the elected DR only. The DR will also be the router sending traffic to the DSLAM. Since it may be required to attract traffic to both routers a flag non-dr-attract-traffic can be used in the PIM context to have the router ignore the DR state and attract traffic when not DR. Note that while using this flag the router may not send the stream down to the DSLAM while not DR.

When enabled, the designated router state is ignored. When disabled, no non-dr-attract-traffic, the designated router value is honored.

Default
no non-dr-attract-traffic

rpf-rtm

Syntax
[no] rpf-rtm rtm-id | rtm-name

Context
config>router>pim

Description
This command associates the specified RTM instance with the PIM protocol. This RTM will then be used to generate the RPF table for multicast.

The no form of this command removes the association with the specified RTM instance and will cause PIM to use the unicast RTM.

Default
No default

Parameters
rtm-id — RTM Instance ID that is to be associated with the new IS-IS topology.

Values
integer: 3 — 32

rtm-name — string name given to the RTM instance.
rpf6-table

Syntax
```
rpf6-table {rtable6-m | rtable6-u | both}
no rpf6-table
```

Context
```
config>router>pim
config>router>msdp
```

Description
This command configures the sequence of route tables used to find a Reverse Path Forwarding (RPF) interface for a particular multicast route.

By default, only the unicast route table is looked up to calculate RPF interface towards the source/rendezvous point. However, the operator can specify the following:

a) Use unicast route table only
b) Use multicast route table only or
c) Use both the route tables.

Parameters
- `rtable6-m` — Specifies that only the multicast route table will be used by the multicast protocol (PIM) for IPv6 RPF checks. This route table will contain routes submitted by static routes, ISIS, and OSPF.
- `rtable6-u` — Specifies only that the unicast route table will be used by the multicast protocol (PIM) for IPv6 RPF checks. This route table will contain routes submitted by all the unicast routing protocols.
- `both` — Will always lookup first in the multicast route table and if there is a route, it will use it. If PIM does not find a route in the first lookup, it will try to find it in the unicast route table. `rtable6-m` is checked before `rtable6-u`.

Default
`rtable-u`

rpfv

Syntax
```
rpfv core
rpfv mvpn
rpfv core mvpn
no rpfv [core] [mvpn]
```

Context
```
config>router>pim
```

Description
This command enables RPF Vector processing for Inter-AS Rosen MVPN Option-B and Option-C. The rpfv must be enabled on every node for Inter-AS Option B/C MVPN support.

Parameters
- `mvpn` — Enables mvpn RPF vector processing for Inter-AS Option B/C MVPN based on RFC 5496 and RFC 6513. If a core RPF vector is received, it will be dropped before a message is processed.
- `core` — Enables core RPF vector (no RD) processing for Inter-AS Option B/C MVPN, which allows SROS interoperability as P-router with third-party vendors that do not encode RD in the RPF vector for Inter-AS MVPN.
- `core mvpn` — Enables core RPF vector (no RD) processing for Inter-AS Option B/C MVPN, which allows SROS interoperability as P-router with third-party vendors that do not encode RD in the RPF vector for Inter-AS MVPN.
The `no` version of this command disables RPF Vector processing. If RPF vector is received in a PIM join message, the vector will be removed before local processing of PIM message starts.

Default

```
no rpfv
```

sa-timeout

Syntax

```
sa-timeout seconds
no sa-timeout
```

Context

```
config>router>msdp
```

Description

This command configures the value for the SA entries in the cache. If these entries are not refreshed within the timeout value then they are removed from the cache. Normally the entries are refreshed at least once a minute. But under high load with many of MSDP peers the refresh cycle could be incomplete. A higher timeout value (more than 90) could be useful to prevent unstabilities in the MSDP cache.

Default

```
90
```

Parameters

```
seconds — Specifies the time, in seconds, to wait for a response from the peer before declaring the peer unavailable.
```

Values

```
90 — 600
```

spt-switchover-threshold

Syntax

```
spt-switchover-threshold {grp-ip-address/mask | grp-ip-address netmask} spt-threshold
no spt-switchover-threshold {grp-ip-address/mask | grp-ip-address netmask}
```

Context

```
config>router>pim
```

Description

This command configures shortest path (SPT) tree switchover thresholds for group prefixes.

PIM-SM routers with directly connected routers receive multicast traffic initially on a shared tree rooted at the Rendezvous Point (RP). Once the traffic arrives on the shared tree and the source of the traffic is known, a switchover to the SPT tree rooted at the source is attempted.

For a group that falls in the range of a prefix configured in the table, the corresponding threshold value determines when the router should switch over from the shared tree to the source specific tree. The switchover is attempted only if the traffic rate on the shared tree for the group exceeds the configured threshold.

In the absence of any matching prefix in the table, the default behavior is to switchover when the first packet is seen. In the presence of multiple prefixes matching a given group, the most specific entry is used.

Parameters

```
grp-ip-address — The multicast group IP address expressed in dotted decimal notation.
```

Values

```
224.0.0.0 — 239.255.255.255
```
Multicast

spt-threshold — Specifies the configured threshold in kilobits per second (kbps) for a group prefix. A switchover is attempted only if the traffic rate on the shared tree for the group exceeds this configured threshold.

Values
1 — 4294967294 | infinity

mask — The mask associated with the IP prefix expressed as a mask length or in dotted decimal notation; for example /16 for a sixteen-bit mask. The mask can also be entered in dotted decimal notation (255.255.0.0).

Values
4 — 32

infinity — When the **infinity** keyw0rd is specified, no switchover will occur at any time, regardless of the traffic level is detected. The threshold, in kilobits per second (KBPS), value is 4294967295.

ssm-groups

Syntax
[no] ssm-groups

Context
config>router>pim

Description
This command enables the context to enable an ssm-group configuration instance.

bootstrap-export

Syntax
bootstrap-export policy-name [..policy-name]

Context
config>router>pim>rp

Description
Use this command to apply export policies to control the flow of bootstrap messages from the RP, and apply them to the PIM configuration. Up to 5 policy names can be specified.

Default
no bootstrap-export

Parameters
policy-name — Specify the export policy name up to 32 characters in length.

bootstrap-import

Syntax
bootstrap-import policy-name [..policy-name]

Context
config>router>pim>rp

Description
Use this command to apply import policies to control the flow of bootstrap messages to the RP, and apply them to the PIM configuration. Up to 5 policy names can be specified.

Default
no bootstrap-import

Parameters
policy-name — Specify the import policy name up to 32 characters in length.
hash-mask-len

Syntax

hash-mask-len hash-mask-length
no hash-mask-len

Context

config>router>pim>rp>bsr-candidate
config>router>pim>rp>ipv6>bsr-candidate

Description

This command is used to configure the length of a mask that is to be combined with the group address before the hash function is called. All groups with the same hash map to the same RP. For example, if this value is 24, only the first 24 bits of the group addresses matter. This mechanism is used to map one group or multiple groups to an RP.

Parameters

hash-mask-length — The hash mask length.

Values

0 — 32
Router Multicast Source Discovery Protocol (MSDP) Commands

msdp

Syntax [no] msdp

Context config>router

Description This command enables a Multicast Source Discovery Protocol (MSDP) instance. When an MSDP instance is created, the protocol is enabled. To start or suspend execution of the MSDP protocol without affecting the configuration, use the [no] shutdown command.

The no form of the command deletes the MSDP protocol instance removing all associated configuration parameters.

Default no msdp

Interactions: In order for the MSDP protocol to function at least one peer must be configured.

When MSDP is configured and started an appropriate event message should be generated.

When the no form of the command is executed all sessions must be terminated and an appropriate event message should be generated.

When all peering sessions are terminated an event message per peer is not required.

active-source-limit

Syntax active-source-limit number

no active-source-limit

Context config>router>msdp

config>router>msdp>group

config>router>msdp>group>peer

Description This option controls the maximum number of active source messages that will be accepted by Multicast Source Discovery Protocol (MSDP). This effectively controls the number of active sources that can be stored on the system.

The no form of this command reverts the number of source message limit to default operation.

Default No limit is placed on the number of source active records

Parameters number — This parameter defines how many active sources can be maintained by MSDP.

Values 0 — 1000000
receive-msdp-msg-rate

Syntax

```plaintext
receive-msdp-msg-rate number interval seconds [threshold number]
no receive-msdp-msg-rate
```

Context

```
config>router>msdp
config>router>msdp>peer
config>router>msdp>group
config>router>msdp>source
```

Description

This command limits the number of Multicast Source Discovery Protocol (MSDP) messages that are read from the TCP session. It is possible that an MSDP/ RP router may receive a large number of MSDP protocol message packets in a particular source active message.

The `no` form of this command reverts this active-source limit to default operation.

Default

No limit is placed on the number of MSDP and source active limit messages will be accepted.

Parameters

- **number** — Defines the number of MSDP messages (including source active messages) that are read from the TCP session per the number of seconds.
 - **Values**
 - 10 — 10000
 - **Default**
 - 0

- **interval seconds** — This defines the time that together with the `number` parameter defines the number of MSDP messages (including source active messages) that are read from the TCP session within the configured number of seconds.
 - **Values**
 - 1 — 600
 - **Default**
 - 0

- **threshold** — This number reflects the number of MSDP messages can be processed before the MSDP message rate limiting function described above is activated; this is of use in particular during at system startup and initialization.
 - **Values**
 - 1 — 1000000
 - **Default**
 - 0

Interactions:

Once the number of MSDP packets (including source active messages) defined in the threshold have been processed the rate of all other MSDP packets is rate limited by no longer accepting messages from the TCP session until the time (seconds) has elapsed.

authentication-key

Syntax

```plaintext
authentication-key [authentication-key|hash-key] [hash|hash2]
no authentication-key
```

Context

```
config>router>msdp>peer
config>router>msdp>group>peer
```
Description
This command configures a Message Digest 5 (MD5) authentication key to be used with a specific Multicast Source Discovery Protocol (MSDP) peering session. The authentication key must be configured per peer as such no global or group configuration is possible.

Default
Authentication-key. All MSDP messages are accepted and the MD5 signature option authentication key is disabled.

Parameters
- `authentication-key` — The authentication key. Allowed values are any string up to 16 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

- `hash-key` — The hash key. The key can be any combination of ASCII characters up to 33 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

 This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

- `hash` — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.

- `hash2` — Specifies the key is entered in a more complex encrypted form. If the `hash2` parameter is not used, the less encrypted `hash` form is assumed.

data-encapsulation

Syntax

```
[no] data-encapsulation
```

Context

`config>router>msdp`

Description

This command configures a rendezvous point (RP) using Multicast Source Discovery Protocol (MSDP) to encapsulate multicast data received in MSDP register messages inside forwarded MSDP source-active messages.

Default

`data-encapsulation`

default-peer

Syntax

```
default-peer
no default-peer
```

Context

`config>router>msdp>peer
config>router>msdp>group>peer`

Description

Using the default peer mechanism a peer can be selected as the default Multicast Source Discovery Protocol (MSDP) peer, as a result all source-active messages from the peer will be accepted without the usual peer-reverse-path-forwarding (RPF) check.
The MSDP peer-RPF check is different from the normal multicast RPF checks. The peer-RPF check is used to stop source-active messages from looping. A router validates source-active messages originated from other routers in a deterministic fashion.

A set of rules is applied in order to validate received source-active messages, and the first rule that applies determines the peer-RPF neighbor. All source-active messages from other routers are rejected. The rules applied to source-active messages originating at Router S received at Router R from Router N are as follows:

- If Router N and router S are one and the same, then the message is originated by a direct peer-RPF neighbor and will be accepted.
- If Router N is a configured peer, or a member of the Router R mesh group then its source-active messages are accepted.
- If Router N is the Border Gateway Protocol (BGP) next hop of the active multicast RPF route toward Router S then Router N is the peer-RPF neighbor and its source-active messages are accepted.
- If Router N is an external BGP peer of Router R and the last autonomous system (AS) number in the BGP AS-path to Router S is the same as Router N’s AS number, then Router N is the peer-RPF neighbor, and its source-active messages are accepted.
- If Router N uses the same next hop as the next hop to Router S, then Router N is the peer-RPF neighbor, and its source-active messages are accepted.
- If Router N fits none of the above rules, then Router N is not a peer-RPF neighbor, and its source-active messages are rejected.

Default

No default peer is established and all active source messages must be RPF checked.

export

Syntax

```
export policy-name [ policy-name...(up to 5 max)]
no export
```

Context

```
config>router>msdp
config>router>msdp>peer
config>router>msdp>group
config>router>msdp>group>peer
```

Description

This command specifies the policies to export source active state from the source active list into Multicast Source Discovery Protocol (MSDP).

Default

No export policies are applied and all SA entries are announced.

Interactions:

If multiple policy names are specified, the policies are evaluated in the order they are specified. The first policy that matches is applied. If multiple export commands are issued, the last command entered will override the previous command. A maximum of five policy names can be specified.

If you configure an export policy at the global level, each individual peer inherits the global policy. If you configure an export policy at the group level, each individual peer in a group inherits the group’s policy. If you configure an export policy at the peer level then policy only applies to the peer where it is configured.

The **no** form of the command removes all policies from the configuration.
group

Syntax
[no] group group-name

Context
config>router>msdp

Description
This command enables access to the context to create or modify a Multicast Source Discovery Protocol (MSDP) group. To configure multiple MSDP groups, include multiple group statements.

By default, the group’s options are inherited from the global MSDP options. To override these global options, group-specific options within the group statement can be configured.

In order for a group to be of use at least one peer must be configured.

Default
no group

Parameters
group-name — Species a unique name for the MSDP group.

Interactions:
If the group name provided is already configured then this command only provides the context to configure the options pertaining to this group.

If the group name provided is not already configured, then the group name must be created and the context to configure the parameters pertaining to the group should be provided. In this case the $ prompt to indicate that a new entity (group) is being created should be used.

import

Syntax
import policy-name [policy-name...(up to 5 max)]

no import

Context
config>router>msdp
config>router>msdp>peer
config>router>msdp>group
config>router>msdp>group>peer

Description
This command specifies the policies to import source active state from Multicast Source Discovery Protocol (MSDP) into source active list.

Default
No import policies are applied and all source active messages are allowed.

Interactions:
If multiple policy names are specified, the policies are evaluated in the order they are specified. The first policy that matches is applied. If multiple import commands are issued, the last command entered will override the previous command. A maximum of five policy names can be specified.

The no form of the command removes all policies from the configuration.

If you configure an import policy at the global level, each individual peer inherits the global policy.

If you configure an import policy at the group level, each individual peer in a group inherits the group’s policy.

If you configure an import policy at the peer level then policy only applies to the peer where it is configured.
local-address

Syntax
local-address address
no local-address

Context
config>router>msdp
config>router>msdp>peer
config>router>msdp>group
config>router>msdp>group>peer

Description
This command configures the local end of a Multicast Source Discovery Protocol (MSDP) session. In order for MSDP to function at least one peer must be configured. When configuring a peer, you must include this local-address command to configure the local end of the MSDP session. This address must be present on the node and is used to validate incoming connections to the peer and to establish connections to the remote peer.

The no local address format of this command removes the local-address from the configuration.

Default
No local address is configured.

Parameters
address — Specifies an existing address on the node.

Interactions:
If the user enters this command then the address provided is validated and will be used as the local address for MSDP peers from that point. If a subsequent local-address command is entered it will replace the existing configuration and existing session(s) will be terminated.

Similarly when the no form of this command is entered the existing local-address will be removed from the configuration and the existing session(s) will be terminated.

Whenever a session is terminated all information pertaining to and learned from that peer and will be removed.

Whenever a new peering session is created or a peering session is lost an event message should be generated.

mode

Syntax
mode {mesh-group | standard}

Context
config>router>msdp>group

Description
This command configures groups of peers in a full mesh topology to limit excessive flooding of source-active messages to neighboring peers.

Multicast Source Discovery Protocol (MSDP) peers can be configured grouped in a full-mesh topology that prevents excessive flooding of source-active messages to neighboring peers.

Default
standard (non-meshed)

Parameters
mesh-group — Specifies that source-active message received from a mesh group member are always accepted but are not flooded to other members of the same mesh group. These source-active messages are only flooded to non-mesh group peers or members of other mesh groups.

standard — Specifies a non-meshed mode.
Interactions: In a meshed configuration all members of the group must have a peer connection with every other mesh group member. If this rule is not adhered to then unpredictable results may occur.

peer

Syntax

[no] peer peer-address

Context

config>router>msdp
config>router>msdp>group

Description

This command configures peer parameters. Multicast Source Discovery Protocol (MSDP) must have at least one peer configured. A peer is defined by configuring a local-address that can be used by this node to set up a peering session and the address of a remote MSDP router. It is the address of this remote peer that is configured in this command and it identifies the remote MSDP router address.

After peer relationships are established, the MSDP peers exchange messages to advertise active multicast sources. It may be required to have multiple peering sessions in which case multiple peer statements should be included in the configurations.

By default the options applied to a peer are inherited from the global or group-level. To override these inherited options, include peer-specific options within the peer statement.

At least one peer must be configured for MSDP to function.

Default

none

Parameters

peer-address — The address configured in this statement must identify the remote MSDP router that the peering session must be established with.

Interactions:

If the peer address provided is already a configured peer then this command only provides the context to configure the parameters pertaining to this peer.

If the peer address provided is not already a configured peer, then the peer instance must be created and the context to configure the parameters pertaining to this peer should be provided. In this case the $ prompt to indicate that a new entity (peer) is being created should be used.

The peer address provided will be validated and assuming it is valid it will be used as the remote address for an MSDP peering session. When the no form of this command is entered the existing peering address will be removed from the configuration and the existing session will be terminated. Whenever a session is terminated all source active information pertaining to and learned from that peer and will be removed. Whenever a new peering session is created or a peering session is lost an event message should be generated.

source

Syntax

[no] source ip-prefix/mask

Context

config>router>msdp

Description

This command limits the number of active source messages the router accepts from sources in the specified address range.
The no form of this message removes the source active rate limiter for this source address range.

Default
None. The source active msdp messages are not rate limited based on the source address range.

Interactions:
If the prefix and mask provided is already a configured then this command only provides the context to configure the parameters pertaining to this active source-message filter.

If the prefix and mask provided is not already a configured, then the source node instance must be created and the context to configure the parameters pertaining to this node should be provided. In this case the $ prompt to indicate that a new entity (source) is being created should be used.

Parameters

- **ip-prefix** — The IP prefix in dotted decimal notation for the range used by the ABR to advertise that summarizes the area into another area.

 Values

 - ip-prefix/mask: ip-prefix a.b.c.d (host bits must be 0)

- **mask** — The subnet mask for the range expressed as a decimal integer mask length or in dotted decimal notation.

 Values

 - 0 — 32 (mask length), 0.0.0.0 — 255.255.255.255 (dotted decimal)
Multicast CAC Policy Configuration Commands

mcac

Parameters mcac

Context config>router
 config>router>pim>if
 config>router>mld>group-interface

Description This command enables the context to configure multicast CAC parameters.

Default none

policy

Syntax policy mcac-policy-name
 no policy mcac-policy-name

Context configure>router>igmp>interface>mcac
 configure>service>vprn>igmp>interface >mcac

Description This command references the global channel bandwidth definition policy that is used for (H)mcac and HQoS Adjust.

 HQoS Adjustment is supported only with redirection enabled. In other words, the policy from the redirected interface is used for HQoS Adjustment.

 Hierarchical mcac (Hmcac) is supported only with redirection enabled. In Hmcac, the subscriber is checked first against its bandwidth limits followed by the check on the redirected interface against the bandwidth limits defined under the redirected interface. In the Hmcac case the channel definition policy must be referenced under the redirected interface level.

Parameters mcac-policy-name — Specifies the name of the global mcac channel definition policy defined under the hierarchy configure>router>mcac>policy.

Default No policy is referenced.

bundle

Parameters [no] bundle bundle-name

Context config>router>mcac>policy

Description This command creates the context that enables the grouping of MCAC group addresses into bundles.
When a number of multicast groups or BTV channels are grouped into a single bundle, then policing, if a join for a particular MC-group (BTV channel), can depend on whether:

1. There is enough physical bandwidth on the egress interface.
2. The given channel is a mandatory or optional channel.
 - If optional, is there sufficient bandwidth according to the policy settings for the relevant interface.
 - If optional, is there sufficient bandwidth within the bundle.

The `no` form of the command removes the named bundle from the configuration.

Default

```
none
```

Parameters

- `bundle-name` — Specifies the multicast bundle name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

- `bw bandwidth` — Defines the bandwidth available to this bundle when unconstrained.

bandwidth

Syntax

```
bandwidth bandwidth
no bandwidth
```

Context

`config>router>mcac>policy>bundle`

Description

This command configures the MCAC policy bundle maximum bandwidth.

Parameters

- `bandwidth` — Specifies the MCAC policy bandwidth.

channel

Syntax

```
channel start-address end-address bw bandwidth [class {high | low}] [type {mandatory | optional}] [source source-prefix]
no channel start-address end-address [source source-prefix]
```

Context

`config>router>mcac>policy>bundle`

Description

This command creates a MC group (range) as a channel within the bundle where it is configured. A join for a particular MC channel can be accepted if:

1) Mandatory channels:
 - A sufficient bandwidth exists on the interface according to the policy settings for the interface.
 - Note, there is always sufficient BW available on the bundle level, as mandatory channels get BW pre-reserved.

2) Optional channels:
 - A sufficient BW exists on both interface and bundle level.
A channel definition supports IPv4 only (start-address, end-address, source-address are IPv4 addresses).

Overlapping channels are not allowed. Two channels overlap if they contain the same groups and the same source address prefix (or both do not specify source address prefix). Two channels with the same groups and different source prefixes (including one of the channels having no source configured or one of the channels having more specific prefix than the other) do not overlap and are treated as separate channels.

When joining a group from multiple sources, MCAC accounts for that only once when no source address is specified or a prefix for channel covers both sources. Channel BW should be adjusted accordingly or source-aware channel definition should be used if that is not desired.

If a bundle is removed, the channels associated are also removed and every multicast group that was previously policed (because it was in the bundle that contained the policy) becomes free of constraints.

When a new bundle is added to a MCAC policy, the bundle’s established groups on a given interfaces are accounted by the policy. Even if this action results in exceeding the bundle’s constrain, no active multicast groups are removed. When a leave message is received for an existing optional channel, then the multicast stream is pruned and subsequent new joins may be denied in accordance to the policy. It is possible that momentarily there may be insufficient bandwidth, even for mandatory channels, in this bundle.

Default

No channels are specified as part of a bundle on default.

Parameters

start-address end-address — Specifies the beginning and ending multicast IP addresses that identifies a multicast stream (BTV channel).

Values

This must be a valid IPv4 multicast group address.

bw bandwidth — Specifies the bandwidth required by this channel in kbps.

If this bandwidth is configured for a mandatory channel then this bandwidth is reserved by subtracting the amount from the total available bandwidth for all potential egress interfaces and the bundle.

If this bandwidth is configured as an optional channel then this bandwidth must be available for both the bundle and the egress interface requesting the channel to be added. Once the channel has been added the available bandwidth for the bundle and the interface must be reduced by the configured bandwidth of channel.

Values

10 — 20000 kbps

class {high | low} — Provides deeper classification of channels used in the algorithm when LAG ports change state.

Default

low

type {mandatory | optional} — Specifies the channel to be either mandatory or optional.

– mandatory — When the mandatory keyword is specified, then the bandwidth is reserved by subtracting it from the total available for all the potential egress interfaces and the bundle.

– optional — When the optional keyword is specified then the bandwidth must be available on both the bundle and the egress interface that requests the channel to be added. Once the channel has been added the available bandwidth for the bundle and the interface must be reduced by the configured bandwidth of channel.

Default

optional
mc-ip-address mc-ip-address — Specifies the IP address that identifies a multicast stream (BTV channel). This must be a multicast address in the x.x.x.x format.

In the case of an SSM application, this means a source address preceded by a multicast address to identify a specific stream in the y.y.y/x.x.x.x format. If a source address is specified, then the multicast address must be within the configured SSM address range.

source source-prefix — Specifies the source of the multicast IP stream. This must be a valid IPv4 multicast source address prefix.

Values address-prefix/prefix-length

mc-constraints

Parameters mc-constraints

Context
- `config>router>mcac>policy>bundle`
- `config>router>mld>group-interface`

Description This command enables the context to configure the level and its associated bandwidth for a bundle or a logical interface.

Default none

policy

Syntax

```
policy policy-name
no policy
```

Context
- `configure>router>igmp>interface>mcac`
- `configure>service>vprn>igmp>interface>mcac`
- `config>router>mld>group-interface`

Description This command references the global channel bandwidth definition policy that is used for (H)mcac and HQoS Adjust.

In case that redirection is enabled, the channel bandwidth definition policy applied under the Layer 3 redirected interface is in effect.

Default No policy is referenced.

Parameters

`policy-name` — Specifies the name of the global mcac channel definition policy defined under the hierarchy `configure>router>mcac>policy`.
lag-port-down

Parameters
- `lag-port-down lag-id number-down number-lag-port-down level level-id`
- `no lag-port-down lag-id number-down number-lag-port-down`

Context
- `config>router>mcac>policy>bundle>mc-constraints`

Description
This command configures the bandwidth available both at the interface and bundle level when a specific number of ports in a LAG group fail.

Default
none

Parameters
- `lag-id` — When the number of ports available in the LAG link is reduced by the number of ports configured in this context then the `level-id` specified here must be applied.
- `number-down number-lag-port-down` — If the number of ports available in the LAG is reduced by the number of ports configured in this command here then bandwidth allowed for bundle and/or interface will be as per the levels configured in this context.

Values
- 1 — 64 (for 64-link LAG)
- 1 — 32 (for other LAGs)

- `level level-id` — Specifies the amount of bandwidth available within a given bundle for MC traffic for a specified level.

number-down

Parameters
- `number-down number-lag-port-down level level-id`
- `no number-down number-lag-port-down`

Context
- `config>router>pim>if>mcac>mc-constraints`

Description
This command configures the number of ports down along with level for multicast cac policy on this interface.

Default
none

Parameters
- `number-down number-lag-port-down` — If the number of ports available in the LAG is reduced by the number of ports configured in this command here then bandwidth allowed for bundle and/or interface will be as per the levels configured in this context.

Values
- 1 — 64 (for 64-link LAG)
- 1 — 32 (for other LAGs)

- `level level-id` — Specifies the amount of bandwidth available within a given bundle for MC traffic for a specified level.
level

Parameters

- **level** *level bw bandwidth*
 - **no** *level level*

Context

config>router>mcac>policy>bundle>mc-constraints

Description

This command configures the amount of bandwidth available within a given bundle for MC traffic for a specified level. The amount of allowable BW for the specified level is expressed in kbps and this can be defined for up to eight different levels.

The **no** form of the command removes the level from the configuration.

Default

none (If no bandwidth is defined for a given level then no limit is applied.)

Parameters

- **level** — Specifies the bandwidth for a given level. Level 1 has the highest priority. Level 8 has the lowest priority.
 - **Values** 1 — 8
- **bw bandwidth** — Specifies the bandwidth, in kbps, for the level.
 - **Values** 1 — 2147483647 kbps
 - **Default** 1

number-down

Syntax

- **number-down** number-lag-port-down level level-id
 - **no** **number-down** number-lag-port-down

Context

config>router>igmp>mcac>mc-constraints

Description

This command configures the number of ports down along with level for the MCAC policy.

Parameters

- **number-lag-port-down** — Specifies the number of ports down along with level for the MCAC policy.
 - **Values** 1 — 64
- **level level-id** — Specifies the bandwidth for a given level. Level 1 has the highest priority. Level 8 has the lowest priority.
 - **Values** 1 — 8

unconstrained-bw

Syntax

- **unconstrained-bw** bandwidth mandatory-bw mandatory-bw
 - **no** **unconstrained-bw**

Context

config>router>igmp@interface>mcac
cfgure>service>vprn>igmp@interface>mcac
cfgure>router>mld>group-interface>mcac
Description

This command enables Mcac (or Hmcac) function on the corresponding level. When Mcac (or Hmcac) is enabled and a channel definition policy is referenced, admission control is performed. The allocated bandwidth for optional channels should not exceed the unconstrained-bw minus the mandatory-bw. The mandatory channels have to stay below the specified value for the mandatory-bw.

Default

none

Parameters

- **bandwidth** — Specifies the unconstrained bandwidth in kbps for the MCAC policy.
 - **Values** 0 — 2147483647

- **mandatory-bw**
 - **Values** 0 — 2147483647

default-action

Parameters

- **default-action** {accept | discard}

Context

config>router>mcac>policy

Description

This command specifies the action to be applied to multicast streams (channels) when the streams do not match any of the multicast addresses defined in the MCAC policy.

When multiple default-action commands are entered, the last command will overwrite the previous command.

- **Default** discard (all multicast stream not defined in a MCAC policy will be discarded)

Parameters

- **accept** — Specifies multicast streams (channels) not defined in the MCAC policy will be accepted.
- **discard** — Specifies multicast streams (channels) not defined in the MCAC policy will be dropped.

shutdown

Parameters

- **[no] shutdown**

Context

config>router>mcac>policy>bundle

Description

This command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the **no shutdown** command.

When an entity is shutdown, the operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shutdown before they may be deleted.

Unlike other commands and parameters where the default state is not indicated in the configuration file, shutdown and no shutdown are always indicated in system generated configuration files.

The **no** form of the command puts an entity into the administratively enabled state.

When a shutdown is performed then all constraints placed on either a bundle or an interface are removed and multicast can potentially take up the full bandwidth of the interface. Furthermore, when a **no shutdown**
command is executed then policing of the policy must be in a gradual fashion. No active multicast groups may be removed. When a leave message is received for an optional channel then the multicast stream should be pruned and subsequent new joins can be denied in accordance with the policy. This may mean that for a period of time insufficient bandwidth is available even for mandatory channels.
MLD Commands

mld

Syntax [no] mld
Context config>router
Description This command enables the context to configure Multicast Listener Discovery (MLD) parameters. The no form of the command disables MLD.
Default no mld

group-interface

Syntax [no] group-interface ip-int-name
Context config>router>mld
Description This command creates and enables the context to configure MLD group interface parameters.

grp-if-query-src-ip

Syntax grp-if-query-src-ip ipv6-address
no grp-if-query-src-ip
Context config>router>mld>group-interface
Description This command configures the query source IPv6 address for all group interfaces. The no form of the command removes the IP address.
Default none

query-src-ip

Syntax query-src-ip ipv6-address
no query-src-ip
Context config>router>mld>group-interface
Description This command configures the query source IPv6 address for the group interface. This IP address overrides the source IP address configured at the router level. The no form of the command removes the IPv6 address.
MLD Commands

Default

none

Parameters

ipv6-address — Sets the source IPv4 address for all subscriber’s IGMP queries.

interface

Syntax

[no] interface ip-int-name

Context

config>router>mld

Description

This command enables the context to configure an Multicast Listener Discovery (MLD) interface. The interface is a local identifier of the network interface on which reception of the specified multicast address is to be enabled or disabled.

The no form of the command deletes the MLD interface. The shutdown command in the config>router>mld>interface context can be used to disable an interface without removing the configuration for the interface.

Default

no interface — No interfaces are defined.

Parameters

ip-int-name — The IP interface name. Interface names must be unique within the group of defined IP interfaces for config router interface and config service ies interface commands. An interface name cannot be in the form of an IP address. Interface names can be any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

If the IP interface name does not exist or does not have an IP address configured an error message will be returned.

If the IP interface exists in a different area it will be moved to this area.

disable-router-alert-check

Syntax

[no] disable-router-alert-check

Context

config>router>mld>if

Description

This command enables router alert checking for MLD messages received on this interface.

The no form of the command disables the router alert checking.

Default

none
import

Syntax import policy-name
 no import

Context config>router>mld>if

Description This command specifies the import route policy to be used for determining which membership reports are accepted by the router. Route policies are configured in the config>router>policy-options context.

When an import policy is not specified, all the MLD reports are accepted.

The no form of the command removes the policy association from the MLD instance.

Default no import — No import policy specified.

Parameters policy-name — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the config>router>policy-options context.

max-groups

Syntax max-groups value
 no max-groups

Context config>router>mld>if

Description This command specifies the maximum number of groups for which MLD can have local receiver information based on received MLD reports on this interface. When this configuration is changed dynamically to a value lower than the currently accepted number of groups, the groups that are already accepted are not deleted. Only new groups will not be allowed.

Default 0, no limit to the number of groups.

Parameters value — Specifies the maximum number of groups for this interface.

Values 1 — 16000
query-interval

Syntax
query-interval seconds
no query-interval

Context
config>router>mld
config>router>mld>if

Description
This command specifies the frequency that the querier router transmits general host-query messages. The host-query messages solicit group membership information and are sent to the all-systems multicast group address, 224.0.0.1.

Default
125

Parameters
seconds — The time frequency, in seconds, that the router transmits general host-query messages.

Values
2 — 1024

query-last-member-interval

Syntax
query-last-member-interval seconds

Context
config>router>mld
config>router>mld>if

Description
This command configures the frequency at which the querier sends group-specific query messages including messages sent in response to leave-group messages. The lower the interval, the faster the detection of the loss of the last member of a group.

Default
1

Parameters
seconds — Specifies the frequency, in seconds, at which query messages are sent.

Values
1 — 1024

query-response-interval

Syntax
query-response-interval seconds

Context
config>router>mld
config>router>mld>if

Description
This command specifies how long the querier router waits to receive a response to a host-query message from a host.

Default
10

Parameters
seconds — Specifies the length of time to wait to receive a response to the host-query message from the host.

Values
1 — 1023
static

Syntax
\texttt{static}

Context
\texttt{config>router>mld>if}

Description
This command tests multicast forwarding on an interface without a receiver host. When enabled, data is forwarded to an interface without receiving membership reports from host members.

Default
none

group

Syntax
\texttt{[no] group ipv6-address}

Context
\texttt{config>router>mld>if>static}

Description
This command enables the context to add a static multicast group either as a (*,G) or one or more (S,G) records. Use MLD static group memberships to test multicast forwarding without a receiver host. When MLD static groups are enabled, data is forwarded to an interface without receiving membership reports from host members.

When static MLD group entries on point-to-point links that connect routers to a rendezvous point (RP) are configured, the static MLD group entries do not generate join messages toward the RP.

The \texttt{no} form of the command removes the IPv6 address from the configuration.

Default
none

Parameters
\texttt{ipv6-address} — Specifies an MLD multicast group address that receives data on an interface. The IP address must be unique for each static group.

source

Syntax
\texttt{[no] source ipv6-address}

Context
\texttt{config>router>mld>if>static>group}
\texttt{config>router>mld>ssm-translate>grp-range}

Description
This command specifies an IPv6 unicast address that sends data on an interface. This enables a multicast receiver host to signal a router the group to receive multicast traffic from, and from the source(s) that the traffic is expected.

The \texttt{source} command is mutually exclusive with the specification of individual sources for the same group.

The source command, in combination with the group, is used to create a specific (S,G) static group entry.

The \texttt{no} form of the command removes the source from the configuration.

Default
none

Parameters
\texttt{ip-address} — Specifies the IPv6 unicast address.
starg

Syntax

```
[no] starg
```

Context

`config>router>mld>if>static>group`

Description

This command adds a static (*) entry. This command can only be enabled if no existing source addresses for this group are specified.

Use the `no` form of the command to remove the starg entry from the configuration.

Default

none

subnet-check

Syntax

```
[no] subnet-check
```

Context

`config>router>mld>interface`

Description

This command enables subnet checking for MLD messages received on this interface. All MLD packets with a source address that is not in the local subnet are dropped.

Default

enabled

version

Syntax

```
version version
no version
```

Context

`config>router>mld>if`

Description

This command specifies the MLD version. If routers run different versions, they will negotiate the lowest common version of MLD that is supported by hosts on their subnet and operate in that version. For MLD to function correctly, all routers on a LAN should be configured to run the same version of MLD on that LAN.

Default

1

Parameters

`version` — Specifies the MLD version number.

Values

1, 2
robust-count

Syntax robust-count robust-count
 no robust-count
Context config>router>mld
Description This command configures the robust count. The robust-count variable allows tuning for the expected packet loss on a subnet. If a subnet anticipates losses, the robust-count variable can be increased.
Default 2
Parameters robust-count — Specify the robust count value.
 Values 2 — 10

ssm-translate

Syntax ssm-translate
Context config>router>mld
Description This command enables the context to configure group ranges which are translated to SSM (S,G) entries. If the static entry needs to be created, it has to be translated from a IGMPv1 IGMPv2 request to a Source Specific Multicast (SSM) join. An SSM translate source can only be added if the starg command is not enabled. An error message is generated if you try to configure the source command with starg command enabled.

grp-range

Syntax [no] grp-range start end
Context config>router>mld>ssm-translate
Description This command is used to configure group ranges which are translated to SSM (S,G) entries.
Parameters start — An IP address that specifies the start of the group range.
 end — An IP address that specifies the end of the group range. This value should always be greater than or equal to the value of the start value.
source

Syntax [no] source ip-address

Context config>router>mld>ssm-translate>grp-range

Description This command specifies the source IP address for the group range. Whenever a (*,G) report is received in the range specified by grp-range start and end parameters, it is translated to an (S,G) report with the value of this object as the source address.

Parameters ip-address — Specifies the IP address that will be sending data.
Operational Commands

mrinfo

Syntax mrinfo ip-address [router router-name|service]

Context <GLOBAL>

Description This command is used to display relevant multicast information from the target multicast router. Information displayed includes adjacency information, protocol, metrics, thresholds, and flags from the target multicast router. This information can be used by network operators to determine whether bi-directional adjacencies exist.

Parameters ip-address — Specify the IP address of the multicast capable target router should be entered.

router router-name — Specify the router instance that this command applies to.

Defaults management Base

service — Specify the service instance that this command applies to.

Values 1 — 2147483647

Mrinfo Output Fields — The following table describes the output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>Indicates software version on queried router.</td>
</tr>
<tr>
<td>prune</td>
<td>Indicates that router understands pruning.</td>
</tr>
<tr>
<td>genid</td>
<td>Indicates that router sends generation IDs.</td>
</tr>
<tr>
<td>mtrace</td>
<td>Indicates that the router handles mtrace requests.</td>
</tr>
<tr>
<td>1</td>
<td>Metric</td>
</tr>
<tr>
<td>0</td>
<td>Threshold (multicast time-to-live)</td>
</tr>
<tr>
<td>pim</td>
<td>PIM enabled on interface.</td>
</tr>
<tr>
<td>down</td>
<td>Operational status of interface.</td>
</tr>
<tr>
<td>disabled</td>
<td>Administrative status of interface.</td>
</tr>
<tr>
<td>leaf</td>
<td>No downstream neighbors on interface.</td>
</tr>
<tr>
<td>querier</td>
<td>Interface is IGMP querier.</td>
</tr>
<tr>
<td>tunnel</td>
<td>Neighbor reached via tunnel.</td>
</tr>
</tbody>
</table>
mstat

Syntax

```
mstat source ip-address group grp-ip-address [destination dst-ip-address] [hop hop] [router router-name|service] [wait-time wait-time]
```

Context

`<GLOBAL>`

Description

This command traces a multicast path from a source to a receiver and displays multicast packet rate and loss information. The `mstat` command adds the capability to show the multicast path in a limited graphic display and provide drops, duplicates, TTLs, and delays at each node. This information is useful to network operators because it identifies nodes with high drop and duplicate counts. Duplicate counts are shown as negative drops.

Parameters

source ip-address — Specify the IP address of the multicast-capable source. This is a unicast address of the beginning of the path to be traced.

group grp-ip-address — Specify the multicast address that will be used.

destination dst-ip-address — Specify the IP address of the unicast destination. If this parameter is omitted, the IP address of the system where the command is entered is used. The destination parameter can also be used to specify a local interface address as the destination address to send the trace query.

Default

The default address for the destination address is the incoming IETF format for that (S,G)

hop hop — Specify the maximum number of hops that will be traced from the receiver back toward the source.

Values

1 — 255

Default

32 hops (infinity for the DVMRP routing protocol).

router router-name — Specify the router instance that this command applies to.

```

**service** — Specify the service instance that this command applies to.

**Values**

1 — 2147483647

**wait-time wait-time** — Specify the number of seconds to wait for the response.

**Values**

1 — 60

**Default**

10

A:dut-f# mrfinfo 10.1.1.2

10.1.1.2 [version 3.0,prune,genid,mtrace]:
10.1.1.2 -> 10.1.1.1 [1/0/pim]
16.1.1.1 -> 0.0.0.0 [1/0/pim/down/disabled]
17.1.1.1 -> 0.0.0.0 [1/0/pim/querier/leaf]
200.200.200.3 -> 200.200.200.5 [1/0/tunnel/pim]...
**Mstat Output Fields** — The following table describes the output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hop</td>
<td>Number of hops from the source to the listed router.</td>
</tr>
<tr>
<td>router name</td>
<td>Name of the router for this hop or “?” when not reverse DNS translated.</td>
</tr>
<tr>
<td>address</td>
<td>Address of the router for this hop.</td>
</tr>
<tr>
<td>protocol</td>
<td>Protocol used.</td>
</tr>
<tr>
<td>ttl</td>
<td>Forward TTL threshold. TTL that a packet is required to have before it will be forwarded over the outgoing interface.</td>
</tr>
<tr>
<td>forwarding code</td>
<td>Forwarding information/error code for this hop.</td>
</tr>
</tbody>
</table>

For each interface between 2 nodes a line is printed, following the same layout as other routers with an implementation derived from mrouted. Note the following:

- The forwarding information/error code is only displayed when different from “No Error”.
- “?” means the there is no reverse DNS translation.
- There is no “Overall Mcast Pkt Rate” available in the PE for the VPRN case.
mtrace

**Syntax**  
mtrace source ip-address group grp-ip-address [destination dst-ip-address] [hop hop] [router router-name] [service] [wait-time wait-time]

**Context**  
<GLOBAL>

**Description**  
This command traces the multicast path from a source to a receiver by passing a trace query hop-by-hop along the reverse path from the receiver to the source. At each hop, information such as the hop address, routing error conditions, and packet statistics are gathered and returned to the requestor. A network administrator can determine where multicast flows stop and verify the flow of the multicast stream.

**Parameters**  
source ip-address — Specify the IP address of the multicast-capable source. This is a unicast address of the beginning of the path to be traced.

group grp-ip-address — Specify the multicast address that will be used.

destination dst-ip-address — Specify the IP address of the unicast destination. If this parameter is omitted, the IP address of the system where the command is entered is used. The destination parameter can also be used to specify a local interface address as the destination address to send the trace query.

**Default**  
The default address for the destination address is the incoming IETF format for that (S,G)
**hop** hop — Specify the maximum number of hops that will be traced from the receiver back toward the source.

**Values**

1 — 255

**Default**

32 hops (infinity for the DVMRP routing protocol).

**router** router-name — Specify the router instance that this command applies to.

**service** — Specify the service instance that this command applies to.

**Values**

1 — 2147483647

**wait-time** wait-time — Specify the number of seconds to wait for the response.

**Values**

1 — 60

**Default**

10

**Mtrace Output Fields** — The following table describes the output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hop</td>
<td>Number of hops from the source to the listed router.</td>
</tr>
<tr>
<td>router name</td>
<td>Name of the router for this hop. If a DNS name query is not successful a “?” displays.</td>
</tr>
<tr>
<td>address</td>
<td>Address of the router for this hop.</td>
</tr>
<tr>
<td>protocol</td>
<td>Protocol used.</td>
</tr>
<tr>
<td>ttl</td>
<td>Forward TTL threshold. TTL that a packet is required to have before it will be forwarded over the outgoing interface.</td>
</tr>
<tr>
<td>forwarding code</td>
<td>Forwarding information/error code for this hop.</td>
</tr>
</tbody>
</table>

```bash
A: Dut-F# mtrace source 10.10.16.9 group 224.5.6.7

Mtrace from 10.10.16.9 via group 224.5.6.7
Querying full reverse path...

 0 ? (10.10.10.6)
-1 ? (10.10.10.5) PIM thresh^ 1 No Error
-2 ? (10.10.6.4) PIM thresh^ 1 No Error
-3 ? (10.10.4.2) PIM thresh^ 1 Reached RP/Core
-4 ? (10.10.1.1) PIM thresh^ 1 No Error
-5 ? (10.10.2.3) PIM thresh^ 1 No Error
-6 ? (10.10.16.9)

Round trip time 29 ms; total ttl of 5 required.
```
IGMP Commands

**group**

**Syntax**  
group [grp-ip-address]  
group summary

**Context**  
show>router>igmp

**Description**  
This command displays the multicast group and (S,G) addresses. If no *grp-ip-address* parameters are specified, then all IGMP group, (*,G) and (S,G) addresses are displayed.

**Parameters**  
*grp-ip-address* — Displays specific multicast group addresses.

**Output**  
**IGMP Group Output** — The following table describes the output fields for IGMP group information.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Groups</td>
<td>Displays the IP multicast sources corresponding to the IP multicast groups that are statically configured.</td>
</tr>
<tr>
<td>Fwd List</td>
<td>Displays the list of interfaces in the forward list.</td>
</tr>
<tr>
<td>Blk List</td>
<td>Displays the list of interfaces in the bulk list.</td>
</tr>
</tbody>
</table>

**Sample Output**

*B:Dut-C# show router igmp group

===============================================================================
IGMP Interface Groups
===============================================================================
IGMP Host Groups
===============================================================================
(*,225.0.0.1)  
Fwd List : 112.112.1.2  Up Time : 0d 00:00:21
(11.11.0.1,225.0.0.1)  
Fwd List : 112.112.1.1  Up Time : 0d 00:00:30
Blk List : 112.112.1.2  Up Time : 0d 00:00:21
(11.11.0.2,225.0.0.1)  
Fwd List : 112.112.1.1  Up Time : 0d 00:00:30
(*,225.0.0.2)  
Fwd List : 112.112.1.2  Up Time : 0d 00:00:21
(11.11.0.1,225.0.0.2)  
Blk List : 112.112.1.2  Up Time : 0d 00:00:21
(*,G)/(S,G) Entries : 5

===============================================================================

**IGMP Commands**

*B:Dut-C#*

*B:Dut-C# show router igmp group summary*

IGMP Interface Groups

<table>
<thead>
<tr>
<th>IGMP Host Groups Summary</th>
<th>Nbr Fwd Hosts</th>
<th>Nbr Blk Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*,225.0.0.1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(11.11.0.1,225.0.0.1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(11.11.0.2,225.0.0.1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(*,225.0.0.2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(11.11.0.1,225.0.0.2)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(*,G)/(S,G) Entries : 5

---

*B:Dut-C#*

A:NYC# show router igmp group 224.24.24.24

IGMP Groups

|---------------------------------------|---------------------|

(*,G)/(S,G) Entries : 1

---

A:NYC#

**hosts**

**Syntax**

hosts [group grp-address] [detail] [fwd-service service-id] [grp-interface ip-int-name]

hosts [host ip-address] [group grp-address] [detail]

hosts summary

**Context**

show>router>igmp

**Description**

This command shows IGMP hosts information.

**Sample Output**

*B:Dut-C# show router igmp hosts*

IGMP Hosts

<table>
<thead>
<tr>
<th>Host</th>
<th>Oper State</th>
<th>Oper Version</th>
<th>Fwd Svc</th>
<th>GrpItf</th>
<th>Num Groups</th>
<th>Subscriber</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.112.1.1</td>
<td>Up</td>
<td>3</td>
<td>1</td>
<td>gi_1_1</td>
<td>1</td>
<td>sub_1</td>
</tr>
<tr>
<td>112.112.1.2</td>
<td>Up</td>
<td>3</td>
<td>1</td>
<td>gi_1_1</td>
<td>2</td>
<td>sub_1</td>
</tr>
<tr>
<td>112.112.1.3</td>
<td>Up</td>
<td>3</td>
<td>1</td>
<td>gi_1_2</td>
<td>0</td>
<td>sub_2</td>
</tr>
</tbody>
</table>

Hosts : 3

---

Page 166 7950 SR OS Routing Protocols Guide
*B:Dut-C#*

*B:Dut-C#* show router igmp hosts detail

<table>
<thead>
<tr>
<th>IGMP Host 112.112.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper Status : Up</td>
</tr>
<tr>
<td>Oper version : 3</td>
</tr>
<tr>
<td>Num Groups : 1</td>
</tr>
<tr>
<td>Max Grps Till Now: 2</td>
</tr>
<tr>
<td>PPPoE SessionId : 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGMP Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address : 225.0.0.1</td>
</tr>
<tr>
<td>Expires : Not running</td>
</tr>
<tr>
<td>V1 Host Timer : Not running</td>
</tr>
<tr>
<td>V2 Host Timer : Not running</td>
</tr>
<tr>
<td>Redir.vRtrId : N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Expires</th>
<th>Type</th>
<th>Fwd/Blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.0.1</td>
<td>0d 00:03:56</td>
<td>Dynamic</td>
<td>Fwd</td>
</tr>
<tr>
<td>11.11.0.2</td>
<td>0d 00:03:56</td>
<td>Dynamic</td>
<td>Fwd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGMP Host 112.112.1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper Status : Up</td>
</tr>
<tr>
<td>Oper version : 3</td>
</tr>
<tr>
<td>Num Groups : 2</td>
</tr>
<tr>
<td>Max Grps Till Now: 2</td>
</tr>
<tr>
<td>PPPoE SessionId : 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGMP Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address : 225.0.0.1</td>
</tr>
<tr>
<td>Expires : 0d 00:04:05</td>
</tr>
<tr>
<td>V1 Host Timer : Not running</td>
</tr>
<tr>
<td>V2 Host Timer : Not running</td>
</tr>
<tr>
<td>Redir.vRtrId : N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Expires</th>
<th>Type</th>
<th>Fwd/Blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.0.1</td>
<td>0d 00:00:00</td>
<td>Dynamic</td>
<td>Blk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IGMP Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address : 225.0.0.2</td>
</tr>
<tr>
<td>Expires : 0d 00:04:04</td>
</tr>
<tr>
<td>V1 Host Timer : Not running</td>
</tr>
<tr>
<td>V2 Host Timer : Not running</td>
</tr>
<tr>
<td>Redir.vRtrId : N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Expires</th>
<th>Type</th>
<th>Fwd/Blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.0.1</td>
<td>0d 00:00:00</td>
<td>Dynamic</td>
<td>Blk</td>
</tr>
</tbody>
</table>
### IGMP Host 112.112.1.3

<table>
<thead>
<tr>
<th>Oper Status</th>
<th>Up</th>
<th>MacAddress</th>
<th>00:00:00:00:00:02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper version</td>
<td>3</td>
<td>Subscriber</td>
<td>sub_2</td>
</tr>
<tr>
<td>Num Groups</td>
<td>0</td>
<td>GrpItf</td>
<td>gi_1_2</td>
</tr>
<tr>
<td>Max Grps Till Now</td>
<td>1</td>
<td>IGMP-Policy</td>
<td>poll</td>
</tr>
<tr>
<td>PPPoE SessionId</td>
<td>1</td>
<td>Next query time</td>
<td>0d 00:00:48</td>
</tr>
<tr>
<td>FwdSvcId</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hosts : 3

```bash
*B:Dut-C#
```

```bash
*B:Dut-C# show router igmp statistics host 112.112.1.1
```

### IGMP Host Statistics 112.112.1.1

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queries</td>
<td>0</td>
<td>580</td>
</tr>
<tr>
<td>Report V1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Report V2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Report V3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Leaves</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### General Host Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>0</td>
</tr>
<tr>
<td>Bad Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
</tr>
<tr>
<td>Bad Receive If</td>
<td>0</td>
</tr>
<tr>
<td>Rx Non Local</td>
<td>0</td>
</tr>
<tr>
<td>Rx Wrong Version</td>
<td>0</td>
</tr>
<tr>
<td>Policy Drops</td>
<td>0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>0</td>
</tr>
<tr>
<td>Rx Bad Encodings</td>
<td>0</td>
</tr>
<tr>
<td>Local Scope Pkts</td>
<td>0</td>
</tr>
<tr>
<td>Resvd Scope Pkts</td>
<td>0</td>
</tr>
<tr>
<td>MCAC Policy Drops</td>
<td>0</td>
</tr>
</tbody>
</table>

### Source Group Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(S,G)</td>
<td>0</td>
</tr>
<tr>
<td>(*,G)</td>
<td>0</td>
</tr>
</tbody>
</table>

```bash
*B:Dut-C# show subscriber-mgmt igmp-policy
```
ssm-translate

**Syntax**

```
ssm-translate
ssm-translate interface interface-name
```

**Context**

```
show>router>igmp
```

**Description**

This command displays IGMP SSM translate configuration information.

**Output**

**GMP Interface Output** — The following table provides IGMP field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Range</td>
<td>Displays the address ranges of the multicast groups for which this router can be an RP.</td>
</tr>
<tr>
<td>Source</td>
<td>Displays the unicast address that sends data on an interface.</td>
</tr>
<tr>
<td>SSM Translate Entries</td>
<td>Displays the total number of SSM translate entries.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
===
IGMP SSM Translate Entries
===
<table>
<thead>
<tr>
<th>Group Range</th>
<th>Source</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td><234.1.1.1 - 234.1.1.2></td>
<td>100.1.1.1</td>
<td>-</td>
</tr>
<tr>
<td><232.1.1.1 - 232.1.1.5></td>
<td>100.1.1.2</td>
<td>ies-abc</td>
</tr>
</tbody>
</table>
```

interface

**Syntax**

```
interface [ip-int-name | ip-address] [group] [grp-address] [detail]
```

**Context**

```
show>router>igmp
```

**Description**

This command displays IGMP interface information.

**Parameters**

- `ip-int-name` — Only displays the information associated with the specified IP interface name.
- `ip-address` — Only displays the information associated with the specified IP address.
- `group grp-address` — Only displays IP multicast group address for which this entry contains information.
- `detail` — Displays detailed IP interface information along with the source group information learned on that interface.
IGMP Commands

**Output** IGMP Interface Output — The following table provides IGMP field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Specifies the interfaces that participate in the IGMP protocol.</td>
</tr>
<tr>
<td>Adm</td>
<td>Displays the administrative state for the IGMP protocol on this interface.</td>
</tr>
<tr>
<td>Admin Status</td>
<td>Displays the current operational state of IGMP protocol on the interface.</td>
</tr>
<tr>
<td>Oper</td>
<td>Displays the address of the IGMP querier on the IP subnet to which the</td>
</tr>
<tr>
<td>Oper Status</td>
<td>interface is attached.</td>
</tr>
<tr>
<td>Querier</td>
<td>Displays the time since the querier was last elected as querier.</td>
</tr>
<tr>
<td>Querier Up Time</td>
<td>Displays the time remaining before the querier ages out. If the querier</td>
</tr>
<tr>
<td>Querier Expiry</td>
<td>is the local interface address, the value will be zero.</td>
</tr>
<tr>
<td>Querier Expiry Timer</td>
<td></td>
</tr>
<tr>
<td>Cfg/Opr Version</td>
<td>Cfg — The configured version of IGMP running on this interface.</td>
</tr>
<tr>
<td>Admin/Oper version</td>
<td>For IGMP to function correctly, all routers on a LAN must be configured to</td>
</tr>
<tr>
<td></td>
<td>run the same version of IGMP on that LAN.</td>
</tr>
<tr>
<td>Num Groups</td>
<td>The number of multicast groups which have been learned by the router on the</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
</tr>
<tr>
<td>Policy</td>
<td>Specifies the policy that is to be applied on the interface.</td>
</tr>
<tr>
<td>Group Address</td>
<td>Specifies the IP multicast group address for which this entry contains</td>
</tr>
<tr>
<td></td>
<td>information.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Specifies the time since this source group entry got created.</td>
</tr>
<tr>
<td>Last Reporter</td>
<td>Specifies the IP address of the source of the last membership report</td>
</tr>
<tr>
<td></td>
<td>received for this IP Multicast group address on this interface. If no</td>
</tr>
<tr>
<td></td>
<td>membership report has been received, this object has the value 0.0.0.0.</td>
</tr>
<tr>
<td>Mode</td>
<td>The mode is based on the type of membership report(s) received on the</td>
</tr>
<tr>
<td></td>
<td>interface for the group. In the 'include' mode, reception of packets sent</td>
</tr>
<tr>
<td></td>
<td>to the specified multicast address is requested only from those IP source</td>
</tr>
<tr>
<td></td>
<td>addresses listed in the source-list parameter of the IGMP membership report.</td>
</tr>
<tr>
<td></td>
<td>In 'exclude' mode, reception of packets sent to the given multicast address</td>
</tr>
<tr>
<td></td>
<td>is requested from all IP source addresses except those listed in the source-list parameter.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-BA# show router 100 interface

Interface Table (Service: 100)

<table>
<thead>
<tr>
<th>Interface-Name</th>
<th>Adm</th>
<th>Opr(v4/v6)</th>
<th>Mode</th>
<th>Port/SapId</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>VPRN</td>
<td>1/1/7</td>
</tr>
<tr>
<td>11.1.1.1/24</td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>system</td>
<td>Up</td>
<td>Up</td>
<td>VPRN</td>
<td>loopback</td>
</tr>
<tr>
<td>10.20.1.2/32</td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
</tbody>
</table>

Interfaces : 2

*A:ALA-BA#

*A:ALA-BA# show router 100 interface IGMP_to_CE

Interface Table (Service: 100)

<table>
<thead>
<tr>
<th>Interface-Name</th>
<th>Adm</th>
<th>Opr(v4/v6)</th>
<th>Mode</th>
<th>Port/SapId</th>
</tr>
</thead>
</table>

V1 Host Timer
The time remaining until the local router will assume that there are no longer any IGMP version 1 members on the IP subnet attached to this interface. Upon hearing any IGMPv1 Membership Report, this value is reset to the group membership timer. While this time remaining is non-zero, the local router ignores any IGMPv2 Leave messages for this group that it receives on this interface.

V2 Host Timer
The time remaining until the local router will assume that there are no longer any IGMP version 2 members on the IP subnet attached to this interface. Upon hearing any IGMPv2 Membership Report, this value is reset to the group membership timer. While this time remaining is non-zero, the local router ignores any IGMPv3 Leave messages for this group that it receives on this interface.

Type
Indicates how this group entry was learned. If this group entry was learned by IGMP, it will be set to “dynamic”. For statically configured groups, the value will be set to 'static'.

Compat Mode
Used in order for routers to be compatible with older version routers. IGMPv3 hosts MUST operate in version 1 and version 2 compatibility modes. IGMPv3 hosts MUST keep state per local interface regarding the compatibility mode of each attached network. A host's compatibility mode is determined from the Host Compatibility Mode variable which can be in one of three states: IGMPv1, IGMPv2 or IGMPv3. This variable is kept per interface and is dependent on the version of General Queries heard on that interface as well as the Older Version Querier Present timers for the interface.
IGMP Commands

<table>
<thead>
<tr>
<th>IP-Address</th>
<th>PfxState</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
</tr>
<tr>
<td>11.1.1.1/24</td>
<td>Up</td>
</tr>
</tbody>
</table>

Interfaces: 1

*A:ALA-BA#

*A:ALA-BA# show router 100 igmp interface

IGMP Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Adm</th>
<th>Oper</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>1/1</td>
<td>3</td>
</tr>
</tbody>
</table>

Interfaces: 1

*A:ALA-BA#

*A:ALA-BA# show router 100 igmp interface IGMP_to_CE

IGMP Interface IGMP_to_CE

<table>
<thead>
<tr>
<th>Interface</th>
<th>Adm</th>
<th>Oper</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>1/1</td>
<td>3</td>
</tr>
</tbody>
</table>

Interfaces: 1

*A:ALA-BA#

*A:ALA-BA# show router 100 igmp interface 11.1.1.1

IGMP Interface 11.1.1.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Adm</th>
<th>Oper</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>1/1</td>
<td>3</td>
</tr>
</tbody>
</table>

Interfaces: 1

*A:ALA-BA#
```
*A:ALA-BA# show router 100 igmp interface IGMP_to_CE group 227.1.1.1

IGMP Interface IGMP_to_CE

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
<th>Version Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>1/1</td>
<td>igmppol</td>
<td></td>
</tr>
</tbody>
</table>

IGMP Group

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
<th>Version Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.1.1.1</td>
<td>Up</td>
<td></td>
<td>0.0.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALA-BA#

*A:ALA-BA# show router 100 igmp interface IGMP_to_CE group 227.1.1.1 detail

IGMP Interface IGMP_to_CE

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
<th>Version Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>1/1</td>
<td>igmppol</td>
<td></td>
</tr>
</tbody>
</table>

IGMP Group

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
<th>Version Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.1.1.1</td>
<td>Up</td>
<td></td>
<td>0.0.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALA-BA#

*A:ALA-BA# show router 100 igmp interface IGMP_to_CE group 227.1.1.1 detail

IGMP Interface IGMP_to_CE

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
<th>Version Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP_to_CE</td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>1/1</td>
<td>igmppol</td>
<td></td>
</tr>
</tbody>
</table>

IGMP Group

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Querier</th>
<th>Cfg/Opr Num</th>
<th>Policy</th>
<th>Version Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.1.1.1</td>
<td>Up</td>
<td></td>
<td>0.0.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALA-BA#
```
IGMP Commands

static

Syntax  static [ip-int-name | ip-addr]

Context  show>router>igmp

Description  This command displays static IGMP, (*,G) and (S,G) information.

Parameters  
ip-int-name — Only displays the information associated with the specified IP interface name.
ip-addr — Only displays the information associated with the specified IP address.

Output  Static IGMP Output — The following table provides static IGMP field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Displays entries which represents a source address from which receivers are interested/not interested in receiving multicast traffic.</td>
</tr>
<tr>
<td>Group</td>
<td>Displays the IP multicast group address for which this entry contains information.</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the interface name.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-BA# show router 100 igmp static

==================================================================
<table>
<thead>
<tr>
<th>IGMP Static Group Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>11.11.11.11</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>22.22.22.22</td>
</tr>
</tbody>
</table>

Static (*,G)/(S,G) Entries : 3

*A:ALA-BA#*

statistics

Syntax  statistics [ip-int-name | ip-address]

statistics host [ip-address]

Context  show>router>igmp

Description  This command displays IGMP statistics information.

Parameters  
ip-int-name — Only displays the information associated with the specified IP interface name.
ip-address — Only displays the information associated with the specified IP address.
Output | IGMP Statistics Output — The following table provides statistical IGMP field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Interface Statistics</td>
<td>The section listing the IGMP statistics for a particular interface.</td>
</tr>
<tr>
<td>Message Type</td>
<td>Queries — The number of IGMP general queries transmitted or received on this interface.</td>
</tr>
<tr>
<td></td>
<td>Report — The total number of IGMP V1, V2, or V3 reports transmitted or received on this interface.</td>
</tr>
<tr>
<td></td>
<td>Leaves — The total number of IGMP leaves transmitted on this interface.</td>
</tr>
<tr>
<td>Received</td>
<td>Displays the total number of IGMP packets received on this interface.</td>
</tr>
<tr>
<td>Transmitted</td>
<td>Column that displays the total number of IGMP packets transmitted from this interface.</td>
</tr>
<tr>
<td>General Interface Statistics</td>
<td>The section listing the general IGMP statistics.</td>
</tr>
<tr>
<td>Bad Length</td>
<td>Displays the total number of IGMP packets with bad length received on this interface.</td>
</tr>
<tr>
<td>Bad Checksum</td>
<td>Displays the total number of IGMP packets with bad checksum received on this interface.</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>Displays the total number of IGMP packets with unknown type received on this interface.</td>
</tr>
<tr>
<td>Bad Receive If</td>
<td>Displays the total number of IGMP packets incorrectly received on this interface.</td>
</tr>
<tr>
<td>Rx Non Local</td>
<td>Displays the total number of IGMP packets received from a non-local sender.</td>
</tr>
<tr>
<td>Rx Wrong Version</td>
<td>Displays the total number of IGMP packets with wrong versions received on this interface.</td>
</tr>
<tr>
<td>Policy Drops</td>
<td>Displays the total number of times IGMP protocol instance matched the host IP address or group/source addresses specified in the import policy.</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>Displays the total number of IGMPv3 packets received on this interface which did not have the router alert flag set.</td>
</tr>
</tbody>
</table>
### Sample Output

```plaintext
*A:ALA-BA# show router 100 igmp statistics

IGMP Interface Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queries</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Report V1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Report V2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Report V3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leaves</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

General Interface Statistics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>0</td>
</tr>
<tr>
<td>Bad Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
</tr>
<tr>
<td>Bad Receive If</td>
<td>0</td>
</tr>
<tr>
<td>Rx Non Local</td>
<td>0</td>
</tr>
<tr>
<td>Rx Wrong Version</td>
<td>0</td>
</tr>
<tr>
<td>Policy Drops</td>
<td>0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>0</td>
</tr>
<tr>
<td>Rx Bad Encodings</td>
<td>0</td>
</tr>
<tr>
<td>Rx Pkt Drops</td>
<td>0</td>
</tr>
</tbody>
</table>

Source Group Statistics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S,G)</td>
<td>2</td>
</tr>
<tr>
<td>(*,G)</td>
<td>1</td>
</tr>
</tbody>
</table>

A:ALA-BA#

*B:Dut-C# show router igmp statistics host

IGMP Host Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queries</td>
<td>0</td>
<td>1739</td>
</tr>
<tr>
<td>Report V1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Report V2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Report V3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Leaves</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

General Host Statistics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>0</td>
</tr>
<tr>
<td>Bad Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
</tr>
<tr>
<td>Bad Receive If</td>
<td>0</td>
</tr>
<tr>
<td>Rx Non Local</td>
<td>0</td>
</tr>
<tr>
<td>Rx Wrong Version</td>
<td>0</td>
</tr>
<tr>
<td>Policy Drops</td>
<td>0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>0</td>
</tr>
<tr>
<td>Rx Bad Encodings</td>
<td>0</td>
</tr>
<tr>
<td>Local Scope Pkts</td>
<td>0</td>
</tr>
</tbody>
</table>
```
status

Syntax    status
Context   show>router>igmp

Description
This command displays IGMP status information.
If IGMP is not enabled, the following message appears:
A:NYC# show router igmp status
MINOR: CLI IGMP is not configured.
A:NYC#

Output  IGMP Status Output — The following table provides IGMP status field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>Displays the administrative status of IGMP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the current operating state of this IGMP protocol instance on this router.</td>
</tr>
<tr>
<td>Query Interval</td>
<td>The frequency at which IGMP query packets are transmitted.</td>
</tr>
<tr>
<td>Last Member Query Interval</td>
<td>The maximum response time inserted into group-specific queries sent in response to leave group messages, and is also the amount of time between group-specific query messages.</td>
</tr>
<tr>
<td>Query Response Interval</td>
<td>The maximum query response time advertised in IGMPv2 queries.</td>
</tr>
<tr>
<td>Robust Count</td>
<td>Displays the number of times the router will retry a query.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-BA# show router 100 igmp status
===============================================================================
IGMP Status
===============================================================================
Admin State : Up
Oper State : Up
Query Interval : 1024
Last Member Query Interval : 1024
Query Response Interval : 1023
Robust Count : 10
===============================================================================
*A:ALA-BA#
Show Router PIM Commands

anycast

Syntax      anycast [detail]
Context     show>router>pim
Description  This command displays PIM anycast rp-set information.
Parameters  detail — Displays detailed information.
Output      PIM anycast Output — The following table provides PIM anycast field descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anycast Address</td>
<td>Displays the candidate anycast address.</td>
</tr>
<tr>
<td>Anycast RP Peer</td>
<td>Displays the candidate anycast RP peer address.</td>
</tr>
</tbody>
</table>

Sample Output

A:dut-d# show router pim anycast
===================================================
PIM Anycast RP Entries
===================================================
<table>
<thead>
<tr>
<th>Anycast RP</th>
<th>Anycast RP Peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.100.100.1</td>
<td>102.1.1.1</td>
</tr>
<tr>
<td>103.1.1.1</td>
<td>104.1.1.1</td>
</tr>
</tbody>
</table>
---------------------------------------------------
PIM Anycast RP Entries : 3
===================================================

crp

Syntax      crp [ip-address]
Context     show>router>pim
Description  Display PIM candidate RP (CRP) information received at the elected Bootstrap router (BSR).
Parameters  ip-address — The candidate RP IP address.
**Output**

**PIM CRP Output** — The following table provides PIM CRP field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP Address</td>
<td>Displays the Candidate RP address.</td>
</tr>
<tr>
<td>Group Address</td>
<td>Displays the range of multicast group addresses for which the CRP is the Candidate RP.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the Candidate RP's priority for becoming a rendezvous point (RP). This value is used to elect RP for a group range. A value of 0 is considered as the highest priority.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Displays the hold time of the candidate RP. It is used by the Bootstrap router to time out the RP entries if it does not listen to another CRP advertisement within the holdtime period.</td>
</tr>
<tr>
<td>Expiry</td>
<td>The minimum time remaining before the CRP will be declared down. If the local router is not the BSR, this value is 0.</td>
</tr>
<tr>
<td>Candidate RPs</td>
<td>Displays the number of CRP entries.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
A:WAS# show router pim crp

PIM Candidate RPs

<table>
<thead>
<tr>
<th>RP Address</th>
<th>Group Address</th>
<th>Priority</th>
<th>Holdtime</th>
<th>Expiry Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.22.187.236</td>
<td>224.0.0.0/4</td>
<td>192</td>
<td>150</td>
<td>0d 00:02:19</td>
</tr>
<tr>
<td>2.22.187.239</td>
<td>224.0.0.0/4</td>
<td>192</td>
<td>150</td>
<td>0d 00:02:19</td>
</tr>
<tr>
<td>2.22.187.240</td>
<td>224.0.0.0/4</td>
<td>192</td>
<td>150</td>
<td>0d 00:02:09</td>
</tr>
</tbody>
</table>

Candidate RPs : 3
```

```
A:WAS#

A:WAS# show router pim crp 2.22.187.236

PIM Candidate RPs

<table>
<thead>
<tr>
<th>RP Address</th>
<th>Group Address</th>
<th>Priority</th>
<th>Holdtime</th>
<th>Expiry Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.22.187.236</td>
<td>224.0.0.0/4</td>
<td>192</td>
<td>150</td>
<td>0d 00:01:43</td>
</tr>
</tbody>
</table>

Candidate RPs : 1
```

A:WAS#
IGMP Commands

s-pmsi

Syntax  s-pmsi [mdSrcAddr [mdGrpAddr]] [detail]

Context  show>router>pim

Description  Displays the list of selective provider multicast service interfaces that are currently active.

Parameters  

mdSrcAddr — Specifies the source address of the multicast sender.

mdGrpAddr — Specifies the group address of the multicast sender.

detail — Displays detailed output.

Output  PIM data MDT Output — The following table provides PIM data MDT descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD Grp Address</td>
<td>Displays the IP multicast group address for which this entry contains information.</td>
</tr>
<tr>
<td>MD Src Address</td>
<td>Displays the source address of the multicast sender.</td>
</tr>
<tr>
<td></td>
<td>It will be 0 if the type is configured as star. It will be the address of the Rendezvous Point (RP) if the type is configured as starRP.</td>
</tr>
<tr>
<td>MT Index</td>
<td>Displays the index number.</td>
</tr>
<tr>
<td>Num VP SGs</td>
<td>Displays the VPN number.</td>
</tr>
</tbody>
</table>

Sample Output

*B:node-6# show router 100 pim s-pmsi

PIM Selective provider tunnels

<table>
<thead>
<tr>
<th>MD Src Address</th>
<th>MD Grp Address</th>
<th>MT Index</th>
<th>Num VPN SGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.72</td>
<td>24603</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.73</td>
<td>24604</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.74</td>
<td>24605</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.75</td>
<td>24606</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.76</td>
<td>24607</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.77</td>
<td>24608</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.78</td>
<td>24609</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.79</td>
<td>24610</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.80</td>
<td>24611</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.81</td>
<td>24612</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.82</td>
<td>24613</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.83</td>
<td>24614</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.84</td>
<td>24615</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.85</td>
<td>24616</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.86</td>
<td>24617</td>
<td>1</td>
</tr>
<tr>
<td>200.200.200.7</td>
<td>230.0.89.87</td>
<td>24618</td>
<td>1</td>
</tr>
</tbody>
</table>

*B:node-6#
`*B:node-6#` show router 100 pim s-pmsi detail

---

PIM Selective provider tunnels

---

Md Source Address : 200.200.200.7  Md Group Address : 230.0.89.72
Number of VPN SGs : 1                Uptime             : 0d 00:00:18
MT IfIndex         : 24603              Egress Fwding Rate : 163.2 kbps

VPN Group Address  : 228.1.0.0          VPN Source Address : 11.2.102.1
State              : RX Joined          Expiry Timer       : 0d 00:02:41

---

PIM Selective provider tunnels

---

Md Source Address : 200.200.200.7  Md Group Address : 230.0.89.73
Number of VPN SGs : 1                Uptime             : 0d 00:00:18
MT IfIndex         : 24604              Egress Fwding Rate : 163.2 kbps

VPN Group Address  : 228.1.0.1          VPN Source Address : 11.2.102.1
State              : RX Joined          Expiry Timer       : 0d 00:02:41

---

PIM Selective provider tunnels

---

Md Source Address : 200.200.200.7  Md Group Address : 230.0.89.74
Number of VPN SGs : 1                Uptime             : 0d 00:00:20
MT IfIndex         : 24605              Egress Fwding Rate : 165.7 kbps

VPN Group Address  : 228.1.0.2          VPN Source Address : 11.2.102.1
State              : RX Joined          Expiry Timer       : 0d 00:02:39

---

PIM Selective provider tunnels

---

Md Source Address : 200.200.200.7  Md Group Address : 230.0.89.75
Number of VPN SGs : 1                Uptime             : 0d 00:00:20
MT IfIndex         : 24606              Egress Fwding Rate : 165.7 kbps

VPN Group Address  : 228.1.0.3          VPN Source Address : 11.2.102.1
State              : RX Joined          Expiry Timer       : 0d 00:02:39

---

*B:node-6#

---

### group

#### Syntax

`group grp-ip-address [source ip-address [type [starstarrp | starg | sg]] [detail] [family]]`

#### Context

show>router>pim

#### Description

This command displays PIM source group database information.

#### Parameters

- **grp-ip-address** — Specifies the IP multicast group address for which this entry contains information.
- **source ip-address** — Specifies the source address for which this entry contains information.
- **type starstarrp** — Specifies that only (*, *, rp) entries be displayed.
**type starg** — Specifies that only (*,G) entries be displayed.

**type sg** — specifies that only (S,G) entries be displayed.

**detail** — Displays detailed group information.

**family** — Displays either IPv4 or IPv6 information.

### Output

**PIM Group Output** — The following table provides PIM Group field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>Displays the IP multicast group address for which this entry contains information.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Displays the source address of the multicast sender. It will be 0 if the type is configured as starg. It will be the address of the Rendezvous Point (RP) if the type is configured as starRP.</td>
</tr>
<tr>
<td>RP Address</td>
<td>Displays the RP address.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the type of entry, (<em>,</em>, rp)/(*,G) or (S,G).</td>
</tr>
<tr>
<td>Spt Bit</td>
<td>Specifies whether to forward on (<em>,</em>, rp)/(*,G) or on (S,G) state. It is updated when the (S,G) data comes on the RPF interface towards the source.</td>
</tr>
<tr>
<td>Incoming Intf</td>
<td>Displays the interface on which the traffic comes in. It can be the RPF interface to the RP (if starg) or the source (if sg).</td>
</tr>
<tr>
<td>Num Oifs</td>
<td>Displays the number of interfaces in the inherited outgoing interface list. An inherited list inherits the state from other types.</td>
</tr>
<tr>
<td>Flags</td>
<td>Displays the different lists that this interface belongs to.</td>
</tr>
<tr>
<td>Keepalive Timer Exp</td>
<td>The keepalive timer is applicable only for (S,G) entries. The (S,G) keepalive timer is updated by data being forwarded using this (S,G) Forwarding state. It is used to keep (S,G) state alive in the absence of explicit (S,G) joins.</td>
</tr>
<tr>
<td>MRIB Next Hop</td>
<td>Displays the next hop address towards the RP.</td>
</tr>
<tr>
<td>MRIB Src Flags</td>
<td>Displays the MRIB information about the source. If the entry is of type starg or starstarrp, it will contain information about the RP for the group.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Displays the time since this source group entry was created.</td>
</tr>
<tr>
<td>Resolved By</td>
<td>Displays the route table used for RPF check.</td>
</tr>
<tr>
<td>Up JP State</td>
<td>Displays the upstream join prune state for this entry on the interface. PIM join prune messages are sent by the downstream routers towards the RPF neighbor.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Up JP Expiry</td>
<td>Displays the minimum amount of time remaining before this entry will be aged out.</td>
</tr>
<tr>
<td>Up JP Rpt</td>
<td>Displays the join prune Rpt state for this entry on the interface. PIM join/prune messages are sent by the downstream routers towards the RPF neighbor. (S,G, rpt) state is a result of receiving (S,G, rpt) message from the downstream router on the RP tree.</td>
</tr>
<tr>
<td>Up JP Rpt Over-ride</td>
<td>Displays the value used to delay triggered Join (S,G, rpt) messages to prevent implosions of triggered messages. If this has a non-zero value, it means that the router was in 'notPruned' state and it saw a prune (S,G, rpt) message being sent to RPF (S,G, rpt). If the router sees a join (S,G, rpt) override message being sent by some other router on the LAN while the timer is still non-zero, it simply cancels the override timer. If it does not see a join (S,G, rpt) message, then on expiry of the override timer, it sends it's own join (S,G, rpt) message to RPF (S,G, rpt). A similar scenario exists when RPF (S,G, rpt) changes to become equal to RPF (*,G).</td>
</tr>
<tr>
<td>Register State</td>
<td>Specifies the register state. The register state is kept at the source DR. When the host starts sending multicast packets and if there are no entries programmed for that group, the source DR sends a register packet to the RP (g). Register state transition happen based on the register stop timer and the response received from the RP.</td>
</tr>
<tr>
<td>Register Stop Exp</td>
<td>Displays the time remaining before the register state might transition to a different state.</td>
</tr>
<tr>
<td>Register from Anycast RP</td>
<td>Displays if the register packet for that group has been received from one of the RP from the anycast-RP set.</td>
</tr>
<tr>
<td>RPF Neighbor</td>
<td>Displays the address of the RPF neighbor.</td>
</tr>
<tr>
<td>Outgoing Intf List</td>
<td>Displays a list of interfaces on which data is forwarded.</td>
</tr>
<tr>
<td>Curr Fwding Rate</td>
<td>Displays the current forwarding rate of the multicast data for this group and source. This forwarding rate is calculated before ingress QoS policing or shaping is applied.</td>
</tr>
<tr>
<td>Forwarded Packets</td>
<td>Displays the number of multicast packets that were forwarded to the interfaces in the outgoing interface list. This packet count is before ingress QoS policing or shaping is applied.</td>
</tr>
<tr>
<td>Discarded Packets</td>
<td>Displays the number of multicast packets that matched this source group entry but were discarded. For (S,G) entries, if the traffic is getting forwarded on the SPT, the packets arriving from the RPT will be discarded.</td>
</tr>
<tr>
<td>Forwarded Octets</td>
<td>Displays the number of octets forwarded.</td>
</tr>
</tbody>
</table>
### Sample Output

A:NYC>show>router>pim# group

```
PIM Groups
Group Address Source Address RP Address Type Spt Incoming Num Bit Intf Oifs

224.24.24.24 * 2.22.187.240 <*,G> nyc-sjc 1
239.255.255.250 * 2.22.187.240 <*,G> nyc-sjc 1

Groups : 2
```

A:NYC>show>router>pim#

A:NYC>show>router>pim# group 239.255.255.250

```
PIM Groups
Group Address Source Address RP Address Type Spt Incoming Num Bit Intf Oifs

239.255.255.250 * 2.22.187.240 <*,G> nyc-sjc 1

Groups : 1
```

A:NYC>show>router>pim#

A:NYC>show>router>pim# group 239.255.255.250 detail

```
PIM Source Group
Group Address : 239.255.255.250 Source Address : 16.1.1.2
RP Address : 100.100.100.1 Type : (S,G)
Flags : spt, rpt-prn-des Keepalive Timer Exp: 0d 00:03:07
MRIB Next Hop : 16.1.1.2 MRIB Src Flags : direct
Up Time : 0d 00:00:50 Resolved By : rtable-u
Up JP State : Joined Up JP Expiry : 0d 00:00:00
Up JP Rpt : Pruned Up JP Rpt Override : 0d 00:00:00
Register State : Pruned Register Stop Exp : 0d 00:00:47
Reg From Anycast RP: No
RPF Neighbor : 16.1.1.2
Incoming Intf : SOURCE-3
```

### IGMP Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPF Mismatches</td>
<td>Displays the number of multicast packets that matched this source group entry but they did not arrive on the interface.</td>
</tr>
<tr>
<td>Spt threshold</td>
<td>Displays the value of the SPT threshold configured for that group. 0 Kbps means that the switch to the SP tree will happen immediately.</td>
</tr>
</tbody>
</table>
Outgoing Intf List : To-Dut-A

Curr Fwding Rate : 482.9 kbps
Forwarded Packets : 1262 Discarded Packets : 0
Forwarded Octets : 1269572 RPF Mismatches : 0
Spt threshold : 0 kbps

A:NYC>show>router>pim#

B:Dut-C# show router pim group 225.0.0.1 type sg detail

PIM Source Group ipv4

Group Address : 225.0.0.1
Source Address : 11.11.0.1
RP Address : 10.20.1.3
Flags : rpt-prn-des Type : (S,G)
MRIB Next Hop : 11.11.0.1
MRIB Src Flags : direct Keepalive Timer : Not Running
Up Time : 0d 00:04:17 Resolved By : rtable-u
Up JP State : Joined Up JP Expiry : 0d 00:00:00
Up JP Rpt : Pruned Up JP Rpt Override : 0d 00:00:00
Register State : No Info
Reg From Anycast RP : No
Rpf Neighbor : 11.11.0.1
Incoming Intf : svc_itf
Outgoing Host List : 112.112.1.1

Curr Fwding Rate : 0.0 kbps
Forwarded Packets : 0 Discarded Packets : 0
Forwarded Octets : 0 RPF Mismatches : 0
Spt threshold : 0 kbps ECMP opt threshold : 7
Admin bandwidth : 1 kbps Preference : 0

PIM Source Group ipv4

Group Address : 225.0.0.1
Source Address : 11.11.0.2
RP Address : 10.20.1.3
Flags : Type : (S,G)
MRIB Next Hop : 11.11.0.2
MRIB Src Flags : direct Keepalive Timer : Not Running
Up Time : 0d 00:04:18 Resolved By : rtable-u
Up JP State : Joined Up JP Expiry : 0d 00:00:00
Up JP Rpt : Not Pruned Up JP Rpt Override : 0d 00:00:00
Register State : No Info
Reg From Anycast RP : No
Rpf Neighbor : 11.11.0.2
Incoming Intf : svc_itf
Outgoing Host List : 112.112.1.1, 112.112.1.2
**IGMP Commands**

```
Curr Fwding Rate : 0.0 kbps
Forwarded Packets : 0 Discarded Packets : 0
Forwarded Octets : 0 RPF Mismatches : 0
Spt threshold : 0 kbps ECMP opt threshold : 7
Admin bandwidth : 1 kbps Preference : 0

Groups : 2

*A:Dut-A# show router pim group detail

PIM Source Group ipv4

Group Address : 224.1.1.1
Source Address : 3.1.1.21
RP Address : 10.20.1.4
Advt Rooter : 10.20.1.3
Flags :
MRIB Next Hop : 10.10.2.3
MRIB Src Flags :
keepalive Timer :
Up Time : 0d 00:01:22
Resolved By :
Up JP State : Joined
Up JP Expiry : 0d 00:00:00
Up JP Rpt : Pruned
Up JP Rpt Override : 0d 00:00:00
Up Stdby JP State : Joined
Up Stdby JP Expiry : 0d 00:00:12
Register State : No Info
Reg From Anycast RP :
Rpf Neighbor :
Stdby Rpf Neighbor :
Incoming Intf : ip-10.10.2.1
Stdby Intf : ip-10.10.1.1
Outgoing Host List :

A:Dut-A# show router pim group

PIM Group ipv4

Group Address Type Spt Bit Inc Intf no.0ifs
Source Address RP Inc Intf(S)
--
224.1.1.1 (S,G) ip-10.10.2.1 1
3.1.1.2 10.20.1.4 ip-10.10.1*`
interface

Syntax

interface [ip-int-name | mt-int-name | ip-address] [group grp-ip-address | source ip-address [type {starstarrp | starg | sg}] [detail] [family]

Context

show>router>pim

Description

This command displays PIM interface information and the (S,G)/(*,G)/(*, *, rp) state of the interface.

Parameters

ip-int-name — Only displays the interface information associated with the specified IP interface name.

ip-address — Only displays the interface information associated with the specified IP address.

group grp-ip-address — Specifies the IP multicast group address for which this entry contains information.

source ip-address — Specifies the source address for which this entry contains information.

If the type is starg, the value of this object will be zero.

If the type is starstarrp, the value of this object will be address of the RP.

type — Specifies the type of this entry.

Values starstarrp, starg, sg

detail — Displays detailed interface information.

family — Displays IPv4 or IPv6 information for the interface.

Output

PIM Interface Output — The following table provides PIM interface field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>Displays the administrative state for PIM protocol on this interface.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the current operational state of PIM protocol on this interface.</td>
</tr>
<tr>
<td>DR</td>
<td>Displays the designated router on this PIM interface.</td>
</tr>
<tr>
<td>DR Priority</td>
<td>Displays the priority value sent in PIM Hello messages and that is used by routers to elect the designated router (DR).</td>
</tr>
<tr>
<td>Hello Intvl</td>
<td>Indicates the frequency at which PIM Hello messages are transmitted on this interface.</td>
</tr>
</tbody>
</table>

Sample Output

ALA-1# show router pim interface

PIM Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin State</th>
<th>Oper State</th>
<th>DR State</th>
<th>DR Priority</th>
<th>Hello Intvl</th>
</tr>
</thead>
</table>
IGMP Commands

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin State</th>
<th>Oper State</th>
<th>DR IP Address</th>
<th>Priority</th>
<th>Hello Intvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10.1.7.1</td>
<td>Up</td>
<td>Up</td>
<td>10.1.7.7</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>ip-10.1.2.1</td>
<td>Up</td>
<td>Up</td>
<td>10.1.2.2</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>ip-100.111.1.1</td>
<td>Up</td>
<td>Up</td>
<td>100.111.1.1</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Interfaces : 4

ALA-1# show router pim interface ip-10.1.2.1 detail

PIM Interface ip-10.1.2.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin State</th>
<th>Oper State</th>
<th>DR IP Address</th>
<th>Priority</th>
<th>Hello Intvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10.1.2.1</td>
<td>Up</td>
<td>Up</td>
<td>10.1.2.2</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Group Address: 228.101.0.5
Src Address: 100.111.1.2
Interface: ip-10.1.2.1
Type: <S,G>
RP Address: 200.200.200.4

Join Prune State: Join
Expires: 0d 00:03:00
Prune Pend Expires: N/A
Assert State: No Info

ALA-1# show router pim interface group

PIM Interface ip-10.1.7.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin State</th>
<th>Oper State</th>
<th>DR IP Address</th>
<th>Priority</th>
<th>Hello Intvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10.1.7.1</td>
<td>Up</td>
<td>Up</td>
<td>10.1.7.7</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Group Address: 228.101.0.0
Source Address: 100.111.1.2
RP Address: 200.200.200.4
Type: <S,G>
Join: No Info
Assert: No Info
<table>
<thead>
<tr>
<th>State</th>
<th>State</th>
<th>Priority</th>
<th>Intvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10.1.2.1</td>
<td>Up</td>
<td>Up</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>RP Address</th>
<th>Type</th>
<th>JP</th>
<th>Assert</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.101.0.5</td>
<td>100.111.1.2</td>
<td>200.200.200.4</td>
<td><S,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
</tbody>
</table>

PIM Interface ip-100.111.1.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>DR</th>
<th>DR</th>
<th>Hello</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-100.111.1.1</td>
<td>Up</td>
<td>Up</td>
<td>100.111.1.1</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>RP Address</th>
<th>Type</th>
<th>JP</th>
<th>Assert</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.102.0.0</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.1</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.2</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.3</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.4</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.5</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.6</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.7</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.8</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.9</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
</tbody>
</table>

Interfaces : 3

ALA-1#

```
ALA-1# show router pim interface group 228.102.0.0 detail
```

PIM Interface ip-100.111.1.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>DR</th>
<th>DR</th>
<th>Hello</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-100.111.1.1</td>
<td>Up</td>
<td>Up</td>
<td>100.111.1.1</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

PIM Group Source

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Src Address</th>
<th>Interface</th>
<th>Type</th>
<th>RP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.102.0.0</td>
<td>*</td>
<td>ip-100.111.1.1</td>
<td><*,G></td>
<td>200.200.200.4</td>
</tr>
</tbody>
</table>

Join Prune State : Join Expires : 0d 00:02:05
Prune Pend Expires : N/A
Assert State : No Info
Interfaces : 1

ALA-1#

```
ALA-1# show router pim interface type starg
```
PIM Interface ip-100.111.1.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin State</th>
<th>Oper State</th>
<th>DR</th>
<th>DR Priority</th>
<th>Hello Intvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-100.111.1.1</td>
<td>Up</td>
<td>Up</td>
<td>100.111.1.1</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>RP Address</th>
<th>Type</th>
<th>JP</th>
<th>Assert</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.102.0.0</td>
<td></td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.1</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.2</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.3</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.4</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.5</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.6</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.7</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.8</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
<tr>
<td>228.102.0.9</td>
<td>*</td>
<td>200.200.200.4</td>
<td><*,G></td>
<td>Join</td>
<td>No Info</td>
</tr>
</tbody>
</table>

Interfaces : 1

A:SetupCLI# show router pim interface detail

PIM Interface int1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>DR</th>
<th>BSM RA Check</th>
<th>Hello Interval</th>
<th>Multicast Senders</th>
<th>J/P Tracking Admin</th>
<th>Auto-created</th>
<th>Sticky-DR</th>
<th>Max Groups Allowed</th>
<th>Num Groups</th>
<th>Bfd Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>Up</td>
<td>10.1.1.1</td>
<td>Disabled</td>
<td>30</td>
<td>auto</td>
<td>Disabled</td>
<td>No</td>
<td>Disabled</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

PIM Interface sender

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>DR</th>
<th>BSM RA Check</th>
<th>Hello Interval</th>
<th>Multicast Senders</th>
<th>J/P Tracking Admin</th>
<th>Auto-created</th>
<th>Sticky-DR</th>
<th>Max Groups Allowed</th>
<th>Num Groups</th>
<th>Bfd Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>Up</td>
<td>11.1.1.1</td>
<td>Disabled</td>
<td>30</td>
<td>auto</td>
<td>Disabled</td>
<td>No</td>
<td>Disabled</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>
neighbor

Syntax neighbor [ip-address | ip-int-name [address ip-address]] [detail] [family]

Context show>router>pim

Description This command displays PIM neighbor information.

This can be important if an interface has more than one adjacency. For example, a LAN-interface configuration with three routers connected and all are running PIM on their LAN interfaces. These routers then have two adjacencies on their LAN interface, each with different neighbors. If the address address parameter is not defined in this example, then the show command output would display two adjacencies.

Parameters

neighbor ip-int-name — Only displays the interface information associated with the specified IP interface name.

neighbor ip-address — Only displays the interface information associated with the specified IP address.

address ip-address — The ip-address of the neighbor, on the other side of the interface.

detail — Displays detailed neighbor information.

family — Displays either IPv4 or IPv6 information for the specified neighbor.

Output PIM Neighbor Output — The following table provides PIM neighbor field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Displays the neighbor’s interface name.</td>
</tr>
<tr>
<td>Nbr DR Priority</td>
<td>Displays the value of the neighbor's DR priority which is received in the hello message.</td>
</tr>
<tr>
<td>Nbr Address</td>
<td>Displays the neighbor’s address.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Displays the time since this PIM neighbor (last) became a neighbor of the local router.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>Displays the minimum time remaining before this PIM neighbor will be aged out.</td>
</tr>
<tr>
<td></td>
<td>0 — Means that this neighbor will never be aged out. This happens when the PIM neighbor sends a Hello message with holdtime set to '0xffff'.</td>
</tr>
<tr>
<td>Hold Time</td>
<td>Displays the value of the hold time present in the hello message.</td>
</tr>
<tr>
<td>DR Priority</td>
<td>Displays the value of the neighbor's DR priority which is received in the hello message.</td>
</tr>
<tr>
<td>Tracking Support</td>
<td>Displays whether the T bit in the LAN prune delay option was present in the hello message. This indicates the neighbor's capability to disable join message suppression.</td>
</tr>
<tr>
<td>LAN Delay</td>
<td>Displays the value of the LAN delay field present in the hello message received from the neighbor.</td>
</tr>
</tbody>
</table>
IGMP Commands

Sample Output

ALA-1# show router pim neighbor

===
PIM Neighbors
===
<table>
<thead>
<tr>
<th>Interface</th>
<th>Nbr DR</th>
<th>Nbr Address</th>
<th>Up Time</th>
<th>Expiry Time</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10.1.7.1</td>
<td>5</td>
<td>10.1.7.7</td>
<td>0d 00:10:39</td>
<td>0d 00:01:36</td>
<td>105</td>
</tr>
<tr>
<td>ip-10.1.2.1</td>
<td>5</td>
<td>10.1.2.2</td>
<td>0d 00:10:39</td>
<td>0d 00:01:35</td>
<td>105</td>
</tr>
<tr>
<td>ip-100.111.1.1</td>
<td>3</td>
<td>100.111.1.2</td>
<td>0d 00:09:31</td>
<td>0d 00:01:15</td>
<td>105</td>
</tr>
</tbody>
</table>

Neighbors : 3

===

ALA-1#

ALA-1# show router pim neighbor detail

===
PIM Neighbor
===
<table>
<thead>
<tr>
<th>Interface</th>
<th>Neighbor Addr</th>
<th>DR Priority</th>
<th>LAN Delay(ms)</th>
<th>Gen Id</th>
<th>Override Intvl(ms)</th>
<th>Up Time</th>
<th>Expiry Time</th>
<th>Hold Time(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-10.1.7.1</td>
<td>10.1.7.7</td>
<td>5</td>
<td>500</td>
<td>26470</td>
<td>2500</td>
<td>0d 00:10:41</td>
<td>0d 00:01:34</td>
<td>105</td>
</tr>
<tr>
<td>ip-10.1.2.1</td>
<td>10.1.2.2</td>
<td>5</td>
<td>500</td>
<td>37928</td>
<td>2500</td>
<td>0d 00:10:42</td>
<td>0d 00:01:33</td>
<td>105</td>
</tr>
</tbody>
</table>

===

Gen Id
 Displays a randomly generated 32-bit value that is regenerated each
time PIM forwarding is started or restarted on the interface, including
when the router itself restarts. When a hello message with a new
GenID is received from a neighbor, any old hello information about
that neighbor is discarded and superseded by the information from the
new hello message.

Override Intvl
 Displays the value of the override interval present in the Hello mes-

Page 192 7950 SR OS Routing Protocols Guide
Multicast

Interface: ip-100.111.1.1
Neighbor Addr: 100.111.1.2 DR Priority: 3
Tracking Support: No LAN Delay (ms): 500
Gen Id: 742098371 Override Intvl (ms): 2500
Up Time: 0d 00:09:33 Expiry Time: 0d 00:01:43
Hold Time (sec): 105

Neighbors: 3

rp

Syntax: rp ip-address
Context: show>router>pim
Description: This command displays the rendezvous point (RP) set information built by the router.
Parameters: ip-address — Specifies the IP address of the RP.
Output: PIM Neighbor Output — The following table provides PIM neighbor field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>Displays the multicast group address of the entry.</td>
</tr>
<tr>
<td>RP Address</td>
<td>Displays the address of the Rendezvous Point (RP).</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies whether the entry was learned through the Bootstrap mechanism or if it was statically configured.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the priority for the specified group address. The higher the value, the higher the priority.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Displays the value of the hold time present in the BSM message.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show router pim rp

PIM RP Set

+-------------+-------------+--------+-------+--------+
<table>
<thead>
<tr>
<th>Group Address</th>
<th>RP Address</th>
<th>Type</th>
<th>Priority</th>
<th>Holdtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.0/4</td>
<td>200.200.200.4</td>
<td>Dynamic</td>
<td>192</td>
<td>150</td>
</tr>
<tr>
<td>10.1.7.1</td>
<td>Static</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>

Group Prefixes: 1

A:ALA-1#

A:ALA-1# show router pim rp 10.1.7.1

7950 SR OS Routing Protocols Guide Page 193
IGMP Commands

PIM RP Set

<table>
<thead>
<tr>
<th>Group Address</th>
<th>RP Address</th>
<th>Type</th>
<th>Priority</th>
<th>Holdtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.0/4</td>
<td>10.1.7.1</td>
<td>Static</td>
<td>1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Group Prefixes: 1

rp-hash

Syntax

rp-hash grp-ip-address

Context

show>router>pim

Description

This command hashes the RP for the specified group from the RP set.

Parameters

grp-ip-address — Displays specific multicast group addresses.

Output

PIM RP-Hash Output — The following table provides RP-Hash output field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>Displays the multicast group address of the entry.</td>
</tr>
<tr>
<td>RP Address</td>
<td>Displays the address of the Rendezvous Point (RP).</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies whether the entry was learned through the Bootstrap mechanism or if it was statically configured.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show router pim rp-hash 228.101.0.0

PIM Group-To-RP mapping

<table>
<thead>
<tr>
<th>Group Address</th>
<th>RP Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.101.0.0</td>
<td>200.200.200.4</td>
<td>Bootstrap</td>
</tr>
</tbody>
</table>

A:ALA-1#

A:ALA-1# show router pim rp-hash 228.101.0.6

PIM Group-To-RP mapping

<table>
<thead>
<tr>
<th>Group Address</th>
<th>RP Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.101.0.6</td>
<td>200.200.200.4</td>
<td>Bootstrap</td>
</tr>
</tbody>
</table>

A:ALA-1#
 statistics

 Syntax statistics [ip-int-name | mt-int-name | ip-address] [family]
 Context show>router>pim
 Description This command displays statistics for a particular PIM instance.
 Parameters ip-int-name — Only displays the interface information associated with the specified IP interface name.
 ip-address — Only displays the interface information associated with the specified IP address.
 family — Displays either IPv4 or IPv6 information.
 Output PIM Statistics Output — The following table provides PIM statistics output field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Statistics</td>
<td>The section listing the PIM statistics for a particular interface.</td>
</tr>
<tr>
<td>Message Type</td>
<td>Displays the type of message.</td>
</tr>
<tr>
<td>Hello</td>
<td>Displays the number of PIM hello messages received or transmitted on this interface.</td>
</tr>
<tr>
<td>Join Prune</td>
<td>Displays the number of PIM join prune messages received or transmitted on this interface.</td>
</tr>
<tr>
<td>Asserts</td>
<td>Displays the number of PIM assert messages received or transmitted on this interface.</td>
</tr>
<tr>
<td>Register</td>
<td>Displays the number of register messages received or transmitted on this interface.</td>
</tr>
<tr>
<td>Null Register</td>
<td>Displays the number of PIM null register messages received or transmitted on this interface.</td>
</tr>
<tr>
<td>Register Stop</td>
<td>Displays the number of PIM register stop messages received or transmitted on this interface.</td>
</tr>
<tr>
<td>BSM</td>
<td>Displays the number of PIM Bootstrap messages (BSM) received or transmitted on this interface.</td>
</tr>
<tr>
<td>Candidate RP Adv</td>
<td>Displays the number of candidate RP advertisements.</td>
</tr>
<tr>
<td>Total Packets</td>
<td>Displays the total number of packets transmitted and received on this interface.</td>
</tr>
<tr>
<td>Received</td>
<td>Displays the number of messages received on this interface.</td>
</tr>
<tr>
<td>Transmitted</td>
<td>Displays the number of multicast data packets transmitted on this interface.</td>
</tr>
<tr>
<td>Rx Errors</td>
<td>Displays the total number of receive errors.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>General Interface Statistics</td>
<td>The section listing the general PIM interface statistics.</td>
</tr>
<tr>
<td>Register TTL Drop</td>
<td>Displays the number of multicast data packets which could not be encapsulated in Register messages because the time to live (TTL) was zero.</td>
</tr>
<tr>
<td>Tx Register MTU Drop</td>
<td>Displays the number of Bootstrap messages received on this interface but were dropped.</td>
</tr>
<tr>
<td>Rx Invalid Register</td>
<td>Displays the number of invalid PIM register messages received on this interface.</td>
</tr>
<tr>
<td>Rx Neighbor Unknown</td>
<td>Displays the number of PIM messages (other than hello messages) which were received on this interface and were rejected because the adjacency with the neighbor router was not already established.</td>
</tr>
<tr>
<td>Rx Bad Checksum Discard</td>
<td>Displays the number of PIM messages received on this interface which were discarded because of bad checksum.</td>
</tr>
<tr>
<td>Rx Bad Encoding</td>
<td>Displays the number of PIM messages with bad encodings received on this interface.</td>
</tr>
<tr>
<td>Rx Bad Version Discard</td>
<td>Displays the number of PIM messages with bad versions received on this interface.</td>
</tr>
<tr>
<td>Rx CRP No Router Alert</td>
<td>Displays the number of candidate-rp advertisements (C-RP-Adv) received on this interface which had no router alert option set.</td>
</tr>
<tr>
<td>Rx Invalid Join Prune</td>
<td>Displays the number of invalid PIM join prune messages received on this interface.</td>
</tr>
<tr>
<td>Rx Unknown PDU Type</td>
<td>Displays the number of packets received with an unsupported PIM type.</td>
</tr>
<tr>
<td>Join Policy Drops</td>
<td>Displays the number of times the join policy match resulted in dropping PIM join-prune message or one of the source group contained in the message.</td>
</tr>
<tr>
<td>Register Policy Drops</td>
<td>Displays the number of times the register policy match resulted in dropping PIM register message.</td>
</tr>
<tr>
<td>Bootstrap Import Policy Drops</td>
<td>Displays the number of Bootstrap messages received on this interface but were dropped because of Bootstrap import policy.</td>
</tr>
<tr>
<td>Bootstrap Export Policy Drops</td>
<td>Displays the number of Bootstrap messages that were not transmitted on this interface because of Bootstrap export policy.</td>
</tr>
<tr>
<td>Source Group Statistics</td>
<td>The section listing the source group statistics.</td>
</tr>
<tr>
<td>((S,G))</td>
<td>Displays the number of entries in which the type is ((S,G)).</td>
</tr>
</tbody>
</table>
Sample output

A:ALA-1# show router pim statistics

```
A:ALA-1# show router pim statistics

PIM Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Rx Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>198</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Join Prune</td>
<td>96</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>Asserts</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Null Register</td>
<td>0</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>Register Stop</td>
<td>180</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BSM</td>
<td>34</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>Candidate RP Adv</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Packets</td>
<td>546</td>
<td>541</td>
<td></td>
</tr>
</tbody>
</table>

General Interface Statistics

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Register TTL Drop</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx Register MTU Drop</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Invalid Register</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Neighbor Unknown</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Bad Checksum Discard</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Bad Encoding</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Bad Version Discard</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx CRP No Router Alert</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Invalid Join Prune</td>
<td>: 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Unknown PDU Type</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join Policy Drops</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register Policy Drops</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap Import Policy Drops</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap Export Policy Drops</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source Group Statistics

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(S,G)</td>
<td>: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*,G)</td>
<td>: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<em>,</em>,RP)</td>
<td>: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A:ALA-1# show router pim statistics 10.1.7.1

```
PIM Interface 10.1.7.1 Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Rx Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>62</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>Join Prune</td>
<td>36</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Asserts

<table>
<thead>
<tr>
<th></th>
<th>Received</th>
<th>Transmitted</th>
<th>Rx Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asserts</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Null Register</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BSM</td>
<td>33</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Packets

<table>
<thead>
<tr>
<th></th>
<th>Received</th>
<th>Transmitted</th>
<th>Rx Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Packets</td>
<td>134</td>
<td>90</td>
<td>0</td>
</tr>
</tbody>
</table>

General Interface Statistics

- **Register TTL Drop**: 0
- **Tx Register MTU Drop**: 0
- **Rx Invalid Register**: 0
- **Rx Neighbor Unknown**: 0
- **Rx Bad Checksum Discard**: 0
- **Rx Bad Encoding**: 0
- **Rx Bad Version Discard**: 0
- **Rx CRP No Router Alert**: 0
- **Rx Invalid Join Prune**: 0
- **Rx Unknown PDU Type**: 0
- **Join Policy Drops**: 0
- **Register Policy Drops**: 0
- **Bootstrap Import Policy Drops**: 0
- **Bootstrap Export Policy Drops**: 0

Interface Source Group Statistics

- **(S,G)**: 9
- **(*,G)**: 0
- **(*,*,RP)**: 0

A:ALA-1#

PIM Interface ip-10.1.7.1 Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Rx Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>63</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Join Prune</td>
<td>36</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Asserts</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Null Register</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BSM</td>
<td>33</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Packets

<table>
<thead>
<tr>
<th></th>
<th>Received</th>
<th>Transmitted</th>
<th>Rx Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Packets</td>
<td>135</td>
<td>91</td>
<td>0</td>
</tr>
</tbody>
</table>

General Interface Statistics

- **Register TTL Drop**: 0
- **Tx Register MTU Drop**: 0
- **Rx Invalid Register**: 0
- **Rx Neighbor Unknown**: 0
- **Rx Bad Checksum Discard**: 0
- **Rx Bad Encoding**: 0
- **Rx Bad Version Discard**: 0
- **Rx CRP No Router Alert**: 0
- **Rx Invalid Join Prune**: 0
- **Rx Unknown PDU Type**: 0
Join Policy Drops : 0
Register Policy Drops : 0
Bootstrap Import Policy Drops : 0
Bootstrap Export Policy Drops : 0

Interface Source Group Statistics

(S,G) : 9
(*,G) : 0
(*,*,RP) : 0

status

Syntax status [detail] [family]
Context show>router>pim
Description This command displays PIM status. The Oper Status reflects the combined operational status of IPv4/IPv6 PIM protocol status. If both are down, then Oper Status will be reflected as down. If IPv4 or IPv6 reflects up, the Oper Status will reflect up.

If PIM is not enabled, the following message appears:

A:NYC# show router pim status
MINOR: CLI PIM is not configured.
A:NYC#

Parameters detail — Displays detailed status information.
 family — Displays either IPv4 or IPv6 information.

Output PIM Status Output — The following table provides PIM status output field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>Displays the administrative status of PIM.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the current operating state of this PIM protocol instance.</td>
</tr>
<tr>
<td>BSR State</td>
<td>Displays the state of the router with respect to the Bootstrap mechanism.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the address of the elected Bootstrap router.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>Displays the time remaining before the router sends the next Bootstrap message.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the priority of the elected Bootstrap router. The higher the value, the higher the priority.</td>
</tr>
<tr>
<td>Hash Mask Length</td>
<td>Displays the hash mask length of the Bootstrap router.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Displays the time since the current E-BSR became the Bootstrap router.</td>
</tr>
</tbody>
</table>
Sample Output

```
A:dut-d# show router pim status
===============================================================================
PIM Status
===============================================================================
Admin State                      : Up
Oper State                       : Up
BSR State                        : Accept Any
Elected BSR
  Address                      : None
  Expiry Time                 : N/A
  Priority                   : N/A
  Hash Mask Length           : N/A
  Up Time                    : N/A
```

IGMP Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPF Intf towards</td>
<td>Displays the RPF interface towards the elected BSR. The value is zero if there is no elected BSR in the network.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the address of the candidate BSR router.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>Displays the time remaining before the router sends the next Bootstrap message.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the priority of the Bootstrap router. The higher the value, the higher the priority.</td>
</tr>
<tr>
<td>Hash Mask Length</td>
<td>Displays the hash mask length of the candidate Bootstrap router.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Displays the time since becoming the Bootstrap router.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative status of CRP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the current operating state of the C-RP mechanism.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the local RP address.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the CRP's priority for becoming a rendezvous point (RP). A 0 value is the highest priority.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Displays the hold time of the candidate RP. It is used by the Bootstrap router to timeout the RP entries if it does not listen to another CRP advertisement within the holdtime period.</td>
</tr>
<tr>
<td>Policy</td>
<td>Displays the PIM policies for a particular PIM instance.</td>
</tr>
<tr>
<td>Default Group</td>
<td>Displays the default core group address.</td>
</tr>
<tr>
<td>RPF Table</td>
<td>Displays the route table used for RPF check.</td>
</tr>
<tr>
<td>MC-ECMP-Hashing</td>
<td>Displays if hash-based multicast balancing of traffic over ECMP links is enabled or disabled.</td>
</tr>
</tbody>
</table>
Multicast

RPF Intf towards E-BSR: N/A

Candidate BSR
- **Admin State**: Down
- **Oper State**: Down
- **Address**: None
- **Priority**: 0
- **Hash Mask Length**: 30

Candidate RP
- **Admin State**: Down
- **Oper State**: Down
- **Address**: None
- **Priority**: 192
- **Holdtime**: 150

MC-ECMP-Hashing: Enabled

Policy: None

Default Group: 239.1.1.1

RPF Table: rtable-m

mld

Syntax
```
mld
```

Context
```
show>router
```

Description
This command displays MLD related information.

group

Syntax
```
group [grp-ipv6-address]
```

Context
```
show>router>mld
```

Description
This command displays MLD group information.

Parameters
- **grp-ipv6-address** — Specifies the IPv6 group address.

Values

- ipv6-address: x:x:x:x:x:x:x:x (eight 16-bit pieces)
- x:x:x:x:d.d.d.d
- x: [0..FFFF]H
- d: [0..255]D

Output

```
*A:SR7# show router mld group
MLD Groups
```

7950 SR OS Routing Protocols Guide
No Matching Entries

*A:SR7#

*A:SR7# show router mld interface

MLD Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Adm</th>
<th>Oper</th>
<th>Cfg/Opr</th>
<th>Num</th>
<th>Groups</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host4_Srce1_IPv6</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE4D:455B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host1</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE4D:455B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host2</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE51:3728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3_vlan1</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE51:3729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3_vlan2</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE51:3729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3_vlan3</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE51:3729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3_vlan4</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>FE80::216:4DFF:FE51:3729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3_vlan5</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>0</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

*A:SR7# show router mld ssm-translate

MLD SSM Translate Entries

No Matching Entries

*A:SR7#

*A:SR7# show router mld group

MLD Groups

(3FFE:100::2:100,FF05::1:1)
Up Time : 0d 00:00:31
Fwd List : Host1
(3FFE:100::2:100,FF05::1:2)
Up Time : 0d 00:00:31
Fwd List : Host1
(3FFE:100::2:100,FF05::1:3)
Up Time : 0d 00:00:31
Fwd List : Host1
(3FFE:100::2:100,FF05::1:4)
Up Time : 0d 00:00:31
Fwd List : Host1
(3FFE:100::2:100,FF05::1:5)

*A:SR7#
*A:SR7# show router mld group ff05::1:1

MLD Groups

(3FFE:100::2:100,FF05::1:1)

Up Time : 0d 00:00:40
Fwd List : Host1

(*,G)/(S,G) Entries : 1

*A:SR7#

*A:SR7# show router mld group ff05::1

MLD Groups

No Matching Entries

interface

Syntax interface [ip-int-name | ip-address] [group] [grp-ipv6-address] [detail]

Context show>router>mld

Description This command displays MLD interface information.

Parameters ip-int-name|ip-address — Specifies the IP interface name or interface address.

group grp-ipv6-address — Specifies the IPv6 group address.

Values ipv6-address x::x:x:x:x:x:x:x (eight 16-bit pieces)

x::x:x:x::d.d.d
x: [0..FFFF]H

d: [0..255]D

detail — Displays detailed information.

Output

*A:SR7# show router mld interface Host1 detail

MLD Interface Host1

Interface : Host1
Admin Status : Up Oper Status : Up
Querier : FE80::216:4DFF:FED4:4D5B
Querier Up Time : 0d 00:02:18
Querier Expiry Time : N/A Time for next query: 0d 00:15:25
Admin/Oper version : 2/2 Num Groups : 6000
Policy : none
Max Groups Allowed : No Limit Max Groups Till Now: 6000
Query Interval : 0 Query Resp Interval : 0
Last List Qry Interval : 0

MLD Group
<table>
<thead>
<tr>
<th>Group Address</th>
<th>Last Reporter</th>
<th>Interface</th>
<th>Expires</th>
<th>Up Time</th>
<th>V1 Host Timer</th>
<th>Compat Mode</th>
<th>Source</th>
<th>Expires</th>
<th>Type</th>
<th>Fwd/Blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF05::1:1</td>
<td>FE80::1</td>
<td>Host1</td>
<td>N/A</td>
<td>0d 00:00:10</td>
<td>include</td>
<td>dynamic</td>
<td>3FFE:100::2:100</td>
<td>0d 00:34:07</td>
<td>dynamic</td>
<td>Fwd</td>
</tr>
<tr>
<td>FF05::1:2</td>
<td>FE80::1</td>
<td>Host1</td>
<td>N/A</td>
<td>0d 00:00:11</td>
<td>include</td>
<td>dynamic</td>
<td>3FFE:100::2:100</td>
<td>0d 00:34:07</td>
<td>dynamic</td>
<td>Fwd</td>
</tr>
<tr>
<td>FF05::1:3</td>
<td>FE80::1</td>
<td>Host1</td>
<td>N/A</td>
<td>0d 00:00:11</td>
<td>include</td>
<td>dynamic</td>
<td>3FFE:100::2:100</td>
<td>0d 00:34:07</td>
<td>dynamic</td>
<td>Fwd</td>
</tr>
<tr>
<td>FF05::1:4</td>
<td>FE80::1</td>
<td>Host1</td>
<td>N/A</td>
<td>0d 00:00:12</td>
<td>include</td>
<td>dynamic</td>
<td>3FFE:100::2:100</td>
<td>0d 00:34:06</td>
<td>dynamic</td>
<td>Fwd</td>
</tr>
</tbody>
</table>
Multicast

MLD Group

<table>
<thead>
<tr>
<th>Group Address</th>
<th>FF05::1:5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Reporter</td>
<td>FE80::1</td>
</tr>
<tr>
<td>Interface</td>
<td>Host1</td>
</tr>
<tr>
<td>Expire</td>
<td>N/A</td>
</tr>
<tr>
<td>Up Time</td>
<td>0d 00:00:12</td>
</tr>
<tr>
<td>V1 Host Timer</td>
<td>Not running</td>
</tr>
<tr>
<td>Type</td>
<td>dynamic</td>
</tr>
<tr>
<td>Compat Mode</td>
<td>MLD Version 2</td>
</tr>
</tbody>
</table>

Source

<table>
<thead>
<tr>
<th>Expires</th>
<th>Type</th>
<th>Fwd/Blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>3FFE:100::2:100</td>
<td>dynamic</td>
<td>Fwd</td>
</tr>
</tbody>
</table>

ssm-translate

Syntax

ssm-translate

Context

show>router>mld

Description

This command displays the MLD SSM translate configuration.

static

Syntax

static [ip-int-name | ip-address]

Context

show>router>mld

Description

This command displays MLD static group/source configuration.

Parameters

- *ip-int-name* | *ip-address* — iSpecifies the IP interface name or IP address.

Output

*A:SR7# show router mld static

MLD Static Group Source

<table>
<thead>
<tr>
<th>Source</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td></td>
</tr>
</tbody>
</table>

No Matching Entries

*A:SR7#

*A:SR7# show router mld statistics

MLD Interface Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queries</td>
<td>0</td>
<td>640</td>
</tr>
<tr>
<td>Report V1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Report V2 10 0
Dones 0 0

General Interface Statistics

Bad Length : 0
Bad Checksum : 0
Unknown Type : 0
Bad Receive If : 0
Rx Non Local : 0
Rx Wrong Version: 0
Policy Drops : 0
No Router Alert : 0
Rx Bad Encodings: 0
Rx Pkt Drops : 0
Local Scope Pkts: 10
Resvd Scope Pkts: 0

Source Group Statistics

(S,G) : 0
(*,G) : 0

*A:SR7#

statistics

Syntax statistics [ip-int-name | ipv6-address]
Context show>router>mld
Description This command displays MLD statistics.
 ip-int-name|ipv6-address — iSpecifies the IP interface name or IPv6 address.

status

Syntax status
Context show>router>mld
Description This command displays the MLD status.
Output *A:SR7# show router mld status

MLD Status

Admin State : Up
Oper State : Up
Query Interval : 1024
Last Listener Query Interval : 1
Query Response Interval : 10
Robust Count : 2
*A:SR7#

*A:SR7# show router mld interface Host1

MLD Interface Host1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Adm</th>
<th>Oper</th>
<th>Cfg/Opr</th>
<th>Num</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host1</td>
<td>Up</td>
<td>Up</td>
<td>2/2</td>
<td>5082</td>
<td>none</td>
</tr>
<tr>
<td>FE80::216:4DFF:FED4:4DSB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interfaces : 1

*A:SR7#

group

Syntax
group [group-name] [detail]

Context
show>router>msdp

Description
This command displays information about MSDP groups.

Parameters

Parameters

.parameters

.group-name — Displays information about the specified group name. If no group-name is specified, information about all group names display.

detail — Displays detailed MSDP group information.

Output
MSDP Group Output — The following table provides MSDP group field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Name</td>
<td>Displays the MSDP group name.</td>
</tr>
<tr>
<td>Mode</td>
<td>Displays the groups of peers in a full mesh topology to limit excessive flooding of source-active messages to neighboring peers.</td>
</tr>
<tr>
<td>Act Srcs</td>
<td>Displays the configured maximum number of active source messages that will be accepted by MSDP.</td>
</tr>
<tr>
<td>Local Address</td>
<td>Displays the local end of a MSDP session.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative state.</td>
</tr>
<tr>
<td>Receive Msg Rate</td>
<td>Displays rate that the messages are read from the TCP session.</td>
</tr>
<tr>
<td>Receive Msg Time</td>
<td>Displays the time of MSDP messages that are read from the TCP session within the configured number of seconds.</td>
</tr>
<tr>
<td>Receive Msg Thd</td>
<td>Displays the configured threshold number of MSDP messages can be processed before the MSDP message rate limiting function.</td>
</tr>
<tr>
<td>SA Limit</td>
<td>Displays the source-active limit.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-48>show>router>msdp# group
MSDP Groups
+--+--+--+--+
<table>
<thead>
<tr>
<th>Group Name</th>
<th>Mode</th>
<th>Act Srcs</th>
<th>Local Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>Mesh-group</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>loop1</td>
<td>Mesh-group</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>loop2</td>
<td>Mesh-group</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>loop3</td>
<td>Mesh-group</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>loop4</td>
<td>Mesh-group</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>loop5</td>
<td>Mesh-group</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Groups : 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A:ALA-48>show>router>msdp#

*A:ALA-48>show>router>msdp# group test
MSDP Groups
+--+--+--+--+
<table>
<thead>
<tr>
<th>Group Name</th>
<th>Mode</th>
<th>Act Srcs</th>
<th>Local Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>Mesh-group</td>
<td>50000</td>
<td>10.10.10.103</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Groups : 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A:ALA-48>show>router>msdp#

*A:ALA-48>show>router>msdp# group test detail
MSDP Groups
+--+--+--+--+
<table>
<thead>
<tr>
<th>Group Name</th>
<th>Mode</th>
<th>Act Srcs</th>
<th>Local Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>Mesh-group</td>
<td></td>
<td>10.10.10.103</td>
</tr>
<tr>
<td>Local Address</td>
<td></td>
<td></td>
<td>10.10.10.103</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receive Msg Time</td>
<td>None</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Mode</td>
<td>Mesh-group</td>
<td></td>
<td>50000</td>
</tr>
<tr>
<td>Export Policy</td>
<td>None Specified / Inherited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import Policy</td>
<td>None Specified / Inherited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Groups : 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A:ALA-48>show>router>msdp#
peer

Syntax peer [ip-address] [group group-name] [detail]

Context show>router>msdp

Description This command displays information about an MSDP peer.

Parameters
ip-address — Displays information about the specified IP address. If no IP address specified, information about all MSDP IP addresses display.

group group-name — Displays information about the specified group name. If no group-name is specified, information about all MSDP peers display.

detail — Displays detailed MSDP peer information.

Output MSDP Peer Output — The following table provides MSDP field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer</td>
<td>Displays the IP address of the peer.</td>
</tr>
<tr>
<td>Local Address</td>
<td>Displays the local IP address.</td>
</tr>
<tr>
<td>State</td>
<td>Displays the current state of the peer.</td>
</tr>
<tr>
<td>Last State</td>
<td>Displays the date and time of the peer’s last state change.</td>
</tr>
<tr>
<td>Change</td>
<td></td>
</tr>
<tr>
<td>SA Learn</td>
<td>The number of SAs learned through a peer.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-48# show router msdp peer

MSDP Peers

<table>
<thead>
<tr>
<th>Peer</th>
<th>Local Address</th>
<th>State</th>
<th>Last State Change</th>
<th>SA Learnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.1.1</td>
<td>10.20.1.6</td>
<td>Established</td>
<td>08/30/2002 03:22:13</td>
<td>1008</td>
</tr>
</tbody>
</table>

Peers : 1

A:ALA-48#

A:ALA-48# show router msdp peer detail

MSDP Peers

<table>
<thead>
<tr>
<th>Peer Address</th>
<th>Group Name</th>
<th>Local Address</th>
<th>Last State Change</th>
<th>Last Act Src Limit</th>
<th>Peer Admin State</th>
<th>Default Peer</th>
<th>Peer Connect Retry</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.1.1</td>
<td>None</td>
<td>10.20.1.6</td>
<td>08/30/2002 03:22:13</td>
<td>N/A</td>
<td>Up</td>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>

State : Established
SA accepted : 1008 SA received : 709
State timer expires: 18 Peer time out : 62
Active Source Limit: None Receive Msg Rate : 0
Receive Msg Time : 0 Receive Msg Thd : 0
Auth Status : Disabled Auth Key : None
Export Policy : None Specified / Inherited
Import Policy : None Specified / Inherited

Peers : 1

A:ALA-48#

source

Syntax
source [ip-address/mask] [type {configured | dynamic | both}] [detail]

Context
show>router>msdp

Description
This command displays the discovery method for this multicast source.

Parameters

configured — Displays user-created sources.

dynamic — Displays dynamically created sources.

both — Displays both user-configured and dynamically created sources.

detail — Displays detailed MSDP source information.

Output
MSDP Source Output — The following table provides MSDP source field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Displays the IP address of the peer.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the type of peer.</td>
</tr>
<tr>
<td>SA limit</td>
<td>Displays the local IP address.</td>
</tr>
<tr>
<td>State</td>
<td>Displays the current state of the peer.</td>
</tr>
<tr>
<td>Num excd</td>
<td>Indicates the number of times the global active source limit has been exceeded.</td>
</tr>
<tr>
<td>Last exceeded</td>
<td>Displays the date and time of the peer’s last state change.</td>
</tr>
</tbody>
</table>

source-active

Syntax
source-active [group ip-address | local | originator ip-address | peer ip-address | source ip-address] [group ip-address source ip-address] [detail]

Context
show>router>msdp

Description
This command displays source active messages accepted by MSDP.
Parameters

- **group ip-address** — Displays information about the specified group IP address.
- **local** — Displays information about local source-active messages.
- **originator ip-address** — Displays information about the specified originator IP address.
- **peer ip-address** — Displays information about the specified peer IP address.
- **source ip-address** — Displays information about the specified source IP address.
- **group ip-address** — Displays information about the specified group IP address.
- **detail** Displays detailed MSDP source-active information.

Output

MSDP Source-Active Output — The following table provides MSDP source-active field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp Address</td>
<td>Displays the IP address of the group.</td>
</tr>
<tr>
<td>Src Address</td>
<td>Displays the IP address of the source.</td>
</tr>
<tr>
<td>Origin RP</td>
<td>Displays the origination rendezvous point (RP) address.</td>
</tr>
<tr>
<td>Peer Address</td>
<td>Displays the address of the peer.</td>
</tr>
<tr>
<td>State Timer</td>
<td>The time-out value. If the value reaches zero, the SA is removed.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-48# show router msdp source-active
MSDP Source Active Info
Grp Address    Src Address    Origin RP    Peer Address    State Timer
228.100.0.0    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.1    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.2    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.3    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.4    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.5    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.6    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.7    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.8    100.112.1.2    10.20.1.1     10.20.1.1     69
228.100.0.9    100.112.1.2    10.20.1.1     10.20.1.1     69
MSDP Source Active: 10
A:ALA-48#

A:ALA-48# show router msdp source-active detail
MSDP Source Active
Group Address: 228.100.0.0  Source Address: 100.112.1.2
Origin RP: 10.20.1.1  Peer Address: 10.20.1.1
State Timer: 64  Up Time: 3d 01:44:25
```
source-active-rejected

Syntax

```
source-active-rejected [peer-group name] [group ip-address] [source ip-address] [originator ip-address] [peer ip-address]
```

Context

```
show>router>msdp
```

Description

This command displays source active messages rejected by MSDP.

Parameters

- `group ip-address` — Displays information about the peer group name of the Source Active entry that is rejected.
- `local` — Displays information about local source-active messages.
- `originator ip-address` — Displays information about the specified originator IP address.
- `peer ip-address` — Displays information about the peer from which this rejected source active entry was last received.
- `source ip-address` — Displays information about the source address of the source active entry that is rejected.
- `group ip-address` — Displays information about the specified group IP address.

Group Address: 228.100.0.1
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.2
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.3
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.4
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.5
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.6
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.7
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.8
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

Group Address: 228.100.0.9
Source Address: 100.112.1.2
Origin RP: 10.20.1.1
State Timer: 64
Up Time: 48d 18:22:29
Peer Address: 10.20.1.1

MSDP Source Active: 10

A:ALA-48#
MSDP Source-Active Output — The following table provides MSDP source-active field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp Address</td>
<td>Displays the IP address of the group.</td>
</tr>
<tr>
<td>Src Address</td>
<td>Displays the IP address of the source.</td>
</tr>
<tr>
<td>Origin RP</td>
<td>Displays the origination rendezvous point (RP) address.</td>
</tr>
<tr>
<td>Peer Address</td>
<td>Displays the address of the peer.</td>
</tr>
<tr>
<td>Reject Reason</td>
<td>Displays the reason why this source active entry is rejected.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALA-48# show router msdp source-active-rejected
===============================================================================
MSDP Source Active Rejected Info
===============================================================================
<table>
<thead>
<tr>
<th>Grp Address</th>
<th>Src Address</th>
<th>Origin RP</th>
<th>Peer Address</th>
<th>Reject Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.100.0.1</td>
<td>110.0.0.1</td>
<td>10.20.0.1</td>
<td>20.0.0.1</td>
<td>Import Policy</td>
</tr>
<tr>
<td>228.100.0.2</td>
<td>110.0.0.2</td>
<td>10.20.0.2</td>
<td>20.0.0.2</td>
<td>Export Policy</td>
</tr>
<tr>
<td>228.100.0.3</td>
<td>110.0.0.3</td>
<td>10.20.0.3</td>
<td>20.0.0.3</td>
<td>RPF Failure</td>
</tr>
<tr>
<td>228.100.0.4</td>
<td>110.0.0.4</td>
<td>10.20.0.4</td>
<td>20.0.0.4</td>
<td>Limit Exceeded</td>
</tr>
<tr>
<td>228.100.0.5</td>
<td>110.0.0.5</td>
<td>10.20.0.5</td>
<td>20.0.0.5</td>
<td>Limit Exceeded</td>
</tr>
<tr>
<td>228.100.0.6</td>
<td>110.0.0.6</td>
<td>10.20.0.6</td>
<td>20.0.0.6</td>
<td>Limit Exceeded</td>
</tr>
<tr>
<td>228.100.0.7</td>
<td>110.0.0.7</td>
<td>10.20.0.7</td>
<td>20.0.0.7</td>
<td>Limit Exceeded</td>
</tr>
</tbody>
</table>
-------------------------------------------------------------------------------
SA Rejected Entries : 7
===============================================================================
*A:ALA-48#`
```

statistics

- **Syntax**: `statistics [peer ip-address]`
- **Context**: `show>router>msdp`
- **Description**: This command displays statistics information related to a MSDP peer.
- **Parameters**: `peer ip-address` — Displays information about the specified peer IP address

MSDP Statistics Output — The following table provides MSDP statistics field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last State Change</td>
<td>Displays the date and time the peer state changed.</td>
</tr>
<tr>
<td>RPF Failures</td>
<td>Displays the number of reverse path forwarding (RPF) failures.</td>
</tr>
<tr>
<td>SA Msgs Sent</td>
<td>Displays the number of source-active messages sent.</td>
</tr>
</tbody>
</table>
IGMP Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA req. Msgs Sent</td>
<td>Displays the number of source-active request messages sent.</td>
</tr>
<tr>
<td>SA res. Msgs Sent</td>
<td>Displays the number of source-active response messages sent.</td>
</tr>
<tr>
<td>KeepAlive Msqs Sent</td>
<td>Displays the number of keepalive messages sent.</td>
</tr>
<tr>
<td>Unknown Msqs Sent</td>
<td>Displays the number of unknown messages received.</td>
</tr>
<tr>
<td>Last message Peer</td>
<td>Displays the time the last message was received from the peer.</td>
</tr>
<tr>
<td>Remote Closes</td>
<td>Displays the number of times the remote peer close.</td>
</tr>
<tr>
<td>SA Msgs Recvd</td>
<td>Displays the number of source-active messages received.</td>
</tr>
<tr>
<td>SA req. Msgs Recvd</td>
<td>Displays the number of source-active request messages received.</td>
</tr>
<tr>
<td>SA res. Msgs Recvd</td>
<td>Displays the number of source-active response messages received.</td>
</tr>
<tr>
<td>KeepAlive Msqs Recd</td>
<td>Displays the number of keepalive messages received.</td>
</tr>
<tr>
<td>Error Msqs Recvd</td>
<td>Displays the number of unknown messages received.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-48# show router msdp statistics
MSDP Statistics
Glo ActSrc Lim Excd: 0
Peer Address : 10.20.1.1
Last State Change : 0d 11:33:16  Last message Peer : 0d 00:00:17
RPF Failures : 0  Remote Closes : 0
SA Msgs Sent : 0  SA Msgs Recvd : 709
SA req. Msgs Sent : 0  SA req. Msgs Recvd : 0
SA res. Msgs Sent : 0  SA res. Msgs Recvd : 0
KeepAlive Msqs Sent: 694  KeepAlive Msqs Recd: 694
Unknown Msqs Sent : 0  Error Msqs Recvd : 0
Peers : 1
```

A:ALA-48#
status

Syntax status

Context show>router>msdp

Description This command displays MSDP status information.

Output MSDP Status Output — The following table provides MSDP status field descriptions.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>Displays the administrative state.</td>
</tr>
<tr>
<td>Local Address</td>
<td>Displays the local IP address.</td>
</tr>
<tr>
<td>Active Src Limit</td>
<td>Displays the active source limit.</td>
</tr>
<tr>
<td>Act Src Lim Excd</td>
<td>Displays the active source limit which has been exceeded.</td>
</tr>
<tr>
<td>Num. Peers</td>
<td>Displays the number of peers.</td>
</tr>
<tr>
<td>Num. Peers Estab</td>
<td>Displays the number of peers established.</td>
</tr>
<tr>
<td>Num. Source Active</td>
<td>Displays the number of active sources.</td>
</tr>
<tr>
<td>Policies</td>
<td>The policy to export source active state from the source active list into MSDP.</td>
</tr>
<tr>
<td>Data Encapsulation</td>
<td>The rendezvous point (RP) using MSDP to encapsulate multicast data received in MSDP register messages inside forwarded MSDP source-active messages - enabled or disabled.</td>
</tr>
<tr>
<td>Rate</td>
<td>The receive message rate.</td>
</tr>
<tr>
<td>Time</td>
<td>The receive message time.</td>
</tr>
<tr>
<td>Threshold</td>
<td>The number of MSDP messages that can be processed before the MSDP message rate limiting function is activated.</td>
</tr>
<tr>
<td>RPF Table</td>
<td>The name of the reverse path forwarding table.</td>
</tr>
<tr>
<td>Last mdsp Enabled</td>
<td>The time the last MDSP was triggered.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-48# show router msdp status
===
MSDP Status
===
Admin State : Up
Local Address : None
Global Statistics : None
Active Src Limit : None
mcac

Syntax: mcac

Context: show>router

Description: This command enables the context to display multicast CAC related information.

policy

Syntax: policy [policy-name [bundle bundle-name] [protocol protocol-name] [interface if-name] [detail]]

Context: show>router>mcac

Description: This command displays MCAC policy information.

Parameters:
- **policy-name** — Specifies an existing multicast CAC (MCAC) policy name.
- **bundle bundle-id** — Specifies an existing multicast bundle name.
- **protocol protocol-name** — Specifies an applicable protocol to display.
- **interface if-name** — Specifies an interface name to display.
- **detail** — Displays detailed information.

Sample Output

*A:ALA-48>show>router>mcac# policy

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>btv_fr</td>
<td>foreign TV offering</td>
</tr>
<tr>
<td>btv_vl</td>
<td>eastern TV offering</td>
</tr>
<tr>
<td>policy1</td>
<td>this is policy1</td>
</tr>
</tbody>
</table>
policy2 this is policy 2

Policies : 4

*A:ALA-48>show>router>mcac#

*A:ALA-48>show>router>mcac# policy btv_fr

Multicast CAC policy

Policy : btv_fr
Description : foreign TV offering
Default Action : discard
Bundle(s) : FOR

*A:ALA-48>show>router>mcac#

statistics

Syntax statistics policy policy-name [bundle bundle-name] [protocol protocol-name] [interface if-name] statistics

Context show>router>mcac

Description This command displays MCAC statistics.

Parameters policy-name — Specifies an existing multicast CAC (MCAC) policy name.
 bundle bundle-id — Displays statistics for the specified existing multicast bundle name.
 protocol protocol-name — Displays statistics for the specified applicable protocol.

 Values igmp, pim, igmpSnpg

interface if-name — Displays statistics for the specified interface name.

detail — Displays detailed information.

mvpn

Syntax mvpn

Context show>router router-instance

Description This command displays Multicast VPN related information. The router instance must be specified.

Sample Output

*A:Dut-C# show router 1 mvpn

MVPN 1 configuration data
IGMP Commands

signaling : Bgp auto-discovery : Enabled
UMH Selection : Highest-Ip intersite-shared : Enabled
vrf-import : N/A vrf-export : N/A
vrf-target : target:1:1 C-Mcast Import RT : target:10.20.1.3:2

ipmsi : pim-asm 224.1.1.1
admin status : Up three-way-hello : N/A
hello-interval : N/A hello-multiplier : 35 * 0.1
tracking support : Disabled Improved Assert : N/A
spmsi : pim-ssm 225.0.0.0/32
join-tlv-packing : N/A
data-delay-interval : 3 seconds
data-threshold : 224.0.0.0/4 --> 1 kbps

--- Tunnel Table ---

tunnel-table

Syntax

```
tunnel-table [ip-address [mask]] [protocol | sdp sdp-id]
tunnel-table [summary]
```

Context

show>router

Description

This command displays tunnel table information.

Parameters

- **protocol** — Specifies the protocol.

 Values

 bgp | ldp | rsvp | sdp

- **sdp-id** — Specifies the SDP ID.

 Values

 1..17407

Output

```
*A:* Dut-C# show router tunnel-table sdp 17407
```

--- Tunnel Table (Router: Base) ---

```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Owner</th>
<th>Encap</th>
<th>TunnelId</th>
<th>Pref</th>
<th>Nexthop</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.68.0/32</td>
<td>sdp</td>
<td>MPLS</td>
<td>17407</td>
<td>5</td>
<td>127.0.68.0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Clear Commands

database

Syntax

```
database [interface ip-int-name|ip-address] group grp-ip-address [source src-ip-address]
database grp-interface interface-name [fwd-service service-id]
database [interface ip-int-name|ip-address] group grp-ip-address source src-ip-address
database host [ip-address]
database interface ip-int-name|ip-address [group grp-ip-address] [source src-ip-address]
```

Context

```
clear>router>igmp
```

Description

This command clears IGMP or PIM database statistics on a specified interface or IP address.

Parameters

- `interface ip-int-name` — Clears the IGMP or PIM database on the specified interface.
- `interface ip-address` — Clears the IGMP or PIM database on the specified IP address.
- `group group-ip-address` — Clears the multicast group address(ipv4/ipv6) or zero in the specified address group.
- `source ip-address` — Clears the IGMP or PIM database from the specified source IP address.

```
database [interface ip-int-name|mt-int-name|int-ip-address] [group grp-ip-address [source ip-address]] [family]
```

Context

```
clear>router>pim
```

Description

This command clears IGMP or PIM database statistics on a specified interface or IP address.

Parameters

- `interface ip-int-name` — Clears the IGMP or PIM database on the specified interface.
- `interface mt-int-name` — Clears the default core group address of the Multicast Distribution Tree (MDT) for the VPRN instance. The Multicast Tunnel (MT) interface for a VPRN is created when this object is set to a valid group address.

Syntax: `vprn-id mt-grp-ip-address` read only

- `interface ip-address` — Clears the IGMP or PIM database on the specified IP address.
- `group group-ip-address` — Clears the multicast group address(ipv4/ipv6) or zero in the specified address group.
- `source ip-address` — Clears the IGMP or PIM database from the specified source IP address.
- `family` — Clears either IPv4 or IPv6 information.
- `mpls-if-name` — Clears the MPLS interface name.
Syntax: mpls-if-index

statistics

Syntax: statistics [interface ip-int-name | ip-address]
Context: clear>router>igmp
Description: This command clears IGMP statistics on a specified interface or IP address.
Parameters: interface ip-int-name — Clears IGMP statistics on the specified interface.
interface ip-address — Clears IGMP statistics on the specified IP address.
interface mt-int-name — Clears the default core group address of the Multicast Distribution Tree (MDT) for the VPRN instance. The Multicast Tunnel (MT) interface for a VPRN is created when this object is set to a valid group address.
Syntax: vprn-id-mt-grp-ip-address

s-pmsi

Syntax: s-pmsi [mdSrcAddr] [mdGrpAddr] [vprnSrcAddr vprnGrpAddr]
Context: clear>router>pim
Description: This command clears PIM selective provider multicast service interface cache.
Parameters: mdSrcAddr — Clears the specified source address used for Multicast Distribution Tree (MDT).
mdGrpAddr — Clears the specified group address used for Multicast Distribution Tree (MDT).
vprnSrcAddr — Clears the specified source address of the multicast sender.
vprnGrpAddr — Clears the specified multicast group address.

statistics

Syntax: statistics [(interface ip-int-name | ip-address | mt-int-name) [(group grp-ip-address [source ip-address])]] [family]]
Context: clear>router>pim
Description: This command clears PIM statistics on a specified interface or IP address.
Parameters: interface ip-int-name — Clears PIM statistics on the specified interface.
interface ip-address — Clears PIM statistics on the specified IP address.
interface mt-int-name — Clears the default core group address of the Multicast Distribution Tree (MDT) for the VPRN instance. The Multicast Tunnel (MT) interface for a VPRN is created when this object is set to a valid group address.

syntax: vprn-id-mt-grp-ip-address

group grp-ip-address — When only the group address is specified and no source is specified, (*,G) statistics are cleared. When the group address is specified along with the source address, then the (S,G) statistics are reset to zero.

source ip-address — When the source address is specified along with the group address, then the (S,G) statistics are reset to zero.

family — Clears either IPv4 or IPv6 information.

version

Syntax

```
version [interface ip-int-name | ip-address]
```

Context

clear>router>igmp

Description

This command clears IGMP statistics on a specified interface or IP address.

Parameters

interface ip-int-name — Clears IGMP or PIM statistics on the specified interface.

interface ip-address — Clears IGMP or PIM statistics on the specified IP address.

mld

Syntax

```
mld
```

Context

clear>router

Description

This command enables the context to to clear and reset Multicast Listener Discovery (MLD) entities.

database

Syntax

```
database [interface ip-int-name|ipv6-address] [group ip-address [source ip-address]]
```

Context

clear>router>mld

Description

This command clears Multicast Listener Discovery (MLD) database parameters.

Parameters

interface ip-int-name — Clears database information for the specified Multicast Listener Discovery (MLD) interface name.

interface ipv6-address — Clears database information for the specified Multicast Listener Discovery (MLD) interface IPv6 address.
IGMP Commands

group ip-address — Clears database information for the specified Multicast Listener Discovery (MLD) group IP address.

source ip-address — Clears database information for the specified Multicast Listener Discovery (MLD) source IP address.

statistics

Syntax

```
statistics [ip-int-name|ipv6-address]
```

Context

clear>router>mld

Description

This command clears Multicast Listener Discovery (MLD) statistics parameters.

Parameters

- **ip-int-name** — Clears statistics for the specified Multicast Listener Discovery (MLD) interface name.
- **ipv6-address** — Clears statistics for the specified Multicast Listener Discovery (MLD) IPv6 address.

version

Syntax

```
version [ip-int-name|ip-address]
```

Context

clear>router>mld

Description

This command clears Multicast Listener Discovery (MLD) version parameters.

Parameters

- **ip-int-name** — Clears version information for the specified Multicast Listener Discovery (MLD) interface name.
- **ip-address** — Clears version information for the specified Multicast Listener Discovery (MLD) IP address.

msdp

Syntax

```
msdp
```

Context

clear>router

Description

This command enables the context to clear and reset Multicast Source Discovery protocol (MSDP) entities and statistics.

cache

Syntax

```
cache [peer ip-address] [group ip-address] [source ip-address] [originrp ip-address]
```

Context

clear>router>msdp

Description

This command clears the MSDP cache.
Parameters

peer ip-address — Clears the cache of the IP address of the peer to which Multicast Source Discovery protocol (MSDP) source-active (SA) requests for groups matching this entry's group range were sent.

group ip-address — Clears the group IP address of the SA entry.

source ip-address — Clears the source IP address of the SA entry.

originrp ip-address — Clears the origin rendezvous point (RP) address type of the SA entry.

statistics

Syntax
statistics [peer ip-address]

Context
clear>router>msdp

Description
peer ip-address — Clears the statistics of the IP address of the peer to which Multicast Source Discovery Protocol (MSDP) source-active (SA) requests for groups matching this entry's group range were sent.

neighbor

Syntax
neighbor [ip-int-name | ip-address] [family]

Context
clear>router>pim

Description
This command clears PIM neighbor data on a specified interface or IP address.

Parameters

- **ip-int-name** — Clears PIM neighbor on the specified interface.
- **ip-address** — Clears PIM neighbor on the specified IP address.
- **family** — Clears either IPv4 or IPv6 information.

igmp-snooping

Syntax
igmp-snooping

Context
clear>service>id

Description
This command enables the context to clear IGMP snooping-related data.

port-db

Syntax
port-db {sap sap-id | sdp sdp-id:vc-id} [group grp-address [source ip-address]]

Context
clear>service>id>igmp-snooping

Description
Clears the information on the IGMP snooping port database.
IGMP Commands

Parameters sap sap-id — Clears IGMP snooping statistics matching the specified SAP ID and optional encapsulation value. The sap-id can be in one of the following formats:

<table>
<thead>
<tr>
<th>Encapsulation type</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>port-id</td>
<td>1/1/3</td>
</tr>
<tr>
<td>dot1q</td>
<td>port-id :qtag1</td>
<td>1/1/3:100</td>
</tr>
<tr>
<td>qinq</td>
<td>port-id :qtag1 .qtag2</td>
<td>1/1/3:100.200</td>
</tr>
</tbody>
</table>

qtag1, qtag2 — The encapsulation value on the specified port ID.

Values 0 — 4094

sdp sdp-id — Clears only IGMP snooping entries associated with the specified mesh SDP or spoke SDP. For a spoke SDP, the VC ID must be specified; for a mesh SDP, the VC ID is optional.

Values 1 — 17407

vc-id — The virtual circuit ID on the SDP ID for which to clear information.

Default For mesh SDPs only, all VC IDs

Values 1 — 4294967295

group grp-address — Clears IGMP snooping statistics matching the specified group address.

source ip-address — Clears IGMP snooping statistics matching one particular source within the multicast group.

querier

Syntax querier

Context clear>service>id>igmp-snooping

Description Clears information on the IGMP snooping queriers for the VPLS service.

statistics

Syntax statistics [sap sap-id | sdp sdp-id:vc-id]

Context clear>service>id>igmp-snooping

Description Clears IGMP snooping statistics for the VPLS service.

Parameters sap sap-id — Displays IGMP snooping statistics for a specific SAP. The sap-id can be in one of the following formats:

<table>
<thead>
<tr>
<th>Encapsulation type</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>port-id</td>
<td>1/1/3</td>
</tr>
<tr>
<td>dot1q</td>
<td>port-id :qtag1</td>
<td>1/1/3:100</td>
</tr>
<tr>
<td>qinq</td>
<td>port-id :qtag1 .qtag2</td>
<td>1/1/3:100.200</td>
</tr>
</tbody>
</table>
qtag1, qtag2 — The encapsulation value on the specified port ID.

Values

0 — 4094

sdp sdp-id — Displays the IGMP snooping statistics for a specific spoke or mesh SDP.

Values

1 — 17407

vc-id — The virtual circuit ID on the SDP ID for which to display information.

Default For mesh SDPs only, all VC IDs

Values

1 — 4294967295

pim-snooping

Syntax pim-snooping

Context clear>service>id

Description This command enables the context to clear PIM snooping information.

database

Syntax database [[sap sap-id] | sdpsdp-id:vc-id] [group grp-ip-address] [source src-ip-address]

Context clear>service>id>pim-snooping

Description This command clears PIM snooping source group database information.

Parameters

sap sap-id — Clears PIM snooping SAP information.

sdp sdp-id — Clears PIM snooping entries associated with the specified SDP. For a spoke SDP, the VC ID must be specified; for a mesh SDP, the VC ID is optional.

Values

1 — 17407

group grp-address — Clears PIM snooping information matching the specified group address.

source ip-address — Clears PIM snooping information matching one particular source within the multicast group.

neighbor

Syntax neighbor [ip-address | sap sap-id | sdpsdp-id:vc-id]

Context clear>service>id>pim-snooping

Description This command clears PIM snooping neighbor information.

Parameters

ip-address — Clears IP address information.
IGMP Commands

sap sap-id — Clears PIM snooping SAP information.

sdp sd-p-id — Clears PIM snooping entries associated with the specified SDP. For a spoke SDP, the VC ID must be specified; for a mesh SDP, the VC ID is optional.

Values

1 — 17407

statistics

Syntax

```
statistics [sap sap-id | sdp sd-p-id:vc-id]
```

Context

clear>service>id>pim-snooping

Description

This command clears PIM snooping statistics for the specified SAP or SDP.

Parameters

sap sap-id — Clears PIM snooping SAP information.

sdp sd-p-id — Clears PIM snooping entries associated with the specified SDP. For a spoke SDP, the VC ID must be specified; for a mesh SDP, the VC ID is optional.

Values

1 — 17407
Debug Commands

Debug IGMP Commands

group-interface

Syntax

[no] group-interface [fwd-service service-id] [ip-int-name]

Context
debug>router>igmp

Description
This command enables debugging for IGMP group-interface.
The no form of the command disables debugging.

host

Syntax

host [ip-address]
host [fwd-service service-id] group-interface ip-int-name
no host [ip-address]
no host [fwd-service service-id] group-interface ip-int-name

Context
debug>router>igmp

Description
This command enables debugging for the IGMP host.
The no form of the command disables debugging.

interface

Syntax

[no] interface [ip-int-name | ip-address]

Context
debug>router>igmp

Description
This command enables debugging for IGMP interfaces.
The no form of the command disables the IGMP interface debugging for the specifies interface name or IP address.

Parameters

ip-int-name — Only displays the information associated with the specified IP interface name.

ip-address — Only displays the information associated with the specified IP address.
Debug IGMP Commands

mcs

Syntax
\[\text{mcs \{ip-int-name\}} \]
no mcs

Context debug>router>igmp

Description This command enables debugging for IGMP multicast servers (MCS).

The no form of the command disables the IGMP interface debugging for the specified interface name.

Parameters
ip-int-name — Only displays the information associated with the specified IP interface name.

misc

Syntax [no] misc

Context debug>router>igmp

Description This command enables debugging for IGMP miscellaneous.

The no form of the command disables the debugging.

Sample Output

A:ALA-CA# debug router 100 igmp misc
*A:ALA-CA# show debug
ddebug
 router "100"
 igmp
 misc
 exit
exit
exit
*A:ALA-CA#

packet

Syntax \[
\text{packet \{query|v1-report|v2-report|v3-report|v2-leave\} \{host \{ip-address\} | \{ip-int-name|ip-address\} \{|no packet \{query|v1-report|v2-report|v3-report|v2-leave\} \{ip-int-name|ip-address\} \}|no packet \{query|v1-report|v2-report|v3-report|v2-leave\} \{host \{ip-address\} | \{ip-int-name|ip-address\}\}\}
\]

no packet \{query|v1-report|v2-report|v3-report|v2-leave\} \{ip-int-name|ip-address\}
no packet \{query|v1-report|v2-report|v3-report|v2-leave\} host ip-address

Context debug>router>igmp

Description This command enables/disables debugging for IGMP packets.

Parameters query — Specifies to log the IGMP group- and source-specific queries transmitted and received on this interface.

v1-report — Specifies to log IGMP V1 reports transmitted and received on this interface.
v2-report — Specifies to log IGMP V2 reports transmitted and received on this interface.

v3-report — Specifies to log IGMP V3 reports transmitted and received on this interface.

v2-leave — Specifies to log the IGMP Leaves transmitted and received on this interface.

ip-int-name — Only displays the information associated with the specified IP interface name.

ip-address — Only displays the information associated with the specified IP address.
Debug PIM Commands

adjacency
Syntax [no] adjacency
Context debug>router>pim
Description This command enables/disables debugging for PIM adjacencies.

all
Syntax all [group grp-ip-address] [source ip-address] [detail]
no all
Context debug>router>pim
Description This command enables/disables debugging for all the PIM modules.
Parameters group grp-ip-address — Debugs information associated with all PIM modules.
 Values IPv4 or IPv6 address
source ip-address — Debugs information associated with all PIM modules.
 Values IPv4 or IPv6 address
detail — Debugs detailed information on all PIM modules.

assert
Syntax assert [group grp-ip-address] [source ip-address] [detail]
no assert
Context debug>router>pim
Description This command enables/disables debugging for PIM assert mechanism.
Parameters group grp-ip-address — Debugs information associated with the PIM assert mechanism.
 Values multicast group address (ipv4/ipv6)
source ip-address — Debugs information associated with the PIM assert mechanism.
 Values source address (ipv4/ipv6)
detail — Debugs detailed information on the PIM assert mechanism.
bsr

Syntax
bsr [detail]
no bsr

Context
debug>router>pim

Description
This command enables debugging for PIM Bootstrap mechanism.
The no form of the command disables debugging.

Parameters
detail — Debugs detailed information on the PIM assert mechanism.

data

Syntax
data [group grp-ip-address] [source ip-address] [detail]
no data

Context
debug>router>pim

Description
This command enables/disables debugging for PIM data exception.

Parameters
group grp-ip-address — Debugs information associated with the specified data exception.
 Values multicast group address (ipv4/ipv6)
source ip-address — Debugs information associated with the specified data exception.
 Values source address (ipv4/ipv6)
detail — Debugs detailed IP data exception information.

db

Syntax
db [group grp-ip-address] [source ip-address] [detail]
no db

Context
debug>router>pim

Description
This command enables/disables debugging for PIM database.

Parameters
group grp-ip-address — Debugs information associated with the specified database.
 Values multicast group address (ipv4/ipv6) or zero
source ip-address — Debugs information associated with the specified database.
 Values source address (ipv4/ipv6)
detail — Debugs detailed IP database information.
interface

Syntax
interface [ip-int-name | mt-int-name | ip-address] [detail]
no interface

Context
debug>router>pim

Description
This command enables/disables debugging for PIM interface.

Parameters
 ip-int-name — Debugs the information associated with the specified IP interface name.

 Values
 IPv4 or IPv6 interface address

 mt-int-address — Debugs the information associated with the specified VPRN ID and group address.

 ip-address — Debugs the information associated with the specified IP address.

 detail — Debugs detailed IP interface information.

jp

Syntax
jp [group grp-ip-address] [source ip-address] [detail]
no jp

Context
debug>router>pim

Description
This command enables/disables debugging for PIM Join-Prune mechanism.

Parameters
 group grp-ip-address — Debugs information associated with the specified Join-Prune mechanism.

 Values
 multicast group address (ipv4/ipv6) or zero

 source ip-address — Debugs information associated with the specified Join-Prune mechanism.

 Values
 source address (ipv4/ipv6)

 detail — Debugs detailed Join-Prune mechanism information.

mrib

Syntax
mrib [group grp-ip-address] [source ip-address] [detail]
no mrib

Context
debug>router>pim

Description
This command enables/disables debugging for PIM MRIB.

Parameters
 group grp-ip-address — Debugs information associated with the specified PIM MRIB.

 Values
 multicast group address (ipv4/ipv6)

 source ip-address — Debugs information associated with the specified PIM MRIB.

 Values
 source address (ipv4/ipv6)
msg

Syntax
```
msg [detail]
no msg
```

Context
```
debug>router>pim
```

Description
This command enables/disables debugging for PIM messaging.

Parameters
- `detail` — Debugs detailed messaging information.

packet

Syntax
```
packet [hello | register | register-stop | jp | bsr | assert | crp] [ip-int-name | ip-address]
no packet
```

Context
```
debug>router>pim
```

Description
This command enables/disables debugging for PIM packets.

Parameters
- `hello | register | register-stop | jp | bsr | assert | crp` — PIM packet types.
- `ip-int-name` — Debugs the information associated with the specified IP interface name.
 - **Values**
 - IPv4 or IPv6 interface address
- `ip-address` — Debugs the information associated with the specified IP address of a particular packet type.

register

Syntax
```
register [group grp-ip-address] [source ip-address] [detail]
no register
```

Context
```
debug>router>pim
```

Description
This command enables/disables debugging for PIM Register mechanism.

Parameters
- `group grp-ip-address` — Debugs information associated with the specified PIM register.
 - **Values**
 - multicast group address (ipv4/ipv6)
- `source ip-address` — Debugs information associated with the specified PIM register.
 - **Values**
 - source address (ipv4/ipv6)
- `detail` — Debugs detailed register information.
Debug PIM Commands

rtm

Syntax: `rtm [detail]`

Context: `debug>router>pim`

Description: This command enables/disables debugging for PIM RTM.

Parameters:
- `detail` — Debugs detailed RTM information.

s-pmsi

Syntax: `s-pmsi [{vpnSrcAddr [vpnGrpAddr]} [mdSrcAddr]] [detail]`

Context: `debug>router>pim`

Description: This command enables debugging for PIM selective provider multicast service interface. The `no` form of the command disables the debugging.

Parameters:
- `vpnSrcAddr` — Specifies the VPN source address.
- `vpnGrpAddr` — Specifies the VPN group address
- `mdSrcAddr` — Specifies the source address of the multicast sender.
- `detail` — Displays detailed information for selective PMSI.

msdp

Syntax: `[no] msdp`

Context: `debug>router`

Description: This command enables debugging for Multicast Source Discovery Protocol (MSDP). The `no` form of the command disables MSDP debugging.

packet

Syntax: `packet [pkt-type] [peer ip-address]`

Context: `debug>router>msdp`

Description: This command enables debugging for Multicast Source Discovery Protocol (MSDP) packets. The `no` form of the command disables MSDP packet debugging.
Multicast

Parameters

- **pkt-type** — Debugs information associated with the specified packet type.

 Values
 keep-alive, source-active, sa-request, sa-response

- **peer ip-address** — Debugs information associated with the specified peer IP address.

pim

Syntax

```
pim [grp-address]
no pim
```

Context

debug>router>msdp

Description

This command enables debugging for Multicast Source Discovery Protocol (MSDP) PIM.

The `no` form of the command disables MSDP PIM debugging.

Parameters

- **grp-address** — Debugs the IP multicast group address for which this entry contains information.

rtm

Syntax

```
rtm [rp-address]
no rtm
```

Context

debug>router>msdp

Description

This command enables debugging for Multicast Source Discovery Protocol (MSDP) route table manager (RTM).

The `no` form of the command disables MSDP RTM debugging.

Parameters

- **rp-address** — Debugs the IP multicast address for which this entry contains information.

sa-db

Syntax

```
sa-db [group grpAddr] [source srcAddr] [rp rpAddr]
no sadb
```

Context

debug>router>msdp

Description

This command enables debugging for Multicast Source Discovery Protocol (MSDP) source-active requests.

The `no` form of the command disables the MSDP source-active database debugging.

Parameters

- **group grpAddr** — Debugs the IP address of the group.
- **source srcAddr** — Debugs the source IP address.
- **rp rpAddr** — Debugs the specified rendezvous point RP address.
Debug PIM Commands
In This Chapter

This chapter provides information about configuring the Open Shortest Path First (OSPF) protocol.

Topics in this chapter include:

- Configuring OSPF on page 238
 - OSPF Areas on page 239
 - Backbone Area on page 239
 - Stub Area on page 240
 - Not-So-Stubby Area on page 241
 - OSPF Super Backbone on page 242
 - Authentication on page 253
 - OSPFv3 Graceful Restart Helper on page 248
 - Virtual Links on page 250
 - Neighbors and Adjacencies on page 251
 - Link-State Advertisements on page 252
 - Metrics on page 252
 - Authentication on page 253
 - IP Subnets on page 254
 - Preconfiguration Recommendations on page 254
- Loop-Free Alternate Shortest Path First (LFA SPF) Policies on page 267
- OSPF Configuration Process Overview on page 276
- Configuration Notes on page 277
Configuring OSPF

OSPF (Open Shortest Path First) is a hierarchical link state protocol. OSPF is an interior gateway protocol (IGP) used within large autonomous systems (ASs). OSPF routers exchange state, cost, and other relevant interface information with neighbors. The information exchange enables all participating routers to establish a network topology map. Each router applies the Dijkstra algorithm to calculate the shortest path to each destination in the network. The resulting OSPF forwarding table is submitted to the routing table manager to calculate the routing table.

When a router is started with OSPF configured, OSPF, along with the routing-protocol data structures, is initialized and waits for indications from lower-layer protocols that its interfaces are functional. Alcatel-Lucent’s implementation of OSPF conforms to OSPF Version 2 specifications presented in RFC 2328, *OSPF Version 2* and OSPF Version 3 specifications presented in RFC 2740, *OSPF for IPv6*. Routers running OSPF can be enabled with minimal configuration. All default and command parameters can be modified.

Changes between OSPF for IPv4 and OSPF3 for IPv6 include the following:

- Addressing semantics have been removed from OSPF packets and the basic link-state advertisements (LSAs). New LSAs have been created to carry IPv6 addresses and prefixes.
- OSPF3 runs on a per-link basis, instead of on a per-IP-subnet basis.
- Flooding scope for LSAs has been generalized.
- Unlike OSPFv2, OSPFv3 authentication relies on IPV6’s authentication header and encapsulating security payload.
- Most packets in OSPF for IPv6 are almost as compact as those in OSPF for IPv4, even with the larger IPv6 addresses.
- Most field and packet-size limitations present in OSPF for IPv4 have been relaxed.
- Option handling has been made more flexible.

Key OSPF features are:

- Backbone areas
- Stub areas
- Not-So-Stubby areas (NSSAs)
- Virtual links
- Authentication
- Route redistribution
- Routing interface parameters
- OSPF-TE extensions (Alcatel-Lucent’s implementation allows MPLS fast reroute)
OSPF Areas

The hierarchical design of OSPF allows a collection of networks to be grouped into a logical area. An area’s topology is concealed from the rest of the AS which significantly reduces OSPF protocol traffic. With the proper network design and area route aggregation, the size of the route-table can be drastically reduced which results in decreased OSPF route calculation time and topological database size.

Routing in the AS takes place on two levels, depending on whether the source and destination of a packet reside in the same area (intra-area routing) or different areas (inter-area routing). In intra-area routing, the packet is routed solely on information obtained within the area; no routing information obtained from outside the area is used.

Routers that belong to more than one area are called area border routers (ABRs). An ABR maintains a separate topological database for each area it is connected to. Every router that belongs to the same area has an identical topological database for that area.

Backbone Area

The OSPF backbone area, area 0.0.0.0, must be contiguous and all other areas must be connected to the backbone area. The backbone distributes routing information between areas. If it is not practical to connect an area to the backbone (see area 0.0.0.5 in Figure 4) then the ABRs (such as routers Y and Z) must be connected via a virtual link. The two ABRs form a point-to-point-like adjacency across the transit area (see area 0.0.0.4).
Stub Area

A stub area is a designated area that does not allow external route advertisements. Routers in a stub area do not maintain external routes. A single default route to an ABR replaces all external routes. This OSPF implementation supports the optional summary route (type-3) advertisement suppression from other areas into a stub area. This feature further reduces topological database sizes and OSPF protocol traffic, memory usage, and CPU route calculation time.

In Figure 4, areas 0.0.0.1, 0.0.0.2 and 0.0.0.5 could be configured as stub areas. A stub area cannot be designated as the transit area of a virtual link and a stub area cannot contain an AS boundary router. An AS boundary router exchanges routing information with routers in other ASs.
Not-So-Stubby Area

Another OSPF area type is called a Not-So-Stubby area (NSSA). NSSAs are similar to stub areas in that no external routes are imported into the area from other OSPF areas. External routes learned by OSPF routers in the NSSA area are advertised as type-7 LSAs within the NSSA area and are translated by ABRs into type-5 external route advertisements for distribution into other areas of the OSPF domain. An NSSA area cannot be designated as the transit area of a virtual link.

In Figure 4, area 0.0.0.3 could be configured as a NSSA area.
OSPF Super Backbone

The 77x0 PE routers have implemented a version of the BGP/OSPF interaction procedures as defined in RFC 4577, *OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)*. Features included in this RFC includes:

- Loop prevention
- Handling LSAs received from the CE
- Sham links
- Managing VPN-IPv4 routes received by BGP

VPRN routes can be distributed among the PE routers by BGP. If the PE uses OSPF to distribute routes to the CE router, the standard procedures governing BGP/OSPF interactions causes routes from one site to be delivered to another in type 5 LSAs, as AS-external routes.

The MPLS VPN super backbone behaves like an additional layer of hierarchy in OSPF. The PE-routers that connect the respective OSPF areas to the super backbone function as OSPF Area Border Routers (ABR) in the OSPF areas to which they are attached. In order to achieve full compatibility, they can also behave as AS Boundary Routers (ASBR) in non-stub areas.

The PE-routers insert inter-area routes from other areas into the area where the CE-router is present. The CE-routers are not involved at any level, nor are they aware of the super backbone or of other OSPF areas present beyond the MPLS VPN super backbone.

The CE always assumes the PE is an ABR:

- If the CE is in the backbone, then the CE router assumes that the PE is an ABR linking one or more areas to the backbone.
- If the CE in not in the backbone, then the CE believes that the backbone is on the other side of the PE.
- As such, the super backbone looks like another area to the CE.
In Figure 5, the PEs are connected to the MPLS-VPN super backbone. In order to be able to distinguish if two OSPF instances are in fact the same and require Type 3 LSAs to be generated, or are two separate routing instances where type 5 external LSAs need to be generated, the concept of a domain-id is introduced.

The domain ID is carried with the MP-BGP update and indicates the source OSPF Domain. When the routes are being redistributed into the same OSPF Domain, the concepts of super backbone described above apply and Type 3 LSAs are generated. If the OSPF domain does not match, then the route type will be external.

Configuring the super backbone (not the sham links) makes all destinations learned by PEs with matching domain IDs inter-area routes.

When configuring sham links, these links become intra-area routes if they are present in the same area.
Sham Links

Figure 6 displays the red link between CE-3 and CE-4 could be a low speed OC-3/STM-1 link but because it establishes an intra-area route connection between the CE-3 and CE-4 the potentially high-speed PE-1 to PE-2 connection will not be utilized. Even with a super backbone configuration it is regarded as an inter-area connection.

The establishment of the (green) sham-link is also constructed as an intra-area link between PE routers, a normal OSPF adjacency is formed and the link-state database is exchanged across the MPLS-VPRN. As a result, the desired intra-area connectivity is created, at this time the cost of the green and red links can be managed such that the red link becomes a standby link only in case the VPN fails.

As the shamlink forms an adjacency over the MPLS-VPRN backbone network, be aware that when protocol-protection is enabled in the `config>sys>security>cpu-protection>protocol-protection` context, the operator must explicitly allow the OSPF packets to be received over the backbone network. This performed using the `allow-sham-links` parameter of the `protocol-protection` command.
Implementing the OSPF Super Backbone

With the OSPF super backbone architecture, the continuity of OSPF routing is preserved:

- The OSPF intra-area LSAs (type-1 and type-2) advertised by the CE are inserted into the MPLS-VPRN super backbone by redistributing the OSPF route into MP-BGP by the PE adjacent to the CE.
- The MP-BGP route is propagated to other PE-routers and inserted as an OSPF route into other OSPF areas. Considering the PEs across the super backbone always act as ABRs they will generate inter area route OSPF summary LSAs, Type 3.
- The inter-area route can now be propagated into other OSPF areas by other customer owned ABRs within the customer site.
- Customer Area 0 (backbone) routes when carried across the MPLS-VPRN using MPBGP will appear as Type 3 LSAs even if the customer area remains area 0 (backbone).

A BGP extended community (OSPF domain ID) provides the source domain of the route. This domain ID is not carried by OSPF but carried by MP-BGP as an extended community attribute.

If the configured extended community value matches the receiving OSPF domain, then the OSPF super backbone is implemented.

From a BGP perspective, the cost is copied into the MED attribute.

Loop Avoidance

If a route sent from a PE router to a CE router could then be received by another PE router from one of its own CE routers then it is possible for routing loops to occur. RFC 4577 specifies several methods of loop avoidance.

DN-BIT

When a Type 3 LSA is sent from a PE router to a CE router, the DN bit in the LSA options field is set. This is used to ensure that if any CE router sends this Type 3 LSA to a PE router, the PE router will not redistribute it further.

When a PE router needs to distribute to a CE router a route that comes from a site outside the latter’s OSPF domain, the PE router presents itself as an ASBR (Autonomous System Border Router), and distributes the route in a type 5 LSA. The DN bit MUST be set in these LSAs to ensure that they will be ignored by any other PE routers that receive them.

DN-BIT loop avoidance is also supported.
Route Tag

If a particular VRF in a PE is associated with an instance of OSPF, then by default it is configured with a special OSPF route tag value called the VPN route tag. This route tag is included in the Type 5 LSAs that the PE originates and sends to any of the attached CEs. The configuration and inclusion of the VPN Route Tag is required for backward compatibility with deployed implementations that do not set the DN bit in Type 5 LSAs.

Sham Links

A sham link is only required if a backdoor link (shown as the red link in Figure 6) is present, otherwise configuring an OSPF super backbone will probably suffice.
OSPFv3 Authentication

OSPFv3 authentication requires IPv6 IPsec and supports the following:

- IPsec transport mode
- AH and ESP
- Manual keyed IPsec Security Association (SA)
- Authentication Algorithms MD5 and SHA1

To pass OSPFv3 authentication, OSPFv3 peers must have matching inbound and outbound SAs configured using the same SA parameters (SPI, keys, etc.). The implementation must allow the use of one SA for both inbound and outbound directions.

This feature is supported on IES and VPRN interfaces as well as on virtual links.

The re-keying procedure defined in RFC 4552, *Authentication/Confidentiality for OSPFv3*, supports the following:

- For every router on the link, create an additional inbound SA for the interface being re-keyed using a new SPI and the new key.
- For every router on the link, replace the original outbound SA with one using the new SPI and key values. The SA replacement operation should be atomic with respect to sending OSPFv3 packet on the link so that no OSPFv3 packets are sent without authentication or encryption.
- For every router on the link, remove the original inbound SA.

The key rollover procedure automatically starts when the operator changes the configuration of the inbound static-sa or bi-directional static-sa under an interface or virtual link. Within the KeyRolloverInterval time period, OSPF3 accepts packets with both the previous inbound static-sa and the new inbound static-sa, and the previous outbound static-sa should continue to be used. When the timer expires, OSPF3 will only accept packets with the new inbound static-sa and for outgoing OSPF3 packets, the new outbound static-sa will be used instead.
OSPFv3 Graceful Restart Helper

This feature extends the Graceful Restart helper function supported under other protocols to OSPFv3.

The primary difference between graceful restart helper for OSPFv2 and OSPFv3 is in OSPFv3 a different grace-LSA format is used.

As the SR-OS platforms can support a fully non-stop routing model for control plane high availability the SR-OS node has no need for graceful restart as defined by the IETF in various RFCs for each routing protocol. However, since the 7x50 does need to co-exist in multi-vendor networks and other routers do not always support a true non-stop routing model with stateful failover between routing control planes, there is a need to support a Graceful Restart Helper function.

Graceful restart helper mode allows the SROS based system to provide other routers which have requested it, a grace period, during which the SR-OS systems will continue to use routes authored by or transiting the router requesting the grace period. This is typically used when another router is rebooting the control plane but the forwarding plane is expected to continue to forward traffic based on the previously available FIB.

Figure 7 displays the Graceful OSPF restart (GRACE) LSA format. See section 2.2 of RFC 5187, OSPFv3 Graceful Restart.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           LS age              |0|0|0|          11             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Link State ID                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Advertising Router                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    LS sequence number                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        LS checksum            |            Length             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             TLVs                             |
|                           ...                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 7: GRACE LSA Format
The Link State ID of a grace-LSA in OSPFv3 is the Interface ID of the interface originating the LSA.

The format of each TLV is:

```
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Type             |             Length            |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            Value...                           |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Grace-LSA TLVs are formatted according to section 2.3.2 of RFC 3630, *Traffic Engineering (TE) Extensions to OSPF Version 2*. The Grace-LSA TLVs are used to carry the Grace period (type 1) and the reason the router initiated the graceful restart process (type 2).

Other information in RFC 5187 is directed to routers that require the full graceful restart mechanism as they do not support a stateful transition from primary or backup control plane module (CPM).
Virtual Links

The backbone area in an OSPF AS must be contiguous and all other areas must be connected to the backbone area. Sometimes, this is not possible. You can use virtual links to connect to the backbone through a non-backbone area.

Figure 4 depicts routers Y and Z as the start and end points of the virtual link while area 0.0.0.4 is the transit area. In order to configure virtual links, the router must be an ABR. Virtual links are identified by the router ID of the other endpoint, another ABR. These two endpoint routers must be attached to a common area, called the transit area. The area through which you configure the virtual link must have full routing information.

Transit areas pass traffic from an area adjacent to the backbone or to another area. The traffic does not originate in, nor is it destined for, the transit area. The transit area cannot be a stub area or a NSSA area.

Virtual links are part of the backbone, and behave as if they were unnumbered point-to-point networks between the two routers. A virtual link uses the intra-area routing of its transit area to forward packets. Virtual links are brought up and down through the building of the shortest-path trees for the transit area.
Neighbors and Adjacencies

A router uses the OSPF Hello protocol to discover neighbors. A neighbor is a router configured with an interface to a common network. The router sends hello packets to a multicast address and receives hello packets in return.

In broadcast networks, a designated router and a backup designated router are elected. The designated router is responsible for sending link-state advertisements (LSAs) describing the network, which reduces the amount of network traffic.

The routers attempt to form adjacencies. An adjacency is a relationship formed between a router and the designated or backup designated router. For point-to-point networks, no designated or backup designated router is elected. An adjacency must be formed with the neighbor.

To significantly improve adjacency forming and network convergence, a network should be configured as point-to-point if only two routers are connected, even if the network is a broadcast media such as Ethernet.

When the link-state databases of two neighbors are synchronized, the routers are considered to be fully adjacent. When adjacencies are established, pairs of adjacent routers synchronize their topological databases. Not every neighboring router forms an adjacency. Routing protocol updates are only sent to and received from adjacencies. Routers that do not become fully adjacent remain in the two-way neighbor state.
Link-State Advertisements

Link-state advertisements (LSAs) describe the state of a router or network, including router interfaces and adjacency states. Each LSA is flooded throughout an area. The collection of LSAs from all routers and networks form the protocol's topological database.

The distribution of topology database updates takes place along adjacencies. A router sends LSAs to advertise its state according to the configured interval and when the router's state changes. These packets include information about the router's adjacencies, which allows detection of non-operational routers.

When a router discovers a routing table change or detects a change in the network, link state information is advertised to other routers to maintain identical routing tables. Router adjacencies are reflected in the contents of its link state advertisements. The relationship between adjacencies and the link states allow the protocol to detect non-operating routers. Link state advertisements flood the area. The flooding mechanism ensures that all routers in an area have the same topological database. The database consists of the collection of LSAs received from each router belonging to the area.

OSPF sends only the part that has changed and only when a change has taken place. From the topological database, each router constructs a tree of shortest paths with itself as root. OSPF distributes routing information between routers belonging to a single AS.

Metrics

In OSPF, all interfaces have a cost value or routing metric used in the OSPF link-state calculation. A metric value is configured based on hop count, bandwidth, or other parameters, to compare different paths through an AS. OSPF uses cost values to determine the best path to a particular destination: the lower the cost value, the more likely the interface will be used to forward data traffic.

Costs are also associated with externally derived routing data, such as those routes learned from the Exterior Gateway Protocol (EGP), like BGP, and is passed transparently throughout the AS. This data is kept separate from the OSPF protocol's link state data. Each external route can be tagged by the advertising router, enabling the passing of additional information between routers on the boundaries of the AS.
Authentication

All OSPF protocol exchanges can be authenticated. This means that only trusted routers can participate in autonomous system routing. Alcatel-Lucent’s implementation of OSPF supports plain text and Message Digest 5 (MD5) authentication (also called simple password).

MD5 allows an authentication key to be configured per network. Routers in the same routing domain must be configured with the same key. When the MD5 hashing algorithm is used for authentication, MD5 is used to verify data integrity by creating a 128-bit message digest from the data input. It is unique to that data. Alcatel-Lucent’s implementation of MD5 allows the migration of an MD5 key by using a key ID for each unique key.

By default, authentication is not enabled on an interface.
IP Subnets

OSPF enables the flexible configuration of IP subnets. Each distributed OSPF route has a destination and mask. A network mask is a 32-bit number that indicates the range of IP addresses residing on a single IP network/subnet. This specification displays network masks as hexadecimal numbers; for example, the network mask for a class C IP network is displayed as 0xffffff00. Such a mask is often displayed as 255.255.255.0.

Two different subnets with the same IP network number have different masks, called variable length subnets. A packet is routed to the longest or most specific match. Host routes are considered to be subnets whose masks are all ones (0xffffffff).

Preconfiguration Recommendations

Prior to configuring OSPF, the router ID must be available. The router ID is a 32-bit number assigned to each router running OSPF. This number uniquely identifies the router within an AS. OSPF routers use the router IDs of the neighbor routers to establish adjacencies. Neighbor IDs are learned when Hello packets are received from the neighbor.

Before configuring OSPF parameters, ensure that the router ID is derived by one of the following methods:

- Define the value in the config>router router-id context.
- Define the system interface in the config>router>interface ip-int-name context (used if the router ID is not specified in the config>router router-id context).

A system interface must have an IP address with a 32-bit subnet mask. The system interface is used as the router identifier by higher-level protocols such as OSPF and IS-IS. The system interface is assigned during the primary router configuration process when the interface is created in the logical IP interface context.

- If you do not specify a router ID, then the last four bytes of the MAC address are used.

NOTE: On the BGP protocol level, a BGP router ID can be defined in the config>router>bgp router-id context and is only used within BGP.
Multiple OSPF Instances

The main route table manager (RTM) can create multiple instances of OSPF by extending the current creation of an instance. A given interface can only be a member of a single OSPF instance. When an interface is configured in a given domain and needs to be moved to another domain, the interface must first be removed from the old instance and re-created in the new instance.

Route Export Policies for OSPF

Route policies allow specification of the source OSPF process ID in the from and to parameters in the config>router>policy-options>policy-statement>entry>from context, for example from protocol ospf instance-id.

If an instance-id is specified, only routes installed by that instance are picked up for announcement. If no instance-id is specified, then only routes installed by the base instance is will be announced. The all keyword announces routes installed by all instances of OSPF.

When announcing internal (intra/inter-area) OSPF routes from another process, the default type should be type-1, and metric set to the route metric in RTM. For AS-external routes, by default the route type (type-1/2) should be preserved in the originated LSA, and metric set to the route metric in RTM. By default, the tag value should be preserved when an external OSPF route is announced by another process. All these can be changed with explicit action statements.

Export policy should allow a match criteria based on the OSPF route hierarchy, e.g. only intra-area, only inter-area, only external, only internal (intra/inter-area). There must also be a possibility to filter based on existing tag values.
Preventing Route Redistribution Loops

The legacy method for this was to assign a tag value to each OSPF process and mark each external route originated within that domain with that value. However, since the tag value must be preserved throughout different OSPF domains, this only catches loops that go back to the originating domain and not where looping occurs in a remote set of domains. To prevent this type of loop, the route propagation information in the LSA must be accumulative. The following method has been implemented:

- The OSPF tag field in the AS-external LSAs is treated as a bit mask, rather than a scalar value. In other words, each bit in the tag value can be independently checked, set or reset as part of the routing policy.
- When a set of OSPF domains are provisioned in a network, each domain is assigned a specific bit value in the 32-bit tag mask. When an external route is originated by an ASBR using an internal OSPF route in a given domain, a corresponding bit is set in the AS-external LSA. As the route gets redistributed from one domain to another, more bits are set in the tag mask, each corresponding to the OSPF domain the route visited. Route redistribution looping is prevented by checking the corresponding bit as part of the export policy--if the bit corresponding to the announcing OSPF process is already set, the route is not exported there.

From the CLI perspective, this involves adding a set of `from tag` and `action tag` commands that allow for bit operations.
Multi-Address Support for OSPFv3

While OSPFv3 was originally designed to carry only IPv6 routing information, the protocol has been extended to add support for other address families through work within the IETF (RFC 5838). These extensions within the SROS allow separate OSPFv3 instances to be used for IPv6 or IPv4 routing information.

To configure an OSPFv3 instance to distribute IPv4 routing information, a specific OSPFv3 instance must be configured using an instance ID within the range specified by the RFC. For unicast IPv4, the range is 64 to 95.

The following shows the basic configuration steps needed to create the OSPFv3 (ospf3) instance to carry IPv4 routing information. Once the instance is created, the OSPFv3 instance can be configured as needed for the associated network areas, interfaces, and other protocol attributes as you would for OSPFv2.

For example,

```plaintext
config
 router
 ospf3 64 10.20.1.3
```
IP Fast-reroute (IP FRR) For OSPF and IS-IS Prefixes

This feature provides for the use of the Loop-Free Alternate (LFA) backup next-hop for forwarding in-transit and CPM generated IP packets when the primary next-hop is not available. This means that a node resumes forwarding IP packets to a destination prefix without waiting for the routing convergence.

When any of the following events occurs, IGP instructs the forwarding engine to enable the LFA backup next-hop:

- OSPF/IS-IS interface goes operationally down: physical or local admin shutdown.
- Timeout of a BFD session to a next-hop when BFD is enabled on the OSPF/IS-IS interface.

IP FRR is supported on IPv4 and IPv6 OSPF/IS-IS prefixes forwarded in the base router instance to a network IP interface or to an IES SAP interface or spoke interface. It is also supported for VPRN VPN-IPv4 OSPF prefixes and VPN-IPv6 OSPF prefixes forwarded to a VPRN SAP interface or spoke interface.

IP FRR also provides a LFA backup next-hop for the destination prefix of a GRE tunnel used in an SDP or in VPRN auto-bind.

The LFA next-hop pre-computation by IGP is described in RFC 5286 – “Basic Specification for IP Fast Reroute: Loop-Free Alternates”.

IP FRR Configuration

The user first enables Loop-Free Alternate (LFA) computation by SPF under the IS-IS routing protocol level or under the OSPF routing protocol instance level:

```
config>router>isis>loopfree-alternate
config>router>ospf>loopfree-alternate
config>service>vprn>ospf>loopfree-alternate
```

The above commands instruct the IGP SPF to attempt to pre-compute both a primary next-hop and an LFA next-hop for every learned prefix. When found, the LFA next-hop is populated into the RTM along with the primary next-hop for the prefix.

Next the user enables IP FRR to cause RTM to download to the forwarding engine a LFA next-hop, when found by SPF, in addition to the primary next-hop for each prefix in the FIB.

```
config>router>ip-fast-reroute
```
Reducing the Scope of the LFA Calculation by SPF

The user can instruct IGP to not include all interfaces participating in a specific IS-IS level or OSPF area in the SPF LFA computation. This provides a way of reducing the LFA SPF calculation where it is not needed.

```
config>router>isis>level>loopfree-alternate-exclude
config>router>ospf>area>loopfree-alternate-exclude
```

The user can also exclude a specific IP interface from being included in the LFA SPF computation by IS-IS or OSPF:

```
config>router>isis>interface>loopfree-alternate-exclude
config>router>ospf>area>interface>loopfree-alternate-exclude
```

Note that when an interface is excluded from the LFA SPF in IS-IS, it is excluded in both level 1 and level 2. When the user excludes an interface from the LFA SPF in OSPF, it is excluded in all areas. However, the above OSPF command can only be executed under the area in which the specified interface is primary and once enabled, the interface is excluded in that area and in all other areas where the interface is secondary. If the user attempts to apply it to an area where the interface is secondary, the command will fail.

Finally, the user can apply the same above commands for an OSPF instance within a VPRN service:

```
config>service>vprn>ospf>area>loopfree-alternate-exclude
config>service>vprn>ospf>area>interface>loopfree-alternate-exclude
```

ECMP Considerations

Whenever the SPF computation determined there is more than one primary next-hop for a prefix, it will not program any LFA next-hop in RTM. Thus, IP prefixes will resolve to the multiple primary next-hops in this case which provides the required protection.
IP FRR and RSVP Shortcut (IGP Shortcut)

When both IGP shortcut and LFA are enabled in IS-IS or OSPF, and IP FRR is also enabled, then the following additional IP FRR are supported:

- A prefix which is resolved to a direct primary next-hop can be backed up by a tunneled LFA next-hop.
- A prefix which is resolved to a tunneled primary next-hop will not have an LFA next-hop. It will rely on RSVP FRR for protection.

The LFA SPF is extended to use IGP shortcuts as LFA next-hops as explained in OSPF and IS-IS Support for Loop-Free Alternate Calculation on page 260.

IP FRR and BGP Next-Hop Resolution

An LFA backup next-hop will be able to protect the primary next-hop to reach a prefix advertised by a BGP neighbor. The BGP next-hop will thus remain up when the FIB switches from the primary IGP next-hop to the LFA IGP next-hop.

OSPF and IS-IS Support for Loop-Free Alternate Calculation

SPF computation in IS-IS and OSPF is enhanced to compute LFA alternate routes for each learned prefix and populate it in RTM.

Figure 8 illustrates a simple network topology with point-to-point (P2P) interfaces and highlights three routes to reach router R5 from router R1.
Figure 8: Example Topology with Primary and LFA Routes

The primary route is via R3. The LFA route via R2 has two equal cost paths to reach R5. The path by way of R3 protects against failure of link R1-R3. This route is computed by R1 by checking that the cost for R2 to reach R5 by way of R3 is lower than the cost by way of routes R1 and R3. This condition is referred to as the “loop-free criterion”.

The path by way of R2 and R4 can be used to protect against the failure of router R3. However, with the link R2-R3 metric set to 5, R2 sees the same cost to forward a packet to R5 by way of R3 and R4. Thus R1 cannot guarantee that enabling the LFA next-hop R2 will protect against R3 node failure. This means that the LFA next-hop R2 provides link-protection only for prefix R5. If the metric of link R2-R3 is changed to 8, then the LFA next-hop R2 provides node protection since a packet to R5 will always go over R4. In other words it is required that R2 becomes loop-free with respect to both the source node R1 and the protected node R3.
Consider now the case where the primary next-hop uses a broadcast interface as illustrated in Figure 9.

![Figure 9: Example Topology with Broadcast Interfaces](image)

In order for next-hop R2 to be a link-protect LFA for route R5 from R1, it must be loop-free with respect to the R1-R3 link Pseudo-Node (PN). However, since R2 has also a link to that PN, its cost to reach R5 by way of the PN, or router R4 are the same. Thus R1 cannot guarantee that enabling the LFA next-hop R2 will protect against a failure impacting link R1-PN since this may cause the entire subnet represented by the PN to go down. If the metric of link R2-PN is changed to 8, then R2 next-hop will be an LFA providing link protection.
The following are the detailed equations for this criterion as provided in RFC 5286, *Basic Specification for IP Fast Reroute: Loop-Free Alternates*:

- **Rule 1**: Link-protect LFA backup next-hop (primary next-hop R1-R3 is a P2P interface):
  \[ \text{Distance}_{\text{opt}}(R2, R5) < \text{Distance}_{\text{opt}}(R2, R1) + \text{Distance}_{\text{opt}}(R1, R5) \]
  and,
  \[ \text{Distance}_{\text{opt}}(R2, R5) \geq \text{Distance}_{\text{opt}}(R2, R3) + \text{Distance}_{\text{opt}}(R3, R5) \]

- **Rule 2**: Node-protect LFA backup next-hop (primary next-hop R1-R3 is a P2P interface):
  \[ \text{Distance}_{\text{opt}}(R2, R5) < \text{Distance}_{\text{opt}}(R2, R1) + \text{Distance}_{\text{opt}}(R1, R5) \]
  and,
  \[ \text{Distance}_{\text{opt}}(R2, R5) < \text{Distance}_{\text{opt}}(R2, R3) + \text{Distance}_{\text{opt}}(R3, R5) \]

- **Rule 3**: Link-protect LFA backup next-hop (primary next-hop R1-R3 is a broadcast interface):
  \[ \text{Distance}_{\text{opt}}(R2, R5) < \text{Distance}_{\text{opt}}(R2, R1) + \text{Distance}_{\text{opt}}(R1, R5) \]
  and,
  \[ \text{Distance}_{\text{opt}}(R2, R5) < \text{Distance}_{\text{opt}}(R2, \text{PN}) + \text{Distance}_{\text{opt}}(\text{PN}, R5) \]
  where; PN stands for the R1-R3 link Pseudo-Node.

For the case of P2P interface, if SPF finds multiple LFA next-hops for a given primary next-hop, it follows the following selection algorithm:

A) It will pick the node-protect type in favor of the link-protect type.

B) If there is more than one LFA next-hop within the selected type, then it will pick one based on the least cost.

C) If more than one LFA next-hop with the same cost results from step (b), then SPF will select the first one. This is not a deterministic selection and will vary following each SPF calculation.

For the case of a broadcast interface, a node-protect LFA is not necessarily a link protect LFA if the path to the LFA next-hop goes over the same PN as the primary next-hop. Similarly, a link protect LFA may not guarantee link protection if it goes over the same PN as the primary next-hop. The selection algorithm when SPF finds multiple LFA next-hops for a given primary next-hop is modified as follows:

A) The algorithm splits the LFA next-hops into two sets:
   - The first set consists of LFA next-hops which *do not* go over the PN used by primary next-hop.
   - The second set consists of LFA next-hops which *do* go over the PN used by the primary next-hop.

B) If there is more than one LFA next-hop in the first set, it will pick the node-protect type in favor of the link-protect type.
C) If there is more than one LFA next-hop within the selected type, then it will pick one based on the least cost.

D) If more than one LFA next-hop with equal cost results from Step C, SPF will select the first one from the remaining set. This is not a deterministic selection and will vary following each SPF calculation.

E) If no LFA next-hop results from Step D, SPF will rerun Steps B-D using the second set.

Note this algorithm is more flexible than strictly applying Rule 3 above; i.e., the link protect rule in the presence of a PN and specified in RFC 5286. A node-protect LFA which does not avoid the PN; i.e., does not guarantee link protection, can still be selected as a last resort. The same thing, a link-protect LFA which does not avoid the PN may still be selected as a last resort.

Both the computed primary next-hop and LFA next-hop for a given prefix are programmed into RTM.

---

**Loop-Free Alternate Calculation in the Presence of IGP shortcuts**

In order to expand the coverage of the LFA backup protection in a network, RSVP LSP based IGP shortcuts can be placed selectively in parts of the network and be used as an LFA backup next-hop.

When IGP shortcut is enabled in IS-IS or OSPF on a given node, all RSVP LSP originating on this node and with a destination address matching the router-id of any other node in the network are included in the main SPF by default.

In order to limit the time it takes to compute the LFA SPF, the user must explicitly enable the use of an IGP shortcut as LFA backup next-hop using one of a couple of new optional argument for the existing LSP level IGP shortcut command:

```plaintext
config>router>mpls>lsp>igp-shortcut [lfa-protect | lfa-only]
```

The **lfa-protect** option allows an LSP to be included in both the main SPF and the LFA SPFs. For a given prefix, the LSP can be used either as a primary next-hop or as an LFA next-hop but not both. If the main SPF computation selected a tunneled primary next-hop for a prefix, the LFA SPF will not select an LFA next-hop for this prefix and the protection of this prefix will rely on the RSVP LSP FRR protection. If the main SPF computation selected a direct primary next-hop, then the LFA SPF will select an LFA next-hop for this prefix but will prefer a direct LFA next-hop over a tunneled LFA next-hop.

The **lfa-only** option allows an LSP to be included in the LFA SPFs only such that the introduction of IGP shortcuts does not impact the main SPF decision. For a given prefix, the main SPF always selects a direct primary next-hop. The LFA SPF will select a LFA next-hop for this prefix but will prefer a direct LFA next-hop over a tunneled LFA next-hop.
Thus the selection algorithm in Section 1.3 when SPF finds multiple LFA next-hops for a given primary next-hop is modified as follows:

A) The algorithm splits the LFA next-hops into two sets:
   - the first set consists of direct LFA next-hops
   - the second set consists of tunneled LFA next-hops, after excluding the LSPs which use the same outgoing interface as the primary next-hop.

B) The algorithm continues with the first set if not empty, otherwise it continues with the second set.

C) If the second set is used, the algorithm selects the tunneled LFA next-hop which endpoint corresponds to the node advertising the prefix.
   - If more than one tunneled next-hop exists, it selects the one with the lowest LSP metric.
   - If still more than one tunneled next-hop exists, it selects the one with the lowest tunnel-id.
   - If none is available, it continues with the rest of the tunneled LFAs in the second set.

D) Within the selected set, the algorithm splits the LFA next-hops into two sets:
   - The first set consists of LFA next-hops which do not go over the PN used by the primary next-hop.
   - The second set consists of LFA next-hops which go over the PN used by the primary next-hop.

E) If there is more than one LFA next-hop in the selected set, it will pick the node-protect type in favor of the link-protect type.

F) If there is more than one LFA next-hop within the selected type, then it will pick one based on the least total cost for the prefix. For a tunneled next-hop, it means the LSP metric plus the cost of the LSP endpoint to the destination of the prefix.

G) If there is more than one LFA next-hop within the selected type (ecmp-case) in the first set, it will select the first direct next-hop from the remaining set. This is not a deterministic selection and will vary following each SPF calculation.

H) If there is more than one LFA next-hop within the selected type (ecmp-case) in the second set, it will pick the tunneled next-hop with the lowest cost from the endpoint of the LSP to the destination prefix. If there remains more than one, it will pick the tunneled next-hop with the lowest tunnel-id.
Loop-Free Alternate Calculation for Inter-Area/inter-Level Prefixes

When SPF resolves OSPF inter-area prefixes or IS-IS inter-level prefixes, it will compute an LFA backup next-hop to the same exit area/border router as used by the primary next-hop.
Loop-Free Alternate Shortest Path First (LFA SPF) Policies

An LFA SPF policy allows the user to apply specific criteria, such as admin group and SRLG constraints, to the selection of a LFA backup next-hop for a subset of prefixes that resolve to a specific primary next-hop. The feature introduces the concept of route next-hop template to influence LFA backup next-hop selection.

Configuration of Route Next-Hop Policy Template

The LFA SPF policy consists of applying a route next-hop policy template to a set of prefixes.

The user first creates a route next-hop policy template under the global router context:

```
configure>router>route-next-hop-policy>template template-name
```

A policy template can be used in both IS-IS and OSPF to apply the specific criteria described in the next sub-sections to prefixes protected by LFA. Each instance of IS-IS or OSPF can apply the same policy template to one or more prefix lists and to one or more interfaces.

The commands within the route next-hop policy use the `begin-commit-abort` model introduced with BFD templates. The following are the steps to create and modify the template:

- To create a template, the user enters the name of the new template directly under `route-next-hop-policy` context.
- To delete a template which is not in use, the user enters the `no` form for the template name under the `route-next-hop-policy` context.
- The user enters the editing mode by executing the `begin` command under `route-next-hop-policy` context. The user can then edit and change any number of route next-hop policy templates. However, the parameter value will still be stored temporarily in the template module until the `commit` is executed under the `route-next-hop-policy` context. Any temporary parameter changes will be lost if the user enters the `abort` command before the `commit` command.
- The user is allowed to create or delete a template instantly once in the editing mode without the need to enter the `commit` command. Furthermore, the `abort` command if entered will have no effect on the prior deletion or creation of a template.

Once the `commit` command is issued, IS-IS or OSPF will re-evaluate the templates and if there are any net changes, it will schedule a new LFA SPF to re-compute the LFA next-hop for the prefixes associated with these templates.

Configuring Affinity or Admin Group Constraint in Route Next-Hop Policy
Administrative groups (admin groups), also known as affinity, are used to tag IP interfaces which share a specific characteristic with the same identifier. For example, an admin group identifier could represent all links which connect to core routers, or all links which have bandwidth higher than 10G, or all links which are dedicated to a specific service.

The user first configures locally on each router the name and identifier of each admin group:

```
config>router>if-attribute>admin-group group-name value group-value
```

A maximum of 32 admin groups can be configured per system.

Next the user configures the admin group membership of the IP interfaces used in LFA. The user can apply admin groups to IES, VPRN, or network IP interface.

```
config>router>interface>if-attribute>admin-group group-name [group-name...(up to 5 max)]
config>service>ies>interface>if-attribute>admin-group group-name [group-name...(up to 5 max)]
config>service>vprn>interface>if-attribute>admin-group group-name [group-name...(up to 5 max)]
```

The user can add as many admin groups as configured to a given IP interface. The same above command can be applied multiple times.

Note that the configured admin-group membership will be applied in all levels/areas the interface is participating in. The same interface cannot have different memberships in different levels/areas.

The **no** form of the `admin-group` command under the interface deletes one or more of the admin-group memberships of the interface. It deletes all memberships if no group name is specified.

Finally, the user adds the admin group constraint into the route next-hop policy template:

```
configure router route-next-hop-template template template-name

include-group group-name [pref 1]
include-group group-name [pref 2]
exclude-group group-name
```

Each group is entered individually. The `include-group` statement instructs the LFA SPF selection algorithm to pick up a subset of LFA next-hops among the links which belong to one or more of the specified admin groups. A link which does not belong to at least one of the admin-groups is excluded. However, a link can still be selected if it belongs to one of the groups in a `include-group` statement but also belongs to other groups which are not part of any `include-group` statement in the route next-hop policy.
The **pref** option is used to provide a relative preference for the admin group to select. A lower preference value means that LFA SPF will first attempt to select a LFA backup next-hop which is a member of the corresponding admin group. If none is found, then the admin group with the next higher preference value is evaluated. If no preference is configured for a given admin group name, then it is supposed to be the least preferred, i.e., numerically the highest preference value.

When evaluating multiple **include-group** statements within the same preference, any link which belongs to one or more of the included admin groups can be selected as an LFA next-hop. There is no relative preference based on how many of those included admin groups the link is a member of.

The **exclude-group** statement simply prunes all links belonging to the specified admin group before making the LFA backup next-hop selection for a prefix.

If the same group name is part of both **include** and **exclude** statements, the **exclude** statement will win. In other words, the **exclude** statement can be viewed as having an implicit preference value of 0.

Note the admin-group criterion is applied before running the LFA next-hop selection algorithm. The modified LFA next-hop selection algorithm is shown in Section 7.5.

---

### Configuring SRLG Group Constraint in Route Next-Hop Policy

Shared Risk Loss Group (SRLG) is used to tag IP interfaces which share a specific fate with the same identifier. For example, an SRLG group identifier could represent all links which use separate fibers but are carried in the same fiber conduit. If the conduit is accidentally cut, all the fiber links are cut which means all IP interfaces using these fiber links will fail. Thus the user can enable the SRLG constraint to select a LFA next-hop for a prefix which avoids all interfaces that share fate with the primary next.

The user first configures locally on each router the name and identifier of each SRLG group:

```
configure>router>if-attribute>srlg-group group-name value group-value
```

A maximum of 1024 SRLGs can be configured per system.

Next the user configures the admin group membership of the IP interfaces used in LFA. The user can apply SRLG groups to IES, VPRN, or network IP interface.

```
config>router>interface>if-attribute>srlg-group group-name [group-name...(up to 5 max)]
config>service>vprn>interface>if-attribute>srlg-group group-name [group-name...(up to 5 max)]
config>service>ies>interface>if-attribute>srlg-group group-name [group-name...(up to 5 max)]
```
The user can add a maximum of 64 SRLG groups to a given IP interface. The same above command can be applied multiple times.

Note that the configured SRLG membership will be applied in all levels/areas the interface is participating in. The same interface cannot have different memberships in different levels/areas.

The no form of the `srlg-group` command under the interface deletes one or more of the SRLG memberships of the interface. It deletes all SRLG memberships if no group name is specified.

Finally, the user adds the SRLG constraint into the route next-hop policy template:

```
configure router route-next-hop-template template template-name
 srlg-enable
```

When this command is applied to a prefix, the LFA SPF will select a LFA next-hop, among the computed ones, which uses an outgoing interface that does not participate in any of the SLRGs of the outgoing interface used by the primary next-hop.

Note the SRLG and admin-group criteria are applied before running the LFA next-hop selection algorithm. The modified LFA next-hop selection algorithm is shown in Section 7.5.

---

**Interaction of IP and MPLS Admin Group and SRLG**

The LFA SPF policy feature generalizes the use of admin-group and SRLG to other types of interfaces. To that end, it is important that the new IP admin groups and SRLGs be compatible with the ones already supported in MPLS. The following rules are implemented:

- The definition of admin groups and SRLGs are moved under the new `config>router>if-attribute` context. When upgrading customers to R12, all user configured admin groups and SRLGs under `config>router>mpls` context will automatically be moved into the new context. The configuration of admin groups and SRLGs under the `config>router>mpls` context in CLI is deprecated.

- The binding of an MPLS interface to a group, i.e., configuring membership of an MPLS interface in a group, continues to be performed under `config>router>mpls>interface` context.

- The binding of a local or remote MPLS interface to an SRLG in the SRLG database continues to be performed under the `config>router>mpls>srlg-database` context.

- The binding of an ISIS/OSPF interface to a group is performed in the `config>router>interface>if-attribute` or “config>service>vprn>if>if-attribute” or “config>service>ies>if>if-attribute” contexts. This is used by ISIS or OSPF in route next-hop policies.
• Only the admin groups and SRLGs bound to an MPLS interface context or the SRLG database context are advertised in TE link TLVs and sub-TLVs when the traffic-engineering option is enabled in IS-IS or OSPF. IES and VPRN interfaces do not have their attributes advertised in TE TLVs.

Configuring Protection Type and Next-Hop Type Preference in Route next-hop policy template

The user can select if link protection or node protection is preferred in the selection of a LFA next-hop for all IP prefixes and LDP FEC prefixes to which a route next-hop policy template is applied. The default in SROS implementation is node protection. The implementation will fall back to the other type if no LFA next-hop of the preferred type is found.

The user can also select if tunnel backup next-hop or IP backup next-hop is preferred. The default in SROS implementation is to prefer IP next-hop over tunnel next-hop. The implementation will fall back to the other type if no LFA next-hop of the preferred type is found.

The following options are thus added into the Route next-hop policy template:

```
configure router route-nh-template template template-name

 protection-type {link | node}

 nh-type {ip | tunnel}
```

When the route next-hop policy template is applied to an IP interface, all prefixes using this interface as a primary next-hop will follow the protection type and next-hop type preference specified in the template.

Application of Route Next-Hop Policy Template to an Interface

Once the route next-hop policy template is configured with the desired policies, the user can apply it to all prefixes which primary next-hop uses a specific interface name. The following command is achieves that:

```
config>router>isis>interface>lfa-policy-map route-nh-template template-name

config>router>ospf(3)>area>interface>lfa-policy-map route-nh-template template-name

config>service>vprn>ospf(3)>area>interface>lfa-policy-map route-nh-template template-name
```
When a route next-hop policy template is applied to an interface in IS-IS, it is applied in both level 1 and level 2. When a route next-hop policy template is applied to an interface in OSPF, it is applied in all areas. However, the above CLI command in an OSPF interface context can only be executed under the area in which the specified interface is primary and then applied in that area and in all other areas where the interface is secondary. If the user attempts to apply it to an area where the interface is secondary, the command will fail.

If the user excluded the interface from LFA using the command `loopfree-alternate-exclude`, the LFA policy if applied to the interface has no effect.

Finally, if the user applied a route next-hop policy template to a loopback interface or to the system interface, the command will not be rejected but it will result in no action taken.

### Excluding Prefixes from LFA SPF

In the current SROS implementation, the user can exclude an interface in IS-IS or OSPF, an OSPF area, or an IS-IS level from the LFA SPF.

This feature adds the ability to exclude prefixes from a prefix policy which matches on prefixes or on IS-IS tags:

```
config>router>isis>loopfree-alternate-exclude prefix-policy prefix-policy1 [prefix-policy2...up to 5]
config>router>ospf(3)>loopfree-alternate-exclude prefix-policy prefix-policy1 [prefix-policy2...up to 5]
config>service>vprn>ospf(3)>loopfree-alternate-exclude prefix-policy prefix-policy1 [prefix-policy2...up to 5]
```

The prefix policy is configured as in existing SROS implementation:

```
config
 router
 policy-options
 [no] prefix-list prefix-list1
 prefix 62.225.16.0/24 prefix-length-range 32-32
 [no] policy-statements prefix-policy1
 entry 10
 from
 prefix-list "prefix-list1"
 exit
 action accept
 exit
```
exit
default-action reject
exit

If the user enabled the R12 IS-IS prefix prioritization based on tag, it will also apply to SPF LFA. However, if a prefix is excluded from LFA, then it will not be included in LFA calculation regardless of its priority. The prefix tag will however be used in the main SPF. Note that prefix tags are not defined for OSPF protocol.

The default action of the above `loopfree-alternate-exclude` command when not explicitly specified by the user in the prefix policy is a “reject”. Thus, regardless if the user did or did not explicitly add the statement “default-action reject” to the prefix policy, a prefix which did not match any entry in the policy will be accepted into LFA SPF.

---

**Modification to LFA Next-Hop Selection Algorithm**

This feature modifies the LFA next-hop selection algorithm. The SRLG and admin-group criteria are applied before running the LFA next-hop selection algorithm. In other words, links which do not include one or more of the admin-groups in the `include-group` statements and links which belong to admin-groups which have been explicitly excluded using the `exclude-group` statement, and the links which belong to the SRLGs used by the primary next-hop of a prefix are first pruned.

Note that this pruning applies only to IP next-hops. Tunnel next-hops can have the admin-group or SRLG constraint applied to them under MPLS. For instance, If a tunnel next-hop is using an outgoing interface which belongs to given SRLG ID, the user can enable the `srlg-frr` option under ‘config>router>mpls’ context to be sure the RSVP LSP FRR backup LSP will not use an outgoing interface with the same SRLG ID. A prefix which is resolved to a tunnel next-hop is protected by the RSVP FRR mechanism and not by the IP FRR mechanism. Similarly, the user can include or exclude admin-groups for the RSVP LSP and its FRR bypass backup LSP in MPLS context. Note however the admin-group constraints will be applied to the selection of the outgoing interface of both the LSP primary path and its FRR bypass backup path.

The following is the modified LFA selection algorithm which is applied to prefixes resolving to a primary next-hop which uses a given route next-hop policy template. The changes are highlighted in yellow color.

- Split the LFA next-hops into two sets:
  - IP or direct next-hops.
  - Tunnel next-hops after excluding the LSPs which use the same outgoing interface as the primary next-hop.
• Prune the IP LFA next-hops which use the following links:
  → links which do not include one or more of the admin-groups in the include-group statements in the route next-hop policy template.
  → links which belong to admin-groups which have been explicitly excluded using the exclude-group statement in the route next-hop policy template.
  → links which belong to the SRLGs used by the primary next-hop of a prefix.
• Continue with the set indicated in the nh-type value in the route next-hop policy template if not empty; otherwise continue with the other set.
• Within IP next-hop set:
  → prefer LFA next-hops which do not go over the Pseudo-Node (PN) used by the primary next-hop.
  → Within selected subset prefer the node-protect type or the link-protect type according to the value of the protection-type option in the route next-hop policy template.
  → Within the selected subset, select the best admin-group(s) according to the preference specified in the value of the include-group option in the route next-hop policy template.
  → Within selected subset, select lowest total cost of a prefix.
  → If same total cost, select lowest router-id.
  → If same router-id, select lowest interface-index.
• Within tunnel next-hop set:
  → Select tunnel next-hops which endpoint corresponds to the node owning or advertising the prefix.
    → Within selected subset, select the one with the lowest cost (lowest LSP metric).
    → If same lowest cost, select tunnel with lowest tunnel-index.
  → If none is available, continue with rest of the tunnel LFA next-hop set.
  → Prefer LFA next-hops which do not go over the Pseudo-Node (PN) used by the primary next-hop.
  → Within selected subset prefer the node-protect type or the link-protect type according to the value of the protection-type in the route next-hop policy template.
  → Within selected subset, select lowest total cost of a prefix. For a tunnel next-hop, it means the LSP metric plus the cost of the LSP endpoint to the destination of the prefix.
  → If same total cost, select lowest endpoint to destination cost
  → If same endpoint to destination cost, select lowest router-id.
  → If same router-id, select lowest tunnel-index.
OSPF LSA Filtering

The SR-OS OSPF implementation supports a configuration option to filter outgoing OSPF LSAs on selected OSPFv2 or OSPFv3 interfaces. This feature should be used with some caution because it goes against the principle that all OSPF routers in an area should have a synchronized Link State Database (LSDB), but it can be a useful resource saving in certain hub and spoke topologies where learning routes through OSPF is only needed in one direction (for example, from spoke to hub).

Three filtering options are available (configurable per interface):

- Do not flood any LSAs out the interface. This option is suitable if the neighbor is simply-connected and has a statically configured default route with the address of this interface as next-hop.
- Flood a minimum set of self-generated LSAs out the interface (e.g. router-LSA, intra-area-prefix-LSA, and link-LSA and network-LSA corresponding to the connected interface); suppress all non-self-originated LSAs. This option is suitable if the neighbor is simply-connected and has a statically configured default route with a loopback or system interface address as next-hop
- Flood a minimum set of self-generated LSAs (e.g. router-LSA, intra-area-prefix-LSA, and link-LSA and network-LSA corresponding to the connected interface) and all self-generated type-3, type-5 and type-7 LSAs advertising a default route (0/0) out the interface; suppress all other flooded LSAs. This option is suitable if the neighbor is simply-connected and does not have a statically configured default route.
Figure 10 displays the process to provision basic OSPF parameters.

Figure 10: OSPF Configuration and Implementation Flow
Configuration Notes

This section describes OSPF configuration caveats.

General

• Before OSPF can be configured, the router ID must be configured.
• The basic OSPF configuration includes at least one area and an associated interface.
• All default and command parameters can be modified.

OSPF Defaults

The following list summarizes the OSPF configuration defaults:

• By default, a router has no configured areas.
• An OSPF instance is created in the administratively enabled state.
Configuring OSPF with CLI

This section provides information to configure Open Shortest Path First (OSPF) using the command line interface.

Topics in this section include:

- OSPF Configuration Guidelines on page 280
- Basic OSPF Configuration on page 281
- Configuring the Router ID on page 282
- Configuring OSPF Components on page 283
  - Configuring the Router ID on page 282
  - Configuring an OSPF or OSPF3 Area on page 285
  - Configuring a Stub Area on page 286
  - Configuring a Not-So-Stubby Area on page 288
  - Configuring a Virtual Link on page 290
  - Configuring an Interface on page 292
  - Configuring Authentication on page 295
  - Assigning a Designated Router on page 299
  - Configuring Route Summaries on page 301
  - Configuring Route Preferences on page 303
- OSPF Configuration Management Tasks on page 306
  - Modifying a Router ID on page 306
  - Deleting a Router ID on page 308
  - Modifying OSPF Parameters on page 309
Configuration planning is essential to organize routers, backbone, non-backbone, stub, NSSA areas, and transit links. OSPF provides essential defaults for basic protocol operability. You can configure or modify commands and parameters. OSPF is not enabled by default.

The minimal OSPF parameters which should be configured to deploy OSPF are:

- **Router ID**
  Each router running OSPF must be configured with a unique router ID. The router ID is used by both OSPF and BGP routing protocols in the routing table manager.
  When configuring a new router ID, protocols will not automatically be restarted with the new router ID. Shut down and restart the protocol to initialize the new router ID.

- **OSPF Instance**
  OSPF instances must be defined when configuring multiple instances and/or the instance being configured is not the base instance.

- **An area**
  At least one OSPF area must be created. An interface must be assigned to each OSPF area.

- **Interfaces**
  An interface is the connection between a router and one of its attached networks. An interface has state information associated with it, which is obtained from the underlying lower level protocols and the routing protocol itself. An interface to a network has associated with it a single IP address and mask (unless the network is an unnumbered point-to-point network). An interface is sometimes also referred to as a link.
Basic OSPF Configuration

This section provides information to configure OSPF and OSPF3 as well as configuration examples of common configuration tasks.

The minimal OSPF parameters that need to be configured are:

- **A router ID** - If a router-id is not configured in the config>router context, the router’s system interface IP address is used.
- **One or more areas.**
- **Interfaces** (interface "system").

Following is an example of a basic OSPF configuration:

```
ALA-A>config>router>ospf# info
--
area 0.0.0.0
 interface "system"
 exit
exit
area 0.0.0.20
 nssa
 exit
 interface "to-104"
 priority 10
 exit
exit
area 0.0.1.1
exit

--
ALA-A>config>router>ospf#
A:ALA-48>config>router>ospf3# info
--
asbr
overload
timers
 lsa-arrival 50000
 exit
export "OSPF-Export"
area 0.0.0.0
 interface "system"
 exit
exit
area 0.0.0.20
 nssa
 exit
 interface "SR1-2"
 exit
exit
area 0.0.0.25
 stub
 default-metric 5000
 exit
exit
```
Configuring the Router ID

The router ID uniquely identifies the router within an AS. In OSPF, routing information is exchanged between autonomous systems, groups of networks that share routing information. It can be set to be the same as the loopback (system interface) address. Subscriber services also use this address as far-end router identifiers when service distribution paths (SDPs) are created. The router ID is used by both OSPF and BGP routing protocols. A router ID can be derived by:

- Defining the value in the `config>router router-id` context.
- Defining the system interface in the `config>router>interface ip-int-name` context (used if the router ID is not specified in the `config>router router-id` context).
- Inheriting the last four bytes of the MAC address.
- On the BGP protocol level, a BGP router ID can be defined in the `config>router>bgp router-id` context and is only used within BGP.
- Defining a router ID when creating an OSPF instance `config>router>ospf [instance-id][router-id]`.

When configuring a new router ID, protocols are not automatically restarted with the new router ID. The next time a protocol is (re) initialized the new router ID is used. An interim period of time can occur when different protocols use different router IDs. To force the new router ID, issue the `shutdown` and `no shutdown` commands for each protocol that uses the router ID or restart the entire router.

It is possible to configure an SR OS node to operate with an IPv6 only BOF and no IPv4 system interface address. When configured in this manner, the operator must explicitly define IPv4 router IDs for protocols such as OSPF and BGP as there is no mechanism to derive the router ID from an IPv6 system interface address.

The following displays a router ID configuration example:

```
A:ALA-B>config>router# info
#--
IP Configuration
#--
interface "system"
 address 10.10.10.104/32
 exit
interface "to-103"
 address 10.0.0.104/24
 port 1/1/1
 exit
autonomous-system 100
router-id 10.10.10.104
...
#--
A:ALA-B>config>router#
```
Configuring OSPF Components

Use the CLI syntax displayed below for:

- Configuring OSPF Parameters on page 283
- Configuring OSPF3 Parameters on page 284
- Configuring a Stub Area on page 286
- Configuring a Not-So-Stubby Area on page 288
- Configuring a Virtual Link on page 290
- Configuring an Interface on page 292
- Configuring Authentication on page 295
- Assigning a Designated Router on page 299
- Configuring Route Summaries on page 301

Configuring OSPF Parameters

The following displays a basic OSPF configuration example:

```
A:ALA-49>config>router>ospf# info
--
asbr
 overload
 overload-on-boot timeout 60
 traffic-engineering
 export "OSPF-Export"
 graceful-restart
 helper-disable
 exit
--
A:ALA-49>config>router>ospf# ex
```
Configuring OSPF3 Parameters

Use the following CLI syntax to configure OSPF3 parameters:

**CLI Syntax:**
```
config>router# ospf3
 asbr
 export policy-name [policy-name...(upto 5 max)]
 external-db-overflow limit seconds
 external-preference preference
 overload [timeout seconds]
 overload-include-stub
 overload-on-boot [timeout seconds]
 preference preference
 reference-bandwidth bandwidth-in-kbps
 router-id ip-address
 no shutdown
 timers
 lsa-arrival lsa-arrival-time
 lsa-generate max-lsa-wait
 spf-wait max-spf-wait [spf-initial-wait [spf-second-wait]]
```

The following displays an OSPF3 configuration example:

```
A:ALA-48>config>router>ospf3# info
--
 asbr
 overload
 timers
 lsa-arrival 50000
 exit
 export "OSPF-Export"
--
A:ALA-48>config>router>ospf3#
```

OSPF also supports the concept of multi-instance OSPFv2 and OSPFv3 which allows separate instances of the SOPF protocols to run independently within the SR-OS router.

Separate instances are created by adding a different instance ID as the optional parameter to the `config>router>ospf` and `config>router>ospf3` commands. When this is done a separate OSPF instance is created which maintains separate link state databases for each instance.
Configuring an OSPF or OSPF3 Area

An OSPF area consists of routers configured with the same area ID. To include a router in a specific area, the common area ID must be assigned and an interface identified.

If your network consists of multiple areas you must also configure a backbone area (0.0.0.0) on at least one router. The backbone is comprised of the area border routers and other routers not included in other areas. The backbone distributes routing information between areas. The backbone is considered to be a participating area within the autonomous system. To maintain backbone connectivity, there must be at least one interface in the backbone area or have a virtual link configured to another router in the backbone area.

The minimal configuration must include an area ID and an interface. Modifying other command parameters are optional.

Use the following CLI syntax to configure an OSPF or OSPF3 area:

**CLI Syntax:**

```
ospf ospf-instance
ospf3
area area-id
area-range ip-prefix/mask [advertise|not-advertise]
blackhole-aggregate
```

The following displays an OSPF area configuration example:

```
A:ALA-A>config>router>ospf# info
--
area 0.0.0.0
exit
area 0.0.0.20
exit
--
ALA-A>config>router>ospf#A:
```
**Configuring a Stub Area**

Configure stub areas to control external advertisements flooding and to minimize the size of the topological databases on an area's routers. A stub area cannot also be configured as an NSSA.

By default, summary route advertisements are sent into stub areas. The **no** form of the summary command disables sending summary route advertisements and only the default route is advertised by the ABR. This example retains the default so the command is not entered.

If this area is configured as a transit area for a virtual link, then existing virtual links of a non-stub or NSSA area are removed when its designation is changed to NSSA or stub.

Stub areas for OSPF3 are configured the same as OSPF stub areas.

Use the following CLI syntax to configure virtual links:

**CLI Syntax:**

```
ospf
ospf3
 area area-id
 stub
 default-metric metric
 summaries
```

The following displays a stub configuration example:

```
ALA-A>config>router>ospf>area># info
--
...
 area 0.0.0.0
 exit
 area 0.0.0.20
 stub
 exit
 exit

...
--

ALA-A>config>router>ospf#
```

The following displays a stub configuration example:

```
ALA-A>config>router>ospf>area># info
--
...
 area 0.0.0.0
 exit
 area 0.0.0.20
 stub
 exit
 exit

...
--
```
ALA-A>config>router>ospf#

A:ALA-48>config>router>ospf3>area# info
---------------------------------------------
  stub
    default-metric 5000
  exit
---------------------------------------------
A:ALA-48>config>router>ospf3>area#
Configuring a Not-So-Stubby Area

You must explicitly configure an area to be a Not-So-Stubby Area (NSSA) area. NSSAs are similar to stub areas in that no external routes are imported into the area from other OSPF areas. The major difference between a stub area and an NSSA is that an NSSA has the capability to flood external routes it learns throughout its area and by an area border router to the entire OSPF domain.

An area cannot be both a stub area and an NSSA.

If this area is configured as a transit area for a virtual link, then existing virtual links of a non-stub or NSSA area are removed when its designation is changed to NSSA or stub.

Use the following CLI syntax to configure stub areas:

**CLI Syntax:**

```
ospf
ospf-instance
ospf3
 area area-id
 nssa
 area-range ip-prefix/mask [advertise|not-advertise]
 originate-default-route [type-7]
 redistribute-external
 summaries
```

The following displays an NSSA configuration example:

```
A:ALA-49>config>router>ospf# info
--
asbr
overload
overload-on-boot timeout 60
traffic-engineering
export "OSPF-Export"
graceful-restart
 helper-disable
exit
area 0.0.0.0
exit
area 0.0.0.20
 stub
 exit
exit
area 0.0.0.25
 nssa
 exit
exit
--
A:ALA-49>config>router>ospf#
```
The following displays a OSPF3 NSSA configuration example:

A:ALA-48>config>router>ospf3# info
----------------------------------------------
asbr
  overload
  timers
    lsa-arrival 50000
  exit
export "OSPF-Export"
area 0.0.0.0
  exit
area 0.0.0.20
  stub
  exit
  area 0.0.0.25
    nssa
    exit
  exit
area 4.3.2.1
  exit
----------------------------------------------
A:ALA-48>config>router>ospf3#
Configuring a Virtual Link

The backbone area (area 0.0.0.0) must be contiguous and all other areas must be connected to the backbone area. If it is not practical to connect an area to the backbone then the area border routers must be connected via a virtual link. The two area border routers will form a point-to-point-like adjacency across the transit area. A virtual link can only be configured while in the area 0.0.0.0 context.

The `router-id` parameter specified in the `virtual-link` command must be associated with the virtual neighbor, that is, enter the virtual neighbor’s router ID, not the local router ID. The transit area cannot be a stub area or an NSSA.

Use the following CLI syntax to configure stub areas:

```
CLI Syntax: ospf ospf-instance
 area area-id
 virtual-link router-id transit-area area-id
 authentication-key [authentication-key|hash-key]
 [hash]
 authentication-type [password|message-digest]
 dead-interval seconds
 hello-interval seconds
 message-digest-key key-id md5 [key|hash-key]
 [hash|hash2]
 retransmit-interval seconds
 transit-delay
 no shutdown
```

The following displays a virtual link configuration example:

```
A:ALA-49>config>router>ospf# info
--
asbr
overload
overload-on-boot timeout 60
traffic-engineering
export "OSPF-Export"
graceful-restart
 helper-disable
exit
area 0.0.0.0
 virtual-link 1.2.3.4 transit-area 1.2.3.4
 hello-interval 9
 dead-interval 40
exit
exit
area 0.0.0.20
 stub
exit
exit
area 0.0.0.25
```

The following displays an OSPF3 virtual link configuration example:

A:ALA-48>config>router>ospf3# info
--------------------------------------------------------
asbr
  overload
timers
  lsa-arrival 50000
exit
export "OSPF-Export"
area 0.0.0.0
  virtual-link 4.3.2.1 transit-area 4.3.2.1
  exit
exit
area 0.0.0.20
  stub
  exit
exit
area 0.0.0.25
  nssa
  exit
exit
area 4.3.2.1
  exit
--------------------------------------------------------
A:ALA-48>config>router>ospf3#
Configuring an Interface

In OSPF, an interface can be configured to act as a connection between a router and one of its attached networks. An interface includes state information that was obtained from underlying lower level protocols and from the routing protocol itself. An interface to a network is associated with a single IP address and mask (unless the network is an unnumbered point-to-point network). If the address is merely changed, then the OSPF configuration is preserved.

The `passive` command enables the passive property to and from the OSPF interface where passive interfaces are advertised as OSPF interfaces but do not run the OSPF protocol. By default, only interface addresses that are configured for OSPF are advertised as OSPF interfaces. The passive parameter allows an interface to be advertised as an OSPF interface without running the OSPF protocol. When enabled, the interface will ignore ingress OSPF protocol packets and not transmit any OSPF protocol packets.

An interface can be part of more than one area, as specified in RFC5185. To do this, add the keyword `secondary` when creating the interface.

Use the following CLI syntax to configure an OSPF interface:

**CLI Syntax:**

```plaintext
ospf ospf-instance
 area area-id
 interface ip-int-name
 advertise-subnet
 authentication-key [authentication-key|hash-key]
 [hash|hash2]
 authentication-type [password|message-digest]
 bfd-enable
 dead-interval seconds
 hello-interval seconds
 interface-type {broadcast|point-to-point}
 message-digest-key key-id md5 [key|hash-key][hash|hash2]
 metric metric
 mtu bytes
 passive
 priority number
 retransmit-interval seconds
 no shutdown
 transit-delay seconds
```

The following displays an interface configuration example:

```
A:ALA-49>config>router>ospf# info
--
asbr
overload
 overload-on-boot timeout 60
```
traffic-engineering
export "OSPF-Export"
graceful-restart
    helper-disable
exit
area 0.0.0.0
    virtual-link 1.2.3.4 transit-area 1.2.3.4
    hello-interval 9
    dead-interval 40
exit
interface "system"
exit
exit
area 0.0.0.20
    stub
exit
interface "to-103"
exit
exit
area 0.0.0.25
    nssa
exit
area 1.2.3.4
exit
area 4.3.2.1
    interface "SR1-3"
exit
area 4.3.2.1
    interface "SR1-3" secondary
exit
exit
----------------------------------------------
A:ALA-49>config>router>ospf# area 0.0.0.20

The following displays an interface configuration:

A:ALA-48>config>router>ospf3# info
----------------------------------------------
asbr
    overload
    timers
        lsa-arrival 50000
exit
export "OSPF-Export"
area 0.0.0.0
    virtual-link 4.3.2.1 transit-area 4.3.2.1
exit
interface "system"
exit
exit
area 0.0.0.20
    stub
exit
interface "SR1-2"
exit
exit
area 0.0.0.25
  nssa
  exit
exit
area 4.3.2.1
exit

A:ALA-48>config>router>ospf3#
Configuring Authentication

The use of protocol authentication is recommended to protect against malicious attack on the communications between routing protocol neighbors. These attacks could aim to either disrupt communications or to inject incorrect routing information into the systems routing table. The use of authentication keys can help to protect the routing protocols from these types of attacks.

Authentication must be explicitly configured and can be done so through two separate mechanisms. First is configuration of an explicit authentication key and algorithm through the use of the authentication and authentication-type commands. The second way of configuring authentication is through the use of the authentication keychain mechanism. Both mechanisms are described below.

The following authentication commands can be configured on the interface level or the virtual link level:

- **authentication-key** — Configures the password used by the OSPF interface or virtual-link to send and receive OSPF protocol packets on the interface when simple password authentication is configured.
- **authentication-type** — Enables authentication and specifies the type of authentication to be used on the OSPF interface, either password or message digest.
- **message-digest-key** — Use this command when message-digest keyword is selected in the authentication-type command. The Message Digest 5 (MD5) hashing algorithm is used for authentication. MD5 is used to verify data integrity by creating a 128-bit message digest from the data input. It is unique to that specific data.

An special checksum is included in transmitted packets and are used by the far-end router to verify the packet by using an authentication key (a password). Routers on both ends must use the same MD5 key.

MD5 can be configured on each interface and each virtual link. If MD5 is enabled on an interface, then that interface accepts routing updates only if the MD5 authentication is accepted. Updates that are not authenticated are rejected. A router accepts only OSPF packets sent with the same key-id value defined for the interface.

When the hash parameter is not used, non-encrypted characters can be entered. Once configured using the message-digest-key command, then all keys specified in the command are stored in encrypted format in the configuration file using the hash keyword. When using the hash keyword the password must be entered in encrypted form. Hashing cannot be reversed. Issue the no message-digest-key key-id command and then re-enter the command without the hash parameter to configure an unhashed key.

The following CLI commands are displayed to illustrate the key authentication features. These command parameters can be defined at the same time interfaces and virtual-links are being configured. See Configuring an Interface on page 292 and Configuring a Virtual Link on page 290.
Use the following CLI syntax to configure authentication:

**CLI Syntax:**
```
ospf ospf-instance
 area area-id
 interface ip-int-name
 authentication-key [authentication-key|hash-key] [hash]
 authentication-type [password|message-digest]
 message-digest-key key-id md5 key [hash]
 virtual-link router-id transit-area area-id
 authentication-key [authentication-key|hash-key] [hash]
 authentication-type [password|message-digest]
 message-digest-key key-id md5 key [hash]
```

The following displays authentication configuration examples:

A:ALA-49>config>router>ospf# info
```
--
asbr
overload
overload-on-boot timeout 60
traffic-engineering
export "OSPF-Export"
graceful-restart
 helper-disable
exit
area 0.0.0.0
 virtual-link 1.2.3.4 transit-area 1.2.3.4
 hello-interval 9
 dead-interval 40
 exit
 interface "system"
 exit
exit
area 0.0.0.20
 stub
 exit
 interface "to-103"
 exit
exit
area 0.0.0.25
 nssa
 exit
exit
area 0.0.0.40
 interface "test1"
 authentication-type password
 authentication-key "3WErEDozxyQ" hash
 exit
exit
area 1.2.3.4
exit
--
A:ALA-49>config>router>ospf#
```
A:ALA-49>config>router>ospf# info
----------------------------------------------
asbr
overload
overload-on-boot timeout 60
traffic-engineering
export "OSPF-Export"
graceful-restart
    helper-disable
exit
area 0.0.0.0
    virtual-link 10.0.0.1 transit-area 0.0.0.1
        authentication-type message-digest
        message-digest-key 2 md5 "Mi6BQAFi3MI" hash
    exit
    virtual-link 1.2.3.4 transit-area 1.2.3.4
        hello-interval 9
        dead-interval 40
    exit
    interface "system"
    exit
exit
area 0.0.0.1
exit
area 0.0.0.20
    stub
    exit
    interface "to-103"
    exit
exit
area 0.0.0.25
    nssa
    exit
exit
area 0.0.0.40
    interface "test1"
        authentication-type password
        authentication-key "3WErEDozyX" hash
    exit
exit
area 1.2.3.4
exit
----------------------------------------------
A:ALA-49>config>router>ospf#
Configuring Authentication using Keychains

The second way of configuring protocol authentication is through the use of an authentication keychain. This mechanism supports all of the same authentication types supported in the authentication-type method described above, plus several other newer algorithms. In addition, the use of authentication keychains allows for the configuration of authentication keys and allows keys to be changed without affecting the state of the routing protocol adjacencies.

To configure the use of an authentication keychain within OSPF, use the following steps:

1. Configure an authentication keychain within the config>system>security context. The configured keychain must include at least one valid key entry, using a valid authentication algorithm for the IS-IS protocol.

2. Associate the configured authentication keychain within OSPF - Authentication keychains can be used to specify the authentication key and algorithm on a per interface basis within the configuration for the OSPF protocol.

The association of the authentication keychain is established through the "auth-keychain keychain-name" command at the global and level context.

For a key entry to be valid, it must include a valid key, the current system clock value must be within the begin and end time of the key entry, and the algorithm specified in the key entry must be supported by the IS-IS protocol.

The OSPF protocol supports the following algorithms:

- clear text password
- MD5
- HMAC-SHA-1-96
- HMAC-SHA-1
- HMAC-SHA-256

Keychain Error handling:

- If a keychain exists but there are no active key entries with an authentication type that is valid for the associated protocol, then inbound protocol packets will not be authenticated and discarded and no outbound protocol packets will be sent.
- If keychain exists, but the last key entry has expired, a log entry will be raised indicating that all keychain entries have expired. The OSPF protocol requires that the protocol continue to authenticate inbound and outbound traffic using the last valid authentication key.
Assigning a Designated Router

A designated router is elected according to the priority number advertised by the routers. When a router starts up, it checks for a current designated router. If a designated router is present, then the router accepts that designated router, regardless of its own priority designation. When a router fails, new designated and backup routers are elected according their priority numbers.

The priority command is only used if the interface is a broadcast type. The designated router is responsible for flooding network link advertisements on a broadcast network to describe the routers attached to the network. A router uses hello packets to advertise its priority. The router with the highest priority interface becomes the designated router. A router with priority 0 is not eligible to be a designated router or a backup designated router. At least one router on each logical IP network or subnet must be eligible to be the designated router. By default, routers have a priority value of 1.

Use the following CLI syntax to configure the designated router:

**CLI Syntax:**

```
ospf ospf-instance
area area-id
interface ip-int-name
priority number
```

The following displays a priority designation example:

```
A:ALA-49>config>router>ospf# info
--
asbr
overload
overload-on-boot timeout 60
traffic-engineering
export "OSPF-Export"
graceful-restart
 helper-disable
exit
area 0.0.0.0
 virtual-link 10.0.0.1 transit-area 0.0.0.1
 authentication-type message-digest
 message-digest-key 2 md5 "Mi6BQAf13MI" hash
 exit
 virtual-link 1.2.3.4 transit-area 1.2.3.4
 hello-interval 9
 dead-interval 40
 exit
 interface "system"
 exit
exit
area 0.0.0.1
exit
area 0.0.0.20
 stub
 exit
 interface "to-103"
```

exit
exit
area 0.0.0.25
    nssa
exit
    interface "if2"
        priority 100
exit
exit
area 0.0.0.40
    interface "test1"
        authentication-type password
        authentication-key "3WErEDozxyQ" hash
exit
exit
area 1.2.3.4
exit
----------------------------------------------
A:ALA-49>config>router>ospf#
Configuring Route Summaries

Area border routers send summary (type 3) advertisements into a stub area or NSSA to describe the routes to other areas. This command is particularly useful to reduce the size of the routing and Link State Database (LSDB) tables within the stub or NSSA.

By default, summary route advertisements are sent into the stub area or NSSA. The `no` form of the `summaries` command disables sending summary route advertisements and, in stub areas, the default route is advertised by the area border router.

The following CLI commands are displayed to illustrate route summary features. These command parameters can be defined at the same time stub areas and NSSAs are being configured. See Configuring a Stub Area on page 286 and Configuring a Not-So-Stubby Area on page 288.

Use the following CLI syntax to configure a route summary:

**CLI Syntax:**

```
ospf ospf-instance
 area area-id
 stub
 summaries
 nssa
 summaries
```

The following displays a stub route summary configuration example:

```
A:ALA-49>config>router>ospf# info
--
asbr
 overload
 overload-on-boot timeout 60
 traffic-engineering
 export "OSPF-Export"
 graceful-restart
 helper-disable
 exit
area 0.0.0.0
 virtual-link 10.0.0.1 transit-area 0.0.0.1
 authentication-type message-digest
 message-digest-key 2 md5 "Mi6BQAF13MI" hash
 exit
 virtual-link 1.2.3.4 transit-area 1.2.3.4
 hello-interval 9
 dead-interval 40
 exit
 interface "system"
 exit
area 0.0.0.1
 exit
area 0.0.0.20
 stub
```
exit
interface "to-103"
exit
interface "if2"
priority 100
exit
area 0.0.0.40
interface "test1"
authentication-type password
authentication-key "3WErEDozxyQ" hash
exit
area 1.2.3.4
exit

----------------------------------------------
A:ALA-49>config>router>ospf#

A:ALA-48>config>router>ospf3# info

asbr
overload
timers
  lsa-arrival 50000
exit
export "OSPF-Export"
area 0.0.0.0
  virtual-link 4.3.2.1 transit-area 4.3.2.1
exit
interface "system"
exit
area 0.0.0.20
  stub
exit
interface "SR1-2"
exit
area 0.0.0.25
  nssa
exit
area 4.3.2.1
exit

----------------------------------------------
A:ALA-48>config>router>ospf3#
Configuring Route Preferences

A route can be learned by the router from different protocols, in which case, the costs are not comparable. When this occurs the preference value is used to decide which route is installed in the forwarding table if several protocols calculate routes to the same destination. The route with the lowest preference value is selected.

Different protocols should not be configured with the same preference, if this occurs the tiebreaker is per the default preference table as defined in Table 4. If multiple routes are learned with an identical preference using the same protocol, the lowest cost route is used.

Table 4: Route Preference Defaults by Route Type

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Preference</th>
<th>Configurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct attached</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Static routes</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF internal</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 1 internal</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 2 internal</td>
<td>18</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF external</td>
<td>150</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS</td>
<td>167</td>
<td>No</td>
</tr>
<tr>
<td>IS-IS level 1 external</td>
<td>160</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 2 external</td>
<td>165</td>
<td>Yes</td>
</tr>
<tr>
<td>BGP</td>
<td>170</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a. Preference for OSPF internal routes is configured with the preference command.

If multiple routes are learned with an identical preference using the same protocol and the costs (metrics) are equal, then the decision of what route to use is determined by the configuration of the `ecmp` in the `config-router` context.

The following CLI commands are displayed to illustrate route preference features. The command parameters can be defined at the same time you are configuring OSPF. See Configuring OSPF Components on page 283.
Use the following CLI syntax to configure a route preference:

**CLI Syntax:**
```
ospf ospf-instance
ospf3
 preference preference
 external-preference preference
```

The following displays a route preference configuration example:

```
A:ALA-49>config>router>ospf# info
--
asbr
overload
overload-on-boot timeout 60
traffic-engineering
preference 9
external-preference 140
export "OSPF-Export"
graceful-restart
 helper-disable
exit
area 0.0.0.0
 virtual-link 10.0.0.1 transit-area 0.0.0.1
 authentication-type message-digest
 message-digest-key 2 md5 "Mi6BQAFi3MI" hash
exit
 virtual-link 1.2.3.4 transit-area 1.2.3.4
 hello-interval 9
 dead-interval 40
exit
 interface "system"
exit
area 0.0.0.1
exit
area 0.0.0.20
 stub
exit
 interface "to-103"
exit
exit
area 0.0.0.25
 nssa
exit
 interface "if2"
 priority 100
exit
exit
area 0.0.0.40
 interface "test1"
 authentication-type password
 authentication-key "3WErEDozxyQ" hash
exit
exit
area 1.2.3.4
exit
```
The following displays a route preference configuration example:

A:ALA-48>config>router>ospf3# info

asbr
  overload
  timers
    lsa-arrival 50000
  exit
  preference 9
  external-preference 140
  export "OSPF-Export"
  area 0.0.0.0
    virtual-link 4.3.2.1 transit-area 4.3.2.1
    exit
    interface "system"
    exit
  exit
  area 0.0.0.20
    stub
    exit
    interface "SR1-2"
    exit
  exit
  area 0.0.0.25
    nssa
    exit
  exit
  area 4.3.2.1
  exit

A:ALA-48>config>router>ospf3#
This section discusses the following OSPF configuration management tasks:

- Modifying a Router ID on page 306
- Deleting a Router ID on page 308
- Modifying OSPF Parameters on page 309

Modifying a Router ID

Since the router ID is defined in the `config>router` context, not in the OSPF configuration context, the protocol instance is not aware of the change. Re-examine the plan detailing the router ID. Changing the router ID on a device could cause configuration inconsistencies if associated values are not also modified.

After you have changed a router ID, manually shut down and restart the protocol using the `shutdown` and `no shutdown` commands in order for the changes to be incorporated.

Use the following CLI syntax to change a router ID number:

**CLI Syntax:** `config>router# router-id router-id`

The following displays a NSSA router ID modification example:

```
A:ALA-49>config>router# info
--
IP Configuration
--
interface "system"
 address 10.10.10.104/32
exit
interface "to-103"
 address 10.0.0.103/24
 port 1/1/1
exit
 autonomous-system 100
 router-id 10.10.10.104
--
A:ALA-49>config>router#

ALA-48>config>router# info
--
IP Configuration
--
interface "system"
 address 10.10.10.103/32
```
exit
interface "to-104"
   address 10.0.0.104/24
   port 1/1/1
exit
autonomous-system 100
router-id 10.10.10.103

-----------------------------
ALA-48>config>router#
Deleting a Router ID

You can modify a router ID, but you cannot delete the parameter. When the `no router router-id` command is issued, the router ID reverts to the default value, the system interface address (which is also the loopback address). If a system interface address is not configured, then the last 32 bits of the chassis MAC address is used as the router ID.
Modifying OSPF Parameters

You can change or remove existing OSPF parameters in the CLI or NMS. The changes are applied immediately.

The following example displays an OSPF modification in which an interface is removed and another interface added.

Example:
```
config>router# ospf 1
config>router>ospf# area 0.0.0.20
config>router>ospf>area# no interface "to-103"
config>router>ospf>area# interface "to-HQ"
config>router>ospf>area>if$ priority 50
config>router>ospf>area>if# exit
config>router>ospf>area# exit
```

The following example displays the OSPF configuration with the modifications entered in the previous example:

```
A:ALA-49>config>router>ospf# info
--
asbr
overload
overload-on-boot timeout 60
traffic-engineering
preference 9
external-preference 140
export "OSPF-Export"
graceful-restart
helper-disable
exit
area 0.0.0.0
 virtual-link 10.0.0.1 transit-area 0.0.0.1
 authentication-type message-digest
 message-digest-key 2 md5 "Mi6BQAFi3MI" hash
 exit
 virtual-link 1.2.3.4 transit-area 1.2.3.4
 hello-interval 9
 dead-interval 40
 exit
 interface "system"
 exit
area 0.0.0.1
 exit
area 0.0.0.20
 stub
 exit
 interface "to-HQ"
 priority 50
 exit
area 0.0.0.25
```
nssa
exit
interface "if2"
    priority 100
exit
exit
area 0.0.0.40
    interface "test1"
    authentication-type password
    authentication-key "3WErEDozxyQ" hash
exit
exit
area 1.2.3.4
exit

----------------------------------------------
A:ALA-49>config>router>ospf#
OSPF Command Reference

Command Hierarchies

- Configuration Commands on page 311
- Show Commands on page 314
- Clear Commands on page 314
- Debug Commands on page 314

Configuration Commands

```
config
 — router
 — [no] ospf [ospf-instance] [router-id]
 — ospf3 [instance-id] [router-id]
 — [no] ospf3 instance-id
 — advertise-router-capability [link | area | as]
 — no advertise-router-capability
 — advertise-tunnel-link [link | area | as]
 — no advertise-tunnel-link
 — [no] area area-id
 — area-range ip-prefix/mask [advertise | not-advertise]
 — no area-range ip-prefix/mask
 — [no] blackhole-aggregate
 — [no] interface ip-int-name [secondary]
 — [no] advertise-subnet
 — authentication-key [authentication-key | hash-key] [hash | hash2]
 — no authentication-key
 — authentication-type {password | message-digest}
 — no authentication-type
 — auth-keychain name
 — no auth-keychain
 — bfd-enable [remain-down-on-failure]
 — no bfd-enable
 — dead-interval seconds
 — no dead-interval
 — export policy-name [... policy-name]
 — no export
 — export-limit number [log percentage]
 — no export-limit
 — hello-interval seconds
 — no hello-interval
 — interface-type {broadcast | point-to-point}
 — no interface-type
 — [no] loopfree-alternate-exclude
```
— lfa-policy-map route-nh-template template-name
— no lfa-policy-map
— lsa-filter-out [all | except-own-rtrlsa | except-own-rtrlsa-and-defaults]
— [no] lsa-filter-out
— message-digest-key key-id md5 [key | hash-key] [hash | hash2]
— no message-digest-key key-id
— metric metric
— no metric
— mtu bytes
— no mtu
— [no] passive
— priority number
— no priority
— retransmit-interval seconds
— no retransmit-interval
— [no] shutdown
— transit-delay seconds
— no transit-delay
— [no] loopfree-alternate-exclude
— [no] nssa
— area-range ip-prefix/mask [advertise | not-advertise]
— no area-range ip-prefix/mask
— area-range ip-prefix/prefix-length [advertise | not-advertise]
— no area-range ip-prefix/prefix-length
— originate-default-route [type-7] [no-adjacency-check]
— no originate-default-route
— [no] redistribute-external
— [no] summaries
— [no] stub
— default-metric metric
— no default-metric
— [no] summaries
— [no] virtual-link router-id transit-area area-id
— authentication-key [authentication-key | hash-key] [hash | hash2]
— no authentication-key
— authentication-type {password | message-digest}
— no authentication-type
— auth-keychain name
— no auth-keychain
— dead-interval seconds
— no dead-interval
— hello-interval seconds
— no hello-interval
— message-digest-key key-id md5 [key | hash-key] [hash | hash2]
— no message-digest-key key-id
— retransmit-interval seconds
— no retransmit-interval
— [no] shutdown
— transit-delay seconds
— no transit-delay
— [no] asbr [trace-path domain-id]
— [no] compatible-rrf1583
— [no] disable-ldp-sync
— export policy-name [policy-name...(up to 5 max)]
— no export
— export-limit number [log percentage]
— no export-limit
— external-db-overflow limit seconds
— no external-db-overflow
— external-preference preference
— no external-preference
— [no] graceful-restart
— [no] helper-disable
— import policy-name [policy-name...(upto 5 max)]
— no import
— [no] ldp-over-rsvp
— [no] loopfree-alternate
— loopfree-alternate-exclude prefix-policy prefix-policy [prefix-policy... up to 5]
— no loopfree-alternate-exclude
— [no] mcast-import-ipv6
— [no] multicast-import
— overload [timeout seconds]
— no overload
— [no] overload-include-ext-2
— [no] overload-include-stub
— overload-on-boot [timeout seconds]
— no overload-on-boot
— preference preference
— no preference
— reference-bandwidth bandwidth-in-kbps
— reference-bandwidth [tbps Tera-bps] [gbps Giga-bps] [mbps Mega-bps] [kbps Kilo-bps]
— no reference-bandwidth
— router-id ip-address
— no router-id
— [no] rsvp-shortcut
— [no] shutdown
— timers
— [no] incremental-spf-wait inc-spf-wait
— [no] lsa-accumulate lsa-accum-time
— [no] lsa-arrival lsa-arrival-time
— [no] lsa-generate max-lsa-wait [lsa-initial-wait [lsa-second-wait]]
— [no] redistribute-delay redist-wait
— [no] spf-wait max-spf-wait [spf-initial-wait [spf-second-wait]]
— [no] traffic-engineering
— [no] unicast-import-disable
Show Commands

show
  — router
    — ospf [ospf-instance]
    — ospf3 [ospf-instance]
      — area [area-id] [detail][lfa]
      — [router-id]
      — database [type {router | network | summary | asbr-summary | external | nssa | all}]
        [area area-id] [adv-router router-id] [link-state-id] [detail]
      — interface [area area-id] [detail]
      — interface [ip-int-name | ip-address] [detail]
      — lfa-coverage
      — neighbor [remote ip-address] [detail]
      — neighbor [ip-int-name] [router-id] [detail]
      — opaque-database [link link-id | area area-id | as] [adv-router router-id] [ls-id] [detail]
      — range [area-id]
      — routes [ip-prefix[/prefix-length]] [type] [detail] [alternative] [summary] [exclude-shortcut]
      — spf [lfa]
      — statistics
      — status
      — virtual-link [detail]
      — virtual-neighbor [remote ip-address] [detail]

Clear Commands

clear
  — router
    — ospf [ospf-instance]
    — ospf3 [ospf-instance]
      — database [purge]
      — export
      — neighbor [ip-int-name | ip-address]
      — statistics

Debug Commands

debug
  — router
    — ospf [ospf-instance]
    — ospf3 [ospf-instance]
      — area [area-id]
      — no area
      — area-range [ip-address]
      — no area-range
      — cspf [ip-addr]
      — no cspf
      — [no] graceful-restart
      — interface [ip-int-name | ip-address]
— no interface
— leak [ip-address]
— no leak
— lsdb [type] [ls-id] [adv-rtr-id] [area area-id]
— no lsdb
— [no] misc
— neighbor [ip-int-name | router-id]
— no neighbor
— nssa-range [ip-address]
— no nssa-range
— packet [packet-type] [ip-address]
— no packet
— rtm [ip-addr]
— no rtm
— spf [type] [dest-addr]
— no spf
— virtual-neighbor [ip-address]
— no virtual-neighbor
Configuration Commands

Generic Commands

shutdown

Syntax  
[no] shutdown

Context  
config>router>ospf
config>router>ospf3
config>router>ospf>area>interface
config>router>ospf3>area>interface
config>router>ospf>area>virtual-link
config>router>ospf3>area>virtual-link

Description  
The shutdown command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. Many entities must be explicitly enabled using the no shutdown command.

The shutdown command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Unlike other commands and parameters where the default state is not indicated in the configuration file, shutdown and no shutdown are always indicated in system generated configuration files.

The no form of the command puts an entity into the administratively enabled state.

Default  
OSPF Protocol — The Open Shortest Path First (OSPF) protocol is created in the no shutdown state.

OSPF Interface — When an IP interface is configured as an OSPF interface, OSPF on the interface is in the no shutdown state by default.
**OSPF Global Commands**

**ospf**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] ospf ospf-instance [instance-id] [router-id]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;router</td>
</tr>
</tbody>
</table>

**Description**

This command creates an OSPF routing instance and then enters the associated context to configure the associated protocol parameters.

Additionally, the router ID can be specified as another parameter of the OSPDF command. This parameter is required for all non-base OSPF instances.

The default value for the base instance is inherited from the configuration in the config>router context. When that is not configured the following applies:

1. The system uses the system interface address (which is also the loopback address).
2. If a system interface address is not configured, use the last 32 bits of the chassis MAC address.

This is a required command when configuring multiple instances and the instance being configured is not the base instance. When configuring multiple instances of OSPF there is a risk of loops because networks are advertised by multiple domains configured with multiple interconnections to one another. To avoid this from happening all routers in a domain should be configured with the same domain-id. Each domain (OSPF-instance) should be assigned a specific bit value in the 32-bit tag mask.

The default value for non-base instances is 0.0.0.0 and is invalid, in this case the instance of OSPF will not start. When configuring a new router ID, the instance is not automatically restarted with the new router ID. The next time the instance is initialized, the new router ID is used.

Issue the shutdown and no shutdown commands for the instance for the new router ID to be used, or reboot the entire router.

The **no** form of the command to reverts to the default value.

**Default**

`no ospf`

**Parameters**

`instance-id` — Specifies a unique integer that identifies a specific instance of a version of the OSPF protocol running in the router instance specified by the router ID.

**Values**

`1 — 31`

`router-id` — Specifies the OSPF router ID to be used with the associated OSPF instance. The router-id must be given a dot decimal notation format.

**Values**

`1 — 31`
ospf3

Syntax  

```
ospf3 [instance-id] [router-id]
[no] ospf3 instance-id
```

Context  config-router

Description  This command creates an OSPFv3 routing instance and then enters the associated context to configure associated protocol parameters.

When an OSPFv3 instance is created, the protocol is enabled. To start or suspend execution of the OSPF.

The no form of the command deletes the OSPFv3 protocol instance, removing all associated configuration parameters.

Default  no default

Parameters  

- `instance-id` — Specify the instance ID for the OSPFv3 instance being created or modified. The instance ID must match the specified range based on the address family. For ipv6-unicast, the instance id must be between 0 and 31. For ipv4-unicast the instance id must be between 64-95.

  - Values 0 — 31: IPV6 unicast
  - Values 64—95: IPV4 unicast

- `router-id` — Specifies the OSPF router ID to be used with the associated OSPF instance. The router-id must be given a dot decimal notation format.

asbr

Syntax  

```
[no] asbr [trace-path domain-id]
```

Context  config-router

Description  This command configures the router as a Autonomous System Boundary Router (ASBR) if the router is to be used to export routes from the Routing Table Manager (RTM) into this instance of OSPF. Once a router is configured as an ASBR, the export policies into this OSPF domain take effect. If no policies are configured no external routes are redistributed into the OSPF domain.

The no form of the command removes the ASBR status and withdraws the routes redistributed from the Routing Table Manager into this instance of OSPF from the link state database.

When configuring multiple instances of OSPF there is a risk of loops because networks are advertised by multiple domains configured with multiple interconnections to one another. To avoid this from happening all routers in a domain should be configured with the same domain-id. Each domain (OSPF-instance) should be assigned a specific bit value in the 32-bit tag mask.

When an external route is originated by an ASBR using an internal OSPF route in a given domain, the corresponding bit is set in the AS-external LSA. As the route gets redistributed from one domain to another, more bits are set in the tag mask, each corresponding to the OSPF domain the route visited. Route redistribution looping is prevented by checking the corresponding bit as part of the export policy; if the bit corresponding to the announcing OSPF process is already set, the route is not exported there.
Domain-IDs are incompatible with any other use of normal tags. The domain ID should be configured with a value between 1 and 31 by each router in a given OSPF domain (OSPF Instance).

When an external route is originated by an ASBR using an internal OSPF route in a given domain, the corresponding (1-31) bit is set in the AS-external LSA.

As the route gets redistributed from one domain to another, more bits are set in the tag mask, each corresponding to the OSPF domain the route visited. Route redistribution looping is prevented by checking the corresponding bit as part of the export policy; if the bit corresponding to the announcing OSPF process is already set, the route is not exported there.

**Default**
- no asbr — The router is not an ASBR.

**Parameters**
- domain-id — Specifies the domain ID.
  - **Values**
  - 1 — 31
  - **Default**
  - 0

**compatible-rfc1583**

**Syntax**
- [no] compatible-rfc1583

**Context**
- config>router>ospf

**Description**
This command enables OSPF summary and external route calculations in compliance with RFC1583 and earlier RFCs.

RFC1583 and earlier RFCs use a different method to calculate summary and external route costs. To avoid routing loops, all routers in an OSPF domain should perform the same calculation method.

Although it would be favorable to require all routers to run a more current compliancy level, this command allows the router to use obsolete methods of calculation.

The **no** form of the command enables the post-RFC1583 method of summary and external route calculation.

**Default**
- compatible-rfc1583 — RFC1583 compliance is enabled.
### disable-ldp-sync

**Syntax**

```plaintext
[no] disable-ldp-sync
```

**Context**

`config>router>ospf`

**Description**

This command disables the IGP-LDP synchronization feature on all interfaces participating in the OSPF routing protocol. When this command is executed, IGP immediately advertises the actual value of the link cost for all interfaces which have the IGP-LDP synchronization enabled if the currently advertised cost is different. It will then disable IGP-LDP synchronization for all interfaces. This command does not delete the interface configuration. The `no` form of this command has to be entered to re-enable IGP-LDP synchronization for this routing protocol.

The `no` form of this command restores the default settings and re-enables IGP-LDP synchronization on all interfaces participating in the OSPF or IS-IS routing protocol and for which the `ldp-sync-timer` is configured.

**Default**

```plaintext
no disable-ldp-sync
```

### export

**Syntax**

```plaintext
export policy-name [policy-name...]
no export
```

**Context**

`config>router>ospf`

**Description**

This command associates export route policies to determine which routes are exported from the route table to OSPF. Export policies are only in effect if OSPF is configured as an ASBR.

If no export policy is specified, non-OSPF routes are not exported from the routing table manager to OSPF.

If multiple policy names are specified, the policies are evaluated in the order they are specified. The first policy that matches is applied. If multiple export commands are issued, the last command entered will override the previous command. A maximum of five policy names can be specified.

The `no` form of the command removes all policies from the configuration.

**Default**

```plaintext
no export — No export route policies specified.
```

**Parameters**

- `policy-name` — The export route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

  The specified name(s) must already be defined.
OSPF Global Commands

export-limit

**Syntax**

```
export-limit number [log percentage]
no export-limit
```

**Context**

```
config>router>ospf
config>router>ospf3
```

**Description**

This command configures the maximum number of routes (prefixes) that can be exported into OSPF from the route table.

The no form of the command removes the parameters from the configuration.

**Default**

no export-limit, the export limit for routes or prefixes is disabled.

**Parameters**

- **number** — Specifies the maximum number of routes (prefixes) that can be exported into OSPF from the route table.
  - **Values**
    - 1 — 4294967295

- **log percentage** — Specifies the percentage of the export-limit, at which a warning log message and SNMP notification would be sent.
  - **Values**
    - 1 — 100

**external-db-overflow**

**Syntax**

```
external-db-overflow limit interval
no external-db-overflow
```

**Context**

```
config>router>ospf
config>router>ospf3
```

**Description**

This command enables limits on the number of non-default AS-external-LSA entries that can be stored in the LSDB and specifies a wait timer before processing these after the limit is exceeded.

The **limit** value specifies the maximum number of non-default AS-external-LSA entries that can be stored in the link-state database (LSDB). Placing a limit on the non-default AS-external-LSAs in the LSDB protects the router from receiving an excessive number of external routes that consume excessive memory or CPU resources. If the number of routes reach or exceed the **limit**, the table is in an overflow state. When in an overflow state, the router will not originate any new AS-external-LSAs. In fact, it withdraws all the self-originated non-default external LSAs.

The **interval** specifies the amount of time to wait after an overflow state before regenerating and processing non-default AS-external-LSAs. The waiting period acts like a dampening period preventing the router from continuously running Shortest Path First (SPF) calculations caused by the excessive number of non-default AS-external LSAs.

The **external-db-overflow** must be set identically on all routers attached to any regular OSPF area. OSPF stub areas and not-so-stubby areas (NSSAs) are excluded.

The no form of the command disables limiting the number of non-default AS-external-LSA entries.

**Default**

no external-db-overflow — No limit on non-default AS-external-LSA entries.
**Parameters**

- **limit** — The maximum number of non-default AS-external-LSA entries that can be stored in the LSDB before going into an overflow state expressed as a decimal integer.
  
  **Values**
  
  0 — 2147483674

- **interval** — The number of seconds after entering an overflow state before attempting to process non-default AS-external-LSAs expressed as a decimal integer.
  
  **Values**
  
  0 — 2147483674

---

**external-preference**

**Syntax**

- `external-preference preference`
- `no external-preference`

**Context**

- `config>router>ospf`
- `config>router>ospf3`

**Description**

This command configures the preference for OSPF external routes.

A route can be learned by the router from different protocols, in which case, the costs are not comparable. When this occurs the preference is used to decide which route will be used.

Different protocols should not be configured with the same preference, if this occurs the tiebreaker is per the default preference table as defined in the Table 5, “Route Preference Defaults by Route Type,” on page 324. If multiple routes are learned with an identical preference using the same protocol, the lowest cost route is used.

If multiple routes are learned with an identical preference using the same protocol and the costs (metrics) are equal, then the decision of what route to use is determined by the configuration of the `ecmp` in the `config>router` context.

The `no` form of the command reverts to the default value.

**Default**

- `external-preference 150` — OSPF external routes have a default preference of 150.
Parameters

preference — The preference for external routes expressed as a decimal integer. Defaults for different route types are listed in Table 5.

Table 5: Route Preference Defaults by Route Type

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Preference</th>
<th>Configurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct attached</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Static routes</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF internal</td>
<td>10</td>
<td>Yes*</td>
</tr>
<tr>
<td>IS-IS level 1 internal</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 2 internal</td>
<td>18</td>
<td>Yes</td>
</tr>
<tr>
<td>RIP</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF external</td>
<td>150</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS</td>
<td>167</td>
<td>No</td>
</tr>
<tr>
<td>IS-IS level 1 external</td>
<td>160</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 2 external</td>
<td>165</td>
<td>Yes</td>
</tr>
<tr>
<td>BGP</td>
<td>170</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Preference for OSPF internal routes is configured with the preference command.

Values 1 — 255

graceful-restart

Syntax [no] graceful-restart

Context config>router>ospf
          config>router>ospf3

Description This command enables graceful-restart for OSPF. When the control plane of a GR-capable router fails, the neighboring routers (GR helpers) temporarily preserve adjacency information, so packets continue to be forwarded through the failed GR router using the last known routes. If the control plane of the GR router comes back up within the GR timer, then the routing protocols would re-converge to minimize service interruption.

The no form of the command disables graceful restart and removes all graceful restart configurations in the OSPF instance.

Default no graceful-restart
**helper-disable**

**Syntax**

```
[no] helper-disable
```

**Context**

```
config>router>ospf>graceful-restart
config>router>ospf3>graceful-restart
```

**Description**

This command disables the helper support for graceful restart. When `graceful-restart` is enabled, the router can be a helper (meaning that the router is helping a neighbor to restart) or be a restarting router or both. The router supports only helper mode. This facilitates the graceful restart of neighbors but will not act as a restarting router (meaning that the router will not help the neighbors to restart).

The **no helper-disable** command enables helper support and is the default when `graceful-restart` is enabled.

**Default**

disabled

**import**

**Syntax**

```
import policy-name [policy-name...(upto 5 max)]
```

**Context**

```
config>router>ospf
config>router>ospf3
```

**Description**

This command applies one or more (up to 5) route polices as OSPF import policies. When a prefix received in an OSPF LSA is accepted by an entry in an OSPF import policy it is installed in the routing table if it is the most preferred route to the destination. When a prefix received in an OSPF LSA is rejected by an entry in an OSPF import policy it is not installed in the routing table, even if it has the lowest preference value among all the routes to that destination. The flooding of LSAs is unaffected by OSPF import policy actions.

**Default**

If an OSPF route has the lowest preference value among all routes to a destination it is installed in the routing table.

**ldp-over-rsvp**

**Syntax**

```
[no] ldp-over-rsvp
```

**Context**

```
config>router>ospf
```

**Description**

This command allows LDP-over-RSVP processing in this OSPF instance.
loopfree-alternate

Syntax  
[no] loopfree-alternate

Context  
config>router>ospf>area
config>router>ospf3>area

Description  
This command enables Loop-Free Alternate (LFA) computation by SPF under the IS-IS routing protocol level or under the OSPF routing protocol instance level.

When this command is enabled, it instructs the IGP SPF to attempt to pre-compute both a primary next-hop and an LFA next-hop for every learned prefix. When found, the LFA next-hop is populated into the routing table along with the primary next-hop for the prefix.

The no form of this command disables the LFA computation by IGP SPF.

Default  
no loopfree-alternate

lfa-policy-map

Syntax  
lfa-policy-map route-nh-template template-name
no lfa-policy-map

Context  
config>router>ospf>area>interface
config>router>ospf3>area>interface

Description  
This command applies a route next-hop policy template to an OSPF or IS-IS interface.

When a route next-hop policy template is applied to an interface in IS-IS, it is applied in both level 1 and level 2. When a route next-hop policy template is applied to an interface in OSPF, it is applied in all areas. However, the command in an OSPF interface context can only be executed under the area in which the specified interface is primary and then applied in that area and in all other areas where the interface is secondary. If the user attempts to apply it to an area where the interface is secondary, the command will fail.

If the user excluded the interface from LFA using the command loopfree-alternate-exclude, the LFA policy, if applied to the interface, has no effect.

Finally, if the user applied a route next-hop policy template to a loopback interface or to the system interface, the command will not be rejected, but it will result in no action being taken.

The no form deletes the mapping of a route next-hop policy template to an OSPF or IS-IS interface.

Parameters  
template-name — Specifies the name of the template, up to 32 characters.

loopfree-alternate-exclude

Syntax  
loopfree-alternate-exclude prefix-policy prefix-policy [prefix-policy... up to 5]
no loopfree-alternate-exclude

Context  
config>router>ospf
config>router>ospf3
Description
This command excludes from LFA SPF calculation prefixes that match a prefix entry or a tag entry in a prefix policy.
The implementation already allows the user to exclude an interface in IS-IS or OSPF, an OSPF area, or an IS-IS level from the LFA SPF.
If a prefix is excluded from LFA, then it will not be included in LFA calculation regardless of its priority. The prefix tag will, however, be used in the main SPF. Note that prefix tags are defined for the IS-IS protocol but not for the OSPF protocol.
The default action of the `loopfree-alternate-exclude` command, when not explicitly specified by the user in the prefix policy, is a “reject”. Thus, regardless if the user did or did not explicitly add the statement “default-action reject” to the prefix policy, a prefix that did not match any entry in the policy will be accepted into LFA SPF.
The no form deletes the exclude prefix policy.

Parameters
prefix-policy prefix-policy — Specifies the name of the prefix policy, up to 32 characters. The specified name must have been already defined.

mcast-import-ipv6

Syntax
[no] mcast-import-ipv6

Context
configure>router>ospf3

Description
This command administratively enables the submission of routes into the IPv6 multicast RTM by OSPF3.
The no form of the command disables the submission of the routes.

multicast-import

Syntax
[no] multicast-import

Context
config>router>ospf

Description
This command enables the submission of routes into the multicast Route Table Manager (RTM) by OSPF.
The no form of the command disables the submission of routes into the multicast RTM.

Default
no multicast-import
overload

Syntax  
overload [timeout seconds]

no overload

Context  
config>router>ospf
config>router>ospf3
config>router>ospf3

Description  
This command changes the overload state of the local router so that it appears to be overloaded. When overload is enabled, the router can participate in OSPF routing, but is not used for transit traffic. Traffic destined to directly attached interfaces continues to reach the router.

To put the IGP in an overload state enter a timeout value. The IGP will enter the overload state until the timeout timer expires or a no overload command is executed.

If the overload command is encountered during the execution of an overload-on-boot command then this command takes precedence. This could occur as a result of a saved configuration file where both parameters are saved. When the file is saved by the system the overload-on-boot command is saved after the overload command. However, when overload-on-boot is configured under OSPF with no timeout value configured, the router will remain in overload state indefinitely after a reboot.

Use the no form of this command to return to the default. When the no overload command is executed, the overload state is terminated regardless of the reason the protocol entered overload state.

Default  
no overload

Parameters  
timeout seconds — Specifies the number of seconds to reset overloading.

Values  
1 — 1800

Default  
60

overload-include-ext-2

Syntax  
[no] overload-include-ext-2

Context  
config>router>ospf
config>router>ospf3

Description  
This command is used to control if external type-2 routes should be re-advertised with a maximum metric value when the system goes into overload state for any reason. When this command is enabled and the router is in overload, all external type-2 routes will be advertised with the maximum metric.

Default  
no overload-include-ext-2
overload-include-stub

Syntax  [no] overload-include-stub

Context  config>router>ospf
         config>router>ospf3

Description  This command is used to determine if the OSPF stub networks should be advertised with a maximum metric value when the system goes into overload state for any reason. When enabled, the system uses the maximum metric value. When this command is enabled and the router is in overload, all stub interfaces, including loopback and system interfaces, will be advertised at the maximum metric.

Default  no overload-include-stub

overload-on-boot

Syntax  overload-on-boot [timeout seconds]
        no overload

Context  config>router>ospf
         config>router>ospf3

Description  When the router is in an overload state, the router is used only if there is no other router to reach the destination. This command configures the IGP upon bootup in the overload state until one of the following events occur:

- The timeout timer expires.
- A manual override of the current overload state is entered with the no overload command.

The no overload command does not affect the overload-on-boot function.

The no form of the command removes the overload-on-boot functionality from the configuration.

The default timeout value is 60 seconds, which means after 60 seconds overload status the SR will recover (change back to non-overload status). However, when overload-on-boot is configured under OSPF with no timeout value the router will remain in overload state indefinitely after a reboot.

Parameters  timeout seconds — Specifies the number of seconds to reset overloading.

Values  1 — 1800

Default  indefinitely in overload.
preference

**Syntax**

```plaintext
preference preference
no preference
```

**Context**

```plaintext
config>router>ospf
config>router>ospf3
```

This command configures the preference for OSPF internal routes.

A route can be learned by the router from different protocols, in which case, the costs are not comparable. When this occurs the preference is used to decide which route will be used.

Different protocols should not be configured with the same preference, if this occurs the tiebreaker is per the default preference table as defined in Table 6. If multiple routes are learned with an identical preference using the same protocol, the lowest cost route is used.

If multiple routes are learned with an identical preference using the same protocol and the costs (metrics) are equal, then the decision of what route to use is determined by the configuration of the `ecmp` in the `config>router` context.

The `no` form of the command reverts to the default value.

**Default**

```plaintext
preference 10 — OSPF internal routes have a preference of 10.
```

**Parameters**

```plaintext
preference — The preference for internal routes expressed as a decimal integer. Defaults for different route types are listed in Table 6.
```

---

**Table 6: Route Preference Defaults by Route Type**

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Preference</th>
<th>Configurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct attached</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Static routes</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF internal</td>
<td>10</td>
<td>Yes*</td>
</tr>
<tr>
<td>IS-IS level 1 internal</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 2 internal</td>
<td>18</td>
<td>Yes</td>
</tr>
<tr>
<td>RIP</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF external</td>
<td>150</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS</td>
<td>167</td>
<td>No</td>
</tr>
<tr>
<td>IS-IS level 1 external</td>
<td>160</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS level 2 external</td>
<td>165</td>
<td>Yes</td>
</tr>
<tr>
<td>BGP</td>
<td>170</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Preference for OSPF internal routes is configured with the `preference` command.

**Values**

1 — 255
reference-bandwidth

**Syntax**
```
reference-bandwidth bandwidth-in-kbps
reference-bandwidth [tbps Tera-bps] [gbps Giga-bps] [mbps Mega-bps] [kbps Kilo-bps]
no reference-bandwidth
```

**Context**
```
config>router>ospf
config>router>ospf3
```

**Description**
This command configures the reference bandwidth in kilobits per second (Kbps) that provides the reference for the default costing of interfaces based on their underlying link speed.

The default interface cost is calculated as follows:

\[ \text{cost} = \frac{\text{reference-bandwidth} \times \text{bandwidth}}{1000} \]

The default reference-bandwidth is 100,000,000 Kbps or 100 Gbps, so the default auto-cost metrics for various link speeds are as follows:

- 10 Mbs link default cost of 10000
- 100 Mbs link default cost of 1000
- 1 Gbps link default cost of 100
- 10 Gbps link default cost of 10

The reference-bandwidth command assigns a default cost to the interface based on the interface speed. To override this default cost on a particular interface, use the metric metric command in the config>router>ospf>area>interface ip-int-name context.

The no form of the command reverts the reference-bandwidth to the default value.

**Default**

```
reference-bandwidth 100000000 — Reference bandwidth of 100 Gbps.
```

**Parameters**

- `bandwidth-in-kbps` — The reference bandwidth in kilobits per second expressed as a decimal integer.

  **Values**
  ```
 1 — 100000000
  ```

- `tbps Tera-bps` — The reference bandwidth in terabits per second expressed as a decimal integer.

  **Values**
  ```
 1 — 4
  ```

- `gbps Giga-bps` — The reference bandwidth in gigabits per second expressed as a decimal integer.

  **Values**
  ```
 1 — 999
  ```

- `mbps Mega-bps` — The reference bandwidth in megabits per second expressed as a decimal integer.

  **Values**
  ```
 1 — 999
  ```

- `kbps Kilo-bps` — reference bandwidth in kilobits per second expressed as a decimal integer.

  **Values**
  ```
 1 — 999
  ```
router-id

Syntax

```
router-id ip-address
no router-id
```

Context

```
config>router>ospf
config>router>ospf3
```

Description

This command configures the router ID for the OSPF instance. This command configures the router ID for the OSPF instance.

When configuring the router ID in the base instance of OSPF it overrides the router ID configured in the `config>router` context.

The default value for the base instance is inherited from the configuration in the `config>router` context. If the router ID in the `config>router` context is not configured, the following applies:

- The system uses the system interface address (which is also the loopback address).
- If a system interface address is not configured, use the last 32 bits of the chassis MAC address.

This is a **required** command when configuring multiple instances and the instance being configured is not the base instance.

When configuring a new router ID, the instance is not automatically restarted with the new router ID. The next time the instance is initialized, the new router ID is used.

To force the new router ID to be used, issue the `shutdown` and `no shutdown` commands for the instance, or reboot the entire router.

It is possible to configure an SR OS node to operate with an IPv6 only BOF and no IPv4 system interface address. When configured in this manner, the operator must explicitly define IPv4 router IDs for protocols such as OSPF and BGP as there is no mechanism to derive the router ID from an IPv6 system interface address.

The `no` form of the command to reverts to the default value.

---

advertise-router-capability

Syntax

```
advertise-router-capability {link | area | as}
no advertise-router-capability
```

Context

```
config>router>ospf
config>router>ospf3
```

Description

This command enables the advertisement of router capabilities as defined in the IETF RFC 4970. This adds a new TLV based mechanism, allowing OSPF (OSPFv2 and OSPFv3) router to advertise specific capabilities including Traffic Engineering capability, graceful restart helper support and stub router support.

The parameters (link, area and as) control the scope of the capabilities advertisements.

The `no` form of this command, disables this capability.

---

Default

`no advertise-router-capability`

Parameters

- `link` — are only advertised over local link and not flooded beyond
area — are only advertised within the area of origin.
as — are only advertised throughout the entire autonomous system

rsvp-shortcut

Syntax   [no] rsvp-shortcut
Context   config>router>ospf

Description
This command enables the use of an RSVP-TE shortcut for resolving IGP routes by IS-IS or OSPF routing protocols.

This command instructs IS-IS or OSPF to include RSVP LSPs originating on this node and terminating on the router-id of a remote node as direct links with a metric equal to the operational metric provided by MPLS. If the user enabled the relative-metric option for this LSP, IGP will apply the shortest IGP cost between the endpoints of the LSP plus the value of the offset, instead of the LSP operational metric, when computing the cost of a prefix which is resolved to the LSP.

When a prefix is resolved to a tunnel next-hop, the packet is sent labeled with the label stack corresponding to the NHLFE of the RSVP LSP. Any network event causing an RSVP LSP to go down will trigger a full SPF computation which may result in installing a new route over another RSVP LSP shortcut as tunnel next-hop or over a regular IP next-hop.

When rsvp-shortcut is enabled at the IGP instance level, all RSVP LSPs originating on this node are eligible by default as long as the destination address of the LSP, as configured in configure>router>mpls>lsp>to, corresponds to a router-id of a remote node. RSVP LSPs with a destination corresponding to an interface address or any other loopback interface address of a remote node are automatically not considered by IS-IS or OSPF. The user can, however, exclude a specific RSVP LSP from being used as a shortcut for resolving IGP routes by entering the config>router>mpls>lsp=no igp-shortcut command.

The SPF in OSPF or IS-IS will only use RSVP LSPs as forwarding adjacencies, IGP shortcuts, or as endpoints for LDP-over-RSVP. These applications of RSVP LSPs are mutually exclusive at the IGP instance level. If the user enabled two or more options in the same IGP instance, then forwarding adjacency takes precedence over the shortcut application, which takes precedence over the LDP-over-RSVP application.

When ECMP is enabled on the system and multiple equal-cost paths exist for a prefix, the following selection criteria are used to pick up the set of next-hops to program in the data path:

• for a destination = tunnel-endpoint (including external prefixes with tunnel-endpoint as the next-hop):
  → select tunnel with lowest tunnel-index (ip next-hop is never used in this case)

• for a destination != tunnel-endpoint:
  → exclude LSPs with metric higher than underlying IGP cost between the endpoint of the LSP
  → prefer tunnel next-hop over ip next-hop
  → within tunnel next-hops:
    i. select lowest endpoint to destination cost
    ii. if same endpoint to destination cost, select lowest endpoint node router-id
    iii. if same router-id, select lowest tunnel-index
within ip next-hops:
   i. select lowest downstream router-id
   ii. if same downstream router-id, select lowest interface-index

• Note though no ECMP is performed across both the IP and tunnel next-hops the tunnel endpoint lies in one of the shortest IGP paths for that prefix. In that case, the tunnel next-hop is always selected as long as the prefix cost using the tunnel is equal or lower than the IGP cost.

The ingress IOM will spray the packets for this prefix over the set of tunnel next-hops and IP next-hops based on the hashing routine currently supported for IPv4 packets.

This feature provides IGP with the capability to populate the multicast RTM with the prefix IP next-hop when both the rsvpShortcut and the multicast-import options are enabled in IGP. The unicast RTM can still make use of the tunnel next-hop for the same prefix. This change is made possible with the enhancement by which SPF keeps track of both the direct first hop and the tunneled first hop of a node which is added to the Dijkstra tree.

The resolution and forwarding of IPv6 prefixes to IPv4 IGP shortcuts is not supported.

The no form of this command disables the resolution of IGP routes using RSVP shortcuts.

**Default**  no rsvp-shortcut

### advertise-tunnel-link

**Syntax**  

advertise-tunnel-link {link | area | as}  

no advertise-tunnel-link

**Context**  

config>router>ospf  

config>router>ospf3

**Description**  

This command enables the advertisement of router as defined in the IETF RFC 4970. This adds a new TLV based mechanism, allowing OSPF (OSPFv2 and OSPFv3) router to advertise specific including Traffic Engineering capability, graceful restart helper support and stub router support.

The parameters (link, area, and as) control the scope of the capabilities advertisements.

The no form of this command, disables this capability.

**Default**  no advertise-tunnel-link

**Parameters**

- **link** — are only advertised over local link and not flooded beyond.
- **area** — are only advertised within the area of origin.
- **as** — are only advertised throughout the entire autonomous system.
super-backbone

Syntax  [no] super-backbone

Context  config>service>vprn>ospf

Description  This command specifies whether CE-PE functionality is required or not. The OSPF super backbone indicates the type of the LSA generated as a result of routes redistributed into OSPF. When enabled, the redistributed routes are injected as summary, external or NSSA LSAs. When disabled, the redistributed routes are injected as either external or NSSA LSAs only.

Refer to the OS Services Guide for syntax and command usage information.

The no form of the command disables the super-backbone functionality.

Default  no super-backbone

timers

Syntax  timers

Context  config>router>ospf
        config>router>ospf3

Description  This command enables the context that allows for the configuration of OSPF timers. Timers control the delay between receipt of a link state advertisement (LSA) requiring a Dijkstra (Shortest Path First (SPF)) calculation and the minimum time between successive SPF calculations.

Changing the timers affects CPU utilization and network reconvergence times. Lower values reduce convergence time but increase CPU utilization. Higher values reduce CPU utilization but increase reconvergence time.

Default  none

incremental-spf-wait

Syntax  incremental-spf-wait inc-spf-wait
        no incremental-spf-wait

Context  config>router>ospf>timers
        config>router>ospf3>timers

Description  This command sets the internal OSPF delay before an incremental SPF calculation is performed.

The no incremental-spf-wait form of the command resets the timer value back to the default value.

Default  1000ms (1 second)

Parameters  inc-spf-wait — Specifies the OSPF incremental SPF recalculation delay.

Values  0 — 10000
lsa-accumulate

Syntax

\textbf{lsa-accumulate \textit{lsa-accum-time}} \\
\textbf{no lsa-accumulate}

Context

\texttt{config>router>ospf>timers} \\
\texttt{config>router>ospf3>timers}

Description

This command sets the internal OSPF delay to allow for the accumulation of multiple LSA so OSPF messages can be sent as efficiently as possible.

Shorting this delay can speed up the advertisement of LSAs to OSPF neighbors but may increase the number of OSPF messages sent.

Default

\texttt{1000ms (1 second)}

Parameters

\textit{lsa-accum-time} — Specifies the LSA accumulation delay in milliseconds.

Values

\texttt{0 — 10000}

lsa-arrival

Syntax

\textbf{lsa-arrival \textit{lsa-arrival-time}} \\
\textbf{no lsa-arrival}

Context

\texttt{config>router>ospf>timers} \\
\texttt{config>router>ospf3}

Description

This parameter defines the minimum delay that must pass between receipt of the same Link State Advertisements (LSAs) arriving from neighbors.

It is recommended that the neighbors configured (\texttt{lsa-generate}) \texttt{lsa-second-wait} interval is equal or greater then the \texttt{lsa-arrival} timer configured here.

Use the \texttt{no} form of this command to return to the default.

Default

\texttt{no lsa-arrival}

Parameters

\textit{lsa-arrival-time} — Specifies the timer in milliseconds. Values entered that do not match this requirement will be rejected.

Values

\texttt{0 — 600000}
**lsa-generate**

**Syntax**  
lsa-generate max-lsa-wait [lsa-initial-wait [lsa-second-wait]]  
no lsa-generate-interval

**Context**  
config>router>ospf>timers  
config>router>ospf3

**Description**  
This parameter customizes the throttling of OSPF LSA-generation. Timers that determine when to generate the first, second, and subsequent LSAs can be controlled with this command. Subsequent LSAs are generated at increasing intervals of the lsa-second-wait timer until a maximum value is reached.

Configuring the lsa-arrival interval to equal or less than the lsa-second-wait interval configured in the lsa-generate command is recommended.

Use the no form of this command to return to the default.

**Default**  
no lsa-generate

**Parameters**  
max-lsa-wait — Specifies the maximum interval, in milliseconds, between two consecutive occurrences of an LSA being generated.  
Values  
10 — 600,000  
Default  
5,000 milliseconds

lsa-initial-wait — Specifies the first waiting period between link-state advertisements (LSA) originate(s), in milliseconds. When the LSA exceeds the lsa-initial-wait timer value and the topology changes, there is no wait period and the LSA is immediately generated.

When an LSA is generated, the initial wait period commences. If, within the specified lsa-initial-wait period and another topology change occurs, then the lsa-initial-wait timer applies.

Values  
10 — 600000  
Default  
5,000 milliseconds

lsa-second-wait — Specifies the hold time in milliseconds between the first and second LSA generation. The next topology change is subject to this second wait period. With each subsequent topology change, the wait time doubles (this is 2x the previous wait time.). This assumes that each failure occurs within the relevant wait period.

Values  
10 — 600000  
Default  
5,000 milliseconds

**redistribute-delay**

**Syntax**  
redistribute-delay redist-wait  
no redistribute-delay

**Context**  
config>router>ospf>timers  
config>router>ospf3>timers

**Description**  
This command sets the internal OSPF hold down timer for external routes being redistributed into OSPF.
Shorting this delay can speed up the advertisement of external routes into OSPF but can result in additional OSPF messages if that source route is not yet stable.

The `no redistribute-delay` form of the command resets the timer value back to the default value.

**Default**

1000ms (1 second)

**Parameters**

*redirect-wait* — Specifies the OSPF redistribution hold down timer for external routes being advertised into OSPF.

**Values**

0 — 1000

---

### spf-wait

**Syntax**

```
spf-wait max-spf-wait [spf-initial-wait [spf-second-wait]]
no spf-wait
```

**Context**

```
cfg/router/ospf/timers
cfg/router/ospf3
```

**Description**

This command defines the maximum interval between two consecutive SPF calculations in milliseconds. Timers that determine when to initiate the first, second, and subsequent SPF calculations after a topology change occurs can be controlled with this command. Subsequent SPF runs (if required) will occur at exponentially increasing intervals of the `spf-second-wait` interval. For example, if the `spf-second-wait` interval is 1000, then the next SPF will run after 2000 milliseconds, and then next SPF will run after 4000 milliseconds, etc., until it reaches the `spf-wait` value. The SPF interval will stay at the `spf-wait` value until there are no more SPF runs scheduled in that interval. After a full interval without any SPF runs, the SPF interval will drop back to `spf-initial-wait`.

The timer must be entered in increments of 100 milliseconds. Values entered that do not match this requirement will be rejected.

Use the `no` form of this command to return to the default.

**Default**

no spf-wait

**Parameters**

*max-spf-wait* — Specifies the maximum interval in milliseconds between two consecutive SPF calculations.

**Values**

10 — 120000

**Default**

10000

*spf-initial-wait* — Specifies the initial SPF calculation delay in milliseconds after a topology change.

**Values**

10 — 100000

**Default**

1000

*spf-second-wait* — Specifies the hold time in milliseconds between the first and second SPF calculation.

**Values**

10 — 100000

**Default**

1000
traffic-engineering

Syntax  [no] traffic-engineering
Context  config>router>ospf
Description  This command enables traffic engineering route calculations constrained by nodes or links.
Traffic engineering enables the router to perform route calculations constrained by nodes or links. The traffic engineering of this router are limited to calculations based on link and nodal constraints.
The no form of the command disables traffic engineered route calculations.
Default  no traffic-engineering — Traffic engineered route calculations is disabled.

unicast-import-disable

Syntax  [no] unicast-import-disable
Context  config>router>ospf
Description  This command allows one IGP to import its routes into RPF RTM while another IGP imports routes only into the unicast RTM. Import policies can redistribute routes from an IGP protocol into the RPF RTM (the multicast routing table). By default, the IGP routes will not be imported into RPF RTM as such an import policy must be explicitly configured.
Default  disabled
OSPF Area Commands

area

Syntax  [no] area area-id
Context  config>router>ospf
         config>router>ospf3
Description  This command creates the context to configure an OSPF or OSPF3 area. An area is a collection of network segments within an AS that have been administratively grouped together. The area ID can be specified in dotted decimal notation or as a 32-bit decimal integer.

The no form of the command deletes the specified area from the configuration. Deleting the area also removes the OSPF configuration of all the interfaces, virtual-links, and address-ranges etc., that are currently assigned to this area.

Default  no area — No OSPF areas are defined.

Parameters  area-id — The OSPF area ID expressed in dotted decimal notation or as a 32-bit decimal integer.

Values  0.0.0.0 — 255.255.255.255 (dotted decimal), 0 — 4294967295 (decimal integer)

area-range

Syntax  area-range ip-prefix/mask [advertise | not-advertise]
        no area-range ip-prefix/mask
Context  config>router>ospf>area
         config>router>ospf>area>nssa
Description  This command creates ranges of addresses on an Area Border Router (ABR) for the purpose of route summarization or suppression. When a range is created, the range is configured to be advertised or not advertised into other areas. Multiple range commands may be used to summarize or hide different ranges. In the case of overlapping ranges, the most specific range command applies.

ABRs send summary link advertisements to describe routes to other areas. To minimize the number of advertisements that are flooded, you can summarize a range of IP addresses and send reachability information about these addresses in an LSA.

The no form of the command deletes the range (non) advertisement.

Default  no area-range — No range of addresses are defined.

Special Cases  NSSA Context — In the NSSA context, the option specifies that the range applies to external routes (via type-7 LSAs) learned within the NSSA when the routes are advertised to other areas as type-5 LSAs.

Area Context — If this command is not entered under the NSSA context, the range applies to summary LSAs even if the area is an NSSA.
Parameters  

**ip-prefix** — The IP prefix in dotted decimal notation for the range used by the ABR to advertise that summarizes the area into another area.

**Values**  

ip-prefix/mask: ip-prefix a.b.c.d (host bits must be 0)

**mask** — The subnet mask for the range expressed as a decimal integer mask length or in dotted decimal notation.

**Values**  

0 — 32 (mask length), 0.0.0.0 — 255.255.255.255 (dotted decimal)

**advertise** | **not-advertise** — Specifies whether or not to advertise the summarized range of addresses into other areas. The **advertise** keyword indicates the range will be advertised, and the keyword **not-advertise** indicates the range will not be advertised.

The default is **advertise**.

---

**area-range**

**Syntax**  

area-range ipv6-prefix/prefix-length [advertise | not-advertise]

`no area-range ip-prefix/prefix-length`

**Context**  

`config>router>ospf3>area`

`config>router>ospf3>area>nssa`

**Description**  

This command creates ranges of addresses on an Area Border Router (ABR) for the purpose of route summarization or suppression. When a range is created, the range is configured to be advertised or not advertised into other areas. Multiple range commands may be used to summarize or hide different ranges. In the case of overlapping ranges, the most specific range command applies.

ABRs send summary link advertisements to describe routes to other areas. To minimize the number of advertisements that are flooded, you can summarize a range of IP addresses and send reachability information about these addresses in an LSA.

The **no** form of the command deletes the range (non) advertisement.

**Default**  

**no area-range** — No range of addresses are defined.

**Special Cases**  

**NSSA Context** — In the NSSA context, the option specifies that the range applies to external routes (via type-7 LSAs) learned within the NSSA when the routes are advertised to other areas as type-5 LSAs.

**Area Context** — If this command is not entered under the NSSA context, the range applies to summary LSAs even if the area is an NSSA.

**Parameters**  

**ipv6-prefix/prefix-length** — The IP prefix in dotted decimal notation for the range used by the ABR to advertise that summarizes the area into another area.

**Values**  

prefix-length: 0 — 128

---

7950 SR OS Routing Protocols Guide
advertise | not-advertise — Specifies whether or not to advertise the summarized range of addresses into other areas. The advertise keyword indicates the range will be advertised, and the keyword not-advertise indicates the range will not be advertised. The default is advertise.

blackhole-aggregate

Syntax [no] blackhole-aggregate

Context config>router>ospf>area
    config>router>ospf3>area

Description This command installs a low priority blackhole route for the entire aggregate. Existing routes that make up the aggregate will have a higher priority and only the components of the range for which no route exists are blackholed.

It is possible that when performing area aggregation, addresses may be included in the range for which no actual route exists. This can cause routing loops. To avoid this problem configure the blackhole aggregate option.

The no form of this command removes this option.

Default blackhole-aggregate

default-metric

Syntax default-metric metric
    no default-metric

Context config>router>ospf>area>stub
    config>router>ospf3>area

Description This command configures the metric used by the area border router (ABR) for the default route into a stub area.

The default metric should only be configured on an ABR of a stub area.

An ABR generates a default route if the area is a stub area.

The no form of the command reverts to the default value.

Default default-metric 1

Parameters metric — The metric expressed as a decimal integer for the default route cost to be advertised into the stub area.

Values 1 — 16777215
**loopfree-alternate-exclude**

**Syntax**

```markdown
[no] loopfree-alternate
```

**Context**

- config>router>ospf>area
- config>router>ospf>area>interface
- config>router>ospf3>area
- config>router>ospf3>area>interface

**Description**

This command instructs IGP to not include a specific interface or all interfaces participating in a specific IS-IS level or OSPF area in the SPF LFA computation. This provides a way of reducing the LFA SPF calculation where it is not needed.

When an interface is excluded from the LFA SPF in IS-IS, it is excluded in both level 1 and level 2. When it is excluded from the LFA SPF in OSPF, it is excluded in all areas. However, the above OSPF command can only be executed under the area in which the specified interface is primary and once enabled, the interface is excluded in that area and in all other areas where the interface is secondary. If the user attempts to apply it to an area where the interface is secondary, the command will fail.

The `no` form of this command re-instates the default value for this command.

**Default**

no loopfree-alternate-exclude.

**lsa-filter-out**

**Syntax**

```markdown
lsa-filter-out [all | except-own-rtrlsa | except-own-rtrlsa-and-defaults]
no lsa-filter-out
```

**Context**

- config>router>ospf>area>interface
- config>router>ospf3>area>interface
- config>service>vprn>ospf>area>interface
- config>service>vprn>ospf3>area>interface

**Description**

This command enables filtering of outgoing OSPF LSAs on the selected OSPFv2 or OSPFv3 interface. Three filtering options are provided:

- Do not flood any LSAs out the interface. This option is suitable if the neighbor is simply-connected and has a statically configured default route with the address of this interface as next-hop.

- Flood the router’s own router-LSA out the interface and suppress all other flooded LSAs. This option is suitable if the neighbor is simply-connected and has a statically configured default route with a loopback or system interface address (contained in the router-LSA) as next-hop.

- Flood the router’s own router-LSA and all self-generated type-3, type-5 and type-7 LSAs advertising a default route (0/0) out the interface; suppress all other flooded LSAs. This option is suitable if the neighbor is simply-connected and does not have a statically configured default route.

The `no` form of this command disables OSPF LSA filtering (normal operation).

**Default**

no lsa-filter-out
nssa

**Syntax**

```
[no] nssa
```

**Context**

```
config>router>ospf>area
config>router>ospf3>area
```

**Description**

This command creates the context to configure an OSPF or OSPF3 Not So Stubby Area (NSSA) and adds/removes the NSSA designation from the area.

NSSAs are similar to stub areas in that no external routes are imported into the area from other OSPF areas. The major difference between a stub area and an NSSA is an NSSA has the capability to flood external routes that it learns throughout its area and via an ABR to the entire OSPF or OSPF3 domain.

Existing virtual links of a non-stub or NSSA area will be removed when the designation is changed to NSSA or stub.

An area can be designated as stub or NSSA but never both at the same time.

By default, an area is not configured as an NSSA area.

The `no` form of the command removes the NSSA designation and configuration context from the area.

**Default**

```
no nssa — The OSPF or OSPF3 area is not an NSSA.
```

origin-default-route

**Syntax**

```
origin-default-route [type-7] [no-adjacency-check]
no origin-default-route
```

**Context**

```
config>router>ospf>area>nssa
config>router>ospf3>area>nssa
```

**Description**

This command enables the generation of a default route and its LSA type (3 or 7) into a Not So Stubby Area (NSSA) by an NSSA Area Border Router (ABR) or Autonomous System Border Router (ASBR).

When configuring an NSSA with no summaries, the ABR will inject a type 3 LSA default route into the NSSA area. Some older implementations expect a type 7 LSA default route.

The `no` form of the command disables origination of a default route.

**Default**

```
no origin-default-route — A default route is not originated.
```

**Parameters**

- `type-7` — Specifies a type 7 LSA should be used for the default route.
  
  Configure this parameter to inject a type-7 LSA default route instead the type 3 LSA into the NSSA configured with no summaries.
  
  To revert to a type 3 LSA, enter `origin-default-route` without the `type-7` parameter.

  **Default**
  
  Type 3 LSA for the default route.

- `no-adjacency-check` — Specifies whether or not adjacency checks shall be performed for the NSSA.
redistribute-external

**Syntax**

```
[no] redistribute-external
```

**Context**

```
config>router>ospf>area>nssa
config>router>ospf3>area>nssa
```

**Description**

This command enables the redistribution of external routes into the Not So Stubby Area (NSSA) or an NSSA area border router (ABR) that is exporting the routes into non-NSSA areas.

NSSA or Not So Stubby Areas are similar to stub areas in that no external routes are imported into the area from other OSPF or OSPF3 areas. The major difference between a stub area and an NSSA is that the NSSA has the capability to flood external routes that it learns (providing it is an ASBR) throughout its area and via an Area Border Router to the entire OSPF or OSPF3 domain.

The no form of the command disables the default behavior to automatically redistribute external routes into the NSSA area from the NSSA ABR.

**Default**

`redistribute-external` — External routes are redistributed into the NSSA.

stub

**Syntax**

```
[no] stub
```

**Context**

```
config>router>ospf>area
config>router>ospf3>area
```

**Description**

This command enables access to the context to configure an OSPF or OSPF3 stub area and adds/removes the stub designation from the area.

External routing information is not flooded into stub areas. All routers in the stub area must be configured with the stub command. An OSPF or OSPF3 area cannot be both an NSSA and a stub area.

Existing virtual links of a non STUB or NSSA area will be removed when its designation is changed to NSSA or STUB.

By default, an area is not a stub area.

The no form of the command removes the stub designation and configuration context from the area.

**Default**

`no stub` — The area is not configured as a stub area.
summaries

Syntax  [no] summaries

Context  config>router>ospf>area>stub
         config>router>ospf3>area>stub
         config>router>ospf>area>nssa
         config>router>ospf3>area>nssa

Description  This command enables sending summary (type 3) advertisements into a stub area or Not So Stubby Area (NSSA) on an Area Border Router (ABR).

This parameter is particularly useful to reduce the size of the routing and Link State Database (LSDB) tables within the stub or NSSA area. (Default: summary)

By default, summary route advertisements are sent into the stub area or NSSA.

The no form of the command disables sending summary route advertisements and, for stub areas, only the default route is advertised by the ABR.

Default  summaries — Summary routes are advertised by the ABR into the stub area or NSSA.
Interface/Virtual Link Commands

advertise-subnet

Syntax  [no] advertise-subnet
Context  config>router>ospf>area>interface ip-int-name
Description  This command enables advertising point-to-point interfaces as subnet routes (network number and mask). When disabled, point-to-point interfaces are advertised as host routes.

The no form of the command disables advertising point-to-point interfaces as subnet routes meaning they are advertised as host routes.

Default  advertise-subnet — Advertises point-to-point interfaces as subnet routes.

authentication

Syntax  authentication [inbound sa-name outbound sa-name] authentication bidirectional sa-name no authentication
Context  config>router>ospf3>area>interface ip-int-name
cfg-router>ospf3>area>virtual-link >if
Description  This command configures the password used by the OSPF3 interface or virtual-link to send and receive OSPF3 protocol packets on the interface when simple password authentication is configured.

All neighboring routers must use the same type of authentication and password for proper protocol communication.

By default, no authentication key is configured.

The no form of the command removes the authentication.

Default  no authentication — No authentication is defined.

Parameters  inbound sa-name — Specifies the inbound sa-name for OSPF3 authentication.
outbound sa-name — Specifies the outbound sa-name for OSPF3 authentication.
bidirectional sa-name — Specifies bidirectional OSPF3 authentication.
authentication-key

Syntax  
```
authentication-key [authentication-key | hash-key] [hash | hash2]
```

Context  
```
config>router>ospf>area>interface ip-int-name
config>router>ospf>area>virtual-link >if>
```

Description  
This command configures the password used by the OSPF interface or virtual-link to send and receive OSPF protocol packets on the interface when simple password authentication is configured.

All neighboring routers must use the same type of authentication and password for proper protocol communication. If the `authentication-type` is configured as password, then this key must be configured.

By default, no authentication key is configured.

The `no` form of the command removes the authentication key.

Default  
`no authentication-key` — No authentication key is defined.

Parameters  
`authentication-key` — The authentication key. The key can be any combination of ASCII characters up to 8 characters in length (unencrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

`hash-key` — The hash key. The key can be any combination of ASCII characters up to 22 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

`hash` — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.

`hash2` — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.

authentication-type

Syntax  
```
authentication-type {password | message-digest}
```

Context  
```
config>router>ospf>area>interface ip-int-name
config>router>ospf>area>virtual-link router-id
```

Description  
This command enables authentication and specifies the type of authentication to be used on the OSPF interface.

Both simple `password` and `message-digest` authentication are supported.

By default, authentication is not enabled on an interface.

The `no` form of the command disables authentication on the interface.
Default  no authentication — No authentication is enabled on an interface.

Parameters  password — This keyword enables simple password (plain text) authentication. If authentication is enabled and no authentication type is specified in the command, simple password authentication is enabled.

message-digest — This keyword enables message digest MD5 authentication in accordance with RFC1321. If this option is configured, then at least one message-digest-key must be configured.

auth-keychain

Syntax  auth-keychain

Context  config>router>ospf>areas>interface
         config>router>ospf>areas>virtual-link
         config>service>vprn>ospf>areas>interface
         config>service>vprn>ospf>areas>sham-link
         config>service>vprn>ospf>areas>virtual-link

Description  This command configures an authentication keychain to use for the protocol interface. The keychain allows the rollover of authentication keys during the lifetime of a session.

Default  no auth-keychain

Parameters  name — Specifies the name of the keychain, up to 32 characters, to use for the specified protocol session or sessions.

bfd-enable

Syntax  [no] bfd-enable [remain-down-on-failure]

Context  config>router>ospf>area>interface
         config>router>ospf3>area>interface

Description  This command enables the use of bi-directional forwarding (BFD) to control the state of the associated protocol interface. By enabling BFD on a given protocol interface, the state of the protocol interface is tied to the state of the BFD session between the local node and the remote node. The parameters used for the BFD are set via the BFD command under the IP interface.

The no form of this command removes BFD from the associated IGP protocol adjacency.

Default  no bfd-enable

Parameters  remain-down-on-failure — Forces adjacency down on BFD failure.
dead-interval

**Syntax**

```
dead-interval seconds

no dead-interval
```

**Context**

```
config>router>ospf>area>interface
config>router>ospf3>area>interface
config>router>ospf>area>virtual-link
config>router>ospf3>area>virtual-link
```

**Description**

This command configures the time, in seconds, that OSPF waits before declaring a neighbor router down. If no hello packets are received from a neighbor for the duration of the dead interval, the router is assumed to be down. The minimum interval must be two times the hello interval.

The no form of the command reverts to the default value.

**Default**

40 seconds

**Special Cases**

**OSPF Interface** — If the `dead-interval` configured applies to an interface, then all nodes on the subnet must have the same dead interval.

**Virtual Link** — If the `dead-interval` configured applies to a virtual link, then the interval on both termination points of the virtual link must have the same dead interval.

**Parameters**

`seconds` — The dead interval expressed in seconds.

**Values**

1 — 65535

---

export

**Syntax**

```
[no] export policy-name [policy-name...up to 5 max]
```

**Context**

```
config>router>ospf
```

**Description**

This command configures export routing policies that determine the routes exported from the routing table to OSPF.

If no export policy is defined, non OSPF routes are not exported from the routing table manager to IS-IS.

If multiple policy names are specified, the policies are evaluated in the order they are specified. The first policy that matches is applied. If multiple export commands are issued, the last command entered overrides the previous command. A maximum of five policy names can be specified.

If an `aggregate` command is also configured in the `config>router` context, then the aggregation is applied before the export policy is applied.

Routing policies are created in the `config>router>policy-options` context.

The no form of the command removes the specified `policy-name` or all policies from the configuration if no `policy-name` is specified.

**Default**

no export — No export policy name is specified.

**Parameters**

`policy-name` — The export policy name. Up to five `policy-name` arguments can be specified.
export-limit

Syntax  export-limit number [log percentage]
        no export-limit

Context  config>router>ospf

Description  This command configures the maximum number of routes (prefixes) that can be exported into OSPF from the route table.

The no form of the command removes the parameters from the configuration.

Default  no export-limit, the export limit for routes or prefixes is disabled.

Parameters  number — Specifies the maximum number of routes (prefixes) that can be exported into OSPF from the route table.

    Values  1 — 4294967295

log percentage — Specifies the percentage of the export-limit, at which a warning log message and SNMP notification would be sent.

    Values  1 — 100

hello-interval

Syntax  hello-interval seconds
        no hello-interval

Context  config>router>ospf>area>interface
         config>router>ospf3>area>interface
         config>router>ospf>area>virtual-link
         config>router>ospf3>area>virtual-link

Description  This command configures the interval between OSPF hellos issued on the interface or virtual link.

The hello interval, in combination with the dead-interval, is used to establish and maintain the adjacency. Use this parameter to edit the frequency that hello packets are sent.

Reducing the interval, in combination with an appropriate reduction in the associated dead-interval, allows for faster detection of link and/or router failures at the cost of higher processing costs.

The no form of this command reverts to the default value.

Default  hello-interval 10 — A 10-second hello interval.

Special Cases  OSPF Interface — If the hello-interval configured applies to an interface, then all nodes on the subnet must have the same hello interval.

Virtual Link — If the hello-interval configured applies to a virtual link, then the interval on both termination points of the virtual link must have the same hello interval.

Parameters  seconds — The hello interval in seconds expressed as a decimal integer.

    Values  1 — 65535
interface

Syntax: [no] interface ip-int-name [secondary]

Context: config>router>ospf>area
         config>router>ospf3>area

Description:
This command creates a context to configure an OSPF interface.

By default, interfaces are not activated in any interior gateway protocol, such as OSPF, unless explicitly configured.

The no form of the command deletes the OSPF interface configuration for this interface. The shutdown command in the config>router>ospf>interface context can be used to disable an interface without removing the configuration for the interface.

Default:
no interface — No OSPF interfaces are defined.

Parameters:
- ip-int-name — The IP interface name. Interface names must be unique within the group of defined IP interfaces for config router interface and config service ies interface commands. An interface name cannot be in the form of an IP address. Interface names can be any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

If the IP interface name does not exist or does not have an IP address configured an error message will be returned.

If the IP interface exists in a different area it will be moved to this area.

- secondary — Allows multiple secondary adjacencies to be established over a single IP interface.

interface-type

Syntax: interface-type {broadcast | point-to-point}

no interface-type

Context: config>router>ospf>area>interface
         config>router>ospf3>area>interface

Description:
This command configures the interface type to be either broadcast or point-to-point.

Use this command to set the interface type of an Ethernet link to point-to-point to avoid having to carry the broadcast adjacency maintenance overhead of the Ethernet link provided the link is used as a point-to-point.

If the interface type is not known at the time the interface is added to OSPF and subsequently the IP interface is bound (or moved) to a different interface type, this command must be entered manually.

The no form of the command reverts to the default value.

Default:
point-to-point if the physical interface is SONET.

broadcast if the physical interface is Ethernet or unknown.

Special Cases:
Virtual-Link — A virtual link is always regarded as a point-to-point interface and not configurable.
**Parameters**

- **broadcast** — Configures the interface to maintain this link as a broadcast network. To significantly improve adjacency forming and network convergence, a network should be configured as point-to-point if only two routers are connected, even if the network is a broadcast media such as Ethernet.

- **point-to-point** — Configures the interface to maintain this link as a point-to-point link.

**message-digest-key**

**Syntax**

```
message-digest-key keyid md5 [key | hash-key] [hash]
```

**no message-digest-key keyid**

**Context**

```
config>router>ospf>area>interface
config>router>ospf>area>virtual-link
```

**Description**

This command configures a message digest key when MD5 authentication is enabled on the interface. Multiple message digest keys can be configured.

The `no` form of the command removes the message digest key identified by the `key-id`.

**Default**

No message digest keys are defined.

**Parameters**

- **keyid** — The `keyid` is expressed as a decimal integer.

  **Values**

  1 — 255

- **md5 key** — The MD5 key. The `key` can be any alphanumeric string up to 16 characters in length.

- **md5 hash-key** — The MD5 hash key. The key can be any combination of ASCII characters up to 32 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

  This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

- **hash** — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.

**metric**

**Syntax**

```
metric metric
no metric
```

**Context**

```
config>router>ospf>area>interface
config>router>ospf3>area>interface
```

**Description**

This command configures an explicit route cost metric for the OSPF interface that overrides the metrics calculated based on the speed of the underlying link.

The `no` form of the command deletes the manually configured interface metric, so the interface uses the computed metric based on the `reference-bandwidth` command setting and the speed of the underlying link.
Interface/Virtual Link Commands

Default  no metric — The metric is based on reference-bandwidth setting and the link speed.

Parameters  metric — The metric to be applied to the interface expressed as a decimal integer.

Values  1 — 65535

mtu

Syntax  mtu bytes
no mtu

Context  config>router>ospf>area>interface
config>router>ospf3>area>interface

Description  This command configures the OSPF packet size used on this interface. If this parameter is not configured OSPF derives the MTU value from the MTU configured (default or explicitly) in the following contexts:

config>port>ethernet
config>port>sonet-sdh>path
config>port>tdm>t3-e3
config>port>tdm>t1-e1>channel-group

If this parameter is configured, the smaller value between the value configured here and the MTU configured (default or explicitly) in an above-mentioned context is used.

To determine the actual packet size add 14 bytes for an Ethernet packet and 18 bytes for a tagged Ethernet packet to the size of the OSPF (IP) packet MTU configured in this command.

Use the no form of this command to revert to default.

Default  no mtu — Uses the value derived from the MTU configured in the config>port context.

Parameters  bytes — The MTU to be used by OSPF for this logical interface in bytes.

Values  512 — 9198 (9212 — 14) (Depends on the physical media)

passive

Syntax  [no] passive

Context  config>router>ospf>area>interface
config>router>ospf3>area>interface

Description  This command adds the passive property to the OSPF interface where passive interfaces are advertised as OSPF interfaces but do not run the OSPF protocol.

By default, only interface addresses that are configured for OSPF will be advertised as OSPF interfaces. The passive parameter allows an interface to be advertised as an OSPF interface without running the OSPF protocol.

While in passive mode, the interface will ignore ingress OSPF protocol packets and not transmit any OSPF protocol packets.
The no form of the command removes the passive property from the OSPF interface.

**Default**

Service interfaces defined in `config>router>service-prefix` are passive.

All other interfaces are not passive.

---

**priority**

**Syntax**

`priority number`

`no priority`

**Context**

`config>router>ospf>area>interface`

`config>router>ospf3>area>interface`

**Description**

This command configures the priority of the OSPF interface that is used in an election of the designated router on the subnet.

This parameter is only used if the interface is of type broadcast. The router with the highest priority interface becomes the designated router. A router with priority 0 is not eligible to be Designated Router or Backup Designated Router.

The no form of the command reverts the interface priority to the default value.

**Default**

`priority 1`

**Parameters**

`number` — The interface priority expressed as a decimal integer. A value of 0 indicates the router is not eligible to be the Designated Router or Backup Designated Router on the interface subnet.

**Values**

0 — 255

---

**retransmit-interval**

**Syntax**

`retransmit-interval seconds`

`no retransmit-interval`

**Context**

`config>router>ospf>area>interface`

`config>router>ospf3>area>interface`

`config>router>ospf>area>virtual-link`

`config>router>ospf3>area>virtual-link`

**Description**

This command specifies the length of time, in seconds, that OSPF will wait before retransmitting an unacknowledged link state advertisement (LSA) to an OSPF neighbor.

The value should be longer than the expected round trip delay between any two routers on the attached network. Once the retransmit-interval expires and no acknowledgement has been received, the LSA will be retransmitted.

The no form of this command reverts to the default interval.

**Default**

`retransmit-interval 5`
Parameters

seconds — The retransmit interval in seconds expressed as a decimal integer.

Values 1 — 1800

transit-delay

Syntax transit-delay seconds
no transit-delay

Context config>router>ospf>area>interface
    config>router>ospf3>area>interface
    config>router>ospf>area>virtual-link
    config>router>ospf3>area>virtual-link

Description This command configures the estimated time, in seconds, that it takes to transmit a link state advertisement (LSA) on the interface or virtual link.

The no form of this command reverts to the default delay time

Default transit-delay 1

Parameters seconds — The transit delay in seconds expressed as a decimal integer.

Values 1 — 1800

virtual-link

Syntax [no] virtual-link router-id transit-area area-id

Context config>router>ospf>area
    config>router>ospf3>area

Description This command configures a virtual link to connect area border routers to the backbone via a virtual link.

The backbone area (area 0.0.0.0) must be contiguous and all other areas must be connected to the backbone area. If it is not practical to connect an area to the backbone (see area 0.0.0.2 in the picture below) then the area border routers (routers 1 and 2 in the picture below) must be connected via a virtual link. The two area border routers will form a point-to-point like adjacency across the transit area. (area 0.0.0.1 in the picture below). A virtual link can only be configured while in the area 0.0.0.0 context.

The router-id specified in this command must be associated with the virtual neighbor. The transit area cannot be a stub area or a Not So Stubby Area (NSSA).

The no form of the command deletes the virtual link. (Default: none specified)

Default No virtual link is defined.

Parameters router-id — The router ID of the virtual neighbor in IP address dotted decimal notation.

transit-area area-id — The area-id specified identifies the transit area that links the backbone area with the area that has no physical connection with the backbone.
The OSPF backbone area, area 0.0.0.0, must be contiguous and all other areas must be connected to the backbone area. The backbone distributes routing information between areas. If it is not practical to connect an area to the backbone (see Area 0.0.0.5 in Figure 11) then the area border routers (such as routers Y and Z) must be connected via a virtual link. The two area border routers form a point-to-point-like adjacency across the transit area (see Area 0.0.0.4).
Show Commands

ospf

Syntax  ospf [ospf-instance]
Context  show>router
Description  This command enables the context to display OSPF information.
Parameters  ospf-instance — Clears the specified OSPF instance.
        Values  1 — 31

ospf3

Syntax  ospf3 [ospf-instance]
Context  show>router
Description  This command enables the context to display OSPF3 information.
Parameters  ospf-instance — Clears the specified VR-ID.
        Values  0 — 31 | 64..95
            0 — 31 ipv6-unicast address-family
            64 — 95 ipv4-unicast address-family

area

Syntax  area [area-id] [detail] [lfa]
Context  show>router>ospf
            show>router>ospf3
Description  This command displays configuration information about all areas or the specified area. When detail is specified operational and statistical information will be displayed.
Parameters  area-id — The OSPF area ID expressed in dotted decimal notation or as a 32-bit decimal integer.
        detail — Displays detailed information about the specified area.
        lfa — Displays Loop-Free Alternate (LFA) next-hop information.
**Show Commands**

**Output OSPF Area Output** — The following table describes the standard and detailed command output fields for an OSPF area.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Id</td>
<td>A 32 bit integer uniquely identifying an area.</td>
</tr>
</tbody>
</table>
| Type               | NSSA — This area is configured as an NSSA area.  
                        Standard — This area is configured as a standard area (not NSSA or Stub).  
                        Stub — This area is configured as a stub area. |
| SPF Runs           | The number of times that the intra-area route table has been calculated using this area’s link state database. |
| LSA Count          | The total number of link-state advertisements in this area’s link state database, excluding AS External LSA’s. |
| LSA Cksum Sum      | The 32-bit unsigned sum of the link-state database advertisements LS checksums contained in this area’s link state database. This checksum excludes AS External LSAs (type-5). |
| No. of OSPF Areas  | The number of areas configured on the router. |
| Virtual Links      | The number of virtual links configured through this transit area. |
| Active IFs         | The active number of interfaces configured in this area. |
| Area Bdr Rtrs      | The total number of ABRs reachable within this area. |
| AS Bdr Rtrs        | The total number of ASBRs reachable within this area. |
| Last SPF Run       | The time when the last intra-area SPF was run on this area. |
| Router LSAs        | The total number of router LSAs in this area. |
| Network LSAs       | The total number of network LSAs in this area. |
| Summary LSAs       | The summary of LSAs in this area. |
| Asbr-summ LSAs     | The summary of ASBR LSAs in this area. |
| Nssa-ext LSAs      | The total number of NSSA-EXT LSAs in this area. |
| Area opaque LSAs   | The total number of opaque LSAs in this area. |
| Total Nbrs         | The total number of neighbors in this area. |
| Total IFs          | The total number of interfaces configured in this area. |
| Total LSAs         | The sum of LSAs in this area excluding autonomous system external LSAs. |
| Blackhole Range    | False — No blackhole route is installed for aggregates configured in this area. |
Sample Output

A:SetupCLI# show router ospf area detail

<table>
<thead>
<tr>
<th>Area Id</th>
<th>Type</th>
<th>Key Rollover Int.</th>
<th>LFA</th>
<th>Virtual Links</th>
<th>Total Nbrs</th>
<th>Active IFs</th>
<th>Total IFs</th>
<th>Area Bdr Rtrs</th>
<th>AS Bdr Rtrs</th>
<th>SPF Runs</th>
<th>Last SPF Run</th>
<th>Router LSAs</th>
<th>Summary LSAs</th>
<th>Nssa ext LSAs</th>
<th>Total LSAs</th>
<th>Blackhole Range</th>
<th>LSA Cksum Sum</th>
<th>Area opaque LSAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>Standard</td>
<td>10</td>
<td>Include</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Never</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>True</td>
<td>0xd6af</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Stub</td>
<td>10</td>
<td>Exclude</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Never</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>False</td>
<td>0xf493</td>
<td>1</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Standard</td>
<td>10</td>
<td>Include</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Never</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>True</td>
<td>0xd6af</td>
<td>1</td>
</tr>
</tbody>
</table>

A:SetupCLI#
A:SR# show router ospf area detail

OSPF Areas (Detailed)

Area Id: 0.0.0.0

Area Id: 0.0.0.0    Type: Standard
Virtual Links: 0    Total Nbrs: 2
Active IFs: 3      Total IFs: 3
Area Bdr Rtrs: 0   AS Bdr Rtrs: 0
SPF Runs: 7        Last SPF Run: 10/26/2006 10:09:18
Router LSAs: 3     Network LSAs: 3
Summary LSAs: 0    Asbr-summ LSAs: 0
Nssa ext LSAs: 0   Area opaque LSAs: 3
Total LSAs: 9      LSA Cksum Sum: 0x28b62
Blackhole Range: True
Unknown LSAs: 0

*Bombadil# show router ospf area 0.0.0.0 detail

OSPF Area (Detailed): 0.0.0.0

Configuration

Area Id: 0.0.0.0    Type: Standard

Statistics

Virtual Links: 0    Total Nbrs: 2
Active IFs: 3      Total IFs: 3
Area Bdr Rtrs: 0   AS Bdr Rtrs: 0
SPF Runs: 7        Last SPF Run: 10/26/2006 10:09:18
Router LSAs: 3     Network LSAs: 3
Summary LSAs: 0    Asbr-summ LSAs: 0
Nssa ext LSAs: 0   Area opaque LSAs: 3
Total LSAs: 9      LSA Cksum Sum: 0x28b62
Blackhole Range: True
Unknown LSAs: 0

*Dut-B# show router ospf area 0.0.0.0 lfa

Path Table

<table>
<thead>
<tr>
<th>Node</th>
<th>Interface</th>
<th>LFA Interface</th>
<th>Nexthop</th>
<th>LFA Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.1.1</td>
<td>to_Dut-A1</td>
<td>to_Dut-C1</td>
<td>10.20.1.1</td>
<td>10.20.1.3</td>
</tr>
<tr>
<td>10.20.1.3</td>
<td>to_Dut-C1</td>
<td>to_Dut-A1</td>
<td>10.20.1.3</td>
<td>10.20.1.1</td>
</tr>
<tr>
<td>10.20.1.4</td>
<td>to_Dut-D1</td>
<td>to_Dut-A1</td>
<td>10.20.1.4</td>
<td></td>
</tr>
<tr>
<td>10.20.1.6</td>
<td>to_Dut-D1</td>
<td>to_Dut-C1</td>
<td>10.20.1.6</td>
<td></td>
</tr>
</tbody>
</table>

*Dut-B#
database

Syntax  
database [type {router | network | summary | asbr-summary | external | nssa | all}] [area area-id] [adv-router router-id] [link-state-id] [detail]

Context  
show>router>ospf
show>router>ospf3

Description  
This command displays information about the OSPF link state database (LSDB).
When no command line options are specified, the command displays brief output for all database entries.

Parameters  
ospf-instance — The OSPF instance.

Values  
1 — 4294967295

type keyword — Specifies to filter the OSPF LSDB information based on the type specified by keyword.

type router — Display only router (Type 1) LSAs in the LSDB.

type network — Display only network (Type 2) LSAs in the LSDB.

type summary — Display only summary (Type 3) LSAs in the LSDB.

type asbr-summary — Display only ASBR summary (Type 4) LSAs in the LSDB.
Show Commands

**type external** — Display only AS external (Type 5) LSAs in the LSDB. External LSAs are maintained globally and not per area. If the display of external links is requested, the area parameter, if present, is ignored.

**type nssa** — Displays only NSSA area-specific AS external (Type 7) LSAs in the LSDB.

**type all** — Display all LSAs in the LSDB. The all keyword is intended to be used with either the **area** **area-id** or the **adv-router** **router-id** [**link-state-id**] parameters.

**area area-id** — Display LSDB information associated with the specified OSPF area-id.

**adv-router router-id [link-state-id]** — Display LSDB information associated with the specified advertising router. To further narrow the number of items displayed, the **link-state-id** can optionally be specified.

**detail** — Displays detailed information on the LSDB entries.

**Output OSPF Database Output** — The following table describes the standard and detailed command output fields for an OSPF database.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Area Id</strong></td>
<td>The OSPF area identifier.</td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td><strong>Router</strong> — LSA type of router (OSPF)</td>
</tr>
<tr>
<td></td>
<td><strong>Network</strong> — LSA type of network (OSPF)</td>
</tr>
<tr>
<td><strong>LSA Type</strong></td>
<td><strong>Summary</strong> — LSA type of summary (OSPF)</td>
</tr>
<tr>
<td></td>
<td><strong>ASBR Summary</strong> — LSA type of ASBR summary (OSPF)</td>
</tr>
<tr>
<td></td>
<td><strong>Nssa-ext</strong> — LSA area-specific, NSSA external (OSPF)</td>
</tr>
<tr>
<td></td>
<td><strong>Area opaque</strong> — LSA type of area opaque (OSPF)</td>
</tr>
<tr>
<td></td>
<td><strong>router</strong> — LSA type of router (OSPF3)</td>
</tr>
<tr>
<td></td>
<td><strong>Network</strong> — LSA type of network (OSPF3)</td>
</tr>
<tr>
<td></td>
<td><strong>IE Pfx</strong> — LSA type of IE Pfx (OSPF3) IE <strong>Rtr</strong> — LSA type of IE Rtr (OSPF3)</td>
</tr>
<tr>
<td></td>
<td><strong>IA Pfx</strong> — LSA type of IA Pfx (OSPF3)</td>
</tr>
<tr>
<td></td>
<td><strong>Nssa-ext</strong> — NSSA area-specific AS external (OSPF3)</td>
</tr>
<tr>
<td><strong>Link State Id</strong></td>
<td>The link state Id is an LSA type specific field containing either a number to distinguish several LSAs from the same router, an interface ID, or a router-id; it identifies the piece of the routing domain being described by the advertisement.</td>
</tr>
<tr>
<td><strong>Adv Rtr Id</strong></td>
<td>The router identifier of the router advertising the LSA.</td>
</tr>
<tr>
<td><strong>Adv Router Id</strong></td>
<td>The age of the link state advertisement in seconds.</td>
</tr>
<tr>
<td><strong>Age</strong></td>
<td>The age of the link state advertisement in seconds.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Sequence</td>
<td>The signed 32-bit integer sequence number.</td>
</tr>
<tr>
<td>Sequence No</td>
<td></td>
</tr>
<tr>
<td>Cksum</td>
<td>The 32-bit unsigned sum of the link-state advertisements' LS checksums.</td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>No. of LSAs</td>
<td>The number of LSAs displayed.</td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>External Attribute LSA Support</td>
</tr>
<tr>
<td>DC</td>
<td>Demand Circuit Support</td>
</tr>
<tr>
<td>R</td>
<td>If clear, a node can participates in OSPF topology distribution without being used to forward transit traffic.</td>
</tr>
<tr>
<td>N</td>
<td>Type 7 LSA Support</td>
</tr>
<tr>
<td>MC</td>
<td>Multicast Support</td>
</tr>
<tr>
<td>E</td>
<td>External Routes Support</td>
</tr>
<tr>
<td>V6</td>
<td>V6 works in conjunction with R. If V6 is clear, a node can participate in OSPF topology distribution without being used to forward IPv6 datagrams. If R is set and V6 is clear, IPv6 datagrams are not forwarded but diagrams belonging to another protocol family may be forwarded.</td>
</tr>
<tr>
<td>Prefix Options</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Propagate NSSA LSA.</td>
</tr>
<tr>
<td>MC</td>
<td>Multicast support.</td>
</tr>
<tr>
<td>LA</td>
<td>Local address capability. If set, the prefix is an IPv6 interface address of the advertising router.</td>
</tr>
<tr>
<td>NU</td>
<td>No unicast capability. If set, the prefix is excluded from IPv6 unicast calculations.</td>
</tr>
<tr>
<td>Flags</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>No flags set</td>
</tr>
<tr>
<td>V</td>
<td>The router is an endpoint for one or more fully adjacent Virtual Links having the described area as the transit area</td>
</tr>
<tr>
<td>E</td>
<td>The router is an AS Boundary Router</td>
</tr>
<tr>
<td>B</td>
<td>The router is an Area Border Router</td>
</tr>
<tr>
<td>Link Count</td>
<td>The number of links advertised in the LSA.</td>
</tr>
<tr>
<td>Link Type (n)</td>
<td>The link type of the nth link in the LSA.</td>
</tr>
<tr>
<td>Network (n)</td>
<td>The network address of the nth link in the LSA.</td>
</tr>
<tr>
<td>Metric-0 (n)</td>
<td>The cost metric of the nth link in the LSA.</td>
</tr>
</tbody>
</table>
### Sample Output

**A:ALA-A# show router ospf 1 database**

<table>
<thead>
<tr>
<th>Area Id</th>
<th>Type</th>
<th>Link State Id</th>
<th>Adv Rtr Id</th>
<th>Age</th>
<th>Sequence</th>
<th>Cksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.2</td>
<td>180.0.0.2</td>
<td>1800</td>
<td>0x800000b6</td>
<td>0xf54</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.5</td>
<td>180.0.0.5</td>
<td>1902</td>
<td>0x8000009d</td>
<td>0x5cb7c</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.8</td>
<td>180.0.0.8</td>
<td>1815</td>
<td>0x8000009a</td>
<td>0x529b</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.9</td>
<td>180.0.0.9</td>
<td>1156</td>
<td>0x80000085</td>
<td>0xd00f</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.10</td>
<td>180.0.0.10</td>
<td>533</td>
<td>0x8000009d</td>
<td>0x3f1f</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.11</td>
<td>180.0.0.11</td>
<td>137</td>
<td>0x80000086</td>
<td>0xc58f</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.12</td>
<td>180.0.0.12</td>
<td>918</td>
<td>0x8000009d</td>
<td>0xc84f</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Router</td>
<td>180.0.0.13</td>
<td>180.0.0.13</td>
<td>1401</td>
<td>0x800000a2</td>
<td>0x879c</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Network</td>
<td>180.0.53.28</td>
<td>180.0.28</td>
<td>149</td>
<td>0x80000083</td>
<td>0xe5cd</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Network</td>
<td>180.0.54.28</td>
<td>180.0.28</td>
<td>1259</td>
<td>0x80000083</td>
<td>0xdad7</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Summary</td>
<td>180.0.0.15</td>
<td>180.0.10</td>
<td>378</td>
<td>0x80000084</td>
<td>0xe9a1</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Summary</td>
<td>180.0.0.15</td>
<td>180.0.12</td>
<td>73</td>
<td>0x80000084</td>
<td>0xdfab</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Summary</td>
<td>180.0.0.18</td>
<td>180.0.10</td>
<td>1177</td>
<td>0x80000083</td>
<td>0xcfe7</td>
</tr>
<tr>
<td>0.0.0.1</td>
<td>Summary</td>
<td>180.100.25.4</td>
<td>180.0.12</td>
<td>208</td>
<td>0x80000091</td>
<td>0x3049</td>
</tr>
<tr>
<td>0.0.0.1</td>
<td>AS Summ</td>
<td>180.0.0.8</td>
<td>180.0.10</td>
<td>824</td>
<td>0x80000084</td>
<td>0x3d07</td>
</tr>
<tr>
<td>0.0.0.1</td>
<td>AS Summ</td>
<td>180.0.0.8</td>
<td>180.0.12</td>
<td>1183</td>
<td>0x80000095</td>
<td>0x4bdf</td>
</tr>
<tr>
<td>0.0.0.1</td>
<td>AS Summ</td>
<td>180.0.0.9</td>
<td>180.0.10</td>
<td>244</td>
<td>0x80000082</td>
<td>0x73cb</td>
</tr>
<tr>
<td>n/a</td>
<td>AS Ext</td>
<td>7.1.0.0</td>
<td>180.0.23</td>
<td>1312</td>
<td>0x80000083</td>
<td>0x45e7</td>
</tr>
<tr>
<td>n/a</td>
<td>AS Ext</td>
<td>7.2.0.0</td>
<td>180.0.23</td>
<td>997</td>
<td>0x80000082</td>
<td>0x45e6</td>
</tr>
<tr>
<td>n/a</td>
<td>AS Ext</td>
<td>10.20.0.0</td>
<td>180.0.23</td>
<td>238</td>
<td>0x80000081</td>
<td>0x2d81</td>
</tr>
</tbody>
</table>

---

**A:ALA-A# show router ospf database detail**

**OSPF Link State Database (Type : All) (Detailed)**

**Router LSA for Area 0.0.0.0**

<table>
<thead>
<tr>
<th>Area Id</th>
<th>Link State Id</th>
<th>Adv Router Id</th>
<th>LSA Type</th>
<th>Sequence</th>
<th>Checksum</th>
<th>Age</th>
<th>Length</th>
<th>Options</th>
<th>Flags</th>
<th>Link Count</th>
<th>Link Type (1)</th>
<th>Nbr Rtr Id (1)</th>
<th>I/F Address (1)</th>
<th>Metric-0 (1)</th>
<th>No of TOS (1)</th>
<th>Link Type (2)</th>
<th>Network (2)</th>
<th>Mask (2)</th>
<th>Metric-0 (2)</th>
<th>No of TOS (2)</th>
<th>Link Type (3)</th>
<th>Nbr Rtr Id (3)</th>
<th>I/F Address (3)</th>
<th>Metric-0 (3)</th>
<th>No of TOS (3)</th>
<th>Link Type (4)</th>
<th>Network (4)</th>
<th>Mask (4)</th>
<th>Metric-0 (4)</th>
<th>No of TOS (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>180.0.0.2</td>
<td>180.0.0.2</td>
<td>Router</td>
<td>0x800000b7</td>
<td>0x55</td>
<td>155</td>
<td>192</td>
<td>E</td>
<td>None</td>
<td>14</td>
<td>Point To Point</td>
<td>180.0.0.13</td>
<td>180.0.22.0</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>Stub Network</td>
<td>255.255.255.0</td>
<td>0</td>
<td>0</td>
<td>Point To Point</td>
<td>180.0.0.12</td>
<td>180.0.0.5.0</td>
<td>255.255.255.0</td>
<td>0</td>
<td>0</td>
<td>Stub Network</td>
<td>255.255.255.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Link Type (5) : Point To Point
Nbr Rtr Id (5) : 180.0.0.8    I/F Address (5) : 180.0.13.2
No of TOS (5) : 0            Metric-0 (5) : 6

Link Type (6) : Stub Network
Network (6) : 180.0.13.0      Mask (6) : 255.255.255.0
No of TOS (6) : 0            Metric-0 (6) : 6

Link Type (7) : Point To Point
Nbr Rtr Id (7) : 180.0.0.5    I/F Address (7) : 180.0.14.2
No of TOS (7) : 0            Metric-0 (7) : 6

Link Type (8) : Stub Network
Network (8) : 180.0.14.0      Mask (8) : 255.255.255.0
No of TOS (8) : 0            Metric-0 (8) : 6

Link Type (9) : Point To Point
Nbr Rtr Id (9) : 180.0.0.11   I/F Address (9) : 180.0.17.2
No of TOS (9) : 0            Metric-0 (9) : 25

Link Type (10): Stub Network
Network (10): 180.0.17.0      Mask (10) : 255.255.255.0
No of TOS (10): 0            Metric-0 (10): 25

Link Type (11): Stub Network
Network (11): 180.0.0.2       Mask (11) : 255.255.255.255
No of TOS (11): 0            Metric-0 (11): 1

Link Type (12): Stub Network
Network (12): 180.0.18.0      Mask (12) : 255.255.255.0
No of TOS (12): 0            Metric-0 (12): 24

Link Type (13): Point To Point
Nbr Rtr Id (13): 180.0.0.10   I/F Address (13): 180.0.3.2
No of TOS (13): 0            Metric-0 (13): 25

Link Type (14): Stub Network
Network (14): 180.0.3.0       Mask (14) : 255.255.255.0
No of TOS (14): 0            Metric-0 (14): 25

---

AS Ext LSA for Network 180.0.0.14

---

Area Id : N/A           Adv Router Id : 180.0.0.10
Link State Id : 180.0.0.14  LSA Type : AS Ext
Sequence No : 0x800000083   Checksum : 0xa659
Age : 2033                     Length : 36
Options : E
Network Mask : 255.255.255.255 Fwding Address : 180.1.6.15
Metric Type : Type 2         Metric-0 : 4
Ext Route Tag : 0

---

interface

Syntax  interface [ip-addr | ip-int-name | area area-id] [detail]

Context show>router>ospf
        show>router>ospf3

Description Displays the details of the OSPF interface, this interface can be identified by ip-address or ip interface name. When neither is specified, all in-service interfaces are displayed.
The `detail` option produces a great amount of data. It is recommended to detail only when requesting a specific interface.

**Parameters**
- `ip-addr` — Display only the interface identified by this IP address.
- `ip-int-name` — Display only the interface identified by this interface name.
- `area area-id` — Display all interfaces configured in this area.
- `detail` — Displays detailed information on the interface.

**Output**

**Standard OSPF Interface Output** — The following table describes the standard command output fields for an OSPF interface.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Name</td>
<td>The interface name.</td>
</tr>
<tr>
<td>Area Id</td>
<td>A 32-bit integer uniquely identifying the area to which this interface is connected. Area ID 0.0.0.0 is used for the OSPF backbone.</td>
</tr>
<tr>
<td>D Rtr Id</td>
<td>The IP Interface address of the router identified as the Designated Router for the network in which this interface is configured. Set to 0.0.0.0 if there is no Designated router.</td>
</tr>
<tr>
<td>BD Rtr Id</td>
<td>The IP Interface address of the router identified as the Backup Designated Router for the network in which this interface is configured. Set to 0.0.0.0 if there is no Backup Designated router.</td>
</tr>
<tr>
<td>Adm</td>
<td>Dn — OSPF on this interface is administratively shut down.</td>
</tr>
<tr>
<td></td>
<td>Up — OSPF on this interface is administratively enabled.</td>
</tr>
<tr>
<td>Opr</td>
<td>Down — This is the initial interface state. In this state, the lower-level protocols have indicated that the interface is unusable.</td>
</tr>
<tr>
<td></td>
<td>Wait — The router is trying to determine the identity of the (Backup) Designated router for the network.</td>
</tr>
<tr>
<td></td>
<td>PToP — The interface is operational, and connects either to a physical point-to-point network or to a virtual link.</td>
</tr>
<tr>
<td></td>
<td>DR — This router is the Designated Router for this network.</td>
</tr>
<tr>
<td></td>
<td>BDR — This router is the backup Designated Router for this network.</td>
</tr>
<tr>
<td></td>
<td>ODR — The interface is operational and part of a broadcast or NBMA network on which another router has been selected to be the Designated Router.</td>
</tr>
<tr>
<td>No. of OSPF Inter-</td>
<td>The number of interfaces listed.</td>
</tr>
<tr>
<td>faces</td>
<td></td>
</tr>
</tbody>
</table>

**Sample Output**

*A:Dut-C# show router ospf interface "DUTC_TO_DUTB.1.0"*
OSPFv2 (0) interface "DUTC_TO_DUTB.1.0"

<table>
<thead>
<tr>
<th>If Name</th>
<th>Area Id</th>
<th>Designated Rtr</th>
<th>Bkup Desig Rtr</th>
<th>Adm</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUTC_TO_DUTB.1.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>Up</td>
<td>PToP</td>
</tr>
</tbody>
</table>

No. of OSPF Interfaces: 1

*A:Dut-C# show router ospf interface "DUTC_TO_DUTB.1.0" detail

OSPFv2 (0) interface "DUTC_TO_DUTB.1.0" (detailed)

**Configuration**

- **IP Address**: 1.0.23.3
- **Area Id**: 0.0.0.0
- **Priority**: 1
- **Hello Intrvl**: 2 sec
- **Rtr Dead Intrvl**: 10 sec
- **Retrans Intrvl**: 5 sec
- **Poll Intrvl**: 120 sec
- **Cfg Metric**: 7000
- **Advert Subnet**: True
- **Transit Delay**: 1
- **Cfg IF Type**: Point To Point
- **Passive**: False
- **Cfg MTU**: 0
- **LSA-filter-out**: None
- **Adv Rtr Capab**: Yes
- **LFA**: Include
- **LFA NH Template**: template1
- **Auth Type**: None

**State**

- **Admin Status**: Enabled
- **Oper State**: Point To Point
- **Designated Rtr**: 0.0.0.0
- **Backup Desig Rtr**: 0.0.0.0
- **IF Type**: Point To Point
- **Network Type**: Transit
- **Oper MTU**: 1500
- **Last Enabled**: 01/14/2014 14:33:07
- **Oper Metric**: 7000
- **Bfd Enabled**: No
- **Te Metric**: 7000
- **Te State**: Down
- **Admin Groups**: None
- **Ldp Sync**: outOfService
- **Ldp Sync Wait**: Disabled
- **Ldp Timer State**: Disabled
- **Ldp Tm Left**: 0

**Statistics**

- **Nbr Count**: 1
- **If Events**: 1
- **Tot Rx Packets**: 603
- **Tot Tx Packets**: 602
- **Rx Hellos**: 576
- **Tx Hellos**: 577
- **Rx DBDs**: 3
- **Tx DBDs**: 2
- **Rx LSRs**: 0
- **Tx LSRs**: 1
- **Rx LSUs**: 15
- **Tx LSUs**: 16
- **Rx LS Acks**: 9
- **Tx LS Acks**: 6
- **Retransmits**: 2
- **Discards**: 2
- **Bad Networks**: 0
- **Bad Dest Addr**: 0
- **Bad Auth Types**: 0
- **Bad Auth Failures**: 0
- **Bad Neighbors**: 0
- **Bad Pkt Types**: 0
- **Bad Lengths**: 0
- **Bad Hello Int.**: 1
- **Bad Options**: 0
- **Bad Versions**: 0
- **Bad Checksums**: 0
- **LSA Count**: 0
- **LSA Checksum**: 0x0
**Show Commands**

*A:Dut-C#*

A:SetupCLI# show router ospf interface "ip_if_1" detail

```
OSPF Interface (Detailed) : ip_if_1

Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.1.1</td>
</tr>
<tr>
<td>Area Id</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Priority</td>
<td>10</td>
</tr>
<tr>
<td>Hello Intvl</td>
<td>9 sec</td>
</tr>
<tr>
<td>Rtr Dead Intvl</td>
<td>45 sec</td>
</tr>
<tr>
<td>Retrans Intvl</td>
<td>10 sec</td>
</tr>
<tr>
<td>Poll Intvl</td>
<td>120 sec</td>
</tr>
<tr>
<td>Cfg Metric</td>
<td>11</td>
</tr>
<tr>
<td>Advert Subnet</td>
<td>True</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>2</td>
</tr>
<tr>
<td>Auth Type</td>
<td>MD5</td>
</tr>
<tr>
<td>Passive</td>
<td>False</td>
</tr>
<tr>
<td>Cfg MTU</td>
<td>9198</td>
</tr>
<tr>
<td>TransIt Delay</td>
<td>2</td>
</tr>
<tr>
<td>Auth Type</td>
<td>MD5</td>
</tr>
<tr>
<td>Passive</td>
<td>False</td>
</tr>
<tr>
<td>Cfg MTU</td>
<td>9198</td>
</tr>
<tr>
<td>IPsec InStatSA</td>
<td></td>
</tr>
<tr>
<td>IPsec OutStatSA</td>
<td></td>
</tr>
<tr>
<td>IPsec InStatSATmp</td>
<td></td>
</tr>
</tbody>
</table>

State

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Oper State</td>
<td>Down</td>
</tr>
<tr>
<td>Designated Rtr</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Backup Desig Rtr</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>IF Type</td>
<td>Secondary</td>
</tr>
<tr>
<td>Network Type</td>
<td>Stub</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>1576</td>
</tr>
<tr>
<td>Last Enabled</td>
<td>Never</td>
</tr>
<tr>
<td>Oper Metric</td>
<td>11</td>
</tr>
<tr>
<td>Bfd Enabled</td>
<td>No</td>
</tr>
<tr>
<td>Te Metric</td>
<td>16777215</td>
</tr>
<tr>
<td>Te State</td>
<td>Down</td>
</tr>
<tr>
<td>Admin Groups</td>
<td>None</td>
</tr>
<tr>
<td>Ldp Sync</td>
<td>outOfService</td>
</tr>
<tr>
<td>Ldp Sync Wait</td>
<td>Disabled</td>
</tr>
<tr>
<td>Ldp Tm Left</td>
<td>0</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbr Count</td>
<td>0</td>
</tr>
<tr>
<td>If Events</td>
<td>0</td>
</tr>
<tr>
<td>Tot Rx Packets</td>
<td>0</td>
</tr>
<tr>
<td>Tot Tx Packets</td>
<td>0</td>
</tr>
<tr>
<td>Rx Hellos</td>
<td>0</td>
</tr>
<tr>
<td>Tx Hellos</td>
<td>0</td>
</tr>
<tr>
<td>Rx DBDs</td>
<td>0</td>
</tr>
<tr>
<td>Tx DBDs</td>
<td>0</td>
</tr>
<tr>
<td>Rx LSRs</td>
<td>0</td>
</tr>
<tr>
<td>Tx LSRs</td>
<td>0</td>
</tr>
<tr>
<td>Rx LSUss</td>
<td>0</td>
</tr>
<tr>
<td>Tx LSUss</td>
<td>0</td>
</tr>
<tr>
<td>Rx LS Acks</td>
<td>0</td>
</tr>
<tr>
<td>Tx LS Acks</td>
<td>0</td>
</tr>
<tr>
<td>Retransmits</td>
<td>0</td>
</tr>
<tr>
<td>Discards</td>
<td>0</td>
</tr>
<tr>
<td>Bad Networks</td>
<td>0</td>
</tr>
<tr>
<td>Bad Virt Links</td>
<td>0</td>
</tr>
<tr>
<td>Bad Areas</td>
<td>0</td>
</tr>
<tr>
<td>Bad Dest Addr</td>
<td>0</td>
</tr>
<tr>
<td>Bad Auth Types</td>
<td>0</td>
</tr>
<tr>
<td>Auth Failures</td>
<td>0</td>
</tr>
<tr>
<td>Bad Neighbors</td>
<td>0</td>
</tr>
<tr>
<td>Bad Pkt Types</td>
<td>0</td>
</tr>
<tr>
<td>Bad Lengths</td>
<td>0</td>
</tr>
<tr>
<td>Bad Hello Int.</td>
<td>0</td>
</tr>
<tr>
<td>Bad Options</td>
<td>0</td>
</tr>
<tr>
<td>Bad Versions</td>
<td>0</td>
</tr>
<tr>
<td>Bad Checksums</td>
<td>0</td>
</tr>
<tr>
<td>LSA Count</td>
<td>0</td>
</tr>
<tr>
<td>LSA Checksum</td>
<td>0x0</td>
</tr>
</tbody>
</table>

Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10.10.1.1</td>
</tr>
<tr>
<td>Area Id</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Priority</td>
<td>10</td>
</tr>
<tr>
<td>Hello Intvl</td>
<td>9 sec</td>
</tr>
<tr>
<td>Rtr Dead Intvl</td>
<td>45 sec</td>
</tr>
<tr>
<td>Retrans Intvl</td>
<td>10 sec</td>
</tr>
<tr>
<td>Poll Intvl</td>
<td>120 sec</td>
</tr>
<tr>
<td>Configuration</td>
<td>Value</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Cfg Metric</td>
<td>11</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>2</td>
</tr>
<tr>
<td>Passive</td>
<td>False</td>
</tr>
<tr>
<td>LFA</td>
<td>Exclude</td>
</tr>
<tr>
<td>IPsec InStatSA</td>
<td></td>
</tr>
<tr>
<td>IPsec InStatSATmp</td>
<td></td>
</tr>
<tr>
<td>Admin Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Designated Rtr</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>IF Type</td>
<td>Point To Point</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>1576</td>
</tr>
<tr>
<td>Oper Metric</td>
<td>11</td>
</tr>
<tr>
<td>Te Metric</td>
<td>16777215</td>
</tr>
<tr>
<td>Admin Groups</td>
<td>None</td>
</tr>
<tr>
<td>Ldp Sync</td>
<td>outOfService</td>
</tr>
<tr>
<td>Ldp Timer State</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbr Count</td>
<td>0</td>
<td>If Events</td>
<td>0</td>
</tr>
<tr>
<td>Tot Rx Packets</td>
<td>0</td>
<td>Tot Tx Packets</td>
<td>0</td>
</tr>
<tr>
<td>Rx Hellos</td>
<td>0</td>
<td>Tx Hellos</td>
<td>0</td>
</tr>
<tr>
<td>Rx DBDs</td>
<td>0</td>
<td>Tx DBDs</td>
<td>0</td>
</tr>
<tr>
<td>Rx LSRs</td>
<td>0</td>
<td>Tx LSRs</td>
<td>0</td>
</tr>
<tr>
<td>Rx LSUs</td>
<td>0</td>
<td>Tx LSUs</td>
<td>0</td>
</tr>
<tr>
<td>Rx LS Acks</td>
<td>0</td>
<td>Tx LS Acks</td>
<td>0</td>
</tr>
<tr>
<td>Retransmits</td>
<td>0</td>
<td>Discards</td>
<td>0</td>
</tr>
<tr>
<td>Bad Networks</td>
<td>0</td>
<td>Bad Virt Links</td>
<td>0</td>
</tr>
<tr>
<td>Bad Areas</td>
<td>0</td>
<td>Bad Dest Addr</td>
<td>0</td>
</tr>
<tr>
<td>Bad Auth Types</td>
<td>0</td>
<td>Auth Failures</td>
<td>0</td>
</tr>
<tr>
<td>Bad Neighbors</td>
<td>0</td>
<td>Bad Pkt Types</td>
<td>0</td>
</tr>
<tr>
<td>Bad Lengths</td>
<td>0</td>
<td>Bad Hello Int.</td>
<td>0</td>
</tr>
<tr>
<td>Bad Dead Int.</td>
<td>0</td>
<td>Bad Options</td>
<td>0</td>
</tr>
<tr>
<td>Bad Versions</td>
<td>0</td>
<td>Bad Checksums</td>
<td>0</td>
</tr>
<tr>
<td>LSA Count</td>
<td>0</td>
<td>LSA Checksum</td>
<td>0x0</td>
</tr>
</tbody>
</table>

A:SetupCLI# show router ospf interface area 1.1.1.1 detail

A:SetupCLI# show router ospf interface area 1.1.1 detail

Interface : ip_if_1

<table>
<thead>
<tr>
<th>Address</th>
<th>10.10.1.1</th>
<th>Priority</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Id</td>
<td>1.1.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hello Intrvl</td>
<td>9 sec</td>
<td>Rtr Dead Intrvl</td>
<td>45 sec</td>
</tr>
<tr>
<td>Retrans Intrvl</td>
<td>10 sec</td>
<td>Poll Intrvl</td>
<td>120 sec</td>
</tr>
<tr>
<td>Cfg Metric</td>
<td>11</td>
<td>Advert Subnet</td>
<td>False</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>2</td>
<td>Auth Type</td>
<td>MD5</td>
</tr>
<tr>
<td>Passive</td>
<td>False</td>
<td>Cfg MTU</td>
<td>9198</td>
</tr>
<tr>
<td>LFA</td>
<td>Exclude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPsec InStatSA</td>
<td></td>
<td>IPsec OutStatSA</td>
<td></td>
</tr>
<tr>
<td>IPsec InStatSATmp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin Status</td>
<td>Enabled</td>
<td>Oper State</td>
<td>Down</td>
</tr>
</tbody>
</table>
Designated Rtr : 0.0.0.0
Backup Desig Rtr : 0.0.0.0
IF Type : Point To Point
Oper MTU : 1576
Oper Metric : 11
Te Metric : 16777215
Admin Groups : None
Ldp Sync : outOfService
Ldp Timer State : Enabled
Nbr Count : 0
Tot Rx Packets : 0
Rx Hellos : 0
Rx DBDs : 0
Rx LSRs : 0
Rx LSUs : 0
Rx LS Acks : 0
Retransmits : 0
Bad Networks : 0
Bad Areas : 0
Bad Auth Types : 0
Bad Neighbors : 0
Bad Lengths : 0
LSA Count : 0
===
A:SetupCLI#
A:SetupCLI# show router ospf 1 interface detail
===
OSPF Interfaces (Detailed)

Interface : system

IP Address : 9.1.255.255
Area Id : 0.0.0.0
Hello Intrvl : 10 sec
Retrans Intrvl : 5 sec
Cfg Metric : 0
Transit Delay : 1
Passive : True
Admin Status : Enabled
Designated Rtr : 2.2.2.2
Oper MTU : 1500
Oper Metric : 0
Nbr Count : 0
Tot Rx Packets : 0
Rx Hellos : 0
Rx DBDs : 0
Rx LSRs : 0
Rx LSUs : 0
Rx LS Acks : 0
Retransmits : 0
Bad Networks : 0
Bad Areas : 0
Bad Auth Types : 0
Bad Neighbors : 0
Bad Lengths : 0
LSA Count : 0
===
Next page...
Detailed OSPF Interface Output

The following table describes the detailed command output fields for an OSPF interface.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The IP address of this OSPF interface.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address and mask of this OSPF interface.</td>
</tr>
<tr>
<td>Interface Name</td>
<td>The interface name.</td>
</tr>
<tr>
<td>Area Id</td>
<td>A 32-bit integer uniquely identifying the area to which this interface is connected. Area ID 0.0.0.0 is used for the OSPF backbone.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority of this interface. Used in multi-access networks, this field is used in the designated router election algorithm.</td>
</tr>
<tr>
<td>Hello Intrvl</td>
<td>The length of time, in seconds, between the Hello packets that the router sends on the interface. This value must be the same for all routers attached to a common network.</td>
</tr>
<tr>
<td>Rtr Dead Intrvl</td>
<td>The number of seconds that a router’s Hello packets have not been seen before it’s neighbors declare the router down. This should be some multiple of the Hello interval. This value must be the same for all routers attached to a common network.</td>
</tr>
<tr>
<td>Retrans Intrvl</td>
<td>The number of seconds between link-state advertisement retransmissions, for adjacencies belonging to this interface. This value is also used when retransmitting database description and link-state request packets.</td>
</tr>
<tr>
<td>Poll Intrvl</td>
<td>The larger time interval, in seconds, between the Hello packets sent to an inactive non-broadcast multi-access neighbor.</td>
</tr>
<tr>
<td>Metric</td>
<td>The metric to be advertised for this interface.</td>
</tr>
<tr>
<td>Advert Subnet</td>
<td>False – When a point-to-point interface is configured as false, then the subnet is not advertised and the endpoints are advertised as host routes.</td>
</tr>
</tbody>
</table>
Show Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>When a point-to-point interface is configured to true, then the subnet is advertised.</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>The estimated number of seconds it takes to transmit a link state update packet over this interface.</td>
</tr>
<tr>
<td>Auth Type</td>
<td>Identifies the authentication procedure to be used for the packet.</td>
</tr>
<tr>
<td>None</td>
<td>Routing exchanges over the network/subnet are not authenticated.</td>
</tr>
<tr>
<td>Simple</td>
<td>A 64-bit field is configured on a per-network basis. All packets sent on a particular network must have this configured value in their OSPF header 64-bit authentication field. This essentially serves as a “clear” 64-bit password.</td>
</tr>
<tr>
<td>MD5</td>
<td>A shared secret key is configured in all routers attached to a common network/subnet. For each OSPF protocol packet, the key is used to generate/verify a “message digest” that is appended to the end of the OSPF packet.</td>
</tr>
<tr>
<td>Passive</td>
<td>False — This interfaces operates as a normal OSPF interface with regard to adjacency forming and network/link behavior. True — no OSPF HELLOs will be sent out on this interface and the router advertises this interface as a stub network/link in its router LSAs.</td>
</tr>
<tr>
<td>MTU</td>
<td>The desired size of the largest packet which can be sent/received on this OSPF interface, specified in octets. This size DOES include the underlying IP header length, but not the underlying layer headers/trailers.</td>
</tr>
<tr>
<td>Admin Status</td>
<td>Disabled — OSPF on this interface is administratively shut down.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Down — This is the initial interface state. In this state, the lower-level protocols have indicated that the interface is unusable. Waiting — The router is trying to determine the identity of the (Backup) Designated router for the network. Point To Point — The interface is operational, and connects either to a physical point-to-point network or to a virtual link. Designated Rtr — This router is the Designated Router for this network. Other Desig Rtr — The interface is operational and part of a broadcast or NBMA network on which another router has been selected to be the Designated Router.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Backup Desig Rtr</td>
<td>This router is the Backup Designated Router for this network.</td>
</tr>
<tr>
<td>DR-Id</td>
<td>The IP Interface address of the router identified as the Designated Router for the network in which this interface is configured. Set to 0.0.0.0 if there is no Designated router</td>
</tr>
<tr>
<td>BDR-Id</td>
<td>The IP Interface address of the router identified as the Backup Designated Router for the network in which this interface is configured. Set to 0.0.0.0 if there is no Backup Designated router</td>
</tr>
<tr>
<td>IF Type</td>
<td>Broadcast — LANs, such as Ethernet.</td>
</tr>
<tr>
<td></td>
<td>NBMA — X.25, Frame Relay and similar technologies.</td>
</tr>
<tr>
<td></td>
<td>Point-To-Point — Links that are definitively point to point.</td>
</tr>
<tr>
<td>Network Type</td>
<td>Stub — OSPF has not established a neighbor relationship with any other OSPF router on this network as such only traffic sourced or destined to this network will be routed to this network.</td>
</tr>
<tr>
<td></td>
<td>Transit — OSPF has established at least one neighbor relationship with any other OSPF router on this network as such traffic en route to other networks may be routed via this network.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The operational size of the largest packet which can be sent/received on this OSPF interface, specified in octets. This size DOES include the underlying IP header length, but not the underlying layer headers/trailers.</td>
</tr>
<tr>
<td>Last Enabled</td>
<td>The time that this interface was last enabled to run OSPF on this interface.</td>
</tr>
<tr>
<td>Nbr Count</td>
<td>The number of OSPF neighbors on the network for this interface.</td>
</tr>
<tr>
<td>If Events</td>
<td>The number of times this OSPF interface has changed its state, or an error has occurred since this interface was last enabled.</td>
</tr>
<tr>
<td>Tot Rx Packets</td>
<td>The total number of OSPF packets received on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Tot Tx Packets</td>
<td>The total number of OSPF packets transmitted on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Rx Hellos</td>
<td>The total number of OSPF Hello packets received on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Tx Hellos</td>
<td>The total number of OSPF Hello packets transmitted on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Rx DBDs</td>
<td>The total number of OSPF database description packets received on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Tx DBDs</td>
<td>The total number of OSPF database description packets transmitted on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Rx LSRs</td>
<td>The total number of Link State Requests (LSRs) received on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Tx LSRs</td>
<td>The total number of Link State Requests (LSRs) transmitted on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Rx LSUs</td>
<td>The total number of Link State Updates (LSUs) received on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Tx LSUs</td>
<td>The total number of Link State Updates (LSUs) transmitted on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Rx LS Acks</td>
<td>The total number of Link State Acknowledgements received on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Tx LS Acks</td>
<td>The total number of Link State Acknowledgements transmitted on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Retransmits</td>
<td>The total number of OSPF Retransmits sent on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Discards</td>
<td>The total number of OSPF packets discarded on this interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Networks</td>
<td>The total number of OSPF packets received with invalid network or mask since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Virt Links</td>
<td>The total number of OSPF packets received on this interface that are destined to a virtual link that does not exist since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Areas</td>
<td>The total number of OSPF packets received with an area mismatch since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Dest Addr</td>
<td>The total number of OSPF packets received with the incorrect IP destination address since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Auth Types</td>
<td>The total number of OSPF packets received with an invalid authorization type since this interface was last enabled.</td>
</tr>
<tr>
<td>Auth Failures</td>
<td>The total number of OSPF packets received with an invalid authorization key since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Neighbors</td>
<td>The total number of OSPF packets received where the neighbor information does not match the information this router has for the neighbor since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Pkt Types</td>
<td>The total number of OSPF packets received with an invalid OSPF packet type since this interface was last enabled.</td>
</tr>
</tbody>
</table>
Sample Output

*A:JC-NodeA# show router ospf interface area 1 detail
OSPF Interfaces in Area (Detailed) : 1
Interface : ip-10.10.1.1
IP Address : 10.10.1.1
Area Id : 0.0.0.1
Priority : 1
Hello Intrvl : 5 sec Rtr Dead Intrvl : 15 sec
Retrans Intrvl : 5 sec Poll Intrvl : 120 sec
Cfg Metric : 0 Advert Subnet : True
Transit Delay : 1 Auth Type : None
Passive : False Cfg MTU : 0
Admin Status : Enabled Oper State : Designated Rtr
Designated Rtr : 10.20.1.1 Backup Desig Rtr : 0.0.0.0
IF Type : Broadcast Network Type : Transit
Oper MTU : 1500 Last Enabled : 04/11/2007 16:06:27
Oper Metric : 1000 Bfd Enabled : No
Nbr Count : 0 If Events : 5
Tot Rx Packets : 0 Tot Tx Packets : 1116
Rx Hellos : 0 Tx Hellos : 1116
Rx DBDs : 0 Tx DBDs : 0
Rx LSRs : 0 Tx LSRs : 0
Rx LSUs : 0 Tx LSUs : 0
Rx LSA Acres : 0 Tx LSA Acres : 0
Retransmits : 0 Discards : 0
Bad Networks : 0 Bad Virt Links : 0
Bad Areas : 0 Bad Dest Addr : 0
Bad Auth Types : 0 Auth Failures : 0
Bad Neighbors : 0 Bad Pkt Types : 0
Bad Lengths : 0 Bad Hello Int. : 0
Bad Dead Int. : 0 Bad Options : 0
Bad Versions : 0 Bad Checksums : 0
LSA Count : 0 LSA Checksum : 0x0
TE Metric : 678

*A:JC-NodeA#

Ifa-coverage
Syntax Ifa-coverage
Context show>router>ospf
Description This command displays OSPF Loop-Free Alternate (LFA) next-hop information.

Sample Output
*A:Dut-A# show router ospf lfa-coverage
LFA coverage ospfv2 instance 0

Area Node Prefix

0.0.0.0 4/4(100%) 8/8(100%)

*A:Dut-A#
neighbor

Syntax
```
neighbor [ip-int-name] [router-id]
```

Context
```
show>router>ospf
show>router>ospf3
```

Description
This command will display all neighbor information. To reduce the amount of output the user may opt to select the neighbors on a given interface by address or name.

The **detail** option produces a large amount of data. It is recommended to use **detail** only when requesting a specific neighbor.

Parameters
- `ip-int-name` — Display neighbor information only for neighbors of the interface identified by the interface name
- `router-id` — Display neighbor information for the neighbor identified by the specified router ID.

Output
Standard OSPF Neighbor Output — The following table describes the standard command output fields for an OSPF neighbor.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbr IP Addr</td>
<td>The IP address this neighbor is using in its IP Source Address. Note that, on addressless links, this will not be 0.0.0.0, but the address of another of the neighbor's interfaces.</td>
</tr>
<tr>
<td>Nbr Rtr Id</td>
<td>A 32-bit integer uniquely identifying the neighboring router in the Autonomous System.</td>
</tr>
<tr>
<td>Nbr State</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Down — This is the initial state of a neighbor conversation. It indicates that there has been no recent information received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>Attempt — This state is only valid for neighbors attached to NBMA networks. It indicates that no recent information has been received from the neighbor, but that a more concerted effort should be made to contact the neighbor.</td>
</tr>
<tr>
<td></td>
<td>Init — In this state, an Hello packet has recently been seen from the neighbor. However, bidirectional communication has not yet been established with the neighbor (i.e., the router itself did not appear in the neighbor's Hello packet).</td>
</tr>
<tr>
<td></td>
<td>Two Way — In this state, communication between the two routers is bidirectional.</td>
</tr>
<tr>
<td></td>
<td>ExchStart — This is the first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial Database Descriptor sequence number.</td>
</tr>
<tr>
<td></td>
<td>Exchange — In this state the router is describing its entire link state database by sending Database Description packets to the neighbor.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-A# show router ospf 1 neighbor

OSPF Neighbors

<table>
<thead>
<tr>
<th>Interface-Name</th>
<th>Rtr Id</th>
<th>State</th>
<th>Pri</th>
<th>RetxQ</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc157-2/1</td>
<td>10.13.8.158</td>
<td>Full</td>
<td>1</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>pc157-2/2</td>
<td>10.13.7.165</td>
<td>Full</td>
<td>100</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>pc157-2/3</td>
<td>10.13.6.188</td>
<td>Full</td>
<td>1</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

No. of Neighbors: 3

A:ALA-A#

Detailed OSPF Neighbor Output — The following table describes the detailed command output fields for an OSPF neighbor.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor IP Addr</td>
<td>The IP address this neighbor is using in its IP source address. Note that, on addressless links, this will not be 0.0.0.0, but the address of another of the neighbor’s interfaces.</td>
</tr>
<tr>
<td>Local IF IP Addr</td>
<td>The IP address of this OSPF interface.</td>
</tr>
<tr>
<td>Area Id</td>
<td>A 32-bit integer uniquely identifying the area to which this interface is connected. Area ID 0.0.0.0 is used for the OSPF backbone</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Designated Rtr</td>
<td>The IP Interface address of the router identified as the Designated Router for the network in which this interface is configured. Set to 0.0.0.0 if there is no Designated router.</td>
</tr>
<tr>
<td>Neighbor Rtr Id</td>
<td>A 32-bit integer uniquely identifying the neighboring router in the AS.</td>
</tr>
<tr>
<td>Neighbor State</td>
<td>Down — This is the initial state of a neighbor conversation. It indicates that there has been no recent information received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>Attempt — This state is only valid for neighbors attached to NBMA networks. It indicates that no recent information has been received from the neighbor, but that a more concerted effort should be made to contact the neighbor.</td>
</tr>
<tr>
<td></td>
<td>Init — In this state, an Hello packet has recently been seen from the neighbor. However, bidirectional communication has not yet been established with the neighbor (i.e., the router itself did not appear in the neighbor’s Hello packet).</td>
</tr>
<tr>
<td></td>
<td>Two Way — In this state, communication between the two routers is bidirectional.</td>
</tr>
<tr>
<td></td>
<td>Exchange start — This is the first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial Database Descriptor sequence number.</td>
</tr>
<tr>
<td></td>
<td>Exchange — In this state the router is describing its entire link state database by sending Database Description packets to the neighbor.</td>
</tr>
<tr>
<td></td>
<td>Loading — In this state, Link State Request packets are sent to the neighbor asking for the more recent LSAs that have been discovered (but not yet received) in the Exchange state.</td>
</tr>
<tr>
<td></td>
<td>Full — In this state, the neighboring routers are fully adjacent. These adjacencies will now appear in router-LSAs and network-LSAs.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority of this neighbor in the designated router election algorithm. The value 0 signifies that the neighbor is not eligible to become the designated router on this particular network.</td>
</tr>
<tr>
<td>Retrans Q Length</td>
<td>The current length of the retransmission queue.</td>
</tr>
<tr>
<td>Options</td>
<td>E — External Routes Support</td>
</tr>
<tr>
<td></td>
<td>MC — Multicast Support</td>
</tr>
<tr>
<td></td>
<td>N/P — Type 7 LSA Support</td>
</tr>
<tr>
<td></td>
<td>EA — External Attribute LSA Support</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>DC</td>
<td>Demand Circuit Support</td>
</tr>
<tr>
<td>O</td>
<td>Opaque LSA Support</td>
</tr>
<tr>
<td>Backup Desig Rtr</td>
<td>The IP Interface address of the router identified as the Backup Designated Router for the network in which this interface is configured. Set to 0.0.0.0 if there is no backup designated router.</td>
</tr>
<tr>
<td>Events</td>
<td>The number of times this neighbor relationship has changed state, or an error has occurred.</td>
</tr>
<tr>
<td>Last Event Time</td>
<td>The time when the last event occurred that affected the adjacency to the neighbor.</td>
</tr>
<tr>
<td>Up Time</td>
<td>This value represents the uninterrupted time, in hundredths of seconds, the adjacency to this neighbor has been up. To evaluate when the last state change occurred see last event time.</td>
</tr>
<tr>
<td>Time Before Dead</td>
<td>The time until this neighbor is declared down, this timer is set to the dead router interval when a valid hello packet is received from the neighbor.</td>
</tr>
<tr>
<td>Bad Nbr States</td>
<td>The total number of OSPF packets received when the neighbor state was not expecting to receive this packet type since this interface was last enabled.</td>
</tr>
<tr>
<td>LSA Inst fails</td>
<td>The total number of times an LSA could not be installed into the LSDB due to a resource allocation issue since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Seq Nums</td>
<td>The total number of times when a database description packet was received with a sequence number mismatch since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad MTUs</td>
<td>The total number of times when the MTU in a received database description packet was larger than the MTU of the receiving interface since this interface was last enabled.</td>
</tr>
<tr>
<td>Bad Packets</td>
<td>The total number of times when an LS update was received with an illegal LS type or an option mismatch since this interface was last enabled.</td>
</tr>
<tr>
<td>LSA not in LSDB</td>
<td>The total number of times when an LS request was received for an LSA not installed in the LSDB of this router since this interface was last enabled.</td>
</tr>
<tr>
<td>Option Mismatches</td>
<td>The total number of times when a LS update was received with an option mismatch since this interface was last enabled.</td>
</tr>
<tr>
<td>Nbr Duplicates</td>
<td>The total number of times when a duplicate database description packet was received during the exchange state since this interface was last enabled.</td>
</tr>
</tbody>
</table>
Sample Output

```
A:ALA-A# show router ospf neighbor detail
-----------------------------------------------------------------------------------------------
OSPF Neighbors
-----------------------------------------------------------------------------------------------
Neighbor Rtr Id : 10.13.8.158          Interface: pc157-2/1
-----------------------------------------------------------------------------------------------
Neighbor IP Addr : 10.16.1.8
Local IF IP Addr : 10.16.1.7
Area Id : 0.0.0.0
Designated Rtr : 0.0.0.0  Backup Desig Rtr : 0.0.0.0
Neighbor State : Full          Priority : 1
Retrans Q Length : 0          Options : -E--O-
Events : 4                        Last Event Time : 05/06/2006 00:11:16
Up Time : 1d 18:20:20               Time Before Dead : 38 sec
GR Helper : Not Helping          GR Helper Age : 0 sec
GR Exit Reason : None              GR Restart Reason: Unknown
Bad Nbr States : 1
LSA Inst fails : 0
Bad Seq Nums : 0
Bad Packets : 0
LSA not in LSDB : 0
Option Mismatches: 0
Nbr Duplicates : 0
Num Restarts : 0
Last Restart at : Never
-----------------------------------------------------------------------------------------------
Neighbor Rtr Id : 10.13.7.165          Interface: pc157-2/2
-----------------------------------------------------------------------------------------------
Neighbor IP Addr : 10.12.1.3
Local IF IP Addr : 10.12.1.7
Area Id : 0.0.0.0
Designated Rtr : 10.13.9.157  Backup Desig Rtr : 10.13.7.165
Neighbor State : Full          Priority : 100
Retrans Q Length : 0          Options : -E--O-
Events : 4                        Last Event Time : 05/05/2006 01:39:13
Up Time : 0d 16:52:27               Time Before Dead : 33 sec
GR Helper : Not Helping          GR Helper Age : 0 sec
GR Exit Reason : None              GR Restart Reason: Unknown
Bad Nbr States : 0
LSA Inst fails : 0
Bad Seq Nums : 0
Bad Packets : 0
LSA not in LSDB : 0
Option Mismatches: 0
Nbr Duplicates : 0
Num Restarts : 0
Last Restart at : Never
-----------------------------------------------------------------------------------------------
Neighbor Rtr Id : 10.13.6.188          Interface: pc157-2/3
-----------------------------------------------------------------------------------------------
Neighbor IP Addr : 10.14.1.4
Local IF IP Addr : 10.14.1.7
Area Id : 0.0.0.0
Designated Rtr : 10.13.9.157  Backup Desig Rtr : 10.13.6.188
Neighbor State : Full          Priority : 1
Retrans Q Length : 0          Options : -E--O-
Events : 4                        Last Event Time : 05/05/2006 08:35:18
Up Time : 0d 09:56:25               Time Before Dead : 38 sec
GR Helper : Not Helping          GR Helper Age : 0 sec
GR Exit Reason : None              GR Restart Reason: Unknown
Bad Nbr States : 1
LSA Inst fails : 0
Bad Seq Nums : 0
Bad Packets : 0
LSA not in LSDB : 0
Option Mismatches: 0
Nbr Duplicates : 0
Num Restarts : 0
Last Restart at : Never
```
opaque-database

Syntax

`opaque-database [link link-id | area area-id | as | adv-router router-id] [ls-id] [detail]`

Context

`show>router>ospf`

Description

This command displays OSPF opaque database information.

Output

OSPF Opaque Database Output — The following table describes the OSPF opaque database output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Id</td>
<td>A 32-bit integer uniquely identifying an area. Area ID 0.0.0.0 is used for the OSPF backbone.</td>
</tr>
<tr>
<td>Type</td>
<td>NSSA — This area is configured as a NSSA area.</td>
</tr>
<tr>
<td></td>
<td>Area — This area is configured as a standard area (not NSSA or stub).</td>
</tr>
<tr>
<td></td>
<td>Stub — This area is configured as a NSSA area.</td>
</tr>
<tr>
<td>Link State Id</td>
<td>The link state ID is an LSA type specific field containing either a Router-Id or an IP Address; it identifies the piece of the routing domain being described by the advertisement.</td>
</tr>
<tr>
<td>Adv Rtr Id</td>
<td>The router identifier of the router advertising the LSA.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the link state advertisement in seconds.</td>
</tr>
<tr>
<td>Sequence</td>
<td>The signed 32-bit integer sequence number.</td>
</tr>
<tr>
<td>Cksum</td>
<td>The 32-bit unsigned sum of the link-state advertisements' LS checksums.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-A# show router ospf opaque-database
OSPF Opaque Link State Database (Type : All)

<table>
<thead>
<tr>
<th>Area Id</th>
<th>Type</th>
<th>Link State Id</th>
<th>Adv Rtr Id</th>
<th>Age</th>
<th>Sequence</th>
<th>Cksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>Area</td>
<td>1.0.0.1</td>
<td>180.0.0.2</td>
<td>205</td>
<td>0x8000007e</td>
<td>0xb1b2</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Area</td>
<td>1.0.0.1</td>
<td>180.0.0.5</td>
<td>617</td>
<td>0x80000084</td>
<td>0xb1a6</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Area</td>
<td>1.0.0.1</td>
<td>180.0.0.8</td>
<td>1635</td>
<td>0x80000081</td>
<td>0xc391</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Area</td>
<td>1.0.0.1</td>
<td>180.0.0.9</td>
<td>1306</td>
<td>0x80000082</td>
<td>0xc58c</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Area</td>
<td>1.0.0.1</td>
<td>180.0.0.10</td>
<td>53</td>
<td>0x80000082</td>
<td>0xc986</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>Area</td>
<td>1.0.0.1</td>
<td>180.0.0.11</td>
<td>577</td>
<td>0x8000007e</td>
<td>0xdf57c</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Area</th>
<th>Adv Router</th>
<th>Link State</th>
<th>Sequence</th>
<th>Age</th>
<th>Length</th>
<th>Options</th>
<th>Advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>10.20.1.1</td>
<td>1.0.0.1</td>
<td>0x80000028</td>
<td>192</td>
<td>28</td>
<td>E</td>
<td>ROUTER-ID TLV</td>
</tr>
</tbody>
</table>

OSPF Opaque Link State Database (Type : All) (Detailed)

Opaque LSA

Area Id: 0.0.0.0
Adv Router Id: 10.20.1.1
Link State Id: 1.0.0.2
LSA Type: Area Opaque
Sequence No: 0x8000000d
Checksum: 0x17f3
Age: 678
Length: 164
Options: E
Advertisement:

ROUTE-LSA (0001) Len 4
NAME (0002) Len 140:

Sub-TLV:

<table>
<thead>
<tr>
<th>Sub-TLV</th>
<th>Len</th>
<th>Value</th>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>LINK_TYPE : 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>LINK_ID : 10.10.1.2</td>
<td>10.10.1.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>LOC_IP_ADDR : 10.10.1.1</td>
<td>10.10.1.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>REM_IP_ADDR : 0.0.0.0</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>TE_METRIC : 1000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4</td>
<td>MAX_BW : 100000 Kbps</td>
<td>100000 Kbps</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
<td>RSRVD_BW : 80000 Kbps</td>
<td>80000 Kbps</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>32</td>
<td>UNRSRVD_CLS0 :</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4</td>
<td>ADMIN_GROUP : 0 None</td>
<td>0 None</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4</td>
<td>TELK_BW CONST:</td>
<td></td>
</tr>
</tbody>
</table>
range

Syntax range [area-id]

Context show>router>ospf
 show>router>ospf3

Description This command displays ranges of addresses on an Area Border Router (ABR) for the purpose of route summarization or suppression.

Parameters area-id — Display the configured ranges for the specified area.

Output OSPF Range Output — The following table describes the OSPF range output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Id</td>
<td>A 32-bit integer uniquely identifying an area. Area ID 0.0.0.0 is used for the OSPF backbone.</td>
</tr>
<tr>
<td>Address/Mask</td>
<td>The mask for the range expressed as a decimal integer mask length or in dotted decimal notation.</td>
</tr>
<tr>
<td>Advertise</td>
<td>False — The specified address/mask is not advertised outside the area. True — The specified address/mask is advertised outside the area.</td>
</tr>
<tr>
<td>LSDB Type</td>
<td>NSSA — This range was specified in the NSSA context, and specifies that the range applies to external routes (via type-7 LSAs) learned within the NSSA when the routes are advertised to other areas as type-5 LSAs. Summary — This range was not specified in the NSSA context, the range applies to summary LSAs even if the area is an NSSA.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-A# show router ospf 1 range
--
OSPF Ranges
--
Area Id Address/Mask Advertise LSDB Type
--
No. of Ranges: 0
--
A:ALA-A#
A:ALA-A# show router ospf range 180.0.7.9
--
OSPF Ranges for Area Id : 180.0.7.9
--
routes

Syntax
routes [ip-prefix[/prefix-length]] [type] [detail] [alternative] [summary] [exclude-shortcut]

Context
show>router>ospf

Description
This command information about OSPF routes.

Parameters
ip-prefix[/prefix-length] — Displays information about the specified IP prefix and length.

type — Displays information about the specified type.

Values
intra-area, inter-area, external-1, external-2, nssa-1, nssa-2

detail — Displays detailed information about the routes.

alternative — Displays the level of protection per prefix (ref. show router isis routes alternative)

summary — Displays summarized information about the routes.

Sample Output

A:Dut-C# show router ospf routes exclude-shortcut alternative detail
OSPFv2 Routing Table (detailed)

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type(Dest)</th>
<th>Stat</th>
<th>NHIP</th>
<th>NHIF</th>
<th>Cost[E2]</th>
<th>Area</th>
<th>Tunnel-Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>IA (NET)</td>
<td>D (F)</td>
<td>2</td>
<td>10</td>
<td>0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>IA (NET)</td>
<td>D (F)</td>
<td>3</td>
<td>10</td>
<td>0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.3.0/24</td>
<td>IA (NET)</td>
<td>N (R)</td>
<td>1.1.2.2</td>
<td>2</td>
<td>20</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>N (R)</td>
<td>3</td>
<td>20</td>
<td>0.0.0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.4.0/24</td>
<td>IA (NET)</td>
<td>N (R)</td>
<td>1.1.2.2</td>
<td>2</td>
<td>20</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.3.3(L)</td>
<td>3</td>
<td>30</td>
<td>LINK</td>
<td>0x130015</td>
</tr>
<tr>
<td>1.3.5.0/24</td>
<td>IA (NET)</td>
<td>N (R)</td>
<td>1.1.3.3</td>
<td>3</td>
<td>20</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>1.4.5.0/24</td>
<td>IA (NET)</td>
<td>N (R)</td>
<td>1.1.2.2</td>
<td>2</td>
<td>30</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>2</td>
<td></td>
<td>1.1.2.2</td>
<td>2</td>
<td>30</td>
<td>0.0.0.0</td>
<td></td>
</tr>
</tbody>
</table>
1.1.3.3 3 30 0.0.0.0
1.4.6.0/24 IA (NET) N (R)
1.1.2.2 2 30 0.0.0.0
1.1.3.3(L) 3 40 LINK 0x130015
1.5.6.0/24 IA (NET) N (R)
1.1.3.3 3 30 0.0.0.0
1.1.2.2(L) 2 40 LINK 0x130016
10.20.1.1/32 IA (HOST) D (F)
DIRECT 1 0 0.0.0.0
10.20.1.2/32 IA (HOST) N (R)
1.1.2.2 2 10 0.0.0.0
1.1.3.3(L) 3 20 LINK 0x130015
10.20.1.3/32 IA (HOST) N (R)
1.1.3.3 3 10 0.0.0.0
1.1.2.2(L) 2 20 LINK 0x130016
10.20.1.4/32 IA (HOST) N (R)
1.1.2.2 2 20 0.0.0.0
1.1.3.3(L) 3 30 LINK 0x130015
10.20.1.5/32 IA (HOST) N (R)
1.1.3.3 3 20 0.0.0.0
1.1.2.2(L) 2 30 LINK 0x130016
10.20.1.6/32 IA (HOST) N (R)
1.1.3.3 3 30 0.0.0.0
1.1.2.2 2 30 0.0.0.0
10.20.1.2/0 IA (RTR) N (N)
1.1.2.2 2 10 0.0.0.0
10.20.1.3/0 IA (RTR) N (N)
1.1.3.3 3 10 0.0.0.0
10.20.1.4/0 IA (RTR) N (N)
1.1.2.2 2 20 0.0.0.0
10.20.1.5/0 IA (RTR) N (N)
1.1.3.3 3 20 0.0.0.0
10.20.1.6/0 IA (RTR) N (N)
1.1.3.3 3 30 0.0.0.0
1.1.2.2 2 30 0.0.0.0

19 OSPFv2 routes found (23 paths)
Flags: L = Loop-Free Alternate nexthop

*A:Dut-A#
spf

Syntax

```
spf [lfa]
```

Context

```
show>router>ospf
show>router>ospf3
```

Description

This command displays statistics of shortest-path-first (SPF) calculations.

Parameters

- **lfa** — Displays Loop-Free Alternate (LFA) next-hop information.

Output

SPF Output Fields — The following table describes SPF output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SPF Runs</td>
<td>The total number of incremental SPF runs triggered by new or updated LSAs.</td>
</tr>
<tr>
<td>Last Full SPF run @</td>
<td>The date and time when the external OSPF Dijkstra (SPF) was last run.</td>
</tr>
<tr>
<td>Last Full SPF Time</td>
<td>The length of time, in seconds, when the last full SPF was run.</td>
</tr>
<tr>
<td>Intra SPF Time</td>
<td>The time when intra-area SPF was last run on this area.</td>
</tr>
<tr>
<td>Inter SPF Time</td>
<td>The total number of incremental SPF runs triggered by new or updated type-3 and type-4 summary LSAs.</td>
</tr>
<tr>
<td>Extern SPF Time</td>
<td>The total number of incremental SPF runs triggered by new or updated type-5 external LSAs.</td>
</tr>
<tr>
<td>RTM Updt Time</td>
<td>The time, in hundredths of seconds, used to perform a total SPF calculation.</td>
</tr>
<tr>
<td>Min/Avg/Max Full SPF Time</td>
<td>Min — The minimum time, in hundredths of seconds, used to perform a total SPF calculation. Avg — The average time, in hundredths of seconds, of all the total SPF calculations performed by this OSPF router. Max — The maximum time, in hundredths of seconds, used to perform a total SPF calculation.</td>
</tr>
<tr>
<td>Total Sum Incr SPF Runs</td>
<td>The total number of incremental SPF runs triggered by new or updated type-3 and type-4 summary LSAs.</td>
</tr>
<tr>
<td>Total Ext Incr SPF Runs</td>
<td>The total number of incremental SPF runs triggered by new or updated type-5 external LSAs.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:Dut-A# show router ospf spf lfa
```

```
OSPF SPF Statistics

Total SPF Runs : 6
Last Full SPF run @ : 02/20/2012 09:19:35
```
Last Full SPF Time : < 0.01 secs
 Intra SPF Time : < 0.01 secs
 Inter SPF Time : < 0.01 secs
 Extern SPF Time : < 0.01 secs
 RTM Updt Time : < 0.01 secs

Min/Avg/Max Full SPF Times : 0.00/0.00/0.00 secs
Min/Avg/Max RTM Updt Times : 0.00/0.00/0.00 secs

Total SPF Runs : 109
Last Full SPF run @ : 11/07/2006 18:43:07
Last Full SPF Time : < 0.01 secs
 Intra SPF Time : < 0.01 secs
 Inter SPF Time : < 0.01 secs
 Extern SPF Time : < 0.01 secs
 RTM Updt Time : < 0.01 secs

Min/Avg/Max Full SPF Times : 0.02/0.00/0.06 secs
Min/Avg/Max RTM Updt Times : 0.02/0.00/0.06 secs

Total Sum Incr SPF Runs : 333
Last Sum Incr SPF run @ : 11/07/2006 18:43:09
Last Sum Incr Calc Time : < 0.01 secs

Total Ext Incr SPF Runs : 0

A:ALA-A# show router ospf 1 spf

OSPF SPF Statistics

Total SPF Runs : 109
Last Full SPF run @ : 11/07/2006 18:43:07
Last Full SPF Time : < 0.01 secs
 Intra SPF Time : < 0.01 secs
 Inter SPF Time : < 0.01 secs
 Extern SPF Time : < 0.01 secs
 RTM Updt Time : < 0.01 secs

Min/Avg/Max Full SPF Times : 0.02/0.00/0.06 secs
Min/Avg/Max RTM Updt Times : 0.02/0.00/0.06 secs

Total Sum Incr SPF Runs : 333
Last Sum Incr SPF run @ : 11/07/2006 18:43:09
Last Sum Incr Calc Time : < 0.01 secs

Total Ext Incr SPF Runs : 0

A:ALA-A#
show Commands

statistics

Syntax
`statistics`

Context
```
show>router>ospf
show>router>ospf3
```

Description
This command displays the global OSPF statistics.

Output
OSPF Statistics Output Fields — The following table describes the command output fields for OSPF statistics.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx Packets</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Tx Packets</td>
<td>The total number of OSPF packets transmitted on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Rx Hellos</td>
<td>The total number of OSPF Hello packets received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Tx Hellos</td>
<td>The total number of OSPF Hello packets transmitted on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Rx DBDs</td>
<td>The total number of OSPF database description packets received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Tx DBDs</td>
<td>The total number of OSPF database description packets transmitted on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Rx LSRs</td>
<td>The total number of OSPF Link State Requests (LSRs) received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Tx LSRs</td>
<td>The total number of OSPF Link State Requests (LSRs) transmitted on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Rx LSUs</td>
<td>The total number of OSPF Link State Update (LSUs) received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Tx LSUs</td>
<td>The total number of OSPF Link State Update (LSUs) transmitted on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Rx LS Acks</td>
<td>The total number of OSPF Link State Acknowledgements (LSAs) received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>New LSAs Recvd</td>
<td>The total number of new OSPF Link State Advertisements received on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>New LSAs Orig</td>
<td>The total number of new OSPF Link State Advertisements originated on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Ext LSAs Count</td>
<td>The total number of OSPF External Link State Advertisements.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>No of Areas</td>
<td>The number of areas configured for this OSPF instance.</td>
</tr>
<tr>
<td>Total SPF Runs</td>
<td>The total number of incremental SPF runs triggered by new or updated LSAs.</td>
</tr>
<tr>
<td>Ext SPF Runs</td>
<td>The total number of incremental SPF runs triggered by new or updated type-5 external LSAs.</td>
</tr>
<tr>
<td>Retransmits</td>
<td>The total number of OSPF Retransmits transmitted on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Discards</td>
<td>The total number of OSPF packets discarded on all OSPF enabled interfaces.</td>
</tr>
<tr>
<td>Bad Networks</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with invalid network or mask.</td>
</tr>
<tr>
<td>Bad Virt Links</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces that are destined to a virtual link that does not exist.</td>
</tr>
<tr>
<td>Bad Areas</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with an area mismatch</td>
</tr>
<tr>
<td>Bad Dest Addr</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with the incorrect IP destination address.</td>
</tr>
<tr>
<td>Bad Auth Types</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with an invalid authorization type.</td>
</tr>
<tr>
<td>Auth Failures</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with an invalid authorization key.</td>
</tr>
<tr>
<td>Bad Neighbors</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces where the neighbor information does not match the information this router has for the neighbor.</td>
</tr>
<tr>
<td>Bad Pkt Types</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with an invalid OSPF packet type.</td>
</tr>
<tr>
<td>Bad Lengths</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with a total length not equal to the length given in the packet itself.</td>
</tr>
<tr>
<td>Bad Hello Int.</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces where the hello interval given in packet was not equal to that configured for the respective interface.</td>
</tr>
<tr>
<td>Bad Dead Int.</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces where the dead interval given in the packet was not equal to that configured for the respective interface.</td>
</tr>
</tbody>
</table>
Show Commands

Sample Output

A:ALA-A# `show router ospf 1 statistics`

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Options</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with an option that does not match those configured for the respective interface or area.</td>
</tr>
<tr>
<td>Bad Versions</td>
<td>The total number of OSPF packets received on all OSPF enabled interfaces with bad OSPF version numbers.</td>
</tr>
</tbody>
</table>

Bad Options
The total number of OSPF packets received on all OSPF enabled interfaces with an option that does not match those configured for the respective interface or area.

Bad Versions
The total number of OSPF packets received on all OSPF enabled interfaces with bad OSPF version numbers.
status

Syntax

status

Context

show>router>ospf
show>router>ospf3

Description
Displays the general status of OSPF.

Output

OSPF Status Output Fields — The following table describes the command output fields for OSPF status.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Router Id</td>
<td>A 32-bit integer uniquely identifying the router in the Autonomous System. The SR-OS system defaults to the System IP address or if not configured the 32 least significant bits of the system MAC address.</td>
</tr>
<tr>
<td>OSPF Version</td>
<td>The current version number of the OSPF protocol is 2.</td>
</tr>
<tr>
<td>OSPF Admin Status</td>
<td>Disabled — Denotes that the OSPF process is disabled on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>Enabled — Denotes that the OSPF process is active on at least one interface.</td>
</tr>
<tr>
<td>OSPF Oper Status</td>
<td>Disabled — Denotes that the OSPF process is not operational on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>Enabled — Denotes that the OSPF process is operational on at least one interface.</td>
</tr>
<tr>
<td>Preference</td>
<td>The route preference for OSPF internal routes.</td>
</tr>
<tr>
<td>External Preference</td>
<td>The route preference for OSPF external routes.</td>
</tr>
<tr>
<td>Backbone Router</td>
<td>False — This variable indicates that this router is not configured as an OSPF back bone router.</td>
</tr>
<tr>
<td></td>
<td>True — This variable indicates that this router is configured as an OSPF back bone router.</td>
</tr>
<tr>
<td>Area Border Router</td>
<td>False — This router is not an area border router.</td>
</tr>
<tr>
<td></td>
<td>True — This router is an area border router.</td>
</tr>
<tr>
<td>AS Border Router</td>
<td>False — This router is not configured as an Autonomous System border router.</td>
</tr>
<tr>
<td></td>
<td>True — This router is configured as an Autonomous System border router.</td>
</tr>
<tr>
<td>OSPF Ldp Sync Admin Status</td>
<td>Indicates whether the IGP-LDP synchronization feature is enabled or disabled on all interfaces participating in the OSPF routing protocol.</td>
</tr>
</tbody>
</table>
Sample Output

*A: Dut-C# show router ospf status

<table>
<thead>
<tr>
<th>OSPF Cfg Router Id</th>
<th>10.20.1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Oper Router Id</td>
<td>10.20.1.3</td>
</tr>
<tr>
<td>OSPF Version</td>
<td>2</td>
</tr>
<tr>
<td>OSPF Admin Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>OSPF Oper Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Graceful Restart</td>
<td>Disabled</td>
</tr>
<tr>
<td>GR Helper Mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>Preference</td>
<td>10</td>
</tr>
<tr>
<td>External Preference</td>
<td>150</td>
</tr>
<tr>
<td>Backbone Router</td>
<td>True</td>
</tr>
<tr>
<td>Area Border Router</td>
<td>False</td>
</tr>
<tr>
<td>AS Border Router</td>
<td>True</td>
</tr>
<tr>
<td>Opaque LSA Support</td>
<td>True</td>
</tr>
<tr>
<td>Traffic Engineering Support</td>
<td>False</td>
</tr>
<tr>
<td>RFC 1583 Compatible</td>
<td>True</td>
</tr>
<tr>
<td>Demand Exts Support</td>
<td>False</td>
</tr>
<tr>
<td>In Overload State</td>
<td>False</td>
</tr>
<tr>
<td>In External Overflow State</td>
<td>False</td>
</tr>
<tr>
<td>Exit Overflow Interval</td>
<td>0</td>
</tr>
<tr>
<td>Last Overflow Entered</td>
<td>Never</td>
</tr>
<tr>
<td>Last Overflow Exit</td>
<td>Never</td>
</tr>
<tr>
<td>External LSA Limit</td>
<td>-1</td>
</tr>
<tr>
<td>Reference Bandwidth</td>
<td>100,000,000 Kbps</td>
</tr>
<tr>
<td>Init SPF Delay</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Sec SPF Delay</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Max SPF Delay</td>
<td>10000 msec</td>
</tr>
<tr>
<td>Min LS Arrival Interval</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Init LSA Gen Delay</td>
<td>5000 msec</td>
</tr>
<tr>
<td>Sec LSA Gen Delay</td>
<td>5000 msec</td>
</tr>
<tr>
<td>Max LSA Gen Delay</td>
<td>5000 msec</td>
</tr>
<tr>
<td>Lsa accumulate</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Redistribute delay</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Incremental SPF wait</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Last Ext SPF Run</td>
<td>Never</td>
</tr>
<tr>
<td>Ext LSA Cksum Sum</td>
<td>0x21502</td>
</tr>
<tr>
<td>OSPF Last Enabled</td>
<td>01/14/2014 14:33:07</td>
</tr>
<tr>
<td>Unicast Import</td>
<td>True</td>
</tr>
<tr>
<td>Multicast Import</td>
<td>False</td>
</tr>
<tr>
<td>Export Policies</td>
<td>static</td>
</tr>
<tr>
<td>Import Policies</td>
<td>None</td>
</tr>
<tr>
<td>Lfa Policies</td>
<td>pol1, pol2, pol3, pol4, pol5</td>
</tr>
<tr>
<td>OSPF Ldp Sync Admin Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>LDP-over-RSVP</td>
<td>Disabled</td>
</tr>
<tr>
<td>RSVP-Shortcut</td>
<td>Disabled</td>
</tr>
<tr>
<td>Advertise-Tunnel-Link</td>
<td>Disabled</td>
</tr>
<tr>
<td>LFA</td>
<td>Enabled</td>
</tr>
<tr>
<td>Export Limit</td>
<td>0</td>
</tr>
<tr>
<td>Export Limit Log Percent</td>
<td>0</td>
</tr>
<tr>
<td>Total Exp Routes</td>
<td>1</td>
</tr>
</tbody>
</table>
A:SetupCLI# show router ospf status

```
A: Dut-C#

OSPF Status

<table>
<thead>
<tr>
<th>OSPF Config Router ID</th>
<th>255.255.255.255</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Oper Router ID</td>
<td>10.20.30.40</td>
</tr>
<tr>
<td>OSPF Version</td>
<td>2</td>
</tr>
<tr>
<td>OSPF Admin Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>OSPF Oper Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Graceful Restart</td>
<td>Disabled</td>
</tr>
<tr>
<td>GR Helper Mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>Preference</td>
<td>11</td>
</tr>
<tr>
<td>External Preference</td>
<td>150</td>
</tr>
<tr>
<td>Backbone Router</td>
<td>True</td>
</tr>
<tr>
<td>Area Border Router</td>
<td>False</td>
</tr>
<tr>
<td>AS Border Router</td>
<td>True</td>
</tr>
<tr>
<td>Opaque LSA Support</td>
<td>True</td>
</tr>
<tr>
<td>Traffic Engineering Support</td>
<td>True</td>
</tr>
<tr>
<td>RFC 1583 Compatible</td>
<td>True</td>
</tr>
<tr>
<td>Demand Exts Support</td>
<td>False</td>
</tr>
<tr>
<td>In Overload State</td>
<td>True (Indefinitely in overload)</td>
</tr>
<tr>
<td>In External Overflow State</td>
<td>False</td>
</tr>
<tr>
<td>Exit Overflow Interval</td>
<td>0</td>
</tr>
<tr>
<td>Last Overflow Entered</td>
<td>Never</td>
</tr>
<tr>
<td>External LSA Limit</td>
<td>-1</td>
</tr>
<tr>
<td>Reference Bandwidth</td>
<td>10,000 Kbps</td>
</tr>
<tr>
<td>Init SPF Delay</td>
<td>10000 msec</td>
</tr>
<tr>
<td>Sec SPF Delay</td>
<td>10000 msec</td>
</tr>
<tr>
<td>Max SPF Delay</td>
<td>12000 msec</td>
</tr>
<tr>
<td>Min LS Arrival Interval</td>
<td>600000 msec</td>
</tr>
<tr>
<td>Init LSA Gen Delay</td>
<td>100 msec</td>
</tr>
<tr>
<td>Sec LSA Gen Delay</td>
<td>400 msec</td>
</tr>
<tr>
<td>Max LSA Gen Delay</td>
<td>600000 msec</td>
</tr>
<tr>
<td>Last Ext SPF Run</td>
<td>Never</td>
</tr>
<tr>
<td>Ext LSA Cksum Sum</td>
<td>0x0</td>
</tr>
<tr>
<td>OSPF Last Enabled</td>
<td>10/01/2011 07:34:03</td>
</tr>
<tr>
<td>Multicast Import</td>
<td>False</td>
</tr>
<tr>
<td>Export Policies</td>
<td>test 56789012345678901</td>
</tr>
<tr>
<td>Export Policies</td>
<td>test 56789012345678902</td>
</tr>
<tr>
<td>Export Policies</td>
<td>test 56789012345678903</td>
</tr>
<tr>
<td>Export Policies</td>
<td>test 56789012345678904</td>
</tr>
<tr>
<td>Export Policies</td>
<td>test 56789012345678905</td>
</tr>
<tr>
<td>Import Policies</td>
<td>test 56789012345678901</td>
</tr>
<tr>
<td>Import Policies</td>
<td>test 56789012345678902</td>
</tr>
<tr>
<td>Import Policies</td>
<td>test 56789012345678903</td>
</tr>
<tr>
<td>Import Policies</td>
<td>test 56789012345678904</td>
</tr>
<tr>
<td>Export Ldp Sync Admin Status</td>
<td>Disabled</td>
</tr>
<tr>
<td>LDP-over-RSVP</td>
<td>Enabled</td>
</tr>
<tr>
<td>RSVP-Shortcut</td>
<td>Enabled</td>
</tr>
<tr>
<td>Advertise-Tunnel-Link</td>
<td>Enabled</td>
</tr>
<tr>
<td>LFA</td>
<td>Enabled</td>
</tr>
<tr>
<td>Export Limit</td>
<td>0</td>
</tr>
<tr>
<td>Export Limit Log Percent</td>
<td>0</td>
</tr>
<tr>
<td>Total Exp Routes</td>
<td>0</td>
</tr>
</tbody>
</table>
```
A:SetupCLI#

A:ALA-A# show router ospf 1 status

OSPF Status

OSPF Router Id : 10.13.7.165
OSPF Version : 2
OSPF Admin Status : Enabled
OSPF Oper Status : Enabled
Graceful Restart : Enabled
GR Helper Mode : Disabled
Preference : 10
External Preference : 150
Backbone Router : True
Area Border Router : True
AS Border Router : True
Opaque LSA Support : True
Traffic Engineering Support : True
RFC 1583 Compatible : True
TOS Routing Support : False
Demand Exts Support : False
In Overload State : False
In External Overflow State : False
Exit Overflow Interval : 0
Last Overflow Entered : Never
Last Overflow Exit : Never
External LSA Limit : -1
Reference Bandwidth : 100,000,000 Kbps
Init SPF Delay : 500 msec
Sec SPF Delay : 2000 msec
Max SPF Delay : 15000 msec
Min LS Arrival Interval : 500 msec
Max LSA Gen Delay : 5000 msec
Last Ext SPF Run : Never
Ext LSA Cksum Sum : 0xa2fce
OSPF Last Enabled : 05/23/2006 23:34:36
Export Policies : export-static

A:ALA-A#
virtual-link

Syntax

virtual-link [detail]

Context

show>router>ospf
show>router>ospf3

Description

This command displays information for OSPF virtual links.

Parameters

- **detail** — Provides operational and statistical information about virtual links associated with this router.

Output

OSPF Virtual Link Output — The following table describes OSPF virtual-link output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbr Rtr ID</td>
<td>The router ID(s) of neighboring routers.</td>
</tr>
<tr>
<td>Area Id</td>
<td>A 32-bit integer which identifies an area.</td>
</tr>
<tr>
<td>Local Interface</td>
<td>The IP address of the local egress interface used to maintain the adjacency to reach this virtual neighbor.</td>
</tr>
<tr>
<td>Metric</td>
<td>The metric value associated with the route. This value is used when importing this static route into other protocols. When the metric is configured as zero then the metric configured in OSPF, default-import-metric, applies. This value is also used to determine which static route to install in the forwarding table.</td>
</tr>
<tr>
<td>State</td>
<td>The operational state of the virtual link to the neighboring router.</td>
</tr>
<tr>
<td>Authentication</td>
<td>Specifies whether authentication is enabled for the interface or virtual link.</td>
</tr>
<tr>
<td>Hello Intrval</td>
<td>Specifies the length of time, in seconds, between the Hello packets that the router sends on the interface.</td>
</tr>
<tr>
<td>Rtr Dead Intrvl</td>
<td>Specifies the total number of OSPF packets received where the dead interval given in the packet was not equal to that configured on this interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Tot Rx Packets</td>
<td>Specifies the total number of OSPF packets received on this interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Rx Hellos</td>
<td>Specifies the total number of OSPF Hello packets received on this interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Rx DBDs</td>
<td>Specifies the total number of OSPF DataBase Description packets received on this interface since the OSPF administrative status was enabled.</td>
</tr>
<tr>
<td>Rx LSRs</td>
<td>Specifies the total number of Link State Requests (LSRs) received on this interface since the OSPF admin status was enabled.</td>
</tr>
</tbody>
</table>
Show Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx LSUs</td>
<td>Specifies the total number of Link State Updates (LSUs) received on this interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Rx LS Acks</td>
<td>Specifies the total number of Link State Acknowledgements received on this interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Tot Tx Packets</td>
<td>Specifies the total number of OSPF packets transmitted on this virtual interface since it was created.</td>
</tr>
<tr>
<td>Tx Hellos</td>
<td>Specifies the total number of OSPF Hello packets transmitted on this virtual interface since it was created.</td>
</tr>
<tr>
<td>Tx DBDs</td>
<td>Specifies the total number of OSPF database description packets transmitted on this virtual interface.</td>
</tr>
<tr>
<td>Tx LSRs</td>
<td>Specifies the total number of OSPF Link State Requests (LSRs) transmitted on this virtual interface.</td>
</tr>
<tr>
<td>Tx LSUs</td>
<td>Specifies the total number of OSPF Hello packets transmitted on this interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Tx LS Acks</td>
<td>Specifies the total number of OSPF Link State Acknowledgements (LSA) transmitted on this virtual interface.</td>
</tr>
<tr>
<td>Retransmits</td>
<td>Specifies the total number of OSPF retransmits sent on this interface since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Discards</td>
<td>Specifies the total number of OSPF packets discarded on this interface since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Networks</td>
<td>Specifies the total number of OSPF packets received with invalid network or mask since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Versions</td>
<td>Specifies the total number of OSPF packets received with bad OSPF version numbers since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Areas</td>
<td>Specifies the total number of OSPF packets received with an area mismatch since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Dest Addr</td>
<td>Specifies the total number of OSPF packets received with the incorrect IP destination address since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Auth Types</td>
<td>Specifies the total number of OSPF packets received with an invalid authorization type since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Auth Failures</td>
<td>Specifies the total number of OSPF packets received with an invalid authorization key since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Neighbors</td>
<td>Specifies the total number of OSPF packets received where the neighbor information does not match the information this router has for the neighbor since the OSPF admin status was last enabled.</td>
</tr>
</tbody>
</table>
OSPF Virtual Links

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Pkt Types</td>
<td>Specifies the total number of OSPF packets received with an invalid OSPF packet type since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Lengths</td>
<td>Specifies the total number of OSPF packets received on this interface with a total length not equal to the length given in the packet itself since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Hello Int.</td>
<td>Specifies the total number of OSPF packets received where the hello interval given in packet was not equal to that configured on this interface since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Dead Int.</td>
<td>Specifies the total number of OSPF packets received where the dead interval given in the packet was not equal to that configured on this interface since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Options</td>
<td>Specifies the total number of OSPF packets received with an option that does not match those configured for this interface or area since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Retrans Intrvl</td>
<td>Specifies the length of time, in seconds, that OSPF waits before retransmitting an unacknowledged link state advertisement (LSA) to an OSPF neighbor.</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>Specifies the time, in seconds, that it takes to transmit a link state advertisement (LSA) on the interface or virtual link.</td>
</tr>
<tr>
<td>Last Event</td>
<td>Specifies the date and time when an event was last associated with this OSPF interface.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-A# show router ospf 1 virtual-link

OSPF Virtual Links

<table>
<thead>
<tr>
<th>Nbr Rtr Id</th>
<th>Area Id</th>
<th>Local Interface</th>
<th>Metric</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>180.0.0.10</td>
<td>0.0.0.1</td>
<td>180.1.7.12</td>
<td>300</td>
<td>PToP</td>
</tr>
<tr>
<td>180.0.0.10</td>
<td>0.0.0.2</td>
<td>180.2.7.12</td>
<td>300</td>
<td>PToP</td>
</tr>
</tbody>
</table>

No. of OSPF Virtual Links: 2

A:ALA-A#

A:ALA-A# show router ospf virtual-link detail

OSPF Virtual Links (detailed)

Neighbor Router Id : 180.0.0.10
```
| Neighbor Router Id | Area Id | Local Interface | Metric | State | Admin State | Hello Intrvl | Rtr Dead Intrvl | Tot Rx Packets | Tot Tx Packets | Rx Hellos | Tx Hellos | Rx DBDs | Tx DBDs | Rx LSRs | Tx LSRs | Rx LSUs | Tx LSUs | Rx LS Acks | Tx LS Acks | Retransmits | Discards | Bad Networks | Bad Areas | Bad Auth Types | Bad Neighbors | Bad Lengths | Bad Dead Int. | Retrans Intrvl | Transit Delay | Last Event | Authentication |
|-------------------|-----------------|-----------------|--------|-------------------|-------------|--------------|----------------|----------------|----------------|-------------|-----------|-----------|--------|--------|--------|--------|---------|---------|----------|---------|------------|-----------|-------------|-----------|----------------|------------|-------------|--------------|-------------|--------------|--------------|-------------|----------------|----------------|------------------|
| 180.0.0.10 | 0.0.0.1 | 180.1.7.12 | 300 | Point To Point | Up | 10 sec | 60 sec | 43022 | 42964 | 24834 | 24853 | 3 | 2 | 0 | 0 | 15966 | 16352 | 2219 | 1757 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 sec | 1 sec | 11/07/2006 17:11:56 | None |
| 180.0.0.10 | 0.0.0.2 | 180.2.7.12 | 300 | Point To Point | Up | 10 sec | 60 sec | 43073 | 43034 | 24851 | 24844 | 3 | 2 | 1 | 1 | 15966 | 16352 | 2219 | 1757 | 0 | 0 | 0 | 0 | 0 | 0 | 5 sec | 1 sec | 11/07/2006 17:12:00 | MD5 |

A:ALA-A#
virtual-neighbor

Syntax
```
virtual-neighbor [remote router-id] [detail]
```

Context
```
show>router>ospf
show>router>ospf3
```

Description
This command displays virtual neighbor information.

Parameters
- **remote router-id** — Displays the specified router ID. This reduces the amount of output displayed.
- **detail** — Produces detailed information on the virtual neighbor. This option produces a large amount of data. It is recommended to use **detail** only when requesting information for a specific neighbor.

Output
OSPF Virtual Neighbor Output — The following table describes OSPF virtual neighbor output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbr IP Addr</td>
<td>The IP address this neighbor is using in its IP source address. Note that, on addressless links, this will not be 0.0.0.0, but the address of another of the neighbor's interfaces.</td>
</tr>
<tr>
<td>Nbr Rtr ID</td>
<td>Specifies the router ID(s) of neighboring routers.</td>
</tr>
<tr>
<td>Transit Area</td>
<td>Specifies the transit area ID that links the backbone area with the area that has no physical connection with the backbone.</td>
</tr>
<tr>
<td>Retrans Q Length</td>
<td>The current length of the retransmission queue.</td>
</tr>
<tr>
<td>No. of Neighbors</td>
<td>Specifies the total number of OSPF neighbors adjacent on this interface, in a state of INIT or greater, since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Nbr State</td>
<td>Specifies the operational state of the virtual link to the neighboring router.</td>
</tr>
<tr>
<td>Options</td>
<td>Specifies the total number of OSPF packets received with an option that does not match those configured for this virtual interface or transit area since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Events</td>
<td>Specifies the total number of events that have occurred since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Last Event Time</td>
<td>Specifies the date and time when an event was last associated with this OSPF interface.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Specifies the uninterrupted time, in hundredths of seconds, the adjacency to this neighbor has been up.</td>
</tr>
<tr>
<td>Time Before Dead</td>
<td>Specifies the amount of time, in seconds, until the dead router interval expires.</td>
</tr>
<tr>
<td>Bad Nbr States</td>
<td>Specifies the total number of OSPF packets received where the neighbor information does not match the information this router has for the neighbor since the OSPF admin status was last enabled.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-A#
show router ospf 1 virtual-neighbor

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA Inst fails</td>
<td>Specifies the total number of times an LSA could not be installed into the LSDB due to a resource allocation issue since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad Seq Nums</td>
<td>Specifies the total number of times when a database description packet was received with a sequence number mismatch since the OSPF admin status was last enabled.</td>
</tr>
<tr>
<td>Bad MTUs</td>
<td>Specifies the total number of times when the MTU in a received database description packet was larger than the MTU of the receiving interface since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Bad Packets</td>
<td>Specifies the total number of times when an LS update was received with an illegal LS type or an option mismatch since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>LSA not in LSDB</td>
<td>Specifies the total number of times when an LS request was received for an LSA not installed in the LSDB of this router since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Option Mismatches</td>
<td>Specifies the total number of times when a LS update was received with an option mismatch since the OSPF admin status was enabled.</td>
</tr>
<tr>
<td>Nbr Duplicates</td>
<td>Specifies the total number of times when a duplicate database description packet was received during the Exchange state since the OSPF admin status was enabled.</td>
</tr>
</tbody>
</table>

A:ALA-A#
show router ospf virtual-neighbor detail

OSPF Virtual Neighbors

<table>
<thead>
<tr>
<th>Neighbor IP Addr</th>
<th>Neighbor Rtr Id</th>
<th>Neighbor State</th>
<th>Transit Area</th>
<th>RetxQ Len</th>
<th>Dead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>180.1.6.10</td>
<td>180.0.0.10</td>
<td>Full</td>
<td>0.0.0.1</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>180.2.9.10</td>
<td>180.0.0.10</td>
<td>Full</td>
<td>0.0.0.2</td>
<td>0</td>
<td>52</td>
</tr>
</tbody>
</table>

No. of Neighbors: 2

A:ALA-A#
OSPF

Events : 4 Last Event Time : 11/07/2006 17:11:56
Up Time : 2d 17:47:17 Time Before Dead : 57 sec
Bad Nbr States : 1 LSA Inst fails : 0
Bad Seq Nums : 0 Bad MTUs : 0
Bad Packets : 0 LSA not in LSDB : 0
Option Mismatches: 0 Nbr Duplicates : 0

Virtual Neighbor Router Id : 180.0.0.10

Neighbor IP Addr : 180.2.9.10 Neighbor Rtr Id : 180.0.0.10
Neighbor State : Full Transit Area : 0.0.0.2
Retrans Q Length : 0 Options : -E--
Up Time : 2d 17:47:14 Time Before Dead : 59 sec
Bad Nbr States : 1 LSA Inst fails : 0
Bad Seq Nums : 0 Bad MTUs : 0
Bad Packets : 0 LSA not in LSDB : 0
Option Mismatches: 0 Nbr Duplicates : 0

A:ALA-A#
Clear Commands

OSPF

Syntax
```
ospf [ospf-instance]
```

Context
```
clear>router
```

Description
This command clears and resets OSPF protocol entities.

Parameters
- `ospf-instance` — Clears the specified OSPF instance.
 - **Values**
 - 1 — 31

OSPF3

Syntax
```
ospf [ospf-instance]
```

Context
```
clear>router
```

Description
This command clears and resets OSPF3 protocol entities.

Parameters
- `ospf-instance` — Clears the specified OSPF3 instance.
 - **Values**
 - 0 — 31
 - 64 — 95
 - 0 — 31 ipv6-unicast address-family
 - 64 — 95 ipv4-unicast address-family

Database

Syntax
```
database [purge]
```

Context
```
clear>router>ospf
clear>router>ospf3
```

Description
This command clears all LSAs received from other nodes.
- Sets all adjacencies better then two way to one way.
- Refreshes all self originated LSAs.

Parameters
- `purge` — The purge parameter also clears all self-originated LSAs and re-originates all self-originated LSAs.
export

Syntax

```
export
```

Context

```
clear>router>ospf
clear>router>ospf3
```

Description

Re-evaluates all effective export policies

neighbor

Syntax

```
neighbor [ip-int-name | ip-address]
```

Context

```
clear>router>ospf
clear>router>ospf3
```

Description

Marks the neighbor as dead and re-initiates the affected adjacencies.

Parameters

- `ip-int-name` — Clear all neighbors for the interface specified by this interface name.
- `ip-address` — Clear all neighbors for the interface specified by this IP-address

statistics

Syntax

```
statistics
```

Context

```
clear>router>ospf
clear>router>ospf3
```

Description

Clears all neighbor, router, interface, SPF and global statistics of this OSPF instance.
OSPF Debug Commands

ospf

Syntax

```
ospf [ospf-instance]
```

Context

`debug>router`

Description

Indicates the OSPF instance for debugging purposes.

Parameters

`ospf-instance` — The OSPF instance.

Values

`1 — 31`

ospf3

Syntax

```
ospf3 [ospf-instance]
```

Context

`debug>router`

Description

Indicates the OSPF3 instance for debugging purposes.

Parameters

`ospf-instance` — Clears the specified OSPF3 instance.

Values

`0 — 31 | 64..95`

`0 — 31 ipv6-unicast address-family`

`64 — 95 ipv4-unicast address-family`

area

Syntax

```
area [area-id]
no area
```

Context

`debug>router>ospf`

`debug>router>ospf3`

Description

This command enables debugging for an OSPF area.

Parameters

`area-id` — Specify the OSPF area ID expressed in dotted decimal notation or as a 32-bit decimal integer.
area-range

Syntax area-range [ip-address]
 no area-range

Context debug>router>ospf
 debug>router>ospf3

Description This command enables debugging for an OSPF area range.

Parameters ip-address — Specify the IP address for the range used by the ABR to advertise the area into another area.

cspf

Syntax cspf [ip-address]
 no cspf

Context debug>router>ospf
 debug>router>ospf3

Description This command enables debugging for an OSPF constraint-based shortest path first (CSPF).

Parameters ip-address — Specify the IP address for the range used for CSPF.

graceful-restart

Syntax [no] graceful-restart

Context debug>router>ospf
 debug>router>ospf3

Description This command enables debugging for OSPF and OSPF3 graceful-restart.

interface

Syntax interface [ip-int-name | ip-address]
 no interface

Context debug>router>ospf
 debug>router>ospf3

Description This command enables debugging for an OSPF and OSPF3 interface.

Parameters ip-int-name — Specify the IP interface name. An interface name cannot be in the form of an IP address.
 Interface names can be any string up to 32 characters long composed of printable, 7-bit ASCII
characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

ip-address — Specify the interface’s IP address.
leak

Syntax

leak [ip-address]
no leak

Context
debug>router>ospf
debug>router>ospf3

Description
This command enables debugging for OSPF leaks.

Parameters

ip-address — Specify the IP address to debug OSPF leaks.

lsdb

Syntax

lsdb [type] [ls-id] [adv-rtr-id] [area area-id]
no lsdb

Context
debug>router>ospf
debug>router>ospf3

Description
This command enables debugging for an OSPF link-state database (LSDB).

Parameters

type — Specifies the OSPF link-state database (LSDB) type.

ls-id — Specifies an LSA type specific field containing either a router ID or an IP address. It identifies the piece of the routing domain being described by the advertisement.

adv-rtr-id — Specifies the router identifier of the router advertising the LSA.

area-id — Specifies a 32-bit integer uniquely identifying an area.

misc

Syntax

[no] misc

Context
debug>router>ospf
debug>router>ospf3

Description
This command enables debugging for miscellaneous OSPF events.
OSPF Debug Commands

neighbor

Syntax neighbor [ip-int-name | ip-address]
no neighbor

Context debug>router>ospf
debug>router>ospf3

Description This command enables debugging for an OSPF or OSPF3 neighbor.

Parameters ip-int-name — Specifies the neighbor interface name.
ip-address — Specifies neighbor information for the neighbor identified by the specified router ID.

nssa-range

Syntax nssa-range [ip-address]
no nssa-range

Context debug>router>ospf
debug>router>ospf3

Description This command enables debugging for an NSSA range.

Parameters ip-address — Specifies the IP address range to debug.

packet

Syntax packet [packet-type] [ip-address]
no packet

Context debug>router>ospf
debug>router>ospf3

Description This command enables debugging for OSPF packets.

Parameters packet-type — Specifies the OSPF packet type to debug.

Values hello, dbdescr, lsrequest, lsendate, lsack

ip-address — Specifies the IP address to debug.

Values ipv4-address: a.b.c.d
ipv6-address: x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:d.d.d.d
x: [0 — FFFF]H
d: [0 — 255]D
rtm

Syntax rtm [ip-address]
 no rtm

Context debug>router>ospf
debug>router>ospf3

Description This command enables debugging for OSPF RTM.
Parameters ip-address — Specifies the IP address to debug.

Values ipv4-address: a.b.c.d
ipv6-address: x:x:x:x:x:x:x (eight 16-bit pieces)
 x:x:x:x:x:d.d.d
 x: [0 — FFFF]H
 d: [0 — 255]D

spf

Syntax spf [type] [dest-addr]
 no spf

Context debug>router>ospf

Description This command enables debugging for OSPF SPF. Information regarding overall SPF start and stop times will be shown. To see detailed information regarding the SPF calculation of a given route, the route must be specified as an optional argument.

Parameters type — Specifies the area to debug

Values intra-area, inter-area, external

dest-addr — Specifies the destination IP address to debug.

virtual-neighbor

Syntax virtual-neighbor [ip-address]
 no virtual-neighbor

Context debug>router>ospf

Description This command enables debugging for an OSPF virtual neighbor.

Parameters ip-address — Specifies the IP address of the virtual neighbor.
In This Chapter

This chapter provides information to configure Intermediate System to Intermediate System (IS-IS).

Topics in this chapter include:

- Configuring IS-IS on page 416
 - Routing on page 417
 - IS-IS Frequently Used Terms on page 419
 - ISO Network Addressing on page 420
 - ISO Network Addressing on page 420
 - IS-IS PDU Configuration on page 421
 - IS-IS Operations on page 421
 - IS-IS Route Summarization on page 423
 - IS-IS MT-Topology Support on page 424
 - IS-IS Administrative Tags on page 425
- IS-IS Configuration Process Overview on page 427
- Configuration Notes on page 428
Intermediate-system-to-intermediate-system (IS-IS) is a link-state interior gateway protocol (IGP) which uses the Shortest Path First (SPF) algorithm to determine routes. Routing decisions are made using the link-state information. IS-IS evaluates topology changes and, if necessary, performs SPF recalculations.

Entities within IS-IS include networks, intermediate systems, and end systems. In IS-IS, a network is an autonomous system (AS), or routing domain, with end systems and intermediate systems. A router is an intermediate system. End systems are network devices which send and receive protocol data units (PDUs), the OSI term for packets. Intermediate systems send, receive, and forward PDUs.

End system and intermediate system protocols allow routers and nodes to identify each other. IS-IS sends out link-state updates periodically throughout the network, so each router can maintain current network topology information.

IS-IS supports large ASs by using a two-level hierarchy. A large AS can be administratively divided into smaller, more manageable areas. A system logically belongs to one area. Level 1 routing is performed within an area. Level 2 routing is performed between areas. The routers can be configured as Level 1, Level 2, or both Level 1/2.

Figure 12 displays an example of an IS-IS routing domain.
Routing

OSI IS-IS routing uses two-level hierarchical routing. A routing domain can be partitioned into areas. Level 1 routers know the topology in their area, including all routers and end systems in their area but do not know the identity of routers or destinations outside of their area. Level 1 routers forward traffic with destinations outside of their area to a Level 2 router in their area.

Level 2 routers know the Level 2 topology, and know which addresses are reachable by each Level 2 router. Level 2 routers do not need to know the topology within any Level 1 area, except to the extent that a Level 2 router can also be a Level 1 router within a single area. By default, only Level 2 routers can exchange PDUs or routing information directly with external routers located outside the routing domain.

In IS-IS, there are two types of routers:

- Level 1 intermediate systems — Routing is performed based on the area ID portion of the ISO address called the network entity title (NET). Level 1 systems route within an area. They recognize, based on the destination address, whether the destination is within the area. If so, they route toward the destination. If not, they route to the nearest Level 2 router.

- Level 2 intermediate systems — Routing is performed based on the area address. They route toward other areas, disregarding other area’s internal structure. A Level 2 intermediate system can also be configured as a Level 1 intermediate system in the same area.

The Level 1 router’s area address portion is manually configured (see ISO Network Addressing on page 420). A Level 1 router will not become a neighbor with a node that does not have a common area address. However, if a Level 1 router has area addresses A, B, and C, and a neighbor has area addresses B and D, then the Level 1 router will accept the other node as a neighbor, as address B is common to both routers. Level 2 adjacencies are formed with other Level 2 nodes whose area addresses do not overlap. If the area addresses do not overlap, the link is considered by both routers to be Level 2 only and only Level 2 LSPDUs flow on the link.

Within an area, Level 1 routers exchange LSPs which identify the IP addresses reachable by each router. Specifically, zero or more IP address, subnet mask, and metric combinations can be included in each LSP. Each Level 1 router is manually configured with the IP address, subnet mask, and metric combinations, which are reachable on each interface. A Level 1 router routes as follows:

- If a specified destination address matches an IP address, subnet mask, or metric reachable within the area, the PDU is routed via Level 1 routing.

- If a specified destination address does not match any IP address, subnet mask, or metric combinations listed as reachable within the area, the PDU is routed towards the nearest Level 2 router.
Level 2 routers include in their LSPs, a complete list of IP address, subnet mask, and metrics specifying all the IP addresses which reachable in their area. This information can be obtained from a combination of the Level 1 LSPs (by Level 1 routers in the same area). Level 2 routers can also report external reachability information, corresponding to addresses reachable by routers in other routing domains or autonomous systems.
IS-IS Frequently Used Terms

- **Area** — An area is a routing sub-domain which maintains detailed routing information about its own internal composition, and also maintains routing information which allows it to reach other routing sub-domains. Areas correspond to the Level 1 sub-domain.

- **End system** — End systems send NPDUs to other systems and receive NPDUs from other systems, but do not relay NPDUs. This International Standard does not specify any additional end system functions beyond those supplied by ISO 8473 and ISO 9542.

- **Neighbor** — A neighbor is an adjacent system reachable by traversing a single sub-network by a PDU.

- **Adjacency** — An adjacency is a portion of the local routing information which pertains to the reachability of a single neighboring end or intermediate system over a single circuit. Adjacencies are used as input to the decision process to form paths through the routing domain. A separate adjacency is created for each neighbor on a circuit and for each level of routing (Level 1 and Level 2) on a broadcast circuit.

- **Circuit** — The subset of the local routing information base pertinent to a single local Subnetwork Point of Attachments (SNPAs).

- **Link** — The communication path between two neighbors. A link is up when communication is possible between the two SNPAs.

- **Designated IS** — The intermediate system on a LAN which is designated to perform additional duties. In particular, the designated IS generates link-state PDUs on behalf of the LAN, treating the LAN as a pseudonode.

- **Pseudonode** — Where a broadcast sub-network has \(n \) connected intermediate systems, the broadcast sub-network itself is considered to be a pseudonode. The pseudonode has links to each of the \(n \) intermediate systems and each of the ISs has a single link to the pseudonode (rather than \(n-1 \) links to each of the other intermediate systems). Link-state PDUs are generated on behalf of the pseudonode by the designated IS.

- **Broadcast sub-network** — A multi-access subnetwork that supports the capability of addressing a group of attached systems with a single PDU.

- **General topology sub-network** — A topology that is modeled as a set of point-to-point links, each of which connects two systems. There are several generic types of general topology subnetworks, multipoint links, permanent point-to-point links, dynamic and static point-to-point links.

- **Routing sub-domain** — A routing sub-domain consists of a set of intermediate systems and end systems located within the same routing domain.

- **Level 2 sub-domain** — Level 2 sub-domain is the set of all Level 2 intermediate systems in a routing domain.
ISO Network Addressing

IS-IS uses ISO network addresses. Each address identifies a point of connection to the network, such as a router interface, and is called a Network Service Access Point (NSAP).

An end system can have multiple NSAP addresses, in which case the addresses differ only by the last byte (called the n-selector). Each NSAP represents a service that is available at that node. In addition to having multiple services, a single node can belong to multiple areas.

Each network entity has a special network address called a Network Entity Title (NET). Structurally, an NET is identical to an NSAP address but has an n-selector of 00. Most end systems have one NET. Intermediate systems can have up to three area IDs (area addresses).

NSAP addresses are divided into three parts. Only the area ID portion is configurable.

- Area ID — A variable length field between 1 and 13 bytes long. This includes the Authority and Format Identifier (AFI) as the most significant byte and the area ID.
- System ID — A six-byte system identification. This value is not configurable. The system ID is derived from the system or router ID.
- Selector ID — A one-byte selector identification that must contain zeros when configuring a NET. This value is not configurable. The selector ID is always 00.

Of the total 20 bytes comprising the NET, only the first 13 bytes, the area ID portion, can be manually configured. As few as one byte can be entered or, at most, 13 bytes. If less than 13 bytes are entered, the rest is padded with zeros.

Routers with common area addresses form Level 1 adjacencies. Routers with no common NET addresses form Level 2 adjacencies, if they are capable (Figure 13).
IS-IS PDU Configuration

The following PDUs are used by IS-IS to exchange protocol information:

- **IS-IS hello PDU** — Routers with IS-IS enabled send hello PDUs to IS-IS-enabled interfaces to discover neighbors and establish adjacencies.
- **Link-state PDUs** — Contain information about the state of adjacencies to neighboring IS-IS systems. LSPs are flooded periodically throughout an area.
- **Complete sequence number PDUs** — In order for all routers to maintain the same information, CSNPs inform other routers that some LSPs can be outdated or missing from their database. CSNPs contain a complete list of all LSPs in the current IS-IS database.
- **Partial sequence number PDUs (PSNPs)** — PSNPs are used to request missing LSPs and acknowledge that an LSP was received.

IS-IS Operations

The routers perform IS-IS routing as follows:

- Hello PDUs are sent to the IS-IS-enabled interfaces to discover neighbors and establish adjacencies.
• IS-IS neighbor relationships are formed if the hello PDUs contain information that meets the criteria for forming an adjacency.
• SRs can build a link-state PDU based upon their local interfaces that are configured for IS-IS and prefixes learned from other adjacent routers.
• SRs flood LSPs to the adjacent neighbors except the neighbor from which they received the same LSP. The link-state database is constructed from these LSPs.
• A Shortest Path Tree (SPT) is calculated by each IS, and from this SPT the routing table is built.
IS-IS Route Summarization

IS-IS IPv4 route summarization allows users to create aggregate IPv4 addresses that include multiple groups of IPv4 addresses for a given IS-IS level. IPv4 Routes redistributed from other routing protocols also can be summarized. It is similar to the OSPF area-range command. IS-IS IPv4 route summarization helps to reduce the size of the LSDB and the IPv4 routing table, and it also helps to reduce the chance of route flapping.

IPv4 route summarization supports:

- Level 1, Level 1-2, and Level 2
- Route summarization for the IPv4 routes redistributed from other protocols
- Metric used to advertise the summary address will be the smallest metric of all the more specific IPv4 routes.

Partial SPF Calculation

IS-IS supports partial SPF calculation, also referred to as partial route calculation. When an event does not change the topology of the network, IS-IS will not perform full SPF but will instead perform an IP reach calculation for the impacted routes. Partial SPF is performed at the receipt of IS-IS LSPs with changes to IP reach TLVs and in general, for any IS-IS LSP TLV and sub-TLV change that does not impact the network topology.
IS-IS MT-Topology Support

Multi-Topology IS-IS (MT-ISIS) support within SROS, allows for the creation of different topologies within IS-IS that contribute routes to a specific route tables for IPv4 unicast, IPv6 unicast, IPv4 multicast and IPv6 multicast. This capability allows for non-congruent topologies between these different routing tables. As a result, networks are able to control, which links or nodes are to be used for forwarding different types of traffic.

For example, MT-ISIS could allow all links to carry IPv4 traffic, while only a subset of links can also carry IPv6 traffic.

SR-OS supports the following Multi-Topologies:

- IPv4 Unicast – MT-ID 0
- IPv6 Unicast – MT-ID 2
- IPv4 Multicast – MT-ID 3
- IPv6 Multicast – MT-ID 4

Native IPv6 Support

IS-IS IPv6 TLVs for IPv6 routing is supported in SROS. This support is considered native IPv6 routing within IS-IS. However it has limitations that IPv4 and IPv6 topologies must be congruent, otherwise traffic may be blackholed. Service providers should ensure that the IPv4 topology and IPv6 topologies are the same if native IPv6 routing is used within IS-IS.
IS-IS Administrative Tags

IS-IS admin tags enable a network administrator to configure route tags to tag IS-IS route prefixes. These tags can subsequently be used to control Intermediate System-to-Intermediate System (IS-IS) route redistribution or route leaking.

The IS-IS support for route tags allows the tagging of IP addresses of an interface and use the tag to apply administrative policy with a route map. A network administrator can also tag a summary route and then use a route policy to match the tag and set one or more attributes for the route.

Using these administrative policies allow the operator to control how a router handles the routes it receives from and sends to its IS-IS neighboring routers. Administrative policies are also used to govern the installation of routes in the routing table.

Route tags allow:

- Policies to redistribute routes received from other protocols in the routing table to IS-IS.
- Policies to redistribute routes between levels in an IS-IS routing hierarchy.
- Policies to summarize routes redistributed into IS-IS or within IS-IS by creating aggregate (summary) addresses.

Setting Route Tags

IS-IS route tags are configurable in the following ways:

- Setting a route tag for an IS-IS interface.
- Setting a route tag on an IS-IS passive interface.
- Setting a route tag for a route redistributed from another protocol to IS-IS.
- Setting a route tag for a route redistributed from one IS-IS level to another IS-IS level.
- Setting a route tag for an IS-IS default route.
- Setting a route tag for an IS-IS summary address.
Using Route Tags

Although an operator on this or another (neighboring) IS-IS router has configured setting of the IS-IS administrative tags it will not have any effect unless policies are configure to instruct how to process the given tag value.

Policies can process tags where ISIS is either the origin, destination or both origin and destination protocol.

```
config>router>policy-options>policy-statement>entry>from
    config>router>policy-options>policy-statement>entry>action tag tag-value
```

Unnumbered Interface Support

IS-IS supports unnumbered point-to-point interface with both Ethernet and PPP encapsulations.

Unnumbered interfaces borrow the address from other interfaces such as system or loopback interfaces and uses it as the source IP address for packets originated from the interface. This feature supports both dynamic and static ARP for unnumbered interfaces to allow interworking with unnumbered interfaces that may not support dynamic ARP.

An unnumbered interface is an IPv4 capability only used in cases where IPv4 is active (IPv4-only and mixed IPv4/IPv6 environments). When configuring an unnumbered interface, the interface specified for the unnumbered interface (system or other) must have an IPv4 address. Also, the interface type for the unnumbered interface will automatically be point-to-point. The unnumbered option can be used in IES and VPRN access interfaces, as well as in a network interface with MPLS support.
IS-IS Configuration Process Overview

Figure 14 displays the process to provision basic IS-IS parameters.

Figure 14: IS-IS Configuration and Implementation Flow
Configuration Notes

This section describes IS-IS configuration caveats.

General

- IS-IS must be enabled on each participating router.
- There are no default network entity titles.
- There are no default interfaces.
- By default, the routers are assigned a Level 1/Level 2 level capability.
Configuring IS-IS with CLI

This section provides information to configure intermediate-system-to-intermediate-system (IS-IS) using the command line interface.

Topics in this section include:

- IS-IS Configuration Overview on page 430
 - Router Levels on page 430
 - Area Address Attributes on page 430
 - Interface Level Capability on page 431
 - Route Leaking on page 432
- Basic IS-IS Configuration on page 433
- Common Configuration Tasks on page 435
 - Enabling IS-IS on page 436
 - Modifying Router-Level Parameters on page 436
 - Configuring ISO Area Addresses on page 438
 - Configuring Global IS-IS Parameters on page 439
 - Configuring Interface Parameters on page 444
- IS-IS Configuration Management Tasks on page 450
 - Disabling IS-IS on page 450
 - Modifying Global IS-IS Parameters on page 451
 - Modifying IS-IS Interface Parameters on page 452
 - Example: Configuring a Level 1 Area on page 446
 - Example: Modifying a Router’s Level Capability on page 448
 - Configuring Leaking on page 455
 - Redistributing External IS-IS Routers on page 458
 - Specifying MAC Addresses for All IS-IS Routers on page 459
IS-IS Configuration Overview

Router Levels

The router’s level capability can be configured globally and on a per-interface basis. The interface-level parameters specify the interface’s routing level. The neighbor capability and parameters define the adjacencies that are established.

IS-IS is not enabled by default. When IS-IS is enabled, the global default level capability is Level 1/2 which enables the router to operate as either a Level 1 and/or a Level 2 router with the associated databases. The router runs separate shortest path first (SPF) calculations for the Level 1 area routing and for the Level 2 multi-area routing to create the IS-IS routing table.

The level value can be modified on both or either of the global and interface levels to be only Level 1-capable, only Level 2-capable or Level 1 and Level 2-capable.

If the default value is not modified on any routers in the area, then the routers try to form both Level 1 and Level 2 adjacencies on all IS-IS interfaces. If the default values are modified to Level 1 or Level 2, then the number of adjacencies formed are limited to that level only.

Area Address Attributes

The area-id command specifies the area address portion of the NET which is used to define the IS-IS area to which the router will belong. At least one area-id command should be configured on each router participating in IS-IS. A maximum of three area-id commands can be configured per router.

The area address identifies a point of connection to the network, such as a router interface, and is called a network service access point (NSAP). The routers in an area manage routing tables about destinations within the area. The Network Entity Title (NET) value is used to identify the IS-IS area to which the router belongs.

NSAP addresses are divided into three parts. Only the Area ID portion is configurable.

1. Area ID — A variable length field between 1 and 13 bytes long. This includes the Authority and Format Identifier (AFI) as the most significant byte and the area ID.
2. System ID — A six-byte system identification. This value is not configurable. The system ID is derived from the system or router ID.
3. Selector ID — A one-byte selector identification that must contain zeros when configuring a NET. This value is not configurable. The selector ID is always 00.
The following example displays ISO addresses in IS-IS address format:

MAC address 00:a5:c7:6b:c4:9049.0011.00a5.c76b.c490.00
IP address: 218.112.14.5 49.0011.2181.1201.4005.00

Interface Level Capability

The level capability value configured on the interface level is compared to the level capability value configured on the global level to determine the type of adjacencies that can be established. The default level capability for routers and interfaces is Level 1/2.

Table 7 displays configuration combinations and the potential adjacencies that can be formed.

Table 7: Potential Adjacency

<table>
<thead>
<tr>
<th>Global Level</th>
<th>Interface Level</th>
<th>Potential Adjacency</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1/2</td>
<td>L 1/2</td>
<td>Level 1 and/or Level 2</td>
</tr>
<tr>
<td>L 1/2</td>
<td>L 1</td>
<td>Level 1 only</td>
</tr>
<tr>
<td>L 1/2</td>
<td>L 2</td>
<td>Level 2 only</td>
</tr>
<tr>
<td>L 2</td>
<td>L 1/2</td>
<td>Level 2 only</td>
</tr>
<tr>
<td>L 2</td>
<td>L 2</td>
<td>Level 2 only</td>
</tr>
<tr>
<td>L 2</td>
<td>L 1</td>
<td>none</td>
</tr>
<tr>
<td>L 1</td>
<td>L 1/2</td>
<td>Level 1 only</td>
</tr>
<tr>
<td>L 1</td>
<td>L 2</td>
<td>none</td>
</tr>
<tr>
<td>L 1</td>
<td>L 1</td>
<td>Level 1 only</td>
</tr>
</tbody>
</table>
Route Leaking

Alcatel-Lucent’s implementation of IS-IS route leaking is performed in compliance with RFC 2966, Domain-wide Prefix Distribution with Two-Level IS-IS. As previously stated, IS-IS is a routing domain (an autonomous system running IS-IS) which can be divided into Level 1 areas with a Level 2-connected subset (backbone) of the topology that interconnects all of the Level 1 areas. Within each Level 1 area, the routers exchange link state information. Level 2 routers also exchange Level 2 link state information to compute routes between areas.

Routers in a Level 1 area typically only exchange information within the Level 1 area. For IP destinations not found in the prefixes in the Level 1 database, the Level 1 router forwards PDUs to the nearest router that is in both Level 1/Level 2 with the attached bit set in its Level 1 link-state PDU.

There are many reasons to implement domain-wide prefix distribution. The goal of domain-wide prefix distribution is to increase the granularity of the routing information within the domain. The routing mechanisms specified in RFC 1195 are appropriate in many situations and account for excellent scalability properties. However, in certain circumstances, the amount of scalability can be adjusted which can distribute more specific information than described by RFC 1195.

Distributing more prefix information can improve the quality of the resulting routes. A well known property of default routing is that loss of information can occur. This loss of information affects the computation of a route based upon less information which can result in sub-optimal routes.
Basic IS-IS Configuration

For IS-IS to operate on the routers, IS-IS must be explicitly enabled, and at least one area address and interface must be configured. If IS-IS is enabled but no area address or interface is defined, the protocol is enabled but no routes are exchanged. When at least one area address and interface are configured, then adjacencies can be formed and routes exchanged.

To configure IS-IS, perform the following tasks:

- Enable IS-IS (specifying the instance ID of multi-instance IS-IS is to be enabled).
- If necessary, modify the level capability on the global level (default is level-1/2).
- Define area address(es)
- Configure IS-IS interfaces.

The following output displays IS-IS default values.

```
A:Dut-A>config>router>isis$ info detail
----------------------------------------------
level-capability level-1/2
no graceful-restart
area-id 01
no authentication-key
no authentication-type
authentication-check
csnp-authentication
lsp-lifetime 1200
no export
hello-authentication
psnp-authentication
traffic-engineering
no reference-bandwidth
no disable-ldp-sync
ipv4-routing
no ipv6-routing
no unicast-import-disable
no multicast-import
spf-wait 10 1000 1000
no strict-adjacency-check
lsp-wait 5 0 1
level 1
   no authentication-key
   no authentication-type
csnp-authentication
external-preference 160
hello-authentication
preference 15
psnp-authentication
no wide-metrics-only
exit
level 2
   no authentication-key
   no authentication-type
```
Basic IS-IS Configuration

csnp-authentication
external-preference 165
hello-authentication
preference 18
psnp-authentication
no wide-metrics-only
exit
no shutdown

A:Dut-A>config>router>isis$
Common Configuration Tasks

To implement IS-IS in your network, you must enable IS-IS on each participating router.

To assign different level to the routers and organize your network into areas, modify the level capability defaults on end systems from Level 1/2 to Level 1. Routers communicating to other areas can retain the Level 1/2 default.

On each router, at least one area ID also called the area address should be configured as well as at least one IS-IS interface.

- Enable IS-IS.
- Configure global IS-IS parameters.
 - Configure area address(es).
- Configure IS-IS interface-specific parameters.
Configuring IS-IS Components

Use the CLI syntax displayed below for:

- Enabling IS-IS on page 436
- Modifying Router-Level Parameters on page 436
- Configuring ISO Area Addresses on page 438
- Configuring Global IS-IS Parameters on page 439
- Configuring Interface Parameters on page 444
- Example: Configuring a Level 1 Area on page 446
- Example: Modifying a Router’s Level Capability on page 448

Enabling IS-IS

IS-IS must be enabled in order for the protocol to be active.

NOTE: Careful planning is essential to implement commands that can affect the behavior of global and interface levels.

To configure IS-IS on a router, enter the following command:

CLI Syntax: `isis`

Example: `config>router# isis`

IS-IS also supports the concept of multi-instance IS-IS which allows separate instances of the IS-IS protocol to run independently of the SR-OS router.

Separate instances are created by adding a different instance ID as the optional parameter to the `config>router>isis` command.

Modifying Router-Level Parameters

When IS-IS is enabled, the default `level-capability` is Level 1/2. This means that the router operates with both Level 1 and Level 2 routing. To change the default value in order for the router to operate as a Level 1 router or a Level 2 router, you must explicitly modify the `level` value.

If the level is modified, the protocol shuts down and restarts. Doing this can affect adjacencies and routes.
The `level-capability` value can be configured on the global level and also on the interface level. The `level-capability` value determines which level values can be assigned on the router level or on an interface-basis.

In order for the router to operate as a Level 1 only router or as a Level 2 only router, you must explicitly specify the `level-number` value.

- Select `level-1` to route only within an area.
- Select `level-2` to route to destinations outside an area, toward other eligible Level 2 routers.

To configure the router level, enter the following commands:

CLI Syntax:
```
config>router# isis
   level-capability {level-1|level-2|level-1/2}
   level {1|2}
```

Example:
```
config>router# isis
config>router>isis# level-capability 1/2
config>router>isis# level 2
```

The following example displays the configuration:
```
A:ALA-A>config>router>isis# info
#------------------------------------------
echo "ISIS"
#------------------------------------------
   level-capability level-1/2
   level 2
----------------------------------------------
A:ALA-A>config>router>isis#
```
Configuring ISO Area Addresses

Use the following CLI syntax to configure an area ID also called an address. A maximum of 3 area-id can be configured.

CLI Syntax:
```
config>router# isis
    area-id area-address
```

The following example configures the router’s area ID:

Example:
```
config>router>isis# area-id 49.0180.0001
config>router>isis# area-id 49.0180.0002
config>router>isis# area-id 49.0180.0003
```

The following example displays the area ID configuration:

```
A:ALA-A>config>router>isis# info
----------------------------------------------
area-id 49.0180.0001
area-id 49.0180.0002
area-id 49.0180.0003
----------------------------------------------
A:ALA-A>config>router>isis#
```
Configuring Global IS-IS Parameters

Commands and parameters configured on the global level are inherited to the interface levels. Parameters specified in the interface and interface-level configurations take precedence over global configurations.

The following example displays global-level IS-IS configuration command usage:

Example: config>router# isis
 config>router>isis#
 config>router>isis# level-capability level-2
 config>router>isis# authentication-check
 config>router>isis# authentication-type password
 config>router>isis# authentication-key test
 config>router>isis# overload timeout 90
 config>router>isis# traffic-engineering

The following example displays the modified global-level configuration.

A:ALA-A(config>router>isis# info
--
 level-capability level-2
 area-id 49.0180.0001
 area-id 49.0180.0002
 area-id 49.0180.0003
 authentication-key "H5KBAWtAAQU" hash
 authentication-type password
 overload timeout 90
 traffic-engineering
--
A:ALA-A(config>router>isis#
Migration to IS-IS Multi-Topology

To migrate to IS-IS multi-topology for IPv6, perform the following tasks:

Enable the sending/receiving of IPv6 unicast reachability information in IS-IS MT TLVs on all the routers that support MT.

CLI Syntax:
```
config>router# isis
    multi-topology
    ipv6-unicast
```

```
A:ALA-49>config>router>isis# info detail
----------------------------------------------
...  
  ipv4-routing
  ipv6-routing native
  multi-topology
  ipv6-unicast
  exit
...  
----------------------------------------------
A:ALA-49>config>router>isis#
```

Ensure that all MT routers have the IPv6 reachability information required by MT TLVs:

CLI Syntax:
```
show>router# isis
    topology ipv6-unicast
```

```
A:ALA-49>config>router>isis# show router isis topology ipv6-unicast
------------------------------------------------------------------
Topology Table
------------------------------------------------------------------
Node                  Interface                  Nexthop
------------------------------------------------------------------
No Matching Entries
------------------------------------------------------------------
A:ALA-49>config>router>isis#
```
CLI Syntax: show>router# isis
database detail

A:ALA-49>config>router>isis# show router isis database detail

IS-IS Database

Displaying Level 1 database

<table>
<thead>
<tr>
<th>LSP ID</th>
<th>ALA-49.00-00</th>
<th>Level</th>
<th>L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>0x22b</td>
<td>Checksum: 0x60e4</td>
<td>Lifetime: 1082</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
<td>Pkt Type: 18</td>
<td>Pkt Ver: 1</td>
</tr>
<tr>
<td>Attributes</td>
<td>L1L2</td>
<td>Max Area: 3</td>
<td></td>
</tr>
<tr>
<td>SysID Len</td>
<td>6</td>
<td>Used Len: 404</td>
<td>Alloc Len: 1492</td>
</tr>
</tbody>
</table>

TLVs:

Area Addresses:
- Area Address: (13) 47.4001.8000.00a7.0000.ffdd.0007

Supp Protocols:
- Protocols: IPv4 IPv6

IS-Hostname:
- Hostname: ALA-49

TE Router ID:
- Router ID: 10.10.10.104

Internal Reach:
- IP Prefix: 10.10.10.104/32 (Dir.:Up) Metric: 0 (I)
- IP Prefix: 10.10.4.0/24 (Dir.:Up) Metric: 10 (I)
- IP Prefix: 10.10.5.0/24 (Dir.:Up) Metric: 10 (I)
- IP Prefix: 10.10.7.0/24 (Dir.:Up) Metric: 10 (I)
- IP Prefix: 10.10.0.0/24 (Dir.:Up) Metric: 10 (I)

MT IPv6 Reach.:
- MT ID: 2
- IPv6 Prefix: 3ffe::101:100/120
 - Flags: Up Internal Metric: 10
- IPv6 Prefix: 10::/64
 - Flags: Up Internal Metric: 10

I/f Addresses:
- IP Address: 10.10.10.104
- IP Address: 10.10.4.3
- IP Address: 10.10.5.3
- IP Address: 10.10.7.3
- IP Address: 10.10.0.16
- IP Address: 10.0.0.104

I/f Addresses IPv6:
- IPv6 Address: 3ffe::101:101
- IPv6 Address: 10::104

TE IP Reach.:
- IP Prefix: 10.10.10.104/32 (Dir.:Up) Metric: 0
- IP Prefix: 10.10.4.0/24 (Dir.:Up) Metric: 10
- IP Prefix: 10.10.5.0/24 (Dir.:Up) Metric: 10
- IP Prefix: 10.10.7.0/24 (Dir.:Up) Metric: 10
- IP Prefix: 10.10.0.0/24 (Dir.:Up) Metric: 10

Authentication:
Auth Type : Password(1) (116 bytes)

Level (1) LSP Count : 1

Displaying Level 2 database

LSP ID : ALA-49.00-00 Level : L2
Sequence : 0x22c Checksum : 0xb888 Lifetime : 1082
Version : 1 Pkt Type : 20 Pkt Ver : 1
Attributes: L1L2 Max Area : 3
SysID Len : 6 Used Len : 304 Alloc Len : 1492

TLVs :
Area Addresses :
 Area Address : (13) 47.4001.8000.00a7.0000.ffdd.0007
Supp Protocols :
 Protocols : IPv4 IPv6
IS-Hostname :
 Hostname : ALA-49
TE Router ID :
 Router ID : 10.10.10.104
Internal Reach :
 IP Prefix : 10.10.10.104/32 (Dir. :Up) Metric : 0 (I)
 IP Prefix : 10.10.4.0/24 (Dir. :Up) Metric : 10 (I)
 IP Prefix : 10.10.5.0/24 (Dir. :Up) Metric : 10 (I)
 IP Prefix : 10.10.7.0/24 (Dir. :Up) Metric : 10 (I)
 IP Prefix : 10.10.0.0/24 (Dir. :Up) Metric : 10 (I)
MT IPv6 Reach. :
 MT ID : 2
 IPv6 Prefix : 3ffe::101:100/120
 Flags : Up Internal Metric : 10
 IPv6 Prefix : 10::/64
 Flags : Up Internal Metric : 10
I/f Addresses :
 IP Address : 10.10.10.104
 IP Address : 10.10.4.3
 IP Address : 10.10.5.3
 IP Address : 10.10.7.3
 IP Address : 10.10.0.16
 IP Address : 10.0.0.104
I/f Addresses IPv6 :
 IPv6 Address : 3FFE::101:101
 IPv6 Address : 10::104
TE IP Reach. :
 IP Prefix : 10.10.10.104/32 (Dir. :Up) Metric : 0
 IP Prefix : 10.10.4.0/24 (Dir. :Up) Metric : 10
 IP Prefix : 10.10.5.0/24 (Dir. :Up) Metric : 10
 IP Prefix : 10.10.7.0/24 (Dir. :Up) Metric : 10
 IP Prefix : 10.10.0.0/24 (Dir. :Up) Metric : 10
 IP Prefix : 10.0.0.0/24 (Dir. :Up) Metric : 10
Authentication :
 Auth Type : MD5(54) (16 bytes)

Level (2) LSP Count : 1

A:ALA-49>config>router>isis#
Configure MT TLVs for IPv6 SPF:

CLI Syntax:
```
cfg>router# isis
ipv6-routing mt
```

```
A:ALA-49>config>router>isis# info detail
```
```
----------------------------------------------
...ipv4-routing
ipv6-routing mt
multi-topology
ipv6-unicast
exit
```
```
----------------------------------------------
A:ALA-49>config>router>isis#
```

Verify IPv6 routes:

CLI Syntax:
```
show>router# isis
routes ipv6-unicast
```

```
A:ALA-49>config>router>isis# show router isis routes ipv6-unicast
```
```
===============================================================================
Route Table
===============================================================================
Prefix                             Metric       Lvl/Typ Ver.   SysID/Hostname
NextHop                           MT
-------------------------------------------------------------------------------
No Matching Entries
-------------------------------------------------------------------------------
A:ALA-49>config>router>isis#
```

CLI Syntax:
```
show>router# route-table ipv6
```

```
A:ALA-48>show>router# route-table ipv6
```
```
===============================================================================
IPv6 Route Table (Router: Base)
===============================================================================
Dest Prefix                                   Type    Proto    Age         Pref
Next Hop[Interface Name]                                     Metric
-------------------------------------------------------------------------------
100::/64                                       Local   Local    05h35m28s   0
-------------------------------------------------------------------------------
No. of Routes: 1
-------------------------------------------------------------------------------
A:ALA-48>show>router#
Configuring Interface Parameters

There are no interfaces associated with IS-IS by default. An interface belongs to all areas configured on a router. Interfaces cannot belong to separate areas. There are no default interfaces applied to the router’s IS-IS instance. You must configure at least one IS-IS interface in order for IS-IS to work.

To enable IS-IS on an interface, first configure an IP interface in the config>router>interface context. Then, apply the interface in the config>router>isis>interface context.

You can configure both the Level 1 parameters and the Level 2 parameters on an interface. The level-capability value determines which level values are used.

NOTE: For point-to-point interfaces, only the values configured under Level 1 are used regardless of the operational level of the interface.

The following example displays the modified interface parameters:

Example:  
```
config>router# isis
config>router>isis# level 1
config>router>isis>level# wide-metrics-only
config>router>isis>level# exit
config>router>isis# level 2
config>router>isis>level# wide-metrics-only
config>router>isis>level# exit
config>router>isis# interface ALA-1-2
config>router>isis>if# level-capability level-2
config>router>isis>if# mesh-group 85
config>router>isis>if# exit
config>router>isis# interface ALA-1-3
config>router>isis>if# level-capability level-1
config>router>isis>if# interface-type point-to-point
config>router>isis>if# mesh-group 101
config>router>isis>if# exit
config>router>isis# interface ALA-1-5
config>router>isis>if# level-capability level-1
config>router>isis>if# interface-type point-to-point
config>router>isis>if# mesh-group 85
config>router>isis>if# exit
config>router>isis# interface to-103
config>router>isis>if# level-capability level-1/2
>router>isis>if# mesh-group 101
config>router>isis>if# exit
config>router>isis#
```
The following example displays the global and interface-level configurations.

```
A:ALA-A>config>router>isis# info
--
level-capability level-2
area-id 49.0180.0001
area-id 49.0180.0002
area-id 49.0180.0003
authentication-key "H5KBAWrAAQU" hash
authentication-type password
traffic-engineering
 level 1
 wide-metrics-only
 exit
level 2
 wide-metrics-only
 exit
interface "system"
 exit
interface "ALA-1-2"
 level-capability level-2
 mesh-group 85
 exit
interface "ALA-1-3"
 level-capability level-1
 interface-type point-to-point
 mesh-group 101
 exit
interface "ALA-1-5"
 level-capability level-1
 interface-type point-to-point
 mesh-group 85
 exit
interface "to-103"
 mesh-group 101
 exit
--
A:ALA-A>config>router>isis#
```
Example: Configuring a Level 1 Area

NOTE: Interfaces are configured in the `config>router>interface` context.

![Diagram of IS-IS Area Configuration](image)

The following example displays the command usage to configure a Level 1 area.

A:ALA-A>config>router# isis
A:ALA-A>config>router>isis# area-id 47.0001
A:ALA-A>config>router>isis# level-capability level-1
A:ALA-A>config>router>isis# interface system
A:ALA-A>config>router>isis>if# exit
A:ALA-A>config>router>isis# interface A-B
A:ALA-A>config>router>isis>if# exit
A:ALA-A>config>router>isis# interface A-C
A:ALA-A>config>router>isis>if# exit
A:ALA-A>config>router>isis#

A:ALA-B>config>router# isis
A:ALA-B>config>router>isis# area-id 47.0001
A:ALA-B>config>router>isis# level-capability level-1
A:ALA-B>config>router>isis# interface system
A:ALA-B>config>router>isis>if# exit
A:ALA-B>config>router>isis# interface B-A
A:ALA-B>config>router>isis>if# exit
A:ALA-B>config>router>isis# interface B-C
A:ALA-B>config>router>isis>if# exit
A:ALA-B>config>router>isis#

A:ALA-C>config>router# isis
A:ALA-C>config>router>isis# area-id 47.0001
A:ALA-C>config>router>isis# level-capability level-1
A:ALA-C>config>router>isis# interface system
A:ALA-C>config>router>isis>if# exit
A:ALA-C>config>router>isis# interface "C-A"
A:ALA-C>config>router>isis>if# exit
A:ALA-C>config>router>isis# interface "C-B"
A:ALA-C>config>router>isis>if# exit

A:ALA-A>config>router>isis# info
----------------------------------------------
level-capability level-1
area-id 49.0180.0001
interface "system"
exit
interface "A-B"
exit
interface "A-C"
exit
----------------------------------------------
A:ALA-A>config>router>isis#

A:ALA-B>config>router>isis# info
----------------------------------------------
level-capability level-1
area-id 49.0180.0001
interface "system"
exit
interface "B-A"
exit
interface "B-C"
exit
----------------------------------------------
A:ALA-B>config>router>isis#

A:ALA-C>config>router>isis# info
#------------------------------------------
echo "ISIS"
#------------------------------------------
level-capability level-1
area-id 49.0180.0001
interface "system"
exit
interface "C-A"
exit
interface "C-B"
exit
----------------------------------------------
A:ALA-C>config>router>isis#
Example: Modifying a Router's Level Capability

In the previous example, ALA-A, ALA-B, and ALA-C are configured as Level 1 systems. Level 1 systems communicate with other Level 1 systems in the same area. In this example, ALA-A is modified to set the level capability to Level 1/2. Now, the Level 1 systems in the area with NET 47.0001 forward PDUs to ALA-A for destinations that are not in the local area.

The following example displays the command usage to configure a Level 1/2 system.

```
A:ALA-A>config>router# isis
A:ALA-A>config>router>isis# level-capability level-1/2
```
Configuring IS-IS Link Groups

IS-IS Link-Groups allows the creation of an administrative grouping of multiple IS-IS member interfaces that should be treated as a common group for ECMP purposes. If the number of operational links in the link-group drops below the operational-member value then all links associated with that IS-IS link group will have their interface metric increased by the configured offset amounts. As a result, IS-IS will then try to reroute traffic over lower cost paths.

Once triggered, the higher metric will not be reset to the originally configured IS-IS interface metric values until the number of active interfaces in the link bundle reaches the configured revertive threshold (revert-members).

Prerequisite are the following:

- 1 or more interface members.
- A configured operational-member (oper-members) value.
- A configured revertive-member (revert-members) value.
- Configured offset values for the appropriate address families.
IS-IS Configuration Management Tasks

This section discusses the following IS-IS configuration management tasks:

- Disabling IS-IS on page 450
- Removing IS-IS on page 450
- Modifying Global IS-IS Parameters on page 451
- Modifying IS-IS Interface Parameters on page 452
  - Example: Configuring a Level 1 Area on page 446
  - Example: Modifying a Router’s Level Capability on page 448
- Configuring Leaking on page 455
- Redistributing External IS-IS Routers on page 458
- Specifying MAC Addresses for All IS-IS Routers on page 459

Disabling IS-IS

The `shutdown` command disables the IS-IS protocol instance on the router. The configuration settings are not changed, reset, or removed.

To disable IS-IS on a router, enter the following commands:

**CLI Syntax:**
```
config>router# isis shutdown
```

Removing IS-IS

The `no isis` command deletes the IS-IS protocol instance. The IS-IS configuration reverts to the default settings.

To remove the IS-IS configuration enter the following commands:

**CLI Syntax:**
```
config>router# no isis
```
Modifying Global IS-IS Parameters

You can modify, disable, or remove global IS-IS parameters without shutting down entities. Changes take effect immediately. Modifying the level capability on the global level causes the IS-IS protocol to restart.

The following example displays command usage to modify various parameters:

Example:  
```bash
config>router>isis# overload timeout 500
config>router>isis# level-capability level-1/2
config>router>isis# no authentication-check
config>router>isis# authentication-key raiderslost
```

The following example displays the global modifications:

```bash
A:ALA-A>config>router>isis# info

area-id 49.0180.0001
area-id 49.0180.0002
area-id 49.0180.0003
authentication-key "/oZrvtvFPn06S42lRIJsE" hash
authentication-type password
no authentication-check
overload timeout 500 on-boot
level 1
 wide-metrics-only
 exit
level 2
 wide-metrics-only
 exit
interface "system"
 exit
interface "ALA-1-2"
 level-capability level-2
 mesh-group 85
 exit
interface "ALA-1-3"
 level-capability level-1
 interface-type point-to-point
 mesh-group 101
 exit
interface "ALA-1-5"
 level-capability level-1
 interface-type point-to-point
 mesh-group 85
 exit
interface "to-103"
 mesh-group 101
 exit
interface "A-B"
 exit
interface "A-C"
 exit

A:ALA-A>config>router>isis#
```
Modifying IS-IS Interface Parameters

You can modify, disable, or remove interface-level IS-IS parameters without shutting down entities. Changes take effect immediately. Modifying the level capability on the interface causes the IS-IS protocol on the interface to restart.

To remove an interface, issue the `no interface ip-int-name` command.
To disable an interface, issue the `shutdown` command in the interface context.

The following example displays interface IS-IS modification command usage:

```
Example: config>router# isis
 config>router>isis# interface ALA-1-3
 config>router>isis>if# mesh-group 85
 config>router>isis>if# passive
 config>router>isis>if# lsp-pacing-interval 5000
 config>router>isis>if# exit
 config>router>isis# interface to-103
 config>router>isis>if# hello-authentication-type message-digest
 config>router>isis>if# hello-authentication-key 49ersrule
 config>router>isis>if# exit
```

The following example displays the modified interface parameters.

```
A:ALA-A>config>router>isis# info
--
area-id 49.0180.0001
area-id 49.0180.0002
area-id 49.0180.0003
authentication-key "//oZrvtvFPn06S421RIJsE" hash
authentication-type password
no authentication-check
overload timeout 500 on-boot
level 1
 wide-metrics-only
 exit
level 2
 wide-metrics-only
 exit
interface "system"
exit
interface "ALA-1-2"
 level-capability level-2
 mesh-group 85
exit
interface "ALA-1-3"
 level-capability level-1
 interface-type point-to-point
 lsp-pacing-interval 5000
 mesh-group 85
 passive
 exit
interface "ALA-1-5"
```

IS-IS Configuration Management Tasks
level-capability level-1
interface-type point-to-point
mesh-group 85
exit
interface "to-103"
  hello-authentication-key "DvR31264KQ6vXMTvbAZlmE" hash
  hello-authentication-type message-digest
  mesh-group 101
exit
interface "A-B"
exit

----------------------------------
A:ALA-A>config>router>isis#
Configuring Authentication using Keychains

The use of authentication mechanism is recommended to protect against malicious attack on the communications between routing protocol neighbors. These attacks could aim to either disrupt communications or to inject incorrect routing information into the systems routing table. The use of authentication keys can help to protect the routing protocols from these types of attacks.

In addition, the use of authentication keychains allows for the configuration of authentication keys and allows keys to be changed without affecting the state of the routing protocol adjacencies.

To configure the use of an authentication keychain within IS-IS, the following steps should be followed:

1. Configure an authentication keychain within the config>system>security context. The configured keychain must include at least on valid key entry, using a valid authentication algorithm for the IS-IS protocol.
2. Associate the configure authentication keychain with IS-IS. Authentication keychains can be used to specify the authentication at the IS-IS global, and level context as well as for hello authentication at the interface and interface-level context.

The association of the authentication keychain is established through the "auth-keychain keychain-name" command at the global and level context. The hello authentication association is established through the hello-auth-keychain keychain-name command.

For a key entry to be valid, it must include a valid key, the current system clock value must be within the begin and end time of the key entry, and the algorithm specified in the key entry must be supported by the IS-IS protocol.

- The IS-IS protocol supports the following algorithms: clear text password, HMAC-MD5, HMC-SHA-1, and HMAC-SHA-256.
- The IS-IS key entry may also include the option parameter to determine how the IS-IS protocol encodes the authentication signature. The value of 'basic' results in the use of RFC 5304 format. The default or a value of "isis-enhanced" results in using the RFC 5310 format.

Error handling:

- If a keychain exists but there are no active key entries with an authentication type that is valid for the associated protocol then inbound protocol packets will not be authenticated and discarded and no outbound protocol packets should be sent.
- If keychain exists, but the last key entry has expired, a log entry will be raised indicating that all keychain entries have expired. The IS-IS protocol requires that the protocol not revert to an unauthenticated state and requires that the old key is not to be used, therefore, once the last key has expired, all traffic will be discarded.
Configuring Leaking

IS-IS allows a two-level hierarchy to route PDUs. Level 1 areas can be interconnected by a contiguous Level 2 backbone.

The Level 1 link-state database contains information only about that area. The Level 2 link-state database contains information about the Level 2 system and each of the Level 1 systems in the area. A Level 1/2 router contains information about both Level 1 and Level 2 databases. A Level 1/2 router advertises information about its Level 1 area toward the other Level 1/2 or Level 2 (only) routers.

Packets with destinations outside the Level 1 area are forwarded toward the closest Level 1/2 router which, in turn, forwards the packets to the destination area.

Sometimes, the shortest path to an outside destination is not through the closest Level 1/2 router, or, the only Level 1/2 system to forward packets out of an area is not operational. Route leaking provides a mechanism to leak Level 2 information to Level 1 systems to provide routing information regarding inter-area routes. Then, a Level 1 router has more options to forward packets.

Configure a route policy to leak routers from Level 2 into Level 1 areas in the config>router>policy-options>policy-statement context.

The following example shows the command usage to configure prefix list and policy statement parameters in the config>router context.

```
config>router>policy-options# prefix-list loops
 ..>policy-options>prefix-list# prefix 10.1.1.0/24 longer
 ..>policy-options>prefix-list# exit
 ..>policy-options# policy-statement leak
 ..>policy-options>policy-statement# entry 10
 ..>policy-options>policy-statement>entry# from
 ..>policy-options>policy-statement>entry>from# prefix-list loops
 ..>policy-options>policy-statement>entry# exit
 ..>policy-options>policy-statement>entry# from
 ..>policy-options>policy-statement>entry>from# level 2
 ..>policy-options>policy-statement>entry# exit
 ..>policy-options>policy-statement>entry# to
 ..>policy-options>policy-statement>entry>to# level 1
 ..>policy-options>policy-statement>entry# exit
 ..>policy-options>policy-statement>entry# action accept
 ..>policy-options>policy-statement>entry# exit
 ..>policy-options>policy-statement#exit
 ..>policy-options# commit
 ..>policy-options#
```
Next, apply the policy to leak routes from Level 2 info Level 1 systems on ALA-A.

```
config>router#isis
config>router>isis# export leak
```

```
A:ALA-A>config>router>isis# info
--
area-id 49.0180.0001
area-id 49.0180.0002
area-id 49.0180.0003
authentication-key "/cZrvtvFPn06S42lRIJsE" hash
authentication-type password
no authentication-check
export "leak"
...
--
A:ALA-A>config>router>isis#
```
After the policy is applied, create a policy to redistribute external IS-IS routes from Level 1 systems into the Level 2 backbone (see Redistributing External IS-IS Routers on page 458). In the `config>router` context, configure the following policy statement parameters:

```config>router>policy-options# begin
..>policy-options# policy-statement "isis-ext"
..>policy-options>policy-statement# entry 10
..>policy-options>policy-statement>entry$ from
..>policy-options>policy-statement>entry>from$ external
..>policy-options>policy-statement>entry># exit
..>policy-options>policy-statement>entry>to
..>policy-options>policy-statement>entry>to$ level 2
..>policy-options>policy-statement>entry>to# exit
..>policy-options>policy-statement>entry# action accept
..>policy-options>policy-statement>entry>action# exit
..>policy-options>policy-statement>entry# exit
..>policy-options>policy-statement>entry>exit
..>policy-options>policy-statement>exit
..>policy-options# commit
```

```
A:ALA-A>config>router>policy-options# info

 prefix-list "loops"
 prefix 10.1.1.0/24 longer
 exit
 policy-statement "leak"
 entry 10
 from
 prefix-list "loop"
 level 2
 exit
 to
 level 1
 exit
 action accept
 exit
 exit
 exit
 policy-statement "isis-ext"
 entry 10
 from
 external
 exit
 to
 level 2
 exit
 action accept
 exit
 exit
 exit
 exit

A:ALA-A>config>router>policy-options#
```
Redistributing External IS-IS Routers

IS-IS does not redistribute Level 1 external routes into Level 2 by default. You must explicitly apply the policy to redistribute external IS-IS routes. Policies are created in the `config>router>policy-options` context. Refer to the Route Policy section of this manual for more information.

The following example displays the policy statement configuration.

```plaintext
config>router>policy-options# info
--
prefix-list "loops"
 prefix 10.1.1.0/24 longer
exit
policy-statement "leak"
 entry 10
 from
 prefix-list "loop"
 level 2
 exit
to
 level 1
 exit
 action accept
 exit
exit
policy-statement "isis-ext"
 entry 10
 from
 external
 exit
to
 level 2
 exit
 action accept
 exit
exit
exit
--
config>router>policy-options#
```
Specifying MAC Addresses for All IS-IS Routers

Specify the MAC address to use for all L1 or L2 IS-IS routers. The following example shows how to specify all L1 routers:

**Example:** `all-l1isis 01-80-C2-00-00-14`

You can also specify the MAC address for all L2 IS-IS routers by using the `all-l2isis` command.
Command Hierarchies

Configuration Commands

- Global Commands on page 461
- Interface Commands on page 463
- Show Commands on page 464
- Clear Commands on page 466
- Debug Commands on page 466

```
config
 — router
 — [no] isis [isis-instance]
 — [no] advertise-passive-only
 — [no] advertise-tunnel-link
 — all-l1isis ieee-address
 — no all-l1isis
 — all-l2isis ieee-address
 — no all-l2isis
 — [no] area-id area-address
 — [no] authentication-check
 — authentication-key [authentication-key | hash-key] [hash | hash2]
 — no authentication-key
 — authentication-type {password | message-digest}
 — no authentication-type
 — auth-keychain keychain-name
 — no auth-keychain
 — [no] csnp-authentication
 — default-route-tag tag
 — no default-route-tag
 — [no] disable-ldp-sync
 — export policy-name [.. policy-name]
 — no export
 — export-limit number [log percentage]
 — no export-limit
 — [no] graceful-restart
 — [no] helper-disable
 — [no] hello-authentication
 — [no] hello-padding {adaptive | loose | strict}
 — [no] ignore-lsp-errors
 — [no] iid-tlv-enable
 — [no] interface ip-init-name
 — [no] bfd-enable {ipv4 | ipv6} [include-bfd-tlv]
 — hello-authentication-key [authentication-key | hash-key] [hash | hash2]
```
— no hello-authentication-key
— hello-authentication-type {password | message-digest}
— no hello-authentication-type
— level
  — hello-interval seconds
  — no hello-interval
  — hello-multiplier multiplier
  — no hello-multiplier
  — ipv6-unicast-metric metric
  — no ipv6-unicast-metric
  — [no] if-topology mt-id
— interface-type {broadcast | point-to-point}
— no interface-type
— ipv4-multicast-routing {native | mt}
— [no] ipv4-multicast-routing
— ipv6-multicast-routing {native | mt}
— [no] ipv6-multicast-routing
— [no] ipv4-routing
— [no] ipv6-routing {native | mt}
— [no] ldp-over-rsvp
— level {1 | 2}
  — authentication-key [authentication-key | hash-key] [hash | hash2]
  — no authentication-key
  — authentication-type {password | message-digest}
  — no authentication-type
  — auth-keychain keychain-name
  — no auth-keychain
  — [no] csnp-authentication
  — default-ipv4-multicast-metric metric
  — default-ipv6-multicast-metric metric
  — default-ipv6-unicast-metric ipv6 metric
  — no default-ipv6-unicast-metric
  — default-metric ipv4 metric
  — no default-metric
  — external-preference external-preference
  — no external-preference
  — [no] hello-authentication
  — [no] loopfree-alternate-exclude
  — preference preference
  — no preference
  — [no] psnp-authentication
  — [no] wide-metrics-only
— level-capability {level-1 | level-2 | level-1/2}
— link-group link-group-name
— no link-group
  — description string
  — no description
  — ipv4-multicast-metric-offset offset-value
  — no ipv4-multicast-metric-offset
  — ipv6-multicast-metric-offset offset-value
  — no ipv6-multicast-metric-offset
  — ipv4-unicast-metric-offset offset-value
  — no ipv4-unicast-metric-offset
  — ipv6-unicast-metric-offset offset-value
  — no ipv6-unicast-metric-offset
IS-IS

---

- no ipv6-unicast-metric-offset
- no member interface-name
- oper-members [0-8]
- no oper-members
- revert-members [0-8]
- no revert-members

- [no] loopfree-alternate
- loopfree-alternate-exclude prefix-policy prefix-policy [prefix-policy... up to 5]
- lsp-lifetime seconds
- no lsp-lifetime
- lsp-mtu-size size
- no lsp-mtu-size-size
- lsp-refresh-interval seconds
- no lsp-refresh-interval
- [no] lsp-wait lsp-wait [lsp-initial-wait [lsp-second-wait]]
- [no] mcast-import-ipv6
- [no] multi-topology
  - [no] ipv4-multicast
  - [no] ipv6-multicast
  - [no] ipv6-unicast
  - topology mt-id rtm rtm-id | rtm-name
  - no topology mt-id

- [no] multicast-import
- overload [timeout seconds]
- no overload
- overload-on-boot [timeout seconds]
- no overload-on-boot
- [no] psnp-authentication
- reference-bandwidth bandwidth-in-kbps
- reference-bandwidth [tbps Tera-bps] [gbps Giga-bps] [mbps Mega-bps] [kbps Kilo-bps]
- no reference-bandwidth
- [no] rsvp-shortcut
- [no] shutdown
- [no] spf-wait spf-wait [spf-initial-wait [spf-second-wait]]
- [no] strict-adjacency-check
- [no] suppress-default
- summary-address {ip-prefix/mask | ip-prefix [netmask]} level [tag tag]
- no summary-address {ip-prefix/mask | ip-prefix [netmask]}
- [no] traffic-engineering
- [no] unicast-import-disable
- [no] interface-type ip-int-name
  - [no] default-route-tag {ipv4 | ipv6} [include-bfd-tlv]
  - csnp-interval seconds
  - no csnp-interval
  - hello-authentication-key [authentication-key | hash-key] [hash | hash2]
  - no hello-authentication-key
  - hello-authentication-type [password | message-digest]
  - no hello-authentication-type
  - hello-auth-keychain keychain-name
  - no hello-auth-keychain
  - interface-type {broadcast | point-to-point}
  - no interface-type
  - no loopfree-alternate-exclude
— [no] metric
— level {1 | 2}
  — hello-authentication-key [authentication-key | hash-key] [hash | hash2]
  — no hello-authentication-key
  — hello-authentication-type [password | message-digest]
  — no hello-authentication-type
  — hello-auth-keychain keychain-name
  — no hello-auth-keychain
  — hello-interval seconds
  — no hello-interval
  — hello-multiplier multiplier
  — no hello-multiplier
  — if-topology mt-id
  — no if-topology mt-id
  — ipv6-unicast-metric metric
  — no ipv6-unicast-metric
  — [no] ldp-over-rsvp
  — metric metric
  — no metric
  — [no] passive
  — priority number
  — no priority
  — sd-offset offset-value
  — no sd-offset
  — sf-offset
  — no sf-offset
— level-capability {level-1 | level-2 | level-1/2}
— loopfree-alternate route-nh-template template-name
— no lfa-policy-map
— [no] loopfree-alternate
— [no] loopfree-alternate-exclude prefix-policy prefix-policy [prefix-policy... up to 5]
— lsp-pacing-interval milli-seconds
— no lsp-pacing-interval
— mesh-group [value | blocked]
— no mesh-group
— [no] passive
— retransmit-interval seconds
— no retransmit-interval
— [no] shutdown
— tag tag
— no tag

Show Commands

show
— router
  — isis [isis-instance]
  — adjacency [ip-address | ip-int-name | nbr-system-id] [detail]
  — capabilities [system-id | lsp-id ] [level level]
  — database [system-id | lsp-id ] [detail] [level level]
  — hostname
- **interface** [ip-int-name | ip-address] [detail]
- **Ifa-coverage**
- **neighbor**
- **routes** [ipv4-unicast | ipv6-unicast | ipv4-multicast | ipv6-multicast | mt mt-id-number] [ip-prefix[/prefix-length]] [alternative] [exclude-shortcut]
- **spf** [detail] [Ifa]
- **spf-log** [detail]
- **statistics**
- **status**
- **summary-address** [ip-address [/mask]]
- **topology** [ipv4-unicast | ipv6-unicast | ipv4-multicast | ipv6-multicast | mt mt-id-number] [Ifa] [detail]
Clear Commands

```
clear
 — router
 — isis [isis-instance]
 — adjacency [system-id]
 — database [system-id]
 — export
 — spf-log
 — statistics
```

Debug Commands

```
debug
 — router
 — isis [isis-instance]
 — [no] adjacency [ip-int-name | ip-address | nbr-system-id]
 — [no] espf
 — [no] graceful-restart
 — interface [ip-int-name | ip-address]
 — no interface
 — leak [ip-address]
 — no leak
 — [no] lsdb [level-number] [system-id | lsp-id]
 — [no] misc
 — packet [packet-type] [ip-int-name | ip-address] [detail]
 — rtm [ip-address]
 — no rtm
 — [no] spf [level-number] [system-id]
```
IS-IS Configuration Commands

Generic Commands

shutdown

Syntax: `[no] shutdown

Context: config>router>isis
        config>router>isis>interface ip-int-name
        config>router>isis>if>level level-number

Description: This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

The operational state of the entity is disabled as well as the operational state of any entities contained within.

Many objects must be shut down before they may be deleted.

The `no` form of this command administratively enables an entity.

Special Cases:

- **IS-IS Global** — In the `config>router>isis` context, the `shutdown` command disables the IS-IS protocol instance. By default, the protocol is enabled, `no shutdown`.

- **IS-IS Interface** — In the `config>router>isis>interface` context, the command disables the IS-IS interface. By default, the IS-IS interface is enabled, `no shutdown`.

- **IS-IS Interface and Level** — In the `config>router>isis>interface ip-int-name>level` context, the command disables the IS-IS interface for the level. By default, the IS-IS interface at the level is enabled, `no shutdown`.

Default: `no shutdown` — IS-IS entity is administratively enabled.
IS-IS Commands

**isis**

**Syntax**
```
[no] no isis [isis-instance]
```

**Context**
```
config>router
```

**Description**
This command creates the context to configure the Intermediate-System-to-Intermediate-System (IS-IS) protocol instance.

The IS-IS protocol instance is enabled with the `no shutdown` command in the `config>router>isis` context. Alternatively, the IS-IS protocol instance is disabled with the `shutdown` command in the `config>router>isis` context.

The `no` form of the command deletes the IS-IS protocol instance. Deleting the protocol instance removes all configuration parameters for this IS-IS instance.

**Parameters**

- **isis-instance** — Specifies the instance ID for an IS-IS instance.
  - **Values**: 1–31
  - **Default**: 0

**tag**

**Syntax**
```
tag tag
no tag
```

**Context**
```
config>router>isis>interface
```

**Description**
This command configures a route tag to the specified IP address of an interface.

**Parameters**

- **tag** — [1..4294967295]

**all-l1isis**

**Syntax**
```
all-l1isis ieee-address
no all-l1isis
```

**Context**
```
config>router>isis
```

**Description**
This command enables you to specify the MAC address to use for all L1 IS-IS routers. The MAC address should be a multicast address. You should shut/no shut the IS-IS instance to make the change operational.

**Default**
all-l1isis 01-80-C2-00-01-00
Parameters  

*ieee-address* — Specifies the destination MAC address for all L1 IS-IS neighbors on the link for this IS-IS instance.

**all-l2isis**

**Syntax**

```
all-l2isis ieee-address
no all-l2isis
```

**Context**

```
config>router>isis
```

**Description**

This command enables you to specify the MAC address to use for all L2 IS-IS routers. The MAC address should be a multicast address. You should shut/no shut the IS-IS instance to make the change operational.

**Default**

all-l2isis 01-80-C2-00-02-11

**Parameters**  

*ieee-address* — Specifies the destination MAC address for all L2 IS-IS neighbors on the link for this IS-IS instance.

**authentication-check**

**Syntax**

```
[no] authentication-check
```

**Context**

```
config>router>isis
```

**Description**

This command sets an authentication check to reject PDUs that do not match the type or key requirements. The default behavior when authentication is configured is to reject all IS-IS protocol PDUs that have a mismatch in either the authentication type or authentication key.

When no authentication-check is configured, authentication PDUs are generated and IS-IS PDUs are authenticated on receipt. However, mismatches cause an event to be generated and will not be rejected.

The no form of this command allows authentication mismatches to be accepted and generate a log event.

**Default**

authentication-check — Rejects authentication mismatches.

**authentication-key**

**Syntax**

```
authentication-key [authentication-key | hash-key] [hash | hash2]
no authentication-key
```

**Context**

```
config>router>isis
config>router>isis>level level-number
```

**Description**

This command sets the authentication key used to verify PDUs sent by neighboring routers on the interface. Neighboring routers use passwords to authenticate PDUs sent from an interface. For authentication to work, both the authentication *key* and the authentication *type* on a segment must match. The authentication-type statement must also be included.
To configure authentication on the global level, configure this command in the `config>router>isis` context. When this parameter is configured on the global level, all PDUs are authenticated including the hello PDU.

To override the global setting for a specific level, configure the `authentication-key` command in the `config>router>isis>level` context. When configured within the specific level, hello PDUs are not authenticated.

The `no` form of the command removes the authentication key.

**Default**

no `authentication-key` — No authentication key is configured.

**Parameters**

`authentication-key` — The authentication key. The key can be any combination of ASCII characters up to 255 characters in length (un-encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

`hash-key` — The hash key. The key can be any combination of ASCII characters up to 342 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

`hash` — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.

`hash2` — Specifies the key is entered in a more complex encrypted form. If the `hash2` parameter is not used, the less encrypted `hash` form is assumed.

`authentication-type`

**Syntax**

`authentication-type {password | message-digest}

do authentication`

**Context**

`config>router>isis
config>router>isis>level level-number`

**Description**

This command enables either simple password or message digest authentication or must go in either the global IS-IS or IS-IS level context.

Both the authentication key and the authentication type on a segment must match. The `authentication-key` statement must also be included.

Configure the authentication type on the global level in the `config>router>isis` context.

Configure or override the global setting by configuring the authentication type in the `config>router>isis>level` context.

The `no` form of the command disables authentication.

**Default**

no `authentication-type` — No authentication type is configured and authentication is disabled.

**Parameters**

`password` — Specifies that simple password (plain text) authentication is required.
message-digest — Specifies that MD5 authentication in accordance with RFC2104 is required.

auth-keychain

Syntax  auth-keychain name

Context  config>router>isis>
config>router>isis>level
config>service>vprn>isis>
config>service>vprn>isis>level

Description  This command configures an authentication keychain to use for the protocol interface. The keychain allows the rollover of authentication keys during the lifetime of a session.

Default  no auth-keychain

Parameters  name — Specifies the name of the keychain, up to 32 characters, to use for the specified protocol session or sessions.

hello-auth-keychain

Syntax  hello-auth-keychain name

Context  config>router>isis>
config>router>isis>level
config>service>vprn>isis>interface
config>service>vprn>isis>interface>level

Description  This command configures an authentication keychain to use for the protocol interface. The keychain allows the rollover of authentication keys during the lifetime of a session.

Default  no hello-auth-keychain

Parameters  name — Specifies the name of the keychain, up to 32 characters, to use for the specified protocol session or sessions.

default-route-tag

Syntax  default-route-tag tag
no default-route-tag

Context  config>router>isis

Description  This command configures the route tag for default route.
IS-IS Commands

Parameters

- **tag** — tag — Assigns a default tag

Values

Accepts decimal or hex formats:

- **ISIS:** [0x0..0xFFFFFFFF]H

Values

- 1 — 4294967295

### csnp-authentication

**Syntax**

```
[no] csnp-authentication
```

**Context**

```
config>router>isis
config>router>isis>level level-number
```

**Description**

This command enables authentication of individual ISIS packets of complete sequence number PDUs (CSNP) type.

The `no` form of the command suppresses authentication of CSNP packets.

### csnp-interval

**Syntax**

```
 csnp-interval seconds
 no csnp-interval
```

**Context**

```
config>router>isis>interface ip-int-name
```

**Description**

This command configures the time interval, in seconds, to send complete sequence number (CSN) PDUs from the interface. IS-IS must send CSN PDUs periodically.

The `no` form of the command reverts to the default value.

**Default**

- **csnp-interval 10** — CSN PDUs are sent every 10 seconds for LAN interfaces.
- **csnp-interval 5** — CSN PDUs are sent every 5 seconds for point-to-point interfaces.

**Parameters**

- **seconds** — The time interval, in seconds between successive CSN PDUs sent from this interface expressed as a decimal integer.

Values

- 1 — 65535

### link-group

**Syntax**

```
 link-group link-group-name
 no link-group
```

**Context**

```
config>router>isis
```

**Description**

This command specifies the ISIS link group associated with this particular level of the interface.

**Parameters**

- **link-group-name** — Specifies an ISIS link group on the system up to 32 characters in length.
description

**Syntax**

```
description string
no description
```

**Context**

```
config>router>isis>link-group
```

**Description**

This command adds a description string to the associated link-group. The string can be up to 256 characters long and can only contain printable characters. If the command is issued in the context of a link-group that already contains a description then the previous description string is replaced.

The no form of the command removes the description from the associated link-group.

**Parameters**

```
string — Character string to be associated with the associated link-group.
```

text

**member**

**Syntax**

```
[no] member interface-name
```

**Context**

```
config>router>isis>link-group
```

**Description**

This command adds or removes a links to the associated link-group. The interface name should already exist before it is added to a link-group.

The no form of the command removes the specified interface from the associated link-group.

**Parameters**

```
interface-name — Name of the interface to be added or removed from the associated link-group.
```

**oper-members**

**Syntax**

```
oper-members [0-8]
no oper-members
```

**Context**

```
config>router>isis>link-group
```

**Description**

This command sets the threshold for the minimum number of operational links for the associated link-group. If the number of operational links drops below this threshold, the configured offsets are applied. For example, oper-members=3. The metric of the member interfaces is increased when the number of interfaces is lower than 3.

The no form of the command reverts the oper-members limit to 1.

**Default**

```
oper-members 0
```
revert-members

Syntax revert-members [0-8]
no revert-members

Context config>router>isis>link-group

Description This command sets the threshold for the minimum number of operational links to return the associated link-group to its normal operating state and remove the associated offsets to the IS-IS metrics. If the number of operational links is equal to or greater than the configured revert-member threshold then the configured offsets are removed.

The no form of the command reverts the revert-members threshold back to the default which is equal to the oper-members threshold value.

Default revert-members oper-members

ipv4-unicast-metric-offset

Syntax ipv4-unicast-metric-offset offset-value
no ipv4-unicast-metric-offset

Context config>router>isis>link-group

Description This command sets the offset value for the IPv4 unicast address family. If the number of operational links drops below the oper-members threshold, the configured offset is applied to the interface metric.

The no form of the command reverts the offset value to 0.

Default no ipv4-unicast-metric-offset

Parameters offset-value — Specifies the amount the interface metric for the associated address family is to be increased if the number of operational members in the associated link-group drops below the oper-members threshold.

Values 0 — 6777215

ipv6-unicast-metric-offset

Syntax ipv6-unicast-metric-offset offset-value
no ipv6-unicast-metric-offset

Context config>router>isis>link-group

Description This command sets the offset value for the IPv6 unicast address family. If the number of operational links drops below the oper-members threshold, the configured offset is applied to the interface metric for the IPv6 topology.

The no form of the command reverts the offset value to 0.

Default no ipv6-unicast-metric-offset
Parameters  

offset-value — Specifies the amount the interface metric for the associated address family is to be increased if the number of operational members in the associated link-group drops below the oper-members threshold.

Values  

0 — 6777215

ipv4-multicast-metric-offset

Syntax  

ipv4-multicast-metric-offset offset-value
no ipv4-multicast-metric-offset

Context  

config>router>isis>link-group

Description  

This command sets the offset value for the IPv4 multicast address family. If the number of operational links drops below the oper-members threshold, the configured offset is applied to the interface metric for the IPv4 multicast topology.

The no form of the command reverts the offset value to 0.

Default  

no ipv4-multicast-metric-offset

Parameters  

offset-value — Specifies the amount the interface metric for the associated address family is to be increased if the number of operational members in the associated link-group drops below the oper-members threshold.

Values  

0 — 6777215

ipv6-multicast-metric-offset

Syntax  

ipv6-multicast-metric-offset offset-value
no ipv6-multicast-metric-offset

Context  

config>router>isis>link-group

Description  

This command sets the offset value for the IPv6 multicast address family. If the number of operational links drops below the oper-members threshold, the configured offset is applied to the interface metric for the IPv6 multicast topology.

The no form of the command reverts the offset value to 0.

Default  

no ipv6-multicast-metric-offset

Parameters  

offset-value — Specifies the amount the interface metric for the associated address family is to be increased if the number of operational members in the associated link-group drops below the oper-members threshold.

Values  

0 — 6777215
IS-IS Commands

default-metric

Syntax

```plaintext
default-metric ipv4 metric
no default-metric
```

Context

```plaintext
config>router>isis>level
```

Description

This command specifies the configurable default metric used for all IS-IS interfaces on this level. This value is not used if a metric is configured for an interface.

Default

10

ipv4 metric — Specifies the default metric for IPv4 unicast.

Values

1 — 16777215

default-ipv4-multicast-metric

Syntax

```plaintext
default-ipv4-multicast-metric metric
no default-ipv4-multicast-metric
```

Context

```plaintext
config>router>isis>level
```

Description

This command configures the default metric to be used for the IS-IS interface in the IPv4 multicast topology (MT3).

The `no` form of this command deletes the specified default metric and reverts to using the system default of 10.

Default

10

Parameters

metric — Specifies the default metric for interfaces in the IPv4 multicast topology (MT3)

Values

1 — 16777215

default-ipv6-multicast-metric

Syntax

```plaintext
default-ipv6-multicast-metric metric
no default-ipv6-multicast-metric
```

Context

```plaintext
config>router>isis>level
```

Description

This command configures the default metric to be used for the IS-IS interface in the IPv6 multicast topology (MT4).

The `no` form of this command deletes the specified default metric and reverts to using the system default of 10.

Default

10

Parameters

metric — Specifies the default metric for interfaces in the IPv4 multicast topology (MT4).
default-ipv6-unicast-metric

Syntax       default-ipv6-unicast-metric ipv6 metric
             no default-ipv6-unicast-metric

Context      config>router>isis>level

Description  This command specifies the default metric for IPv6 unicast.

Default      no default-ipv6-unicast-metric

Parameters   ipv6-metric — Specifies the default metric for IPv6 unicast.
             Values          1 — 16777215

disable-ldp-sync

Syntax       [no] disable-ldp-sync

Context      config>router>isis

Description  This command disables the IGP-LDP synchronization feature on all interfaces participating in the
              OSPF or IS-IS routing protocol. When this command is executed, IGP immediately advertises the
              actual value of the link cost for all interfaces which have the IGP-LDP synchronization enabled if
              the currently advertized cost is different. It will then disable IGP-LDP synchronization for all
              interfaces. This command does not delete the interface configuration. The no form of this
              command has to be entered to re-enable IGP-LDP synchronization for this routing protocol.

              The no form of this command restores the default settings and re-enables IGP-LDP
              synchronization on all interfaces participating in the OSPF or IS-IS routing protocol and for which
              the ldp-sync-timer is configured.

Default      no disable-ldp-sync

export

Syntax       [no] export policy-name [policy-name...up to 5 max]

Context      config>router>isis

Description  This command configures export routing policies that determine the routes exported from the routing table
              to IS-IS.

              If no export policy is defined, non IS-IS routes are not exported from the routing table manager to IS-IS.
If multiple policy names are specified, the policies are evaluated in the order they are specified. The first policy that matches is applied. If multiple export commands are issued, the last command entered overrides the previous command. A maximum of five policy names can be specified.

If an `aggregate` command is also configured in the `config>router` context, then the aggregation is applied before the export policy is applied.

Routing policies are created in the `config>router>policy-options` context.

The `no` form of the command removes the specified `policy-name` or all policies from the configuration if no `policy-name` is specified.

**Default**

*no export* — No export policy name is specified.

**Parameters**

`policy-name` — The export policy name. Up to five `policy-name` arguments can be specified.

**export-limit**

**Syntax**

`export-limit number [log percentage]`

`no export-limit`

**Context**

`config>router>isis`

**Description**

This command configures the maximum number of routes (prefixes) that can be exported into IS-IS from the route table.

The `no` form of the command removes the parameters from the configuration.

**Default**

no export-limit, the export limit for routes or prefixes is disabled.

**Parameters**

`number` — Specifies the maximum number of routes (prefixes) that can be exported into RIP from the route table.

**Values**

1 — 4294967295

`log percentage` — Specifies the percentage of the export-limit, at which a warning log message and SNMP notification would be sent.

**Values**

1 — 100

**external-preference**

**Syntax**

`external-preference preference`

`no external-preference`

**Context**

`config>router>isis>level level-number`

**Description**

This command configures the external route preference for the IS-IS level.

The `external-preference` command configures the preference level of either IS-IS level 1 or IS-IS level 2 external routes. By default, the preferences are as listed in the table below.

A route can be learned by the router by different protocols, in which case, the costs are not comparable. When this occurs, the preference decides the route to use.
Different protocols should not be configured with the same preference, if this occurs the tiebreaker is dependent on the default preference table. If multiple routes are learned with an identical preference using the same protocol, the lowest cost route is used. If multiple routes are learned with an identical preference using the same protocol and the costs (metrics) are equal, then the decision of the route to use is determined by the configuration of the **ecmp** in the **config>router** context.

**Default**

Default preferences are listed in the following table:

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Preference</th>
<th>Configurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct attached</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Static-route</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF internal routes</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>IS-IS Level 1 internal</td>
<td>15</td>
<td>Yes*</td>
</tr>
<tr>
<td>IS-IS Level 2 internal</td>
<td>18</td>
<td>Yes*</td>
</tr>
<tr>
<td>OSPF external</td>
<td>150</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS Level 1 external</td>
<td>160</td>
<td>Yes</td>
</tr>
<tr>
<td>IS-IS Level 2 external</td>
<td>165</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS</td>
<td>167</td>
<td>No</td>
</tr>
<tr>
<td>BGP</td>
<td>170</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Internal preferences are changed using the **preference** command in the **config>router>isis>level level-number** context

**Parameters**

- **preference** — The preference for external routes at this level as expressed.

**Values**

1 — 255

---

**graceful-restart**

**Syntax**

[no] graceful-restart

**Context**

config>router>isis
config>service>vprn>isis

**Description**

This command enables graceful-restart helper support for ISIS. The router will act as a helper to neighbors who are graceful-restart-capable and are restarting.

When the control plane of a graceful-restart-capable router fails, the neighboring routers (graceful-restart helpers) temporarily preserve adjacency information so packets continue to be forwarded through the failed graceful-restart router using the last known routes. If the control plane of the graceful-restart router comes back up within the timer limits, then the routing protocols re-converge to minimize service interruption.
The no form of the command disables graceful restart and removes all graceful restart configurations in the ISIS instance.

**Default** disabled

### helper-disable

**Syntax** 

[no] helper-disable

**Context**  

config>router>isis>graceful-restart  
config>service>vprn>isis>graceful-restart

**Description**  

This command disables the helper support for graceful restart.  
When graceful-restart is enabled, the router can be a helper (meaning that the router is helping a neighbor to restart) or be a restarting router or both. The router supports only helper mode. This facilitates the graceful restart of neighbors but will not act as a restarting router (meaning that the router will not help the neighbors to restart).

The no helper-disable command enables helper support and is the default when graceful-restart is enabled.

**Default** disabled

### hello-authentication

**Syntax** 

[no] hello-authentication

**Context**  

config>router>isis  
config>router>isis>level level-number  
config>service>vprn>isis  
config>service>vprn>isis>interface  
config>service>vprn>isis>level

**Description**  

This command enables authentication of individual ISIS packets of HELLO type.  
The no form of the command suppresses authentication of HELLO packets.

### hello-padding

**Syntax** 

[no] hello-padding {adaptive | loose | strict}

**Context**  

config>router>isis  
config>service>vprn>isis

**Description**  

This command enables the padding of IS-IS hello messages, such that the message will be padded to a length of either 1492 or up to the maximum MTU value.  
The no form of the command disables IS-IS hello padding.

**Default** no hello-padding — hello padding is not configured
Parameters

adaptive — Specifies the adaptive padding option; this option is able to detect MTU asymmetry from one side of the connection but uses more overhead than loose padding.

1. point-to-point interface—Hello PDUs are padded until the sender declares an adjacency on the link to be in state up. If the implementation supports RFC 3373/5303, "Three-Way Handshake for IS-IS Point-to-Point Adjacencies" then this is when the three-way state is Up. If the implementation uses the "classic" algorithm described in ISO 10589, this is when adjacency state is Up. If the neighbor does not support the adjacency state TLV, then padding continues.

2. broadcast interface—Padding starts until at least one adjacency is up on the interface.

loose — Specifies the loose padding option; the loose padding may not be able to detect certain situations such as asymmetrical MTUs between the routing devices.

1. point-to-point interface—The hello packet is padded from the initial detection of a new neighbor until the adjacency transitions to the INIT state.

2. broadcast interface—Padding starts until there is at least one adjacency (bcast only has up/down) is up on the interface.

strict — Specifies the strict padding option.

1. point-to-point interface—Padding is done for all adjacency states, and is continuous. Strict padding has the most overhead but detects MTU issues on both sides of a link.

2. broadcast interface—Padding is done for all adjacency states, and is continuous. Strict padding has the most overhead but detects MTU issues on both sides of a link.

ignore-lsp-errors

Syntax [no] ignore-lsp-errors

Context config>router>isis
config>service>vprn>isis

Description This command specifies that ISIS will ignore LSP packets with errors. When enabled, IS-IS LSP errors will be ignored and the associated record will not be purged.

The no form of the command specifies that ISIS will not ignore LSP errors.

iid-tlv-enable

Syntax [no] iid-tlv-enable

Context config>router>isis

Description This command specifies whether Instance Identifier (IID) TLV has been enabled or disabled for this ISIS instance.

When enabled, each I-IS instance marks its packets with the IID TLV containing its unique 16-bit IID for the routing domain. You should shut/no shut the isis instance to make the change operational.

Default no iid-tlv-enable
interface

**Syntax**  
\[no\] interface ip-int-name

**Context**  
config>router>isis

**Description**  
This command creates the context to configure an IS-IS interface.

When an area is defined, the interfaces belong to that area. Interfaces cannot belong to separate areas.

When the interface is a POS channel, the OSINCP is enabled when the interface is created and removed when the interface is deleted.

The **no** form of the command removes IS-IS from the interface.

The **shutdown** command in the config>router>isis>interface context administratively disables IS-IS on the interface without affecting the IS-IS configuration.

**Default**  
no interface — No IS-IS interfaces are defined.

**Parameters**  
*ip-int-name* — Identify the IP interface name created in the config>router>interface context. The IP interface name must already exist.

bfd-enable

**Syntax**  
\[no\] bfd-enable {ipv4 | ipv6} [include-bfd-tlv]

**Context**  
config>router>isis>interface

**Description**  
This command enables the use of bi-directional forwarding (BFD) to control IPv4 adjacencies. By enabling BFD on an IPv4 or IPv6 protocol interface, the state of the protocol interface is tied to the state of the BFD session between the local node and the remote node. The parameters used for the BFD are set by the BFD command under the IP interface. This command must be given separately to enable/disable BFD for both IPv4 and IPv6.

The **no** form of this command removes BFD from the associated adjacency.

**Default**  
no bfd-enable ipv4

**Parameters**  
*include-bfd-tlv* — Enables support for the IS-IS BFD TLV options, specified in RFC 6213, which specifies that a BFD session must be established before an IS-IS adjacency can transition to the established state. This option should be enabled on all IS-IS neighbors on a shared interface.
hello-authentication-key

**Syntax**

```
hello-authentication-key [authentication-key | hash-key] [hash | hash2]
no hello-authentication-key
```

**Context**

- `config>router>isis>interface ip-int-name`
- `config>router>isis>if>level level-number`
- `config>service>vprn>isis>interface`
- `config>service>vprn>isis>level`

**Description**

This command configures the authentication key (password) for hello PDUs. Neighboring routers use the password to verify the authenticity of hello PDUs sent from this interface. Both the hello authentication key and the hello authentication type on a segment must match. The `hello-authentication-type` must be specified.

To configure the hello authentication key in the interface context use the `hello-authentication-key` in the `config>router>isis>interface` context.

To configure or override the hello authentication key for a specific level, configure the `hello-authentication-key` in the `config>router>isis>interface>level` context.

If both IS-IS and hello-authentication are configured, hello messages are validated using hello authentication. If only IS-IS authentication is configured, it will be used to authenticate all IS-IS (including hello) protocol PDUs.

When the hello authentication key is configured in the `config>router>isis>interface` context, it applies to all levels configured for the interface.

The `no` form of the command removes the authentication-key from the configuration.

**Default**

`no hello-authentication-key` — No hello authentication key is configured.

**Parameters**

- `authentication-key` — The hello authentication key (password). The key can be any combination of ASCII characters up to 254 characters in length (un-encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

- `hash-key` — The hash key. The key can be any combination of ASCII characters up to 342 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

  This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

- `hash` — Specifies the key is entered in an encrypted form. If the `hash` parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the `hash` parameter specified.

- `hash2` — Specifies the key is entered in a more complex encrypted form. If the `hash2` parameter is not used, the less encrypted `hash` form is assumed.
hello-authentication-type

**Syntax**

```plaintext
hello-authentication-type {password | message-digest}
no hello-authentication-type
```

**Context**

```plaintext
config>router>isis>interface ip-int-name
config>router>isis>if>level level-number
config>service>vprn>isis>interface
config>service>vprn>isis>level
```

**Description**

This command enables hello authentication at either the interface or level context. Both the hello authentication key and the hello authentication type on a segment must match. The hello `authentication-key` statement must also be included.

To configure the hello authentication type at the interface context, use `hello-authentication-type` in the `config>router>isis>interface` context.

To configure or override the hello authentication setting for a given level, configure the `hello-authentication-type` in the `config>router>isis>interface>level` context.

The `no` form of the command disables hello authentication.

**Default**

`no hello-authentication-type` — Hello authentication is disabled.

**Parameters**

- `password` — Specifies simple password (plain text) authentication is required.
- `message-digest` — Specifies MD5 authentication in accordance with RFC2104 (HMAC: Keyed-Hashing for Message Authentication) is required.

hello-interval

**Syntax**

```plaintext
hello-interval seconds
no hello-interval
```

**Context**

```plaintext
config>router>isis>if>level level-number
```

**Description**

This command configures the interval in seconds between hello messages issued on this interface at this level.

The `no` form of the command to reverts to the default value.

**Default**

3 — Hello interval default for the designated intersystem.

9 — Hello interval default for non-designated intersystems.

**Parameters**

- `seconds` — The hello interval in seconds expressed as a decimal integer.

  **Values**

  ```plaintext
 1 — 20000
  ```
hello-multiplier

Syntax  hello-multiplier  multiplier
        no  hello-multiplier

Context  config>router>isis>if>level  level-number

Description  This command configures the number of missing hello PDUs from a neighbor after the router declares the adjacency down.

The  no  form of the command reverts to the default value.

Default  3 — The router can miss up to 3 hello messages before declaring the adjacency down.

Parameters  multiplier — The multiplier for the hello interval expressed as a decimal integer.

Values  2 — 100

ipv6-unicast-metric

Syntax  ipv6-unicast-metric  metric
        no  ipv6-unicast-metric

Context  config>router>isis>if>level

Description  This command configures IS-IS interface metric for IPv6 unicast.

The  no  form of this command removes the metric from the configuration.

Parameters  metric — Specifies the IS-IS interface metric for IPv6 unicast.

Values  1 — 16777215

if-topology

Syntax  if-topology  mt-id
        no  if-topology  mt-id

Context  config>router>isis>interface>level

Description  This command links the associated interface with the specified IS-IS topology.

By default all IS-IS interfaces should be associated the respective unicast topology. To exclude an interface from the respective unicast topology use the command no if-topology <0|2>.

The  no  form of this command deletes the specified IS-IS topology.

Default  No default

Parameters  mt-id — Specify the topology to be created.

Values  3 or 4
interface-type

Syntax
```
interface-type {broadcast | point-to-point}
no interface-type
```

Context
```
config>router>isis>interface ip-int-name
```

Description
This command configures the IS-IS interface type as either broadcast or point-to-point.

Use this command to set the interface type of an Ethernet link to point-to-point to avoid having to carry the designated IS-IS overhead if the link is used as a point-to-point.

If the interface type is not known at the time the interface is added to IS-IS and subsequently the IP interface is bound (or moved) to a different interface type, then this command must be entered manually.

The no form of the command reverts to the default value.

Special Cases
- **SONET** — Interfaces on SONET channels default to the point-to-point type.
- **Ethernet or Unknown** — Physical interfaces that are Ethernet or unknown default to the broadcast type.

Default
```
point-to-point — For IP interfaces on SONET channels.
broadcast — For IP interfaces on Ethernet or unknown type physical interfaces.
```

Parameters
```
broadcast — Configures the interface to maintain this link as a broadcast network.
point-to-point — Configures the interface to maintain this link as a point-to-point link.
```

ipv4-multicast-routing

Syntax
```
ipv4-multicast-routing {native | mt}
[no] ipv4-multicast-routing
```

Context
```
config>router>isis
```

Description
The multicast RTM is used for Reverse Path Forwarding checks. This command controls which IS-IS topology is used to populate the IPv4 multicast RTM.

The no ipv4-multicast-routing form of the command results in none of the IS-IS routes being populated in the IPv4 multicast RTM and would be used if multicast is configured to use the unicast RTM for the RPF check.

Default
```
ipv4-multicast-routing native
```

Parameters
```
native — Causes IPv4 routes from the MT0 topology to be added to the multicast RTM for RPF checks.
mt — Causes IPv4 routes from the MT3 topology to be added to the multicast RTM for RPF checks.
```
ipv6-multicast-routing

Syntax  ipv6-multicast-routing {native | mt}  
[no] ipv6-multicast-routing  
Context  config>router>isis  
Description  The multicast RTM is used for Reverse Path Forwarding checks. This command controls which IS-IS topology is used to populate the IPv6 multicast RTM.

The no ipv6-multicast-routing form of the command results in none of the IS-IS routes being populated in the IPv4 multicast RTM and would be used if multicast is configured to use the unicast RTM for the RPF check.

Default  ipv6-multicast-routing native

Parameters  

native — Causes IPv6 routes from the MT0 topology to be added to the multicast RTM for RPF checks.

mt — Causes IPv6 routes from the MT3 topology to be added to the multicast RTM for RPF checks.

ipv4-routing

Syntax  [no] ipv4-routing  
Context  config>router>isis  
Description  This command specifies whether this IS-IS instance supports IPv4.

The no form of the command disables IPv4 on the IS-IS instance.

Default  ipv4-routing

ipv6-routing

Syntax  [no] ipv6-routing {native | mt}  
Context  config>router>isis  
Description  This command enables IPv6 routing.

The no form of the command disables support for IS-IS IPv6 TLVs for IPv6 routing.

Default  disabled

Parameters  

native — Enables IS-IS IPv6 TLVs for IPv6 routing and enables support for native IPv6 TLVs.

mt — Enables IS-IS multi-topology TLVs for IPv6 routing. When this parameter is specified, the support for native IPv6 TLVs is disabled.
ldp-over-rsvp

Syntax

[no] ldp-over-rsvp

Context

config>router>isis

Description

This command allows LDP over RSVP processing in IS-IS. The no form of the command disables LDP over RSVP processing.

Default

no ldp-over-rsvp

level

Syntax

level {1 | 2}

Context

config>router>isis
config>router>isis>interface ip-int-name

Description

This command creates the context to configure IS-IS Level 1 or Level 2 area attributes.

A router can be configured as a Level 1, Level 2, or Level 1-2 system. A Level 1 adjacency can be established if there is at least one area address shared by this router and a neighbor. A Level 2 adjacency cannot be established over this interface.

Level 1/2 adjacency is created if the neighbor is also configured as Level 1/2 router and has at least one area address in common. A Level 2 adjacency is established if there are no common area IDs.

A Level 2 adjacency is established if another router is configured as Level 2 or a Level 1/2 router with interfaces configured as Level 1/2 or Level 2. Level 1 adjacencies will not be established over this interface.

To reset global and/or interface level parameters to the default, the following commands must be entered independently:

level> no hello-authentication-key
level> no hello-authentication-type
level> no hello-interval
level> no hello-multiplier
level> no metric
level> no passive
level> no priority

Special Cases

Global IS-IS Level — The config>router>isis context configures default global parameters for both Level 1 and Level 2 interfaces.

IS-IS Interface Level — The config>router>isis>interface context configures IS-IS operational characteristics of the interface at Level 1 and/or Level 2. A logical interface can be configured on one Level 1 and one Level 2. In this case, each level can be configured independently and parameters must be removed independently.

By default an interface operates in both Level 1 and Level 2 modes.

Default

level 1 or level 2

Parameters

1 — Specifies the ISIS operational characteristics of the interface at level 1.
2 — Specifies the ISIS operational characteristics of the interface at level 2.

**level-capability**

**Syntax**
```
level-capability {level-1 | level-2 | level-1/2}
no level-capability
```

**Context**
```
config>router>isis
config>router>isis>interface ip-int-name
```

**Description**
This command configures the routing level for an instance of the IS-IS routing process.

An IS-IS router and an IS-IS interface can operate at Level 1, Level 2 or both Level 1 and 2.

Table 8 displays configuration combinations and the potential adjacencies that can be formed.

**Table 8: Potential Adjacency**

<table>
<thead>
<tr>
<th>Global Level</th>
<th>Interface Level</th>
<th>Potential Adjacency</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1/2</td>
<td>L 1/2</td>
<td>Level 1 and/or Level 2</td>
</tr>
<tr>
<td>L 1/2</td>
<td>L 1</td>
<td>Level 1 only</td>
</tr>
<tr>
<td>L 1/2</td>
<td>L 2</td>
<td>Level 2 only</td>
</tr>
<tr>
<td>L 2</td>
<td>L 1/2</td>
<td>Level 2 only</td>
</tr>
<tr>
<td>L 2</td>
<td>L 2</td>
<td>Level 2 only</td>
</tr>
<tr>
<td>L 2</td>
<td>L 1</td>
<td>none</td>
</tr>
<tr>
<td>L 1</td>
<td>L 1/2</td>
<td>Level 1 only</td>
</tr>
<tr>
<td>L 1</td>
<td>L 2</td>
<td>none</td>
</tr>
<tr>
<td>L 1</td>
<td>L 1</td>
<td>Level 1 only</td>
</tr>
</tbody>
</table>

The **no** form of the command removes the level capability from the configuration.

**Special Cases**

- **IS-IS Router** — In the `config>router>isis` context, changing the `level-capability` performs a restart on the IS-IS protocol instance.
- **IS-IS Interface** — In the `config>router>isis>interface` context, changing the `level-capability` performs a restart of IS-IS on the interface.

**Default**
level-1/2

**Parameters**
- **level-1** — Specifies the router/interface can operate at Level 1 only.
- **level-2** — Specifies the router/interface can operate at Level 2 only.
- **level-1/2** — Specifies the router/interface can operate at both Level 1 and Level 2.
loopfree-alternate

Syntax   [no] loopfree-alternate

Context   config>router>isis

Description   This command enables Loop-Free Alternate (LFA) computation by SPF under the IS-IS routing protocol level or under the OSPF routing protocol instance level.

When this command is enabled, it instructs the IGP SPF to attempt to pre-compute both a primary next-hop and an LFA next-hop for every learned prefix. When found, the LFA next-hop is populated into the routing table along with the primary next-hop for the prefix.

The no form of this command disables the LFA computation by IGP SPF.

Default   no loopfree-alternate

loopfree-alternate-exclude

Syntax   loopfree-alternate-exclude prefix-policy prefix-policy [prefix-policy... up to 5]

no loopfree-alternate-exclude

Context   config>router>isis

Description   This command excludes from LFA SPF calculation prefixes that match a prefix entry or a tag entry in a prefix policy.

The implementation already allows the user to exclude an interface in IS-IS or OSPF, an OSPF area, or an IS-IS level from the LFA SPF.

If a prefix is excluded from LFA, then it will not be included in LFA calculation regardless of its priority. The prefix tag will, however, be used in the main SPF. Note that prefix tags are defined for the IS-IS protocol but not for the OSPF protocol.

The default action of the loopfree-alternate-exclude command, when not explicitly specified by the user in the prefix policy, is a “reject”. Thus, regardless if the user did or did not explicitly add the statement “default-action reject” to the prefix policy, a prefix that did not match any entry in the policy will be accepted into LFA SPF.

The no form deletes the exclude prefix policy.

Parameters   prefix-policy prefix-policy — Specifies the name of the prefix policy, up to 32 characters. The specified name must have been already defined.

lfa-policy-map

Syntax   lfa-policy-map route-nh-template template-name

no lfa-policy-map

Context   config>router>isis>interface

Description   This command applies a route next-hop policy template to an OSPF or IS-IS interface.
When a route next-hop policy template is applied to an interface in IS-IS, it is applied in both level 1 and level 2. When a route next-hop policy template is applied to an interface in OSPF, it is applied in all areas. However, the command in an OSPF interface context can only be executed under the area in which the specified interface is primary and then applied in that area and in all other areas where the interface is secondary. If the user attempts to apply it to an area where the interface is secondary, the command will fail.

If the user excluded the interface from LFA using the command `loopfree-alternate-exclude`, the LFA policy, if applied to the interface, has no effect.

Finally, if the user applied a route next-hop policy template to a loopback interface or to the system interface, the command will not be rejected, but it will result in no action being taken.

The `no` form deletes the mapping of a route next-hop policy template to an OSPF or IS-IS interface.

**Parameters**

`template-name` — Specifies the name of the template, up to 32 characters.

### loopfree-alternate-exclude

**Syntax**

```plaintext
[no] loopfree-alternate
```

**Context**

```plaintext
configure>router>isis>level
configure>router>isis>interface
```

**Description**

This command instructs IGP to not include a specific interface or all interfaces participating in a specific IS-IS level or OSPF area in the SPF LFA computation. This provides a way of reducing the LFA SPF calculation where it is not needed.

When an interface is excluded from the LFA SPF in IS-IS, it is excluded in both level 1 and level 2. When it is excluded from the LFA SPF in OSPF, it is excluded in all areas. However, the above OSPF command can only be executed under the area in which the specified interface is primary and once enabled, the interface is excluded in that area and in all other areas where the interface is secondary. If the user attempts to apply it to an area where the interface is secondary, the command will fail.

The `no` form of this command re-instates the default value for this command.

**Default**

`no loopfree-alternate-exclude`

### lsp-pacing-interval

**Syntax**

```plaintext
lsp-pacing-interval milliseconds
no lsp-pacing-interval
```

**Context**

```plaintext
config>router>isis>interface
```

**Description**

This command configures the interval between LSP PDUs sent from this interface.

To avoid bombarding adjacent neighbors with excessive data, pace the Link State Protocol Data Units (LSP’s). If a value of zero is configured, no LSP’s are sent from the interface.

The `no` form of the command reverts to the default value.

**Default**

`100` — LSPs are sent in 100 millisecond intervals.
Parameters

milliseconds — The interval in milliseconds that IS-IS LSP’s can be sent from the interface expressed as a decimal integer.

Values

0 — 65535

Lsp-lifetime

Syntax

lsp-lifetime seconds
no lsp-lifetime

Context

config>router>isis

Description

This command sets the time, in seconds, the router wants the LSPs it originates to be considered valid by other routers in the domain.

Each LSP received is maintained in an LSP database until the lsp-lifetime expires unless the originating router refreshes the LSP. By default, each router refreshes its LSP’s every 20 minutes (1200 seconds) so other routers will not age out the LSP.

The LSP refresh timer is derived from this formula: lsp-lifetime/2

The no form of the command reverts to the default value.

Default

1200 — LSPs originated by the router should be valid for 1200 seconds (20 minutes).

Parameters

seconds — The time, in seconds, that the router wants the LSPs it originates to be considered valid by other routers in the domain.

Values

350 — 65535

Lsp-mtu-size

Syntax

lsp-mtu-size size
no lsp-mtu-size

Context

config>router>isis

Description

This command configures the LSP MTU size. If the size value is changed from the default using CLI or SNMP, then ISIS must be restarted in order for the change to take effect. This can be done by performing a shutdown command and then a no shutdown command in the config>router>isis context. Note: Using the exec command to execute a configuration file to change the LSP MTU-size from its default value will automatically bounce IS-IS for the change to take effect.

The no form of the command reverts to the default value.

Default

1492

Parameters

size — Specifies the LSP MTU size.

Values

490 — 9190
**IS-IS**

**lsp-refresh-interval**

**Syntax**

```
lsp-refresh-interval seconds
no lsp-refresh-interval
```

**Context**

`config>router>isis`

**Description**

This command configures the IS-IS LSP refresh timer interval. When configuring the LSP refresh interval, the value that is specified for `lsp-lifetime` must also be considered. The LSP refresh interval cannot be greater than 90% of the LSP lifetime.

The no form of the command reverts to the default (600 seconds), unless this value is greater than 90% of the LSP lifetime. For example, if the LSP lifetime is 400, then the no lsp-refresh-interval command will be rejected.

**Default**

600 seconds

**Parameters**

`seconds` — Specifies the refresh interval.

**Values**

150 — 65535

**lsp-wait**

**Syntax**

```
lsp-wait [lsp-initial-wait [lsp-second-wait]]
```

**Context**

`config>router>isis`

**Description**

This command is used to customize the throttling of IS-IS LSP-generation. Timers that determine when to generate the first, second and subsequent LSPs can be controlled with this command. Subsequent LSPs are generated at increasing intervals of the second `lsp-wait` timer until a maximum value is reached.

**Parameters**

`lsp-max-wait` — Specifies the maximum interval in seconds between two consecutive occurrences of an LSP being generated.

**Values**

1 — 120

**Default**

5

`lsp-initial-wait` — Specifies the initial LSP generation delay in seconds.

**Values**

0 — 100

**Default**

0

`lsp-second-wait` — Specifies the hold time in seconds between the first and second LSP generation.

**Values**

1 — 100

**Default**

1
**IS-IS Commands**

### ipv4-multicast

**Syntax**

```
[no] ipv4-multicast
```

**Context**

```
config>router>is-is>multi-topology
```

**Description**

This command enables support for the IPv4 topology (MT3) within the associate IS-IS instance. The `no` form of this command disables support for the IPv4 topology (MT3) within the associated IS-IS instance.

**Default**

`no ipv4-multicast`

### ipv6-multicast

**Syntax**

```
[no] ipv6-multicast
```

**Context**

```
config>router>is-is>multi-topology
```

**Description**

This command enables support for the IPv6 topology (MT4) within the associate IS-IS instance. The `no` form of this command disables support for the IPv6 topology (MT4) within the associated IS-IS instance.

**Default**

`no ipv6-multicast`

### mcast-import-ipv6

**Syntax**

```
[no] mcast-import-ipv6
```

**Context**

```
configure>router>isis
```

**Description**

This command administratively enables/disables submission of routes into the IPv6 multicast RTM by IS-IS.

### multi-topology

**Syntax**

```
[no] multi-topology
```

**Context**

```
config>router>isis
```

**Description**

This command enables IS-IS multi-topology support.

**Default**

`disabled`
topology

Syntax  

    topology  mt-id  rtm  rtm-id  |  rtm-name
    no topology  mt-id

Context  

    config>router>is-is>multi-topology

Description  

This command creates a new topology within the associate IS-IS instance. In addition, it associates the IS-IS topology with the specified RTM instance. Routes generated from the topology SPF calculation are in turn added to this associate RTM instance.

The no form of this command deletes the specified IS-IS topology.

Default  

    No default

Parameters  

    mt-id — Specify the topology to be created (Note: in Release 11.0 this parameters is limited to 3 or 4.

    rtm-id — RTM Instance ID that is to be associated with the new IS-IS topology.

    Values

    integer: 3 — 32

    rtm-name — string name given to the RTM instance.

ipv6-unicast

Syntax  

    [no]  ipv6-unicast

Context  

    config>router>isis>multi-topology

Description  

This command enables multi-topology TLVs.

The no form of the command disables multi-topology TLVs.

multicast-import

Syntax  

    [no]  multicast-import

Context  

    config>router>isis

Description  

This command enables the submission of routes into the multicast Route Table Manager (RTM) by IS-IS.

The no form of the command disables the submission of routes into the multicast RTM.

Default  

    no multicast-import
mesh-group

Syntax

```
mesh-group {value | blocked}
no mesh-group
```

Context

```
config>router>isis>interface ip-int-name
```

Description

This command assigns an interface to a mesh group. Mesh groups limit the amount of flooding that occurs when a new or changed LSP is advertised throughout an area.

All routers in a mesh group should be fully meshed. When LSPs need to be flooded, only a single copy is received rather than a copy per neighbor.

To create a mesh group, configure the same mesh group value for each interface that is part of the mesh group. All routers must have the same mesh group value configured for all interfaces that are part of the mesh group.

To prevent an interface from flooding LSPs, the optional `blocked` parameter can be specified. Configure mesh groups carefully. It is easy to created isolated islands that do not receive updates as (other) links fail.

The `no` form of the command removes the interface from the mesh group.

Default

```
no mesh-group — The interface does not belong to a mesh group.
```

Parameters

- `value` — The unique decimal integer value distinguishes this mesh group from other mesh groups on this or any other router that is part of this mesh group.

  **Values**

  1 — 2000000000

- `blocked` — Prevents an interface from flooding LSPs.

ipv6-unicast-disable

Syntax

```
[no] ipv6-unicast-disable
```

Context

```
config>router>isis>if
```

Description

This command disables IS-IS IPv6 unicast routing for the interface.

By default IPv6 unicast on all interfaces is enabled. However, IPv6 unicast routing on IS-IS is in effect when the `config>router>isis>ipv6-routing mt` command is configured.

The `no` form of the command enables IS-IS IPv6 unicast routing for the interface.

metric

Syntax

```
metric metric
no metric
```

Context

```
config>router>isis>if>level level-number
```

Description

This command configures the metric used for the level on the interface.
In order to calculate the lowest cost to reach a given destination, each configured level on each interface must have a cost. The costs for each level on an interface may be different. If the metric is not configured, the default of 10 is used unless reference bandwidth is configured. The no form of the command reverts to the default value.

**Default** 10 — A metric of 10 for the level on the interface is used.

**Parameters**
- **metric** — The metric assigned for this level on this interface.
  - **Values** 1 — 16777215

---

**advertise-passive-only**

**Syntax** [no] advertise-passive-only

**Context** config>router>isis

**Description** This command enables and disables IS-IS to advertise only prefixes that belong to passive interfaces.

---

**area-id**

**Syntax** [no] area-id area-address

**Context** config>router>isis

**Description** This command was previously named the net network-entity-title command. The area-id command allows you to configure the area ID portion of NSAP addresses which identifies a point of connection to the network, such as a router interface, and is called a Network Service Access Point (NSAP). Addresses in the IS-IS protocol are based on the ISO NSAP addresses and Network Entity Titles (NETs), not IP addresses. A maximum of 3 area addresses can be configured.

NSAP addresses are divided into three parts. Only the area ID portion is configurable.

- **Area ID** — A variable length field between 1 and 13 bytes long. This includes the Authority and Format Identifier (AFI) as the most significant byte and the area ID.
- **System ID** — A six-byte system identification. This value is not configurable. The system ID is derived from the system or router ID.
- **Selector ID** — A one-byte selector identification that must contain zeros when configuring a NET. This value is not configurable. The selector ID is always 00.

The NET is constructed like an NSAP but the selector byte contains a 00 value. NET addresses are exchanged in hello and LSP PDUs. All net addresses configured on the node are advertised to its neighbors. For Level 1 interfaces, neighbors can have different area IDs, but, they must have at least one area ID (AFI + area) in common. Sharing a common area ID, they become neighbors and area merging between the potentially different areas can occur.

For Level 2 (only) interfaces, neighbors can have different area IDs. However, if they have no area IDs in common, they become only Level 2 neighbors and Level 2 LSPs are exchanged.
For Level 1 and Level 2 interfaces, neighbors can have different area IDs. If they have at least one area ID (AFI + area) in common, they become neighbors. In addition to exchanging Level 2 LSPs, area merging between potentially different areas can occur.

If multiple `area-id` commands are entered, the system ID of all subsequent entries must match the first area address.

The `no` form of the command removes the area address.

**Default** none — No area address is assigned.

**Parameters**

area-address — The 1 — 13-byte address. Of the total 20 bytes comprising the NET, only the first 13 bytes can be manually configured. As few as one byte can be entered or, at most, 13 bytes. If less than 13 bytes are entered, the rest is padded with zeros.

---

**overload**

**Syntax** overload [timeout seconds]

no overload

**Context** config>router>isis

**Description** This command administratively sets the IS-IS router to operate in the overload state for a specific time period, in seconds, or indefinitely.

During normal operation, the router may be forced to enter an overload state due to a lack of resources. When in the overload state, the router is only used if the destination is reachable by the router and will not used for other transit traffic.

If a time period is specified, the overload state persists for the configured length of time. If no time is specified, the overload state operation is maintained indefinitely.

The `overload` command can be useful in circumstances where the router is overloaded or used prior to executing a `shutdown` command to divert traffic around the router.

The `no` form of the command causes the router to exit the overload state.

**Default** no overload

**Parameters** seconds — The time, in seconds, that this router must operate in overload state.

**Default** infinity (overload state maintained indefinitely)

**Values** 60 — 1800
overload-on-boot

**Syntax**

overload-on-boot [timeout seconds]

no overload-on-boot

**Context**

config>router>isis

**Description**

When the router is in an overload state, the router is used only if there is no other router to reach the destination. This command configures the IGP upon bootup in the overload state until one of the following events occur:

1. The timeout timer expires.
2. A manual override of the current overload state is entered with the config>router>isis>no overload command.

The no overload command does not affect the overload-on-boot function.

If no timeout is specified, IS-IS will go into overload indefinitely after a reboot. After the reboot, the IS-IS status will display a permanent overload state:

```
L1 LSDB Overload : Manual on boot (Indefinitely in overload)
L2 LSDB Overload : Manual on boot (Indefinitely in overload)
```

This state can be cleared with the config>router>isis>no overload command.

When specifying a timeout value, IS-IS will go into overload for the configured timeout after a reboot. After the reboot, the IS-IS status will display the remaining time the system stays in overload:

```
L1 LSDB Overload : Manual on boot (Overload Time Left : 17)
L2 LSDB Overload : Manual on boot (Overload Time Left : 17)
```

The overload state can be cleared before the timeout expires with the config>router>isis>no overload command.

The no form of the command removes the overload-on-boot functionality from the configuration.

**Default**

no overload-on-boot

Use show router ospf status and/or show router isis status commands to display the administrative and operational state as well as all timers.

**Parameters**

timeout seconds — Configure the timeout timer for overload-on-boot in seconds.

**Values**

60 — 1800
IS-IS Commands

passive

**Syntax**

```plaintext
[no] passive
```

**Context**

```plaintext
config>router>isis>if
config>router>isis>if>level
```

**Description**

This command adds the passive attribute which causes the interface to be advertised as an IS-IS interface without running the IS-IS protocol. Normally, only interface addresses that are configured for IS-IS are advertised as IS-IS interfaces at the level that they are configured.

When the passive mode is enabled, the interface or the interface at the level ignores ingress IS-IS protocol PDUs and will not transmit IS-IS protocol PDUs.

The **no** form of the command removes the passive attribute.

**Special Cases**

- **Service Interfaces** — Service interfaces (defined using the service-prefix command in `config>router`) are passive by default.
- **All other Interfaces** — All other interfaces are not passive by default.

**Default**

- **passive** — Service interfaces are passive.
- **no passive** — All other interfaces are not passive.

---

preference

**Syntax**

```plaintext
preference preference
no preference
```

**Context**

```plaintext
config>router>isis>level
```

**Description**

This command configures the preference level of either IS-IS Level 1 or IS-IS Level 2 internal routes. By default, the preferences are listed in the table below.

A route can be learned by the router by different protocols, in which case, the costs are not comparable. When this occurs, the preference is used to decide to which route will be used.

Different protocols should not be configured with the same preference, if this occurs the tiebreaker is per the default preference table as defined in the following table. If multiple routes are learned with an identical preference using the same protocol, the lowest cost route is used. If multiple routes are learned with an identical preference using the same protocol and the costs (metrics) are equal, then the decision what route to use is determined by the configuration of the `ecmp` in the `config>router` context.

**Default**

Default preferences are listed in the following table:

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Preference</th>
<th>Configurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct attached</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>Static-route</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF internal routes</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>
**Parameters**  
*preference* — The preference for external routes at this level expressed as a decimal integer.  

**Values**  
1 — 255

**priority**

**Syntax**  
`priority number`  
`no priority`

**Context**  
`config>router>isis>if>level level-number`

**Description**  
This command configures the priority of the IS-IS router interface for designated router election on a multi-access network.

This priority is included in hello PDUs transmitted by the interface on a multi-access network. The router with the highest priority is the preferred designated router. The designated router is responsible for sending LSPs with regard to this network and the routers that are attached to it.

The *no* form of the command reverts to the default value.

**Default**  
64

**Parameters**  
*number* — The priority for this interface at this level.  

**Values**  
0 — 127
IS-IS Commands

sd-offset

Syntax  
\[sd-offset\ \text{offset-value}\]  
\[no\ sd-offset\]

Context  config>router>isis>if>level

Description  If the pre-FEC error rate of the associated DWDM port crosses the configured sd-threshold, this offset-value is added to the IS-IS interface metric. This parameter is only effective if the interface is associated with a DWDM port and the sd-threshold value is configured under that port.

The no form of the command reverts the offset value to 0.

Default  no sd-offset

Parameters  \text{offset-value} — Specifies the amount the interface metric is increased by if the sd-threshold is crossed.

Values  0 — 16777215

sf-offset

Syntax  
\[sf-offset\ \text{offset-value}\]  
\[no\ sf-offset\]

Context  config>router>isis>if>level

Description  If the pre-FEC error rate of the associated DWDM port crosses the configured sf-threshold, this offset-value is added to the IS-IS interface metric. This parameter is only effective if the interface is associated with a DWDM port and the sf-threshold value is configured under that port.

The no form of the command reverts the offset value to 0.

Default  no sf-offset

Parameters  \text{offset-value} — Specifies the amount the interface metric is increased by if the sf-threshold is crossed.

Values  0 — 16777215

psnp-authentication

Syntax  
\[[\text{no}]\ psnp-authentication\]

Context  config>router>isis  
config>router>isis>level

Description  This command enables authentication of individual ISIS packets of partial sequence number PDU (PSNP) type.

The no form of the command suppresses authentication of PSNP packets.
reference-bandwidth

Syntax

```
reference-bandwidth bandwidth-in-kbps
reference-bandwidth [tbps Tera-bps] [gbps Giga-bps] [mbps Mega-bps] [kbps Kilo-bps]
no reference-bandwidth
```

Context `config>router>isis`

Description

This command configures the reference bandwidth that provides the basis of bandwidth relative costing.

In order to calculate the lowest cost to reach a specific destination, each configured level on each interface must have a cost. If the reference bandwidth is defined, then the cost is calculated using the following formula:

\[
\text{cost} = \frac{\text{reference-bandwidth}}{\text{bandwidth}}
\]

If the reference bandwidth is configured as 10 Gigabits (10,000,000,000), a 100 M/bps interface has a default metric of 100. In order for metrics in excess of 63 to be configured, wide metrics must be deployed. (See wide-metrics-only in the `config>router>isis` context.)

If the reference bandwidth is not configured, then all interfaces have a default metric of 10.

The `no` form of the command reverts to the default value.

Default `no reference-bandwidth` — No reference bandwidth is defined. All interfaces have a metric of 10.

Parameters

- `bandwidth-in-kbps` — The reference bandwidth in kilobits per second expressed as a decimal integer.
  - **Values**
  - 1 — 1000000000

- `tbps Tera-bps` — The reference bandwidth in terabits per second expressed as a decimal integer.
  - **Values**
  - 1 — 4

- `gbps Giga-bps` — The reference bandwidth in gigabits per second expressed as a decimal integer.
  - **Values**
  - 1 — 999

- `mbps Mega-bps` — The reference bandwidth in megabits per second expressed as a decimal integer.
  - **Values**
  - 1 — 999

- `kbps Kilo-bps` — reference bandwidth in kilobits per second expressed as a decimal integer.
  - **Values**
  - 1 — 999

rsvp-shortcut

Syntax

```
[no] rsvp-shortcut
```

Context `config>router>isis`

Description

This command enables the use of an RSVP-TE shortcut for resolving IGP routes by IS-IS or OSPF routing protocols.
This command instructs IS-IS or OSPF to include RSVP LSPs originating on this node and terminating on the router-id of a remote node as direct links with a metric equal to the operational metric provided by MPLS. If the user enabled the relative-metric option for this LSP, IGP will apply the shortest IGP cost between the endpoints of the LSP plus the value of the offset, instead of the LSP operational metric, when computing the cost of a prefix which is resolved to the LSP.

When a prefix is resolved to a tunnel next-hop, the packet is sent labeled with the label stack corresponding to the NHLFE of the RSVP LSP. Any network event causing an RSVP LSP to go down will trigger a full SPF computation which may result in installing a new route over another RSVP LSP shortcut as tunnel next-hop or over a regular IP next-hop.

When rsvp-shortcut is enabled at the IGP instance level, all RSVP LSPs originating on this node are eligible by default as long as the destination address of the LSP, as configured in configure>router>mpls>lsp>to, corresponds to a router-id of a remote node. RSVP LSPs with a destination corresponding to an interface address or any other loopback interface address of a remote node are automatically not considered by IS-IS or OSPF. The user can, however, exclude a specific RSVP LSP from being used as a shortcut for resolving IGP routes by entering the config>router>mpls>lsp=no igp-shortcut command.

The SPF in OSPF or IS-IS will only use RSVP LSPs as forwarding adjacencies, IGP shortcuts, or as endpoints for LDP-over-RSVP. These applications of RSVP LSPs are mutually exclusive at the IGP instance level. If the user enabled two or more options in the same IGP instance, then forwarding adjacency takes precedence over the shortcut application, which takes precedence over the LDP-over-RSVP application.

When ECMP is enabled on the system and multiple equal-cost paths exist for a prefix, the following selection criteria are used to pick up the set of next-hops to program in the data path:

- for a destination = tunnel-endpoint (including external prefixes with tunnel-endpoint as the next-hop):
  - select tunnel with lowest tunnel-index (ip next-hop is never used in this case)
- for a destination != tunnel-endpoint:
  - exclude LSPs with metric higher than underlying IGP cost between the endpoint of the LSP
  - prefer tunnel next-hop over ip next-hop
  - within tunnel next-hops:
    - select lowest endpoint to destination cost
    - if same endpoint to destination cost, select lowest endpoint node router-id
    - if same router-id, select lowest tunnel-index
  - within ip next-hops:
    - select lowest downstream router-id
    - if same downstream router-id, select lowest interface-index

- Note though no ECMP is performed across both the IP and tunnel next-hops the tunnel endpoint lies in one of the shortest IGP paths for that prefix. In that case, the tunnel next-hop is always selected as long as the prefix cost using the tunnel is equal or lower than the IGP cost.

The ingress IOM will spray the packets for this prefix over the set of tunnel next-hops and IP next-hops based on the hashing routine currently supported for IPv4 packets.

This feature provides IGP with the capability to populate the multicast RTM with the prefix IP next-hop when both the rsvp-shortcut and the multicast-import options are enabled in IGP. The unicast RTM can still make use of the tunnel next-hop for the same prefix. This change is made possible with the enhancement by which SPF keeps track of both the direct first hop and the tunneled first hop of a node which is added to the Dijkstra tree.
The resolution and forwarding of IPv6 prefixes to IPv4 IGP shortcuts is not supported.
The no form of this command disables the resolution of IGP routes using RSVP shortcuts.

Default no rsvp-shortcut

advertise-tunnel-link

Syntax [no] advertise-tunnel-link
Context config>router>isis
Description This command enables the forwarding adjacency feature. With this feature, IS-IS or OSPF advertises an RSVP LSP as a link so that other routers in the network can include it in their SPF computations. The RSVP LSP is advertised as an unnumbered point-to-point link and the link LSP/LSA has no Traffic Engineering opaque sub-TLVs per RFC 3906.
The forwarding adjacency feature can be enabled independently from the IGP shortcut feature in CLI. If both rsvp-shortcut and advertise-tunnel-link options are enabled for a given IGP instance, then the advertise-tunnel-link will win.
When the forwarding adjacency feature is enabled, each node advertises a p2p unnumbered link for each best metric tunnel to the router-id of any endpoint node. The node does not include the tunnels as IGP shortcuts in SPF computation directly. Instead, when the LSA/LSP advertising the corresponding P2P unnumbered link is installed in the local routing database, then the node performs an SPF using it like any other link LSA/LSP. The link bi-directional check requires that a link, regular link or tunnel link, exists in the reverse direction for the tunnel to be used in SPF.
Note that the igp-shortcut option under the LSP name governs the use of the LSP with both the rsvp-shortcut and the advertise-tunnel-link options in IGP. In other words, the user can exclude a specific RSVP LSP from being used as a forwarding adjacency by entering the command config>router>mpls>lsp>no igp-shortcut.
The resolution and forwarding of IPv6 prefixes to IPv4 forwarding adjacency LSP is not supported.
The no form of this command disables forwarding adjacency and hence disables the advertisement of RSVP LSP into IGP.
Default no advertise-tunnel-link

retransmit-interval

Syntax retransmit-interval seconds
no retransmit-interval
Context config>router>isis>interface ip-int-name
Description This command configures the minimum time between LSP PDU retransmissions on a point-to-point interface.
The no form of the command reverts to the default value.
IS-IS Commands

**Default**

100

**Parameters**

*seconds* — The interval in seconds that IS-IS LSPs can be sent on the interface.

*Values* 1 — 65535

**spf-wait**

**Syntax**

[no] spf-wait [spf-initial-wait [spf-second-wait]]

**Context**

config>router>isis

**Description**

This command defines the maximum interval between two consecutive SPF calculations in seconds. Timers that determine when to initiate the first, second and subsequent SPF calculations after a topology change occurs can be controlled with this command. Subsequent SPF runs (if required) will occur at exponentially increasing intervals of the *spf-second-wait* interval. For example, if the *spf-second-wait* interval is 1000, then the next SPF will run after 2000 milliseconds, and then next SPF will run after 4000 milliseconds, etc., until it reaches the *spf-wait* value. The SPF interval will stay at *spf-wait* value until there are no more SPF runs scheduled in that interval. After a full interval without any SPF runs, the SPF interval will drop back to *spf-initial-wait*.

*Default* no spf-wait

**Parameters**

*spf-wait* — Specifies the maximum interval in seconds between two consecutive SPF calculations.

*Values* 1 — 120

*Default* 10

*spf-initial-wait* — Specifies the initial SPF calculation delay in milliseconds after a topology change.

*Values* 10 — 100000

*Default* 1000

*spf-second-wait* — Specifies the hold time in milliseconds between the first and second SPF calculation.

*Values* 1 — 100000

*Default* 1000

**strict-adjacency-check**

**Syntax**

[no] strict-adjacency-check

**Context**

config>router>isis

**Description**

This command enables strict checking of address families (IPv4 and IPv6) for IS-IS adjacencies. When enabled, adjacencies will not come up unless both routers have exactly the same address families configured. If there is an existing adjacency with unmatched address families, it will be torn down. This command is used to prevent black-holing traffic when IPv4 and IPv6 topologies are different. When disabled (no strict-adjacency-check) a BFD session failure for either IPv4 or IPv6 will cause the routes for the other address family to be removed as well.
When disabled (no strict-adjacency-check), both routers only need to have one common address family to establish the adjacency.

**Default**

no strict-adjacency-check

### summary-address

**Syntax**

```
summary-address {ip-prefix/mask | ip-prefix [netmask]} level [tag tag]
no summary-address {ip-prefix/mask | ip-prefix [netmask]}
```

**Context**

config>router>isis

**Description**

This command creates summary-addresses.

**Default**

none

**Parameters**

- **ip-prefix/mask** — Specifies information for the specified IP prefix and mask length.
  
  **Values**
  
  - ipv4-prefix: a.b.c.d (host bits must be 0)
  - ipv4-prefix-length: 0 — 32
  - ipv6-prefix: x:x:x:x:x:x:x (eight 16-bit pieces)
  - ipv6-prefix-length: [0 — 128]
  - x: [0 — FFFF]H
  - d: [0 — 255]D

- **netmask** — The subnet mask in dotted decimal notation.
  
  **Values**
  
  0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

- **level** — Specifies IS-IS level area attributes.
  
  **Values**
  
  level-1, level-2, level-1/2

- **tag tag** — Assigns an OSPF, RIP or ISIS tag to routes matching the entry.
  
  **Values**
  
  Accepts decimal or hex formats:
  
  - OSPF and ISIS: [0x0..0xFFFFFFFF]H
  - RIP: [0x0..0xFFFF]H

### suppress-default

**Syntax**

```
[no] suppress-default
```

**Context**

config>router>isis

**Description**

This command enables or disables IS-IS to suppress the installation of default routes.
traffic-engineering

Syntax  [no] traffic-engineering
Context  config>router>isis
Description  This command configures traffic-engineering and determines if IGP shortcuts are required by BGP.
Default  disabled

unicast-import-disable

Syntax  [no] unicast-import-disable
Context  config>router>isis
Description  This command allows one IGP to import its routes into RPF RTM while another IGP imports routes only into the unicast RTM. Import policies can redistribute routes from an IGP protocol into the RPF RTM (the multicast routing table). By default, the IGP routes will not be imported into RPF RTM as such an import policy must be explicitly configured.
Default  disabled

wide-metrics-only

Syntax  [no] wide-metrics-only
Context  config>router>isis>level level-number
Description  This command enables the exclusive use of wide metrics in the LSPs for the level number. Narrow metrics can have values between 1 and 63. IS-IS can generate two TLVs, one for the adjacency and one for the IP prefix. In order to support traffic engineering, wider metrics are required. When wide metrics are used, a second pair of TLVs are added, again, one for the adjacency and one for the IP prefix.

By default, both sets of TLVs are generated. When wide-metrics-only is configured, IS-IS only generates the pair of TLVs with wide metrics for that level.

The no form of the command reverts to the default value.
Show Commands

**isis**

**Syntax**

```text
isis [isis-instance]
```

**Context**

```
show>router
```

**Description**

This command displays information for a specified IS-IS instance.

**Parameters**

`isis-instance` — Specifies the instance ID for an IS-IS instance.

- **Values**: 1–31
- **Default**: 0

**adjacency**

**Syntax**

```text
adjacency [ip-address | ip-int-name | nbr-system-id] [detail]
```

**Context**

```
show>router>isis
```

**Description**

This command displays information regarding IS-IS neighbors. When no `ip-address`, `ip-int-name`, or `nbr-system-id` is specified, then all adjacencies are displayed.

**Parameters**

- **ip-address** — When specified, only adjacencies with that interface is displayed.

  - **Values**: ipv4-address: `a.b.c.d` (host bits must be 0)
    ipv6-address: `x:x:x:x:x:x:x` (eight 16-bit pieces)
    `x:x:x:x:d.d.d.d`
    `x:` `[0 — FFFF]H`
    `d:` `[0 — 255]D`

- **ip-int-name** — When specified, only adjacencies with that interface is displayed.

- **nbr-system-id** — When specified, only the adjacency with that ID is displayed.

- **detail** — All output is displayed in the detailed format.

**Output**

**Standard and Detailed IS-IS Adjacency Output** — The following table describes the standard and detailed command output fields for an IS-IS adjacency.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface name associated with the neighbor.</td>
</tr>
<tr>
<td>System-id</td>
<td>Neighbor’s system ID.</td>
</tr>
<tr>
<td>Level</td>
<td>1-L1 only, 2-L2 only, 3-L1 and L2.</td>
</tr>
<tr>
<td>State</td>
<td>Up, down, new, one-way, initializing, or rejected.</td>
</tr>
</tbody>
</table>
Show Commands

Sample Output

*A:Dut-A# show router isis adjacency

ISON Adjacency

<table>
<thead>
<tr>
<th>System ID</th>
<th>Usage</th>
<th>State</th>
<th>Hold</th>
<th>Interface</th>
<th>MT Enab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dut-B</td>
<td>L1</td>
<td>Up</td>
<td>2</td>
<td>ip-3FFE::A0A:101</td>
<td>Yes</td>
</tr>
<tr>
<td>Dut-B</td>
<td>L2</td>
<td>Up</td>
<td>2</td>
<td>ip-3FFE::A0A:101</td>
<td>Yes</td>
</tr>
<tr>
<td>Dut-F</td>
<td>L1L2</td>
<td>Up</td>
<td>5</td>
<td>ies-1-3FFE::A0A:1501</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Adjacencies : 3

*A:Dut-A#

*A:ALA-A# show router isis adjacency  180.0.7.12

ISON Adjacency

<table>
<thead>
<tr>
<th>System ID</th>
<th>Usage</th>
<th>State</th>
<th>Hold</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>asbr_east</td>
<td>L2</td>
<td>Up</td>
<td>25</td>
<td>if2/5</td>
</tr>
</tbody>
</table>

Adjacencies : 1

Label	Description (Continued)
Hold | Hold time remaining for the adjacency.
SNPA | Subnetwork point of attachment, MAC address of the next hop.
Circuit type | Level on the interface L1, L2, or both.
Expires In | Number of seconds until adjacency expires.
Priority | Priority to become designated router.
Up/down transitions | Number of times neighbor state has changed.
Event | Event causing last transition.
Last transition | Time since last transition change.
Speaks | Supported protocols (only IP).
IP address | IP address of neighbor.
MT enab | Yes – The neighbor is advertising at least 1 non MTID#0.
Topology | Derived from the MT TLV in the IIH
  - MT#0, MT#2 => “Topology : Unicast, IPv6-Unicast”
  - Native IPv4 or native IPv6 => “Topology : Unicast”
  - Not supported MTID’s => Topology line suppressed
*A:ALA-A#

*A:ALA-A# show router isis adjacency if2/5

===============================================================================
ISIS Adjacency
===============================================================================
<table>
<thead>
<tr>
<th>System ID</th>
<th>Usage State</th>
<th>Hold Time</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>asbr_east</td>
<td>L2</td>
<td>20</td>
<td>if2/5</td>
</tr>
</tbody>
</table>

Adjacencies : 1

===============================================================================
*A:ALA-A#

*A:Dut-A# show router isis adjacency detail

===============================================================================
ISIS Adjacency
===============================================================================
System ID	Dut-B	SNPA	20:81:01:01:00:01
Interface	ip-3FFE::A0A:101	Up Time	0d 00:56:10
State	Up	Priority	64
Nbr Sys Typ	L1	L. Circ Typ	L1
Hold Time	2	Max Hold	2
Adj Level	L1	MT Enabled	Yes
Topology	Unicast, IPv6-Unicast	IPv6 Neighbor	FE80::2281:1FF:FE01:1
IPv4 Neighbor	10.10.1.2	Restart Support	Disabled
Restart Status	Not currently being helped	Restart Supressed	Disabled
Number of Restarts	0	Last Restart at	Never

SystemID    : Dut-B       | SNPA        | 20:81:01:01:00:01 |
Interface    : ip-3FFE::A0A:101 | Up Time     | 0d 00:56:10 |
State        : Up          | Priority    | 64           |
Nbr Sys Typ  : L2          | L. Circ Typ | L2          |
Hold Time    : 2           | Max Hold    | 2            |
Adj Level    : L2          | MT Enabled  | Yes          |
Topology     : Unicast, IPv6-Unicast | IPv6 Neighbor | FE80::2281:1FF:FE01:1 |
IPv4 Neighbor | 10.10.1.2  | Restart Support | Disabled    |
Restart Status | Not currently being helped | Restart Supressed | Disabled |
Number of Restarts | 0 | Last Restart at | Never |

SystemID    : Dut-F       | SNPA        | 00:00:00:00:00:00 |
Interface    : ies-1-3FFE::A0A:1501 | Up Time     | 0d 01:18:34 |
State        : Up          | Priority    | 0            |
Nbr Sys Typ  : L1L2       | L. Circ Typ | L1L2         |
Hold Time    : 5           | Max Hold    | 6            |
Adj Level    : L1L2       | MT Enabled  | Yes          |
Topology     : Unicast, IPv6-Unicast | IPv4 Neighbor | 10.10.1.2  |
IPv6 Neighbor : FE80::2285:FFFF:FE00:0
IPv4 Neighbor : 10.10.21.6
Restart Support : Disabled
Restart Status : Not currently being helped
Restart Suppressed : Disabled
Number of Restarts: 0
Last Restart at : Never

*A:Dut-A#

A:Dut-A# show router isis status

ISIS Status

System Id : 0100.2000.1001
Admin State : Up
Ipv4 Routing : Enabled
Ipv6 Routing : Disabled
Level Capability : L2
Authentication Check : True
Authentication Type : None
CSNP-Authentication : Enabled
HELLO-Authentication : Enabled
PSNP-Authentication : Enabled
Traffic Engineering : Enabled
Graceful Restart : Disabled
GR Helper Mode : Disabled
LSP Lifetime : 1200
LSP Wait : 1 sec (Max)  1 sec (Initial)  1 sec (Second)
Adjacency Check : loose
L1 Auth Type : none
L2 Auth Type : none
L1 CSNP-Authentication : Enabled
L1 HELLO-Authentication : Enabled
L1 PSNP-Authentication : Enabled
L1 Preference : 15
L2 Preference : 18
L1 Ext. Preference : 160
L2 Ext. Preference : 165
L1 Wide Metrics : Disabled
L2 Wide Metrics : Enabled
L1 LSDB Overload : Disabled
L2 LSDB Overload : Disabled
L1 LSPs : 0
L2 LSPs : 15
SPF Wait : 1 sec (Max)  10 ms (Initial)  10 ms (Second)
Export Policies : None
Area Addresses : 49.0001

* indicates that the corresponding row element may have been truncated.

A:Dut-A#
IS-IS

**capabilities**

**Syntax**  
`capabilities [system-id | lsp-id] [level level]

**Context**  
`show>router>isis`

**Description**  
This command displays the entries in the IS-IS database.

**Parameters**  
- `system-id` — Only the LSPs related to that `system-id` are listed. If no `system-id` or `lsp-id` are specified, all database entries are listed.
- `lsp-id` — Only the specified LSP (hostname) is listed. If no `system-id` or `lsp-id` are specified, all database entries are listed.
- `level` — Only capability data for the specified level is displayed.

**Sample Output**

```
show router isis instance

ISIS Capabilities

Displaying Level 1 database

Router Id S D TE TE router Id

2.2.2.2 1 0 BEMGP x.x.x.x
```

**database**

**Syntax**  
`database [system-id | lsp-id] [detail] [level level]

**Context**  
`show>router>isis`

**Description**  
This command displays the entries in the IS-IS link state database.

**Parameters**  
- `system-id` — Only the LSPs related to that `system-id` are listed. If no `system-id` or `lsp-id` are specified, all database entries are listed.
- `lsp-id` — Only the specified LSP (hostname) is listed. If no `system-id` or `lsp-id` are specified, all database entries are listed.

**Sample Output**

```
*A:ALA-A# show router isis database

ISIS Database

LSP ID Sequence Checksum Lifetime Attributes

Displaying Level 1 database
```
abr_dfw.00-00                         0x50     0x164f   603      L1L2
Level (1) LSP Count : 1
Displaying Level 2 database
---------------------------------------------------------------------
asbr_east.00-00                         0x53     0xe3f5   753      L1L2
abr_dfw.00-00                           0x57     0x94ff   978      L1L2
abr_dfw.03-00                           0x50     0x14f1   614      L1L2
Level (2) LSP Count : 3
---------------------------------------------------------------------
*A:ALA-A#

*A:Dut-B# show router isis database Dut-A.00-00 detail
---------------------------------------------------------------------
ISIS Database
---------------------------------------------------------------------
Displaying Level 1 database
---------------------------------------------------------------------
Level (1) LSP Count : 0
Displaying Level 2 database
---------------------------------------------------------------------
LSP ID      : Dut-A.00-00                         Level : L2
Sequence    : 0x6                    Checksum  : 0xb7c4   Lifetime  : 1153
Version     : 1                      Pkt Type  : 20       Pkt Ver   : 1
Attributes  : L1L2                   Max Area  : 3
SysID Len   : 6                      Used Len  : 311      Alloc Len : 311
TLVs :
   Area Addresses:
      Area Address : (2) 30.31
   Supp Protocols:
      Protocols    : IPv4
      IS-Hostname   : Dut-A
   Router ID      :
      Router ID   : 10.20.1.1
   I/F Addresses :
      I/F Address  : 10.20.1.1
      I/F Address  : 10.10.1.1
      I/F Address  : 10.10.2.1
   TE IS Nbrs    :
      Nbr : Dut-B.01
      Default Metric  : 1000
      Sub TLV Len     : 98
      IF Addr   : 10.10.1.1
      MaxLink BW: 100000000 kbps
      Resvble BW: 100000000 kbps
      Unresvd BW:
         BW[0] : 10000 kbps
         BW[1] : 400000 kbps
         BW[7] : 100000 kbps
      Admin Grp : 0x0
      TE Metric : 1000
      SUBTLV BW CONS TS : 8
**BW Model : 1**
- BC[0]: 10000 kbps
- BC[1]: 0 kbps
- BC[2]: 40000 kbps
- BC[3]: 0 kbps
- BC[4]: 0 kbps
- BC[5]: 50000 kbps
- BC[6]: 0 kbps
- BC[7]: 0 kbps

**TE IP Reach :**
- Default Metric : 0
- Control Info: , prefLen 32
- Prefix : 10.20.1.1
- Default Metric : 1000
- Control Info: , prefLen 24
- Prefix : 10.10.1.0
- Default Metric : 1000
- Control Info: , prefLen 24
- Prefix : 10.10.2.0

**Level (2) LSP Count : 1**

*A:Dut-B#

#### hostname

**Syntax**

`hostname`

**Context**

`show>router>isis`

**Description**

This command displays the hostname database. There are no options or parameters.

**Output**

**IS-IS Hostname Output** — The following table describes output fields for IS-IS hostname output.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System-id</td>
<td>System identifier mapped to hostname.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Hostname for the specific <code>system-id</code>.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of entry (static or dynamic).</td>
</tr>
</tbody>
</table>

**Sample Output**

A:ALA-A# show router isis hostname

```
Hosts

System Id Hostname

1800.0000.0002 core_west
1800.0000.0005 core_east
1800.0000.0008 asbr_west
1800.0000.0009 asbr_east
1800.0000.0010 abr_sjc
```
interface

Syntax  
interface [ip-int-name | ip-address] [detail]

Context  
show>router>isis

Description  
This command shows IS-IS interface information. When no ip-addr or the ip-int-name is specified, all interfaces are listed.

Parameters  
- **ip-address** — Only displays the interface information associated with the specified IP address.
  
  Values  
  - ipv4-address  
  - ipv6-address

- **ip-int-name** — Only displays the interface information associated with the specified IP interface name.

- **detail** — All output is given in the detailed format.

Output  
IS-IS Interface Output — The following table describes IS-IS interface output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
</tbody>
</table>
| Level            | Specifies the interface level (1, 2, or 1 and 2).
| CirID            | Specifies the circuit identifier.               |
| Oper State       | Up — The interface is operationally up.          |
|                  | Down — The interface is operationally down.      |
| L1/L2 Metric     | Interface metric for Level 1 and Level 2, if none are set to 0. |

Sample Output

```
A:ALA-A# show router isis interface
```
### ISIS Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Level</th>
<th>CircID</th>
<th>Oper State</th>
<th>L1/L2 Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>system</td>
<td>L1L2</td>
<td>1</td>
<td>Up</td>
<td>10/10</td>
</tr>
<tr>
<td>if2/1</td>
<td>L2</td>
<td>8</td>
<td>Up</td>
<td>-/10</td>
</tr>
<tr>
<td>if2/2</td>
<td>L1</td>
<td>5</td>
<td>Up</td>
<td>10/-</td>
</tr>
<tr>
<td>if2/3</td>
<td>L1</td>
<td>6</td>
<td>Up</td>
<td>10/-</td>
</tr>
<tr>
<td>if2/4</td>
<td>L1</td>
<td>7</td>
<td>Up</td>
<td>10/-</td>
</tr>
<tr>
<td>if2/5</td>
<td>L2</td>
<td>2</td>
<td>Up</td>
<td>-/10</td>
</tr>
<tr>
<td>lag-1</td>
<td>L2</td>
<td>3</td>
<td>Up</td>
<td>-/10</td>
</tr>
<tr>
<td>if2/8</td>
<td>L2</td>
<td>4</td>
<td>Up</td>
<td>-/10</td>
</tr>
</tbody>
</table>

Interfaces : 8

---

A: SetupCLI# show router isis interface detail

---

### ISIS Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>system</th>
<th>Level Capability: L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper State</td>
<td>Up</td>
<td>Admin State : Up</td>
</tr>
<tr>
<td>Auth Type</td>
<td>None</td>
<td>Auth State : Enabled</td>
</tr>
<tr>
<td>Circuit Id</td>
<td>1</td>
<td>Retransmit Int. : 65535</td>
</tr>
<tr>
<td>Type</td>
<td>Pt-to-Pt</td>
<td>LSP Pacing Int. : 100</td>
</tr>
<tr>
<td>CSNP Int.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Bfd Enabled</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Te Metric</td>
<td>0</td>
<td>Te State : Down</td>
</tr>
<tr>
<td>Admin Groups</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Ldp Sync</td>
<td>outOfService</td>
<td>Ldp Sync Wait : Disabled</td>
</tr>
<tr>
<td>Ldp Timer State</td>
<td>Disabled</td>
<td>Ldp Tm Left : 0</td>
</tr>
<tr>
<td>Route Tag</td>
<td>4294967295</td>
<td>LFA : Included</td>
</tr>
<tr>
<td>Level</td>
<td>2</td>
<td>Adjacencies : 0</td>
</tr>
<tr>
<td>Auth Type</td>
<td>None</td>
<td>Metric : 0</td>
</tr>
<tr>
<td>Hello Timer</td>
<td>9</td>
<td>Hello Mult. : 3</td>
</tr>
<tr>
<td>Priority</td>
<td>64</td>
<td>IPv6-Ucast-Met : 0</td>
</tr>
<tr>
<td>Passive</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Interface</th>
<th>ip_if_1</th>
<th>Level Capability: L1L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper State</td>
<td>Down</td>
<td>Admin State : Down</td>
</tr>
<tr>
<td>Auth Type</td>
<td>None</td>
<td>Auth State : Enabled</td>
</tr>
<tr>
<td>Circuit Id</td>
<td>5</td>
<td>Retransmit Int. : 65535</td>
</tr>
<tr>
<td>Type</td>
<td>Pt-to-Pt</td>
<td>LSP Pacing Int. : 100</td>
</tr>
<tr>
<td>CSNP Int.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Bfd Enabled</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Te Metric</td>
<td>0</td>
<td>Te State : Down</td>
</tr>
<tr>
<td>Admin Groups</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Ldp Sync</td>
<td>outOfService</td>
<td>Ldp Sync Wait : Disabled</td>
</tr>
<tr>
<td>Ldp Timer State</td>
<td>Disabled</td>
<td>Ldp Tm Left : 0</td>
</tr>
<tr>
<td>Route Tag</td>
<td>4294967295</td>
<td>LFA : Included</td>
</tr>
<tr>
<td>Level</td>
<td>1</td>
<td>Adjacencies : 0</td>
</tr>
</tbody>
</table>
### Show Commands

<table>
<thead>
<tr>
<th>Auth Type</th>
<th>Password</th>
<th>Metric</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Timer</td>
<td>20000</td>
<td>Hello Mult.</td>
<td>100</td>
</tr>
<tr>
<td>Priority</td>
<td>1</td>
<td>IPv6-Ucast-Met</td>
<td>10</td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>2</th>
<th>Adjacencies</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth Type</td>
<td>Password</td>
<td>Metric</td>
<td>1</td>
</tr>
<tr>
<td>Hello Timer</td>
<td>20000</td>
<td>Hello Mult.</td>
<td>100</td>
</tr>
<tr>
<td>Priority</td>
<td>1</td>
<td>IPv6-Ucast-Met</td>
<td>10</td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>LOA1</th>
<th>Level Capability: L1L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper State</td>
<td>Down</td>
<td>Admin State : Up</td>
</tr>
<tr>
<td>Auth Type</td>
<td>None</td>
<td>Auth State : Enabled</td>
</tr>
<tr>
<td>Circuit Id</td>
<td>49</td>
<td>Retransmit Int. : 5</td>
</tr>
<tr>
<td>Type</td>
<td>Broadcast</td>
<td>LSP Pacing Int. : 100</td>
</tr>
<tr>
<td>CSNP Int.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Mesh Group</td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td>Bfd Enabled</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Te Metric</td>
<td>0</td>
<td>Te State : Down</td>
</tr>
<tr>
<td>Admin Groups</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Ldp Sync</td>
<td>outOfService</td>
<td>Ldp Sync Wait : Disabled</td>
</tr>
<tr>
<td>Ldp Timer State</td>
<td>Disabled</td>
<td>Ldp Tm Left : 0</td>
</tr>
<tr>
<td>Route Tag</td>
<td>None</td>
<td>LFA : Excluded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>Level Capability: L1L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desg. IS</td>
<td>0000.0000.0000</td>
<td>Level Capability: L1L2</td>
</tr>
<tr>
<td>Auth Type</td>
<td>None</td>
<td>Level Capability: L1L2</td>
</tr>
<tr>
<td>Hello Timer</td>
<td>9</td>
<td>Level Capability: L1L2</td>
</tr>
<tr>
<td>Priority</td>
<td>64</td>
<td>Level Capability: L1L2</td>
</tr>
<tr>
<td>Passive</td>
<td>No</td>
<td>Level Capability: L1L2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>2</th>
<th>Adjacencies : 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desg. IS</td>
<td>0000.0000.0000</td>
<td></td>
</tr>
<tr>
<td>Auth Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Hello Timer</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Passive</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

### Ifa-coverage

**Syntax**  
`ifa-coverage`

**Context**  
`show>router>isis`

**Description**  
This command displays IS-IS LFA coverage information.

**Sample Output**

```
*A:SR# show router isis ifa-coverage
```

---

<table>
<thead>
<tr>
<th>Auth Type</th>
<th>Password</th>
<th>Metric</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Timer</td>
<td>20000</td>
<td>Hello Mult.</td>
<td>100</td>
</tr>
<tr>
<td>Priority</td>
<td>1</td>
<td>IPv6-Ucast-Met</td>
<td>10</td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>2</th>
<th>Adjacencies</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth Type</td>
<td>Password</td>
<td>Metric</td>
<td>1</td>
</tr>
<tr>
<td>Hello Timer</td>
<td>20000</td>
<td>Hello Mult.</td>
<td>100</td>
</tr>
<tr>
<td>Priority</td>
<td>1</td>
<td>IPv6-Ucast-Met</td>
<td>10</td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---
Topology Level Node IPv4
-------------------------------------------------------------------
IPV4 Unicast L1 4/4 (100%) 826/826 (100%)
IPV4 Unicast L2 2/2 (100%) 826/826 (100%)
IPV6 Unicast L1 3/3 (100%) 0/0 (0%)
IPV6 Unicast L2 0/0 (0%) 0/0 (0%)
-------------------------------------------------------------------

*A:SR#*

*A:SRR>config>router>isis# show router isis lfa-coverage

LFA Coverage
-------------------------------------------------------------------
Topology Level Node IPv4 IPv6
-------------------------------------------------------------------
IPV4 Unicast L1 3/4 (75%) 1484/1975 (75%) 0/0 (0%)
IPV4 Unicast L2 3/3 (100%) 1484/1975 (75%) 0/0 (0%)
-------------------------------------------------------------------

neighbo r

Syntax neighbor

Context show>router>isis

Description This command displays neighboring route information in the IS-IS route table.

Sample Output

A:linus-212# show router isis neighbor

Topology Table
-------------------------------------------------------------------
Node Interface Nexthop
-------------------------------------------------------------------
IS-IS IP paths (MT-ID 0), Level 1
-------------------------------------------------------------------
linus-211.00 ab linus-211
linus-216.00 ab linus-211
linus-216.01 ab linus-211
-------------------------------------------------------------------
IS-IS IP paths (MT-ID 0), Level 2
-------------------------------------------------------------------
linus-211.00 ab linus-211
linus-216.00 ab linus-211
linus-216.01 ab linus-211
Show Commands

routes

Syntax  
\text{routes [ipv4-unicast | ipv6-unicast | ipv4-multicast | ipv6-multicast | mt \textit{mt-id-number} \[ip-pre-fix[/prefix-length]] \[alternative] \[exclude-shortcut]}

Context  
show>router>isis

Description  
This command displays the routes in the IS-IS route table.

Parameters  
ipv4-unicast — Displays IPv4 unicast parameters.
ipv6-unicast — Displays IPv6 unicast parameters.
mt \textit{mt-id-number} — Displays multi-topology parameters.

Values  
0, 2

alternative — Displays LFA details.

Output  
IS-IS Route Output — The following table describes IS-IS route output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>The route prefix and mask.</td>
</tr>
<tr>
<td>Metric MT</td>
<td>The route’s metric.</td>
</tr>
<tr>
<td>Lvl/Type</td>
<td>Specifies the level (1 or 2) and the route type, Internal (Int) or External (Ext).</td>
</tr>
<tr>
<td>Version</td>
<td>SPF version that generated route.</td>
</tr>
<tr>
<td>Nexthop</td>
<td>System ID of nexthop, give hostname if possible.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Hostname for the specific system-id.</td>
</tr>
</tbody>
</table>

Sample Output

*A:Dut-C# show router isis routes exclude-shortcut alternative

Route Table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Metric</th>
<th>Lvl/Typ</th>
<th>Ver.</th>
<th>SysID/Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.0/24</td>
<td>20</td>
<td>1/Int.</td>
<td>0</td>
<td>Dut-A</td>
</tr>
<tr>
<td>1.1.2.0/24</td>
<td>20</td>
<td>1/Int.</td>
<td>0</td>
<td>Dut-B</td>
</tr>
<tr>
<td>1.1.2.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>0</td>
<td>Dut-C</td>
</tr>
<tr>
<td>1.1.3.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.2.3.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>0</td>
<td>Dut-C</td>
</tr>
<tr>
<td>1.2.3.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.2.4.0/24</td>
<td>20</td>
<td>1/Int.</td>
<td>0</td>
<td>Dut-B</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.5.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>0</td>
<td>Dut-C</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.4.5.0/24                        20         1/Int.      0     Dut-E
1.3.5.5                                               0       0
1.4.6.0/24                        30         1/Int.      0     Dut-B
1.2.3.2                                               0       0
1.4.6.0/24                        30         1/Int.      0     Dut-E
1.3.5.5                                               0       0
10.20.1.1/32                      10         1/Int.      0     Dut-A
1.1.3.1                                               0       0
10.20.1.2/32                      10         1/Int.      0     Dut-B
1.2.3.2                                               0       0
10.20.1.3/32                      0          1/Int.      0     Dut-C
0.0.0.0                                               0       0
10.20.1.4/32                      20         1/Int.      0     Dut-B
1.2.3.2                                               0       0
10.20.1.4/32                      20         1/Int.      0     Dut-E
1.3.5.5                                               0       0
10.20.1.5/32                      10         1/Int.      0     Dut-E
1.3.5.5                                               0       0
10.20.1.6/32                      30         1/Int.      0     Dut-B
1.2.3.2                                               0       0
10.20.1.6/32                      30         1/Int.      0     Dut-E
1.3.5.5                                               0       0
-----------------------------------------------------------------------
No. of Routes: 17
Flags: L = LFA nexthop available
-----------------------------------------------------------------------
*A:Dut-C#
*A:Dut-B#
*A: show router isis routes
-----------------------------------------------------------------------
Route Table
-----------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Prefix/Flags</th>
<th>Metric</th>
<th>Lvl/Typ</th>
<th>Ver.</th>
<th>SysID/Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.1.2/32</td>
<td>0</td>
<td>1/Int.</td>
<td>3</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.20.1.3/32</td>
<td>10</td>
<td>2/Int.</td>
<td>2</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.1.4/32</td>
<td>10</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.2.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>3</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.20.3.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>3</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.20.5.0/24</td>
<td>20</td>
<td>2/Int.</td>
<td>2</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.6.0/24</td>
<td>20</td>
<td>2/Int.</td>
<td>4</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.9.0/24</td>
<td>20</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.10.0/24</td>
<td>30</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.3.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------
Show Commands

Routes : 11
Flags: L = LFA nexthop available

*A:Dut-B#

*A:Dut-B# show router isis routes alternative

Route Table

<table>
<thead>
<tr>
<th>Prefix [Flags]</th>
<th>Metric</th>
<th>Lvl/Typ</th>
<th>Ver.</th>
<th>SysID/Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NextHop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt-Nexthop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt-Metric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.2/32</td>
<td>0</td>
<td>1/Int.</td>
<td>3</td>
<td>Dut-B</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.1.3/32</td>
<td>10</td>
<td>2/Int.</td>
<td>2</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.3.3</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.3.3 (lfa)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.4/32</td>
<td>10</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.4.4</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.1.5/32</td>
<td>20</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.3.3</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.1.6/32</td>
<td>20</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.4.4</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.3.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>3</td>
<td>Dut-B</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.4.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>3</td>
<td>Dut-B</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.5.0/24</td>
<td>20</td>
<td>2/Int.</td>
<td>2</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.3.3</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.6.0/24</td>
<td>20</td>
<td>2/Int.</td>
<td>4</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.4.4</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.9.0/24</td>
<td>20</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-D</td>
</tr>
<tr>
<td>10.20.4.4</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10.20.10.0/24</td>
<td>30</td>
<td>2/Int.</td>
<td>3</td>
<td>Dut-C</td>
</tr>
<tr>
<td>10.20.3.3</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Routes : 11
Flags: LFA = Loop-Free Alternate nexthop

*A:Dut-B#

*A:Dut-A# show router isis routes

Route Table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Metric</th>
<th>Lvl/Typ</th>
<th>Ver.</th>
<th>SysID/Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NextHop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 10.10.1.0/24 | 10 | 1/Int. 5 | Dut-A |
| 0.0.0.0      | 0  |          |       |
| 10.10.3.0/24 | 20 | 1/Int. 137 | Dut-B |
| 10.10.1.2    | 0  |          |       |
| 10.10.4.0/24 | 20 | 1/Int. 137 | Dut-B |
| 10.10.1.2    | 0  |          |       |
| 10.10.5.0/24 | 30 | 1/Int. 137 | Dut-B |
| 10.10.1.2    | 0  |          |       |
| 10.10.9.0/24 | 60 | 1/Int. 52 | Dut-F |
| 10.10.21.6   | 0  |          |       |</p>
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Metric</th>
<th>Interface</th>
<th>Status</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.0/24</td>
<td>70</td>
<td>1/Int.</td>
<td>52</td>
<td>Dut-F</td>
</tr>
<tr>
<td>10.10.12.0/24</td>
<td>20</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.13.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>7</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.14.0/24</td>
<td>20</td>
<td>1/Int.</td>
<td>52</td>
<td>Dut-F</td>
</tr>
<tr>
<td>10.10.21.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.15.0/24</td>
<td>30</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.16.0/24</td>
<td>30</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.21.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>48</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.22.0/24</td>
<td>30</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.1/32</td>
<td>0</td>
<td>1/Int.</td>
<td>10</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.2/32</td>
<td>10</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.3/32</td>
<td>20</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.4/32</td>
<td>20</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.5/32</td>
<td>30</td>
<td>1/Int.</td>
<td>137</td>
<td>Dut-B</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.6/32</td>
<td>10</td>
<td>1/Int.</td>
<td>52</td>
<td>Dut-F</td>
</tr>
<tr>
<td>10.10.21.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:100/120</td>
<td>10</td>
<td>1/Int.</td>
<td>5</td>
<td>Dut-A</td>
</tr>
<tr>
<td>::</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.1.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>65</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.13.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>65</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.21.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>65</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.1/32</td>
<td>0</td>
<td>1/Int.</td>
<td>65</td>
<td>Dut-A</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:100/120</td>
<td>10</td>
<td>1/Int.</td>
<td>65</td>
<td>Dut-A</td>
</tr>
<tr>
<td>::</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.1.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>116</td>
<td>Dut-B</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10.13.0/24</td>
<td>10</td>
<td>1/Int.</td>
<td>116</td>
<td>Dut-B</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.1/32</td>
<td>0</td>
<td>1/Int.</td>
<td>130</td>
<td>Dut-B</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:300/120</td>
<td>20</td>
<td>1/Int.</td>
<td>116</td>
<td>Dut-B</td>
</tr>
<tr>
<td>FE80::2281:1FF:FE01:1-&quot;ip-3FFE::A0A:101&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:400/120</td>
<td>20</td>
<td>1/Int.</td>
<td>116</td>
<td>Dut-B</td>
</tr>
<tr>
<td>FE80::2281:1FF:FE01:1-&quot;ip-3FFE::A0A:101&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:500/120</td>
<td>30</td>
<td>1/Int.</td>
<td>130</td>
<td>Dut-B</td>
</tr>
<tr>
<td>FE80::2281:1FF:FE01:1-&quot;ip-3FFE::A0A:101&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:900/120</td>
<td>60</td>
<td>1/Int.</td>
<td>71</td>
<td>Dut-F</td>
</tr>
<tr>
<td>FE80::2285:FFFF:FE00:0-&quot;ies-1-3FFE::A0A:1501&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:A00/120</td>
<td>70</td>
<td>1/Int.</td>
<td>71</td>
<td>Dut-F</td>
</tr>
<tr>
<td>FE80::2285:FFFF:FE00:0-&quot;ies-1-3FFE::A0A:1501&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:C00/120</td>
<td>20</td>
<td>1/Int.</td>
<td>116</td>
<td>Dut-B</td>
</tr>
<tr>
<td>FE80::2281:1FF:FE01:1-&quot;ip-3FFE::A0A:101&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:D00/120</td>
<td>10</td>
<td>1/Int.</td>
<td>65</td>
<td>Dut-A</td>
</tr>
<tr>
<td>::</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:E00/120</td>
<td>20</td>
<td>1/Int.</td>
<td>71</td>
<td>Dut-F</td>
</tr>
<tr>
<td>FE80::2285:FFFF:FE00:0-&quot;ies-1-3FFE::A0A:1501&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:F00/120</td>
<td>30</td>
<td>1/Int.</td>
<td>130</td>
<td>Dut-B</td>
</tr>
<tr>
<td>FE80::2281:1FF:FE01:1-&quot;ip-3FFE::A0A:101&quot;</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE::A0A:1000/120</td>
<td>30</td>
<td>1/Int.</td>
<td>130</td>
<td>Dut-B</td>
</tr>
</tbody>
</table>
FE80::2281:1FF:FE01:1-"ip-3FFE::A0A:101" 2  
3FFE::A0A:1500/120  10  1/Int. 65  Dut-A  
::  2  
3FFE::A0A:1600/120  30  1/Int. 127  Dut-B  
FE80::2281:1FF:FE01:1-"ip-3FFE::A0A:101" 2  
3FFE::A14:101/128  0  1/Int. 65  Dut-A  
::  2  
3FFE::A14:102/128  10  1/Int. 116  Dut-B  
FE80::2281:1FF:FE01:1-"ip-3FFE::A0A:101" 2  
3FFE::A14:103/128  20  1/Int. 130  Dut-B  
FE80::2281:1FF:FE01:1-"ip-3FFE::A0A:101" 2  
3FFE::A14:104/128  30  1/Int. 130  Dut-B  
FE80::2281:1FF:FE01:1-"ip-3FFE::A0A:101" 2  
3FFE::A14:105/128  10  1/Int. 71  Dut-F  
FE80::2285:FFFF:FE00:0-"ies-1-3FFE::A0A:1501" 2  

Routes : 43

A:Dut-A#

*A:SRR# show router isis routes 1.1.1.0/24

Route Table

Prefix[Flags] Metric Lvl/Typ Ver. SysID/Hostname
NextHop MT AdminTag

1.1.1.0/24 [L] 7540 1/Int. 6109 SRL
60.60.1.1 0 0

No. of Routes: 1
Flags: L = LFA nexthop available

A:SRR# show router isis routes 1.1.1.0/24 alternative

Route Table

Prefix[Flags] Metric Lvl/Typ Ver. SysID/Hostname
NextHop MT AdminTag
Alt-Nexthop Alt-Metric Alt-Type

1.1.1.0/24 7550 1/Int. 6114 SRL
60.60.1.1 0 0
11.22.12.4 (LFA) 16784764 linkProtection

No. of Routes: 1
Flags: LFA = Loop-Free Alternate nexthop

A:SRR#

*A:SRR# show router isis routes 1.1.1.0/24
**IS-IS**

1.1.1.0/24 [L]                    7540       1/Int.     6109   SRL
60.60.1.1                       0           0
-------------------------------------------------------------------------------
No. of Routes: 1
Flags: L = LFA nexthop available
-------------------------------------------------------------------------------
*A:SRR# show router isis routes 1.1.1.0/24 alternative
-------------------------------------------------------------------------------
Route Table
-------------------------------------------------------------------------------
Prefix[Flags]                Metric   Lvl/Typ    Ver.   SysID/Hostname
NextHop                      MT        AdminTag  
Alt-Nexthop                   Alt-Metric Alt-Type
-------------------------------------------------------------------------------
1.1.1.0/24                        7550       1/Int.     6114   SRL
60.60.1.1                       0           0
11.22.12.4 (LFA)                16784764    linkProtection
-------------------------------------------------------------------------------
No. of Routes: 1
Flags: LFA = Loop-Free Alternate nexthop
-------------------------------------------------------------------------------
*A:SRR#

**spf**

**Syntax**

spf [detail] [lf

**Context**

show>router>isis

**Description**

This command displays information regarding SPF calculation.

**Output**

**Router ISIS Output** — The following table describes the output fields for ISIS SPF.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>The route node and mask.</td>
</tr>
<tr>
<td>Interface</td>
<td>The outgoing interface name for the route.</td>
</tr>
<tr>
<td>Metric</td>
<td>The route’s metric.</td>
</tr>
<tr>
<td>Nexthop</td>
<td>The system ID of nexthop or hostname.</td>
</tr>
<tr>
<td>SNPA</td>
<td>The Subnetwork Points of Attachment (SNPA) where a router is physically attached to a subnetwork.</td>
</tr>
</tbody>
</table>

**Sample Output**

linus-212>show>router>isis# show router isis spf
-------------------------------------------------------------------------------
Path Table
-------------------------------------------------------------------------------
Node Interface Nexthop
linus-211.00 ab linus-211
x linux-222 *
linus-216.00 ab linus-211
linus-216.00 ab linus-211
linus-216.01 ab linus-211

A:ALA-A# show router isis spf
Path Table

<table>
<thead>
<tr>
<th>Node</th>
<th>Interface</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>abr_sjc.00</td>
<td>if2/2</td>
<td>dist_oak</td>
</tr>
<tr>
<td>abr_sjc.00</td>
<td>if2/3</td>
<td>dist_nj</td>
</tr>
<tr>
<td>dist_oak.00</td>
<td>if2/2</td>
<td>dist_oak</td>
</tr>
<tr>
<td>dist_nj.00</td>
<td>if2/3</td>
<td>dist_nj</td>
</tr>
<tr>
<td>acc_nj.00</td>
<td>if2/3</td>
<td>dist_nj</td>
</tr>
<tr>
<td>acc_line.00</td>
<td>if2/3</td>
<td>dist_nj</td>
</tr>
<tr>
<td>core_west.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>core_east.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>asbr_west.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>asbr_east.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>abr_sjc.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>abr_sjc.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>abr_lax.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>abr_lax.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>abr_lax.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>dist_arl.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>dist_arl.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>core_west.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>core_east.00</td>
<td>if2/5</td>
<td>core_east</td>
</tr>
<tr>
<td>asbr_west.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>asbr_east.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>acc_arl.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>acc_arl.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>acc_arl.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>acc_arl.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>if2/5</td>
<td>asbr_east</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>lag-1</td>
<td>core_east</td>
</tr>
<tr>
<td>acc_msq.00</td>
<td>if2/8</td>
<td>core_west</td>
</tr>
</tbody>
</table>

A:ALA-A#

A:ALA-A# show router isis spf detail
Path Table

<table>
<thead>
<tr>
<th>Node</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>abr_sjc.00</td>
<td>20</td>
</tr>
</tbody>
</table>
### Path Table

#### Level 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Interface</th>
<th>SNPA</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL.00</td>
<td>aps-10</td>
<td>n/a</td>
<td>1000</td>
</tr>
<tr>
<td>SRU4.00</td>
<td>sru4-3</td>
<td>16778214</td>
<td></td>
</tr>
<tr>
<td>ESS-7.00</td>
<td>aps-10</td>
<td>n/a</td>
<td>16779214</td>
</tr>
<tr>
<td>ESS-7.09</td>
<td>sru4-3</td>
<td>33555428</td>
<td></td>
</tr>
</tbody>
</table>

---

```bash
*A:SRR>config>router>isis# show router isis spf lfa detail
```

```plaintext

<table>
<thead>
<tr>
<th>Node</th>
<th>Interface</th>
<th>SNPA</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL.00</td>
<td>aps-10</td>
<td>n/a</td>
<td>1000</td>
</tr>
<tr>
<td>SRU4.00</td>
<td>sru4-3</td>
<td>16778214</td>
<td></td>
</tr>
<tr>
<td>ESS-7.00</td>
<td>aps-10</td>
<td>n/a</td>
<td>16779214</td>
</tr>
<tr>
<td>ESS-7.09</td>
<td>sru4-3</td>
<td>33555428</td>
<td></td>
</tr>
</tbody>
</table>
```

---

```
A:ALA-A#
```

---

```
*A:SRR>config>router>isis# show router isis spf lfa detail
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>SNPA</th>
<th>Node</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>sru4-3</td>
<td>n/a</td>
<td>ESS-7.0A</td>
<td>16778214</td>
</tr>
<tr>
<td>sru4-3</td>
<td>n/a</td>
<td>ESS-7.0B</td>
<td>16778214</td>
</tr>
<tr>
<td>sru4-3</td>
<td>n/a</td>
<td>SRC.00</td>
<td>1000</td>
</tr>
<tr>
<td>src-asap-2</td>
<td>n/a</td>
<td>SRC.01</td>
<td>2000</td>
</tr>
<tr>
<td>aps-10</td>
<td>n/a</td>
<td>SRC.02</td>
<td>16778214</td>
</tr>
<tr>
<td>src-asap-2</td>
<td>n/a</td>
<td>SRC.03</td>
<td>1063</td>
</tr>
<tr>
<td>aps-10</td>
<td>n/a</td>
<td>SRL.00</td>
<td>1000</td>
</tr>
<tr>
<td>if-30.30.1.2</td>
<td>n/a</td>
<td>SRL.00</td>
<td>1000</td>
</tr>
<tr>
<td>if-40.40.1.2</td>
<td>n/a</td>
<td>SRL.00</td>
<td>1000</td>
</tr>
<tr>
<td>if-30.30.1.2</td>
<td>n/a</td>
<td>SRL.09</td>
<td>2000</td>
</tr>
<tr>
<td>if-30.30.1.2</td>
<td>n/a</td>
<td>SRL.0A</td>
<td>2000</td>
</tr>
<tr>
<td>if-40.40.1.2</td>
<td>n/a</td>
<td>SRL.0A</td>
<td>2000</td>
</tr>
<tr>
<td>if-30.30.1.2</td>
<td>n/a</td>
<td>SRL.0A</td>
<td>2000</td>
</tr>
<tr>
<td>Node</td>
<td>Nexthop</td>
<td>Metric</td>
<td>Interface</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>SRL.0A</td>
<td>SRL</td>
<td>2000</td>
<td>if-40.40.1.2</td>
</tr>
<tr>
<td>SRU4.00</td>
<td>SRL</td>
<td>2000</td>
<td>if-30.30.1.2</td>
</tr>
<tr>
<td>SRU4.00</td>
<td>SRL</td>
<td>2000</td>
<td>if-40.40.1.2</td>
</tr>
<tr>
<td>SRU4.14</td>
<td>SRL</td>
<td>16778214</td>
<td>germ-1</td>
</tr>
<tr>
<td>ESS-7.00</td>
<td>SRL</td>
<td>1000</td>
<td>ess-7-1</td>
</tr>
<tr>
<td>ESS-7.05</td>
<td>SRL</td>
<td>16778214</td>
<td>if-30.30.1.2</td>
</tr>
<tr>
<td>ESS-7.05</td>
<td>SRL</td>
<td>16778214</td>
<td>if-40.40.1.2</td>
</tr>
<tr>
<td>ESS-7.06</td>
<td>SRL</td>
<td>16778214</td>
<td>aps-1</td>
</tr>
<tr>
<td>ESS-7.06</td>
<td>SRL</td>
<td>16778214</td>
<td>if-30.30.1.2</td>
</tr>
<tr>
<td>ESS-7.06</td>
<td>SRL</td>
<td>16778214</td>
<td>if-40.40.1.2</td>
</tr>
<tr>
<td>ESS-7.06</td>
<td>SRL</td>
<td>16778214</td>
<td>ess-7-1</td>
</tr>
<tr>
<td>Nexthop</td>
<td>Node</td>
<td>Interface</td>
<td>Metric</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>ESS-7</td>
<td>ESS-7.0C</td>
<td>ess-7-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>ESS-7.0D</td>
<td>ess-7-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>ESS-7.0E</td>
<td>ess-7-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>ESS-7.12</td>
<td>germ-1</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>SRC.00</td>
<td>src-asap-1</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>SRC.05</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.06</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.07</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.08</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.09</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.0A</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.0B</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
<tr>
<td></td>
<td>SRC.0C</td>
<td>src-asap-1</td>
<td>16778214</td>
</tr>
</tbody>
</table>
Nexthop : SRC
Node : SRC.0D  Metric : 16778214
Interface : src-asap-1  SNPA : n/a
Nexthop : SRC
Node : SRC.0E  Metric : 16778214
Interface : src-asap-1  SNPA : n/a
Nexthop : SRC
Node : SROne.00  Metric : 1000
Interface : germ-1  SNPA : n/a
Nexthop : SROne
LFA intf : aps-1  LFA Metric : 2000
LFA nh : SRL  LFA type : linkProtection

*A:SRR>config>router>isis#

spf-log

Syntax  spf-log [detail]

Context  show>router>isis

Description  This command displays IS-IS SPF log information.

Parameters  detail — Displays detailed logged information.

Output  Router ISIS SPF Log Output — The following table describes the IS-IS SPF log output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>When</td>
<td>Displays the timestamp when the SPF run started on the system.</td>
</tr>
<tr>
<td>Duration</td>
<td>Displays the time (in hundredths of a second) required to complete the SPF run.</td>
</tr>
<tr>
<td>L1 Nodes</td>
<td>Displays the number of Level 1 nodes involved in the SPF run.</td>
</tr>
<tr>
<td>L2 Nodes</td>
<td>Displays the number of Level 2 nodes involved in the SPF run.</td>
</tr>
<tr>
<td>Event Count</td>
<td>Displays the number of SPF events that triggered the SPF calculation.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the SPF type, Reg (regular) or Lfa (loop free alternative).</td>
</tr>
<tr>
<td>Trigger LSP</td>
<td>Displays the LSP that triggered the SPF run.</td>
</tr>
<tr>
<td>Reason</td>
<td>Displays the reason(s) for the SPF run.</td>
</tr>
</tbody>
</table>
Show Commands

**Sample Output**

*A:Dut-A# show router isis spf-log

```
ISIS SPF Log

When : 10/01/2011 03:40:25 Duration : <0.01s
L1 Nodes : 1 L2 Nodes : 1
Trigger LSP: SetupCLI.00-00 Event Count : 78
SPF Type : Reg
Reason : LSPCONTENT
```

*A:Dut-A#

*A:SetupCLI# show router isis spf-log detail

```
ISIS SPF Log

When : 10/01/2011 03:40:25 Duration : <0.01s
L1 Nodes : 1
L2 Nodes : 1
Trigger LSP: SetupCLI.00-00 Event Count : 78
SPF Type : Reg
Reason : LSPCONTENT
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWADJ</td>
<td>An adjacency changed.</td>
</tr>
<tr>
<td>NEWLSP</td>
<td>A new LSP was received.</td>
</tr>
<tr>
<td>NEWAREA</td>
<td>An area changed.</td>
</tr>
<tr>
<td>NEWREACH</td>
<td>A prefix changed.</td>
</tr>
<tr>
<td>ECMPCHANGED</td>
<td>An ECMP path changed.</td>
</tr>
<tr>
<td>NEWMETRIC</td>
<td>A prefix metric changed.</td>
</tr>
<tr>
<td>RESTART</td>
<td>The graceful restart exited.</td>
</tr>
<tr>
<td>LSPEXPIRED</td>
<td>An LSP expired.</td>
</tr>
<tr>
<td>DBCHANGED</td>
<td>The LSP database was cleared by an admin.</td>
</tr>
<tr>
<td>LSPCONTENT</td>
<td>The content of an LSP changed.</td>
</tr>
<tr>
<td>NEWPREP</td>
<td>The external route preference changed.</td>
</tr>
<tr>
<td>NEWNLPID</td>
<td>The routed protocols (IPv4 or IPv6) chane</td>
</tr>
<tr>
<td>MANUALREQ</td>
<td>An SPF calculation was requested by an a</td>
</tr>
<tr>
<td>ADMINTAGCHANGED</td>
<td>An administrative tag changed.</td>
</tr>
<tr>
<td>TUNNELCHANGED</td>
<td>An MPLS tunnel changed.</td>
</tr>
</tbody>
</table>

Label Description (Continued)
Trigger LSP: SetupCLI.00-00                      Event Count : 1
SPF Type   : Reg
Reason     : LSPCONTENT

When       : 10/01/2011 03:40:25                  Duration : <0.01s
L1 Nodes   : 1                                     L2 Nodes : 1
Trigger LSP: SetupCLI.00-00                      Event Count : 25
SPF Type   : Reg
Reason     : NEWAREA NEWREACH LSPCONTENT MANUALREQ
When       : 10/01/2011 03:40:27                  Duration : <0.01s
L1 Nodes   : 0                                     L2 Nodes : 0
Trigger LSP: SetupCLI.00-00                      Event Count : 1
SPF Type   : Reg
Reason     : LSPCONTENT

When       : 10/01/2011 03:40:25                  Duration : <0.01s
L1 Nodes   : 1                                     L2 Nodes : 1
Trigger LSP: SetupCLI.00-00                      Event Count : 1
SPF Type   : Lfa
Reason     : LSPCONTENT

When       : 10/01/2011 03:40:27                  Duration : <0.01s
L1 Nodes   : 1                                     L2 Nodes : 1
Trigger LSP: SetupCLI.00-00                      Event Count : 75
SPF Type   : Reg
Reason     : LSPCONTENT

When       : 10/01/2011 03:40:27                  Duration : <0.01s
L1 Nodes   : 1                                     L2 Nodes : 1
Trigger LSP: SetupCLI.00-00                      Event Count : 1
SPF Type   : Reg
Reason     : LSPCONTENT

A:SetupCLI#

A:ALA-48# show router isis spf-log

-- IS-IS SPF Log
--
-- When       Duration       L1 Nodes   L2 Nodes   Event Count
-- 01/30/2007 11:01:54          <0.01s     1          1          3
--
-- Log Entries : 1
--
A:ALA-48#

statistics

Syntax    statistics
Context   show>router>isis
Description This command displays information regarding IS-IS traffic statistics.
Output

IS-IS Statistics Output — This table describes IS-IS statistics output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge Initiated</td>
<td>The number of times purges have been initiated.</td>
</tr>
<tr>
<td>SPF Runs</td>
<td>The number of times shortest path first calculations have been made.</td>
</tr>
<tr>
<td>LSP Regens</td>
<td>The count of LSP regenerations.</td>
</tr>
<tr>
<td>Requests</td>
<td>The number of CSPF requests made to the protocol.</td>
</tr>
<tr>
<td>Paths Found</td>
<td>The number of responses to CSPF requests for which paths satisfying the constraints were found.</td>
</tr>
<tr>
<td>PDU Type</td>
<td>The PDU type.</td>
</tr>
<tr>
<td>Received</td>
<td>The count of link state PDUs received by this instance of the protocol.</td>
</tr>
<tr>
<td>Processed</td>
<td>The count of link state PDUs processed by this instance of the protocol.</td>
</tr>
<tr>
<td>Dropped</td>
<td>The count of link state PDUs dropped by this instance of the protocol.</td>
</tr>
<tr>
<td>Sent</td>
<td>The count of link state PDUs sent out by this instance of the protocol.</td>
</tr>
<tr>
<td>Retransmitted</td>
<td>The count of link state PDUs that had to be retransmitted by this instance of the protocol.</td>
</tr>
</tbody>
</table>

Sample Output

*A:SRR>config>router>isis# show router isis statistics
===============================================================================
ISIS Statistics
===============================================================================
ISIS Instance : 0 SPF Runs : 6274
Purge Initiated : 2654 LSP Regens. : 250706

CSPF Statistics
Requests : 4991 Request Drops : 0
Paths Found : 20 Paths Not Found: 4971

LFA Statistics
LFA Runs : 6274

-------------------------------------------------------------------------------
PDU Type   Received   Processed  Dropped    Sent       Retransmitted
-------------------------------------------------------------------------------
LSP        9997718    9997718    0          7060383    0
IIH        149110     149110     0          171964     0
CSNP       411712     411172     0          204861     0

Label Description

Purge Initiated
The number of times purges have been initiated.

SPF Runs
The number of times shortest path first calculations have been made.

LSP Regens
The count of LSP regenerations.

Requests
The number of CSPF requests made to the protocol.

Paths Found
The number of responses to CSPF requests for which paths satisfying the constraints were found.

PDU Type
The PDU type.

Received
The count of link state PDUs received by this instance of the protocol.

Processed
The count of link state PDUs processed by this instance of the protocol.

Dropped
The count of link state PDUs dropped by this instance of the protocol.

Sent
The count of link state PDUs sent out by this instance of the protocol.

Retransmitted
The count of link state PDUs that had to be retransmitted by this instance of the protocol.
status

Syntax status

Context show>router>isis

Description This command displays information regarding IS-IS status.

Output IS-IS Status Output — The following table describes IS-IS status output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System-id</td>
<td>Neighbor system ID.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up — IS-IS is administratively up.</td>
</tr>
<tr>
<td></td>
<td>Down — IS-IS is administratively down.</td>
</tr>
<tr>
<td>Ipv4 Routing</td>
<td>Enabled — IPv4 routing is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — IPv4 routing is disabled.</td>
</tr>
<tr>
<td>Ipv6 Routing</td>
<td>Disabled — IPv6 routing is disabled.</td>
</tr>
<tr>
<td></td>
<td>Enabled, Native — IPv6 routing is enabled.</td>
</tr>
<tr>
<td></td>
<td>Enabled, Multi-topology — Multi-topology TLVs for IPv6 routing is enabled.</td>
</tr>
<tr>
<td>Multi-topology</td>
<td>Disabled — Multi-topology TLVs for IPv6 routing is disabled.</td>
</tr>
<tr>
<td></td>
<td>Enabled — Multi-topology TLVs for IPv6 routing is enabled.</td>
</tr>
<tr>
<td>Last Enabled</td>
<td>The date/time when IS-IS was last enabled in the router.</td>
</tr>
<tr>
<td>Level Capability</td>
<td>The routing level for the IS-IS routing process.</td>
</tr>
<tr>
<td>Authentication Check</td>
<td>True — All IS-IS mismatched protocol packets are rejected.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>False — Authentication is performed on received IS-IS protocol packets but mismatched packets are not rejected.</td>
</tr>
<tr>
<td>Traffic Engineering</td>
<td>Enabled — TE is enabled for the router.</td>
</tr>
</tbody>
</table>
### Sample Output

```
A:SetupCLI# show router isis status
===
ISIS Status
System Id : 0100.2003.0040
Admin State : Up
Ipv4 Routing : Enabled
Ipv6 Routing : Disabled
Last Enabled : 10/01/2011 04:11:47
Level Capability : L1L2
Authentication Check : True
Authentication Type : MD5
CSNP-Authentication : Enabled
HELLO-Authentication : Enabled
PSNP-Authentication : Enabled
Traffic Engineering : Enabled
Graceful Restart : Enabled
GR Helper Mode : Enabled
LSP Lifetime : 2400
LSP Wait : 120 sec (Max) 0 sec (Initial) 1 sec (Second)
LSP MTU Size : 9190 (Config) 9190 (Oper)
Adjacency Check : strict
L1 Auth Type : password
L2 Auth Type : md5
L1 CSNP-Authenticati*: Enabled
L1 HELLO-Authenticati*: Enabled
L1 PSNP-Authenticati*: Enabled
L1 Preference : 30
L2 Preference : 22
L1 Ext. Preference : 40
L2 Ext. Preference : 34
L1 Wide Metrics : Enabled
```
L2 Wide Metrics : Enabled
L1 LSDB Overload : Disabled
L2 LSDB Overload : Disabled
L1 LSPs : 1
L2 LSPs : 1
L1 Default Metric : 10
L2 Default Metric : 10
L1 IPv6 Def Metric : 10
L2 IPv6 Def Metric : 10
Last SPF : 10/01/2011 04:11:49
SPF Wait : 120 sec (Max) 1000 ms (Initial) 1000 ms (Second)
Export Policies : None
Multicast Import : None
Multi-topology : Disabled
Advertise-Passive-On* : Enabled
Suppress Default : Enabled
Default Route Tag : 1
Area Addresses : 49.0001
: 47.1234.1234.1234.1234.1234.ffff
Ldp Sync Admin State : Down
LDP-over-RSVP : Enabled
RSVP-Shortcut : Enabled
Advertise-Tunnel-Link : Disabled
Export Limit : 0
Exp Lmt Log Percent : 0
Total Exp Routes(L1) : 0
Total Exp Routes(L2) : 0
IID TLV : Enabled
All-L1-MacAddr : 01:80:c2:00:00:14
All-L2-MacAddr : 01:80:c2:00:00:15
Loopfree-Alternate : Enabled
L1 LFA : Included
L2 LFA : Included

* indicates that the corresponding row element may have been truncated.

Task 113366: IPFRR

*A:SRR>config>router>isis# show router isis status

System Id : 1100.2000.1002
Admin State : Up
Ipv4 Routing : Enabled
Ipv6 Routing : Enabled, Native
Last Enabled : 07/25/2011 18:11:34
Level Capability : L1L2
Authentication Check : True
Authentication Type : None
CSNP-Authentication : Enabled
HELLO-Authentication : Enabled
PSNP-Authentication : Enabled
Traffic Engineering : Enabled
Graceful Restart : Disabled
**GR Helper Mode**       : Disabled
**LSP Lifetime**         : 350
**LSP Wait**             : 5 sec (Max)   0 sec (Initial)   1 sec (Second)
**LSP MTU Size**         : 1492  (Config)  1492  (Oper)
**Adjacency Check**     : loose
**L1 Auth Type**         : none
**L2 Auth Type**         : none
**L1 CSNP-Authenticati*: Enabled
**L1 HELLO-Authenticat*: Enabled
**L1 PSNP-Authenticati*: Enabled
**L1 Preference**        : 15
**L2 Preference**        : 18
**L1 Ext. Preference**   : 160
**L2 Ext. Preference**   : 165
**L1 Wide Metrics**      : Enabled
**L2 Wide Metrics**      : Enabled
**L1 LSDB Overload**     : Disabled
**L2 LSDB Overload**     : Disabled
**L1 LSPs**              : 86
**L2 LSPs**              : 113
**L1 Default Metric**    : 10
**L2 Default Metric**    : 10
**L1 IPv6 Def Metric**   : 10
**L2 IPv6 Def Metric**   : 10
**Last SPF**             : 07/26/2011 15:27:09
**SPF Wait**             : 10 sec (Max)   1000 ms (Initial)   1000 ms (Second)
**Export Policies**      : isis_from_ALL_to_0
**Multicast Import**     : both
**Multi-topology**       : Enabled
**Advertise-Passive-On*: Disabled
**Suppress Default**    : Disabled
**Default Route Tag**    : None
**Area Addresses**       : 49.0001
**Ldp Sync Admin State** : Up
**LDP-over-RSVP**        : Enabled
**RSVP-Shortcut**        : Disabled
**Advertise-Tunnel-Link**: Disabled
**Export Limit**         : 0
**Exp Lmt Log Percent**  : 0
**Total Exp Routes(L1)** : 0
**Total Exp Routes(L2)** : 0
**IID TLV**              : Disabled
**All-L1-MacAddr**       : 01:80:c2:00:00:14
**All-L2-MacAddr**       : 01:80:c2:00:00:15
**Loopfree-Alternate**   : Enabled

* indicates that the corresponding row element may have been truncated.

*A:SRR>config>router>isis#

The following two examples illustrate sample output and detail sample output with LFA policies configured in the configure router ISIS context.

*A:SRR# show router isis status

```
ISIS Status

System Id : 0100.2000.1003
ISIS Cfg Router Id : 0.0.0.0
```
ISIS Oper Router Id : 10.20.1.3
Admin State : Up
Oper State : Up
Ipv4 Routing : Enabled
Ipv6 Routing : Disabled
Mcast Ipv4 Routing : Enabled, Native
Mcast Ipv6 Routing : Disabled
Last Enabled : 04/29/2014 15:14:33
Level Capability : L1
Authentication Check : True
Auth Keychain : Disabled
Authentication Type : None
CSNP-Authentication : Enabled
HELLO-Authentication : Enabled
PSNP-Authentication : Enabled
Traffic Engineering : Disabled
Graceful Restart : Disabled
GR Helper Mode : Disabled
Overload-On-Boot Tim* : 0
Overload Max-Metric : False
Overload-On-Boot Max* : False
LSP Lifetime : 1200
LSP Refresh Interval : 600
LSP Wait : 5 sec (Max) 0 sec (Initial) 1 sec (Second)
LSP MTU Size : 1492 (Config) 1492 (Oper)
Adjacency Check : loose
L1 Auth Keychain : Disabled
L1 Auth Type : none
L1 CSNP-Authentication : Enabled
L1 HELLO-Authentication : Enabled
L1 PSNP-Authentication : Enabled
L1 Preference : 15
L1 Ext. Preference : 160
L1 Wide Metrics : Enabled
L1 LSDB Overload : Disabled
L1 LSPs : 5
L1 Default Metric : 10
L2 IPv6 Def Metric : 10
L2 Mcast IPv4 Def Me* : 10
L2 Mcast IPv6 Def Me* : 10
SPF Wait : 10 sec (Max) 1000 ms (Initial) 1000 ms (Second)
Multi-topology : Disabled
IPV6-Unicast MT2 : Disabled
IPV4-Multicast MT3 : Disabled
IPV6-Multicast MT4 : Disabled
Area Addresses : 49.0001
Total Exp Routes(L1) : 1
IID TLV : Disabled
All-L1-MacAddr : 01:80:c2:00:00:14
L2 Auth Keychain : Disabled
L2 Auth Type : none
L2 CSNP-Authentication : Enabled
L2 HELLO-Authentication : Enabled
L2 PSNP-Authentication : Enabled
L2 Preference : 18
L2 Ext. Preference : 165
L2 Wide Metrics : Disabled
L2 LSDB Overload : Disabled
L2 LSPs : 0
L2 Default Metric : 10
L2 IPv6 Def Metric : 10
L2 Mcast IPv4 Def Me* : 10
L2 Mcast IPv6 Def Me* : 10
Export Policies : static
LFA Policies : pol1
   : pol2
   : pol3
   : pol4
   : pol5
Multicast Import : None
Advertise-Passive-On*: Disabled
Suppress Default : Disabled
Default Route Tag : None
Ldp Sync Admin State : Up
LDP-over-RSVP : Disabled
RSVP-Shortcut : Disabled
Advertise-Tunnel-Link: Disabled
Export Limit : 0
Exp Lmt Log Percent : 0
Total Exp Routes(L2) : 0
All-L2-MacAddr : 01:80:c2:00:00:15
Loopfree-Alternate : Enabled
L1 LFA : Included
L2 LFA : Included
Advertise Router Cap : disable
Hello Padding : disable

* indicates that the corresponding row element may have been truncated.
*A:SRR#

*A:SRR# show router isis interface "DUTC_TO_DUTE.1.0" detail

ISIS Interfaces

Interface : DUTC_TO_DUTE.1.0 Level Capability: L1L2
Oper State : Up Admin State : Up
Auth Keychain : Disabled
Auth Type : None Auth State : Enabled
Circuit Id : 3 Retransmit Int. : 5
Type : Broadcast LSP Pacing Int. : 100
Oper Type : Broadcast CSNP Int. : 10
Mesh Group : Inactive BER : none
LFA NH Template : "template1" Bfd Enabled : No
Topology : IPv4-Unicast, IPv6-Unicast, IPv4-Multicast, IPv6-Multicast
Te Metric : 0 Te State : Down
Admin Groups : None
Ldp Sync : outOfService Ldp Sync Wait : Disabled
Ldp Timer State : Disabled Ldp Tm Left : 0
Route Tag : None LFA : Included

Level : 1 Adjacencies : 0
Desg. IS : Dut-C
Auth Keychain : Disabled
Auth Type : None Metric : 10
Hello Timer : 9 IPv6-Ucast-Met : 10
summary-address

Syntax  
```
summary-address [ip-address [mask]]
```

Context  
```
show>router>isis
```

Description  
Displays ISIS summary addresses.

Output  
**Router ISIS Summary Address Output** — The following table describes the ISIS summary address output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>The IP address.</td>
</tr>
<tr>
<td>Level</td>
<td>Specifies the IS-IS level from which the prefix should be summarized.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-48# show router isis summary-address

ISIS Summary Address

<table>
<thead>
<tr>
<th>Address</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0.0/8</td>
<td>L1</td>
</tr>
<tr>
<td>2.1.0.0/24</td>
<td>L1L2</td>
</tr>
<tr>
<td>3.1.2.3/32</td>
<td>L2</td>
</tr>
</tbody>
</table>

Summary Addresses : 3

A:ALA-48#
```
Show Commands

topology

Syntax  topology [ipv4-unicast | ipv6-unicast | ipv4-multicast | ipv6-multicast] [mt mt-id-number] [lfa] [detail]

Context show>router>isis

Description This command shows IS-IS topology information.

Parameters ipv4-unicast — Displays IPv4 unicast parameters.
ipv6-unicast — Displays IPv6 unicast parameters.
ipv4-multicast — Displays IPv4 multicast parameters.
ipv6-multicast — Displays IPv6 multicast parameters.
mt mt-id-number — Displays multi-topology parameters.

Values 0, 2, 3, 4

lfa — Displays LFA (loop free alternative) information.
detail — Displays detailed topology information.

Output Router ISIS Topology Output — The following table describes the ISIS topology output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Displays the IP address.</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the interface name.</td>
</tr>
<tr>
<td>Nexthop</td>
<td>Displays the nexthop IP address.</td>
</tr>
<tr>
<td>LFA Interface</td>
<td>Displays the LFA interface name.</td>
</tr>
<tr>
<td>LFA Nexthop</td>
<td>Displays the LFA nexthop IP address.</td>
</tr>
</tbody>
</table>

Sample Output

*A:Dut-A# show router isis topology

Topology Table

+----------------+----------------+----------------+
<table>
<thead>
<tr>
<th>Node</th>
<th>Interface</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-IS IP paths</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dut-B.00</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
<tr>
<td>Dut-B.01</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
<tr>
<td>Dut-CA.00</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
<tr>
<td>Dut-CA.01</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
<tr>
<td>Dut-CA.02</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
<tr>
<td>Dut-CA.05</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
<tr>
<td>Dut-DA.00</td>
<td>ip-3FFE::A0A:101</td>
<td>Dut-B</td>
</tr>
</tbody>
</table>
Dut-DA.01    ip-3FFE::A0A:101    Dut-B
Dut-E.00     ip-3FFE::A0A:101    Dut-B
Dut-F.00     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.01     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.02     ies-1-3FFE::A0A:1501 Dut-F

IS-IS IPv6 paths (MT-ID 2), Level 1

Dut-B.00     ip-3FFE::A0A:101    Dut-B
Dut-B.01     ip-3FFE::A0A:101    Dut-B
Dut-CA.00    ip-3FFE::A0A:101    Dut-B
Dut-CA.01    ip-3FFE::A0A:101    Dut-B
Dut-CA.02    ip-3FFE::A0A:101    Dut-B
Dut-CA.05    ip-3FFE::A0A:101    Dut-B
Dut-DA.00    ip-3FFE::A0A:101    Dut-B
Dut-DA.01    ip-3FFE::A0A:101    Dut-B
Dut-E.00     ip-3FFE::A0A:101    Dut-B
Dut-F.00     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.01     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.02     ies-1-3FFE::A0A:1501 Dut-F

IS-IS IP paths (MT-ID 0), Level 2

Dut-B.00     ip-3FFE::A0A:101    Dut-B
Dut-B.01     ip-3FFE::A0A:101    Dut-B
Dut-CA.00    ip-3FFE::A0A:101    Dut-B
Dut-CA.01    ip-3FFE::A0A:101    Dut-B
Dut-CA.02    ip-3FFE::A0A:101    Dut-B
Dut-CA.05    ip-3FFE::A0A:101    Dut-B
Dut-DA.00    ip-3FFE::A0A:101    Dut-B
Dut-DA.01    ip-3FFE::A0A:101    Dut-B
Dut-E.00     ip-3FFE::A0A:101    Dut-B
Dut-F.00     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.01     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.02     ies-1-3FFE::A0A:1501 Dut-F

IS-IS IPv6 paths (MT-ID 2), Level 2

Dut-B.00     ip-3FFE::A0A:101    Dut-B
Dut-B.01     ip-3FFE::A0A:101    Dut-B
Dut-CA.00    ip-3FFE::A0A:101    Dut-B
Dut-CA.01    ip-3FFE::A0A:101    Dut-B
Dut-CA.02    ip-3FFE::A0A:101    Dut-B
Dut-CA.05    ip-3FFE::A0A:101    Dut-B
Dut-DA.00    ip-3FFE::A0A:101    Dut-B
Dut-DA.01    ip-3FFE::A0A:101    Dut-B
Dut-E.00     ip-3FFE::A0A:101    Dut-B
Dut-F.00     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.01     ies-1-3FFE::A0A:1501 Dut-F
Dut-F.02     ies-1-3FFE::A0A:1501 Dut-F

*A:Dut-A#*
Clear Commands

**isis**

**Syntax**

```
isis [isis-instance]
```

**Context**

```
clear>router>isis
```

**Description**

This command enables the context to clear and reset ISIS protocol entities.

**Parameters**

- `isis-instance` — Specifies the instance ID for the IS-IS instance.
  - **Values**
    - 1 — 31

**adjacency**

**Syntax**

```
adjacency [system-id]
```

**Context**

```
clear>router>isis
```

**Description**

This command clears and resets the entries from the IS-IS adjacency database.

**Parameters**

- `system-id` — When the system ID is entered, only the specified entries are removed from the IS-IS adjacency database.

**database**

**Syntax**

```
database [system-id]
```

**Context**

```
clear>router>isis
```

**Description**

This command removes the entries from the IS-IS link-state database which contains information about PDUs.

**Parameters**

- `system-id` — When the system ID is entered, only the specified entries are removed from the IS-IS link-state database.
### export

**Syntax**  
`export`

**Context**  
`clear>router>isis`

**Description**  
This command re-evaluates route policies participating in the export mechanism, either as importers or exporters of routes.

### spf-log

**Syntax**  
`sfp-log`

**Context**  
`clear>router>isis`

**Description**  
This command clears the SPF log.

### statistics

**Syntax**  
`statistics`

**Context**  
`clear>router>isis`

**Description**  
This command clears and resets IS-IS statistics.
Debug Commands

**isis**

**Syntax**
isis [isis-instance]

**Context**
debug>router

**Description**
This command enables the context to debug IS-IS protocol entities.

**Parameters**
isis-instance — Specifies the IS-IS instance.

**Values**
1 — 31

**adjacency**

**Syntax**
[no] adjacency [ip-int-name | ip-address | nbr-system-id]

**Context**
debug>router>isis

**Description**
This command enables debugging for IS-IS adjacency.
The *no* form of the command disables debugging.

**cspf**

**Syntax**
[no] cspf

**Context**
debug>router>isis

**Description**
This command enables debugging for IS-IS cspf.
The *no* form of the command disables debugging.

**graceful-restart**

**Syntax**
[no] graceful-restart

**Context**
debug>router>isis

**Description**
This command enables debugging for IS-IS graceful-restart.
The *no* form of the command disables debugging.
interface

Syntax  interface [ip-int-name | ip-address]
no interface

Context  debug>router>isis

Description  This command enables debugging for IS-IS interface.
The **no** form of the command disables debugging.

leak

Syntax  leak [ip-address]
no leak

Context  debug>router>isis

Description  This command enables debugging for IS-IS leaks.
The **no** form of the command disables debugging.

lsdb

Syntax  [no] lsdb [level-number] [system-id | lsp-id]

Context  debug>router>isis

Description  This command enables debugging for Link State DataBase (LSDB).
The **no** form of the command disables debugging.

misc

Syntax  [no] misc

Context  debug>router>isis

Description  This command enables debugging for IS-IS misc.
The **no** form of the command disables debugging.
packet

**Syntax**
```
packet [packet-type] [ip-int-name | ip-address] [detail]
```

**Context**
debug>router>isis

**Description**
This command enables debugging for IS-IS packets.
The `no` form of the command disables debugging.

rtm

**Syntax**
```
rtm [ip-address]
no rtm
```

**Context**
debug>router>isis

**Description**
This command enables debugging for IS-IS route table manager (RTM).
The `no` form of the command disables debugging.

spf

**Syntax**
```
[no] spf [level-number] [system-id]
```

**Context**
debug>router>isis

**Description**
This command enables debugging for IS-IS SPF.
The `no` form of the command disables debugging.
In This Chapter

This chapter provides information about the Border Gateway Protocol (BGP) and its implementation in SR-OS.

Topics in this chapter include:

• BGP Overview on page 550
• BGP Sessions on page 551
• BGP Design Concepts on page 559
• BGP Messages on page 564
• BGP Path Attributes on page 569
• BGP Routing Information Base (RIB) on page 589
• BGP Applications on page 610
• BGP Configuration Process Overview on page 619
• Configuration Notes on page 620
Border Gateway Protocol (BGP) is an inter-Autonomous System routing protocol. An Autonomous System (AS) is a set of routers managed and controlled by a common technical administration. BGP-speaking routers establish BGP sessions with other BGP-speaking routers and use these sessions to exchange BGP routes. A BGP route provides information about a network path that can reach an IP prefix or other type of destination. The path information in a BGP route includes the list of ASes that must be traversed to reach the route source; this allows inter-AS routing loops to be detected and avoided. Other path attributes that may be associated with a BGP route include the Local Preference, Origin, Next-Hop, Multi-Exit Discriminator (MED) and Communities. These path attributes can be used to implement complex routing policies.

The primary use of BGP was originally Internet IPv4 routing but multi-protocol extensions to BGP have greatly expanded its applicability. Now BGP is used for many purposes, including:

- Internet IPv6 routing
- Inter-domain multicast support
- L3 VPN signaling (unicast and multicast)
- L2 VPN signaling (BGP auto-discovery for LDP-VPLS, BGP-VPLS, BGP-VPWS, multi-segment pseudowire routing, EVPN)
- Setup of inter-AS MPLS LSPs
- Distribution of flow specification rules (filters/ACLs)

The next sections provide information about BGP sessions, BGP network design, BGP messages and BGP path attributes.
BGP Sessions

A BGP session is a TCP connection formed between two BGP routers over which BGP messages are exchanged. There are three types of BGP sessions: internal BGP (IBGP), external BGP (EBGP), and confederation external BGP (confed-EBGP).

An IBGP session is formed when the two BGP routers belong to the same Autonomous System. Routes received from an IBGP peer are not advertised to other IBGP peers unless the router is a route reflector. The two routers that form an IBGP session are usually not directly connected. Figure 17 shows an example of two Autonomous Systems that use BGP to exchange routes. In this example the router ALA-A forms IBGP sessions with ALA-B and ALA-C.

An EBGP session is formed when the two BGP routers belong to different Autonomous Systems. Routes received from an EBGP peer can be advertised to any other peer. The two routers that form an EBGP session are often directly connected but multi-hop EBGP sessions are also possible. When a route is advertised to an EBGP peer the Autonomous System number(s) of the advertising router are added to the AS Path attribute. In the example of Figure 17 the router ALA-A forms an EBGP session with ALA-D.

A confederation EBGP session is formed when the two BGP routers belong to different member AS of the same confederation. More details about BGP confederations are provided in the section titled BGP Confederations on page 562.

In SR-OS a BGP session is configured using the `neighbor` command. This command accepts either an IPv4 or IPv6 address, which allows the session transport to be IPv4 or IPv6. By default 7x50 is the active side of TCP connections to remote neighbors, meaning that as soon as a session leaves the idle state 7x50 attempts to setup an outgoing TCP connection to the remote neighbor in addition to listening on TCP port 179 for an incoming connection from the peer. If required, a BGP session can be configured for passive mode so that the 7x50 router only listens for an incoming
BGP Sessions

connection and does not attempt to setup the outgoing connection. The source IP address used to 
setup the TCP connection to the peer can be configured explicitly using the \texttt{local-address} 
command. If a \texttt{local-address} is not configured then the source IP address is determined as follows:

- If the neighbor’s IP address belongs to a local subnet the source IP address is this router’s 
  IP address on that subnet
- If the neighbor’s IP address does not belong to a local subnet the source IP address is this 
  router’s system IP address

BGP Session States

A BGP session is in one of the following states at any given moment in time:

- \textit{Idle}. This is the state of a BGP session when it is administratively disabled (with a 
  \texttt{shutdown} command). In this state no incoming TCP connection is accepted from the peer. 
  When the session is administratively enabled it transitions out of the \textit{Idle} state 
  immediately. When the session is restarted automatically it may not leave the \textit{Idle} state 
  immediately if \texttt{damp-peer-oscillations} is configured. \texttt{damp-peer-oscillations} holds a 
  session in the \textit{Idle} state for exponentially increasing amounts of time if the session is 
  unstable and resets frequently.

- \textit{Connect}. This is the state of a BGP session when the router, acting in active mode, is 
  attempting to establish an outbound TCP connection with the remote peer.

- \textit{Active}. This is the state of a BGP session when the router is listening for an inbound TCP 
  connection attempt from the remote peer.

- \textit{OpenSent}. This is the state of a BGP session when the router has sent an OPEN message 
  to its peer in reaction to successful setup of the TCP connection and is waiting for an 
  OPEN message from the peer.

- \textit{OpenConfirm}. This is the state of a BGP session after the router has received an 
  acceptable OPEN message from the peer and sent a KEEPALIVE message in response and 
  is waiting for a KEEPALIVE message from the peer. TCP connection collision procedures 
  may be performed at this stage. Refer to RFC 4271 for more details.

- \textit{Established}. This is the state of a BGP session after the router has received a KEEPALIVE 
  message from the peer. In this state BGP can advertise and withdraw routes by sending 
  UPDATE messages to its peer.

Detecting BGP Session Failures

If a router suspects that its peer at the other end of an established session has experienced a 
complete failure of both its control and data planes the router should divert traffic away from the
failed peer as quickly as possible in order to minimize traffic loss. There are various mechanisms that the router can use to detect such failures, including:

- BGP session hold timer expiry. See the section titled Keepalive Message on page 566 for more details about this mechanism.
- Peer tracking
- BFD
- Fast external failover

When any one of these mechanisms is triggered the session immediately returns to the Idle state and a new session is attempted. Peer tracking, BFD and fast external failover are described in more detail in the following sections.

---

**Peer Tracking**

When peer tracking is enabled on a session the neighbor IP address is tracked in the routing table; if a failure occurs and there is no longer any IP route matching the neighbor address or else if the longest prefix match (LPM) route is rejected by the configurable peer-tracking-policy then after a 1 second delay the session is taken down. By default peer-tracking is disabled on all sessions. The default peer-tracking policy allows any type of route to match the neighbor IP address except aggregate routes and LDP shortcut routes.

Peer tracking was introduced when BFD was not yet supported for peer failure detection. Now that BFD is available peer-tracking has less value and is used less often.

**NOTE:** Peer tracking should be used with caution. Peer tracking can tear a session down even if the loss of connectivity turns out to be short-lived — for example while the IGP protocol is re-converging. Next-hop tracking, which is always enabled, handles such temporary connectivity issues much more effectively.

---

**Bidirectional Forwarding Detection (BFD)**

SR-OS also supports the option to setup an async-mode BFD session to a BGP neighbor so that failure of the BFD session can trigger immediate teardown of the BGP session. When BFD is enabled on a BGP session a 1-hop or multi-hop BFD session is setup to the neighbor IP address and the BFD parameters come from the BFD configuration of the interface associated with the local-address; for multi-hop sessions this is typically the system interface. With a 10 ms transmit-interval and a multiplier of 3 BFD can detect a peer failure in a period of time as short of 30 ms.
Fast External Failover

Fast external failover applies only to single-hop EBGP sessions. When fast external failover is enabled on a single-hop EBGP session and the interface associated with the session goes down the BGP session is immediately taken down as well, even if other mechanisms such as the hold-timer have not yet indicated a failure.
High Availability BGP Sessions

A BGP session reset can be very disruptive – each router participating in the failed session must delete the routes it received from its peer, recalculate new best paths, update forwarding tables (depending on the types of routes), and send route withdrawals and advertisements to other peers. It makes sense then that session resets should be avoided as much as possible and when a session reset cannot be avoided the disruption to the network should be minimized. To support these objectives the BGP implementation in SR-OS supports two key features:

- BGP high availability (HA)
- BGP graceful restart (GR)

BGP HA refers to the capability of a 7x50 router with redundant CPMs to keep established BGP sessions up whenever a planned or unplanned CPM switchover occurs. A planned CPM switchover can occur during In-Service Software Upgrade (ISSU). An unplanned CPM switchover can occur if there is an unexpected failure of the primary CPM.

BGP HA is always enabled on 7x50 routers with redundant CPMs; it cannot be disabled. BGP HA keeps the standby CPM in-sync with the primary CPM, with respect to BGP and associated TCP state, so that the standby CPM is ready to take over for the primary CPM at any time. Note that the primary CPM is responsible for building and sending the BGP messages to peers but the standby CPM reliably receives a copy of all outgoing UPDATE messages so that it has a synchronized view of the RIB-OUT.

BGP Graceful Restart

Some BGP routers do not have redundant control plane processor modules or else do not support BGP HA with the same quality or coverage as 7x50 routers. When dealing with such routers or certain error conditions BGP graceful restart is a good option for minimizing the network disruption caused by a control plane reset. BGP graceful restart assumes that the router restarting its BGP sessions has the ability/architecture to continue packet forwarding throughout the control plane reset. If this is the case then the peers of the restarting router act as helpers and “hide” the control plane reset from the rest of the network so that forwarding can continue uninterrupted. Forwarding based on stale routes and hiding the “staleness” from other routers is considered acceptable because the duration of the control plane outage is expected to be relatively short (a few minutes). In order for BGP graceful restart to be used on a session both routers must advertise the BGP graceful restart capability during the OPEN message exchange; see the section titled BGP Advertisement on page 565 for more details.

On 7x50 routers BGP graceful restart is enabled on one or more BGP sessions by configuring the graceful-restart command in the global, group or neighbor context. The command causes the GR capability to be advertised and enables helper mode support for IPv4 (AFI1, SAFI1), IPv6 (AFI 2,
SAFI1), VPN-IPv4 and VPN-IPv6 routes. Note that the GR capability advertised by a 7x50 router does not list the supported AFI/SAFI unless `enable-notification` is configured.

On a 7x50 router helper mode is activated when one of the following events affects an *Established* session:

- TCP socket error
- New inbound TCP connection from the peer
- Hold timer expiry
- Peer unreachable
- BFD down
- Sent NOTIFICATION message (only if `enable-notification` is configured under `graceful-restart`, and the peer set the ‘N’ bit in its GR capability, and the NOTIFICATION is not a Cease with subcode Hard Reset)
- Received NOTIFICATION message (only if `enable-notification` is configured under `graceful-restart`, and the peer set the ‘N’ bit in its GR capability, and the NOTIFICATION is not a Cease with subcode Hard Reset)

As soon as the failure is detected the helping 7x50 router marks the received IPv4, IPv6, VPN-IPv4 and VPN-IPv6 routes from the peer as ‘stale’ and starts a restart timer. (As noted above the ‘stale’ state is not factored into the BGP decision process and not made visible to other routers in the network.) The restart timer derives its initial value from the Restart Time carried in the peer’s last GR capability. (The default Restart Time advertised by 7x50 routers is 300 seconds but this can be changed using the `restart-time` command.) When the restart timer expires helping stops if the session has not yet re-established. If the session is re-established before the restart timer expires and the new GR capability from the restarting router indicates that forwarding state was preserved then helping continues and the peers exchange routes per the normal procedure. When each router has advertised all its routes for a particular address family it sends an *End-of-RIB* marker (EOR) for the address family. The EOR is a minimal UPDATE message with no reachable or unreachable NLRI for the AFI/SAFI. When the helping router receives an EOR it deletes all remaining stale routes of the AFI/SAFI that were not refreshed in the most recent set of UPDATE messages; there is an upper limit on the amount of time that routes can remain stale (before being deleted if they were not refreshed) and this is configurable using the `stale-routes-time`.

**NOTE:** 7x50 routers always abort the GR helper process, regardless of the failure trigger, if there is a second reset before GR has successfully completed.
BGP Session Security

TCP MD5 Authentication

The operation of a network can be compromised if an unauthorized system is able to form or hijack a BGP session and inject control packets by falsely representing itself as a valid neighbor. This risk can be mitigated by enabling TCP MD5 authentication on one or more of the sessions. When TCP MD5 authentication is enabled on a session every TCP segment exchanged with the peer includes a TCP option (19) containing a 16-byte MD5 digest of the segment (more specifically the TCP/IP pseudo-header, TCP header and TCP data). The MD5 digest is generated and validated using an authentication key that must be known to both sides. If the received digest value is different from the locally computed one then the TCP segment is dropped, thereby protecting the router from spoofed TCP segments.

TTL Security Mechanism

The TTL security mechanism relies on a simple concept to protect BGP infrastructure from spoofed IP packets. It recognizes the fact that the vast majority of EBGP sessions are established between directly-connected routers and therefore the IP TTL values in packets belonging to these sessions should have predictable values. If an incoming packet does not have the expected IP TTL value it is possible that it is coming from an unauthorized and potentially harmful source.

On 7x50 routers TTL security is enabled using the `ttl-security` command. This command requires a minimum TTL value to be specified. When TTL security is enabled on a BGP session the IP TTL values in packets that are supposedly coming from the peer are compared (in hardware) to the configured minimum value and if there is a discrepancy the packet is discarded and a log is generated. TTL security is used most often on single-hop EBGP sessions but it can be used on multi-hop EBGP and IBGP sessions as well.

NOTE: When a 7x50 router sends IP packets to an IBGP peer they are originated with an IP TTL value of 64. When a 7x50 router sends IP packets to an EBGP peer they are originated with an IP TTL value of 1, except if `multihop` is configured, and in that case the TTL value is taken from the `multihop` command.
BGP Groups

In SR-OS every neighbor (and hence BGP session) is configured under a group. A group is a CLI construct that saves configuration effort when multiple peers have a similar configuration; in this situation the common configuration commands can be configured once at the group level and need not be repeated for every neighbor. A single BGP instance can support many groups and each group can support many peers. Most SR-OS commands that are available at the neighbor level are also available at the group level.
BGP Design Concepts

BGP assumes that all routers within an Autonomous System can reach destinations external to the Autonomous System using efficient, loop-free intra-AS forwarding paths. This generally requires that all the routers within the AS have a consistent view of the best path to every external destination. This is especially true when each BGP router in the AS makes its own forwarding decisions based on its own BGP routing table. The basic BGP specification does not store any intra-AS path information in the AS Path attribute so basic BGP has no way to detect routing loops within an AS that arise from inconsistent best path selections.

There are 3 solutions for dealing the issues outlined above.

- Create a full-mesh of IBGP sessions within the AS as shown in Figure 18. This ensures routing consistency but does not scale well because the number of sessions increases exponentially with the number of BGP routers in the AS.
- Use BGP route reflectors in the AS. Route reflection is described in the section titled Route Reflection on page 560. BGP route reflectors allow for routing consistency with only a partial mesh of IBGP sessions within the AS.

Create a confederation of autonomous systems. BGP confederations are described in the section titled BGP Confederations on page 562.
Route Reflection

In a standard BGP configuration a BGP route learned from one IBGP peer is not re-advertised to another IBGP peer. This rule exists because of the assumption of a full IBGP mesh within the AS. As discussed in the previous section a full IBGP mesh imposes certain scaling challenges. BGP route reflection eliminates the need for a full IBGP mesh by allowing routers configured as route reflectors to re-advertise routes from one IBGP peer to another IBGP peer.

A route reflector provides route reflection service to IBGP peers called clients. Other IBGP peers of the RR are called non-clients. An RR and its client peers form a cluster. A large AS can be subdivided into multiple clusters, each identified by a unique 32-bit cluster ID. Each cluster contains at least one route reflector which is responsible for redistributing routes to its clients. The clients within a cluster do not need to maintain a full IBGP mesh between each other; they only require IBGP sessions to the route reflector(s) in their cluster. (If the clients within a cluster are fully meshed consider using the disable-client-reflect functionality.) The non-clients in an AS must be fully meshed with each other.

Figure 19 depicts the same network as Figure 18 but with route reflectors deployed to eliminate the IBGP mesh between SR-B, SR-C, and SR-D. SR-A, configured as the route reflector, is responsible for reflection routes to its clients SR-B, SR-C, and SR-D. SR-E and SR-F are non-clients of the route reflector. As a result, a full mesh of IBGP sessions must be maintained between SR-A, SR-E and SR-F.
A 7x50 router becomes a route reflector whenever it has one or more client IBGP sessions. A client IBGP session is created with the `cluster` command, which also indicates the cluster ID of the client. Typical practice is to use the router ID as the cluster ID, but this is not necessary.

Basic route reflection operation on a 7x50 router (without Add-Path configured) can be summarized as follows:

- If the best and valid path for an NLRI is learned from a `client` and `disable-client-reflect` is NOT configured then advertise that route to all `clients`, `non-clients` and EBGP peers (as allowed by policy). If the client that advertised the best and valid path is a neighbor to which the `split-horizon` command (at the `bgp`, `group` or `neighbor` level) applies then the route is not advertised back to the sending client. In the route that is reflected to `clients` and `non-clients`:
  - The route reflector adds an ORIGINATOR_ID attribute if it did not already exist; the ORIGINATOR_ID indicates the BGP identifier (router ID) of the `client` that originated the route.
  - The route reflector prepends the cluster ID of the `client` that advertised the route and then the cluster ID of the `client` receiving the route (if applicable) to the CLUSTER_LIST attribute, creating the attribute if it did not previously exist.
- If the best and valid path for an NLRI is learned from a `client` and `disable-client-reflect` is configured then advertise that route to all `clients` in other clusters, `non-clients` and EBGP.
peers (as allowed by policy). In the route that is reflected to clients in other clusters and non-clients:

→ The route reflector adds an ORIGINATOR_ID attribute if it did not already exist; the ORIGINATOR_ID indicates the BGP identifier (router ID) of the client that originated the route.

→ The route reflector prepends the cluster ID of the client that advertised the route and then the cluster ID of the client receiving the route (if applicable) to the CLUSTER_LIST attribute, creating the attribute if it did not previously exist.

• If the best and valid path for an NLRI is learned from a non-client then advertise that route to all clients and EBGP peers (as allowed by policy). In the route that is reflected to clients:

→ The route reflector adds an ORIGINATOR_ID attribute if it did not already exist; the ORIGINATOR_ID indicates the BGP identifier (router ID) of the non-client that originated the route.

→ The route reflector prepends the cluster ID of the client receiving the route to the CLUSTER_LIST attribute, creating the attribute if it did not previously exist.

• If the best and valid path for an NLRI is learned from an EBGP peer then advertise that route to all clients, non-clients and other EBGP peers (as allowed by policy). The ORIGINATOR_ID and CLUSTER_LIST attributes are not added to the route.

• If the best and valid path for an NLRI is locally originated (by the RR) — i.e. it was learned through means other than BGP — then advertise that route to all clients, non-clients and EBGP peers (as allowed by policy). The ORIGINATOR_ID and CLUSTER_LIST attributes are not added to the route.

The ORIGINATOR_ID and CLUSTER_LIST attributes allow BGP to detect the looping of a route within the AS. If any router receives a BGP route with an ORIGINATOR_ID attribute containing its own BGP identifier the route is considered invalid. In addition if a route reflector receives a BGP route with a CLUSTER_LIST attribute containing a locally configured cluster ID the route is considered invalid. Invalid routes are not installed in the route table and not advertised to other BGP peers.

---

**BGP Confederations**

BGP confederations are another alternative for avoiding a full mesh of BGP sessions inside an Autonomous System. A BGP confederation is a group of Autonomous Systems managed by a single technical administration that appear as a single AS to BGP routers outside the confederation; the single externally visible AS is called the confederation ID. Each AS in the group is called a member AS and the ASN of each member AS is visible only within the confederation. For this reason member ASNs are often private ASNs.
Within a confederation EBGP-type sessions can be setup between BGP routers in different member AS. These confederation-EBGP sessions avoid the need for a full mesh between routers in different member ASes. Within each member AS the BGP routers must be fully-meshed with IBGP sessions or route reflectors must be used to ensure routing consistency.

In SR-OS a confederation EBGP session is formed when the ASN of the peer is different from the local ASN and the peer ASN appears as a member AS in the `confederation` command. The confederation command specifies the confederation ID and up to 15 member AS that are part of the confederation.

When a route is advertised to a confederation-EBGP peer the advertising router prepends its local ASN, which is its member ASN, to a confederation-specific sub-element in the AS_PATH that is created if it does not already exist. The extensions to the AS_PATH are used for loop detection but they do not influence best path selection (i.e. they do not increase the AS Path length used in the BGP decision process). The MED, NEXT_HOP and LOCAL_PREF attributes in the received route are propagated unchanged by default. Note that ORIGINATOR_ID and CLUSTER_LIST attributes are not included in routes to confed-EBGP peers.

When a route is advertised to an EBGP peer outside the confederation the advertising router removes all member AS elements from the AS_PATH and prepends its confederation ID rather than its local/member ASN.
BGP protocol operation relies on the exchange of BGP messages between peers. 7x50 and most other routers support the following 5 message types: Open, Update, Notification, Keepalive and Route Refresh. Details about each one are described in the following sections.

The minimum length of a BGP message is 19 bytes and the maximum length is 4096 bytes. BGP messages appear as a stream of bytes to the underlying TCP transport layer so there is no direct association between a BGP message and a TCP segment. One TCP segment can carry parts of one or more BGP messages. The maximum size of a BGP TCP segment sent by a 7x50 router is 1024 bytes (assuming a 40 byte TCP/IP header) if path MTU discovery is not enabled for the BGP session and the interfaces have default tcp-mss configurations. When path MTU discovery is enabled (with the path-mtu-discovery command) the maximum TCP segment size is discovered from received ICMP messages.

Open Message

After a TCP connection is established between two BGP routers the first message sent by each one is an Open message. If the received Open message is acceptable a Keepalive message confirming the Open is sent back. (See the section titled BGP Session States on page 552 for more details.) An Open message contains the following information:

- **Version** — The current BGP version number is 4.
- **Autonomous System number** — The 2-byte AS of the sending router. If the sending router has an ASN greater than 65535 this field has the special value 23456 (AS_TRANS). On a 7x50 router the ASN in the Open message is based on the confederation ID (if the peer is external to the confederation), the global AS (configured using the autonomous-system command) or a session-level override of the global AS called the local AS (configured using the local-as command). More details about the use of local-AS are described in the section titled Using Local AS for ASN Migration on page 572. More details about 4-byte AS numbers are described in the section titled 4-Octet Autonomous System Numbers on page 573.
- **Hold Time** — The proposed maximum time BGP will wait between successive messages (Keepalive and/or Update) from its peer before closing the connection. The actual hold time is the minimum of the configured hold-time for the session and the hold-time in the peer's Open message. If this minimum is below a configured threshold (min hold-time), the connection attempt is rejected. Note that changes to the configured hold-time trigger a session reset.
- **BGP Identifier** — The router ID of the BGP speaker. In Open messages sent by 7x50, the BGP Identifier comes from the router-id configured under bgp; if that is not configured then the router-id configured under config>router (or config>service>vprn) is used and if that too is not configured then the system interface IPv4 address is used. Note that a
change of the router ID in the `config>router>bgp` context causes all BGP sessions to be reset immediately while other changes resulting in a new BGP identifier only take effect after BGP is shutdown and re-enabled.

- Optional Parameters — A list of optional parameters, each encoded as a TLV. The only optional parameter that has been defined is the optional parameter. The optional parameter supports the process of BGP advertisement, which is described in the next section. When a BGP router receives an Open message with an unsupported optional parameter type it terminates the session. A 7x50 router always sends an optional parameter in its Open message unless `disable-capability-negotiation` is configured.

### Changing the Autonomous System Number

If the AS number is changed at the router level (`config>router`) the new AS number is not used until the BGP instance is restarted either by administratively disabling and enabling the BGP instance or by rebooting the system with the new configuration.

On the other hand if the AS number is changed in the BGP configuration (`config>router>bgp`) the effects are as follows:

- A change of the local-AS at the global level causes the BGP instance to restart with the new local AS number.
- A change of the local-AS at the `group` level causes BGP to re-establish sessions with all peers in the group using the new local AS number.
- A change of the local-AS at the `neighbor` level causes BGP to re-establish the session with the new local AS number.

### Changing a Confederation Number

Changing the a confederation value on an active BGP instance will not restart the protocol. The change will take affect when the BGP protocol is (re) initialized.

### BGP Advertisement

BGP advertisement allows a BGP router to indicate to a peer, using the optional parameter, the features that it supports so that they can coordinate and use only the features that both support. Each capability in the optional parameter is TLV-encoded with a unique type code. SROS supports the following capability codes:

- Multi-protocol BGP (code 1)
- Route refresh (code 2)
• Outbound route filtering (code 3)
• Graceful restart (code 64)
• 4-octet AS number (code 65)
• Add-path (code 69)

Update Message

Update messages are used to advertise and withdraw routes. An Update message provides the following information:

• Withdrawn routes length — The length of the withdrawn routes field that is described next (may be 0).
• Withdrawn routes — IPv4 prefixes that are no longer considered reachable by the advertising router.
• Total path attribute length — The length of the path attributes field that is discussed next (may be 0).
• Path attributes — The path attributes presented in variable length TLV format. The path attributes apply to all the NLRI in the UPDATE message.
• Network layer reachability information (NLRI) — IPv4 prefixes that are considered reachable by the advertising router.

For fast routing convergence a 7x50 router packs as many NLRI into a single Update message as possible. This requires identifying all the routes that share the same path attribute values.

Keepalive Message

After a session is established each router sends periodic Keepalive messages to its peer to test that the peer is still alive and reachable. If no Keepalive or Update message is received from the peer for the negotiated hold-time duration the session is terminated. The period between one Keepalive message and the next is 1/3 of the negotiated hold-time duration or the value configured with the keepalive command, whichever is less. If the active hold-time or keepalive interval is zero Keepalive messages are not sent. On 7x50 routers the default hold-time is 90 seconds and the default keepalive interval is 30 seconds.

Many times a peer (reachability) failure is detected through faster mechanisms than hold-timer expiry, as explained in the section titled Detecting BGP Session Failures on page 552.
Notification Message

When a non-recoverable error related to a particular session occurs a Notification message is sent to the peer and the session is terminated (or restarted if graceful restart is enabled for this scenario; see the section titled BGP Graceful Restart on page 555 for more details). The Notification message provides the following information:

- Error code — Indicates the type of error: message header error, Open message error, Update message error, Hold timer expired, Finite State Machine error, or Cease.
- Error subcode — Provides more specific information about the error. The meaning of the subcode is specific to the error code.

UPDATE Message Error Handling

The approach to handling Update message errors has evolved in the past couple of years. The original BGP protocol specification called for all UPDATE message errors to be handled the same way — send a NOTIFICATION to the peer and immediately close the BGP session. This error handling approach was motivated by the goal to ensure protocol “correctness” above all else. But it ignored several important points:

- Not all UPDATE message errors truly have the same severity. If the NLRI cannot be extracted and parsed from an UPDATE message then this is indeed a “critical” error. But other errors such as incorrect attribute flag settings, missing mandatory path attributes, incorrect next-hop length/format, etc. can be considered “non-critical” and handled differently.
- Session resets are extremely costly in terms of their impact on the stability and performance of the network. For many types of UPDATE message errors a session reset does not solve the problem because the root cause remains (e.g. software error, hardware error or misconfiguration). If a session reset is absolutely necessary then the operator should have some control over the timing.
- Some degree of protocol “incorrectness” is tolerable for a short period of time as long as the network operator is fully aware of the issue. In this context “incorrectness” typically means a BGP RIB inconsistency between routers in the same AS. Such inconsistency has become less and less of an issue over time as edge-to-edge tunneling of IP traffic (e.g. BGP shortcuts, IP VPN) has reduced the number of deployments where IP traffic is forwarded hop-by-hop.

In recognition of these points and the general trend towards more flexibility in BGP error handling SR-OS supports a BGP configuration option called update-fault-tolerance that allows the operator to decide whether the router should apply new or legacy error handling procedures to UPDATE message errors. If update-fault-tolerance is configured then non-critical errors as described above are handled using the “treat-as-withdraw” or “attribute-discard” approaches to
error handling; these approaches do not cause a session reset. If **update-fault-tolerance** is not configured then legacy procedures continue to apply and all errors (critical and non-critical) trigger a session a reset.

---

**Route Refresh Message**

A BGP router can send a Route Refresh message to its peer only if both have advertised the route refresh capability (code 2). The Route Refresh message is a request for the peer to re-send all or some of its routes associated with a particular pair of AFI/SAFI values. AFI/SAFI values are the same ones used in the MP-BGP capability (see the section titled Multi-Protocol BGP Attributes on page 586).

A 7x50 router only sends Route Refresh messages for AFI/SAFI associated with VPN routes that carry Route Target extended communities - i.e. VPN-IPv4, VPN-IPv6, L2-VPN, MVPN-IPv4 and MVPN-IPv6 routes. By default routes of these types are discarded if, at the time they are received, there is no VPN that imports any of the route targets they carry. If at a later time a VPN is added or reconfigured (in terms of the route targets that it imports) a Route Refresh message is sent to all relevant peers so that previously discarded routes can be relearned. Note that Route Refresh messages are not sent for VPN-IPv4 and VPN-IPv6 routes if **mp-bgp-keep** is configured; in this situation received VPN-IP routes are kept in the RIB-IN regardless of whether or not they match a VRF import policy.
BGP Path Attributes

Path attributes are fundamental to BGP. A BGP route for a particular NLRI is distinguished from other BGP routes for the same NLRI by its set of path attributes. Each path attribute describes some property of the path and is encoded as a TLV in the Path Attributes field of the Update message. The type field of the TLV identifies the path attribute and the value field carries data specific to the attribute type. There are 4 different categories of path attributes:

- **Well-known mandatory.** These attributes must be recognized by all BGP routers and must be present in every Update message that advertises reachable NLRI towards a certain type of neighbor (EBGP or IBGP).
- **Well-known discretionary.** These attributes must be recognized by all BGP routers but are not required in every Update message.
- **Optional transitive.** These attributes are allowed to be unrecognized by some BGP routers. If a BGP router does not recognize one of these attributes it accepts it, passes it on to other BGP peers, and sets the Partial bit to 1 in the attribute flags byte.
- **Optional non-transitive.** These attributes are allowed to be unrecognized by some BGP routers. If a BGP router does not recognize one of these attributes it is quietly ignored and not passed on to other BGP peers.

SR-OS supports the following path attributes, which are described in detail in upcoming sections:

- ORIGIN (well-known mandatory)
- AS_PATH (well-known mandatory)
- NEXT_HOP (well-known, required only in Update messages with IPv4 prefixes in the NLRI field)
- MED (optional non-transitive)
- LOCAL_PREF (well-known, required only in Update messages sent to IBGP peers)
- ATOMIC_AGGR (well-known discretionary)
- AGGREGATOR (optional transitive)
- COMMUNITY (optional transitive)
- ORIGINATOR_ID (optional non-transitive)
- CLUSTER_LIST (optional non-transitive)
- MP_REACH_NLRI (optional non-transitive)
- MP_UNREACH_NLRI (optional non-transitive)
- EXT_COMMUNITY (optional transitive)
- AS4_PATH (optional transitive)
- AS4_AGGREGATOR (optional transitive)
BGP Path Attributes

- CONNECTOR (optional transitive)
- PMSI_TUNNEL (optional transitive)
- AIGP (optional non-transitive)

**Origin**

The ORIGIN path attribute indicates the origin of the path information. There are 3 supported values:

- IGP (0)
- EGP (1)
- Incomplete (2)

When a 7x50 router originates a VPN-IP prefix (from a non-BGP route) it sets the value of the Origin attribute to IGP. When a 7x50 originates an BGP route for an IP prefix by exporting a non-BGP route from the routing table it sets the value of the Origin attribute to Incomplete. Route policies (BGP import and export) can be used to change the Origin value.

**AS Path**

The AS_PATH attribute provides the list of Autonomous Systems through which the routing information has passed. The AS_PATH attribute is composed of segments. There can be up to 4 different types of segments in an AS_PATH attribute: AS_SET, AS_SEQUENCE, AS_CONFED_SET and AS_CONFED_SEQUENCE. The AS_SET and AS_CONFED_SET segment types result from route aggregation. AS_CONFED_SEQUENCE contains an ordered list of member AS through which the route has passed inside a confederation. AS_SEQUENCE contains an ordered list of AS (including confederation IDs) through which the route has passed on its way to the local AS/confederation.

The AS numbers in the AS_PATH attribute are all 2-byte values or all 4-byte values (if the 4-octet ASN capability was announced by both peers).

A BGP router always prepends its AS number to the AS_PATH attribute when advertising a route to an EBGP peer. The specific details for a 7x50 router are described below.
• When a route is advertised to an EBGP peer and the advertising router is not part of a confederation:
  → The global AS (configured using the autonomous-system command) is prepended to the AS_PATH if local-as is not configured
  → The local AS followed by the global AS are prepended to the AS_PATH if local-as is configured.
  → Only the local AS is prepended to the AS_PATH if local-as no-prepend-global-as is configured
  → Private AS numbers (64512 - 65534 inclusive) are removed from the AS_PATH if remove-private is configured.
• When a route is advertised to an EBGP peer outside a confederation:
  → The confederation ID is prepended to the AS_PATH if local-as is not configured
  → The local AS followed by the confederation ID are prepended to the AS_PATH if local-as is configured. (Note that the no-prepend-global-as option has no effect in this scenario.)
  → Member AS numbers are removed from the AS_PATH as described in the section titled BGP Confederations on page 562.
  → Private AS numbers (64512 - 65534 inclusive) are removed from the AS_PATH if remove-private is configured.
• When a route is advertised to a confederation-EBGP peer:
  → If the route came from an EBGP peer and local-as was configured on this session (without the private option) this local AS number is prepended to the AS_PATH in a regular AS_SEQUENCE segment
  → The global AS (configured using the autonomous-system command) is prepended, as a member AS, to the AS_PATH if local-as is not configured
  → The local AS followed by the global AS are prepended, as member AS, to the AS_PATH if local-as is configured
  → Only the local AS is prepended, as a member AS, to the AS_PATH if local-as no-prepend-global-as is configured
  → Private AS numbers (64512 - 65534 inclusive) are removed from the AS_PATH if remove-private is configured (except for the local AS added as a member AS).
BGP Path Attributes

• When a route is advertised to an IBGP peer:
  → No information is added to the AS_PATH if the route is locally originated or if it came from an IBGP peer.
  → The local AS number is prepended to the AS_PATH if the route came from an EBGP peer and local-as is configured without the private option.
  → The local AS number is prepended, as a member AS, to the AS_PATH if the route came from a confederation-EBGP peer and local-as is configured without the private option.
  → Private AS numbers (64512 - 65534 inclusive) are removed from the AS_PATH if remove-private is configured.

BGP import policies can be used to prepend an AS number multiple times to the AS_PATH, whether the route is received from an IBGP, EBGP or confederation EBGP peer. The AS path prepend action is also supported in BGP export policies applied to these types of peers, regardless of whether the route is locally originated or not. Note that AS path prepending in export policies occurs before the global and/or local ASes (if applicable) are added to the AS_PATH.

When a BGP router receives a route containing one of its own Autonomous System numbers (local or global or confederation ID) in the AS_PATH the route is normally considered invalid for reason of an AS path loop. However SR-OS provides a loop-detect command that allows this check to be bypassed. If it known that advertising certain routes to an EBGP peer will result in an AS path loop condition and yet there is no loop (assured by other mechanisms, such as the Site of Origin (SOO) extended community) then as-override can be configured on the advertising router instead of disabling loop detection on the receiving router. The as-override command replaces all occurrences of the peer AS in the AS_PATH with the advertising router’s local AS.

---

AS Override

The AS Override feature can be used in VPRN scenarios where a customer is running BGP as the PE-CE protocol and some or all of the CE locations are in the same Autonomous System (AS). With normal BGP, two sites in the same AS would not be able to reach each other directly since there is an apparent loop in the AS Path.

When as-override is configured on a PE-CE EBGP session the PE rewrites the customer ASN in the AS Path with the VPRN AS number as the route is advertised to the CE.

---

Using Local AS for ASN Migration

The description in the previous section does fully explain the reasons for using local-as. This BGP feature facilitates the process of changing the ASN of all the routers in a network from one number
to another. This may be necessary if one network operator merges with or acquires another network operator and the two BGP networks must be consolidated into one Autonomous System.

For example suppose the operator of the ASN 64500 network merges with the operator of the ASN 64501 network and the new merged entity decides to renumber ASN 64501 routers as ASN 64500 routers so that they the entire network can be managed as one Autonomous System. The migration can be carried out using the following sequence of steps:

1. Change the global AS of the route reflectors that used to be part of ASN 64501 to the new value 64500.
2. Change the global AS of the RR clients that used to be part of ASN 64501 to the new value 64500.
3. Configure `local-as 64501 private no-prepend-global-as` on every EBGP session of each RR client migrated in step 2.

This migration procedure has several advantages. First, customers, settlement-free peers and transit providers of the previous ASN 64501 network still perceive that they are peering with ASN 64501 and can delay switching to ASN 64500 until the time is convenient for them. Second, the AS path lengths of the routes exchanged with the EBGP peers are unchanged from before so that best path selections are preserved.

---

### 4-Octet Autonomous System Numbers

When BGP was developed it was assumed that 16-bit (2-octet) ASNs would be sufficient for global Internet routing. In theory a 16-bit ASN allows for 65536 unique autonomous systems but some of the values are reserved (0 and 64000-65535). Of the assignable space less than 10% remains available. When a new AS number is needed it is now simpler to obtain a 4-octet AS number. 4-octet AS numbers have been available since 2006. A 32-bit (4-octet) ASN allows for 4,294,967,296 unique values (some of which are again, reserved).

When 4-octet AS numbers became available it was recognized that not all routers would immediately support the ability to parse 4-octet AS numbers in BGP messages so two optional transitive attributes called AS4_PATH and AS4_AGGREGATOR were introduced to allow a gradual migration.

A BGP router that supports 4-octet AS numbers advertises this capability in its OPEN message; the capability information includes the AS number of the sending BGP router, encoded using 4 bytes (recall the ASN field in the OPEN message is limited to 2 bytes). By default OPEN messages sent by 7x50 routers always include the 4-octet ASN capability but this can changed using the `disable-4byte-asn` command.

If a BGP router and its peer have both announced the 4-octet ASN capability then the AS numbers in the AS_PATH and AGGREGATOR attributes are always encoded as 4-byte values in the
UPDATE messages they send to each other. These UPDATE messages should not contain the AS4_PATH and AS4_AGGREGATOR path attributes.

If one of the routers involved in a session announces the 4-octet ASN capability and the other one does not then the AS numbers in the AS_PATH and AGGREGATOR attributes are encoded as 2-byte values in the UPDATE messages they send to each other.

When a 7x50 router advertises a route to a peer that did not announce the 4-octet ASN capability:

- If there are any AS numbers in the AS_PATH attribute that cannot be represented using 2 bytes (because they have a value greater than 65535) they are substituted with the special value 23456 (AS_TRANS) and an AS4_PATH attribute is added to the route if it is not already present. The AS4_PATH attribute has the same encoding as the AS_PATH attribute that would be sent to a 4-octet ASN capable router (i.e. each AS number is encoded using 4 octets) but it does not carry segments of type AS_CONFED_SEQUENCE or AS_CONFED_SET.
- If the AS number in the AGGREGATOR attribute cannot be represented using 2 bytes (because its value is greater than 65535) it is substituted with the special value 23456 and an AS4_AGGREGATOR attribute is added to the route if it is not already present. The AS4_AGGREGATOR is the same as the AGGREGATOR attribute that would be sent to a 4-octet ASN capable router (i.e. the AS number is encoded using 4 octets).

When a 7x50 router receives a route with an AS4_PATH attribute it attempts to reconstruct the full AS path from the AS4_PATH and AS_PATH attributes, regardless of whether disable-4byte-asn is configured or not. The reconstructed path is the AS path displayed in BGP show commands. If the length of the received AS4_PATH is N and the length of the received AS_PATH is N+t then the reconstructed AS path contains the t leading elements of the AS_PATH followed by all the elements in the AS4_PATH.

---

Next-Hop

The NEXT_HOP attribute indicates the IPv4 address of the BGP router that is the next-hop to reach the IPv4 prefixes in the NLRI field. If the Update message is advertising routes other than IPv4 unicast routes the next-hop of these routes is encoded in the MP_REACH_NLRI attribute and the NEXT_HOP attribute is not included in the Update message; see the section titled Multi-Protocol BGP Attributes on page 586 for more details.

In IPv4 and IPv6 routes advertised by a 7x50 router the BGP next-hop address is set as follows:

- When a route is advertised to an EBGP peer the BGP next-hop is always changed to the local-address used with the EBGP peer and this behavior cannot be overridden, even with a BGP export policy. (See the section titled BGP Sessions on page 551 for an explanation...
of how the local-address is determined.) The one exception to this rule occurs when the third-party-nexthop command is applied:

→ When a route is received from one EBGP peer and is advertised to another EBGP that is in the same IP subnet and has been configured with the third-party-nexthop command (at the BGP instance, group or neighbor level), the BGP next-hop in the advertised route remains unchanged.

• When a route is advertised to an IBGP or confederation-EBGP peer and the route is not locally originated the advertising router does not modify the next-hop by default, however:
  → If the `next-hop-self` command is applied to a confederation-EBGP peer this changes the next-hop to the local-address used with that peer.
  → If the `next-hop-self` command is applied to an IBGP peer this changes the next-hop to the local-address used with that peer, but only if the route came from a confed-EBGP or EBGP peer.
  → A BGP export policy applied to an IBGP or confederation-EBGP session can change the next-hop to any IPv4 address, regardless of the route source (IBGP, EBGP, confed-EBGP).

• When a route is locally-originated and advertised to an IBGP or confederation-EBGP peer the BGP next-hop is by default copied from the next-hop of the route that was exported into BGP, with certain exceptions (e.g. black-hole next-hop).

In VPN-IPv4 routes advertised by a 7x50 router the BGP next-hop address is set as follows:

• When a route is advertised to an EBGP peer the BGP next-hop is changed to the local-address used with the EBGP peer if `enable-inter-as-vpn` is configured; otherwise there is no change to the next-hop.

• When a route is received from an EBGP peer and advertised to an IBGP or confederation-EBGP peer the BGP next-hop is changed to the local-address used with the IBGP or confederation-EBGP peer if `enable-inter-as-vpn` is configured. If `enable-inter-as-vpn` is not configured the next-hop may be changed with the `next-hop-self` command but this is not recommended because it can result in a change of the next-hop without a change in the VPN label.

• When a route is reflected from one IBGP peer to another IBGP peer the RR does not modify the next-hop by default, however if the `next-hop-self` command is applied to the IBGP peer receiving the route and `enable-rr-vpn-forwarding` is configured then this combination of commands changes the next-hop to the local-address used with the peer.

In Label-IPv4 routes advertised by a 7x50 router the BGP next-hop address is set as follows:

• When a route is advertised to an EBGP peer the BGP next-hop is always changed to the local-address used with the EBGP peer and this behavior cannot be overridden.
BGP Path Attributes

- When a route is received from an EBGP peer and advertised to an IBGP or confederation-EBGP peer next-hop-self is applied automatically (i.e. the next-hop is modified to the local-address used with the peer), however:
  - A BGP export policy applied to the IBGP or confederation-EBGP session can change the next-hop to any IPv4 address
  - If the `next-hop-unchanged label-ipv4` command is applied to the receiving IBGP or confederation-EBGP peer this overrides the automatic next-hop-self and causes no modification to the BGP next-hop
  - *At the current time SR-OS does not support next-hop-self for label-IPv4 routes advertised to a confed-EBGP peer.*

- When a route is received from an IBGP peer and reflected to another IBGP peer the next-hop is not modified by default, however:
  - If the `next-hop-self` command is applied to the receiving IBGP peer this changes the next-hop to the local-address used with that peer.
  - A BGP export policy applied to the IBGP session can change the next-hop to any IPv4 address.

In 6PE routes advertised by a 7x50 router the BGP next-hop address is set as follows:

- When a 6PE route is locally-originated and advertised to any BGP peer the BGP next-hop is an IPv4-mapped IPv6 address allocated from the ::FFFF/96 range. The bottom 32 bits of the IPv6 address is the IPv4 local-address used with the peer.
  - *At the current time SR-OS does not support sending and receiving 6PE routes with EBGP peers.*

- When a route is received from an IBGP peer and reflected to another IBGP peer the next-hop is not modified by default, however:
  - A BGP export policy applied to the IBGP session can apply `next-hop-self` or change the next-hop to any IPv4-mapped IPv6 address. Note that the `next-hop-self` command at the group/neighbor configuration level has no effect in this case.

- When a route is advertised to a confederation-EBGP peer the next-hop is not modified by default, however:
  - If the `next-hop-self` command is applied to the session this changes the next-hop to the IPv4-mapped IPv6 address corresponding to the IPv4 local-address used with the peer.
  - A BGP export policy applied to the IBGP session can change the next-hop to any IPv4-mapped IPv6 address.

---

**Next-Hop IPv4 Address Family over IPv6**

For IBGP sessions, next-hop information is taken from the system interface. If the system interface does not have an IPv4 address configured, no next-hop will be populated without a routing policy.
applied to the BGP session, and BGP NLRI messages is not sent for the IPv4 address family. The use of an export policy allows the operator to configure next-hop information explicitly.

For EBGP sessions, the next-hop information must be taken from an export routing policy that explicitly sets the next-hop based on operator configuration. If the export policy is not set, the BGP NLRI messages are not sent for the IPv4 address family due to no `next_hop`.

---

**Next-Hop VPN-IPv4 Address Family over IPv6**

For IBGP and EBGP sessions, next-hop information is specified as the system IP address.

---

**Next-Hop VPN-IPv6 Address Family over IPv6**

For IBGP sessions, the next-hop information is specified as the system IP address encoded as an IPv4-mapped-IPv6 address.

For EBGP sessions, the next-hop information is specified as the system IP address encoded as an IPv4-mapped-IPv6 address, by the way of an export policy configured by the user.
Next-Hop Resolution

For a BGP router to use a BGP route for forwarding it must know how to reach the BGP next-hop of the route. The process of determining the local interface or tunnel that should be used to reach the BGP next-hop is called next-hop resolution. The BGP next-hop resolution process depends on the type of route (the AFI/SAFI) and various configuration settings. The SR-OS details are explained below:

- Next-hop resolution is always done for IPv4 routes. If the `igp-shortcut` command is configured the 7x50 router first looks for an eligible tunnel in the tunnel-table with a destination that matches the BGP next-hop address; the eligible tunnel types are specified as part of the `igp-shortcut` command. If there is no matching eligible tunnel and the `disallow-igp` option is specified the BGP next-hop is unresolved and all the routes with that next-hop are considered `invalid` and not advertised to peers. If there is no matching eligible tunnel and the `disallow-igp` option is not specified or if the `igp-shortcut` command is not configured at all the 7x50 router looks for an eligible IPv4 route that matches the BGP next-hop address in the route table. Note the following:
  - BGP routes are eligible to resolve a BGP next-hop only if the `use-bgp-routes` command is configured.
  - If there are multiple eligible routes that match the BGP next-hop the longest prefix match (LPM) route is selected.
  - If the LPM route is rejected by the user-configured `next-hop-resolution policy` or if there are no eligible matching routes the BGP next-hop is unresolved and all the routes with that next-hop are considered `invalid` and not advertised to peers.
  - If the LPM route (accepted by the policy) is a BGP route then the BGP next-hop of that route is looked up and this time other BGP routes are not eligible to be resolving routes, whether or not `use-bgp-routes` is configured. In other words 7x50 routers support BGP routes resolving BGP routes with one level of recursion.
  - BGP shortcuts are discussed further in the section titled BGP Shortcuts on page 610.
• Next-hop resolution is always done for IPv6 routes. The 7x50 router looks for an eligible IPv6 route that matches the BGP next-hop address in the route table. Note the following:
  → BGP routes are eligible to resolve a BGP next-hop only if the use-bgp-routes command is configured.
  → If there are multiple eligible routes that match the BGP next-hop the longest prefix match (LPM) route is selected.
  → If the LPM route is rejected by the user-configured next-hop-resolution policy or if there are no eligible matching routes the BGP next-hop is unresolved and all the routes with that next-hop are considered invalid and not advertised to peers.
  → If the LPM route (accepted by the policy) is a BGP route then the BGP next-hop of that route is looked up and this time other BGP routes are not eligible to be resolving routes, whether or not use-bgp-routes is configured. In other words 7x50 routers support BGP routes resolving BGP routes with one level of recursion.

• SR-OS attempts to resolve the next-hop of a VPN-IPv4 or VPN-IPv6 route only if it is imported into one or more VPRNs or if it is advertised with a new BGP next-hop. If the next-hop is part of a local subnet the next-hop is automatically resolved by the direct route. If the next-hop is remote (more than one hop away):
  → The 7x50 router looks for a tunnel in the tunnel-table with a destination that matches the BGP next-hop address. If the route is imported into VPRNs the tunnel types eligible to resolve the BGP next-hop are controlled by the auto-bind configurations of the VPRNs. If the route is advertised with a new BGP next-hop the eligible tunnel types are controlled by the transport-tunnel command.
  → If there is no matching tunnel-table entry then the BGP next-hop is unresolved and the VPN-IP route is effectively invalid despite displaying as valid and best. A VPN-IP route that is invalid due to an unresolved next-hop can be advertised to any type of peer, but only if the next-hop is not changed.

• SR-OS always attempts to resolve the next-hop of a label-IPv4 route. If the next-hop is part of a local subnet the next-hop is automatically resolved by the direct route. If the next-hop is remote (more than one hop away):
  → The 7x50 router looks for a tunnel in the tunnel-table with a destination that matches the BGP next-hop address and a type allowed by the transport-tunnel command. If there are multiple matches the tunnel with the lowest preference is used (RSVP is preferred over LDP).
  → If there is no matching and eligible entry in the tunnel table but there is a /32 static route with a black-hole next-hop that matches the BGP next-hop address this static route automatically resolves the BGP next-hop.
  → If there is no matching and eligible entry in the tunnel table and no /32 static black-hole route then the BGP next-hop is unresolved and the label-IPv4 route is considered invalid. However note that a label-IPv4 route that is invalid due to an unresolved next-hop can still be reflected to an IBGP peer, whether or not next-hop-self is applied to the route.
• SR-OS always attempts to resolve the next-hop of a 6PE route.
  → The 7x50 router looks for an LDP tunnel in the tunnel-table with a destination that
    matches the IPv4 address contained in the IPv4-mapped IPv6 BGP next-hop address.
  → If there is no matching LDP entry in the tunnel table but there is a /128 static route
    with a black-hole next-hop that matches the IPv4-mapped IPv6 BGP next-hop address
    this static route automatically resolves the BGP next-hop.
  → If there is no matching LDP entry in the tunnel table and no /128 static black-hole
    route then the BGP next-hop is unresolved and the 6PE route is considered invalid.
    However note that a 6PE route that is invalid due to an unresolved next-hop can still
    be reflected to an IBGP peer, whether or not next-hop-self is applied to the route.
• SR-OS does not check for next-hop reachability in Flow-spec and RTC routes.
Next-Hop Tracking

In SR-OS next-hop resolution is not a one-time event. If the IP route or tunnel that was used to resolve a BGP next-hop is withdrawn due to a failure or configuration change an attempt is made to re-resolve the BGP next-hop using the next-best route or tunnel. If there are no more eligible routes or tunnels to resolve the BGP next-hop then the BGP next-hop becomes unresolved. The continual process of monitoring and reacting to resolving route/tunnel changes is called next-hop tracking. In SR-OS next-hop tracking is completely event driven as opposed to timer driven; this provides the best possible convergence performance.

Next-Hop Indirection

SR-OS supports next-hop indirection for most types of BGP routes. Next-hop indirection means BGP next-hops are logically separated from resolved next-hops in the forwarding plane (IOMs). This separation allows routes that share the same BGP next-hop(s) to be grouped so that when there is a change to the way a BGP next-hop is resolved only one forwarding plane update is needed, as opposed to one update for every route in the group. The convergence time after the next-hop resolution change is uniform and not linear with the number of prefixes; in other words the next-hop indirection is a technology that supports *prefix independent convergence* (PIC). SR-OS uses next-hop indirection whenever possible; there is no option to disable the functionality.

Using Multiple Address Families over IPv6 BGP Sessions

To ease transition to IPv6 and the deployment of IPv6 into service provider environments, SR-OS permits the transport of the following address families over an IPv6 transported BGP session (a BGP session where both neighbors are configured and transported over IPv6):

- IPv4
- VPN-IPv4
- IPv6
- VPN-IPv6

As the IPv4, VPN-IPv4 and VPN-IPv6 address families require an IPv4 NEXT_HOP address to be present in the BGP NLRI messaging, the following approaches are taken in SR-OS:

- For iBGP sessions, SR-OS will use the configured System Interface IPv4 address as the NEXT_HOP address; unless specifically overwritten by a routing export policy.
- For eBGP sessions, SR-OS requires the use of a routing export policy to set the NEXT_HOP to an appropriate address, such as the IPv4 address configured on the interface between eBGP neighbors.
BGP Path Attributes

MED

The Multi-Exit Discriminator (MED) attribute is an optional attribute that can be added to routes advertised to an EBGP peer to influence the flow of inbound traffic to the AS. The MED attribute carries a 32-bit metric value. A lower metric is better than a higher metric when MED is compared by the BGP decision process. Unless the always-compare-med command is configured MED is compared only if the routes come from the same neighbor AS. By default if a route is received without a MED attribute it is evaluated by the BGP decision process as though it had a MED containing the value 0, but this can be changed so that a missing MED attribute is handled the same as a MED with the maximum value. SR-OS always removes the received MED attribute when advertising the route to an EBGP peer.

Deterministic MED

Deterministic MED is an optional enhancement to the BGP decision process that causes BGP to groups paths that are equal up to the MED comparison step based on the neighbor AS. BGP compares the best path from each group to arrive at the overall best path. This change to the BGP decision process makes best path selection completely deterministic in all cases. Without deterministic-med, the overall best path selection is sometimes dependent on the order of route arrival because of the rule that MED cannot be compared in routes from different neighbor AS.

Local Preference

The LOCAL_PREF attribute is a well-known attribute that should be included in every route advertised to an IBGP or confederation-EBGP peer. It is used to influence the flow of outbound traffic from the AS. The local preference is a 32-bit value and higher values are more preferred by the BGP decision process. The LOCAL_PREF attribute is not included in routes advertised to EBGP peers. (If the attribute is received from an EBGP peer it is ignored.)

In SR-OS the default local preference is 100 but this can be changed with the local-preference command or using route policies. When a LOCAL_PREF attribute needs to be added to a route because it does not have one (e.g. because it was received from an EBGP peer) the value is the configured or default local-preference unless overridden by policy.

Route Aggregation Path Attributes

An aggregate route is a configured IP route that is activated and installed in the routing table when it has at least one contributing route. A route R contributes to an aggregate route S1 if:
• The prefix length of R is greater than the prefix length of S1
• The prefix bits of R match the prefix bits of S1 up to the prefix length of S1
• There is no other aggregate route S2 with a longer prefix length than S1 that meets the previous two conditions
• R is actively used for forwarding and is not an aggregate route

When an aggregate route is activated by a 7x50 router it is not installed in the forwarding table by default. In general though it is advisable to specify the black-hole next-hop option for an aggregate route so that when it is activated it is installed in the forwarding table with a black-hole next-hop; this avoids the possibility of creating a routing loop. SR-OS also supports the option to program an aggregate route into the forwarding table with an indirect next-hop; in this case packets matching the aggregate route but not a more-specific contributing route are forwarded towards the indirect next-hop rather than discarded.

An active aggregate route can be advertised to a BGP peer (by exporting it into BGP) and this can avoid the need to advertise the more-specific contributing routes to the peer, reducing the number of routes in the peer AS and improving overall scalability. When a 7x50 router advertises an aggregate route to a BGP peer the attributes in the route are set as follows:

• The ATOMIC_AGGREGATE attribute is included in the route if at least one contributing route has the ATOMIC_AGGREGATE attribute or the aggregate route was formed without the as-set option and at least one contributing route has a non-empty AS_PATH. The ATOMIC_AGGREGATE attribute indicates that some of the AS numbers present in the AS paths of the contributing routes are missing from the advertised AS_PATH.
• The AGGREGATOR attribute is added to the route. This attribute encodes, by default, the global AS number (or confederation ID) and router ID (BGP identifier) of the router that formed the aggregate, but these values can be changed on a per aggregate route basis using the aggregator command option. The AS number in the AGGREGATOR attribute is either 2 bytes or 4 bytes (if the 4-octet ASN capability was announced by both peers). The router ID in the aggregate routes advertised to a particular set of peers can be set to 0.0.0.0 using the aggregator-id-zero command.
• The BGP next-hop is set to the local-address used with the peer receiving the route regardless of the BGP next-hops of the contributing routes.
• The ORIGIN attribute is based on the ORIGIN attributes of the contributing routes as described in RFC 4271.
BGP Path Attributes

- The information in the AS_PATH attribute depends on the **as-set** option of the aggregate route.
  - If the **as-set** option is not specified the AS_PATH of the aggregate route starts as an empty AS path and has elements added per the description in the section titled AS Path on page 570.
  - If the **as-set** option is specified and all the contributing routes have the same AS_PATH then the AS_PATH of the aggregate route starts with that common AS_PATH and has elements added per the description in the section titled AS Path on page 570.
  - If the **as-set** option is specified and some of the contributing routes have different AS_PATHs the AS_PATH of the aggregate route starts with an AS_SET and/or an AS_CONFED_SET and then adds elements per the description in the section titled AS Path on page 570.

- The COMMUNITY attribute contains all the communities from all the contributing routes.
- No MED attribute is included by default. Note that SR-OS does not require all the contributing routes to have the same MED value.

Community and Extended Community Attributes

A BGP route can be associated with one or more standard communities and one or more extended communities. All the standard communities are carried in a single COMMUNITIES attribute and all the extended communities currently supported by SR-OS are carried in a single EXTENDED_COMMUNITIES attribute.

Each standard community is 4 bytes; the first 2 bytes encode the AS number of the administrative entity that assigned the value in the last 2 bytes. In SR-OS a standard community member is input as **AS:value** to reflect this format. There are several well-known standard communities that 7x50 and most other BGP routers recognize:

- **NO_EXPORT**: When a route carries this community is must not be advertised outside a confederation boundary (i.e. to EBGP peers).
- **NO_ADVERTISE**: When a route carries this community it must not be advertised to any other BGP peer.
- **NO_EXPORT_SUBCONFED**: When a route carries this community it must not be advertised outside a member AS boundary (i.e. to confed-EBGP peers or EBGP peers).

Standard communities can be added to or removed from BGP routes using BGP import and export policies. When a BGP route is locally originated by exporting a static or aggregate route into BGP, and the static or aggregate route has an associated community, this community is automatically added to the BGP route. (Note that this may affect the advertisement of the locally originated route if one of the well-known communities is associated with the static or aggregate route.)
If it is necessary to remove all the standard communities from all routes advertised to a BGP peer, SR-OS supports the `disable-communities standard` command.

Extended communities provide more flexibility than standard communities. Each extended community is 8 bytes. The first 1 or 2 bytes identifies the type/sub-type and the remaining 6 or 7 bytes is a value. As of release 12.0R1 SR-OS supports the following types of extended communities:

- **Transitive 2-octet AS-specific**
  - Route target (type 0x0002)
  - Route origin (type 0x0003)
  - OSPF domain ID (type 0x0005)
  - Source AS (type 0x0009)
  - L2VPN identifier (type 0x000A)

- **Transitive IPv4-address-specific**
  - Route target (type 0x0102)
  - Route origin (type 0x0103)
  - OSPF domain ID (type 0x0105)
  - L2VPN identifier (type 0x010A)
  - VRF route import (type 0x010B)

- **Transitive 4-octet AS-specific**
  - Route target (type 0x0202)
  - Route origin (type 0x0203)
  - OSPF domain ID (type 0x0205)
  - Source AS (type 0x0209)

- **Transitive opaque**
  - OSPF route type (type 0x0306)

- **Transitive experimental**
  - OSPF domain ID (type 0x8005)
  - Flow-spec traffic rate (type 0x8006)
  - Flow-spec traffic action (type 0x8007)
  - Flow-spec redirect (type 0x8008)
  - Layer 2 info (type 0x800A)

- **EVPN**
  - MAC mobility (type 0x0600)
BGP Path Attributes

Route target and route origin extended communities can be added to or removed from BGP routes using BGP import and export policies. Other types of extended communities are added automatically to the relevant types of routes.

If it is necessary to remove all the extended communities from all routes advertised to a BGP peer SR-OS supports the `disable-communities extended` command.

Route Reflection Attributes

The ORIGINATOR_ID and CLUSTER_LIST are optional non-transitive attributes that play a role in route reflection, as described in the section titled Route Reflection on page 560.

Multi-Protocol BGP Attributes

As discussed in the BGP chapter overview the uses of BGP have increased well beyond Internet IPv4 routing due to its support for multi-protocol extensions, or more simply MP-BGP. MP-BGP allows BGP peers to exchange routes for NLRI other than IPv4 prefixes - for example IPv6 prefixes, Layer 3 VPN routes, Layer 2 VPN routes, flow-spec rules, etc. A BGP router that supports MP-BGP indicates the types of routes it wants to exchange with a peer by including the corresponding AFI (Address Family Identifier) and SAFI (Subsequent Address Family Identifier) values in the MP-BGP capability of its OPEN message. The two peers forming a session do not need indicate support for the same address families; as long as there is one AFI/SAFI in common the session will establish and routes associated with all the common AFI/SAFI can be exchanged between the peers.

The list of AFI/SAFI advertised in the MP-BGP capability of a 7x50 router is controlled primarily by the `family` command. The AFI/SAFI supported by SR-OS as of Release 12.0R1 and the method of configuring the AFI/SAFI support is summarized in Table 9.

<table>
<thead>
<tr>
<th>Name</th>
<th>AFI</th>
<th>SAFI</th>
<th>Configuration Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 unicast</td>
<td>1</td>
<td>1</td>
<td>family ipv4</td>
</tr>
<tr>
<td>IPv4 multicast</td>
<td>1</td>
<td>2</td>
<td>family mcast-ipv4</td>
</tr>
<tr>
<td>IPv4 labeled unicast</td>
<td>1</td>
<td>4</td>
<td>family ipv4&lt;br&gt;advertise-label ipv4</td>
</tr>
<tr>
<td>NG-MVPN IPv4</td>
<td>1</td>
<td>5</td>
<td>family mvnp-ipv4</td>
</tr>
</tbody>
</table>
To advertise reachable routes of a particular AFI/SAFI a BGP router includes a single MP_REACH_NLRI attribute in the UPDATE message. The MP_REACH_NLRI attribute encodes the AFI, the SAFI, the BGP next-hop and all the reachable NLRI. To withdraw routes of a particular AFI/SAFI a BGP router includes a single MP_UNREACH_NLRI attribute in the UPDATE message. The MP_UNREACH_NLRI attribute encodes the AFI, the SAFI and all the withdrawn NLRI. Note that while it is valid to advertise and withdraw IPv4 unicast routes using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes SR-OS always uses the IPv4 fields of the UPDATE message to convey reachable and unreachable IPv4 unicast routes.

<table>
<thead>
<tr>
<th>Name</th>
<th>AFI</th>
<th>SAFI</th>
<th>Configuration Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDT-SAFI</td>
<td>1</td>
<td>66</td>
<td>family mdt-safi</td>
</tr>
<tr>
<td>VPN-IPv4</td>
<td>1</td>
<td>128</td>
<td>family vpn-ipv4</td>
</tr>
<tr>
<td>VPN-IPv4 multicast</td>
<td>1</td>
<td>129</td>
<td>family mcast-vpn-ipv4</td>
</tr>
<tr>
<td>RT constrain</td>
<td>1</td>
<td>132</td>
<td>family route-target</td>
</tr>
<tr>
<td>IPv4 flow-spec</td>
<td>1</td>
<td>133</td>
<td>family flow-ipv4</td>
</tr>
<tr>
<td>IPv6 unicast</td>
<td>2</td>
<td>1</td>
<td>family ipv6</td>
</tr>
<tr>
<td>IPv6 multicast</td>
<td>2</td>
<td>2</td>
<td>family mcast-ipv6</td>
</tr>
<tr>
<td>6PE</td>
<td>2</td>
<td>4</td>
<td>family ipv6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>advertise-label ipv6</td>
</tr>
<tr>
<td>NG-MVPN IPv6</td>
<td>2</td>
<td>5</td>
<td>family mvpn-ipv6</td>
</tr>
<tr>
<td>VPN-IPv6</td>
<td>2</td>
<td>128</td>
<td>family vpn-ipv6</td>
</tr>
<tr>
<td>IPv6 flow-spec</td>
<td>2</td>
<td>133</td>
<td>family flow-ipv6</td>
</tr>
<tr>
<td>Multi-segment PW</td>
<td>25</td>
<td>6</td>
<td>family ms-pw</td>
</tr>
<tr>
<td>L2 VPN</td>
<td>25</td>
<td>65</td>
<td>family l2-vpn</td>
</tr>
<tr>
<td>EVPN</td>
<td>25</td>
<td>70</td>
<td>family evpn</td>
</tr>
</tbody>
</table>

Table 9: Multi-Protocol BGP support in SR-OS
4-Octet AS Attributes

The AS4_PATH and AS4_AGGRREGATOR path attributes are optional transitive attributes that support the gradual migration of routers that can understand and parse 4-octet ASN numbers. The use of these attributes is discussed in the section titled 4-Octet Autonomous System Numbers on page 573.

AIGP Metric

The accumulated IGP (AIGP) metric is an optional non-transitive attribute that can be attached to selected routes (using route policies) to influence the BGP decision process to prefer BGP paths with a lower end-to-end IGP cost, even when the compared paths span more than one AS or IGP instance. AIGP is different from MED in several important ways:

- AIGP is not intended to be transitive between completely distinct autonomous systems (only across internal AS boundaries)
- AIGP is always compared in paths that have the attribute, regardless of whether or not they come from different neighbor AS
- AIGP is more important than MED in the BGP decision process (see the section titled BGP Decision Process on page 590)
- AIGP is automatically incremented every time there is a BGP next-hop change so that it can track the end-to-end IGP cost. All arithmetic operations on MED attributes must be done manually (for example, using route policies).

In the 7x50 implementation AIGP is supported only in the base router BGP instance and only for the following types of routes: IPv4, label-IPv4, IPv6 and 6PE. The AIGP attribute is only sent to peers configured with the `aigp` command. If the attribute is received from a peer that is not configured for `aigp` or if the attribute is received in a non-supported route type the attribute is discarded and not propagated to other peers (but it is still displayed in BGP show commands).

When a 7x50 router receives a route with an AIGP attribute and it re-advertises the route to an AIGP-enabled peer without any change to the BGP next-hop the AIGP metric value is unchanged by the advertisement (RIB-OUT) process. But if the route is re-advertised with a new BGP next-hop the AIGP metric value is automatically incremented by the route table (or tunnel table) cost to reach the received BGP next-hop and/or by a statically configured value (using route policies).
BGP Routing Information Base (RIB)

The entire set of BGP routes learned and advertised by a BGP router make up its BGP Routing Information Base (RIB). Conceptually the BGP RIB can be divided into 3 parts:

- RIB-IN
- LOC-RIB
- RIB-OUT

The RIB-IN (or Adj-RIBs-In as defined in RFC 4271) holds the BGP routes that were received from peers and that the router decided to keep (store in its memory).

The LOC-RIB contains modified versions of the BGP routes in the RIB-IN. The path attributes of a RIB-IN route can be modified using BGP import policies. All of the LOC-RIB routes for the same NLRI are compared in a procedure called the BGP decision process that results in the selection of the best path for each NLRI. The best paths in the LOC-RIB are the ones that are actually ‘usable’ by the local router for forwarding, filtering, auto-discovery, etc.

The RIB-OUT (or Adj-RIBs-Out as defined in RFC 4271) holds the BGP routes that were advertised to peers. Normally a BGP route is not advertised to a peer (in the RIB-OUT) unless it is ‘used’ locally but there are exceptions. BGP export policies modify the path attributes of a LOC-RIB route to create the path attributes of the RIB-OUT route. A particular LOC-RIB route can be advertised with different path attribute values to different peers so there can exist a 1:N relationship between LOC-RIB and RIB-OUT routes.

The following sections describe many important 7x50 BGP features in the context of the RIB architecture outlined above.

RIB-IN Features

SR-OS implements the following features related to RIB-IN processing:

- UPDATE message fault tolerance. This is described in the section titled UPDATE Message Error Handling on page 567.
- BGP import policies

BGP Import Policies

The **import** command is used to apply one or more policies (up to 15) to a neighbor, group or to the entire BGP context. The **import** command that is most-specific to a peer is the one that is applied. An **import** policy command applied at the **neighbor** level takes precedence over the same
command applied at the **group** or global level. An **import** policy command applied at the **group** level takes precedence over the same command specified on the global level. The **import** policies applied at different levels are not cumulative. The policies listed in an **import** command are evaluated in the order in which they are specified.

**NOTE:** The **import** command can reference a policy before it has been created (as a **policy-statement**).

When an IP route is rejected by an import policy it is still maintained in the RIB-IN so that a policy change can be made later on without requiring the peer to re-send all its RIB-OUT routes. This is sometimes called soft reconfiguration inbound and requires no special configuration in SR-OS.

When a VPN route is rejected by an import policy or not imported by any services it is deleted from the RIB-IN. For VPN-IPv4 and VPN-IPv6 routes this behavior can be changed by configuring the **mp-bgp-keep** command; this option maintains rejected VPN-IP routes in the RIB-IN so that a Route Refresh message does not have to be issued when there is an import policy change.

---

**LOC-RIB Features**

SR-OS implements the following features related to LOC-RIB processing.

- BGP decision process
- BGP route installation in the route table
- BGP route installation in the tunnel table
- BGP fast reroute
- QoS Policy Propagation via BGP (QPPB)
- Policy accounting
- Route flap damping (RFD)

These features are discussed in the following sections.

---

**BGP Decision Process**

When a BGP router has multiple routes in its LOC-RIB for the same NLRI its BGP decision process is responsible for deciding which one is the best. The best path can be used by the local router (e.g. for its own forwarding) and advertised to other BGP peers.
On 7x50 routers the BGP decision process orders *valid* LOC-RIB routes based on the following sequence of comparisons (if there multiple routes tied at step N then proceed to step N+1):

1. Select the route with the best (numerically lowest) route preference.
2. Select the route with the highest Local Preference (LOCAL_PREF).
3. From all routes with an AIGP metric (if any) select the route with the lowest sum of:
   → a. AIGP metric value stored with the LOC-RIB copy of the route.
   → b. The route table (or tunnel table) cost between the calculating router and the BGP NEXT_HOP in the received route.
4. Select the route with the shortest AS Path. Note that AS numbers in AS_CONFED_SEQ and AS_CONFED_SET elements do not count towards the AS path length. Skip this step if `as-path-ignore` is configured for the address family.
5. Select the route with the lowest Origin (IGP=0, EGP=1, Incomplete=2).
6. Select the route with the lowest MED. Only compare MED in routes from the same neighbor AS by default. A missing MED attribute is considered equivalent to a MED value of 0 by default. Defaults can be changed with the `always-compare-med` command.
7. Prefer routes learned from EBGP peers over routes learned from IBGP and confed-EBGP peers.
8. Select the route with the lowest route or tunnel table cost to the NEXT_HOP. If `ignore-nh-metric` is configured skip this step.
9. Select the route with lowest next-hop type (resolved in route-table = 0, resolved in tunnel-table = 1). If `ignore-nh-metric` is configured skip this step.
10. Select the route received by the peer with the lowest Router ID; this comes from the ORIGINATOR_ID attribute (if present) or else the BGP identifier of the peer (received in its OPEN message). If `ignore-router-id` is configured and two EBGP routes are being compared keep the current best path and skip steps 11 and 12.
11. Select the route with the shortest CLUSTER_LIST length.
12. Select the route received from the peer with the lowest IP address.

---

**Always Compare MED**

By default, the MED path attribute is used in the decision process only if the routes being compared come from the same neighbor AS; if one of the paths lacks a MED attribute it is considered equal to a route with a MED of 0. These default rules can be modified using the `always-compare-med` command.

The `always-compare-med` command without the `strict-as` keyword allows MED to be compared in paths from different neighbor autonomous systems; in this case, if neither `zero` or `infinity` is part of the command, `zero` is inferred, meaning that a route without a MED attribute is handled as
though it had a MED with value 0. When the `strict-as` keyword is present MED is only compared between paths from the same neighbor AS and in this case `zero` or `infinity` is mandatory and tells BGP how to interpret paths without a MED attribute.

Table 10 shows how the MED comparison of two paths is influenced by different forms of the `always-compare-med` command.

<table>
<thead>
<tr>
<th>Command</th>
<th>MED comparison step in decision process</th>
</tr>
</thead>
<tbody>
<tr>
<td>no always-compare-med</td>
<td>Only compare the MED of two paths if they come from the same neighbor AS. If one path is missing a MED attribute treat it the same as MED=0.</td>
</tr>
<tr>
<td>always-compare-med strict-as zero</td>
<td>Always compare the MED of two paths, even if they come from different neighbor AS. If one path is missing a MED attribute treat it the same as MED=0.</td>
</tr>
<tr>
<td>always-compare-med zero</td>
<td>Always compare the MED of two paths, even if they come from different neighbor AS. If one path is missing a MED attribute treat it the same as MED=0.</td>
</tr>
<tr>
<td>always-compare-med infinity</td>
<td>Always compare the MED of two paths, even if they come from different neighbor AS. If one path is missing a MED attribute treat it the same as MED=0.</td>
</tr>
<tr>
<td>always-compare-med strict-as infinity</td>
<td>Only compare the MED of two paths if they come from the same neighbor AS. If one path is missing a MED attribute treat it the same as MED=0.</td>
</tr>
</tbody>
</table>

Ignore Next-Hop Metric

The `ignore-nh-metric` command allows the step comparing the distance to the BGP next-hop to be skipped. When this command is present in the `config>service>vprn` context it applies to the comparison of two imported BGP-VPN routes. When this command is present in the `config>router:bgp` context it applies to the comparison of any two BGP routes received by that instance. And when this command is present in the `config>service>vprn:bgp` context it applies to the comparison of two BGP routes learned from VPRN BGP peers (that is, CE peers). In all cases, this option is useful when there are multiple paths for a prefix that are equally preferred up to (but not including) the IGP cost comparison step of the BGP decision process and the network administrator wants all of them to be used for forwarding (`BGP-Multipath`).

BGP Route Installation in the Route Table

If the best BGP path for an IPv4 or IPv6 prefix is the most preferred route to the destination it is installed in the IP route table unless `disable-route-table-install` is configured. The best BGP path is the most preferred route if has the numerically lowest route preference among all routes, of all
protocols, to the destination. The default preference value for BGP routes is 170 but this can be changed using the `preference` command in the BGP or policy configuration.

**NOTE:** Consider configuring the `disable-route-table-install` command on control-plane route reflectors that are not involved in packet forwarding (i.e. that do not modify the BGP NEXT_HOP); this improves the performance and scalability of such route reflectors.

If the best path can be installed in the route table and there are other BGP paths (LOC-RIB routes) for the same IPv4 or IPv6 prefix that are nearly as good as the best path the additional paths can also be installed in the route table. This is called *BGP-Multipath* and it must be explicitly enabled using the `multipath` command. The `multipath` command specifies the maximum number of BGP paths (up to 32), including the overall best path, that BGP can install in the route table for any particular IPv4 or IPv6 prefix; in this scenario each BGP path is effectively one ECMP next-hop of the IP route and traffic matching the IP route is load-shared across the ECMP next-hops based on a per-packet hash calculation.

By default the hashing is not *sticky*, meaning that when one or more of the equal-cost BGP next-hops fail all traffic flows matching the route are potentially moved to new BGP next-hops. If required, a BGP route can be marked (using the `sticky-ecmp` action in route policies) for sticky ECMP behavior so that BGP next-hop failures are handled by moving only the affected traffic flows to the remaining next-hops as evenly as possible.

**NOTE:** In order for BGP to install a route with \( N \) ECMP next-hops in the route-table the associated routing instance must have the `ecmp` command in its configuration and the max number of ECMP next-hops specified as part of that command must have a value greater than or equal to \( N \).

In SR-OS a BGP path to an IPv4 or IPv6 prefix is a candidate for installation as an ECMP next-hop (subject to the path limits of the `multipath` and `ecmp` commands) only if it meets both of the following criteria:

1. It is the overall best BGP path or else it is tied with the overall best path up to and including step 9 of the decision process as summarized in the section titled *BGP Decision Process* on page 590.

2. Compared to other paths with the same BGP NEXT_HOP it is the best path (based on evaluation of all steps of the BGP decision process).

**NOTE:** VPRN routing instances support a special mode of BGP multipath called *EIBGP-Multipath*. In *EIBGP-Multipath* BGP routes learned from CE devices that are typically EBGP peers are combined with imported VPN-IP routes that typically come from IBGP peers to form an IP ECMP route. When *EIBGP-Multipath* is enabled a route is a candidate for installation as an ECMP next-hop if it is the overall best route or else it is tied with the overall best route up to and including the MED step of the BGP decision process.
SR-OS also supports a feature called **IBGP-Multipath**. In some topologies a BGP next-hop is resolved by an IP route (for example a static, OSPF or IS-IS route) that itself has multiple ECMP next-hops. When `ibgp-multipath` is not configured only one of these ECMP next-hops is programmed as a next-hop of the BGP route in the IOM. But when `ibgp-multipath` is configured the IOM attempts to use all of the ECMP next-hops of the resolving route in forwarding.

**NOTE:** When a BGP next-hop of an IPv4 or IPv6 route is resolved by a BGP route the `ibgp-multipath` command applies to the ECMP next-hops of the IP route that resolves the first BGP next-hop of the resolving BGP route; other BGP next-hops of the resolving BGP route are not programmed, even if they meet the multipath criteria described above.

Although the name of the `ibgp-multipath` command implies that it is specific to IBGP-learned routes this is not the case; it applies to routes learned from any multi-hop BGP session including routes learned from multi-hop EBGP peers.

It is important to note that **BGP-Multipath** and **IBGP-Multipath** are not mutually exclusive and work together. **BGP-Multipath** enables ECMP load-sharing across different BGP next-hops (corresponding to different LOC-RIB routes) and **IBGP-Multipath** enables ECMP load-sharing across different IP next-hops of IP routes that resolve the BGP next-hops.

**NOTE:** If the potential number of IP ECMP next-hops for a BGP route (number of BGP next-hops x number of IP next-hops towards each BGP next-hop) exceeds the limit configured as part of the `ecmp` command (which has a maximum value of 32) then traffic may not be distributed across all the BGP next-hops.

The final point about **IBGP-Multipath** is that it does not control load-sharing of traffic towards a BGP next-hop that is resolved by a tunnel, such as the case when dealing with BGP shortcuts or labeled routes (VPN-IP, label-IPv4, 6PE). When a BGP next-hop is resolved by a tunnel that supports ECMP the load-sharing of traffic across the ECMP next-hops of the tunnel is automatic.

**NOTE:** At the current time SR-OS does not support direct resolution of a BGP next-hop to multiple RSVP-TE tunnels. However a BGP next-hop can be resolved by multiple LDP ECMP next-hops that each correspond to a separate LDP-over-RSVP tunnel. It is also possible for a BGP next-hop to be resolved by an IGP shortcut route that has multiple RSVP-TE tunnels as its ECMP next-hops.

## BGP Route Installation in the Tunnel Table

If the best BGP path for a /32 IPv4 prefix is a label-IPv4 route (AFI 1, SAFI 4), and if it has the numerically lowest `preference` value among all routes (regardless of protocol) for the /32 IPv4 prefix, and if `disable-route-table-install` is not configured, the label-IPv4 route is automatically added, as a **BGP tunnel** entry, to the tunnel table. In SR-OS the tunnel-table is used to resolve a
BGP next-hop to a tunnel when required by the configuration or the type of route (see the section titled Next-Hop Resolution on page 578 for many of these details). BGP tunnels play a key role in the following solutions:

- Inter-AS IP VPN model C
- Inter-AS L2 VPN model C
- Carrier Supporting Carrier (CSC)
- Intra-AS seamless MPLS

BGP tunnels have a preference of 10 in the tunnel table, compared to 9 for LDP tunnels and 7 for RSVP tunnels, so if the router configuration allows all types of tunnels to resolve a BGP next-hop an RSVP LSP is preferred over an LDP tunnel and an LDP tunnel is preferred over a BGP tunnel.

If **multipath** and **ecmp** are configured appropriately a BGP tunnel can be installed in the tunnel table with multiple ECMP next-hops, each one corresponding to a path through a different BGP next-hop; the multipath selection process outlined in the previous section (BGP Route Installation in the Route Table on page 592) also applies to this case.

For BGP tunnels there is no support for the equivalent of **IBGP-Multipath**. That is, if a BGP next-hop of the label-IPv4 route in the tunnel table is resolved by an LDP tunnel with multiple ECMP next-hops load-sharing is not supported across the LDP ECMP next-hops; only the first next-hop carries traffic towards the BGP next-hop.

---

**BGP Fast Reroute**

BGP fast reroute is a feature that brings together indirection techniques in the forwarding plane and pre-computation of BGP backup paths in the control plane to support fast reroute of BGP traffic around unreachable/failed BGP next-hops. BGP fast reroute is supported with IPv4, labeled-IPv4, IPv6, 6PE, VPN-IPv4 and VPN-IPv6 routes. The scenarios supported by the base router BGP context are outlined in Table 11.

Note that BGP fast reroute information specific to IP VPNs is described in the BGP Fast Reroute in a VPRN section of the 7x50 SR OS Services Guide.

<table>
<thead>
<tr>
<th>Ingress Packet</th>
<th>Primary Route</th>
<th>Backup Route</th>
<th>Prefix Independent Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>IPv4 route with next-hop A resolved by an IPv4 route or an LDP or RSVP shortcut tunnel</td>
<td>IPv4 route with next-hop B resolved by an IPv4 route or an LDP or RSVP shortcut tunnel</td>
<td>Yes</td>
</tr>
</tbody>
</table>

---
Calculating Backup Paths

In SR-OS BGP fast reroute is optional and must be enabled using the `backup-path` command. The `backup-path` command supports options to enable the functionality for IPv4 prefixes only, for IPv6 prefixes only or for all IPv4 and IPv6 prefixes.

When BGP fast reroute is enabled the control plane attempts to find an eligible backup path for every received IPv4 and/or IPv6 prefix, depending on configuration. In general the backup path is the single best path remaining after the primary ECMP paths and any paths with the same BGP next-hops as these paths have been removed. However the following points should be noted:

- A backup path is not calculated for a prefix if the best path is a labeled-IPv4 route and it has been programmed with multiple ECMP next-hops through different BGP next-hops.
- For labeled-IPv4 prefixes that are re-advertised with a new BGP next-hop the programmed backup path is the same for all prefixes that have the same best path and received label, even if the calculated backup path is different for some of the prefixes.

Failure Detection and Switchover to the Backup Path
When BGP fast reroute is enabled the IOM reroutes traffic onto a backup path based on input from BGP. When BGP decides that a primary path is no longer usable it notifies the IOM and affected traffic is immediately switched to the backup path.

The following events trigger failure notifications to the IOM and reroute of traffic to backup paths:

- Peer IP address unreachable and peer-tracking is enabled
- BFD session associated with BGP peer goes down
- BGP session terminated with peer (for example, send/receive NOTIFICATION)
- There is no longer any route (allowed by the next-hop resolution policy, if configured) that can resolve the BGP next-hop address
- The LDP tunnel that resolves the next-hop goes down. This could happen because there is no longer any IP route that can resolve the FEC, or the LDP session goes down, or the LDP peer withdraws its label mapping.
- The RSVP tunnel that resolves the next-hop goes down. This could happen because a ResvTear message is received, or the RESV state times out, or the outgoing interface fails and is not protected by FRR or a secondary path.
- The BGP tunnel that resolves the next-hop goes down. This could happen because the BGP label-IPv4 route is withdrawn by the peer or else becomes invalid due to an unresolved next-hop.

---

QoS Policy Propagation via BGP (QPPB)

QPPB is a feature that allows different QoS values (forwarding class and optionally priority) to be associated with different IPv4 and IPv6 BGP LOC-RIB routes based on BGP import policy processing. This is done so that when traffic arrives on a QPPB-enabled IP interface and its source or destination IP address matches a BGP route with QoS information the packet is handled according to the QoS of the matching route. SR-OS supports QPPB on the following types of interfaces:

- Base router network interfaces
- IES and VPRN SAP interfaces
- IES and VPRN spoke-SDP interfaces
- IES and VPRN subscriber interfaces

QPPB is enabled on an interface using the `qos-route-lookup` command. There are separate commands for IPv4 and IPv6 so that QPPB can be enabled in one mode (source or destination or
BGP Routing Information Base (RIB)

none) for IPv4 packets arriving on the interface and a different mode (source or destination or none) for IPv6 packets arriving on the interface.

**NOTE:** Source-based QPPB is not supported on subscriber interfaces.

It is possible that different LOC-RIB routes for the same IP prefix are associated with different QPPB information. If these LOC-RIB routes are combined in support of ECMP or BGP fast reroute then the QPPB information becomes next-hop specific. This means that in destination QPPB mode the QoS assigned to a packet depends on the BGP next-hop that is selected for that particular packet by the ECMP hash or fast reroute algorithm. In source QPPB mode the QoS assigned to a packet comes from the first BGP next-hop of the IP route matching the source address.

**BGP Policy Accounting**

Policy accounting is a feature that allows different accounting classes to be associated with IPv4 and IPv6 BGP LOC-RIB routes based on BGP import policy processing. This is done so that per-accounting-class traffic statistics can be collected on policy accounting-enabled interfaces of the router. Policy accounting interfaces are only supported on IOM3 or better cards. The following types of interfaces are supported:

- Base router network interfaces
- IES and VPRN SAP interfaces
- IES and VPRN spoke-SDP interfaces
- IES and VPRN subscriber interfaces

Policy accounting is enabled on an interface using the `policy-accounting` command; this command requires the name of a policy accounting template to be specified. Each policy accounting template contains a list of source classes and destination classes. 7x50 routers support up to 255 different source classes and up to 255 different destination classes. Each source class is identified by an index number (1-255) and each destination class is identified by an index number (1-255). The policy accounting template tells the IOM what accounting classes to collect stats for on a policy accounting interface. SR-OS supports up to 1024 different templates, depending on the chassis type.

**NOTE:** Policy accounting templates containing one or more source class identifiers cannot be applied to subscriber interfaces.

Through policy mechanisms a LOC-RIB route for an IP prefix can have a source class index (1-25), a destination class index (1-255) or both. When an ingress packet on a policy-accounting
enabled interface [I1] is forwarded by the IOM and its destination address matches a BGP route with a destination class index [D], and [D] is listed in the relevant policy accounting template, packets-forwarded and IP-bytes-forwarded counters for [D] on interface [I1] are incremented accordingly. Similarly, when an ingress packet on a policy-accounting enabled interface [I2] is forwarded by the IOM and its source address matches a BGP route with a source class index [S], and [S] is listed in the relevant policy accounting template, the packets-forwarded and IP-bytes-forwarded counters for [S] on interface [I2] are incremented accordingly.

It is possible that different LOC-RIB routes for the same IP prefix are associated with different accounting class information. If these LOC-RIB routes are combined in support of ECMP or BGP fast reroute then the destination-class of a packet depends on the BGP next-hop that is selected for that particular packet by the ECMP hash or fast reroute algorithm. If the source address of a packet matches a route with multiple BGP next-hops its source-class is derived from the first BGP next-hop of the matching route.

**Route Flap Damping (RFD)**

Route flap damping is a mechanism supported by 7x50 and other BGP routers that was designed to help improve the stability of Internet routing by mitigating the impact of route flaps. Route flaps describe a situation where a router alternately advertises a route as reachable and then unreachable or as reachable through one path and then another path in rapid succession. Route flaps can result from hardware errors, software errors, configuration errors, unreliable links, etc. However not all perceived route flaps represent a true problem; when a best path is withdrawn the next-best path may not be immediately known and may trigger a number of intermediate best path selections (and corresponding advertisements) before it is found. These intermediate best path selections may travel at different speeds through different routers due to the effect of the min-route-advertisement interval (MRAI) and other factors. RFD does not handle this type of situation particularly well and for this and other reasons many Internet service providers do not use RFD.

In SR-OS route flap damping is configurable; by default it is disabled. It can be enabled on EBGP and confed-EBGP sessions by including the `damping` command in their group or neighbor configuration. The `damping` command has no effect on IBGP sessions. When a route of any type (any AFI/SAFI) is received on a non-IBGP session that has `damping` enabled:

- If the route changes from reachable to unreachable due to a withdrawal by the peer then damping history is created for the route (if it does not already exist) and in that history the Figure of Merit (FOM), an accumulated penalty value, is incremented by 1024.
- If a reachable route is updated by the peer with new path attribute values then the FOM is incremented by 1024.
- In SR-OS the FOM has a hard upper limit of 21540 (not configurable).
- The FOM value is decayed exponentially as described in RFC 2439. The half-life of the decay is 15 minutes by default, however a BGP import policy can be used to apply a non-
default damping profile to the route, and the **half-life** in the non-default damping profile can have any value between 1 and 45 minutes.

- The value of the FOM value at the last time of update can be displayed using the `show router bgp damping detail` command. Note that the time of last update can be up to 640 seconds ago; SR-OS does not calculate the current FOM every time the show command is entered.

- When the FOM reaches the suppress limit, which is 3000 by default but can be changed to any value between 1 and 20000 in a non-default damping profile, the route is suppressed, meaning it is not used locally and not advertised to peers. The route remains suppressed until either the FOM exponentially decays to a value less than or equal to the **reuse** threshold or the **max-suppress** time is reached. By default the **reuse** threshold is 750 and the **max-suppress** time is 60 minutes, but these can be changed in a non-default damping profile: **reuse** can have a value between 1 and 20000 and **max-suppress** can have a value between 1 and 720 minutes.
RIB-OUT Features

SR-OS implements the following features related to RIB-OUT processing.

- BGP export policies
- Outbound route filtering (ORF)
- RT constrained route distribution
- Configurable min-route-advertisement (MRAI)
- Advertise-inactive
- Best-external
- Add-path
- Split-horizon

These features are discussed in the following sections.

BGP Export Policies

The export command is used to apply one or more policies (up to 15) to a neighbor, group or to the entire BGP context. The export command that is most-specific to a peer is the one that is applied. An export policy command applied at the neighbor level takes precedence over the same command applied at the group or global level. An export policy command applied at the group level takes precedence over the same command specified on the global level. The export policies applied at different levels are not cumulative. The policies listed in an export command are evaluated in the order in which they are specified.

NOTE: The export command can reference a policy before it has been created (as a policy-statement).

The most common uses for BGP export policies are as follows:

- To locally originate a BGP route by exporting (or redistributing) a non-BGP route that is installed in the route table and actively used for forwarding. The non-BGP route is most frequently a direct, static or aggregate route (exporting IGP routes into BGP is generally not recommended).
- To block the advertisement of certain BGP routes towards specific BGP peers. The routes may be blocked on the basis of IP prefix, communities, etc.
To modify the attributes of BGP routes advertised to specific BGP peers. The following path attribute modifications are possible using BGP export policies:

→ Change the ORIGIN value

→ Add a sequence of AS numbers to the start of the AS_PATH. Note that when a route is advertised to an EBGP peer the addition of the local-AS/global-AS numbers to the AS_PATH is always the final step (done after export policy).

→ Replace the AS_PATH with a new AS_PATH. Note that when a route is advertised to an EBGP peer the addition of the local-AS/global-AS numbers to the AS_PATH is always the final step (done after export policy).

→ Prepend an AS number multiple times to the start of the AS_PATH. Note that when a route is advertised to an EBGP peer the addition of the local-AS/global-AS numbers to the AS_PATH is always the final step (done after export policy). Also note that the add/replace action on the AS_PATH supersedes the prepend action if both are specified in the same policy entry.

→ Change the NEXT_HOP to a specific IP address. Note that when a route is advertised to an EBGP peer the next-hop cannot be changed from the local-address.

→ Change the NEXT_HOP to the local-address used with the peer (next-hop-self).

→ Add a value to the MED. If the MED attribute does not exist it is added.

→ Subtract a value from the MED. If the MED attribute does not exist it is added with a value of 0. If the result of the subtraction is a negative number the MED metric is set to 0.

→ Set the MED to a particular value.

→ Set the MED to the cost of the IP route (or tunnel) used to resolve the BGP next-hop.

→ Set LOCAL_PREF to a particular value when advertising to an IBGP peer.

→ Add, remove and/or replace standard communities

→ Add, remove and/or replace extended communities

→ Add a static value to the AIGP metric when advertising the route to an AIGP-enabled peer with a modified BGP next-hop. The static value is incremental to the automatic adjustment of the LOC-rib AIGP metric to reflect the distance between the local router and the received BGP next-hop.

→ Increment the AIGP metric by a fixed amount when advertising the route to an AIGP-enabled peer with a modified BGP next-hop. The static value is a substitute for the dynamic value of the distance between the local router and the received BGP next-hop.
Outbound Route Filtering (ORF)

Outbound route filtering (ORF) is a mechanism that allows one router, the ORF-sending router to signal to a peer, the ORF-receiving router, a set of route filtering rules (ORF entries) that the ORF-receiving router should apply to its route advertisements towards the ORF-sending router. The ORF entries are encoded in Route Refresh messages.

The use of ORF on a session must be negotiated — i.e. both routers must advertise the ORF capability in their Open messages. The ORF capability describes the address families that support ORF, and for each address family, the ORF types that are supported and the ability to send/receive each type. 7x50 routers support ORF type 3, which is ORF based on Extended Communities. It is supported for only the following address families:

- VPN-IPv4
- VPN-IPv6
- MVPN-IPv4
- MVPN-IPv6

In SR-OS the send/receive capability for ORF type 3 is configurable (with the `send-orf` and `accept-orf` commands) but the setting applies to all supported address families.

The SR-OS support for ORF type 3 allows a PE router that imports VPN routes with a particular set of Route Target Extended Communities to indicate to a peer (for example a route reflector) that it only wants to receive VPN routes that contain one or more of these Extended Communities. When the PE router wants to inform its peer about a new RT Extended Community it sends a Route Refresh message to the peer containing an ORF type 3 entry instructing the peer to add a permit entry for the 8-byte extended community value. When the PE router wants to inform its peer about a RT Extended Community that is no longer needed it sends a Route Refresh message to the peer containing an ORF type 3 entry instructing the peer to remove the permit entry for the 8-byte extended community value.

In SR-OS the type-3 ORF entries that are sent to a peer can be generated dynamically (if no Route Target Extended Communities are specified with the `send-orf` command) or else specified statically. Dynamically generated ORF entries are based on the route targets that are imported by all locally-configured VPRNs.

A router that has installed ORF entries received from a peer can still apply BGP export policies to the session. If the evaluation of a BGP export policy results in a reject action for a VPN route that matches a permit ORF entry the route is not advertised — i.e. the export policy has the final word.

NOTE: The 7x50 implementation of ORF filtering is very efficient. It takes less time to filter a large number of VPN routes with ORF than it does to reject non-matching VPN routes using a conventional BGP export policy.
Despite the advantages of ORF compared to manually configured BGP export policies a better technology, when it comes to dynamic filtering based on Route Target Extended Communities, is RT Constraint. RT Constraint is discussed further in the next section.

### RT Constrained Route Distribution

RT constrained route distribution, or RT-constrain for short, is a mechanism that allows a router to advertise to certain peers a special type of MP-BGP route called an RTC route; the associated AFI is 1 and the SAFI is 132. The NLRI of an RTC route encodes an Origin AS and a Route Target Extended Community with prefix-type encoding (i.e. there is a prefix-length and “host” bits after the prefix-length are set to zero). A peer receiving RTC routes does not advertise VPN routes to the RTC-sending router unless they contain a Route Target Extended Community that matches one of the received RTC routes. As with any other type of BGP route RTC routes are propagated loop-free throughout and between Autonomous Systems. If there are multiple RTC routes for the same NLRI the BGP decision process selects one as the best path. The propagation of the best path installs RIB-OUT filter rules as it is travels from one router to the next and this process creates an optimal VPN route distribution tree rooted at the source of the RTC route.

**NOTE:** RT-constrain and Extended Community-based ORF are similar to the extent that they both allow a router to signal to a peer the Route Target Extended Communities they want to receive in VPN routes from that peer. But RT-constrain has distinct advantages over Extended Community-based ORF: it is more widely supported, it is simpler to configure, and its distribution scope is not limited to a direct peer.

In SR-OS the capability to exchange RTC routes is advertised when the `route-target` keyword is added to the relevant `family` command. RT-constrain is supported on EBGP and IBGP sessions of the base router instance. On any particular session either ORF or RT-constrain may be used but not both; if RT-constrain is configured the ORF capability is not announced to the peer.

When RT-constrain has been negotiated with one or more peers SR-OS automatically originates and advertises to these peers one /96 RTC route (the origin AS and Route Target Extended Community are fully specified) for every route target imported by a locally-configured VPRN or BGP-based L2 VPN; this includes MVPN-specific route targets.

SR-OS also supports a group/neighbor level `default-route-target` command that causes the 7x50 router to generate and send a 0:0:0/0 default RTC route to one or more peers. Sending the default RTC route to a peer conveys a request to receive all VPN routes from that peer. The `default-route-target` command is typically configured on sessions that a route reflector has with its PE clients. Note that a received default RTC route is never propagated to other routers.

The advertisement of RTC routes by a route reflector follows special rules that are described in RFC 4684. These rules are needed to ensure that RTC routes for the same NLRI that are originated by different PE routers in the same Autonomous System are properly distributed within the AS.
When a BGP session comes up, and RT-constrain is enabled on the session (both peers advertised the MP-BGP capability), the 7x50 router delays sending any VPN-IPv4 and VPN-IPv6 routes until either the session has been up for 60 seconds or the End-of-RIB marker is received for the RT-constrain address family. When the VPN-IPv4 and VPN-IPv6 routes are sent they are filtered to include only those with a Route Target Extended Community that matches an RTC route from the peer. VPN-IP routes matching an RTC route originated in the local AS are advertised to any IBGP peer that advertises a valid path for the RTC NLRI — i.e. route distribution is not constrained to only the IBGP peer advertising the best path. On the other hand VPN-IP routes matching an RTC route originated outside the local AS are only advertised to the EBGP or IBGP peer that advertises the best path.

NOTE: SR-OS does not support an equivalent of BGP-Multipath for RT-Constrain routes. There is no way to distribute VPN routes across more than one ‘almost’ equal set of inter-AS paths.

On 7x50 routers received RTC routes have no effect on the advertisement on MVPN-IPv4, MVPN-IPv6 and L2-VPN routes.

Min Route Advertisement Interval (MRAI)

According to the BGP standard (RFC 4271) a BGP router should not send updated reachability information for an NLRI to a BGP peer until a certain period of time, called the Min Route Advertisement Interval, has elapsed since the last update. The RFC suggests the MRAI should be configurable per peer but does not propose a specific algorithm and therefore MRAI implementation details vary from one router operating system to another.

In SR-OS the MRAI is configurable, on a per-session basis, using the `min-route-advertisement` command. The `min-route-advertisement` command can be configured with any value between 1 and 255 seconds and the setting applies to all address families. The default value is 30 seconds, regardless of the session type (EBGP or IBGP). When all RIB-OUT routes have been sent to a peer the MRAI timer associated with that session is started and when it expires the RIB-OUT changes that have accumulated while the timer was running trigger the sending of a new set of UPDATE messages to the peer.

It may be important to send UPDATE messages that advertise new NLRI reachability information more frequently for some address families than others. SR-OS offers a `rapid-update` command that overrides the peer-level `min-route-advertisement` time and applies the minimum setting to routes belonging to specific address families; routes of other address families continue to be advertised according to the session-level MRAI setting. The address families that can be configured with `rapid-update` support are:

- L2-VPN
- MVPN-IPv4
• MVPN-IPv6
• MDT-SAFI
• EVPN

In many cases the default MRAI is appropriate for all address families (or at least those not included in the above list) when it applies to UPDATE messages that advertise reachable NLRI but it is less than ideal for UPDATE messages that advertise unreachable NLRI (route withdrawals). Fast re-convergence after some types of failures requires route withdrawals to propagate to other routers are quickly as possible so that they can calculate and start using new best paths and this is impeded by the effect of the MRAI timer at each router hop. SR-OS provides a solution for this problem by supporting a configuration command called `rapid-withdrawal`. When `rapid-withdrawal` is configured UPDATE messages containing withdrawn NLRI are sent immediately to a peer — without waiting for the MRAI timer to expire. UPDATE messages containing reachable NLRI continue to wait for the MRAI timer to expire, and this timer remains governed by the `min-route-advertisement` time or the `rapid-update` command, if it applies. When `rapid-withdrawal` is enabled it applies to all address families.

---

**Advertise-Inactive**

Standard BGP rules do not allow a BGP route to be advertised to peers unless it is the best path and it is ‘used’ locally. An IPv4 or IPv6 BGP route is considered ‘used’ if it is the `active` route to the destination in the route table. If there a multiple routes from different protocols for the same IP destination the BGP route is ‘used’ only if it has the numerically lowest route preference among all these routes; for further details refer to the section titled `BGP Route Installation in the Route Table` on page 592.

In some cases it may be useful to advertise the best BGP path to peers despite the fact that is `inactive` — i.e. because there are one or more lower-preference non-BGP routes to the same destination and one of these other routes is the `active` route. One way SR-OS supports this flexibility is using the `advertise-inactive` command; other methods include `Best-External` and `Add-Paths`.

As a global BGP configuration option the `advertise-inactive` command applies to all IPv4 and IPv6 routes and all sessions that advertise these routes. When the command is configured and the best BGP path is inactive it is automatically advertised to every peer unless rejected by a BGP export policy.
**Best-External**

*Best-External* is a BGP enhancement that allows a BGP speaker to advertise to its IBGP peers its best “external” route for a prefix/NLRI when its best overall route for the prefix/NLRI is an “internal” route. This is not possible in a normal BGP configuration because the base BGP specification prevents a BGP speaker from advertising a non-best route for a destination.

In certain topologies *Best-External* can improve convergence times, reduce route oscillation and allow better loadsharing. This is achieved because routers internal to the AS have knowledge of more exit paths from the AS. Enabling *Add-Paths* on border routers of the AS can achieve a similar result but *Add-Paths* introduces NLRI format changes that must be supported by BGP peers of the border router and therefore has more interoperability constraints than *Best-External* (which requires no messaging changes).

*Best-External* is supported in the base router BGP context. (A related feature is also supported in VPRNs; consult the Services Guide for more details.) It is configured using the *advertise-external* command, which provides IPv4 and IPv6 as options. *Best-External* for IPv4 applies to both regular IPv4 unicast routes as well as labeled-IPv4 (SAFI4) routes. Similarly, *Best-External* for IPv6 applies to both regular IPv6 unicast routes as well as 6PE (SAFI4) routes.

The advertisement rules when *advertise-external* is enabled can be summarized as follows:

- If a router has *advertise-external* enabled and its best overall route is a route from an IBGP peer then this best route is advertised to EBGP and confed-EBGP peers, and the “best external” route is advertised to IBGP peers. The “best external” route is the one found by running the BGP path selection algorithm on all LOC-RIB paths except for those learned from the IBGP peers.

- If a router has *advertise-external* enabled and its best overall route is a route from an EBGP peer then this best route is advertised to EBGP, confed-EBGP, and IBGP peers.

- If a router has *advertise-external* enabled and its best overall route is a route from a confed-EBGP peer in member AS X then this best route is advertised to EBGP, IBGP peers and confed-EBGP peers in all member AS except X and the “best external” route is advertised to confed-EBGP peers in member AS X. In this case the “best external” route is the one found by running the BGP path selection algorithm on all RIB-IN paths except for those learned from member AS X.

**NOTE:** A 7x50 route reflector with *advertise-external* enabled does not include IBGP routes learned from other clusters in its definition of ‘external’.

- If a router has *advertise-external* enabled and its best overall route is a route from an EBGP peer then this best route is advertised to EBGP, confed-EBGP, and IBGP peers.

**NOTE:** If the best-external route is not the best overall route it is not installed in the forwarding table and in some cases this can lead to a short-duration traffic loop after failure of the overall best path.
Add-Paths

Add-Paths is a BGP enhancement that allows a BGP router to advertise multiple distinct paths for the same prefix/NLRI. This provides a number of potential benefits, including reduced routing churn, faster convergence, and better loadsharing.

In order for a router to receive multiple paths per NLRI from a peer, for a particular address family, the peer must announce the BGP capability to send multiple paths for the address family and the local router must announce the BGP capability to receive multiple paths for the address family. When the Add-Path capability has been negotiated this way all advertisements and withdrawals of NLRI by the peer must include a path identifier. The path identifier has no significance to the receiving router. If the combination of NLRI and path identifier in an advertisement from a peer is unique (does not match an existing route in the RIB-IN from that peer) then the route is added to the RIB-IN. If the combination of NLRI and path identifier in a received advertisement is the same as an existing route in the RIB-IN from the peer then the new route replaces the existing one. If the combination of NLRI and path identifier in a received withdrawal matches an existing route in the RIB-IN from the peer then that route is removed from the RIB-IN.

An UPDATE message carrying an IPv4 NLRI with a path identifier is shown in Figure 20.

![Figure 20: BGP Update Message with Path Identifier for IPv4 NLRI](image)

Add-Paths is only supported by the base router BGP instance and the EBGP and IBGP sessions it forms with other Add-Paths capable peers. The ability to send and receive multiple paths per prefix is configurable per family, with the supported options being:

- IPv4 (including labeled IPv4 routes)
- VPN-IPv4
- IPv6 (including labeled IPv6 routes)
- VPN-IPv6
Path Selection with Add-Paths

The LOC-RIB may have multiple paths for a prefix. The path selection mode refers to the algorithm used to decide which of these paths to advertise to an Add-Paths peer. SR-OS supports the Add-N path selection algorithm described in draft-ietf-idr-add-paths-guidelines. The Add-N algorithm selects, as candidates for advertisement, the N best paths with unique BGP next-hops. In the SROS implementation N is configurable, per address-family, at the BGP instance, group and neighbor levels; N has a minimum value of 1 and a maximum value of 16. BGP and VRF export policies are applied after path selection is performed. If Add-Paths is configured to send up to N paths to a peer and an export policy prevents X of the N best paths from being advertised then only the remaining N-X best paths are sent.

Add-Paths allows non-best paths to be advertised to a peer but it still complies with basic BGP advertisement rules such as the IBGP split horizon rule: a route learned from an IBGP neighbor cannot be re-advertised to another IBGP neighbor unless the router is configured as a route reflector.

Split-Horizon

Split-horizon refers to the action taken by a router to avoid advertising a route back to the peer from which it was received. By default SR-OS applies split-horizon behavior only to routes received from IBGP non-client peers. This split-horizon functionality, which can never be disabled, prevents a route learned from a non-client IBGP peer to be advertised to the sending peer or any other non-client peer.

To apply split-horizon behavior to routes learned from RR clients, confed-EBGP peers or (non-confed) EBGP peers the split-horizon command must be configured in the appropriate contexts; it is supported at the global BGP, group and neighbor levels. When split-horizon is enabled on these types of sessions it only prevents the advertisement of a route back to its originating peer; for example SR-OS does not prevent the advertisement of a route learned from one EBGP peer back to different EBGP peer in the same neighbor AS.
BGP Applications

SR-OS implements the following BGP applications:

- BGP Shortcuts on page 610
- BGP Flow-Spec on page 611

BGP Shortcuts

BGP shortcuts refer to the ability to use an MPLS tunnel (RSVP or LDP) to resolve the BGP next-hop of an IPv4 route. The use of BGP shortcuts is enabled with the `igp-shortcut` command, which supports the following syntax:

```
igp-shortcut [ldp | rsvp-te | mpls][disallow-igp]
```

The `ldp` option instructs BGP to search for an LDP LSP with a FEC prefix corresponding to the /32 address of the BGP next-hop. The `rsvp-te` option instructs BGP to search for the best metric RSVP LSP to the /32 address of the BGP next-hop. This address can correspond to the system interface or to another loopback used as the BGP next-hop. The LSP metric is provided by MPLS in the tunnel table. The `mpls` option instructs BGP to first attempt to resolve the BGP next-hop to an RSVP LSP. If no RSVP LSP exists or if the existing ones are down BGP automatically searches for the LDP LSP with a matching FEC prefix.

If the `disallow-igp` option is enabled and if an LSP shortcut of the configured type is not available, BGP attempts to resolve the BGP next-hop route in the route table.

Handling of Control Packets

All control plane packets that require an RTM lookup and that have a destination reachable over a BGP next-hop resolved to an MPLS shortcut are forwarded over the shortcut. This effectively excludes the vast majority of control packets which have destinations within an autonomous system. The exceptions are for locally generated or in transit ICMP ping and trace route messages for destinations outside of the local autonomous system.
BGP Flow-Spec

Flow-spec is a standardized method for using BGP to distribute traffic flow specifications (flow routes) throughout a network. A flow route carries a description of a flow in terms of packet header fields such as source IP address, destination IP address, or TCP/UDP port number and indicates (through a community attribute) an action to take on packets matching the flow. The primary application for Flow-spec is DDoS mitigation.

Flow-spec is supported for both IPv4 and IPv6. To exchange IPv4 Flow-spec routes with a BGP peer the `flow-ipv4` keyword must be part of the `family` command that applies to the session and to exchange IPv6 Flow-spec routes with a BGP peer `flow-ipv6` must be present in the `family` configuration.

The NLRI of an IPv4 flow route can contain one or more of the subcomponents shown in Table 12.

### Table 12: Subcomponents of IPv4 Flow Route NLRI

<table>
<thead>
<tr>
<th>Subcomponent Name [Type]</th>
<th>Value Encoding</th>
<th>SROS Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination IPv4 Prefix [1]</td>
<td>Prefix length, prefix</td>
<td>Yes</td>
</tr>
<tr>
<td>Source IPv4 Prefix [2]</td>
<td>Prefix length, prefix</td>
<td>Yes</td>
</tr>
<tr>
<td>IP Protocol [3]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. No support for multiple values other than “TCP or UDP”</td>
</tr>
<tr>
<td>Port [4]</td>
<td>One or more (operator, value) pairs</td>
<td>No</td>
</tr>
<tr>
<td>Destination Port [5]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. No support for multiple ranges.</td>
</tr>
<tr>
<td>Source Port [6]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. No support for multiple ranges.</td>
</tr>
<tr>
<td>ICMP Type [7]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value is supported.</td>
</tr>
<tr>
<td>ICMP Code [8]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value is supported.</td>
</tr>
<tr>
<td>TCP Flags [9]</td>
<td>One or more (operator, bitmask) pairs</td>
<td>Partial. Only SYN and ACK flags can be matched.</td>
</tr>
<tr>
<td>Packet Length [10]</td>
<td>One or more (operator, value) pairs</td>
<td>No</td>
</tr>
<tr>
<td>DSCP [11]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value is supported.</td>
</tr>
</tbody>
</table>
Table 13: Subcomponents of IPv6 Flow Route NLRI

<table>
<thead>
<tr>
<th>Subcomponent Name</th>
<th>Value Encoding</th>
<th>SROS Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Header [3]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value supported.</td>
</tr>
<tr>
<td>Port [4]</td>
<td>One or more (operator, value) pairs</td>
<td>No</td>
</tr>
<tr>
<td>Destination Port [5]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. No support for multiple ranges.</td>
</tr>
<tr>
<td>Source Port [6]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. No support for multiple ranges.</td>
</tr>
<tr>
<td>ICMP Type [7]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value is supported.</td>
</tr>
<tr>
<td>ICMP Code [8]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value is supported.</td>
</tr>
<tr>
<td>TCP Flags [9]</td>
<td>One or more (operator, bitmask) pairs</td>
<td>Partial. Only SYN and ACK flags can be matched.</td>
</tr>
<tr>
<td>Packet Length [10]</td>
<td>One or more (operator, value) pairs</td>
<td>No</td>
</tr>
<tr>
<td>Traffic Class [11]</td>
<td>One or more (operator, value) pairs</td>
<td>Partial. Only a single value is supported.</td>
</tr>
<tr>
<td>Flow Label[13]</td>
<td>One or more (operator, value) pairs</td>
<td>No</td>
</tr>
</tbody>
</table>

The NLRI of an IPv6 flow route can contain one or more of the subcomponents shown in Table 13.
Validating Received Flow Routes

Table 14 summarizes the actions that may be associated with an IPv4 or IPv6 flow route and how each type of action is encoded.

Table 14: IPv4 Flowspec Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Encoding</th>
<th>SROS Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Limit</td>
<td>Extended community type 0x8006</td>
<td>Partial. Only rate=0 is supported.</td>
</tr>
<tr>
<td>Sample/Log</td>
<td>Extended community type 0x8007. S-bit</td>
<td>Yes</td>
</tr>
<tr>
<td>Next Entry</td>
<td>Extended community type 0x8007. T-bit</td>
<td>No</td>
</tr>
<tr>
<td>Redirect to VRF</td>
<td>Extended community type 0x8008.</td>
<td>Yes</td>
</tr>
<tr>
<td>Mark Traffic Class</td>
<td>Extended community type 0x8009.</td>
<td>No</td>
</tr>
</tbody>
</table>

IPv4 and IPv6 flow routes received from a BGP peer must be validated before they can be installed as filter entries. A flow route is considered invalid if:

1. The flow route is received from an EBGP peer and the left most AS number in the AS_PATH attribute does not equal the peer’s AS number (from the group/neighbor configuration).
2. The flowspec-validate command is enabled, the flow route has a destination prefix subcomponent D, and the flow route was received from a peer that did not advertise the best route to D and all more-specific prefixes.

After received flow routes are validated they are processed by the relevant import policies, if applicable.

**NOTE:** A flow route never matches a prefix entry in a prefix-list, even if the destination IPv4 (or IPv6) prefix subcomponent or the source IPv4 (or IPv6) prefix subcomponent of the NLRI is a match.

Using Flow Routes to Create Dynamic Filter Entries

When the base router BGP instance receives an IPv4 or IPv6 flow route and that route is valid and best the system attempts to construct an IPv4 or IPv6 filter entry from the NLRI contents and the action(s) encoded in the UPDATE message. If successful, the filter entry is added to the system-created ‘fSpec-0’ IPv4 or ‘fSpec-0’ IPv6 filter policy. The ‘fSpec-0’ IPv4 filter policy is applied to the following:
Ingress IPv4 traffic on a network interface, if its configuration includes the `flowspec` command.

Ingress IPv4 traffic on an IES SAP interface, if its configuration includes the `flowspec` command.

Ingress IPv4 traffic on an IES spoke SDP interface, if its configuration includes the `flowspec` command.

Similarly the ‘fSpec-0’ IPv6 filter policy is applied to the following:

- Ingress IPv6 traffic on a network interface, if its configuration includes the `flowspec-ipv6` command.
- Ingress IPv6 traffic on an IES SAP interface, if its configuration includes the `flowspec-ipv6` command.
- Ingress IPv6 traffic on an IES spoke SDP interface, if its configuration includes the `flowspec-ipv6` command.

A user-defined filter policy can be applied to a base router interface that has flow-spec enabled. When an interface has both a user-defined filter policy and the system-created ‘fSpec-0’ filter policy, the filter rules are installed in the following order:

1. User-defined filter entries
2. Flow-spec entries (in order, determined by comparison of the NLRI described in RFC 5575).
3. User-defined filter default action.

---

### Configuration of TTL Propagation for BGP Label Routes

This feature allows the separate configuration of TTL propagation for in transit and CPM generated IP packets at the ingress LER within a BGP label route context.

### TTL Propagation for RFC 3107 Label Route at Ingress LER

For IPv4 and IPv6 packets forwarded using a RFC 3107 label route in the global routing instance, including 6PE, the following command specified with the `all` value enables TTL propagation from the IP header into all labels in the transport label stack:

- `config router ttl-propagate label-route-local [none | all]`
- `config router ttl-propagate label-route-transit [none | all]`
The **none** value reverts to the default mode which disables TTL propagation from the IP header to the labels in the transport label stack.

These commands do not have a no version.

Note that the TTL of the IP packet is always propagated into the RFC 3107 label itself. The commands only control the propagation into the transport labels, for example, the labels of the RSVP or LDP LSP which the BGP label route resolves to and which are pushed on top of the BGP label.

Note that if the BGP peer advertised the implicit-null label value for the BGP label route, the TTL propagation will not follow the configuration described, but will follow the configuration to which the BGP label route resolves:

- RSVP LSP shortcut:
  → `configure router mpls shortcut-transit-ttl-propagate`
  → `configure router mpls shortcut-local-ttl-propagate`

- LDP LSP shortcut:
  → `configure router ldp shortcut-transit-ttl-propagate`
  → `configure router ldp shortcut-local-ttl-propagate`

This feature does not impact packets forwarded over BGP shortcuts. The ingress LER operates in uniform mode by default and can be changed into pipe mode using the configuration of TTL propagation for RSVP or LDP LSP shortcut.

---

**TTL Propagation for RFC 3107 Label Routes at LSR**

This feature configures the TTL propagation for transit packets at a router acting as an LSR for a BGP label route.

When an LSR swaps the BGP label for a IPv4 prefix packet, thus acting as a ABR, ASBR, or data-path Route-Reflector (RR) in the base routing instance, or swaps the BGP label for a vpn-IPv4 or vpn-IPv6 prefix packet, thus acting as an inter-AS Option B VPRN ASBR or VPRN data path Route-Reflector (RR), the all value of the following command enables TTL propagation of the decremented TTL of the swapped BGP label into all LDP or RSVP transport labels.

- `config router ttl-propagate lsr-label-route [none | all]`

Note that when an LSR swaps a label or stitches a label, it always writes the decremented TTL value into the outgoing swapped or stitched label. What the above CLI controls is whether this decremented TTL value is also propagated to the transport label stack pushed on top of the swapped or stitched label.
The `none` value reverts to the default mode which disables TTL propagation. Note this changes the existing default behavior which propagates the TTL to the transport label stack. When a customer upgrades, the new default becomes in effect. The above commands do not have a no version.

The following describes the behavior of LSR TTL propagation in a number of other use cases and indicates if the above CLI command applies or not:

1. When an LSR stitches an LDP label to a BGP label, the decremented TTL of the stitched label is propagated or not to the LDP or RSVP transport labels as per the above configuration.

2. When an LSR stitches a BGP label to an LDP label, the decremented TTL of the stitched label is automatically propagated into the RSVP label if the outgoing LDP LSP is tunneled over RSVP. This behavior is not controlled by the above CLI.

3. When a LSR pops a BGP label and forwards the packet using an IGP route (IGP route to destination of prefix wins over the BGP label route), it pushes an LDP label on the packet and the TTL behavior is like described in (2) when stitching from a BGP label to an LDP label.

4. Carrier Supporting Carrier (CsC) VPRN. The ingress CsC PE swaps the incoming eBGP label into a VPN-IPv4 label. The reverse operation is performed by the egress CsC PE. In both cases, the decremented TTL of the swapped label is propagated or not to the LDP or RSVP transport labels as per the above configuration.

5. SR OS does not support ASBR or data path RR functionality for labeled IPv6 routes in the global routing instance (6PE). As such the CLI command above has no impact on prefix packets forwarded in this context.

---

**BGP Prefix Origin Validation**

BGP prefix origin validation is a solution developed by the IETF SIDR working group for reducing the vulnerability of BGP networks to prefix mis-announcements and certain man-in-the-middle attacks. BGP has traditionally relied on a trust model where it is assumed that when a peer AS originates a route it has the right to announce the associated prefix. BGP prefix origin validation takes extra steps to ensure that the origin AS of a route is valid for the advertised prefix.

7x50 routers support BGP prefix origin validation for IPv4 and IPv6 routes received by the base router BGP instance from selected peers. When prefix origin validation is enabled on a session using the `enable-origin-validation` command every received IPv4 and/or IPv6 route received from the peer is checked to determine whether the origin AS is valid for the received prefix. The origin AS is generally the right most AS in the AS_PATH attribute and indicates the autonomous system that originated the route.
For purposes of determining the origin validation state of received BGP routes, the router maintains an Origin Validation database consisting of static and dynamic entries. Each entry is called a VRP (Validated ROA Payload) and associates a prefix (range) with an origin AS.

Static VRP entries are configured using the `static-entry` command available in the `config>router>origin-validation` context of the base router. In SR-OS, a static entry can express that a specific prefix and origin AS combination is either valid or invalid.

Dynamic VRP entries are learned from PRKI local cache servers and express valid origin AS and prefix combinations. The router communicates with PRKI local cache servers using the RPKI-RTR protocol. SR-OS supports the RPKI-RTR protocol over TCP/IPv4 or TCP/IPv6 transport; at the current time, TCP-MD5 and other forms of session security are not supported. A 7x50 router can setup an RPKI-RTR session using the base routing table or the management router.

An RPKI local cache server is one element of the larger RPKI system. The RPKI is a distributed database containing cryptographic objects relating to Internet Number resources. Local cache servers are deployed in the service provider network and retrieve digitally signed Route Origin Authorization (ROA) objects from Global RPKI servers. The local cache servers cryptographically validate the ROAs before passing the information along to the routers.

The algorithm used to determine the origin validation states of routes received over a session with `enable-origin-validation` configured uses the following definitions:

- A route is matched by a VRP entry if the prefix bits in the route match the prefix bits in the VRP entry (up to its min prefix length), AND the route prefix length is greater than or equal to the VRP entry min prefix length, AND the route prefix length is less than or equal to the VRP entry max prefix length, AND the origin AS of the route matches the origin AS of the VRP entry.

- A route is covered by a VRP entry if the prefix bits in the route match the prefix bits in the VRP entry (up to its min prefix length), AND the route prefix length is greater than or equal to the VRP entry min prefix length, AND the VRP entry type is static-valid or dynamic.

Using the above definitions, the origin validation state of a route is based on the following rules.

1. If a route is matched by at least one VRP entry, and the most specific of these matching entries includes a static-invalid entry then the origin validation state is Invalid (2).
2. If a route is matched by at least one VRP entry, and the most specific of these matching entries does not include a static-invalid entry then the origin validation state is Valid (0).
3. If a route is not matched by any VRP entry, but it is covered by at least one VRP entry then the origin validation state is Invalid (2).
4. If a route is not covered by any VRP entry then the origin validation state is Not-Found (1).

Consider the following example. Suppose the Origin Validation database has the following entries:
10.1.0.0/16-32, origin AS=5, dynamic
10.1.1.0/24-32, origin AS=4, dynamic
10.0.0.0/8-32, origin AS=5, static invalid
10.1.1.0/24-32, origin AS=4, static invalid

In this case, the origin validation state of the following routes are as indicated:

10.1.0.0/16 with AS_PATH {…5}: Valid
10.1.1.0/24 with AS_PATH {…4}: Invalid
10.2.0.0/16 with AS_PATH {…5}: Invalid
10.2.0.0/16 with AS_PATH {…6}: Not-Found

The origin validation state of a route can affect its ranking in the BGP decision process. When `origin-invalid-unusable` is configured, all routes that have an origin validation state of ‘Invalid’ are considered unusable by the best path selection algorithm, that is, they cannot be used for forwarding and cannot be advertised to peers.

If `origin-invalid-unusable` is not configured then routes with an origin validation state of ‘Invalid’ are compared to other ‘usable’ routes for the same prefix according to the BGP decision process.

When `compare-origin-validation-state` is configured a new step is added to the BGP decision process after removal of invalid routes and before the comparison of Local Preference. The new step compares the origin validation state, so that a route with a ‘Valid’ state is preferred over a route with a ‘Not-Found’ state, and a route with a ‘Not-Found’ state is preferred over a route with an ‘Invalid’ state assuming that these routes are considered ‘usable’. The new step is skipped if the `compare-origin-validation-state` command is not configured.

Route policies can be used to attach an Origin Validation State extended community to a route received from an EBGP peer in order to convey its origin validation state to IBGP peers and save them the effort of repeating the Origin Validation database lookup. To add an Origin Validation State extended community encoding the ‘Valid’ result, the route policy should add a community list that contains a member in the format `ext:4300:0`. To add an Origin Validation State extended community encoding the ‘Not-Found’ result, the route policy should add a community list that contains a member in the format `ext:4300:1`. To add an Origin Validation State extended community encoding the ‘Invalid’ result, the route policy should add a community list that contains a member in the format `ext:4300:2`. 
BGP Configuration Process Overview

Figure 21 displays the process to provision basic BGP parameters.

Figure 21: BGP Configuration and Implementation Flow
Configuration Notes

This section describes BGP configuration caveats.

General

- Before BGP can be configured, the router ID and autonomous system should be configured.
- BGP must be added to the router configuration. There are no default BGP instances on a router.

BGP Defaults

The following list summarizes the BGP configuration defaults:

- By default, the router is not assigned to an AS.
- A BGP instance is created in the administratively enabled state.
- A BGP group is created in the administratively enabled state.
- A BGP neighbor is created in the administratively enabled state.
- No BGP router ID is specified. If no BGP router ID is specified, BGP uses the router system interface address.
- The router BGP timer defaults are generally the values recommended in IETF drafts and RFCs (see BGP MIB Notes on page 621)
- If no import route policy statements are specified, then all BGP routes are accepted.
- If no export route policy statements specified, then all best and used BGP routes are advertised and non-BGP routes are not advertised.
BGP MIB Notes

The router implementation of the RFC 1657 MIB variables listed in Table 17 differs from the IETF MIB specification.

**Table 15: 7950 SR and IETF MIB Variations**

<table>
<thead>
<tr>
<th>MIB Variable</th>
<th>Description</th>
<th>RFC 1657 Allowed Values</th>
<th>7950 SR Allowed Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgpPeerMinRouteAdvertisementInterval</td>
<td>Time interval in seconds for the MinRouteAdvertisementInterval timer. The suggested value for this timer is 30.</td>
<td>1 — 65535</td>
<td>a1 — 255</td>
</tr>
</tbody>
</table>

a. A value of 0 is supported when the rapid-update command is applied to an address family that supports it.

If SNMP is used to set a value of X to the MIB variable in Table 16, there are three possible results:

**Table 16: MIB Variable with SNMP**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>X is within IETF MIB values and X is within SR OS values</td>
<td>SNMP set operation does not return an error MIB variable set to X</td>
</tr>
<tr>
<td>X is within IETF MIB values and X is outside SR OS values</td>
<td>SNMP set operation does not return an error MIB variable set to “nearest” SR OS supported value (e.g., SR OS range is 2 - 255 and X = 65535, MIB variable will be set to 255) Log message generated</td>
</tr>
<tr>
<td>X is outside IETF MIB values and X is outside SR OS values</td>
<td>SNMP set operation returns an error</td>
</tr>
</tbody>
</table>
When the value set using SNMP is within the IETF allowed values and outside the 7950 SR values as specified in Table 15 and Table 16, a log message is generated. The log messages that display are similar to the following log messages:

**Sample Log Message for setting bgpPeerMinRouteAdvertisementInterval to 256**

535 2006/11/12 19:40:53 [Snmpd] BGP-4-bgpVariableRangeViolation: Trying to set bgpPeerMinRouteAdvInt to 256 - valid range is [2-255] - setting to 255

**Sample Log Message for setting bgpPeerMinRouteAdvertisementInterval to 1**

566 2006/11/12 19:44:41 [Snmpd] BGP-4-bgpVariableRangeViolation: Trying to set bgpPeerMinRouteAdvInt to 1 - valid range is [2-255] - setting to 2
Configuring BGP with CLI

This section provides information to configure BGP using the command line interface.

Topics in this section include:

• BGP Configuration Overview on page 624
  → Preconfiguration Requirements on page 624
  → BGP Hierarchy on page 624
  → Internal and External BGP Configurations on page 624
  → BGP Confederations on page 632
  → BGP Route Reflectors on page 634
• Basic BGP Configuration on page 626
• Common Configuration Tasks on page 628
  → Creating an Autonomous System on page 629
  → Configuring a Router ID on page 630
  → BGP Components on page 636
  → Configuring Group Attributes on page 636
  → Configuring Neighbor Attributes on page 637
  → Configuring Route Reflection on page 638
  → Configuring a Confederation on page 639
• BGP Configuration Management Tasks on page 640
  → Modifying an AS Number on page 640
  → Modifying the BGP Router ID on page 641
  → Deleting a Neighbor on page 643
  → Deleting Groups on page 644
BGP Configuration Overview

Preconfiguration Requirements

Before BGP can be implemented, the following entities must be configured:

- The autonomous system (AS) number for the router.
  An AS number is a globally unique value which associates a router to a specific autonomous system. This number is used to exchange exterior routing information with neighboring ASs and as an identifier of the AS itself. Each router participating in BGP must have an AS number specified.
  In order to implement BGP, the AS number must be specified in the `config>router` context.
- Router ID — The router ID is the IP address of the local router. The router ID identifies a packet’s origin. The router ID must be a valid host address.

BGP Hierarchy

BGP is configured in the `config>router>bgp` context. Three hierarchical levels are included in BGP configurations:

- Global level
- Group level
- Neighbor level

Commands and parameters configured on the global level are inherited to the group and neighbor levels although parameters configured on the group and neighbor levels take precedence over global configurations.

Internal and External BGP Configurations

A BGP system is comprised of ASs which share network reachability information. Network reachability information is shared with adjacent BGP peers. BGP supports two types of routing information exchanges:

- External BGP (EBGP) is used between ASs.
EBGP speakers peer to different ASs and typically share a subnet. In an external group, the next hop is dependent upon the interface shared between the external peer and the specific neighbor. The `multihop` command must be specified if an EBGP peer is more than one hop away from the local router.

- Internal BGP (IBGP) is used within an AS.

  IBGP peers belong to the same AS and typically does not share a subnet. Neighbors do not have to be directly connected to each other. Since IBGP peers are not required to be directly connected, IBGP uses the IGP path (the IP next-hop learned from the IGP) to reach an IBGP peer for its peering connection.
Basic BGP Configuration

This section provides information to configure BGP and configuration examples of common configuration tasks. The minimal BGP parameters that need to be configured are:

- An autonomous system number for the router.
- A router ID - Note that if a new or different router ID value is entered in the BGP context, then the new value takes precedence and overwrites the router-level router ID.
- A BGP peer group.
- A BGP neighbor with which to peer.
- A BGP peer-AS that is associated with the above peer.

The BGP configuration commands have three primary configuration levels: `bgp` for global configurations, `group` name for BGP group configuration, and `neighbor` ip-address for BGP neighbor configuration. Within the different levels, many of the configuration commands are repeated. For the repeated commands, the command that is most specific to the neighboring router is in effect, that is, neighbor settings have precedence over group settings which have precedence over BGP global settings.

Following is a sample configuration that includes the above parameters. The other parameters shown below are optional:

```
info
##--
echo "IP Configuration"
##--
...
 autonomous-system 200
 confederation 300 members 200 400 500 600
 router-id 10.10.10.103
##--
...
##--
echo "BGP Configuration"
##--
bgp
 graceful-restart
 exit
 cluster 0.0.0.100
 export "direct2bgp"
 router-id 10.0.0.12
 group "To_AS_10000"
 connect-retry 20
 hold-time 90
 keepalive 30
 local-preference 100
 remove-private
 peer-as 10000
 neighbor 10.0.0.8
 description "To_Router B - EBGP Peer"
```
connect-retry 20
hold-time 90
keepalive 30
local-address 10.0.0.12
passive
preference 99
peer-as 10000
exit
exit
group "To_AS_30000"
  connect-retry 20
  hold-time 90
  keepalive 30
  local-preference 100
  remove-private
  peer-as 30000
  neighbor 10.0.3.10
    description "To_Router C - EBGP Peer"
    connect-retry 20
    hold-time 90
    keepalive 30
    peer-as 30000
  exit
exit
group "To_AS_40000"
  connect-retry 20
  hold-time 30
  keepalive 30
  local-preference 100
  peer-as 65206
  neighbor 10.0.0.15
    description "To_Router E - Sub Confederation AS 65205"
    connect-retry 20
    hold-time 90
    keepalive 30
    peer-as 65205
  exit
exit
exit
#--------------------------------------------------
....
A:ALA-48>config>router#
Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure BGP and provides the CLI commands. In order to enable BGP, one AS must be configured and at least one group must be configured which includes neighbor (system or IP address) and peering information (AS number).

All BGP instances must be explicitly created on each router. Once created, BGP is administratively enabled.

Configuration planning is essential to organize ASs and the SRs within the ASs, and determine the internal and external BGP peering.

To configure a basic autonomous system, perform the following tasks:

1. Prepare a plan detailing the autonomous system(s), the router belonging to each group, group names, and peering connections.
2. Associate each router with an autonomous system number.
3. Configure each router with a router ID.
4. Associate each router with a peer group name.
5. Specify the local IP address that will be used by the group or neighbor when communicating with BGP peers.
7. Specify the autonomous system number associated with each neighbor.
Creating an Autonomous System

Before BGP can be configured, the autonomous system must be configured first. In BGP, routing reachability information is exchanged between autonomous systems (ASs). An AS is a group of networks that share routing information. The `autonomous-system` command associates an autonomous system number to the router being configured. The `autonomous-system` command is configured in the `config>router` context.

Use the following CLI syntax to associate a router to an autonomous system:

**CLI Syntax:**
```
config>router# autonomous-system autonomous-system
```

The router series supports 4 bytes AS numbers by default. This means autonomous-system can have any value from 1 to 4294967295. The following example displays autonomous system configuration command usage:

**Example:**
```
config>router# autonomous-system 100
```

The following example displays the autonomous system configuration:

```
ALA-B>config>router# info
#--
IP Configuration
#--
interface "system"
 address 10.10.10.104/32
exit
interface "to-103"
 address 10.0.0.104/24
 port 1/1/1
exit
autonomous-system 100

#--
ALA-B>config>router#
```
Configuring a Router ID

In BGP, routing information is exchanged between autonomous systems. The BGP router ID, expressed like an IPv4 address, uniquely identifies the router. It can be set to be the same as the system interface address.

Note that it is possible to configure an SR OS node to operate with an IPv6 only BOF and no IPv4 system interface address. When configured in this manner, the operator must explicitly define IPv4 router IDs for protocols such as OSPF and BGP as there is no mechanism to derive the router ID from an IPv6 system interface address.

Note that if a new or different router ID value is entered in the BGP context, then the new router ID value is used instead of the router ID configured on the router level, system interface level, or inherited from the MAC address. The router-level router ID value remains intact. The router ID used by BGP is selected in the following order:

- The routed-id configured under `config>router>bgp`
- The router-id configured under `config>router`
- The system interface IPv4 address
- The last 4 bytes of the system MAC address

When configuring a new router ID outside of the `config>router>bgp` context, BGP is not automatically restarted with the new router ID; the next time BGP is (re) initialized the new router ID is used. An interim period of time can occur when different protocols use different router IDs. To force the new router ID, issue the `shutdown` and `no shutdown` commands for BGP or restart the entire router. Use the following CLI syntax to configure the router ID for multiple protocols:

**CLI Syntax:** `config>router# router-id router-id`

The following example displays router ID configuration command usage:

**Example:** `config>router# router-id 10.10.10.104`

The following example displays the router ID configuration:

```
ALA-B>config>router# info
--
IP Configuration
#--
interface "system"
 address 10.10.10.104/32
exit
interface "to-103"
 address 10.0.0.104/24
 port 1/1/1
exit
autonomous-system 100
router-id 10.10.10.104
```
#--------------------------------------------------------------
...
ALA-B>config>router#
BGP Confederations

Follow these steps to configure a confederation:

1. Configure the autonomous system number of the confederation using the confederation command in the `config>router` context.
2. Configure the BGP confederation members using the `confederation` command in the `config>router` context.
3. Configure IBGP peering within the (local) sub-confederation.
4. Configure one or more confed-EBGP peerings to peers in other neighboring sub-confederations.

![Confederation Network Diagram Example](image)

*Figure 22: Confederation Network Diagram Example*

The following configuration displays the minimum BGP configuration for routers in sub-confederation AS 65001 outlined in *Figure 23.*
ALA-A

```conf
config router
 autonomous-system 65001
 confederation 100 members 65001 65002 65003
 bgp
 group confed1
 peer-as 65001
 neighbor 2.2.2.2
 exit
 neighbor 3.3.3.3
 exit
 neighbor 4.4.4.4
 exit
 exit
 group external_confed
 neighbor 5.5.5.5
 peer-as 65002
 exit
 neighbor 9.9.9.9
 peer-as 65003
 exit
 exit
 exit
 exit
exit
```

ALA-D

```conf
config router
 autonomous-system 65001
 confederation 100 members 65001 65002 65003
 bgp
 group confed1
 peer-as 65001
 neighbor 1.1.1.1
 exit
 neighbor 2.2.2.2
 exit
 neighbor 3.3.3.3
 exit
 exit
 exit
exit
```

ROUTER 1

```conf
config router
 autonomous-system 65003
 confederation 100 members 65001 65002 65003
 bgp
 group confed1
 peer-as 65001
 neighbor 1.1.1.1
 exit
 neighbor 5.5.5.5
 peer-as 65002
 exit
 exit
 exit
exit
```
BGP Route Reflectors

In a standard BGP configuration, all BGP speakers within an AS must have a full BGP mesh to ensure that all externally learned routes are redistributed through the entire AS. IBGP speakers do not re-advertise routes learned from one IBGP peer to another IBGP peer. If a network grows, scaling issues could emerge because of the full mesh configuration requirement. Route reflection circumvents the full mesh requirement but still maintains the full distribution of external routing information within an AS.

Autonomous systems using route reflection arrange BGP routers into groups called clusters. Each cluster contains at least one route reflector which is responsible for redistributing route updates to all clients. Route reflector clients do not need to maintain a full peering mesh between each other. They only require a peering to the route reflector(s) in their cluster. The route reflectors must maintain a full peering mesh between all non-clients within the AS.

Each route reflector must be assigned a cluster ID and specify which neighbors are clients and which are non-clients to determine which neighbors should receive reflected routes and which should be treated as a standard IBGP peer. Additional configuration is not required for the route reflector besides the typical BGP neighbor parameters.

Figure 23: Route Reflection Network Diagram Example
The following configuration displays the minimum BGP configuration for routers in Cluster 1.1.1.1 outlined in Figure 23.

ALA-A

    config router bgp
    group cluster1
    peer-as 100
    cluster 1.1.1.1
    neighbor 2.2.2.2
      exit
    neighbor 3.3.3.3
      exit
    neighbor 4.4.4.4
      exit
      exit
    group RRs
    peer-as 100
    neighbor 5.5.5.5
      exit
    neighbor 9.9.9.9
      exit
      exit
    exit

ALA-B

    config router bgp
    group cluster1
    peer-as 100
    neighbor 1.1.1.1
      exit
    exit

ALA-C

    config router bgp
    group cluster1
    peer-as 100
    neighbor 1.1.1.1
      exit
    exit

ALA-D

    config router bgp
    group cluster1
    peer-as 100
    neighbor 1.1.1.1
      exit
    exit
BGP Components

Use the CLI syntax displayed below to configure the following BGP attributes:

- BGP Components on page 636
- Configuring Group Attributes on page 636
- Configuring Neighbor Attributes on page 637
- Configuring Route Reflection on page 638
- Configuring a Confederation on page 639

Configuring Group Attributes

A group is a collection of related BGP peers. The group name should be a descriptive name for the group. Follow your group, name, and ID naming conventions for consistency and to help when troubleshooting faults.

All parameters configured for a peer group are applied to the group and are inherited by each peer (neighbor), but a group parameter can be overridden on a specific neighbor-level basis.

The following example displays the BGP group configuration:

```
ALA-B(config-router)# bgp
--
...
group "headquarters1"
 description "HQ execs"
 local-address 10.0.0.104
 disable-communities standard extended
 ttl-security 255
 exit
 exit
...
c--
ALA-B(config-router)>
```
Configuring Neighbor Attributes

After you create a group name and assign options, add neighbors within the same autonomous system to create IBGP connections and/or neighbors in different autonomous systems to create EBGP peers. All parameters configured for the peer group level are applied to each neighbor, but a group parameter can be overridden on a specific neighbor basis.

The following example displays neighbors configured in group “headquarters1”.

```
ALA-B>config>router:bgp# info
--
...
group "headquarters1"
 description "HQ execs"
 local-address 10.0.0.104
 disable-communities standard extended
 ttl-security 255
 neighbor 10.0.0.5
 passive
 peer-as 300
 exit
 neighbor 10.0.0.106
 peer-as 100
 exit
 neighbor 17.5.0.2
 hold-time 90
 keepalive 30
 min-as-origination 15
 local-preference 170
 peer-as 10701
 exit
 neighbor 17.5.1.2
 hold-time 90
 keepalive 30
 min-as-origination 15
 local-preference 100
 min-route-advertisement 30
 preference 170
 peer-as 10702
 exit
 exit
...
--
ALA-B>config>router:bgp#
```
Configuring Route Reflection

Route reflection can be implemented in autonomous systems with a large internal BGP mesh to reduce the number of IBGP sessions required. One or more routers can be selected to act as focal points for internal BGP sessions. Several BGP speaking routers can peer with a route reflector. A route reflector forms peer connections to other route reflectors. A router assumes the role as a route reflector by configuring the \texttt{cluster} \texttt{cluster-id} command. No other command is required unless you want to disable reflection to specific peers.

If you configure the \texttt{cluster} command at the global level, then all subordinate groups and neighbors are members of the cluster. The route reflector cluster ID is expressed in dotted decimal notation. The ID should be a significant topology-specific value. No other command is required unless you want to disable reflection to specific peers.

If a route reflector client is fully meshed, the \texttt{disable-client-reflect} command can be enabled to stop the route reflector from reflecting redundant route updates to a client.

The following example displays a route reflection configuration:

```
ALA-B(config-router)bgp# info

cluster 0.0.0.100
 group "Santa Clara"
 local-address 10.0.0.103
 neighbor 10.0.0.91
 peer-as 100
 exit
 neighbor 10.0.0.92
 peer-as 100
 exit
 neighbor 10.0.0.93
 disable-client-reflect
 peer-as 100
 exit
 exit

ALA-B(config-router)bgp#
```
Configuring a Confederation

Reducing a complicated IBGP mesh can be accomplished by dividing a large autonomous system into smaller autonomous systems. The smaller ASs can be grouped into a confederation. A confederation looks like a single AS to routers outside the confederation. Each confederation is identified by its own (confederation) AS number.

To configure a BGP confederation, you must specify a confederation identifier, an AS number expressed as a decimal integer. The collection of autonomous systems appears as a single autonomous system with the confederation number acting as the “all-inclusive” autonomous system number. Up to 15 members (ASs) can be added to a confederation.

NOTE: The `confederation` command is configured in the `config>router` context.

Use the following CLI syntax to configure a confederation:

**CLI Syntax:**
```
config>router# confederation confed-as-num members member-as-num
```

When 4-byte AS number support is not disabled on router, the confederation and any of its members can be assigned an AS number in the range from 1 to 4294967295. The following example displays a confederation configuration command usage:

**Example:**
```
config>router)# confederation 1000 members 100 200 300
```

The following example displays the confederation configuration:

```
ALA-B>config>router# info
#--
IP Configuration
#--
interface "system"
 address 10.10.10.103/32
exit
interface "to-104"
 shutdown
 address 10.0.0.103/24
 port 1/1/1
exit
autonomous-system 100
confederation 1000 members 100 200 300
router-id 10.10.10.103
#--
ALA-B>config>router#
```
BGP Configuration Management Tasks

This section discusses the following BGP configuration management tasks:

- Modifying an AS Number on page 640
- Modifying a Confederation Number on page 641
- Modifying the BGP Router ID on page 641
- Modifying the Router-Level Router ID on page 642
- Deleting a Neighbor on page 643
- Deleting Groups on page 644

Modifying an AS Number

You can modify an AS number on a router but the new AS number will not be used until the BGP instance is restarted either by administratively disabling or enabling the BGP instance or by rebooting the system with the new configuration.

Since the AS number is defined in the `config>router` context, not in the BGP configuration context, the BGP instance is not aware of the change. Re-examine the plan detailing the autonomous sytem(s), the SRs belonging to each group, group names, and peering connections. Changing an AS number on a router could cause configuration inconsistencies if associated `peer-as` values are not also modified as required. At the group and neighbor levels, BGP will re-establish the peer relationships with all peers in the group with the new AS number.

Use the following CLI syntax to change an autonomous system number:

**CLI Syntax:** config>router# autonomous-system autonomous-system

**CLI Syntax:** config>router# bgp
        group name
        neighbor ip-addr
        peer-as asn

**Example:**

```
config>router# autonomous-system 400
config>router# bgp
config>router>bgp# group headquarters
config>router>bgp>group# neighbor 10.10.10.103
config>router>bgp>group# peer-as 400
config>router>bgp>group# exit
```
Modifying a Confederation Number

Modifying a confederation number will cause BGP to restart automatically. Changes immediately take effect.

Modifying the BGP Router ID

Changing the router ID number in the BGP context causes the new value to overwrite the router ID configured on the router level, system interface level, or the value inherited from the MAC address. It triggers an immediate reset of all peering sessions.

Example: config>router>bgp# router-id 10.0.0.123

This example displays the BGP configuration with the BGP router ID specified:

ALA-B>config>router>bgp# info detail
----------------------------------------------
  no shutdown
  no description
  no always-compare-med
  ibgp-multipath
  ...
  router-id 10.0.0.123
----------------------------------------------
ALA-B>config>router>bgp#
Modifying the Router-Level Router ID

Changing the router ID number in the `config>router` context causes the new value to overwrite the router ID derive from the system interface address, or the value inherited from the MAC address.

When configuring a new router ID, protocols are not automatically restarted with the new router ID. The next time a protocol is (re) initialized the new router ID is used. An interim period of time can occur when different protocols use different router IDs. To force the new router ID, issue the `shutdown` and `no shutdown` commands for each protocol that uses the router ID or restart the entire router.

Use the following CLI syntax to change a router ID:

**CLI Syntax:** `config>router# router-id router-id`

**Example:**
```
config>router# router-id 10.10.10.104
config>router# no shutdown
config>router>bgp# shutdown
config>router>bgp# no shutdown
```

The following example displays the router ID configuration:

```
ALA-A>config>router# info
#--
IP Configuration
#--
interface "system"
 address 10.10.10.104/32
exit
interface "to-103"
 address 10.0.0.104/24
 port 1/1/1
exit
autonomous-system 100
router-id 10.10.10.104
#--
ALA-B>config>router#
```
Deleting a Neighbor

In order to delete a neighbor, you must shut down the neighbor before issuing the `no neighbor ip-addr` command.

Use the following CLI syntax to delete a neighbor:

**CLI Syntax:**
```
config>router# bgp
 group name
 no neighbor ip-address
 shutdown
 no peer-as asn
 shutdown
```

**Example:**
```
config>router# bgp
config>router>bgp# group headquarters1
config>router>bgp>group# neighbor 10.0.0.103
config>router>bgp>group>neighbor# shutdown
config>router>bgp>group>neighbor# exit
config>router>bgp>group# no neighbor 10.0.0.103
```

The following example displays the “headquarters1” configuration with the neighbor 10.0.0.103 removed.

```
ALA-B>config>router>bgp# info
--
group "headquarters1"
 description "HQ execs"
 local-address 10.0.0.104
 neighbor 10.0.0.5
 passive
 peer-as 300
 exit
 exit
--
ALA-B>config>router>bgp#
```
Deleting Groups

In order to delete a group, the neighbor configurations must be shut down first. After each neighbor is shut down, you must shut down the group before issuing the `no group name` command.

Use the following CLI syntax to shut down a peer and neighbor and then delete a group:

**CLI Syntax:**
```
config>router# bgp
 no group name
 shutdown
 no neighbor ip-address
 shutdown
```

**Example:**
```
config>router# bgp
config>router>bgp# group headquarters1
config>router>bgp>group# neighbor 10.0.0.105
config>router>bgp>group>neighbor# shutdown
config>router>bgp>group>neighbor# exit
config>router>bgp>group# neighbor 10.0.0.103
config>router>bgp>group# shutdown
config>router>bgp>group# exit
config>router>bgp# no group headquarters1
```

If you try to delete the group without shutting down the peer-group, the following message appears:

```
ALA-B>config>router>bgp# no group headquarters1
MINOR: CLI BGP Peer Group should be shutdown before deleted. BGP Peer Group not deleted.
```
BGP Command Reference

Command Hierarchies

Configuration Commands

- Global BGP Commands on page 645
- Group BGP Commands on page 648
- Neighbor BGP Commands on page 650
- Show Commands on page 653
- Clear Commands on page 654
- Debug Commands on page 654

config
  — router [router-name]
      — confederation confed-as-num members as-number [as-number... (up to 15 max)]
      — no confederation [confed-as-num members as-number [as-number... (up to 15 max)]]
      — [no] mh-primary-interface interface-name
          — [no] address {ip-address/mask | ip-address netmask}
          — [no] description description-string
          — [no] shutdown
      — [no] mh-secondary-interface interface-name
          — [no] address {ip-address/mask | ip-address netmask}
          — [no] description description-string
          — [no] shutdown
          — [no] hold-time holdover-time
      — [no] mh-secondary-interface
      — router-id id-address
      — no router-id
      — [no] bgp
          — [no] add-paths
              — ipv4 send send-limit receive [none]
              — ipv4 send send-limit
              — no ipv4
              — ipv6 send send-limit receive [none]
              — ipv6 send send-limit
              — no ipv6
              — vpn-ipv4 [send send-limit receive [none]
              — vpn-ipv4 send send-limit
              — no vpn-ipv4
              — vpn-ipv6 send send-limit receive [none]
              — vpn-ipv6 send send-limit
              — no vpn-ipv6
          — [no] advertise-external [ipv4] [ipv6]
          — [no] advertise-inactive
          — [no] aggregator-id-zero
— import policy-name [policy-name ...(up to 5 max)]
— no import
— keepalive seconds
— no keepalive
— local-as as-number [private] [no-prepend-global-as]
— no local-as
— local-preference local-preference
— no local-preference
— loop-detect {drop-peer | discard-route | ignore-loop | off}
— no loop-detect
— med-out {number | igp-cost}
— no med-out
— min-route-advertisement seconds
— no min-route-advertisement
— [no] mp-bgp-keep
— multihop ttl-value
— no multihop
— multipath max-paths
— no multipath
— [no] mvpn-vrf-import-subtype-new
— next-hop-resolution
  — policy policy-name
  — no policy
  — [no] use-bgp-routes
— [no] outbound-route-filtering
  — [no] extended-community
    — [no] accept-orf
    — send-orf [comm-id...(up to 32 max)]
    — no send-orf comm-id
— [no] path-mtu-discovery
— peer-tracking-policy policy-name
— preference preference
— no preference
— purge-timer minutes
— no purge-timer
— [no] rapid-update {[l2-vpn] [mvpn-ipv4] [mvpn-ipv6] [mdt-safi]}
— no rapid-withdrawal
— [no] remove-private [limited] [skip-peer-as]
— route-target-list comm-id [comm-id...(up to 15 max)]
— no route-target-list [comm-id]
— router-id ip-address
— no router-id
— [no] shutdown
— [no] split-horizon
— transport-tunnel ldp | rsvp-te | mpls
— [no] third-party-next-hop
— [no] third-party-next-hop
— [no] vpn-apply-import
config
  router [router-name]
  [no] bgp
    [no] group name
      [no] add-paths
        [ipv4 send send-limit receive [none]]
        [ipv4 send send-limit]
        [no ipv4]
        [ipv6 send send-limit receive [none]]
        [ipv6 send send-limit]
        [no ipv6]
        [vpn-ipv4 [send send-limit receive [none]]
        [vpn-ipv4 send send-limit]
        [no vpn-ipv4]
        [vpn-ipv6 send send-limit receive [none]]
        [vpn-ipv6 send send-limit]
        [no vpn-ipv6]
      [no] advertise-inactive
      [no] aggregator-id-zero
      [no] aigp
      authentication-key [authentication-key | hash-key] [hash | hash2]
      [no authentication-key]
      auth-keychain name
      [no] bfd-enable
      [cluster cluster-id]
      [no cluster]
      [connect-retry] seconds
      [no connect-retry]
      [damp-peer-oscillations [idle-hold-time initial-wait second-wait max-wait] [error-interval minutes]]
      [no] damping
      [no] default-route-target
      description description-string
      [no description]
      [no] disable-4byte-asn
      [no] disable-capability-negotiation
      [no] disable-client-reflect
      disable-communities [standard] [extended]
      [no disable-communities]
      [no] disable-fast-external-failover
      enable-origin-validation [ipv4] [ipv6]
      [no] enable-origin-validation
      [no] enable-peer-tracking
      error-handling
        [no] update-fault-tolerance
        export policy-name [policy-name...(up to 5 max)]
        [no export]
        family [ipv4] [vpn-ipv4] [ipv6] [mcast-ipv4] [l2-vpn] [mvpn-ipv4] [mvpn-ipv6] [flow-ipv4] [flow-ipv6] [mdt-safi] [route target] [mcast-vpn-ipv4] [evpn] [mcast-ipv6]
        [no family]
        [no] flowspec-validate
          [no] relax-redirect-as-check
— [no] graceful-restart
  — enable-notification
  — restart-time seconds
  — stale-routes-time time
  — no stale-routes-time
— hold-time seconds [strict]
— no hold-time
— import policy-name [policy-name ...(up to 5 max)]
— no import
— keepalive seconds
— no keepalive
— local-address ip-address
— no local-address
— local-as as-number [private] [no-prepend-global-as]
— no local-as
— local-preference local preference
— no local-preference
— loop-detect {drop-peer | discard-route | ignore-loop | off}
— no loop-detect
— med-out {number | igp-cost}
— no med-out
— min-route-advertisement seconds
— no min-route-advertisement
— multihop ttl-value
— no multihop
— [no] next-hop-self {[ipv4] [vpn-ipv4] [ipv6] [mcast-ipv4] [l2-vpn]; [multipathing primary-anycaast secondary-anything]; [ip-_addr]
— [no] outbound-route-filtering
  — [no] extended-community
  — [no] accept-orf
  — send-orf [comm-id...(up to 32 max)]
  — no send-orf [comm-id]
— [no] passive
— [no] path-mtu-discovery
— peer-as as-number
— no peer-as
— preference preference
— no preference
— prefix-limit limit [log-only] [threshold percent] [idle-timeout { minutes | forever }]
— no prefix-limit
— [no] remove-private {limited} {skip-peer-as}
— [no] shutdown
— [no] split-horizon
— [no] third-party-next-hop
— ttl-security min-ttl-value
— no ttl-security
— type {internal | external}
— no type
— [no] vpn-apply-export
— [no] third-party-next-hop
— [no] vpn-apply-import
BGP Command Reference

config
  - router [router-name]
  - [no] bgp
    - [no] group name
    - [no] neighbor ip-address
      - [no] add-paths
        - ipv4 send send-limit receive [none]
        - ipv4 send send-limit
        - no ipv4
        - ipv6 send send-limit receive [none]
        - ipv6 end send-limit
        - no ipv6
        - vpn-ipv4 [send send-limit receive [none]]
        - vpn-ipv4 end send-limit
        - no vpn-ipv4
        - vpn-ipv6 send send-limit receive [none]
        - vpn-ipv6 end send-limit
        - no vpn-ipv6
      - [no] advertise-inactive
      - advertise-label [ipv4 [include-ldp-prefix]] [ipv6]
      - [no] advertise-label
      - [no] aggregator-id-zero
      - [no] aigp
      - auth-keychain name
      - authentication-key [authentication-key | hash-key] [hash | hash2]
      - [no] authentication-key
      - [no] bfd-enable
      - cluster cluster-id
      - [no] cluster
      - [no] connect-retry seconds
      - no connect-retry
      - [no] damp-peer-oscillations [idle-hold-time initial-wait second-wait max-wait] [error-interval minutes]
      - [no] damping
      - [no] default-route-target
      - description description-string
      - [no] description
      - [no] disable-4byte-asn
      - [no] disable-capability-negotiation
      - [no] disable-client-reflect
      - disable-communities [standard] [extended]
      - [no] disable-communities
      - [no] disable-fast-external-failover
      - enable-origin-validation [ipv4] [ipv6]
      - no enable-origin-validation
      - [no] enable-peer-tracking
      - error-handling
        - [no] update-fault-tolerance
      - export policy-name [policy-name...(up to 5 max)]
      - no export
      - family [ipv4] [vpn-ipv4] [ipv6] [mcast-ipv4] [l2-vpn] [mvpn-ipv4] [mvpn-ipv6] [flow-ipv4] [flow-ipv6] [mdt-safi] [route-target] [mcast-vpn-ipv4] [evpn] [mcast-ipv6]
— no family
— [no] flowspec-validate
  — [no] relax-redirect-as-check
— [no] graceful-restart
  — enable-notification
  — restart-time seconds
  — stale-routes-time time
  — no stale-routes-time
— hold-time seconds [strict]
— no hold-time
— import policy-name [policy-name ...(up to 5 max)]
— no import
— keepalive seconds
— no keepalive
— local-address ip-address
— no local-address
— local-as as-number [private] [no-prepend-global-as]
— no local-as
— local-preference local-preference
— no local-preference
— loop-detect {drop-peer | discard-route | ignore-loop | off}
— no loop-detect
— med-out {number | igp-cost}
— no med-out
— min-route-advertisement seconds
— no min-route-advertisement
— multihop ttl-value
— no multihop
— [no] next-hop-self
— [no] outbound-route-filtering
  — [no] extended-community
  — [no] accept-orf
    — send-orf [comm-id]...(up to 32 max]
    — no send-orf [comm-id]
— [no] passive
— [no] path-mtu-discovery
— peer-as as-number
— no peer-as
— preference preference
— no preference
— prefix-limit limit [log-only] [threshold percent] [idle-timeout { minutes | forever}]
— no prefix-limit
— [no] remove-private {limited} {skip-peer-as}
— [no] shutdown
— [no] third-party-nexthop
— ttl-security min-ttl-value
— no ttl-security
— type {internal | external}
— no type
— [no] third-party-nexthop
— [no] vpn-apply-import
Other BGP-Related Commands

config
  —  router [router-name]
    —  autonomous-system as-number
    —  no autonomous-system
    —  router-id ip-address
    —  no router-id
Show Commands

show
  -- router [router-instance]
    -- bgp
      -- auth-keychain keychain-name
      -- damping [damp-type] [detail]
      -- damping [ip-prefix] prefix-length [detail]
      -- group [name] [detail]
      -- neighbor [ip-address] [detail]
      -- neighbor [as-number] [detail]
      -- neighbor [ip-address] [family [type mvpn-type]] [filter1] [brief]
      -- neighbor [ip-address] [prefix-length] [detail]
      -- neighbor as-number [family] [filter2]
      -- neighbor [ip-address] orf [filter3]
      -- neighbor [ip-address] graceful-restart
      -- next-hop [family] [ip-address] [detail]
      -- paths
      -- route-target
      -- routes [family] [brief]
      -- routes [family] prefix [detail | longer | hunt [brief]]
      -- routes [family] prefix [detail | longer | hunt [brief]]
      -- routes [family] [type mvpn-type] community comm-id
      -- routes [family] [type mvpn-type] aspath-regex reg-ex
      -- routes vpn-ipv4 prefix [rd rd] [detail | longer | hunt [brief]]
      -- routes vpn-ipv6 prefix [rd rd] [detail | longer | hunt [brief]]
      -- routes mvpn-ipv4 type mvpn-type [rd rd | originator-ip ip-address | source-ip ip-address | group-ip ip-address | source-as as-number] [hunt] [detail]
      -- routes [family] [l2vpn-type] [brief]
      -- routes [family] [l2vpn-type] community comm-id
      -- routes [family] [l2vpn-type] aspath-regex reg-ex
      -- routes evpn [inclusive-mcast] [ip-prefix] [mac]
      -- routes evpn inclusive-mcast [hunt | detail] [rd rd | originator-ip ip-address | next-hop ip-address] [community comm-id] [tag vni-id]
      -- routes evpn ip-prefix [hunt | detail] [rd rd | prefix ip-prefix/mask] [community comm-id] [tag vni-id] [next-hop ip-address]
      -- routes evpn mac [hunt | detail] [rd rd | next-hop ip-address] [mac-address mac-address] [mac-address mac-address] [community comm-id] [tag vni-id]
      -- routes 12-vpn 12vpn-type [rd rd | site-id site-id | veid veid | offset vpls-base-offset]
      -- routes mdt-safi [rd rd] [ grp-address mcast-grp-address] [brief]
      -- routes ms-pw [rd rd] [aii-type2 aii-type2] [brief]
      -- routes flow-ipv4
        -- policy-test policy-name family family prefix prefix/pfxlen [longer] [neighbor neighbor] [display-rejects] [detail]
      -- summary [all]
      -- summary [family family] [neighbor ip-address]
    -- fib
    -- fib
    -- route-table
Clear Commands

```
clear
 — router
 bgp
 — damping [prefix/ip-prefix-length] [neighbor ip-address] | [group name]
 — flap-statistics [prefix/mask [neighbor ip-address] | [group group-name] | [regex reg-exp
 | policy policy-name]]
 — neighbor [ip-address | as as-number | external | all] [soft | soft-inbound]
 — neighbor [ip-address | as as-number | external | all] statistics
 — neighbor ip-address end-of-rib
 — protocol
```

Debug Commands

```
debug
 — router
 bgp
 — events [neighbor ip-address | group name]
 — no events
 — graceful-restart [neighbor ip-address | group name]
 — no graceful-restart
 — keepalive [neighbor ip-address | group name]
 — no keepalive
 — notification [neighbor ip-address | group name]
 — no notification
 — open [neighbor ip-address | group name]
 — no open
 — [no] outbound-route-filtering
 — packets [neighbor ip-address | group name]
 — no packets
 — route-refresh [neighbor ip-address | group name]
 — no route-refresh
 — rtm [neighbor ip-address | group name]
 — no rtm
 — socket [neighbor ip-address | group name]
 — no socket
 — timers [neighbor ip-address | group name]
 — no timers
 — update [neighbor ip-address | group name]
 — no update
```
Configuration Commands

Generic Commands

shutdown

Syntax  [no] shutdown

Context  
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description  
This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The no form of this command administratively enables an entity.

Unlike other commands and parameters where the default state is not indicated in the configuration file, the shutdown and no shutdown states are always indicated in system generated configuration files.

Default administrative states for services and service entities are described in Special Cases.

The no form of the command places an entity in an administratively enabled state.

Special Cases  
BGP Global — The BGP protocol is created in the no shutdown state.
BGP Group — BGP groups are created in the no shutdown state.
BGP Neighbor — BGP neighbors/peers are created in the no shutdown state.
description

Syntax

**description** description-string
**no description**

Context

config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description

This command creates a text description stored in the configuration file for a configuration context.
The no form of the command removes the description string from the context.

Default

No description is associated with the configuration context.

Parameters

*string* — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
BGP Commands

bgp

Syntax  
[no] bgp

Context  
config>router

Description  
This command creates the BGP protocol instance and BGP configuration context. BGP is administratively enabled upon creation.

The no form of the command deletes the BGP protocol instance and removes all configuration parameters for the BGP instance. BGP must be shutdown before deleting the BGP instance. An error occurs if BGP is not shutdown first.

add-paths

Syntax  
[no] add-paths

Context  
config>router>bgp
config>router>bgp>group
config>router>bgp>group>neighbor

Description  
This command allows adds the add-paths node to be the configured for one or more families configuration of the BGP instance, a group or a neighbor. The BGP add-paths capability allows the router to send and/or receive multiple paths per prefix to/from a peer. The add-paths command without additional parameters is equivalent to removing Add-Paths support for all address families, which causes sessions that previously negotiated the add-paths capability for one or more address families to go down and come back up without the add-paths capability.

The no form of the command (no add-paths) removes add-paths from the configuration of BGP, the group or the neighbor, causing sessions established using add-paths to go down and come back up without the add-paths capability.

Default  
no add-paths
Configuration Commands

ipv4

Syntax  ipv4 send send-limit receive [none]
ipv4 send send-limit
no ipv4

Context  config>router:bgp>add-paths
config>router:bgp>group>add-paths
config>router:bgp>group>neighbor>add-paths

Description  This command is used to configure the add-paths capability for IPv4 routes (including labeled IPv4 routes). By default, add-paths is not enabled for IPv4 routes.

The maximum number of paths per IPv4 prefix to send is the configured send limit, which is a mandatory parameter. The capability to receive multiple paths per prefix from a peer is configurable using the receive keyword, which is optional. If the receive keyword is not included in the command the receive capability is enabled by default. Entering the command without optional parameters negotiates the ability to both send and receive multiple paths per IPv4 prefix with each peer and configures the router to send the two best paths per prefix to each peer using the default Add-N, N=2 path selection algorithm.

The no form of the command disables add-paths support for IPv4 routes, causing sessions established using add-paths for IPv4 to go down and come back up without the add-paths capability.

Default  no ipv4

Parameters  send send-limit — The maximum number of paths per IPv4 prefix that are allowed to be advertised to add-paths peers (the actual number of advertised routes may be less depending on the next-hop diversity requirement, other configuration options, route policies and/or route advertisement rules).

Values  1 — 16, none

receive — The router negotiates the add-paths receive capability for VPN-IPv4 routes with its peers

none — The router does not negotiate the Add-Paths receive capability for VPN-IPv4 routes with its peers.

ipv6

Syntax  ipv6 send send-limit receive [none]
ipv6 send send-limit
no ipv6

Context  config>router:bgp>add-paths
config>router:bgp>group>add-paths
config>router:bgp>group>neighbor>add-paths

Description  This command is used to configure the add-paths capability for IPv6 routes (including 6PE routes). By default, add-paths is not enabled for IPv6 routes.
The maximum number of paths per IPv6 prefix to send is the configured send-limit, which is a mandatory parameter. The capability to receive multiple paths per prefix from a peer is configurable using the receive keyword, which is optional. If the receive keyword is not included in the command the receive capability is enabled by default.

The no form of the command disables add-paths support for IPv6 routes, causing sessions established using add-paths for IPv6 to go down and come back up without the add-paths capability.

Default: no ipv6

Parameters

send send-limit — The maximum number of paths per IPv6 prefix that are allowed to be advertised to add-paths peers (the actual number of advertised routes may be less depending on the next-hop diversity requirement, other configuration options, route policies and/or route advertisement rules).

Values: 1 — 16, none

receive — The router negotiates the add-paths receive capability for VPN-IPv6 routes with its peers

none — The router does not negotiate the Add-Paths receive capability for VPN-IPv6 routes with its peers.

vpn-ipv4

Syntax

vpn-ipv4 send send-limit receive [none]
vpn-ipv4 send send-limit
no vpn-ipv4

Context

config>router:bgp:add-paths
config>router:bgp>group:add-paths
config>router:bgp>group>neighbor:add-paths

Description

This command is used to configure the add-paths capability for VPN-IPv4 routes. By default, add-paths is not enabled for VPN-IPv4 routes.

The maximum number of paths per VPN-IPv4 NLRI to send is the configured send-limit, which is a mandatory parameter. The capability to receive multiple paths per prefix from a peer is configurable using the receive keyword, which is optional. If the receive keyword is not included in the command the receive capability is enabled by default.

The no form of the command disables add-paths support for VPN-IPv4 routes, causing sessions established using add-paths for VPN-IPv4 to go down and come back up without the add-paths capability.

Default: no vpn-ipv4

Parameters

send-limit — The maximum number of paths per VPN-IPv4 NLRI that are allowed to be advertised to add-paths peers (the actual number of advertised routes may be less depending on the next-hop diversity requirement, other configuration options, route policies and/or route advertisement rules).

Values: 1 — 16, none

receive — The router negotiates the add-paths receive capability for VPN-IPv4 routes with its peers

none — The router does not negotiate the Add-Paths receive capability for VPN-IPv6 routes with its peers.
Configuration Commands

vpn-ipv6

**Syntax**

vpn-ipv6 send send-limit receive [none]

vpn-ipv6 send send-limit

no vpn-ipv6

**Context**

config>router:bgp>add-paths

config>router:bgp>group>add-paths

config>router:bgp>group>neighbor>add-paths

**Description**

This command is used to configure the add-paths capability for VPN-IPv6 routes. By default, add-paths is not enabled for VPN-IPv6 routes.

The maximum number of paths per VPN-IPv6 NLRI to send is the configured send-limit, which is a mandatory parameter. The capability to receive multiple paths per prefix from a peer is configurable using the `receive` keyword, which is optional. If the `receive` keyword is not included in the command the receive capability is enabled by default.

The no form of the command disables add-paths support for VPN-IPv6 routes, causing sessions established using add-paths for VPN-IPv6 to go down and come back up without the add-paths capability.

**Default**

no vpn-ipv6

**Parameters**

`send-limit` — The maximum number of paths per VPN-IPv6 NLRI that are allowed to be advertised to add-paths peers (the actual number of advertised routes may be less depending on the next-hop diversity requirement, other configuration options, route policies and/or route advertisement rules).

**Values**

1 — 16, none

`receive` — The router negotiates the add-paths receive capability for VPN-IPv6 routes with its peers

`none` — The router does not negotiate the add-paths receive capability for VPN-IPv6 routes with its peers.

advertise-external

**Syntax**

[no] advertise-external [ipv4] [ipv6]

**Context**

config>router:bgp

**Description**

This command allows BGP to advertise its best external route to a destination even when its best overall route is an internal route. Entering the command (or its no form) with no address family parameters is equivalent to specifying all supported address families.

The no form of the command disables Advertise Best External for the BGP family.

**Default**

no advertise-external

**Parameters**

`ipv4` — Enable/disable best-external advertisement for all IPv4 (unicast and labeled-unicast) routes.

`ipv6` — Enable/disable best-external advertisement for all IPv6 (unicast and labeled-unicast) routes.
advertise-inactive

**Syntax**  
`[no] advertise-inactive`

**Context**  
`config>router>bgp`
`config>router>bgp>group`
`config>router>bgp>group>neighbor`

**Description**  
This command enables the advertising of inactive BGP routes to other BGP peers. By default, BGP only advertises BGP routes to other BGP peers if a given BGP route is chosen by the route table manager as the most preferred route within the system and is active in the forwarding plane. This command allows system administrators to advertise a BGP route even though it is not the most preferred route within the system for a given destination.

The **no** form of the command disables the advertising of inactive BGP routers to other BGP peers.

**Default**  
`no advertise-inactive`

advertise-label

**Syntax**  
`advertise-label [ipv4 [include-ldp-prefix]] [ipv6]`
`no advertise-label`

**Context**  
`config>router>bgp>group>neighbor`

**Description**  
This command configures the IPv4 transport peers to exchange IPv6 prefixes using 6PE, LDP FEC prefixes as RFC3107 labeled IPv4, as well as RFC 3107-labeled IPv4 routes.

If IPv4 is enabled all IPv4 routes advertised to the remote BGP peer will be sent with an RFC 3107-formatted label for the destination route. If `include-ldp-fec-prefix` option is also enabled, all activated /32 LDP FEC prefixes will be sent the to remote BGP peer with an RFC 3107 formatted label.

If ipv6 is enabled all IPv6 routes advertised to the remote BGP peer will be sent using the 6PE encapsulation.

The **no** form of the command disables any or all configured options.

The command must include one or more of the options above.

**Default**  
`no advertise-label`

**Parameters**

- `ipv4` — Specifies the advertisement label address family for core IPv4 routes. This keyword can be specified only for an IPv4 peer.

- `include-ldp-prefix` — Specifies the inclusion of LDP FEC prefixes in the advertisement of core IPv4 routes as EFC 3107 labeled routes to the peer.

- `ipv6` — Specifies the advertisement label address family to support the 6PE feature. This keyword can be specified only for an IPv6 peer.
aggregator-id-zero

**Syntax**  
[no] aggregator-id-zero

**Context**  
config>router:bgp  
config>router:bgp>group  
config>router:bgp>group>neighbor

**Description**  
This command is used to set the router ID in the BGP aggregator path attribute to zero when BGP aggregates routes. This prevents different routers within an AS from creating aggregate routes that contain different AS paths.

When BGP is aggregating routes, it adds the aggregator path attribute to the BGP update messages. By default, BGP adds the AS number and router ID to the aggregator path attribute.

When this command is enabled, BGP adds the router ID to the aggregator path attribute. This command is used at the group level to revert to the value defined under the global level, while this command is used at the neighbor level to revert to the value defined under the group level.

The **no** form of the command used at the global level reverts to default where BGP adds the AS number and router ID to the aggregator path attribute.

The **no** form of the command used at the group level reverts to the value defined at the global level.

The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**  
no aggregator-id-zero — BGP adds the AS number and router ID to the aggregator path attribute.

aigp

**Syntax**  
[no] aigp

**Context**  
config>router:bgp>group  
config>router:bgp>group>neighbor

**Description**  
This command enables or disables Accumulated IGP (AIGP) path attribute support with one or more BGP peers. BGP path selection among routes with an associated AIGP metric is based on the end-to-end IGP metrics of the different BGP paths, even when these BGP paths span more than one AS and IGP instance.

The effect of disabling AIGP (using the no form of the command or implicit) is to remove the AIGP attribute from advertised routes, if present, and to ignore the AIGP attribute in received routes.

**Default**  
no aigp
always-compare-med

Syntax
always-compare-med {zero | infinity}
no always-compare-med strict-as {zero | infinity}
no always-compare-med

Context
config>router:bgp>best-path-selection
config>service>vprn:bgp>best-path-selection

Description
This command configures the comparison of BGP routes based on the MED attribute. The default behavior of SR-OS (equivalent to the no form of the command) is to only compare two routes on the basis of MED if they have the same neighbor AS (the first non-confed AS in the received AS_PATH attribute). Also by default, a route without a MED attribute is handled the same as though it had a MED attribute with the value 0. The always-compare-med command without the strict-as keyword allows MED to be compared even if the paths have a different neighbor AS; in this case, if neither zero or infinity is specified, the zero option is inferred, meaning a route without a MED is handled the same as though it had a MED attribute with the value 0. When the strict-as keyword is present, MED is only compared between paths from the same neighbor AS, and in this case, zero or infinity is mandatory and tells BGP how to interpret paths without a MED attribute.

Default
no always-compare-med

Parameters
zero — Specifies that for routes learned without a MED attribute that a zero (0) value is used in the MED comparison. The routes with the lowest metric are the most preferred.

infinity — Specifies for routes learned without a MED attribute that a value of infinity (2^32-1) is used in the MED comparison. This in effect makes these routes the least desirable.

strict-as — Specifies BGP paths to be compared even with different neighbor AS.

as-path-ignore

Syntax
as-path-ignore [ipv4] [vpn-ipv4] [ipv6] [vpn-ipv6] [mcast-ipv4] [mvpn-ipv4] [mvpn-ipv6] [l2-vpn]
no as-path-ignore

Context
config>router:bgp>best-path-selection
config>service>vprn:bgp>best-path-selection

Description
This command determines whether the AS path is used to determine the best BGP route. If this option is present, the AS paths of incoming routes are not used in the route selection process. The no form of the command removes the parameter from the configuration.

Default
no as-path-ignore

Parameters
ipv4 — Specifies that the AS-path length will be ignored for all IPv4 routes.

vpn-ipv4 — Specifies that the length AS-path will be ignored for all IPv4 VPRN routes.

ipv6 — Specifies that the AS-path length will be ignored for all IPv6 routes.
Configuration Commands

**vpn-ipv6** — Specifies that the AS-path length will be ignored for all IPv6 VPRN routes.

**mcast-ipv4** — Specifies that the AS-path length will be ignored for all IPv4 multicast routes.

**mvpn-ipv4** — Specifies that the AS-path length will be ignored for all mVPN IPv4 multicast routes.

**mvpn-ipv6** — Specifies that the AS-path length will be ignored for all mVPN IPv6 multicast routes.

**l2-vpn** — The AS-path length will be ignored for all L2-VPN NLRIs.

### compare-origin-validation-state

**Syntax**

```
compare-origin-validation-state
no compare-origin-validation-state
```

**Context**

```
config>router>bgp>best-path-selection
```

**Description**

When this command is configured, a new step is inserted in the BGP decision process after removal of invalid routes and before the comparison of Local Preference. The new step compares the origin validation state so that a BGP route with a ‘Valid’ state is preferred over a BGP route with a ‘Not-Found’ state, and a BGP route with a ‘Not-Found’ state is preferred over a BGP route with an ‘Invalid’ state assuming that these routes are considered ‘usable’.

The new step is skipped when **no compare-origin-validation-state** is configured.

**Default**

```
no compare-origin-validation-state
```

### deterministic-med

**Syntax**

```
[no] deterministic-med
```

**Context**

```
config>router>bgp>best-path-selection
```

**Description**

This command controls how the BGP decision process compares routes on the basis of MED. When **deterministic-med** is configured, BGP groups paths that are equal up to the MED comparison step based on neighbor AS, and then compares the best path from each group to arrive at the overall best path. This change to the BGP decision process makes best path selection completely deterministic in all cases. Without **deterministic-med**, the overall best path selection is sometimes dependent on the order of the route arrival because of the rule that MED cannot be compared in routes from different neighbor AS.

**Default**

```
no deterministic-med
```
auth-keychain

Syntax  auth-keychain name

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command configures a TCP authentication keychain to use for the session. The keychain allows the rollover of authentication keys during the lifetime of a session.

Default  no auth-keychain

Parameters  name — Specifies the name of the keychain, up to 32 characters, to use for the specified TCP session or sessions.

authentication-key

Syntax  authentication-key [authentication-key | hash-key] [hash | hash2]
        no authentication-key

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command configures the BGP authentication key.

Authentication is performed between neighboring routers before setting up the BGP session by verifying the password. Authentication is performed using the MD-5 message based digest.

The authentication key can be any combination of ASCII characters up to 255 characters long.

The no form of the command reverts to the default value.

Default  MD5 Authentication is disabled by default.

Parameters  authentication-key — The authentication key. The key can be any combination of ASCII characters up to 255 characters in length (unencrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

hash-key — The hash key. The key can be any combination of ASCII characters up to 342 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

hash — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.
backup-path

Syntax  
[no] backup-path [ipv4] [ipv6]

Context  
config>router
config>service>vprn

Description  
This command enables the computation and use of a backup path for IPv4 and/or IPv6 BGP-learned prefixes belonging to the base router or a particular VPRN. Multiple paths must be received for a prefix in order to take advantage of this feature. When a prefix has a backup path and its primary path(s) fail the affected traffic is rapidly diverted to the backup path without waiting for control plane re-convergence to occur. When many prefixes share the same primary path(s), and in some cases also the same backup path, the time to failover traffic to the backup path is independent of the number of prefixes. In some cases prefix independent convergence may require use of FP2 or later IOMs/IMMs/XMAs.

By default, IPv4 and IPv6 prefixes do not have a backup path installed in the IOM.

Default  
no backup-path

Parameters  
ipv4 — enable the use of a backup path for BGP-learned IPv4 prefixes
ipv6 — enable the use of a backup path for BGP-learned IPv6 prefixes

best-path-selection

Syntax  
best-path-selection

Context  
config>router>bgp

Description  
This command enables path selection configuration.

bfd-enable

Syntax  
[no] bfd-enable

Context  
config>router>bgp
config>router>bgp>group
config>router>bgp>group>neighbor

Description  
This command enables the use of bi-directional forwarding (BFD) to control the state of the associated protocol interface. By enabling BFD on a given protocol interface, the state of the protocol interface is tied to the state of the BFD session between the local node and the remote node. The parameters used for the BFD are set via the BFD command under the IP interface.

The no form of this command removes BFD from the associated IGP/BGP protocol adjacency.

Default  
no bfd-enable
cluster

Syntax  
```
class cluster clsrer-id
no cluster
```

Context  
```
config>router>bgp
config>router>bgp>group
config>router>bgp>group>neighbor
```

Description  
This command configures the cluster ID for a route reflector server.

Route reflectors are used to reduce the number of IBGP sessions required within an AS. Normally, all BGP speakers within an AS must have a BGP peering with every other BGP speaker in an AS. A route reflector and its clients form a cluster. Peers that are not part of the cluster are considered to be non-clients.

When a route reflector receives a route, first it must select the best path from all the paths received. If the route was received from a non-client peer, then the route reflector sends the route to all clients in the cluster. If the route came from a client peer, the route reflector sends the route to all non-client peers and to all client peers except the originator.

For redundancy, a cluster can have multiple route reflectors.

Confederations can also be used to remove the full IBGP mesh requirement within an AS.

The `no` form of the command deletes the cluster ID and effectively disables the Route Reflection for the given group.

Default  
```
no cluster — No cluster ID is defined.
```

Parameters  
```
cluster-id — The route reflector cluster ID is expressed in dot decimal notation.
```

```
Values Any 32 bit number in dot decimal notation. (0.0.0.1 — 255.255.255.255)
```

confederation

Syntax  
```
confederation confed-as-num members member-as-num
no confederation confed-as-num [members member-as-num]
```

Context  
```
config>router
```

Description  
This command creates confederation autonomous systems within an AS.

This technique is used to reduce the number of IBGP sessions required within an AS. Route reflection is the other technique that is commonly deployed to reduce the number of IBGP sessions.

The `no` form of the command deletes the specified member AS from the confederation.

When members are not specified in the `no` statement, the entire list is removed and confederations is disabled.

When the last member of the list is removed, confederations is disabled.

Default  
```
no confederation — No confederations are defined.
```
Configuration Commands

Parameters

confed-as-num — The confederation AS number expressed as a decimal integer.

Values

1 — 65535

members member-as-num — The AS number(s) of members that are part of the confederation expressed as a decimal integer. Configure up to 15 members per confed-as-num.

connect-retry

Syntax

connect-retry seconds
no connect-retry

Context

config>router>bgp
cfg>router>bgp>group
cfg>router>bgp>group>neighbor

Description

This command configures the BGP connect retry timer value in seconds.

When this timer expires, BGP tries to reconnect to the configured peer. This configuration parameter can be set at three levels: global level (applies to all peers), peer-group level (applies to all peers in group) or neighbor level (only applies to specified peer). The most specific value is used.

The no form of the command used at the global level reverts to the default value.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default

120 seconds

Parameters

seconds — The BGP Connect Retry timer value in seconds expressed as a decimal integer.

Values

1 — 65535

damp-peer-oscillations

Syntax
damp-peer-oscillations [idle-hold-time initial-wait second-wait max-wait] [error-interval minutes]

Context

config>router>bgp
cfg>router>bgp>group
cfg>router>bgp>group>neighbor

Description

This command controls how long a BGP peer session remains in the idle-state after some type of error causes the session to reset. In the idle state, BGP does not initiate or respond to attempts to establish a new session. Repeated errors that occur a short while after each session reset cause longer and longer hold times in the idle state. This command supports the DampPeerOscillations FSM behavior described in section 8.1 of RFC 4271, A Border Gateway Protocol 4 (BGP-4).

The default behavior, which applies when no damp-peer-oscillations is configured, is to immediately transition out of the idle-state after every reset.

Default

no damp-peer-oscillations
Parameters

initial-wait — The amount of time, in minutes, that a session remains in the idle-state after it has been stable for a while.

Values 0 — 2048
Default 0

second-wait — A period of time, in minutes, that is doubled after each repeated session failure that occurs within a relatively short span of time.

Values 1 — 2048
Default 5

max-wait — The maximum amount of time, in minutes, that a session remains in the idle-state after it has experienced repeated instability.

Values 1 — 2048
Default 60

minutes — The interval of time, in minutes after a session reset, during which the session must be error-free in order to reset the penalty counter and return to idle-hold-time to initial-wait.

Values 0 — 2048
Default 30

damping

Syntax [no] damping

Context config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description This command enables BGP route damping for learned routes which are defined within the route policy. Use damping to reduce the number of update messages sent between BGP peers and reduce the load on peers without affecting the route convergence time for stable routes. Damping parameters are set via route policy definition.

The no form of the command used at the global level reverts route damping.
The no form of the command used at the group level reverts to the value defined at the global level.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

When damping is enabled and the route policy does not specify a damping profile, the default damping profile is used. This profile is always present and consists of the following parameters:

Half-life: 15 minutes
Max-suppress: 60 minutes
Suppress-threshold: 3000
Reuse-threshold: 750

Default no damping — Learned route damping is disabled.
default-route-target

Syntax  [no] default-route-target

Context  config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command originates the default RTC route (zero prefix length) towards the selected peers.

Default  No default RTC routes are advertised by the router.

disable-4byte-asn

Syntax  [no] disable-4byte-asn

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command disables the use of 4-byte ASNs. It can be configured at all 3 level of the hierarchy so it can be specified down to the per peer basis.

If this command is enabled 4-byte ASN support should not be negotiated with the associated remote peer(s).

The no form of the command resets the behavior to the default which is to enable the use of 4-byte ASN.

disable-capability-negotiation

Syntax  [no] disable-capability-negotiation

Context  config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command disables the exchange of . When command is enabled and after the peering is flapped, any new are not negotiated and will strictly support IPv4 routing exchanges with that peer.

The no form of the command removes this command from the configuration and restores the normal behavior.

Default  no disable-capability-negotiation
disable-client-reflect

**Syntax**

```none
[no] disable-client-reflect
```

**Context**

```none
cfg>router:bgp
cfg>router:bgp>group
cfg>router:bgp>group>neighbor
```

**Description**

This command disables the reflection of routes by the route reflector to the clients in a specific group or neighbor.

This only disables the reflection of routes from other client peers. Routes learned from non-client peers are still reflected to all clients.

The `no` form re-enables client reflection of routes.

**Default**

`no disable-client-reflect` — Client routes are reflected to all client peers.


disable-communities

**Syntax**

```none
disable-communities [standard] [extended]
no disable-communities
```

**Context**

```none
cfg>router:bgp
cfg>router:bgp>group
cfg>router:bgp>group>neighbor
```

**Description**

This command configures BGP to disable sending communities.

**Parameters**

- **standard** — Specifies standard communities that existed before VPRNs or 2547.
- **extended** — Specifies BGP communities used were expanded after the concept of 2547 was introduced, to include handling the VRF target.


disable-fast-external-failover

**Syntax**

```none
[no] disable-fast-external-failover
```

**Context**

```none
cfg>router:bgp
cfg>router:bgp>group
cfg>router:bgp>group>neighbor
```

**Description**

This command configures BGP fast external failover.
Configuration Commands

disable-route-table-install

Syntax  
[no] disable-route-table-install

Context  
config>router>bgp

Description  
This command specifies whether to disable the installation of all (labeled and unlabeled) IPv4 and IPv6 BGP routes into RTM (Routing Table Manager) and the FIB (Forwarding Information Base) on the base router instance.

enable-origin-validation

Syntax  
enable-origin-validation [ipv4] [ipv6]
no enable-origin-validation

Context  
config>router>bgp>group
config>router>bgp>group>neighbor

Description  
When the enable-origin-validation command is added to the configuration of a group or neighbor, it causes every inbound IPv4 and/or IPv6 route from that peer to be marked with one of the 3 following origin validation states:

- Valid (0)
- Not-Found (1)
- Invalid (2)

By default (when neither the ipv4 or ipv6 option is present in the command) or when both the ipv4 and ipv6 options are specified, all unicast IPv4 (AFI1/SAFI1), label-IPv4 (AFI1/SAFI4), unicast IPv6 (AFI2/SAFI1), and 6PE (AFI2/SAFI4) routes are evaluated to determine their origin validation states. When only the ipv4 or ipv6 option is present, only the corresponding address family routes (unlabeled and labeled) are evaluated.

The enable-origin-validation command applies to all types of BGP peers, but as a general rule, it should only be applied to EBGP peers and groups that contain only EBGP peers.

Default  
no enable-origin-validation

Parameters  
ipv4 — Enables origin validation processing for IPv4 and label-IPv4 routes.
ipv6 — Enables origin validation processing for IPv6 and 6PE routes.

enable-inter-as-vpn

Syntax  
[no] enable-inter-as-vpn

Context  
config>router>bgp

Description  
This command specifies whether VPNs can exchange routes across autonomous system boundaries, providing model B connectivity.

The no form of the command disallows ASBRs to advertise VPRN routes to their peers in other autonomous systems.
Default  no enable-inter-as-vpn

enable-peer-tracking

Syntax  [no] enable-peer-tracking

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command enables BGP peer tracking. BGP peer tracking allows a BGP peer to be dropped immediately if the route used to resolve the BGP peer address is removed from the IP routing table and there is no alternative available. The BGP peer will not wait for the holdtimer to expire; therefore, the BGP reconvergance process is accelerated.

The no form of the command disables peer tracking.

Default  no enable-peer-tracking

enable-rr-vpn-forwarding

Syntax  [no] enable-rr-vpn-forwarding

Context  config>router:bgp

Description  When this command is configured all received VPN-IP routes, regardless of route target, are imported into the dummy VRF, where the BGP next-hops are resolved. The transport-tunnel command under config>router:bgp determines what types of tunnels are eligible to resolve the next-hops. If a received VPN-IP route from IBGP peer X is resolved and selected as best so that it can be re-advertised to an IBGP peer Y, AND the BGP next-hop is modified towards peer Y (by using the next-hop-self command in Y’s group or neighbor context or by using a next-hop action in an export policy applied to Y) then BGP allocates a new VPRN service label value for the route, signals that new label value to Y and programs the IOM to do the corresponding label swap operation. The supported combinations of X and Y are outlined below:

- from X (client) to Y (client)
- from X (client) to Y (non-client)
- from X (non-client) to Y (client)

The no form of the command causes the re-advertisement of a VPN-IP route between one IBGP peer and another IBGP peer does not cause a new VPRN service label value to be signaled and programmed even if the BGP next-hop is changed through group/neighbor configuration or policy.

Note that is it advised to leave this command disabled (for scaling and convergence reasons).

Default  no enable-rr-vpn-forwarding
export

Syntax
export policy-name [policy-name…]
nocopy export [policy-name]

Context
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description
This command specifies the export route policy used to determine which routes are advertised to peers.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific level is used.

When multiple policy names are specified, the policies are evaluated in the order they are specified. A maximum of fifteen (15) policy names can be configured. The first policy that matches is applied.

When multiple export commands are issued, the last command entered overrides the previous command.

When no export policies are specified, BGP routes are advertised and non-BGP routes are not advertised by default.

The `no` form of the command removes the policy association with the BGP instance. To remove association of all policies, use the `no export` command without arguments.

Default
no export — No export policy is specified. BGP routes are advertised and non-BGP routes are not advertised.

Parameters
policy-name — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the `config>router>policy-options` context.

family

Syntax
family [ipv4] [vpn-ipv4] [ipv6] [mcast-ipv4] [l2-vpn] [mpls-ipv4] [mpls-ipv6] [flow-ipv4] [flow-ipv6] [mld-safi] [ms-pw] [route-target] [mcast-vpn-ipv4] [evpn]
nofamily

Context
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description
This command specifies the address family or families to be supported over BGP peerings in the base router. This command is additive so issuing the `family` command adds the specified address family to the list.

The `no` form of the command removes the specified address family from the associated BGP peerings. If an address family is not specified, then reset the supported address family back to the default.

Default
ipv4

Parameters
evpn — Exchanges Ethernet VPN routes using AFI 25 and SAFI 70.
vpn-ipv4 — Exchanges IPv4 VPN routing information.
ipv6 — Exchanges IPv6 routing information.
mcast-ipv4 — Exchanges multicast IPv4 routing information.
l2-vpn — Exchanges Layer 2 VPN information.
mvpn-ipv4 — Exchanges Multicast VPN related information.
mvpn-ipv6 — Exchanges Multicast VPN related information.
flow-ipv4 — Exchanges IPv4 flowspec routes belonging to AFI 1 and SAFI 133.
flow-ipv6 — Exchanges IPv6 flowspec routes belonging to AFI 2 and SAFI 133.
mdt-safi — Exchanges Multicast VPN information using MDT-SAFI address family
ms-pw — Exchanges dynamic MS-PW related information.
route-target — Exchanges RT constraint routes for VPN route filtering.
mcast-vpn-ipv4 — Exchanges Multicast Routes in VPN using SAFI 129.
mcast-ipv6 — Exchanges multicast IPv6 routing information.

flowspec-validate

Syntax  
flowspec-validate
no flowspec-validate

Context  
config>router>bgp
config>router>bgp>group
config>router>bgp>group>neighbor

Description  
This command enables/disables validation of received flowspec routes. A flow route with a destination prefix subcomponent that is received from a particular peer is considered valid if and only if that peer also advertised the best unicast route to the destination prefix and any of its more-specific components. Also, when a flow route is received from an EBGP peer, the left most AS number in the AS_PATH attribute must equal the peer's AS number. If validation is enabled and a flowspec route is not valid, it is not eligible for import into the RIB, it is not used for filtering, a log/trap is generated, and it is not propagated to other flowspec peers.

The no form of the command disables the validation procedure.

Default  
no flowspec-validate
**route-target-list**

**Syntax**

```plaintext
route-target-list comm-id [comm-id ..[up to 15 max]]
no route-target-list [comm-id]
```

**Context**

`config>router:bgp`

**Description**

This command specifies the route target(s) to be accepted and advertised from/to route reflector clients. If the `route-target-list` is a non-null list, only routes with one or more of the given route targets are accepted or advertised to route reflector clients.

This command is only applicable if the router is a route-reflector server. This parameter has no affect on non-route-reflector clients.

If the `route-target-list` is assigned at the global level, then the list applies to all route-reflector clients connected to the system.

The `no` form of the command with a specified route target community, removes the specified community from the `route-target-list`. The `no` form of the command entered without a route target community removes all communities from the list.

**Default**

`no route-target-list`

**Parameters**

`comm-id` — Specifies the route target community in the form `<0..65535>:<0..65535>`

---

**third-party-nexthop**

**Syntax**

```plaintext
third-party-nexthop
no third-party-nexthop
```

**Context**

`config>router:bgp`

`config>router:bgp>group`

`config>router:bgp>group>neighbor`

**Description**

Use this command to enable the router to send third-party next-hop to EBGP peers in the same subnet as the source peer, as described in RFC 4271. If enabled when an IPv4 or IPv6 route is received from one EBGP peer and advertised to another EBGP peer in the same IP subnet, the BGP next-hop is left unchanged. Third-party next-hop is not done if the address family of the transport does not match the address family of the route.

The `no` form of the command prevents BGP from performing any third party next-hop processing toward any single-hop EBGP peers within the scope of the command. No third-party next-hop means the next-hop will always carry the IP address of the interface used to establish the TCP connection to the peer.

**Default**

`no third-party-nexthop`
vpn-apply-export

Syntax  

[no] vpn-apply-export

Context  

config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description  

This command causes the base instance BGP export route policies to be applied to vpn-ipv4/6, mvpn-ipv4/6, l2-vpn, mdt-safi, mcast-vpn-ipv4, and evpn routes.

The no form of the command disables the application of the base instance BGP route policies to vpn-ipv4/6, mvpn-ipv4/6, l2-vpn, mdt-safi, mcast-vpn-ipv4, and evpn routes.

Default  

no vpn-apply-export

---

vpn-apply-import

Syntax  

[no] vpn-apply-import

Context  

config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description  

This command causes the base instance BGP import route policies to be applied to vpn-ipv4/6, mvpn-ipv4/6, l2-vpn, mdt-safi, mcast-vpn-ipv4, and evpn routes.

The no form of the command disables the application of the base instance BGP import route policies to vpn-ipv4/6, mvpn-ipv4/6, l2-vpn, mdt-safi, mcast-vpn-ipv4, and evpn routes.

Default  

no vpn-apply-import

---

graceful-restart

Syntax  

[no] graceful-restart

Context  

config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description  

The command enables BGP graceful restart helper procedures (the “receiving router” role defined in the standard) for all received IPv4, IPv6, VPN-IPv4, and VPN-IPv6 routes. In order for helper mode to be available for a particular address family, both peers must signal GR support for the address family during capability negotiation.

When a neighbor covered by GR helper mode restarts its control plane, forwarding can continue uninterrupted while the session is re-established and routes are re-learned.

The no form of the command disables graceful restart.

Default  

no graceful-restart
error-handling

**Syntax**  error-handling

**Context**  
- config>router:bgp
- config>router:bgp>group
- config>router:bgp>group>neighbor

**Description**  This command specifies whether updated BGP error handling procedures should be applied.

update-fault-tolerance

**Syntax**  [no] update-fault-tolerance

**Context**  
- config>router:bgp>update-error-handling
- config>router:bgp>group> update-error-handling
- config>router:bgp>group>neighbor> update-error-handling

**Description**  This command enables treat-as-withdraw and other similarly non-disruptive approaches for handling a wide range of UPDATE message errors, as long as there are no length errors that prevent all of the NLRI fields from being correctly identified and parsed.

**Default**  no fault-tolerance

enable-notification

**Syntax**  enable-notification
- no enable-notification

**Context**  
- config>router:bgp>graceful-restart
- config>router:bgp>group>graceful-restart
- config>router:bgp>group>neighbor>graceful-restart

**Description**  When this command is present, the graceful restart capability sent by this router indicates support for NOTIFICATION messages. If the peer also supports this capability then the session can be restarted gracefully (while preserving forwarding) if either peer needs to sends a NOTIFICATION message due to some type of event or error.

**Default**  no enable-notification
restart-time

Syntax  restart-time seconds
       no restart-time

Context  config>router>bgp>graceful-restart
         config>router>bgp>group>graceful-restart
         config>router>bgp>group>neighbor>graceful-restart

Description  This command sets the value of the restart-time that is advertised in the router’s graceful-restart capability. If this command is not configured, the default is 30 seconds.

Default  no restart time

Parameters  seconds — The restart-time that is advertised in the router’s graceful-restart capability.

   Values  0 — 4095 seconds
   Default  30

stale-routes-time

Syntax  stale-routes-time time
       no stale-routes-time

Context  config>router>bgp>graceful-restart
         config>router>bgp>group>graceful-restart
         config>router>bgp>group>neighbor>graceful-restart

Description  This command configures the maximum amount of time in seconds that stale routes should be maintained after a graceful restart is initiated.

   The no form of the command resets the stale routes time back to the default of 360 seconds.

Default  no restart time

Parameters  time — Specify the amount of time that stale routes should be maintained after a graceful restart is initiated.

   Values  1 — 3600 seconds

group

Syntax  [no] group name

Context  config>router>bgp

Description  This command creates a context to configure a BGP peer group.

   The no form of the command deletes the specified peer group and all configurations associated with the peer group. The group must be shutdown before it can be deleted.

Default  No peer groups are defined.
Configuration Commands

Parameters  name — The peer group name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

hold-time

Syntax  hold-time seconds [min seconds2]
        no hold-time

Context  config>router>bgp
         config>router>bgp>group
         config>router>bgp>group>neighbor

Description  This command configures the BGP hold time, expressed in seconds.

The BGP hold time specifies the maximum time BGP waits between successive messages (either keepalive or update) from its peer, before closing the connection. This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in group) or neighbor level (only applies to specified peer). The most specific value is used.

Even though the implementation allows setting the keepalive time separately, the configured keepalive timer is overridden by the hold-time value under the following circumstances:

1. If the specified hold-time is less than the configured keepalive time, then the operational keepalive time is set to a third of the hold-time; the configured keepalive time is not changed.
2. If the hold-time is set to zero, then the operational value of the keepalive time is set to zero; the configured keepalive time is not changed. This means that the connection with the peer is up permanently and no keepalive packets are sent to the peer.

The no form of the command used at the global level reverts to the default value.
The no form of the command used at the group level reverts to the value defined at the global level.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default  90 seconds

Parameters  seconds — The hold-time, in seconds, expressed as a decimal integer. A value of 0 indicates the connection to the peer is up permanently.

Values  0, 3 — 65535

seconds2 — The minimum hold-time that will be accepted for the session. If the peer proposes a hold-time lower than this value, the session attempt will be rejected.

ibgp-multipath

Syntax  [no] ibgp-multipath

Context  config>router>bgp

Description  This command enables IBGP multipath load balancing when adding BGP routes to the route table if the route resolving the BGP nexthop offers multiple nexthops.
The **no** form of the command disables the IBGP multipath load balancing feature.

**Default** no ibgp-multipath

### ignore-nh-metric

**Syntax**

```
ignore-nh-metric
no ignore-nh-metric
```

**Context**

```
config>router:bgp>best-path-selection
config>service>vprn:bgp>best-path-selection
```

**Description**

This command instructs BGP to disregard the resolved distance to the BGP next-hop in its decision process for selecting the best route to a destination. When configured in the `config>router:bgp>best-path-selection` context, this command applies to the comparison of two BGP routes with the same NLRI learned from base router BGP peers. When configured in the `config>service>vprn` context, this command applies to the comparison of two BGP-VPN routes for the same IP prefix imported into the VPRN from the base router BGP instance. When configured in the `config>service>vprn:bgp>best-path-selection` context, this command applies to the comparison of two BGP routes for the same IP prefix learned from VPRN BGP peers.

The no form of the command (no ignore-nh-metric) restores the default behavior whereby BGP factors distance to the next-hop into its decision process.

**Default** no ignore-nh-metric

### ignore-router-id

**Syntax**

```
ignore-router-id
no ignore-router-id
```

**Context**

```
config>router:bgp>best-path-selection
config>service>vprn:bgp>best-path-selection
```

**Description**

When the ignore-router-id command is present and the current best path to a destination was learned from EBGP peer X with BGP identifier x and a new path is received from EBGP peer Y with BGP identifier y the best path remains unchanged if the new path is equivalent to the current best path up to the BGP identifier comparison – even if y is less than x. The no form of the command restores the default behavior of selecting the route with the lowest BGP identifier (y) as best.

**Default** no ignore-router-id
Configuration Commands

origin-invalid-unusable

Syntax    origin-invalid-unusable
           no origin-invalid-unusable

Context   config>router>bgp>best-path-selection

Description When origin-invalid-unusable is configured, all routes that have an origin validation state of ‘Invalid’ are considered unusable by the best path selection algorithm, meaning they are not used for forwarding and not advertised to BGP peers.

With the default of no origin-invalid-unusable, routes with an origin validation state of ‘Invalid’ are compared to other ‘usable’ routes for the same prefix according to the BGP decision process.

Default   no origin-invalid-unusable

igp-shortcut

Syntax    igp-shortcut [ldp | rsvp-te | mpls | mpls-bgp] [disallow-igp]
           no igp-shortcut

Context   config>router:bgp

Description This command enables the use of LDP tunnels, RSVP tunnels, or both, to resolve paths to BGP next-hops.

The ldp option instructs BGP to search for an LDP LSP with a FEC prefix corresponding to the /32 address of the BGP next-hop. This deprecates the existing ldp-shortcut command under BGP. Support for the older command will be provided over a number of releases to allow old config files to execute.

The rsvp-te option instructs BGP to search for the best metric RSVP LSP to the /32 address of the BGP next-hop. This address can correspond to the system interface or to another loopback used by the BGP instance on the remote node as its router-id. The LSP metric is provided by MPLS in the tunnel table.

The mpls option instructs BGP to first attempt to resolve the BGP next-hop to an RSVP LSP. If no RSVP LSP exists or if the existing ones are down, BGP will automatically search for the LDP LSP with a FEC prefix corresponding to the same /32 prefix in the tunnel table and will resolve the BGP next-hop to it.

The mpls-bgp option enables the use of RSVP LSP,LDP LSP and labeled BGP(3107) for BGP next-hop resolution by BGP. RSVP LSP, LDP LSP are preferred in order over labeled BGP.

The disallow-igp option also deprecates the existing one under BGP. It continues to work transparently regardless of which type of LSP shortcut, RSVP or LDP, is being used by BGP at any given time. When this option is enabled and if an LSP shortcut of the configured type is not available, the IGP next-hop route will not be used for the BGP next-hop resolution.

Default   no igp-shortcut

Parameters ldp — Enables the use of LDP LSPs for BGP next-hop resolution by BGP.

rsvp-te — Enables the use of RSVP LSPs for BGP next-hop resolution by BGP.

mpls — Enables the use of both RSVP and LDP LSPs for BGP next-hop resolution by BGP. RSVP LSPs are preferred.

disallow-igp — Prevents BGP next-hop resolution to a regular IGP next-hop if no LSP shortcut was found.
import

Syntax  import policy-name [policy-name…]
        no import [policy-name]

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command specifies the import route policy to be used to determine which routes are accepted from peers. Route policies are configured in the config>router>policy-options context.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific level is used.

When multiple policy names are specified, the policies are evaluated in the order they are specified. A maximum of fifteen (15) policy names can be specified. The first policy that matches is applied.

When multiple import commands are issued, the last command entered will override the previous command.

When an import policy is not specified, BGP routes are accepted by default.

The no form of the command removes the policy association with the BGP instance. To remove association of all policies, use no import without arguments.

Default  no import — No import policy specified (BGP routes are accepted).

Parameters  policy-name — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the config>router>policy-options context.

keepalive

Syntax  keepalive seconds
        no keepalive

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command configures the BGP keepalive timer. A keepalive message is sent every time this timer expires.

The keepalive parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The keepalive value is generally one-third of the hold-time interval. Even though the implementation allows the keepalive value and the hold-time interval to be independently set, under the following circumstances, the configured keepalive value is overridden by the hold-time value:
1. If the specified keepalive value is greater than the configured hold-time, then the specified value is ignored, and the keepalive is set to one third of the current hold-time value.

2. If the specified hold-time interval is less than the configured keepalive value, then the keepalive value is reset to one third of the specified hold-time interval.

3. If the hold-time interval is set to zero, then the configured value of the keepalive value is ignored. This means that the connection with the peer is up permanently and no keepalive packets are sent to the peer.

The no form of the command used at the global level reverts to the default value
The no form of the command used at the group level reverts to the value defined at the global level.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**
30 seconds

**Parameters**

*seconds* — The keepalive timer in seconds expressed as a decimal integer.

**Values**
0 — 21845

---

**local-address**

**Syntax**

local-address *ip-address*

no local-address

**Context**

config>router:bgp>group
cfg>router:bgp>group>neighbor

**Description**

Configures the local IP address used by the group or neighbor when communicating with BGP peers.

Outgoing connections use the local-address as the source of the TCP connection when initiating connections with a peer.

When a local address is not specified, the router uses the system IP address when communicating with IBGP peers and uses the interface address for directly connected EBGP peers. This command is used at the neighbor level to revert to the value defined under the group level.

The no form of the command removes the configured local-address for BGP.
The no form of the command used at the group level reverts to the value defined at the global level.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**

no local-address - The router ID is used when communicating with IBGP peers and the interface address is used for directly connected EBGP peers.

*ip-address* — The local address expressed in dotted decimal notation. Allowed value is a valid routable IP address on the router, either an interface or system IP address.

**Values**

ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:x:x:d.d.d.d
x: [0 — FFFF]H
d: [0 — 255]D
local-as

Syntax  local-as as-number [private] [no-prepend-global-as]
        no local-as

Context  config>router:bgp
         config>router:bgp>group
         config>router:bgp>group>neighbor

Description  This command configures a BGP local autonomous system (AS) number. In addition to the global AS number configured for BGP using the autonomous-system command, a local AS number can be configured to support various AS number migration scenarios. When the local-as command is applied to an EBGP session it by default causes the local-as number to be prepended to the AS PATH attribute in both inbound and outbound routes received from and sent to the EBGP peer. This configuration parameter can be set at three levels: global level (applies to all EBGP peers), group level (applies to all EBGP peers in peer-group) or neighbor level (only applies to EBGP specified peer). Thus by specifying this at the neighbor level it is possible to have a separate local-as per EBGP session. The local-as command is not supported for IBGP sessions. When the optional private keyword is specified in the command the local-as number is not added to inbound routes from the EBGP peer.

When the optional no-prepend-global-as command is configured, the global-as number is not added in outbound routes sent to the EBGP peer. In this case, only the local-as number is prepended. When a command is entered multiple times for the same AS, the last command entered is used in the configuration. The private option can be added or removed dynamically by reissuing the command. Changing the local AS at the global level in an active BGP instance causes the BGP instance to restart with the new local AS number. Changing the local AS at the global level in an active BGP instance causes BGP to re-establish the peer relationships with all peers in the group with the new local AS number. Changing the local AS at the neighbor level in an active BGP instance causes BGP to re-establish the peer relationship with the new local AS number.

The no form of the command used at the group level reverts to the value defined at the global level.

Default  no local-as

Parameters  as-number — The virtual autonomous system number expressed as a decimal integer.
        Values       1 — 4294967295

private — Specifies the local-as is hidden in paths learned from the peering.

no-prepend-global-as — Specifies that the global-as is hidden in paths announced to the EBGP peer.
Configuration Commands

local-preference

Syntax    local-preference  local-preference
          no  local-preference

Context   config>router>bgp
          config>router>bgp>group
          config>router>bgp>group>neighbor

Description This command enables setting the BGP local-preference attribute in incoming routes if not specified and
configures the default value for the attribute.

This value is used if the BGP route arrives from a BGP peer without the local-preference integer set.

The specified value can be overridden by any value set via a route policy. This configuration parameter can
be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or
neighbor level (only applies to specified peer). The most specific value is used.

The no form of the command at the global level specifies that incoming routes with local-preference set are
not overridden and routes arriving without local-preference set are interpreted as if the route had local-
preference value of 100.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default    no  local-preference — Does not override the local-preference value set in arriving routes and analyze routes
without local preference with value of 100.

Parameters local-preference — The local preference value to be used as the override value expressed as a decimal integer.

Values     0 — 4294967295

loop-detect

Syntax    loop-detect  (drop-peer | discard-route | ignore-loop | off)
          no  loop-detect

Context   config>router>bgp
          config>router>bgp>group
          config>router>bgp>group>neighbor

Description This command configures how the BGP peer session handles loop detection in the AS path.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies
to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

Note that dynamic configuration changes of loop-detect are not recognized.

The no form of the command used at the global level reverts to default, which is loop-detect ignore-loop.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.
BGP

Default  loop-detect ignore-loop

Parameters  

- **drop-peer** — Sends a notification to the remote peer and drops the session.
- **discard-route** — Discards routes received from a peer with the same AS number as the router itself. This option prevents routes looped back to the router from being added to the routing information base and consuming memory. When this option is changed, the change will not be active for an established peer until the connection is re-established for the peer.
- **ignore-loop** — Ignores routes with loops in the AS path but maintains peering.
- **off** — Disables loop detection.

mdat-safi

**Syntax**

```
[no] mdt-safi
```

**Context**

```
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor
```

**Description**

This command enables peer capability to exchange MDT-SAFI address family advertisements.

med-out

**Syntax**

```
med-out {number | igp-cost}
no med-out
```

**Context**

```
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor
```

**Description**

This command enables advertising the Multi-Exit Discriminator (MED) and assigns the value used for the path attribute for the MED advertised to BGP peers if the MED is not already set.

The specified value can be overridden by any value set via a route policy.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The no form of the command used at the global level reverts to default where the MED is not advertised.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**  no med-out

**Parameters**  

- **number** — The MED path attribute value expressed as a decimal integer.
  
  **Values**
  
  - 0 — 4294967295

- **igp-cost** — The MED is set to the IGP cost of the given IP prefix.
Configuration Commands

**min-route-advertisement**

**Syntax**  
```
min-route-advertisement seconds
no min-route-advertisement
```

**Context**  
```
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor
```

**Description**  
This command configures the minimum interval, in seconds, at which a prefix can be advertised to a peer. This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The no form of the command used at the global level reverts to default.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**  
30 seconds

**Parameters**  
seconds — The minimum route advertising interval, in seconds, expressed as a decimal integer.

**Values**  
1— 255

**mp-bgp-keep**

**Syntax**  
```
[no] mp-bgp-keep
```

**Context**  
```
config>router:bgp
```

**Description**  
As a result of enabling this command, route refresh messages are no longer needed, or issued when VPN route policy changes are made; RIB-IN will retain all MP-BGP routes.

The no form of the command is used to disable this feature.

**multihop**

**Syntax**  
```
multihop ttl-value
no multihop
```

**Context**  
```
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor
```

**Description**  
This command configures the time to live (TTL) value entered in the IP header of packets sent to an EBGP peer multiple hops away.

The no form of the command is used to convey to the BGP instance that the EBGP peers are directly connected.

The no form of the command used at the global level reverts to default.
The `no` form of the command used at the group level reverts to the value defined at the global level. The `no` form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**
- 1 — EBGP peers are directly connected.
- 64 — IBGP

**Parameters**
- `ttl-value` — The TTL value expressed as a decimal integer.
  - **Values**
    - 1 — 255

### multipath

**Syntax**
- `multipath max-paths`
- `no multipath`

**Context**
- `config>router>bgp`

**Description**
This command enables BGP multipath. When multipath is enabled BGP load shares traffic across multiple links. Multipath can be configured to load share traffic across a maximum of 32 routes. If the equal cost routes available are more than the configured value, then routes with the lowest next-hop IP address value are chosen. This configuration parameter is set at the global level (applies to all peers).

Multipath is effectively disabled if the value is set to one. When multipath is disabled, and multiple equal cost routes are available, the route with the lowest next-hop IP address will be used.

The `no` form of the command used at the global level reverts to default where `multipath` is disabled.

**Default**
- `no multipath`

**Parameters**
- `max-paths` — The number of equal cost routes to use for multipath routing. If more equal cost routes exist than the configured value, routes with the lowest next-hop value are chosen. Setting this value to 1 disables multipath.
  - **Values**
    - 1 — 16

### mvpn-vrf-import-subtype-new

**Syntax**
- `[no] mvpn-vrf-import-subtype-new`

**Context**
- `config>router>bgp`

**Description**
When enabled, the type/subtype in advertised routes is encoded as 0x010b. The `no` form of the command (the default) encodes the type/subtype as 0x010a (to preserve backwards compatibility).
Configuration Commands

**next-hop-resolution**

- **Syntax**: `next-hop-resolution`
- **Context**: `config>router>bgp`
- **Description**: This command enables the context to configure next-hop resolution parameters.

**policy**

- **Syntax**: `policy policy-name`
  `no policy`
- **Context**: `config>router>bgp>next-hop-res`
- **Description**: This command specifies the name of a policy statement to use with the BGP next-hop resolution process. The policy controls which IP routes in RTM are eligible to resolve the BGP next-hop addresses of IPv4 and IPv6 routes. The policy has no effect on the resolution of BGP next-hops to MPLS tunnels. If a BGP next-hop of an IPv4 or IPv6 route R is resolved in RTM and the longest matching route for the next-hop address is an IP route N that is rejected by the policy then route R is unresolved; if the route N is accepted by the policy then it becomes the resolving route for R.

  The default next-hop resolution policy (when the `no policy` command is configured) is to use the longest matching active route in RTM that is not a BGP route (unless `use-bgp-routes` is configured), an aggregate route or a subscriber management route.

- **Default**: `no policy`
- **Parameters**: `policy-name` — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the `config>router>policy-options` context.

**peer-tracking-policy**

- **Syntax**: `peer-tracking-policy policy-name`
  `no peer-tracking-policy`
- **Context**: `config>router>bgp`
  `config>service>vprn>bgp`
- **Description**: This command specifies the name of a policy statement to use with the BGP peer-tracking function on the BGP sessions where this is enabled. The policy controls which IP routes in RTM are eligible to indicate reachability of IPv4 and IPv6 BGP neighbor addresses. If the longest matching route in RTM for a BGP neighbor address is an IP route that is rejected by the policy, or it is a BGP route accepted by the policy, or if there is no matching route, the neighbor is considered unreachable and BGP tears down the peering session and holds it in the idle state until a valid route is once again available and accepted by the policy.
The default peer-tracking policy (when the no peer-tracking-policy command is configured) is to use the longest matching active route in RTM that is not an LDP shortcut route or an aggregate route.

**Default**

no peer-tracking-policy

**Parameters**

`policy-name` — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the `config>router>policy-options` context.

### use-bgp-routes

**Syntax**

`[no] use-bgp-routes`

**Context**

`config>router>bgp>next-hop-res`

**Description**

This command specifies whether to use BGP routes to resolve BGP nexthop for IPv4 and IPv6 families on this router instance.

**Default**

no use-bgp-routes

### outbound-route-filtering

**Syntax**

`[no] outbound-route-filtering`

**Context**

`config>router>bgp`

`config>router>bgp>group`

`config>router>bgp>group>neighbor`

**Description**

This command opens the configuration tree for sending or accepting BGP filter lists from peers (outbound route filtering).

**Default**

no outbound-route-filtering

### extended-community

**Syntax**

`[no] extended-community`

**Context**

`config>router>bgp`

`config>router>bgp>group`

`config>router>bgp>group>neighbor`

**Description**

The extended-community command opens the configuration tree for sending or accepting extended-community based BGP filters.

In order for the `no` version of the command to work, all sub-commands (`send-orf`, `accept-orf`) must be removed first.
Configuration Commands

**Default**
Community filtering is not enabled by default.

**accept-orf**

**Syntax**

```plaintext
[no] accept-orf
```

**Context**

```plaintext
config>router:bgp
cfg>router:bgp>group
config>router:bgp>group>neighbor
```

**Description**

This command instructs the router to negotiate the receive capability in the BGP ORF negotiation with a peer, and to accept filters that the peer wishes to send.

The **no** form of the command causes the router to remove the accept capability in the BGP ORF negotiation with a peer, and to clear any existing ORF filters that are currently in place.

**Default**
Accepting ORFs is not enabled by default.

**send-orf**

**Syntax**

```plaintext
send-orf [comm-id...(up to 32 max)]
no send-orf [comm-id]
```

**Context**

```plaintext
config>router:bgp
cfg>router:bgp>group
config>router:bgp>group>neighbor
```

**Description**

This command instructs the router to negotiate the send capability in the BGP outbound route filtering (ORF) negotiation with a peer.

This command also causes the router to send a community filter, prefix filter, or AS path filter configured as an inbound filter on the BGP session to its peer as an ORF Action ADD.

The **no** form of this command causes the router to remove the send capability in the BGP ORF negotiation with a peer.

The **no** form also causes the router to send an ORF remove action for a community filter, prefix filter, or AS path filter configured as an inbound filter on the BGP session to its peer.

If the `comm-id` parameter(s) are not exclusively route target communities then the router will extract appropriate route targets and use those. If, for some reason, the `comm-id` parameter(s) specified contain no route targets, then the router will not send an ORF.

**Default**

`no send-orf` — Sending ORF is not enabled by default.

**Parameters**

`comm-id` — Any community policy which consists exclusively of route target extended communities. If it is not specified, then the ORF policy is automatically generated from configured route target lists, accepted client route target ORFs and locally configured route targets.
neighbor

Syntax  [no] neighbor ip-address

Context  config>router>bgp>group

Description  This command creates a BGP peer/neighbor instance within the context of the BGP group.

This command can be issued repeatedly to create multiple peers and their associated configuration.

The no form of the command is used to remove the specified neighbor and the entire configuration
associated with the neighbor. The neighbor must be administratively shutdown before attempting to delete it. If the neighbor is not shutdown, the command will not result in any action except a warning message on the console indicating that neighbor is still administratively up.

Default  No neighbors are defined.

Parameters  ip-address — The IP address of the BGP peer router in dotted decimal notation.

Values  ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x:x:interface
x:x:x:x:d.d.d.d:interface
x: [0 — FFFF]H
d: [0 — 255]D
interface: 32 characters maximum, mandatory for link local addresses

next-hop-self

Syntax  [no] next-hop-self ([ipv4] [vpn-ipv4] [ipv6] [mcast-ipv4] [l2-vpn]) [multihoming primary-anycast secondary-anycast]

Context  config>router>bgp>group
config>router>bgp>group>neighbor

Description  This command configures the group or neighbor to always set the NEXTHOP path attribute to its own physical interface when advertising to a peer.

This is primarily used to avoid third-party route advertisements when connected to a multi-access network.

In addition, this command can be used to enable and configure the multi-homing resiliency mechanism replacing the usual BGP nexthop with a configured anycast address.

The no form of the command used at the group level allows third-party route advertisements in a multi-access network.

The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default  no next-hop-self — Third-party route advertisements are allowed.

vpn-ipv4 — Exchanges IPv4 VPN routing information.
ipv6 — Exchanges IPv6 routing information.
Configuration Commands

**mcast-ipv4** — Exchanges multicast IPv4 routing information.

**l2-vpn** — Exchanges Layer 2 VPN information.

**primary-anycast** — Specifies the anycast address that the local node will use to replace the BGP nexthop address in route updates associated peers.

**secondary-address** — Specifies the anycast address that the local node is to track.

### passive

**Syntax**

```plaintext
[no] passive
```

**Context**

```plaintext
config>router:bgp>group
cfg>router:bgp>group>neighbor
```

**Description**

Enables/disables passive mode for the BGP group or neighbor.

When in passive mode, BGP will not attempt to actively connect to the configured BGP peers but responds only when it receives a connect open request from the peer.

The `no` form of the command used at the group level disables passive mode where BGP actively attempts to connect to its peers.

The `no` form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**

`no passive` — BGP will actively try to connect to all the configured peers.

### peer-as

**Syntax**

```plaintext
peer-as as-number
```

**Context**

```plaintext
config>router:bgp>group
cfg>router:bgp>group>neighbor
```

**Description**

This command configures the autonomous system number for the remote peer. The peer AS number must be configured for each configured peer.

For EBGP peers, the peer AS number configured must be different from the autonomous system number configured for this router under the global level since the peer will be in a different autonomous system than this router.

For IBGP peers, the peer AS number must be the same as the autonomous system number of this router configured under the global level.

This is required command for each configured peer. This may be configured under the group level for all neighbors in a particular group.

**Default**

No AS numbers are defined.

**Parameters**

`as-number` — The autonomous system number expressed as a decimal integer.

**Values**

1 — 4294967295
path-mtu-discovery

Syntax  
[no] path-mtu-discovery

Context  
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description  
This command enables path MTU discovery for the associated TCP connections. In doing so, the MTU for the associated TCP session will be initially set to the egress interface MTU. The DF bit will also be set so that if a router along the path of the TCP connection cannot handle a packet of a particular size without fragmenting, it will send back an ICMP message to set the path MTU for the given session to a lower value that can be forwarded without fragmenting.

The no form of the command disables path MTU discovery.

Default  
no path-mtu-discovery

preference

Syntax  
[no] preference preference

Context  
config>router:bgp
config>router:bgp>group
config>router:bgp>group>neighbor

Description  
This command configures the route preference for routes learned from the configured peer(s).

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The lower the preference the higher the chance of the route being the active route. The router assigns BGP routes highest default preference compared to routes that are direct, static or learned via MPLS or OSPF.

The no form of the command used at the global level reverts to default value.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default  
170

Parameters  
preference — The route preference expressed as a decimal integer.

Values  
1 — 255
Configuration Commands

purge-timer

Syntax  

```
purge-timer minutes
no purge-timer
```

Context  

```
config>router>bgp
```

Description  

When the system sends a VPN-IP Route-Refresh to a peer it sets all the VPN-IP routes received from that peer (in the RIB-IN) to stale and starts the purge-timer. If the routes are not updated (refreshed) before the purge-timer has expired then the routes are removed.

The BGP purge timer configures the time before stale routes are purged.

The `no` form of the command reverts to the default.

Default  

10

Parameters  

`minutes` — Specifies the maximum time before stale routes are purged.

Values  

```
1 — 60
```

rapid-update

Syntax  

```
rapid-update {{l2-vpn} [mvpn-ipv4] [mdt-safi] [evpn]}
no rapid-update {{l2-vpn} [mvpn-ipv4] [mdt-safi] [evpn]}
```

Context  

```
config>router>bgp
```

Description  

This command enables and disables BGP rapid update for specified address-families. When no parameter is given for the no rapid-update statement, rapid update is disabled for all address-families.

Default  

`no rapid-update`

rapid-withdrawal

Syntax  

```
[no] rapid-withdrawal
```

Context  

```
config>router>bgp
```

Description  

This command disables the delay (Minimum Route Advertisement) on sending BGP withdrawals. Normal route withdrawals may be delayed up to the minimum route advertisement to allow for efficient packing of BGP updates.

The `no` form of the command removes this command from the configuration and returns withdrawal processing to the normal behavior.

Default  

`no rapid-withdrawal`
prefix-limit

**Syntax**  
`prefix-limit  limit [log-only] [threshold percent] [idle-timeout {minutes | forever}]`  
  
`no prefix-limit`

**Context**  
`config>router:bgp>group`  
`config>router:bgp>group>neighbor`

**Description**  
This command configures the maximum number of routes BGP can learn from a peer.

When the number of routes reaches 90% of this limit, an SNMP trap is sent. When the limit is exceeded, the BGP peering is dropped and disabled.

The idle-timeout option allows the administrator to control how long the session is held in the idle state after it is taken down as a result of the prefix-limit being reached. At the end of this duration of time the system automatically attempts to re-establish the session. One possible value for the idle-timeout is forever, which means the session is never re-established automatically and this corresponds to the default behavior when the idle-timeout option is not configured.

The `no` form of the command removes the `prefix-limit`.

**Default**  
forever

**Parameters**  
  
*log-only* — Enables the warning message to be sent at the specified threshold percentage, and also when the limit is exceeded. However, the BGP peering is not dropped.

*percent* — The threshold value (as a percentage) that triggers a warning message to be sent.

*limit* — The number of routes that can be learned from a peer expressed as a decimal integer.

**Values**  
*limit*  
1 — 4294967295

*minutes* — Specifies duration in minutes before re-establishing a session.

**Values**  
*minutes*  
1 — 1024

*forever* — Specifies that the session is reestablished only after `clear router bgp` command is executed.

remove-private

**Syntax**  
`remove-private [limited] [skip-peer-as]`  
  
`no remove-private`

**Context**  
`config>router:bgp`  
`config>router:bgp>group`  
`config>router:bgp>group>neighbor`

**Description**  
This command allows private AS numbers to be removed from the AS path before advertising them to BGP peers.

When the `remove-private` parameter is set at the global level, it applies to all peers regardless of group or neighbor configuration. When the parameter is set at the group level, it applies to all peers in the group regardless of the neighbor configuration.
The router software recognizes the set of AS numbers that are defined by IANA as private. These are AS numbers in the range 64512 through 65535, inclusive.

The `no` form of the command used at the global level reverts to default value. The `no` form of the command used at the group level reverts to the value defined at the global level. The `no` form of the command used at the neighbor level reverts to the value defined at the group level.

**Parameters**

- **limited** — This optional keyword removes private ASNs up to the first public ASN encountered. It then stops removing private ASNs.
- **skip-peer-as** — This optional keyword causes this command to not remove a private ASN from the AS-Path if that ASN is the same as the BGP peer AS number.

---

### router-id

**Syntax**

```
router-id ip-address
no router-id
```

**Context**

```
config>router>bgp
```

**Description**

This command specifies the router ID to be used with this BGP instance.

Changing the BGP router ID on an active BGP instance causes the BGP instance to restart with the new router ID. The router ID must be set to a valid host address.

It is possible to configure an SR OS node to operate with an IPv6 only BOF and no IPv4 system interface address. When configured in this manner, the operator must explicitly define IPv4 router IDs for protocols such as OSPF and BGP as there is no mechanism to derive the router ID from an IPv6 system interface address.

**Default**

No router-id is configured for BGP by default. The system interface IP address is used.

**Parameters**

- **ip-address** — The router ID expressed in dotted decimal notation. Allowed value is a valid routable IP address on the router, either an interface or system IP address. It is highly recommended that this address be the system IP address.

---

### split-horizon

**Syntax**

```
[no] split-horizon
```

**Context**

```
config>router>bgp
config>router>bgp>group
config>router>bgp>group>neighbor
```

**Description**

This command enables the use of split-horizon. Split-horizon prevents routes from being reflected back to a peer that sends the best route. It applies to routes of all address families and to any type of sending peer; confed-EBGP, EBG and IBGP.

The configuration default is `no split-horizon`, meaning that no effort is taken to prevent a best route from being reflected back to the sending peer.
transport-tunnel

Syntax  
transport-tunnel ldp | rsvp-te | mpls

Context  
config>router:bgp

Description  
This command selects the transport LSP option to provide model B or C connectivity. The no form of the command defaults to LDP as transport LSP method for model B or C connectivity.

Default  
transport-tunnel ldp

Parameters  
ldp — Allows LDP-based LSPs to be used as transport from the ASBR to local PE routers.

rsvp-te — Allows RSVP-TE based LSPs to be used as transport from the ASBR to local PE routers.

mpls — Specifies that both LDP and RSVP-TE can be used to resolve the BGP next-hop for VPRN routes in an associated VPRN instance.

ttl-security

Syntax  
ttl-security min-ttl-value

no ttl-security

Context  
config>router:bgp>group

config>router:bgp>group>neighbor

Description  
This command configures TTL security parameters for incoming packets. When the feature is enabled, BGP/LDP will accept incoming IP packets from a peer only if the TTL value in the packet is greater than or equal to the minimum TTL value configured for that peer. The no form of the command disables TTL security.

Parameters  
min-ttl-value — Specify the minimum TTL value for an incoming packet.

Values  
1 — 255

Default  
1

type

Syntax  
[no] type {internal | external}

Context  
config>router:bgp>group

config>router:bgp>group>neighbor

Description  
This command designates the BGP peer as type internal or external.
The type of **internal** indicates the peer is an IBGP peer while the type of **external** indicates that the peer is an EBGP peer.

By default, the router derives the type of neighbor based on the local AS specified. If the local AS specified is the same as the AS of the router, the peer is considered **internal**. If the local AS is different, then the peer is considered **external**.

The **no** form of the command used at the group level reverts to the default value.
The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

**Default**

- **no type** — Type of neighbor is derived on the local AS specified.

**Parameters**

- **internal** — Configures the peer as internal.
- **external** — Configures the peer as external.
Other BGP-Related Commands

autonomous-system

Syntax    autonomous-system autonomous-system
           no autonomous-system

Context    config>router

Description This command configures the autonomous system (AS) number for the router. A router can only belong to one AS. An AS number is a globally unique number with an AS. This number is used to exchange exterior routing information with neighboring ASs and as an identifier of the AS itself.

If the AS number is changed on a router with an active BGP instance, the new AS number is not used until the BGP instance is restarted either by administratively disabling/enabling (shutdown/no shutdown) the BGP instance or rebooting the system with the new configuration.

Default   No autonomous system number is defined.

Parameters as-number — The autonomous system number expressed as a decimal integer.

Values    1 — 4294967295

mh-primary-interface

Syntax    mh-primary-interface interface-name
           no mh-primary-interface

Context    config>router

Description This command creates a loopback interface for the use in multihoming resiliency. Once active this interface can be used to advertise reachability information to the rest of the network using the primary address which is backed up by the secondary.

This reachability for this address is advertised via IGP's and LDP protocols to allow the resolution of BGP routes advertised with this address.

The no form of the command disables this setting.

Default   no mh-primary-interface
Other BGP-Related Commands

mh-secondary-interface

**Syntax**

```
mh-secondary-interface interface-name
no mh-secondary-interface
```

**Context**

```
config>router
```

**Description**

This command creates a loopback interface for the use in multihoming resiliency. This address is considered the secondary multihoming address and is only used to resolve routes advertised by the primary router in the event that router becomes unavailable. For this purpose, the Reachability for this address is advertised via IGP and LDP protocols to allow the resolution of BGP routes advertised with this address by the primary multihoming router.

The no form of the command disables this setting.

**Default**

```
no mh-secondary-interface
```

address

**Syntax**

```
address {ip-address/mask | ip-address netmask}
no address
```

**Context**

```
config>router>mh-primary-interface
config>router>mh-secondary-interface
```

**Description**

This command assigns an IP address, IP subnet, and broadcast address format to an IP interface. Only one IP address can be associated with an IP interface.

An IP address must be assigned to each IP interface for the interface to be active. An IP address and a mask combine to create a local IP prefix. The defined IP prefix must be unique within the context of the routing instance. It cannot overlap with other existing IP prefixes defined as local subnets on other IP interfaces in the same routing context within the router.

The local subnet that the address command defines must not be part of the services address space within the routing context by use of the config router service-prefix command. Once a portion of the address space is allocated as a service prefix, that portion is not available to IP interfaces for network core connectivity.

The IP address for the interface can be entered in either CIDR (Classless Inter-Domain Routing) or traditional dotted decimal notation. Show commands display CIDR notation and are stored in configuration files.

By default, no IP address or subnet association exists on an IP interface until it is explicitly created.

The no form of the command removes the IP address assignment from the IP interface. Interface specific configurations for IGP protocols like OSPF are also removed. The no form of this command can only be performed when the IP interface is administratively shut down. Shutting down the IP interface will operationally stop any protocol interfaces or MPLS LSPs that explicitly reference that IP address. When a new IP address is defined, the IP interface can be administratively enabled (no shutdown), which reinitializes the protocol interfaces and MPLS LSPs associated with that IP interface.

If a new address is entered while another address is still active, the new address will be rejected.

**Default**

```
no address
```
Parameters

ip-address — The IP address of the IP interface. The ip-addr portion of the address command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation.

Values

1.0.0.0 — 223.255.255.255

/ — The forward slash is a parameter delimiter that separates the ip-addr portion of the IP address from the mask that defines the scope of the local subnet. No spaces are allowed between the ipaddr, the ‘/’ and the mask-length parameter. If a forward slash does not immediately follow the ipaddr, a dotted decimal mask must follow the prefix.

mask-length — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the ip-addr from the masklength parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address. Allowed values are integers in the range 1 — 32. Note that a mask length of 32 is reserved for system IP addresses.

Values

1 — 3

mask — The subnet mask in dotted decimal notation. When the IP prefix is not specified in CIDR notation, a space separates the ip-addr from a traditional dotted decimal mask. The mask parameter indicates the complete mask that will be used in a logical ‘AND’ function to derive the local subnet of the IP address. Note that a mask of 255.255.255.255 is reserved for system IP addresses.

Values

128.0.0.0 — 255.255.255.255

net-mask — The subnet mask in dotted decimal notation.

Values

0.0.0.0 — 223.255.255.255 (network bits all 1 and host bits all 0)

description

Syntax
description description-string
no description

Context
config>router>mh-primary-interface
config>router>mh-secondary-interface

Description
This command creates a text description stored in the configuration file for a configuration context. The no form of the command removes the description string from the context.

Default
no description

Parameters
description-string — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Other BGP-Related Commands

shutdown

Syntax

shutdown
no shutdown

Context

config>router>mh-primary-interface
config>router>mh-secondary-interface

Description

The shutdown command administratively disables an entity. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Unlike other commands and parameters where the default state is not indicated in the configuration file, shutdown and no shutdown are always indicated in system generated configuration files.

The no form of the command puts an entity into the administratively enabled state.

Default

no shutdown

hold-time

Syntax

hold-time holdover-time
no hold-time

Context

config>router>mh-secondary-interface

Description

The optional hold-time parameter is only applicable for the secondary context and specifies how long label information learned about the secondary anycast address should be kept after that peer is declared down. This timer should be set to a value large enough for the remainder of the network to detect the failure and complete the reconvergence process.

The no form of the command resets the hold-time back to the default value.

Default

no hold-time

Parameters

holdover-time — (seconds) specifies the number of seconds the router should hold label information learned from the alternate router in it’s secondary label table. This is to allow the reset of the network to reconverge after a router failure before the anycast based label assignments are flushed from the forwarding plane.

Values

0—65535

Default

90
router-id

Syntax  

```
router-id ip-address
no router-id
```

Context  
```
config>router
```

Description  
This command configures the router ID for the router instance.

The router ID is used by both OSPF and BGP routing protocols in this instance of the routing table manager. IS-IS uses the router ID value as its system ID.

When configuring a new router ID, protocols are not automatically restarted with the new router ID. The next time a protocol is initialized, the new router ID is used. This can result in an interim period of time when different protocols use different router IDs.

To force the new router ID to be used, issue the `shutdown` and `no shutdown` commands for each protocol that uses the router ID, or restart the entire router.

The `no` form of the command reverts to the default value.

Default  
The system uses the system interface address (which is also the loopback address).
If a system interface address is not configured, use the last 32 bits of the chassis MAC address.

Parameters  
```
router-id — The 32 bit router ID expressed in dotted decimal notation or as a decimal value.
```
Show Commands

router

Syntax(router-instance]
Context show
Description Displays router instance information.
Parameters router-instance — Specify either the router-name or service-id
Values
- router-name: Base, management
- service-id: 1 — 2147483647
Default Base

bgp

Syntax bgp
Context show>router
Description Enables the context to display BGP related information.

auth-keychain

Syntax auth-keychain [keychain]
Context show>router>bgp
show>router>bgp>group
show>router>bgp>group>neighbor
Description This command displays BGP sessions using particular authentication key-chain.
Parameters keychain — Specifies an existing keychain name.

Sample Output

*A:ALA-48# show router 2 bgp auth-keychain
+-------------------------------------------------------------------------------------------------------------+
| Peer address             | Group | Keychain name              |
+-------------------------+-------+---------------------------|
| 10.20.1.3               | 1     | eta_keychain1             |
| 30.1.0.2                | 1     | eta_keychain1             |
*A:ALA-48#  
*A:ALA-48>config>router>bgp# show router bgp group "To_AS_10000"

BGP Group : To_AS_10000

-------------------------------------------------------------------------------
Group Type	No Type	State	Up
Peer AS	10000	Local AS	200
Local Address	n/a	Loop Detect	Ignore
Import Policy	None Specified / Inherited	Export Policy	ospf3
Hold Time	90	Keep Alive	30
Cluster Id	0.0.0.100	Client Reflect	Enabled
TTL Security	Disabled	Min TTL Value	n/a
Graceful Restart	Enabled	Stale Routes Time	360
Auth key chain	testname		

List of Peers
- 10.0.0.8 :
  - To_Router B - EBGP Peer
Total Peers : 1  Established : 0

-------------------------------------------------------------------------------
| Peer Groups : 1 |

*A:ALA-48>config>router>bgp#  
*A:ALA-48>config>router>bgp# show router bgp neighbor 10.0.0.8

BGP Neighbor

-------------------------------------------------------------------------------
Peer AS	10000	Peer Port	0
Peer Address	10.0.0.8		
Local AS	200	Local Port	0
Local Address	0.0.0.0		
Peer Type	External		
State	Active	Last State	Idle
Last Event	stop	Last Error	Cease
Last Error			
Local Family	IPv4		
Remote Family	Unused		
Hold Time	90	Keep Alive	30
Active Hold Time	0	Active Keep Alive	0
Cluster Id	0.0.0.100		
Preference	99	Num of Flaps	0
Recd. Paths	0	IPv4 Active Prefixes	0
IPv4 Recd. Prefixes	0	VPN-IPv4 Suppr. Pfxs	0
IPv4 Suppressed Pfxs	0	VPN-IPv4 Active Pfxs	0
VPN-IPv4 Recd. Pfxs	0	Mc IPv4 Active Pfxs	0
Mc IPv4 Recd. Pfxs	0	IPv6 Suppressed Pfxs	0
Mc IPv4 Suppr. Pfxs	0	IPv6 Active Prefixes	0
IPv6 Recd. Prefixes	0	Output Queue	0
i/p Messages : 0  o/p Messages : 0
i/p Octets : 0  o/p Octets : 0
i/p Updates : 0  o/p Updates : 0
TTL Security : Disabled  Min TTL Value : n/a
Graceful Restart : Enabled  Stale Routes Time : 360
Advertise Inactive : Disabled  Peer Tracking : Disabled
Advertise Label : None
Auth key chain : testname
Local Capability : RouteRefresh MP-BGP
Remote Capability :
Import Policy : None Specified / Inherited
Export Policy : ospf3

Neighbors : 1

*A:ALA-48>config>router>bgp#

*A:ALA-48>config>router>bgp# show router bgp auth-keychain testname

Sessions using key chain: keychain

<table>
<thead>
<tr>
<th>Peer address</th>
<th>Group</th>
<th>Keychain name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.8</td>
<td>To_AS_10000</td>
<td>testname</td>
</tr>
</tbody>
</table>

*A:ALA-48>config>router>bgp#

**damping**

**Syntax**

damping [damp-type] [detail]
damping [ip-prefix | prefix-length] [detail]

**Context**

show>router>bgp

**Description**

This command displays BGP routes which have been dampened due to route flapping. This command can be entered with or without a route parameter.

When the keyword **detail** is included, more detailed information displays.

When only the command is entered (without any parameters included except **detail**), then all dampened routes are listed.

When a parameter is specified, then the matching route or routes are listed.

When a **decayed**, **history**, or **suppressed** keyword is specified, only those types of dampened routes are listed.

**Parameters**

- **ip-prefix** — Displays damping information for the specified IP prefix and length.
  
  **Values**
  
<table>
<thead>
<tr>
<th>ipv4-prefix</th>
<th>a.b.c.d (host bits must be 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-prefix-length</td>
<td>0 — 32</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>xx:xxxx:xxxx:x (eight 16-bit pieces)</td>
</tr>
<tr>
<td></td>
<td>xx:xxxx:xx:d.d.d</td>
</tr>
<tr>
<td></td>
<td>x: [0 — FFFF]H</td>
</tr>
</tbody>
</table>
Show Commands

\[ d: [0 — 255]D \]
\[ ipv6-prefix-length: 0 — 128 \]

*damp-type* — Specifies the type of damping to display.

**Values**
- **decayed** — Displays damping entries that are decayed but are not suppressed.
- **history** — Displays damping entries that are withdrawn but have history.
- **suppressed** — Displays damping entries suppressed because of route damping.

**detail** — Displays detailed information.

**Output**

**Damping Output Fields** — The following table describes BGP damping output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>The local BGP router ID</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured or inherited local AS for the specified peer group. If not configured, then it is the same value as the AS.</td>
</tr>
<tr>
<td>Network</td>
<td>Route IP prefix and mask length for the route.</td>
</tr>
<tr>
<td>Flag(s)</td>
<td>Legend: Status codes: u- used, s-suppressed, h-history, d-decayed, *-valid. If a * is not present, then the status is invalid. Origin codes: i-IGP, e-EGP, ?-incomplete, &gt;-best</td>
</tr>
<tr>
<td>From</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>Reuse time</td>
<td>The time when a suppressed route can be used again.</td>
</tr>
<tr>
<td>From</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>Reuse time</td>
<td>The time when a suppressed route can be used again.</td>
</tr>
<tr>
<td>AS Path</td>
<td>The BGP AS path for the route.</td>
</tr>
<tr>
<td>Peer</td>
<td>The router ID of the advertising router.</td>
</tr>
<tr>
<td>NextHop</td>
<td>BGP nexthop for the route.</td>
</tr>
<tr>
<td>Peer AS</td>
<td>The autonomous system number of the advertising router.</td>
</tr>
<tr>
<td>Peer Router-Id</td>
<td>The router ID of the advertising router.</td>
</tr>
<tr>
<td>Local Pref</td>
<td>BGP local preference path attribute for the route.</td>
</tr>
<tr>
<td>Age</td>
<td>The length of time in hour/minute/second (HH:MM:SS) format.</td>
</tr>
<tr>
<td>Last update</td>
<td>The time when BGP was updated last in day/hour/minute (DD:HH:MM) format.</td>
</tr>
<tr>
<td>FOM Present</td>
<td>The current Figure of Merit (FOM) value.</td>
</tr>
<tr>
<td>Number of Flaps</td>
<td>The number of route flaps in the neighbor connection.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-12# show router bgp damping

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>From</th>
<th>Reuse</th>
<th>AS-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>ud*i</td>
<td>12.149.7.0/24</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 1239 22406 4637 17447</td>
</tr>
<tr>
<td></td>
<td>61.8.140.0/24</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 4637 17447</td>
</tr>
<tr>
<td>ud*i</td>
<td>61.8.141.0/24</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 4637 17447</td>
</tr>
<tr>
<td>ud*i</td>
<td>61.9.0.0/18</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 3561 9658 6163</td>
</tr>
<tr>
<td></td>
<td>62.213.184.0/23</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 6774 6774 9154</td>
</tr>
</tbody>
</table>

Legend:
- Status codes: u - used, s - suppressed, h - history, d - decayed, * - valid
- Origin codes: i - IGP, e - EGP, ? - incomplete, - best

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>From</th>
<th>Reuse</th>
<th>AS-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>ud*i</td>
<td>12.149.7.0/24</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 1239 22406 4637 17447</td>
</tr>
<tr>
<td></td>
<td>61.8.140.0/24</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 4637 17447</td>
</tr>
<tr>
<td>ud*i</td>
<td>61.8.141.0/24</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 4637 17447</td>
</tr>
<tr>
<td>ud*i</td>
<td>61.9.0.0/18</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 3561 9658 6163</td>
</tr>
<tr>
<td></td>
<td>62.213.184.0/23</td>
<td>10.0.28.1</td>
<td>00h00m00s</td>
<td>60203 65001 19855 3356 6774 6774 9154</td>
</tr>
</tbody>
</table>

A:ALA-12#
A:ALA-12# show router bgp damping detail

BGP Router ID : 10.0.0.14         AS : 65206   Local AS : 65206

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, - best

BGP Damped Routes

Network : 12.149.7.0/24
Network : 12.149.7.0/24  Peer : 10.0.28.1
NextHop  : 10.0.28.1  Reuse time : 00h00m00s
Peer AS  : 60203  Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h22m09s  Last update : 02d00h58m
FOM Present : 738  FOM Last upd. : 2039
Number of Flaps : 2  Flags : ud*i
Path : 60203 65001 19855 3356 1239 22406
Applied Policy : default-damping-profile

Network : 15.142.48.0/20
Network : 15.142.48.0/20  Peer : 10.0.28.1
NextHop  : 10.0.28.1  Reuse time : 00h00m00s
Peer AS  : 60203  Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h00m38s  Last update : 02d01h20m
FOM Present : 2011  FOM Last upd. : 2023
Number of Flaps : 2  Flags : ud*i
Path : 60203 65001 19855 3356 3561 5551 1889
Applied Policy : default-damping-profile

Network : 15.200.128.0/19
Network : 15.200.128.0/19  Peer : 10.0.28.1
NextHop  : 10.0.28.1  Reuse time : 00h00m00s
Peer AS  : 60203  Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h00m38s  Last update : 02d01h20m
FOM Present : 2011  FOM Last upd. : 2023
Number of Flaps : 2  Flags : ud*i
Path : 60203 65001 19855 1299 702 1889
Applied Policy : default-damping-profile

Network : 15.203.192.0/18
Network : 15.203.192.0/18  Peer : 10.0.28.1
NextHop  : 10.0.28.1  Reuse time : 00h00m00s
Peer AS  : 60203  Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h00m07s  Last update : 02d01h20m
FOM Present : 1018  FOM Last upd. : 1024
Number of Flaps : 1  Flags : ud*i
Path : 60203 65001 19855 1299 702 1889
Applied Policy : default-damping-profile
A:ALA-12# show router bgp damping 15.203.192.0/18 detail

BGP Router ID : 10.0.0.14      AS : 65206   Local AS : 65206

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, - best

BGP Damped Routes 15.203.192.0/18

Network : 15.203.192.0/18

Network          : 15.203.192.0/18      Peer             : 10.0.28.1
NextHop          : 10.0.28.1            Reuse time       : 00h00m00s
Peer AS          : 60203                Peer Router-Id   : 32.32.27.203
Local Pref       : none
Age              : 00h00m42s            Last update      : 02d01h20m
FOM Present      : 2003                 FOM Last upd.    : 2025
Number of Flaps  : 2                    Flags            : ud*i
Path             : 60203 65001 19855 3356  702   1889
Applied Policy   : default-damping-profile

Paths : 1

A:ALA-12#

A:ALA-12# show router bgp damping suppressed detail

BGP Router ID : 10.0.0.14      AS : 65206   Local AS : 65206

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, - best

BGP Damped Routes (Suppressed)

Network : 15.142.48.0/20

Network          : 15.142.48.0/20      Peer             : 10.0.28.1
NextHop          : 10.0.28.1            Reuse time       : 00h29m22s
Peer AS          : 60203                Peer Router-Id   : 32.32.27.203
Local Pref       : none
Age              : 00h01m28s            Last update      : 02d01h20m
FOM Present      : 2936                 FOM Last upd.    : 3001
Number of Flaps  : 3                    Flags            : si
Path             : 60203 65001 19855 3356  702   1889
Applied Policy   : default-damping-profile

Network : 15.200.128.0/19

Network          : 15.200.128.0/19      Peer             : 10.0.28.1
NextHop          : 10.0.28.1            Reuse time       : 00h29m22s
Peer AS          : 60203                Peer Router-Id   : 32.32.27.203
Local Pref       : none
### Show Commands

**Age**: 00h01m28s  
**Last update**: 02d01h20m  
**FOM Present**: 2936  
**FOM Last upd.**: 3001  
**Number of Flaps**: 3  
**Flags**: si  
**Path**: 60203 65001 19855 3356 702 1889  
**Applied Policy**: default-damping-profile

---

**Network**: 15.203.240.0/20

---

**Network**: 15.203.240.0/20  
**Peer**: 10.0.28.1  
**NextHop**: 10.0.28.1  
**Reuse time**: 00h29m22s  
**Peer AS**: 60203  
**Peer Router-Id**: 32.32.27.203  
**Local Pref**: none  
**Age**: 00h01m28s  
**Last update**: 02d01h20m  
**FOM Present**: 2936  
**FOM Last upd.**: 3001  
**Number of Flaps**: 3  
**Flags**: si  
**Path**: 60203 65001 19855 3356 702 1889  
**Applied Policy**: default-damping-profile

---

**Network**: 15.206.0.0/17

---

**Network**: 15.206.0.0/17  
**Peer**: 10.0.28.1  
**NextHop**: 10.0.28.1  
**Reuse time**: 00h29m22s  
**Peer AS**: 60203  
**Peer Router-Id**: 32.32.27.203  
**Local Pref**: none  
**Age**: 00h01m28s  
**Last update**: 02d01h20m  
**FOM Present**: 2936  
**FOM Last upd.**: 3001  
**Number of Flaps**: 3  
**Flags**: si  
**Path**: 60203 65001 19855 3356 702 1889  
**Applied Policy**: default-damping-profile

---

A:ALA-12#

---

### Syntax

**group**

#### Syntax

[group [name] [detail]]

#### Context

show>router>bgp

#### Description

This command displays group information for a BGP peer group. This command can be entered with or without parameters.

When this command is entered without a group name, information about all peer groups displays.

When the command is issued with a specific group name, information only pertaining to that specific peer group displays.

The ‘State’ field displays the BGP group’s operational state. Valid states are:

- **Up** — BGP global process is configured and running.
- **Down** — BGP global process is administratively shutdown and not running.
- **Disabled** — BGP global process is operationally disabled. The process must be restarted by the operator.

#### Parameters

- **name** — Displays information for the BGP group specified.
- **detail** — Displays detailed information.
## Standard and Detailed Group Output

The following table describes the standard and detailed command output fields for a BGP group.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Displays the BGP group name.</td>
</tr>
<tr>
<td>Group Type</td>
<td><strong>No Type</strong> — Peer type not configured.</td>
</tr>
<tr>
<td></td>
<td><strong>External</strong> — Peer type configured as external BGP peers.</td>
</tr>
<tr>
<td></td>
<td><strong>Internal</strong> — Peer type configured as internal BGP peers.</td>
</tr>
<tr>
<td>State</td>
<td><strong>Disabled</strong> — The BGP peer group has been operationally disabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Down</strong> — The BGP peer group is operationally inactive.</td>
</tr>
<tr>
<td></td>
<td><strong>Up</strong> — The BGP peer group is operationally active.</td>
</tr>
<tr>
<td>Peer AS</td>
<td>The configured or inherited peer AS for the specified peer group.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured or inherited local AS for the specified peer group.</td>
</tr>
<tr>
<td>Local Address</td>
<td>The configured or inherited local address for originating peering for the specified peer group.</td>
</tr>
<tr>
<td>Loop Detect</td>
<td>The configured or inherited loop detect setting for the specified peer group.</td>
</tr>
<tr>
<td>Connect Retry</td>
<td>The configured or inherited connect retry timer value.</td>
</tr>
<tr>
<td>Authentication</td>
<td><strong>None</strong> — No authentication is configured.</td>
</tr>
<tr>
<td></td>
<td><strong>MD5</strong> — MD5 authentication is configured.</td>
</tr>
<tr>
<td>Bfd</td>
<td><strong>Yes</strong> — BFD is enabled.</td>
</tr>
<tr>
<td></td>
<td><strong>No</strong> — BFD is disabled.</td>
</tr>
<tr>
<td>Local Pref</td>
<td>The configured or inherited local preference value.</td>
</tr>
<tr>
<td>MED Out</td>
<td>The configured or inherited MED value assigned to advertised routes without a MED attribute.</td>
</tr>
<tr>
<td>Min Route Advt.</td>
<td>The minimum amount of time that must pass between route updates for the same IP prefix.</td>
</tr>
<tr>
<td>Min AS Originate</td>
<td>The minimum amount of time that must pass between updates for a route originated by the local router.</td>
</tr>
<tr>
<td>Multihop</td>
<td>The maximum number of router hops a BGP connection can traverse.</td>
</tr>
<tr>
<td>Prefix Limit</td>
<td><strong>No Limit</strong> — No route limit assigned to the BGP peer group.</td>
</tr>
<tr>
<td></td>
<td><strong>1</strong> — 4294967295 — The maximum number of routes BGP can learn from a peer.</td>
</tr>
</tbody>
</table>
### Show Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
</table>
| Passive                   | Disabled — BGP attempts to establish a BGP connection with neighbor in the specified peer group.  
|                           | Enabled — BGP will not actively attempt to establish a BGP connection with neighbor in the specified peer group. |
| Next Hop Self             | Disabled — BGP is not configured to send only its own IP address as the BGP nexthop in route updates to neighbors in the peer group.  
|                           | Enabled — BGP sends only its own IP address as the BGP nexthop in route updates to neighbors in the specified peer group. |
| Aggregator ID 0           | Disabled — BGP is not configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates sent to the neighbor in the peer group.  
|                           | Enabled — BGP is configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates sent to the neighbor in the peer group. |
| Remove Private            | Disabled — BGP will not remove all private AS numbers from the AS path attribute in updates sent to the neighbor in the peer group.  
|                           | Enabled — BGP removes all private AS numbers from the AS path attribute in updates sent to the neighbor in the peer group. |
| Damping                   | Disabled — The peer group is configured not to dampen route flaps.  
|                           | Enabled — The peer group is configured to dampen route flaps. |
| Export Policy             | The configured export policies for the peer group. |
| Import Policy             | The configured import policies for the peer group. |
| Hold Time                 | The configured hold time setting. |
| Keep Alive                | The configured keepalive setting. |
| Cluster Id                | The configured route reflector cluster ID.  
|                           | None — No cluster ID has been configured |
| Client Reflect            | Disabled — The BGP route reflector will not reflect routes to this neighbor.  
|                           | Enabled — The BGP route reflector is configured to reflect routes to this neighbor. |
| NLRI                      | The type of NLRI information that the specified peer group can accept.  
|                           | Unicast — IPv4 unicast routing information can be carried. |
| Preference                | The configured route preference value for the peer group. |
Sample Output

A:ALA-12# show router bgp group

BGP Groups

Group : To_AS_40000

Description : Not Available
Group Type : No Type
Peer AS : 40000
Local Address : n/a
Export Policy : direct2bgp
Hold Time : 90
Cluster Id : None
NLRI : Unicast

List of Peers
- 10.0.0.1 : To_Jukebox
- 10.0.0.12 : Not Available
- 10.0.0.13 : Not Available
- 10.0.0.14 : To_SR1
- 10.0.0.15 : To_H-215

Total Peers : 5 Established : 2

Sample Detailed Output

A:ALA-12# show router bgp group detail

BGP Groups (detail)

Group : To_AS_40000

Description : Not Available
Group Type : No Type
Peer AS : 40000
Local Address : n/a
Export Policy : direct2bgp
Hold Time : 90
Cluster Id : None
NLRI : Unicast

List of Peers
- 10.0.0.1 : To_Jukebox
- 10.0.0.12 : Not Available
- 10.0.0.13 : Not Available
- 10.0.0.14 : To_SR1
- 10.0.0.15 : To_H-215

Total Peers : 5 Established : 2
Hold Time        : 90                   Keep Alive       : 30
Cluster Id       : None                 Client Reflect   : Enabled
NLRI             : Unicast              Preference       : 170

List of Peers
  - 10.0.0.1       : To_Jukebox
  - 10.0.0.12      : Not Available
  - 10.0.0.13      : Not Available
  - 10.0.0.14      : To_SR1
  - 10.0.0.15      : To_H-215

Total Peers      : 5                    Established      : 2

===============================================================================
A:ALA-12#

A:SetupCLI>show>router>bgp# group

===============================================================================
BGP Group
-------------------------------------------------------------------------------
Group            : bgp_group_1 34567890123456789012
-------------------------------------------------------------------------------
Description      : Testing the length of the group value for the DESCRIPTION parameter of BGP
Group Type       : No Type              State            : Up
Peer AS          : n/a                  Local AS         : 100
Local Address    : n/a                  Loop Detect      : Ignore
Import Policy    : test i1
                   : test i2
                   : test i3
                   : test i4
                   : test i5 890123456789012345678901
Export Policy    : test e1
                   : test e2
                   : test e3
                   : test e4
                   : test e5 890123456789012345678901
Hold Time        : 120                  Keep Alive       : 30
Cluster Id       : None                 Client Reflect   : Disabled
NLRI             : Unicast              Preference       : 101
TTL Security     : Disabled             Min TTL Value    : n/a
Graceful Restart : Disabled             Stale Routes Time: n/a
Auth key chain   : n/a                  Bfd Enabled    : Yes

List of Peers
  - 3.3.3.3     : Testing the length of the neighbor value for the DESCRIPTION parameter of BGP

Total Peers      : 1                    Established      : 0

Peer Groups : 1

===============================================================================
A:SetupCLI>show>router>bgp#
neighbor

**Syntax**

neighbor [ip-address [detail]]
neighbor [as-number [detail]]
neighbor ip-address [family [type mvpn-type]] filter1 [brief]
neighbor ip-address [family] filter2
neighbor as-number [family] filter2
neighbor ip-address orf [filter3]
neighbor ip-address graceful-restart

**Context**

show>router>bgp

**Description**

This command displays BGP neighbor information. This command can be entered with or without any parameters.

When this command is issued without any parameters, information about all BGP peers displays.

When the command is issued with a specific IP address or ASN, information regarding only that specific peer or peers with the same AS displays.

When either `received-routes` or `advertised-routes` is specified, then the routes received from or sent to the specified peer is listed (see second output example).

Note: This information is not available by SNMP.

When either `history` or `suppressed` is specified, then the routes learned from those peers that either have a history or are suppressed (respectively) are listed.

The ‘State’ field displays the BGP peer’s protocol state. In addition to the standard protocol states, this field can also display the ‘Disabled’ operational state which indicates the peer is operationally disabled and must be restarted by the operator.

**Parameters**

- `ip-address` — Display information for the specified IP address.
  
  **Values**
  
  ipv4-address: a.b.c.d (host bits must be 0)
  ipv6-address: x:xxxx:xxxx:xxxx:xxxx:xxxx:x:[interface]
  x: [0 — FFFF]H
  d: [0 — 255]D
  interface: 32 characters maximum, mandatory for link local addresses.

- `as-number` — Display information for the specified AS number.
  
  **Values**
  
  1 — 65535

- `family` — Specify the type of routing information to be distributed by this peer group.
  
  **Values**
  
  evpn — Displays the BGP Ethernet VPN routes.
  ipv4 — Displays only those BGP peers that have the IPv4 family enable and not those capable of exchanging IP-VPN routes.
  vpn-ipv4 — Displays the content of the multicast routing table.
  ipv6 — Displays the BGP peers that are IPv6 capable.
  mcast-ipv4 — Displays the BGP peers that are mcast-ipv4 capable.
Show Commands

**filter1** — Display information for the specified IP address.

**Values**
- received-routes — Displays the number of routes received from this peer.
- advertised-routes — Displays the number of routes advertised by this peer.
- history — Displays statistics for dampened routes.
- suppressed — Displays the number of paths from this peer that have been suppressed by damping.
- detail — Displays detailed information pertaining to filter1.

**filter2** — Display information for the specified AS number.

**Values**
- history — Display statistics for dampened routes.
- suppressed — Display the number of paths from this peer that have been suppressed by damping.
- detail — Displays detailed information pertaining to filter2.

**filter3** — Displays path information for the specified IP address.

**Values**
- send — Displays the number of paths sent to this peer.
- receive — Displays the number of paths received from this peer.
- brief — Displays information in a brief format. This parameter is only supported with received-routes and advertised-routes.
- orf — Displays outbound route filtering for the BGP instance. ORF (Outbound Route Filtering) is used to inform a neighbor of targets (using target-list) that it is willing to receive. This mechanism helps lessen the update exchanges between neighbors and saves CPU cycles to process routes that could have been received from the neighbor only to be dropped/ignored.
- graceful-restart — Displays neighbors configured for graceful restart.

**Output**

**Standard and Detailed Neighbor** — The following table describes the standard and detailed command output fields for a BGP neighbor.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer</td>
<td>The IP address of the configured BGP peer.</td>
</tr>
<tr>
<td>Group</td>
<td>The BGP peer group to which this peer is assigned.</td>
</tr>
<tr>
<td>Peer AS</td>
<td>The configured or inherited peer AS for the peer group.</td>
</tr>
<tr>
<td>Peer Address</td>
<td>The configured address for the BGP peer.</td>
</tr>
<tr>
<td>Peer Port</td>
<td>The TCP port number used on the far-end system.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured or inherited local AS for the peer group.</td>
</tr>
<tr>
<td>Local Address</td>
<td>The configured or inherited local address for originating peering for the peer group.</td>
</tr>
<tr>
<td>Local Port</td>
<td>The TCP port number used on the local system.</td>
</tr>
<tr>
<td>Peer Type</td>
<td><strong>External</strong> — Peer type configured as external BGP peers.</td>
</tr>
<tr>
<td></td>
<td><strong>Internal</strong> — Peer type configured as internal BGP peers.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Bfd</td>
<td>Yes — BFD is enabled.</td>
</tr>
<tr>
<td></td>
<td>No — BFD is disabled.</td>
</tr>
<tr>
<td>State</td>
<td>Idle — The BGP peer is not accepting connections.</td>
</tr>
<tr>
<td></td>
<td>Active — BGP is listening for and accepting TCP connections from this peer.</td>
</tr>
<tr>
<td></td>
<td>Connect — BGP is attempting to establish a TCP connections from this peer.</td>
</tr>
<tr>
<td></td>
<td>Open Sent — BGP has sent an OPEN message to the peer and is waiting for an OPEN message from the peer.</td>
</tr>
<tr>
<td></td>
<td>Open Confirm — BGP has received a valid OPEN message from the peer and is awaiting a KEEPALIVE or NOTIFICATION.</td>
</tr>
<tr>
<td></td>
<td>Established — BGP has successfully established a peering and is exchanging routing information.</td>
</tr>
<tr>
<td>Last State</td>
<td>Idle — The BGP peer is not accepting connections.</td>
</tr>
<tr>
<td></td>
<td>Active — BGP is listening for and accepting TCP connections from this peer.</td>
</tr>
<tr>
<td></td>
<td>Connect — BGP is attempting to establish a TCP connections from this peer.</td>
</tr>
<tr>
<td></td>
<td>Open Sent — BGP has sent an OPEN message to the peer and is waiting for an OPEN message from the peer.</td>
</tr>
<tr>
<td></td>
<td>Open Confirm — BGP has received a valid OPEN message from the peer and is awaiting a KEEPALIVE or NOTIFICATION.</td>
</tr>
<tr>
<td>Last Event</td>
<td>start — BGP has initialized the BGP neighbor.</td>
</tr>
<tr>
<td></td>
<td>stop — BGP has disabled the BGP neighbor.</td>
</tr>
<tr>
<td></td>
<td>open — BGP transport connection opened.</td>
</tr>
<tr>
<td></td>
<td>close — BGP transport connection closed.</td>
</tr>
<tr>
<td></td>
<td>openFail — BGP transport connection failed to open.</td>
</tr>
<tr>
<td></td>
<td>error — BGP transport connection error.</td>
</tr>
<tr>
<td></td>
<td>connectRetry — Connect retry timer expired.</td>
</tr>
<tr>
<td></td>
<td>holdTime — Hold time timer expired.</td>
</tr>
<tr>
<td></td>
<td>keepAlive — Keepalive timer expired.</td>
</tr>
<tr>
<td></td>
<td>recvOpen — Receive an OPEN message.</td>
</tr>
</tbody>
</table>
### Show Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>revKeepalive</td>
<td>Receive a KEEPALIVE message.</td>
</tr>
<tr>
<td>recvUpdate</td>
<td>Receive an UPDATE message.</td>
</tr>
<tr>
<td>recvNotify</td>
<td>Receive a NOTIFICATION message.</td>
</tr>
<tr>
<td>None</td>
<td>No events have occurred.</td>
</tr>
<tr>
<td>Last Error</td>
<td>Displays the last BGP error and subcode to occur on the BGP neighbor.</td>
</tr>
<tr>
<td>Connect Retry</td>
<td>The configured or inherited connect retry timer value.</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>The configured or inherited local preference value.</td>
</tr>
<tr>
<td>Min Route Advt.</td>
<td>The minimum amount of time that must pass between route updates for the same IP prefix.</td>
</tr>
<tr>
<td>Min AS Originate</td>
<td>The minimum amount of time that must pass between updates for a route originated by the local router.</td>
</tr>
<tr>
<td>Multihop</td>
<td>The maximum number of router hops a BGP connection can traverse.</td>
</tr>
<tr>
<td>Damping Disabled</td>
<td>BGP neighbor is configured not to dampen route flaps.</td>
</tr>
<tr>
<td>Damping Enabled</td>
<td>BGP neighbor is configured to dampen route flaps.</td>
</tr>
<tr>
<td>Loop Detect Ignore</td>
<td>The BGP neighbor is configured to ignore routes with an AS loop.</td>
</tr>
<tr>
<td>Loop Detect Drop</td>
<td>The BGP neighbor is configured to drop the BGP peering if an AS loop is detected.</td>
</tr>
<tr>
<td>Loop Detect Off</td>
<td>AS loop detection is disabled for the neighbor.</td>
</tr>
<tr>
<td>MED Out</td>
<td>The configured or inherited MED value assigned to advertised routes without a MED attribute.</td>
</tr>
<tr>
<td>Authentication None</td>
<td>No authentication is configured.</td>
</tr>
<tr>
<td>Authentication MD5</td>
<td>MD5 authentication is configured.</td>
</tr>
<tr>
<td>Next Hop Self Disabled</td>
<td>BGP is not configured to send only its own IP address as the BGP nexthop in route updates to the specified neighbor.</td>
</tr>
<tr>
<td>Next Hop Self Enabled</td>
<td>BGP will send only its own IP address as the BGP nexthop in route updates to the neighbor.</td>
</tr>
<tr>
<td>AggregatorID Zero Disabled</td>
<td>The BGP Neighbor is not configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates.</td>
</tr>
<tr>
<td>AggregatorID Zero Enabled</td>
<td>The BGP Neighbor is configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Remove Private        | **Disabled** – BGP will not remove all private AS numbers from the AS path attribute, in updates sent to the specified neighbor.  
|                       | **Enabled** – BGP will remove all private AS numbers from the AS path attribute, in updates sent to the specified neighbor. |
| Passive               | **Disabled** – BGP will actively attempt to establish a BGP connection with the specified neighbor.  
|                       | **Enabled** – BGP will not actively attempt to establish a BGP connection with the specified neighbor. |
| Prefix Limit          | **No Limit** – No route limit assigned to the BGP peer group.  
|                       | 1 — 4294967295 – The maximum number of routes BGP can learn from a peer. |
| Hold Time             | The configured hold time setting.                                                       |
| Keep Alive            | The configured keepalive setting.                                                       |
| Active Hold Time      | The negotiated hold time, if the BGP neighbor is in an established state.               |
| Active Keep Alive     | The negotiated keepalive time, if the BGP neighbor is in an established state.           |
| Cluster Id            | The configured route reflector cluster ID.                                              |
|                       | **None** – No cluster ID has been configured.                                           |
| Client Reflect        | **Disabled** – The BGP route reflector is configured not to reflect routes to this neighbor.  
|                       | **Enabled** – The BGP route reflector is configured to reflect routes to this neighbor. |
| Preference            | The configured route preference value for the peer group.                          |
| Num of Flaps          | The number of route flaps in the neighbor connection.                                  |
| Recd. Prefixes        | The number of routes received from the BGP neighbor.                                   |
| Active Prefixes       | The number of routes received from the BGP neighbor and active in the forwarding table. |
| Recd. Paths           | The number of unique sets of path attributes received from the BGP neighbor.            |
| Suppressed Paths      | The number of unique sets of path attributes received from the BGP neighbor and suppressed due to route damping. |
| Input Queue           | The number of BGP messages to be processed.                                            |
Show Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Queue</td>
<td>The number of BGP messages to be transmitted.</td>
</tr>
<tr>
<td>i/p Messages</td>
<td>Total number of packets received from the BGP neighbor.</td>
</tr>
<tr>
<td>o/p Messages</td>
<td>Total number of packets sent to the BGP neighbor.</td>
</tr>
<tr>
<td>i/p Octets</td>
<td>Total number of octets received from the BGP neighbor.</td>
</tr>
<tr>
<td>o/p Octets</td>
<td>Total number of octets sent to the BGP neighbor.</td>
</tr>
<tr>
<td>Export Policy</td>
<td>The configured export policies for the peer group.</td>
</tr>
<tr>
<td>Import Policy</td>
<td>The configured import policies for the peer group.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-48# show router bgp neighbor

BGP Neighbor

Peer : 10.0.0.5          Group : headquarters1

Peer AS          : 300 Peer Port        : 0
Peer Address     : 10.0.0.5
Local AS         : 200 Local Port       : 0
Local Address    : 10.0.0.104
Peer Type        : External
State            : Active               Last State       : Idle
Last Event       : stop
Last Error       : Cease
Remote Family    : Unused
Local Family     : IPv4
Hold Time        : 90 Keep Alive       : 30
Active Hold Time : 0 Active Keep Alive: 0
Cluster Id       : 0.0.0.100
Preference       : 170 Num of Flaps : 0
Recd. Prefixes   : 0 Active Prefixes : 0
Recd. Paths      : 0 Suppressed Paths : 0
Input Queue      : 0 Output Queue   : 0
i/p Messages     : 0 o/p Messages    : 0
i/p Octets       : 0 o/p Octets     : 0
i/p Updates      : 0 o/p Updates   : 0
TTL Security     : Enabled Min TTL Value : 255
Graceful Restart : Disabled Stale Routes Time: n/a
Local Capability : RouteRefresh MP-BGP
Remote Capability:
Import Policy : None Specified / Inherited
Export Policy : None Specified / Inherited

Peer : 10.0.0.91         Group : Santa Clara

Peer AS          : 100 Peer Port        : 0
Peer Address     : 10.0.0.91
Local AS         : 200 Local Port       : 0
Local Address    : 10.0.0.103
Peer Type        : External
State : Connect  Last State : Active
Last Event : openFail
Last Error : Cease
Local Family : IPv4  Remote Family : Unused
Hold Time : 90  Keep Alive : 30
Active Hold Time : 0  Active Keep Alive : 0
Cluster Id : 0.0.0.100
Preference : 170  Num of Flaps : 0
Recd. Prefixes : 0  Active Prefixes : 0
Recd. Paths : 0  Suppressed Paths : 0
Input Queue : 0  Output Queue : 0
i/p Messages : 0  o/p Messages : 1
i/p Octets : 0  o/p Octets : 0
i/p Updates : 0  o/p Updates : 0
TTL Security : Disabled  Min TTL Value : n/a
Graceful Restart : Disabled  Stale Routes Time : n/a
Local Capability : RouteRefresh MP-BGP
Remote Capability:
Import Policy : None Specified / Inherited
Export Policy : None Specified / Inherited

-------------------------------------------------------------------------------
A:ALA-48#
A:ALA-48# show router 2 bgp neighbor 10.20.1.3
===============================================================================
BGP Neighbor
===============================================================================
Peer : 10.20.1.3
Group : 1
-------------------------------------------------------------------------------
Peer AS : 100  Peer Port : 49725
Peer Address : 10.20.1.3
Local AS : 100  Local Port : 179
Local Address : 10.20.1.2
Peer Type : Internal
State : Established  Last State : Established
Last Event : recvKeepAlive
Last Error : Cease
Local Family : IPv4
Remote Family : IPv4
Hold Time : 3  Keep Alive : 1
Active Hold Time : 3  Active Keep Alive : 1
Cluster Id : None
Preference : 170  Num of Flaps : 0
Recd. Paths : 1
IPV4 Recd. Prefixes : 11  IPv4 Active Prefixes : 10
IPV4 Suppressed Pfxs : 0  VPN-IPv4 Suppr. Pfxs : 0
VPN-IPv4 Recd. Pfxs : 0  VPN-IPv4 Active Pfxs : 0
Mc IPv4 Recd. Pfxs. : 0  Mc IPv4 Active Pfxs. : 0
Mc IPv4 Suppr. Pfxs : 0  IPv6 Suppressed Pfxs : 0
IPv6 Recd. Prefixes : 0  IPv6 Active Prefixes : 0
Input Queue : 0  Output Queue : 0
i/p Messages : 471  o/p Messages : 473
i/p Octets : 3241  o/p Octets : 3241
i/p Updates : 4  o/p Updates : 4
TTL Security : Disabled  Min TTL Value : n/a
Advertise Inactive : Disabled  Peer Tracking : Disabled
Advertise Label : None
Auth key chain : eta_keychain1
Local Capability : RouteRefresh MP-BGP
Remote Capability : RouteRefresh MP-BGP
Import Policy : None Specified / Inherited
Export Policy : static2bgp

Neighbors : 1

A:ALA-48#

A:ALA-12# show router bgp neighbor 10.0.0.11 orf

BGP Neighbor 10.0.0.11 ORF

Send List (Automatic)

<table>
<thead>
<tr>
<th>target:65535:10</th>
</tr>
</thead>
<tbody>
<tr>
<td>target:65535:20</td>
</tr>
</tbody>
</table>

A:ALA-12

A:ALA-22 show router bgp neighbor 10.0.0.1 orf

BGP Neighbor 10.0.0.1 ORF

Receive List

<table>
<thead>
<tr>
<th>target:65535:10</th>
</tr>
</thead>
<tbody>
<tr>
<td>target:65535:20</td>
</tr>
</tbody>
</table>

A:ALA-22

Sample Detailed Output

A:ALA-12# show router bgp neighbor detail

BGP Neighbor (detail)

<table>
<thead>
<tr>
<th>Peer : 10.0.0.15</th>
<th>Group : To_AS_40000</th>
</tr>
</thead>
</table>

Peer AS	65205	Peer Port	0
Peer Address	10.0.0.15	Local AS	65206
Local Address	10.0.0.16	Local Port	0
Peer Type	External	State	Active
		Last State	Connect
Last Event	openFail	Last Error	Hold Timer Expire
Connect Retry	20	Local Pref.	100
Min Route Advt.	30	Min AS Orig.	15
Damping	Disabled	Loop Detect	Ignore
MED Out	No MED Out	Authentication	None
Next Hop Self	Disabled	AggregatorID Zero: Disabled	
Remove Private	Disabled	Passive	Disabled
Prefix Limit	No Limit		
Hold Time	90	Keep Alive	30
Active Hold Time : 0  Active Keep Alive: 0
Cluster Id : None  Client Reflect : Enabled
Preference : 170  Num of Flaps : 0
Recd. Prefixes : 0  Active Prefixes : 0
Recd. Paths : 0  Suppressed Paths : 0
Input Queue : 0  Output Queue : 0
i/p Messages : 0  o/p Messages : 0
i/p Octets : 0  o/p Octets : 0
i/p Updates : 0  o/p Updates : 0
Export Policy : direct2bgp

A:ALA-12#

*A:SetupCLI>show>router>bgp# neighbor

BGP Neighbor

Peer  : 3.3.3.3
Group : bgp_group_1 34567890123456789012

Peer AS              : 20               Peer Port            : 0
Peer Address         : 3.3.3.3
Local AS             : 100              Local Port           : 0
Local Address        : 0.0.0.0
Peer Type            : Internal
State                : Active           Last State           : Idle
Last Event           : stop
Last Error           : Cease
Local Family         : IPv4
Remote Family        : Unused
Hold Time            : 10               Keep Alive           : 30
Active Hold Time     : 0                Active Keep Alive    : 0
Cluster Id           : 2.2.3.4
Preference           : 101              Num of Flaps         : 0
Recd. Paths          : 0
IPv4 Recd. Prefixes  : 0                IPv4 Active Prefixes : 0
IPv4 Suppressed Pfxs : 0                VPN-IPv4 Suppr. Pfxs : 0
VPN-IPv4 Recd. Pfxs  : 0                VPN-IPv4 Active Pfxs : 0
IPv6 Recd. Prefixes  : 0                IPv6 Active Prefixes : 0
IPv6 Suppressed Pfxs : 0                VPN-IPv4 Suppr. Pfxs : 0
IPv6 Suppr. Pfxs     : 0
IPv6 Active Prefixes : 0
Input Queue          : 0                Output Queue         : 0
i/p Messages         : 0                o/p Messages         : 0
i/p Octets           : 0                o/p Octets           : 0
i/p Updates          : 0                o/p Updates          : 0
TTL Security         : Disabled         Min TTL Value        : n/a
Graceful Restart     : Enabled          Stale Routes Time    : 360
Advertise Inactive   : Disabled         Peer Tracking        : Enabled
Advertise Label      : None             Bfd Enabled     : Yes
Auth key chain       : n/a
Local Capability     : RouteRefresh MP-BGP
Remote Capability    :
Import Policy        : test i1
                      : test i2
                      : test i3
                      : test i4
                      : test i5 8901234567890123456789012
Export Policy        : test e1
Advertised and Received Routes Ouptut — The following table describes the command output for both the standard and detailed information for a neighbor.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then it is the same value as the AS.</td>
</tr>
<tr>
<td>Flag</td>
<td>u — used</td>
</tr>
<tr>
<td></td>
<td>s — suppressed</td>
</tr>
<tr>
<td></td>
<td>h — history</td>
</tr>
<tr>
<td></td>
<td>d — decayed</td>
</tr>
<tr>
<td></td>
<td>* — valid</td>
</tr>
<tr>
<td></td>
<td>i — igp</td>
</tr>
<tr>
<td></td>
<td>e — egp</td>
</tr>
<tr>
<td></td>
<td>? — incomplete</td>
</tr>
<tr>
<td></td>
<td>&gt; — best</td>
</tr>
<tr>
<td>Network</td>
<td>Route IP prefix and mask length for the route.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>BGP nexthop for the route.</td>
</tr>
<tr>
<td>LocalPref</td>
<td>BGP local preference path attribute for the route.</td>
</tr>
<tr>
<td>MED</td>
<td>BGP Multi-Exit Discriminator (MED) path attribute for the route.</td>
</tr>
<tr>
<td>AS Path</td>
<td>The BGP AS path for the route.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-12# show router bgp neighbor 10.0.0.16 received-routes

BGP Router ID : 10.0.0.16     AS : 65206     Local AS : 65206

Legend -
Status codes : u — used, s — suppressed, h — history, d — decayed, * — valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best

BGP Neighbor

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>Nexthop</th>
<th>LocalPref</th>
<th>MED</th>
<th>As-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>10.0.0.16/32</td>
<td>10.0.0.16</td>
<td>100</td>
<td>none</td>
<td>No As-Path</td>
</tr>
<tr>
<td>?</td>
<td>10.0.6.0/24</td>
<td>10.0.0.16</td>
<td>100</td>
<td>none</td>
<td>No As-Path</td>
</tr>
<tr>
<td>?</td>
<td>10.0.8.0/24</td>
<td>10.0.0.16</td>
<td>100</td>
<td>none</td>
<td>No As-Path</td>
</tr>
<tr>
<td>?</td>
<td>10.0.12.0/24</td>
<td>10.0.0.16</td>
<td>100</td>
<td>none</td>
<td>No As-Path</td>
</tr>
<tr>
<td>?</td>
<td>10.0.13.0/24</td>
<td>10.0.0.16</td>
<td>100</td>
<td>none</td>
<td>No As-Path</td>
</tr>
<tr>
<td>?</td>
<td>10.0.204.0/24</td>
<td>10.0.0.16</td>
<td>100</td>
<td>none</td>
<td>No As-Path</td>
</tr>
</tbody>
</table>

---

next-hop

**Syntax**

next-hop [family] [ip-address] [detail]

**Context**

show>router>bgp

**Description**

Displays BGP next-hop information.

**Parameters**

- **family** — Specify the type of routing information to be distributed by the BGP instance.
  - **Values**
    - **ipv4** — Displays only those BGP peers that have the IPv4 family enable and not those capable of exchanging IP-VPN routes.
    - **vpn-ipv4** — Displays the BGP peers that are IP-VPN capable.
    - **ipv6** — Displays the BGP peers that are IPv6 capable.
    - **mcast-ipv4** — Displays the BGP peers that are mcast-ipv4 capable.

- **ip-address** — Displays the next hop information for the specified IP address.
  - **Values**
    - **ipv4-address**: a.b.c.d (host bits must be 0)
    - **ipv6-address**: x:xxx:x:xxx:x (eight 16-bit pieces)
Show Commands

Show Commands

x:xx:xx:xx:d.d.d
x [0 — FFFF]H
d [0 — 255]D

detail — Display the longer, more detailed version of the output.

Output Show Next-Hop Output — The following table describes the command output fields for a BGP next hop.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then the value is the same as the AS.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop address.</td>
</tr>
<tr>
<td>Resolving Prefix</td>
<td>Displays the prefix of the best next hop.</td>
</tr>
<tr>
<td>Owner</td>
<td>Displays the routing protocol used to derive the best next hop.</td>
</tr>
<tr>
<td>Preference</td>
<td>Displays the BGP preference attribute for the routes.</td>
</tr>
<tr>
<td>Reference Count</td>
<td>Displays the number of routes using the resolving prefix.</td>
</tr>
<tr>
<td>Resolved Next Hop</td>
<td>The IP address of the next hop.</td>
</tr>
</tbody>
</table>

Sample Output

*A:Out-C# show router bgp next-hop

BGP Router ID:10.20.1.3     AS:5000     Local AS:5000

BGP Next Hop

<table>
<thead>
<tr>
<th>Next Hop</th>
<th>Resolving Prefix</th>
<th>Resolved Next Hop</th>
<th>Pref</th>
<th>Owner</th>
<th>Metric</th>
<th>Ref. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.1.1</td>
<td>10.20.1.1/32</td>
<td></td>
<td>7</td>
<td>RSVP</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>10.10.2.1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.2</td>
<td>10.20.1.2/32</td>
<td></td>
<td>7</td>
<td>RSVP</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>10.10.3.2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20.1.4</td>
<td>10.20.1.4/32</td>
<td></td>
<td>7</td>
<td>RSVP</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>10.10.11.4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Hops : 3
paths

Syntax    paths
Context    show>router>bgp
Description This command displays a summary of BGP path attributes.
Output    Show Path Output — The following table describes the command output fields for a BGP path.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then the value is the same as the AS.</td>
</tr>
<tr>
<td>Path</td>
<td>The AS path attribute.</td>
</tr>
<tr>
<td>Origin</td>
<td>EGP — The NLRI is learned by an EGP protocol.</td>
</tr>
<tr>
<td></td>
<td>IGP — The NLRI is interior to the originating AS.</td>
</tr>
<tr>
<td></td>
<td>INCOMPLETE — NLRI was learned another way.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The advertised BGP nexthop.</td>
</tr>
<tr>
<td>MED</td>
<td>The Multi-Exit Discriminator value.</td>
</tr>
<tr>
<td>Local Preference</td>
<td>The local preference value. This value is used if the BGP route arrives from a BGP peer without the Local Pref attribute set. It is overridden by any value set via a route policy.</td>
</tr>
<tr>
<td>Refs</td>
<td>The number of routes using a specified set of path attributes.</td>
</tr>
<tr>
<td>ASes</td>
<td>The number of autonomous system numbers in the AS path attribute.</td>
</tr>
<tr>
<td>Segments</td>
<td>The number of segments in the AS path attribute.</td>
</tr>
<tr>
<td>Flags</td>
<td>EBGP-learned — Path attributes learned by an EBGP peering.</td>
</tr>
<tr>
<td></td>
<td>IBGP-Learned — Path attributes learned by an IBGP peering.</td>
</tr>
</tbody>
</table>

A:ALA-49>show>router>bgp# next-hop 192.168.2.194

---------------------------------------------------------------------------------------------------
BGP Router ID : 10.10.10.104    AS : 200    Local AS : 200
-----------------------------------------------------------------------------------------------
BGP Next Hop
-----------------------------------------------------------------------------------------------
Next Hop   Resolving   Owner  Preference Reference  Resolved
Prefix     Count       Next Hop
---------------------------------------------------------------------------------------------------
A:ALA-49>show>router>bgp# next-hop 10.10.10.104
route-target

**Syntax**

```
route-target
```

**Context**

```
show>router>bgp
```

**Description**

This command displays a summary of route-target.

**Sample Output**

```
*A:Dut-D# show router bgp routes route-target

===
BGP Router ID:10.20.1.4 AS:100 Local AS: 100
===
```

---

**Table:**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregator</td>
<td>The route aggregator ID.</td>
</tr>
<tr>
<td>Community</td>
<td>The BGP community attribute list.</td>
</tr>
<tr>
<td>Originator ID</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>Cluster List</td>
<td>The route reflector cluster list.</td>
</tr>
</tbody>
</table>

---

**Show Commands**

**Syntax**

```
show Commands
```

**Context**

```
[54x743]Show Commands
```

**Description**

This command displays the list of commands available.

---

**Sample Output**

```
Sample Output

===
BGP Router ID: 10.0.0.14 AS: 65206 Local AS: 65206
===
BGP Paths

Path: 60203 65001 19855 3356 15412

Origin : IGP Next Hop : 10.0.28.1
MED : 60203 Local Preference : none
Refs : 4 ASes : 5
Segments: 1
Flags : EBGP-learned
Aggregator : 15412 62.216.140.1

Path: 60203 65001 19855 3356 1 1236 1236 1236 1236

Origin : IGP Next Hop : 10.0.28.1
MED : 60203 Local Preference : none
Refs : 2 ASes : 9
Segments: 1
Flags : EBGP-learned
```
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

-------------------------------------------------------------------------------------------------
BGP RT Constrain Routes
-------------------------------------------------------------------------------------------------
Flag  Route Target                                       LocalPref   MED
Nexthop
As-Path
-------------------------------------------------------------------------------
| u*?   | 0:0:0/0                                            | None        | 0
     | 10.10.9.6                                         |             | 106 106

Routes : 1
-------------------------------------------------------------------------------------------------

routes

Syntax
routes [family] [brief]
routes [family] prefix [detail | longer | hunt [brief]]
routes family prefix [detail | longer | hunt [brief]]
routes [family [type mvpn-type]] community comm-id
routes [family [type mvpn-type]] aspath-regex reg-ex
routes vpn-ipv4 prefix [rd rd] [detail | longer | hunt [brief]]
routes vpn-ipv6 prefix [rd rd] [detail | longer | hunt [brief]]
routes mvpn-ipv4 type mvpn-type {rd rd | originator-ip ip-address | source-ip ip-address | group-ip ip-address | source-as as-number} [hunt | detail]
routes [family [l2vpn-type]] [brief]
routes [family [l2vpn-type]] community comm-id
routes [family [l2vpn-type]] aspath-regex reg-ex
routes l2-vpn l2vpn-type {rd rd | [siteid site-id] | [veid veid] [offset vpls-base-offset ]}
routes mdt-safi [rd rd] [grp-address mcast-grp-address] [brief]
routes ms-pw [rd rd] [aii-type2 aii-type2] [brief]
routes flow-ipv4
routes evpn inclusive-mcast [hunt | detail] [rd rd] [originator-ip ip-address] [next-hop ip-address] [community comm-id] [tag vni-id]
routes evpn ip-prefix [hunt | detail] [rd rd] [prefix ip-prefix/mask] [community comm-id] [tag vni-id] [next-hop ip-address]
routes evpn mac [hunt | detail] [rd rd] [next-hop ip-address] [mac-address mac-address] [community comm-id] [tag vni-id]

Context show>router>bgp

Description This command displays BGP route information.
When this command is issued without any parameters, then the entire BGP routing table displays.
When this command is issued with an IP prefix/mask or IP address, then the best match for the parameter displays.

**Parameters**

- **family** — Specify the type of routing information to be distributed by the BGP instance.
  - **Values**
    - `evpn` — Displays the BGP information related to Ethernet VPN.
    - `ipv4` — Displays only those BGP peers that have the IPv4 family enable and not those capable of exchanging IP-VPN routes.
    - `vpn-ipv4` — Displays the BGP peers that are IP-VPN capable.
    - `ipv6` — Displays the BGP peers that are IPv6 capable.
    - `mcast-ipv4` — Displays the BGP peers that are mcast-ipv4 capable.

- **received** — Specifies to show the BGP routes received from the neighbor.
  - **Values**
    - **prefix** — Specifies the type of routing information to display.
      - **Syntax:** `<rd>|[<rd>]:<ip-prefix[/ip-prefix-length]>`
        - `comm-val` [0..65535]
        - `2byte-asnumber` [0..65535]
        - `ext-comm-val` [0..4294967295]
        - `4byte-asnumber` `asn1.asn2` (two 2-byte pieces)
          - `asn1` [1..65535]
          - `asn2` [0..65535]
        - `ip-address` `a.b.c.d`
        - `ipv4-prefix` `a.b.c.d`
        - `ipv4-prefix-le` [0..32]
        - `ipv6-prefix` `x:x:x:x:x:x:x:x` (eight 16-bit pieces)
          - `x:x:x:x:d.d.d.d`
        - `prefix-length` 0 — 128
      - **filter** — Specifies route criteria.
        - **Values**
          - `hunt` — Displays entries for the specified route in the RIB-In, RIB-Out, and RTM.
          - `longer` — Displays the specified route and subsets of the route.
          - `detail` — Display the longer, more detailed version of the output.
          - `aspath-regex “reg-exp”` — Displays all routes with an AS path matching the specified regular expression `reg-exp`.
          - `community comm-id` — Displays all routes with the specified BGP community.
        - **Values**
          - `<as-number1:comm-val1 | ext-comm | well-known-comm>`
            - `ext-comm` type: `{ip-address:comm-val1 | as-number1:comm-val2 | as-number2:comm-val1}`
            - `as-number1` 0 — 65535
            - `comm-val1` 0 — 65535
            - `type` target, origin
            - `ip-address` `a.b.c.d`
            - `comm-val2` 0 — 4294967295
as-number2 0 — 4294967295
well-known-comm no-export, no-export-subconfed, no-advertise

**brief** — Provides a summarized display of the set of peers to which a BGP route is advertised.

**rd** — Allows more precise definition of the RD vs. prefix for VPN-IPv6 routes.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr:comm-va</td>
<td></td>
</tr>
<tr>
<td>2byte-asnumber:ext-comm-val</td>
<td></td>
</tr>
<tr>
<td>4byte-asnumber:comm-val</td>
<td></td>
</tr>
</tbody>
</table>

**veid** — Specifies a two byte identifier that represents the local bridging instance in a VPLS and is advertised through the BGP NLRI. This value must be lower than or equal to the max-ve-id.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 4294967295</td>
<td></td>
</tr>
</tbody>
</table>

**vpls-base-offset** — Specifies a two byte identifier advertised through the NLRI that is used to indicate which VE-ID should use the advertised NLRI at the receiving PE according to the following rule: if the offset <= local VE-ID <= offset + VBS-1 (VBS = virtual block size = 8 in our implementation) then the NLRI is processed. Otherwise it is ignored. The NLRI with this offset is generated as soon as the first VE-ID value between (offset, offset + VBS-1) is advertised in the network.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 4294967295</td>
<td></td>
</tr>
</tbody>
</table>

**site-id** — Specifies a two byte identifier usually employed for the BGP multi-homing solution. It identifies the BGP multi-homing site associated with one or a set of objects (SAP(s), pseudowire(s) or combination). The site-id must be identical between the two PEs carrying the connection to the access device multi-homed to the PEs.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 4294967295</td>
<td></td>
</tr>
</tbody>
</table>

**l2vpn-type** — Specifies a 12-byte Virtual Switch Instance identifier (VSI-ID) type.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp-ad, bgp-vpls, multi-homing</td>
<td></td>
</tr>
</tbody>
</table>

**ms-pw** [rd rd] [aii-type2 aii-type2] [brief] — Displays routes for ms-pw family.

**routes evpn** [rsdflcbamnR5sbs305ecPhtsTRuoRx52g2] [mMhi Rs0T5cd96s address] [community comm-id] [tag vni-id] — Displays inclusive multicast routes for evpn family.

**routes evpn** ip-prefix [hunt | detail] [rd rd] [prefix ip-prefix/mask] [community comm-id] [tag vni-id] [next-hop ip-address] — BnLM5 pLinef5ILn)AInMyMCAanVlCcl-ALIacOAN)Mela 2n5p

**routes evpn** mac [hunt | detail] [rd rd] [next-hop ip-address] [mac-address mac-address] [community comm-id] [tag vni-id] s6s — Displays mac routes for evpn family.

**5eu** — Displays all routes with the specified ethernet-tag. For VXLAN tunnels, the ethernet-tag encodes the VNI (VXLAN Network Identifier).

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 — 16777215</td>
<td></td>
</tr>
</tbody>
</table>

**Output**

**BGP Route** — The following table describes the command output fields for BGP routes.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then the value is the same as the AS.</td>
</tr>
<tr>
<td>Route Dist.</td>
<td>Displays the route distinguisher identifier attached to routes that distinguishes the VPN it belongs.</td>
</tr>
<tr>
<td>VPN Label</td>
<td>Displays the label generated by the PE's label manager.</td>
</tr>
<tr>
<td>Network</td>
<td>The IP prefix and mask length.</td>
</tr>
<tr>
<td>Nexthop</td>
<td>The BGP nexthop.</td>
</tr>
<tr>
<td>From</td>
<td>The advertising BGP neighbor’s IP address.</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>The resolved nexthop.</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>The local preference value. This value is used if the BGP route arrives from a BGP peer without the Local Pref attribute set. It is overridden by any value set via a route policy.</td>
</tr>
<tr>
<td>Flag</td>
<td>u — used</td>
</tr>
<tr>
<td></td>
<td>s — suppressed</td>
</tr>
<tr>
<td></td>
<td>h — history</td>
</tr>
<tr>
<td></td>
<td>d — decayed</td>
</tr>
<tr>
<td></td>
<td>* — valid</td>
</tr>
<tr>
<td></td>
<td>i — igp</td>
</tr>
<tr>
<td></td>
<td>e — egp</td>
</tr>
<tr>
<td></td>
<td>? — incomplete</td>
</tr>
<tr>
<td></td>
<td>&gt; — best</td>
</tr>
<tr>
<td></td>
<td>S — sticky</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>The aggregator AS value.</td>
</tr>
<tr>
<td></td>
<td>none — Aggregator AS attributes are not present.</td>
</tr>
<tr>
<td>Aggregator</td>
<td>The aggregator attribute value.</td>
</tr>
<tr>
<td></td>
<td>none — Aggregator attributes are not present.</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>Atomic — The atomic aggregator flag is set.</td>
</tr>
<tr>
<td></td>
<td>Not Atomic — The atomic aggregator flag is not set.</td>
</tr>
<tr>
<td>MED</td>
<td>The MED metric value.</td>
</tr>
<tr>
<td></td>
<td>none — MED metrics are present.</td>
</tr>
<tr>
<td>Community</td>
<td>The BGP community attribute list.</td>
</tr>
</tbody>
</table>
### Sample Output

* A:7750SR7-PE# show router bgp routes 215.0.0.0/24 detail

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>The route reflector cluster list.</td>
</tr>
<tr>
<td>Originator Id</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>none —</td>
<td>The originator ID attribute is not present.</td>
</tr>
<tr>
<td>Peer Router Id</td>
<td>The router ID of the advertising router.</td>
</tr>
<tr>
<td>AS-Path</td>
<td>The BGP AS path attribute.</td>
</tr>
<tr>
<td>VPRN Imported</td>
<td>Displays the VPRNs where a particular BGP-VPN received route has been imported and installed.</td>
</tr>
<tr>
<td>TieBreakReason</td>
<td>Displays the step in the BGP decision process where a BGP route lost the tie-break with the next better BGP route for the same prefix.</td>
</tr>
<tr>
<td>LocalPref -</td>
<td>This route is not the best because the next better route has a higher LOCAL_PREF.</td>
</tr>
<tr>
<td>AIGP - This route is not the best because the next better route has a lower derived AIGP metric value.</td>
<td></td>
</tr>
<tr>
<td>ASPathLen -</td>
<td>This route is not the best because the next better route has a shorter AS PATH length.</td>
</tr>
<tr>
<td>Origin - This route is not the best because the next better route has a lower Origin value.</td>
<td></td>
</tr>
<tr>
<td>MED - This route is not the best because the next better route has a lower MED, and MED comparison of the routes was allowed.</td>
<td></td>
</tr>
<tr>
<td>IBGP - This IBGP route is not the best because the next better route is an EGBP route.</td>
<td></td>
</tr>
<tr>
<td>NHCost - This route is not the best because the next better route has a lower metric value to reach the BGP NEXT HOP.</td>
<td></td>
</tr>
<tr>
<td>BGPID - This route is not the best because the next better route has a lower Originator ID or BGP Identifier.</td>
<td></td>
</tr>
<tr>
<td>ClusterLen This route is not the best because the next better route has a shorter Cluster list length.</td>
<td></td>
</tr>
<tr>
<td>PeerIP - This route is not the best because the next better route has a lower neighbor IP address.</td>
<td></td>
</tr>
</tbody>
</table>

---

**BGP IPv4 Routes**

---

**Original Attributes**

- Network : 215.0.0.0/24
- Nexthop : 202.50.0.2
- Path Id : None
Show Commands

From : 202.50.0.2  Res. Nexthop : 202.50.0.2
Local Pref. : n/a  Interface Name : GE-3/2/1
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : None
Community : No Community Members
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 150.0.0.245
Fwd Class : None  Priority : None
Flags : Used  Valid  Best  IGP
Route Source : External
AS-Path : 5000

Modified Attributes
Network : 215.0.0.0/24
Nexthop : 202.50.0.2
Path Id : None
From : 202.50.0.2
Res. Nexthop : 202.50.0.2
Local Pref. : 150  Interface Name : GE-3/2/1
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : 10
Community : 4713:10  4713:510
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 150.0.0.245
Fwd Class : None  Priority : None
Flags : Used  Valid  Best  IGP Sticky
TieBreakReason : MED
Route Source : External
AS-Path : 5000

PMSI Tunnel Attribute :
Tunnel-type : LDP P2MP LSP  Flags : Leaf not required
MPLS Label : 0
Root-Node : 10.20.1.2  LSP-ID : 8193

* A:Dut-C# show router bgp routes l2-vpn detail

BGP L2VPN Routes

Route Type : AutoDiscovery
Route Dist. : 10.20.1.1
Prefix : 10.20.1.1
Nexthop : 10.20.1.1
From : 10.20.1.1
Res. Nexthop : n/a
Local Pref. : 100  Interface Name : NotAvailable
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : 0
AIGP Metric : Not Atomic
Community : target:4455:4455  target:1.20.30.40:6543
l2-vpn/vrf-imp:100.1.200.1:65535

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
Cluster        : No Cluster Members
Originator Id  : None                   Peer Router Id : 10.20.1.1
Flags          : Used  Valid  Best  IGP
Route Source   : Internal
AS-Path        : No As-Path
------------------------------------------------------------------------
PMSI Tunnel Attribute :
Tunnel-type    : RSVP-TE P2MP LSP       Flags          : Leaf not required
MPLS Label     : 0                         Tunnel-ID      : 61440
P2MP-ID        : 1001
Extended-Tunnel*: 10.20.1.1

*A:Dut-C# show router bgp routes l2-vpn detail
========================================================================
BGP Router ID:10.20.1.3        AS:1000        Local AS:1000
========================================================================
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
========================================================================
BGP L2VPN Routes
========================================================================
Route Type     : AutoDiscovery
Route Dist.    : 10.20.1.1:1
Prefix         : 10.20.1.1
Nexthop        : 10.20.1.1
From           : 10.20.1.1
Res. Nexthop   : n/a
Local Pref.    : 100
Aggregator AS  : None                   Aggregator     : None
Atomic Aggr.   : Not Atomic             MED            : 0
AIGP Metric    : Not Atomic
Community      : target:4455:4455  target:1.20.30.40:6543
                   12-vpn/vrf-imp:100.1.200.1:65535
Cluster        : No Cluster Members
Originator Id  : None                   Peer Router Id : 10.20.1.1
Flags          : Used  Valid  Best  IGP
Route Source   : Internal
AS-Path        : No As-Path
------------------------------------------------------------------------
PMSI Tunnel Attribute :
Tunnel-type    : RSVP-TE P2MP LSP       Flags          : Leaf not required
MPLS Label     : 0
P2MP-ID        : 1001
Tunnel-ID      : 61440
Extended-Tunnel*: 10.20.1.1

*A:Dut-C# show router bgp # routes l2-vpn 10.20.1.1 rd 10.20.1.1:1 hunt
========================================================================
BGP Router ID:10.20.1.3        AS:None        Local AS:100
========================================================================
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
========================================================================
BGP L2VPN-AD Routes
Route Type : AutoDiscovery
Route Dist. : 10.20.1.1:1
Prefix : 10.20.1.1
Nexthop : 10.20.1.1
From : 10.20.1.2
Res. Nexthop : n/a
Local Pref. : 100
Aggregator AS : None
Aggregator : None
Atomic Aggr. : Not Atomic
AIGP Metric : None
Connector : None
Community : target:1.20.30.40:6543
Cluster : 1.1.1.1
Originator Id : 10.20.1.1
Peer Router Id : 10.20.1.2
Flags : Used Valid Best IGP
Route Source : Internal
AS-Path : No As-Path

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP VPN-IPv4 Routes

Network : 6.6.6.6/32
Nexthop : 10.20.1.4
Route Dist. : 10.20.1.4:1
Path Id : None
From : 10.20.1.4
Res. Nexthop : n/a
Local Pref. : 100
Aggregator AS : None
Aggregator : None
Atomic Aggr. : Not Atomic
AIGP Metric : None
Connector : None
Community : target:100:100
Cluster : No Cluster Members
Originator Id : None
Peer Router Id : 10.20.1.4
Fwd Class : None
Priority : None
Flags : Used Valid Best Incomplete
Route Source : Internal
AS-Path : 106
### RIB In Entries

<table>
<thead>
<tr>
<th>Network</th>
<th>6.6.6.6/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexthop</td>
<td>10.20.1.4</td>
</tr>
<tr>
<td>Route Dist.</td>
<td>10.20.1.4:1</td>
</tr>
<tr>
<td>Path Id</td>
<td>None</td>
</tr>
<tr>
<td>From</td>
<td>10.20.1.4</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>n/a</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>100</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>None</td>
</tr>
<tr>
<td>Aggregator</td>
<td>None</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>Not Atomic</td>
</tr>
<tr>
<td>ATGP Metric</td>
<td>None</td>
</tr>
<tr>
<td>Connector</td>
<td>None</td>
</tr>
<tr>
<td>Community</td>
<td>target:100:100</td>
</tr>
<tr>
<td>Cluster</td>
<td>No Cluster Members</td>
</tr>
<tr>
<td>Originator Id</td>
<td>None</td>
</tr>
<tr>
<td>Peer Router Id</td>
<td>10.20.1.4</td>
</tr>
<tr>
<td>Fwd Class</td>
<td>None</td>
</tr>
<tr>
<td>Flags</td>
<td>Used Valid Best Incomplete</td>
</tr>
<tr>
<td>Route Source</td>
<td>Internal</td>
</tr>
<tr>
<td>AS-Path</td>
<td>106</td>
</tr>
<tr>
<td>VPNR Imported</td>
<td>1</td>
</tr>
</tbody>
</table>

### RIB Out Entries

Routes : 1

```plaintext
A:Dut-C>show>router>bgp#
*A:Dut-C>show>router>bgp# routes vpn-ipv4 6.6.6.6/32 hunt<< SAME AS ABOVE BUT RD NOT SPECIFIED.I.E. ANY RD (RD is optional).
```

### BGP VPN-IPv4 Routes

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

### BGP VPN-IPv6 Routes

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
Show Commands

RIB In Entries

Network : 3FFE::606:609/128
Nexthop : ::FFFF:A14:104
Route Dist. : 10.20.1.4:1  VPN Label : 131070
Path Id : None
From : 10.20.1.4
Res. Nexthop : n/a
Local Pref. : 100  Interface Name : int_to_D
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : None
AIGP Metric : None
Connector : None
Community : target:100:100
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 10.20.1.4
Fwd Class : None  Priority : None
Flags : Used  Valid  Best  Incomplete
Route Source : Internal
AS-Path : 106
VPRN Imported : 1

RIB Out Entries

Routes : 1

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP VPN-IPv6 Routes

RIB In Entries

Network : 3FFE::606:607/128
Nexthop : ::FFFF:A14:104
Route Dist. : 10.20.1.4:1  VPN Label : 131070
Path Id : None
From : 10.20.1.4
Res. Nexthop : n/a
Local Pref. : 100  Interface Name : int_to_D
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : None
AIGP Metric : None
Connector : None
Community : target:100:100
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 10.20.1.4
Fwd Class : None      Priority : None
Flags      : Used Valid Best Incomplete
Route Source : Internal
AS-Path    : 106
VPRN Imported : 1

RIB Out Entries

Routes : 1

*A:Dut-C>show>router:bgp# routes vpn-ipv6 3FFE::606:607/128 rd 10.20.1.4:2 hunt

BGP Router ID: 10.20.1.3  AS:None       Local AS:100

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP VPN-IPv6 Routes

No Matching Entries Found

*A:Dut-C>show>router:bgp#

*A:Dut-C# show router bgp routes hunt 1.1.1.1/32

BGP Router ID: 10.20.1.3  AS:5000       Local AS:5000

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best

BGP IPv4 Routes

RIB In Entries

Network     : 1.1.1.1/32
Nexthop     : 10.20.1.1
From        : 10.20.1.1
Res. Nexthop: 10.20.1.1 (RSVP LSP: 1)
Local Pref. : 100     Interface Name : ip-10.10.2.3
Aggregator AS : None    Aggregator : None
Atomic Aggr. : Not Atomic MED : None
Community    : No Community Members
Cluster      : No Cluster Members
Originator Id : None    Peer Router Id : 10.20.1.1
Flags        : Used Valid Best Incomplete
AS-Path      : No As-Path

RIB Out Entries

Routes : 1
**A:ALA-12>config>router>bgp# show router bgp routes family ipv4**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>Nexthop</th>
<th>LocalPref</th>
<th>MED</th>
<th>VPN Label</th>
<th>As-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.1.0.0/24</td>
<td>10.20.1.20</td>
<td>100</td>
<td>10070:100</td>
<td>152784</td>
<td>10070 {14730}</td>
</tr>
</tbody>
</table>

**A:SR-12# show router bgp routes 100.0.0.0/30 hunt**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>Nexthop</th>
<th>LocalPref</th>
<th>MED</th>
<th>VPN Label</th>
<th>As-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.0.0.0/30</td>
<td>10.20.1.120</td>
<td>100</td>
<td>10001:100</td>
<td>152560</td>
<td>10001:1</td>
</tr>
</tbody>
</table>

**Legend**
- Status codes: u - used, s - suppressed, h - history, d - decayed, * - valid
- Origin codes: i - IGP, e - EGP, ? - incomplete, > - best
### RIB In Entries

<table>
<thead>
<tr>
<th>Network</th>
<th>100.0.0.0/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexthop</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Route Dist.</td>
<td>10.20.1.2:1</td>
</tr>
<tr>
<td>VPN Label</td>
<td>131070</td>
</tr>
<tr>
<td>From</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>10.10.1.2</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>100</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>none</td>
</tr>
<tr>
<td>Aggregator</td>
<td>none</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>Not Atomic</td>
</tr>
<tr>
<td>MED</td>
<td>none</td>
</tr>
<tr>
<td>Community</td>
<td>target:10.20.1.2:1</td>
</tr>
<tr>
<td>Cluster</td>
<td>No Cluster Members</td>
</tr>
<tr>
<td>Originator Id</td>
<td>None</td>
</tr>
<tr>
<td>Peer Router Id</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Flags</td>
<td>Used, Valid, Best, IGP</td>
</tr>
<tr>
<td>AS-Path</td>
<td>No As-Path</td>
</tr>
<tr>
<td>VPRN Imported</td>
<td>1 2 10 12</td>
</tr>
</tbody>
</table>

### RIB Out Entries

routes: 1

---

**A:praragon-sim1# /show router bgp routes mvpn-ipv4**

---

**BGP MVPN-IPv4 Routes**

<table>
<thead>
<tr>
<th>Flag</th>
<th>RouteType</th>
<th>OriginatorIP</th>
<th>LocalPref</th>
<th>MED</th>
<th>RD</th>
<th>SourceAS</th>
<th>SourceIP</th>
<th>GroupIP</th>
<th>VPNLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>u*&gt;i</td>
<td>Intra-Ad</td>
<td>10.20.1.4</td>
<td>100</td>
<td>0</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.20.1.4</td>
<td>-</td>
<td>-</td>
<td>No As-Path</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>u*&gt;i</td>
<td>Source-Ad</td>
<td>-</td>
<td>100</td>
<td>0</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.20.1.4</td>
<td>130.100.1.2</td>
<td>-</td>
<td>No As-Path</td>
<td>227.0.0.0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>u*&gt;i</td>
<td>Source-Join</td>
<td>-</td>
<td>100</td>
<td>0</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.20.1.4</td>
<td>150.100.1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

---

**Legend**

- Status codes: u - used, s - suppressed, h - history, d - decayed, * - valid
- Origin codes: i - IGP, e - EGP, ? - incomplete, > - best
**Show Commands**

```
No As-Path 226.0.0.0
===
Routes : 3

*A:praragon-sim1#

*A:praragon-sim1# show router bgp routes mvpn-ipv4 brief
===
BGP Router ID:10.20.1.3 AS:200 Local AS:200
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best
===
BGP MVPN-IPv4 Routes

Flag RouteType OriginatorIP SourceIP
RD SourceAS GroupIP

u*>i Intra-Ad 10.20.1.4 -
1:1 - -
u*>i Source-Ad - 130.100.1.2
1:1 - 227.0.0.0
u* >i Source-Join - 150.100.1.2
1:1 200 226.0.0.0

Routes : 3

*A:praragon-sim1#

*A:praragon-sim1# show router bgp routes mvpn-ipv4 type source-join source-as 200 source-ip 150.100.1.2 group-ip 226.0.0.0 detail
===
BGP Router ID:10.20.1.3 AS:200 Local AS:200
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best
===
BGP MVPN-IPv4 Routes

Route Type : Source-Join
Route Dist. : 1:1
Source AS : 200
Source IP : 150.100.1.2
Group IP : 226.0.0.0
Nexthop : 10.20.1.4
From : 10.20.1.4
Res. Nexthop : 0.0.0.0
Local Pref. : 100
Interface Name : NotAvailable
Aggregator AS : None
Aggregator : None
Atomic Aggr. : Not Atomic
MED : 0
Community : target:10.20.1.3:2
Cluster : No Cluster Members
Originator Id : None
Peer Router Id : 10.20.1.4
Flags : Used Valid Best IGP
```
AS-Path        : No As-Path
Routes : 1

*A:praragon-sim1#

*A:Dut-C# show router bgp routes ms-pw

BGP Router ID:10.20.1.3        AS:100         Local AS:100

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP MSPW Routes

Flag  Network                 RD
Nexthop                 AII-Type2/Preflen
As-Path
-------------------------------------------------------------------------------
  ?          3:10.20.1.3       100:3
         10.20.1.5          3:10.20.1.3:0/64  200 100
  ?          3:10.20.1.3       100:4
         10.20.1.5          3:10.20.1.3:0/64  200 100
  u*>?       6:10.20.1.6       100:6
         10.20.1.5          6:10.20.1.6:0/64  200 300 400
-------------------------------------------------------------------------------
Routes : 3

*A:DUT# show router bgp routes ipv4 detail

BGP Router ID:1.1.1.1          AS:100         Local AS:100

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Original Attributes

Network : 11.1.1.1/32
Nexthop : 192.168.1.1
Path Id : None
From   : 192.168.1.1
Res. Nexthop : 192.168.1.1
Local Pref. : n/a       Interface Name : net
Aggregator AS : None       Aggregator : None
Atomic Aggr. : Not Atomic  MED     : 5000
AIGP Metric : 100
Community : None
Cluster   : No Cluster Members
Originator Id : None  Peer Router Id : 2.2.2.2
Fwd Class : None  Priority : None
Flags : Used  Valid  Best  Incomplete
Route Source : External
AS-Path : 200 400 500

Modified Attributes

Network : 11.1.1.1/32
Nexthop : 192.168.1.1
Path Id : None
From : 192.168.1.1
Res. Nexthop : 192.168.1.1
Local Pref. : None  Interface Name : net
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : 5000
AIGP Metric : 110
Community : None
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 2.2.2.2
Fwd Class : None  Priority : None
Flags : Used  Valid  Best  Incomplete
Route Source : External
AS-Path : 200 400 500

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Network : 11.1.1.1/32
Nexthop : 192.168.1.1
Path Id : None
From : 192.168.1.1
Res. Nexthop : 192.168.1.1
Local Pref. : None  Interface Name : net
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : 5000
AIGP Metric : 110
Community : None
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 2.2.2.2
Fwd Class : None  Priority : None
Flags : Used  Valid  Best  Incomplete
Route Source : External
AS-Path : 200 400 500
### RIB Out Entries

<table>
<thead>
<tr>
<th>Network</th>
<th>11.1.1.1/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexthop</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Path Id</td>
<td>None</td>
</tr>
<tr>
<td>To</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>n/a</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>100</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>None</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>None</td>
</tr>
<tr>
<td>IGP Metric</td>
<td>150</td>
</tr>
<tr>
<td>Community</td>
<td>None</td>
</tr>
<tr>
<td>Cluster</td>
<td>None</td>
</tr>
<tr>
<td>Originator Id</td>
<td>None</td>
</tr>
<tr>
<td>Origin</td>
<td>Incomplete</td>
</tr>
<tr>
<td>AS-Path</td>
<td>200 400 500</td>
</tr>
</tbody>
</table>

---

### Routes: 2

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Nexthop</th>
<th>Path-Id</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>u*&gt;i</td>
<td>20.0.0.1/32</td>
<td>100</td>
<td>2010</td>
<td>10.20.1.2</td>
<td>None</td>
<td>131057</td>
</tr>
<tr>
<td></td>
<td>10.20.1.1.2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ub*i</td>
<td>20.0.0.1/32</td>
<td>100</td>
<td>2010</td>
<td>10.20.1.3</td>
<td>None</td>
<td>131067</td>
</tr>
<tr>
<td></td>
<td>10.20.1.1.3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Legend**

Status codes: u - used, s - suppressed, h - history, d - decayed, * - valid

Origin codes: i - IGP, e - EGP, ? - incomplete, > - best, b - backup
### BGP EVPN Mac Routes

<table>
<thead>
<tr>
<th>Network</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexthop</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>From</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>N/A</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>100</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>None</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>Not Atomic</td>
</tr>
<tr>
<td>AIGP Metric</td>
<td>None</td>
</tr>
<tr>
<td>Connector</td>
<td>None</td>
</tr>
<tr>
<td>Community</td>
<td>target:100:1 bgp-tunnel-encap:VXLAN mac-mobility:Seq:0/Static</td>
</tr>
<tr>
<td>Cluster</td>
<td>No Cluster Members</td>
</tr>
<tr>
<td>Originator Id</td>
<td>None</td>
</tr>
<tr>
<td>Peer Router Id</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Flags</td>
<td>Used  Valid  Best  IGP</td>
</tr>
<tr>
<td>Route Source</td>
<td>Internal</td>
</tr>
<tr>
<td>AS-Path</td>
<td>111</td>
</tr>
<tr>
<td>EVPN type</td>
<td>MAC</td>
</tr>
<tr>
<td>ESI</td>
<td>0:0:0:0:0:0:0:0:0:0:0:0</td>
</tr>
<tr>
<td>IP Address</td>
<td>N/A</td>
</tr>
<tr>
<td>Mac Address</td>
<td>00:00:01:00:01:02</td>
</tr>
<tr>
<td>MPLS Label1</td>
<td>X</td>
</tr>
<tr>
<td>Route Tag</td>
<td>Z</td>
</tr>
<tr>
<td>Neighbor-AS</td>
<td>111</td>
</tr>
<tr>
<td>Orig Validation</td>
<td>N/A</td>
</tr>
<tr>
<td>Source Class</td>
<td>0</td>
</tr>
<tr>
<td>Dest Class</td>
<td>0</td>
</tr>
</tbody>
</table>

### RIB Out Entries

| Routes | 1 |

*A:Dut-A# show router bgp routes evpn ip-prefix prefix 3.0.1.6/32 detail*

BGP EVPN IP-Prefix Routes

<table>
<thead>
<tr>
<th>Network</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexthop</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>From</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>N/A</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>100</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>None</td>
</tr>
<tr>
<td>Aggregator</td>
<td>None</td>
</tr>
<tr>
<td>Interface Name</td>
<td>NotAvailable</td>
</tr>
</tbody>
</table>
Atomic Aggr.       : Not Atomic             MED    : 0
AIGP Metric       : None
Connector         : None
Community         : target:100:1 mac-nh:00:00:01:00:01:02
target:100:1 mac-nh:00:00:01:00:01:02
bgp-tunnel-encap:VXLAN
Cluster           : No Cluster Members
Originator Id     : None Peer Router Id : 10.20.1.2
Flags             : Used Valid Best IGP
Route Source      : Internal
AS-Path           : No As-Path
EVPN type         : IP-PREFIX
ESI               : N/A Tag : 1
Gateway Address   : 00:00:01:00:01:02
Prefix            : 3.0.1.6/32 Route Dist. : 10.20.1.2:1
MPLS Label        : X
Route Tag          : Z
Neighbor-AS        : N/A
Orig Validation    : N/A
Source Class      : 0 Dest Class : 0

Modified Attributes

Network           : N/A
Nexthop           : 10.20.1.2
From              : 10.20.1.2
Res. Nexthop      : N/A
Local Pref.       : 100 Interface Name : NotAvailable
Aggregator AS      : None Aggregator : None
Atomic Aggr.       : Not Atomic MED : 0
AIGP Metric       : None
Connector         : None
Community         : target:100:1 mac-nh:00:00:01:00:01:02
target:100:1 mac-nh:00:00:01:00:01:02
bgp-tunnel-encap:VXLAN
Cluster           : No Cluster Members
Originator Id     : None Peer Router Id : 10.20.1.2
Flags             : Used Valid Best IGP
Route Source      : Internal
AS-Path           : 111
EVPN type         : IP-PREFIX
ESI               : N/A Tag : 1
Gateway Address   : 00:00:01:00:01:02
Prefix            : 3.0.1.6/32 Route Dist. : 10.20.1.2:1
MPLS Label        : X
Route Tag          : W
Neighbor-AS        : 111
Orig Validation    : N/A
Source Class      : 0 Dest Class : 0

--------------------------------------------------------------------------------- Routes : 1
---------------------------------------------------------------------------------
policy-test

Syntax  policy-test policy-name family family prefix prefix/pfxlen [longer] [neighbor neighbor] [display-rejects] [detail]

Context  show>router router-id>bgp>routes

Description  This command allows an operator to evaluate an existing policy against the RIB to identify what prefixes are matched/not matched by the policy prior to attaching it to a routing neighbor or instance.

Parameters  policy-name — Must be the name of an existing configured and committed policy.

family — ipv4 or ipv6

Default   ipv4

prefix — The IPv4 or IPv6 prefix/mask to be evaluated. The keyword longer may be specified to evaluate longer prefix matches. (optional)

vr-id — The router ID.

Default   base router if not specified

neighbor — The BGP neighbor (optional)

display-rejects — Display routes that were rejected by the policy. If not specified, only a count of rejected routes will be shown. (optional)

detail — When the policy modifies route attributes, it displays the modifications made to the routes. This command requires an exact prefix to be specified. (optional)

Sample Output

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 0.0.0.0/0 longer neighbor 220.0.0.2
===============================================================================
BGP Router ID:11.11.11.10      AS:11          Local AS:11
===============================================================================
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
===============================================================================
BGP IPv4 Routes
===============================================================================
Flag  Network                                            LocalPref   MED
      Nexthop                                            Path-Id     VPNLabel
      As-Path
-------------------------------------------------------------------------------
Accepted by Policy
u*>?  4.0.0.6/32                                         None        None

220.0.0.2                                          None        -
14
-------------------------------------------------------------------------------
Total Routes : 17 Routes rejected : 16

A:sim-1# show router bgp policy-test bgpprefix6 prefix 0.0.0.0/0 longer neighbor 220.0.0.2
<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted by Policy</td>
<td></td>
</tr>
<tr>
<td>u*&gt;?</td>
<td>4.0.0.6/32</td>
</tr>
</tbody>
</table>

Total Routes: 17 Routes rejected: 16

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 0.0.0.0/0 longer neighbor 220.0.0.2 display-rejects brief

<table>
<thead>
<tr>
<th>BGP IPv4 Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;?</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;i</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>*i</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>*i</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>u*&gt;i</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
<tr>
<td>*i</td>
</tr>
<tr>
<td>Rejected by Default action</td>
</tr>
</tbody>
</table>
Show Commands

*i    220.0.0.2/32
Rejected by Default action
*i    220.0.0.3/32
Rejected by Default action
u*>i  221.0.0.2/32

-------------------------------------------------------------------------------
Total Routes : 17 Routes rejected : 16
-------------------------------------------------------------------------------
A:sim-1# show router bgp policy-test bgpprefix6 prefix 0.0.0.0/0 longer neighbor 220.0.0.2 display-rejects

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

-------------------------------------------------------------------------------
BGP IPv4 Routes
-------------------------------------------------------------------------------
Flag  Network                                            LocalPref   MED
  Nexthop                                            Path-Id     VPNLabel
  As-Path
-------------------------------------------------------------------------------
Rejected by Default action
u*>?  2.2.2.2/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  4.0.0.1/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  4.0.0.2/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  4.0.0.3/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  4.0.0.4/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  4.0.0.5/32                                         None        None
          220.0.0.2                                          None        -
          14
Accepted by Policy
u*>?  4.0.0.6/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  6.0.0.1/32                                         None        None
          220.0.0.2                                          None        -
          14
Rejected by Default action
u*>?  7.0.0.1/32                                         None        None
          220.0.0.2                                          None        -
Rejected by Default action

- Rejected by Default action
  - u*>i  10.0.4.0/24
    - Nexthop: 220.0.0.2
    - Path Id: None
    - Res. Nexthop: 10.14.0.4
    - Local Pref.: None
    - Interface Name: to-sim-6

- Rejected by Default action
  - *i  10.12.0.0/24
    - Nexthop: 220.0.0.2
    - Path Id: None
    - Res. Nexthop: None
    - Local Pref.: None

- Rejected by Default action
  - u*>i  10.24.0.0/24
    - Nexthop: 220.0.0.2
    - Path Id: None
    - Res. Nexthop: None
    - Local Pref.: None

- Rejected by Default action
  - *i  12.12.12.12/32
    - Nexthop: 220.0.0.2
    - Path Id: None
    - Res. Nexthop: None
    - Local Pref.: None

- Rejected by Default action
  - *i  220.0.0.3/32
    - Nexthop: 220.0.0.2
    - Path Id: None
    - Res. Nexthop: None
    - Local Pref.: None

- Rejected by Default action
  - u*>i  221.0.0.2/32
    - Nexthop: 220.0.0.2
    - Path Id: None
    - Res. Nexthop: None
    - Local Pref.: None

Total Routes: 17 Routes rejected: 16

Legend -
Status codes: u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes: i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Network: 4.0.0.1/32
Nexthop: 220.0.0.2
Path Id: None
From: 220.0.0.2
Res. Nexthop: 10.14.0.4
Local Pref.: None
Aggregator AS: None
Aggregator: None
Atomic Aggr.: Not Atomic
MED: None
AIGP Metric: None
Connector: None
**Community** : target:65530:20
**Cluster** : No Cluster Members
**Originator Id** : None
**Peer Router Id** : 14.14.14.10
**Fwd Class** : None
**Priority** : None
**Flags** : Used Valid Best Incomplete
**Route Source** : External
**AS-Path** : 14

Total Routes : 1 Routes rejected : 1

---

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.6/32 neighbor 220.0.0.2

---

BGP Router ID:11.11.11.10 AS:11 Local AS:11

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

---

BGP IPv4 Routes

---

Accepted by Policy

---

**Original Attributes**

Network : 4.0.0.6/32
Nexthop : 220.0.0.2
Path Id : None
From : 220.0.0.2
Res. Nexthop : 10.14.0.4
Local Pref. : n/a
Aggregator AS : None
Aggregator : None
Atomic Aggr. : Not Atomic
MED : None
AIGP Metric : None
Connector : None
Community : target:65530:20
Cluster : No Cluster Members
Originator Id : None
Peer Router Id : 14.14.14.10
Fwd Class : None
Priority : None
Flags : Used Valid Best Incomplete
Route Source : External
AS-Path : 14

**Modified Attributes**

Network : 4.0.0.6/32
Nexthop : 220.0.0.2
Path Id : None
From : 220.0.0.2
Res. Nexthop : 10.14.0.4
Local Pref. : None
Aggregator AS : None
Aggregator : None
Atomic Aggr. : Not Atomic
MED : None
AIGP Metric : None
Connector : None
Community : 2:11 2:12 2:13 target:65530:20
Cluster: No Cluster Members
Originator Id: None
Fwd Class: None
Flags: Used Valid Best Incomplete
Route Source: External
AS-Path: 14

Routes: 1

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.6/32 longer neighbor 220.0.0.2

BGP IPv4 Routes
Flag  Network                  LocalPref  MED  Nexthop  Path-Id  VPNLabel
-------------------------------------------------------------------------------
Accepted by Policy
u>*?  4.0.0.6/32                None        None  220.0.0.2
                  None        -  14

Routes: 1

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.6/32 longer neighbor 220.0.0.2 detail

BGP IPv4 Routes
Flag  Network
-------------------------------------------------------------------------------
Accepted by Policy
u>*?  4.0.0.6/32

Routes: 1

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24 longer neighbor 220.0.0.2 brief

BGP IPv4 Routes
Flag  Network
-------------------------------------------------------------------------------
Accepted by Policy
u>*?  4.0.0.6/32

Routes: 1
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes
-----------------------------------------------
Flag  Network
-----------------------------------------------
Accepted by Policy
u*>?  4.0.0.6/32
-----------------------------------------------
Total Routes : 6 Routes rejected : 5
-----------------------------------------------
BGP Router ID:11.11.11.10  AS:11  Local AS:11
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes
-----------------------------------------------
Flag  Network
-----------------------------------------------
Rejected by Default action
u*>?  4.0.0.1/32
Rejected by Default action
u*>?  4.0.0.2/32
Rejected by Default action
u*>?  4.0.0.3/32
Rejected by Default action
u*>?  4.0.0.4/32
Rejected by Default action
u*>?  4.0.0.5/32
Accepted by Policy
u*>?  4.0.0.6/32
-----------------------------------------------
Total Routes : 6 Routes rejected : 5
-----------------------------------------------
BGP Router ID:11.11.11.10  AS:11  Local AS:11
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes
-----------------------------------------------
Flag  Network LocalPref  MED
   Nexthop  Path-Id  VFPNLabel
   As-Path
-----------------------------------------------
Rejected by Default action
u*>?  4.0.0.1/32           None        None
       220.0.0.2               None        -
       14
Rejected by Default action
u*>?  4.0.0.2/32           None        None
       220.0.0.2               None        -
       14
Rejected by Default action
u*>?  4.0.0.3/32           None        None
       220.0.0.2               None        -
       14
Rejected by Default action
u*>?  4.0.0.4/32           None        None
       220.0.0.2               None        -
       14
Rejected by Default action
u*>?  4.0.0.5/32           None        None
       220.0.0.2               None        -
       14
Accepted by Policy
u*>?  4.0.0.6/32           None        None
       220.0.0.2               None        -
       14
-------------------------------------------------------------------------------
Total Routes : 6 Routes rejected : 5
-------------------------------------------------------------------------------
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24
greater neighbor 220.0.0.2 display-rejects brief
-------------------------------------------------------------------------------
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
-------------------------------------------------------------------------------
BGP IPv4 Routes
-------------------------------------------------------------------------------
Flag  Network
-------------------------------------------------------------------------------
Rejected by Default action
u*>?  4.0.0.1/32
Rejected by Default action
u*>?  4.0.0.2/32
Rejected by Default action
u*>?  4.0.0.3/32
Rejected by Default action
u*>?  4.0.0.4/32
Rejected by Default action
u*>?  4.0.0.5/32
Accepted by Policy
u*>?  4.0.0.6/32
-------------------------------------------------------------------------------
Total Routes : 6 Routes rejected : 5
-------------------------------------------------------------------------------
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24
greater neighbor 220.0.0.2
### BGP IPv4 Routes

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Nexthop</th>
<th>Path-Id</th>
<th>VPNLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0.0.6/32</td>
<td>None</td>
<td>None</td>
<td>220.0.0.2</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total Routes: 6 Routes rejected: 5

```
A:sim-1# show router bgp policy-test bgpprefix44rej family vpn-ipv4 prefix 0.0.0.0/0 longer neighbor display-rejects
```

### BGP VPN-IPv4 Routes

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Nexthop</th>
<th>Path-Id</th>
<th>VPNLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>u&gt;*i</td>
<td>1:30:192.14.15.0/24</td>
<td>None</td>
<td>None</td>
<td>220.0.0.2</td>
<td></td>
<td>131069</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>u&gt;*i</td>
<td>65530:20:8.0.0.1/32</td>
<td>None</td>
<td>None</td>
<td>220.0.0.2</td>
<td></td>
<td>131070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>u&gt;*i</td>
<td>65530:20:10.0.3.0/24</td>
<td>None</td>
<td>None</td>
<td>220.0.0.2</td>
<td></td>
<td>131070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 101</td>
</tr>
<tr>
<td>u&gt;*i</td>
<td>65530:20:10.13.0.0/24</td>
<td>None</td>
<td>None</td>
<td>220.0.0.2</td>
<td></td>
<td>131070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 101</td>
</tr>
<tr>
<td>u&gt;*i</td>
<td>65530:20:10.23.0.0/24</td>
<td>None</td>
<td>None</td>
<td>220.0.0.2</td>
<td></td>
<td>131070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 101</td>
</tr>
<tr>
<td>Prefix</td>
<td>next-hop</td>
<td>MED</td>
<td>Local-Prep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:13.13.13.13/32</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:20.20.20.5/32</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:20.20.20.6/32</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:44.44.44.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.15.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.16.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.17.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.18.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.19.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.20.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.21.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.22.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.23.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.25.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:196.34.0.0/24</td>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Show Commands

14
Accepted by Policy
u*>i  220.0.0.2:50:192.50.50.0/24                        None        None
     220.0.0.2                                          None        131067
14
Accepted by Policy
u*>i  220.0.0.2:50:220.0.0.2/32                          None        None
     220.0.0.2                                          None        131067
-------------------------------------------------------------------------------
Total Routes : 22 Routes rejected : 1
-------------------------------------------------------------------------------

summary

Syntax

summary [all]
summary [family family] [neighbor ip-address]

Context

show>router>bgp

Description

This command displays a summary of BGP neighbor information.
If confederations are not configured, that portion of the output will not display.
The “State” field displays the global BGP operational state. The valid values are:
Up — BGP global process is configured and running.
Down — BGP global process is administratively shutdown and not running.
Disabled — BGP global process is operationally disabled. The process must be restarted by the operator.
For example, if a BGP peer is operationally disabled, then the state in the summary table shows the state ‘Disabled’

Parameters

family — Specify the type of routing information to be distributed by the BGP instance.
Values
ipv4 — Displays only those BGP peers that have the IPv4 family enabled.
vpn-ipv4 — Displays the BGP peers that are IP-VPN capable.
ipv6 — Displays the BGP peers that are IPv6 capable.
mcast-ipv4 — Displays the BGP peers that are mcast-ipv4 capable.

neighbor ip-address — Clears damping information for entries received from the BGP neighbor.
Values
ipv4-address: a.b.c.d
ipv6-address: x:x:x:x:x:x:x (eight 16-bit pieces)
x:x:x:x:x:d.d.d
x: [0 — FFFF]H
d: [0 — 255]D

Output

BGP Summary Output — The following table describes the command output fields for a BGP summary.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then the value is the same as the AS.</td>
</tr>
<tr>
<td>BGP Admin State</td>
<td><strong>Down</strong> — BGP is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Up</strong> — BGP is administratively enabled.</td>
</tr>
<tr>
<td>BGP Oper State</td>
<td><strong>Down</strong> — BGP is operationally disabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Up</strong> — BGP is operationally enabled.</td>
</tr>
<tr>
<td>Bfd</td>
<td><strong>Yes</strong> — BFD is enabled.</td>
</tr>
<tr>
<td></td>
<td><strong>No</strong> — BFD is disabled.</td>
</tr>
<tr>
<td>Confederation AS</td>
<td>The configured confederation AS.</td>
</tr>
<tr>
<td>Member Confederations</td>
<td>The configured members of the BGP confederation.</td>
</tr>
<tr>
<td>Number of Peer Groups</td>
<td>The total number of configured BGP peer groups.</td>
</tr>
<tr>
<td>Number of Peers</td>
<td>The total number of configured BGP peers.</td>
</tr>
<tr>
<td>Total BGP Active Routes</td>
<td>The total number of BGP routes used in the forwarding table.</td>
</tr>
<tr>
<td>Total BGP Routes</td>
<td>The total number of BGP routes learned from BGP peers.</td>
</tr>
<tr>
<td>Total BGP Paths</td>
<td>The total number of unique sets of BGP path attributes learned from BGP peers.</td>
</tr>
<tr>
<td>Total Path Memory</td>
<td>Total amount of memory used to store the path attributes.</td>
</tr>
<tr>
<td>Total Suppressed Routes</td>
<td>Total number of suppressed routes due to route damping.</td>
</tr>
<tr>
<td>Total History Routes</td>
<td>Total number of routes with history due to route damping.</td>
</tr>
<tr>
<td>Total Decayed Routes</td>
<td>Total number of decayed routes due to route damping.</td>
</tr>
<tr>
<td>Total VPN Peer Groups</td>
<td>The total number of configured VPN peer groups.</td>
</tr>
<tr>
<td>Total VPN Peers</td>
<td>The total number of configured VPN peers.</td>
</tr>
<tr>
<td>Total VPN Local Rts</td>
<td>The total number of configured local VPN routes.</td>
</tr>
<tr>
<td>Total VPN Remote Rts</td>
<td>The total number of configured remote VPN routes.</td>
</tr>
</tbody>
</table>
### Sample Output

```
A:Dut-C# show router bgp summary neighbor 3FFE::A0A:1064

BGP Router ID : 10.20.1.3 AS : 100 Local AS : 100
BGP Admin State : Up BGP Oper State : Up
Number of Peer Groups : 4 Number of Peers : 5
Total BGP Paths : 8 Total Path Memory : 1212
Total BGP Active Rts. : 0 Total BGP Rts. : 0
Total Suppressed Rts. : 0 Total Hist. Rts. : 0
Total Decay Rts. : 0
Total VPN Peer Groups : 0 Total VPN Peers : 0
Total VPN Local Rts. : 0
Total VPN Remote Rts. : 0 Total VPN Remote Active Rts.: 0
Total VPN Supp. Rts. : 0 Total VPN Hist. Rts. : 0
Total VPN Decay Rts. : 0
Total IPv6 Remote Rts. : 5 Total IPv6 Rem. Active Rts. : 4

BGP Summary
```

### Table: Label and Description (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total VPN Remote Active Rts.</td>
<td>The total number of active remote VPN routes used in the forwarding table.</td>
</tr>
<tr>
<td>Total VPN Supp. Rts.</td>
<td>Total number of suppressed VPN routes due to route damping.</td>
</tr>
<tr>
<td>Total VPN Hist. Rts.</td>
<td>Total number of VPN routes with history due to route damping.</td>
</tr>
<tr>
<td>Total VPN Decay Rts.</td>
<td>Total number of decayed routes due to route damping.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>BGP neighbor address.</td>
</tr>
<tr>
<td>AS (Neighbor)</td>
<td>BGP neighbor autonomous system number.</td>
</tr>
<tr>
<td>PktRcvd</td>
<td>Total number of packets received from the BGP neighbor.</td>
</tr>
<tr>
<td>PktSent</td>
<td>Total number of packets sent to the BGP neighbor.</td>
</tr>
<tr>
<td>InQ</td>
<td>The number of BGP messages to be processed.</td>
</tr>
<tr>
<td>OutQ</td>
<td>The number of BGP messages to be transmitted.</td>
</tr>
<tr>
<td>Up/Down</td>
<td>The amount of time that the BGP neighbor has either been established or not established depending on its current state.</td>
</tr>
<tr>
<td>State</td>
<td>Recv/Actv/Sent</td>
</tr>
</tbody>
</table>
A:Dut-C# show router bgp summary neighbor 10.20.1.4 family ipv6
---------------------------------------------------------------------
BGP Router ID : 10.20.1.3         AS : 100     Local AS : 100
---------------------------------------------------------------------
BGP Admin State         : Up          BGP Oper State              : Up
Number of Peer Groups   : 4           Number of Peers             : 5
Total BGP Paths         : 8           Total Path Memory           : 1212
Total BGP Active Rts.   : 0           Total BGP Rts.              : 0
Total Suppressed Rts.   : 0           Total Hist. Rts.            : 0
Total Decay Rts.        : 0
Total VPN Peer Groups   : 0           Total VPN Peers             : 0
Total VPN Local Rts.    : 0
Total VPN Remote Rts.   : 0           Total VPN Remote Active Rts.: 0
Total VPN Supp. Rts.    : 0           Total VPN Hist. Rts.        : 0
Total VPN Decay Rts.    : 0
Total IPv6 Remote Rts.  : 5           Total IPv6 Rem. Active Rts. : 4
---------------------------------------------------------------------
BGP IPv6 Summary
---------------------------------------------------------------------
Neighbor
AS PktRcvd PktSent InQ OutQ Up/Down State|Recv/Actv/Sent
10.20.1.4
100     554     572    0    0 00h41m27s 1/0/3
---------------------------------------------------------------------
A:Dut-C#
A:SetupCLI>show>router# bgp summary
---------------------------------------------------------------------
BGP Router ID : 21.3.4.5          AS : 35012   Local AS : 100
---------------------------------------------------------------------
BGP Admin State         : Up          BGP Oper State              : Up
Confederation AS        : 40000
Member Confederations   : 35012 65205 65206 65207 65208
Rapid Withdrawal        : Disabled
Bfd Enabled             : Yes
Number of Peer Groups   : 1           Number of Peers             : 1
Total BGP Paths         : 3           Total Path Memory           : 396
Total BGP Active Rts.   : 0           Total BGP Rts.              : 0
Total Suppressed Rts.   : 0           Total Hist. Rts.            : 0
Total Decay Rts.        : 0
Total VPN Peer Groups : 1           Total VPN Peers             : 1
Total VPN Local Rts. : 0
Total VPN Remote Rts. : 0           Total VPN Remote Active Rts.: 0
Total VPN Supp. Rts. : 0           Total VPN Hist. Rts.        : 0
Total VPN Decay Rts. : 0
Total IPv6 Remote Rts. : 0           Total IPv6 Rem. Active Rts. : 0
===============================================================================
BGP Summary
===============================================================================
Neighbor                   AS  PktRcvd InQ  PktSent OutQ  Up/Down  State|Rcv/Act/Sent  (IPv4)
                           PktSent OutQ                 Rcv/Act/Sent  (VpnIPv4)
                           Rcv/Act/Sent  (IPv6)
                           Rcv/Act/Sent  (MCastIPv4)
-------------------------------------------------------------------------------
3.3.3.3        20       0    0     01h55m56s Active
0    0
===============================================================================
A:SetupCLI>show>router#

fib

**Syntax**
```plaintext
fib slot-number [family] [ip-prefix/prefix-length [longer]]
[secondary] [qos] [accounting-class]
fib slot-number [ipv4|ipv6] summary
fib slot-number nh-table-usage
```

**Context**

- `show>router>fib`

**Description**
This command displays FIB information for a specific IOM.

**Parameters**
- `slot-number` — Specifies the slot number.
  - **Values**: 1 — 10

- `family` — Specify the type of routing information to be distributed by the instance.
  - **Values**:
    - `ipv4` — Displays only those peers that have the IPv4 family enabled.
    - `ipv6` — Displays the peers that are IPv6 capable.

- `ip-prefix` — The IP prefix for prefix list entry in dotted decimal notation.
  - **Values**:
    - `ipv4-address`: a.b.c.d
    - `ipv6-address`: x:x:x:x:x:x:x:x (eight 16-bit pieces)
    - `ipv6-address`: x:x:x:x:d:d.d
    - `ipv6-address`: x: [0 — FFFF]H
    - `ipv6-address`: d: [0 — 255]D

- `prefix-length` — Specifies prefix length.
  - **Values**:
    - `ipv4-prefix-length`: 0 — 32
    - `ipv6-prefix-length`: 0 — 128

- `longer` — Specifies the prefix list entry matches any route that matches the specified `ip-prefix` and prefix.
mask length values equal to or greater than the specified mask.

**secondary** — Specifies a secondary FIB.

**summary** — Displays a summary of the FIB information.

**nh-table-usage** — Shows next-hop table usage.

**qos** — Specifies the QoS.

**accounting-class** — Specifies the accounting class.

### Output

#### Sample Output

```plaintext
*A:pel# show router fib 1

FIB Display

Prefix [Flags] Protocol
NextHop Src-Class

180.10.0.1/32 [S] BGP
 10.10.10.1 Indirect (lag1-to-server1)
 10.10.10.5 Indirect (lag2-to-server2)
 10.10.10.10 Indirect (lag3-to-server3)

Total Entries : 1
Flags: S = sticky ECMP supported

```

### mvpn

#### Syntax

`mvpn`

#### Context

`show>router`

#### Description

This command displays Multicast VPN related information.

#### Sample Output

```plaintext
*A:praragon-sim1# show router 100 mvpn

MVPN 100 configuration data

i-pmsi : 224.100.201.101 ssm admin status : Up
hello-interval: 30 seconds hello-multiplier : 35 * 0.1
three-way-hello: Disabled tracking support : Disabled
s-pmsi range : 0.0.0.0/0 data-delay-interval: 3 seconds
join-tlv-packing : N/A
signaling : Bgp

```

---

7950 SR OS Routing Protocols Guide
route-table

Syntax

```plaintext
route-table [family] [ip-prefix/prefix-length] [longer|exact|protocol protocol-name] [all] [next-hop-type type] [qos] [alternative] [accounting-class]
```

**Context**

```
show>router>route-table
```

**Description**

This command displays route-table information.

**Output**

**Sample Output**

```plaintext
show router route-table 180.10.0.1/32
```

```
Route Table (Router: Base)

<table>
<thead>
<tr>
<th>Dest Prefix</th>
<th>Flags</th>
<th>Type</th>
<th>Proto</th>
<th>Age</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>180.10.0.1/32</td>
<td>[B][S]</td>
<td>Remote</td>
<td>BGP</td>
<td>00h00m49s</td>
<td>170</td>
</tr>
<tr>
<td>180.10.0.1/32</td>
<td>[B][S]</td>
<td>Remote</td>
<td>BGP</td>
<td>00h00m49s</td>
<td>170</td>
</tr>
<tr>
<td>180.10.0.1/32</td>
<td>[B][S]</td>
<td>Remote</td>
<td>BGP</td>
<td>00h00m49s</td>
<td>170</td>
</tr>
</tbody>
</table>

No. of Routes: 1

Flags:
- n = Number of times nexthop is repeated
- B = BGP backup route available
- L = LFA nexthop available
- S = sticky ECMP requested
```
Clear Commands

damping

Syntax  
damping [[ip-prefix] [ip-prefix-length] [neighbor ip-address]] | [group name]

Context  
clear>router>bgp

Description  
This command clears or resets the route damping information for received routes.

Parameters  
ip-prefix/ip-prefix-length — Clears damping information for entries that match the IP prefix and prefix length.

Values  
ipv4-prefix: a.b.c.d (host bits must be 0)
ipv4-prefix-length: 0 — 32
ipv6-prefix: x:x:x:x:x:x:x (eight 16-bit pieces)
ipv6-prefix-length: 0 — 128

neighbor ip-address — Clears damping information for entries received from the BGP neighbor.

Values  
ipv4-address: a.b.c.d
ipv6-address: x:x:x:x:x:x:x (eight 16-bit pieces)
x: [0 — FFFF]H
d: [0 — 255]D

Values  
interface: 32 chars maximum, mandatory

Values  
for link local addresses

group name — Clears damping information for entries received from any BGP neighbors in the peer group.

Values  
32 characters maximum

flap-statistics

Syntax  
flap-statistics [[ip-prefix] [mask] [neighbor ip-address]] | [group group-name] | [regex reg-exp] | [policy policy-name]

Context  
clear>router>bgp

Description  
This command clears route flap statistics.

Parameters  
ip-prefix/mask — Clears route flap statistics for entries that match the specified IP prefix and mask length.

Values  
ip-prefix: a.b.c.d (host bits must be 0)
mask: 0 — 32
Clear Commands

**neighbor ip-address** — Clears route flap statistics for entries received from the specified BGP neighbor.

**Values**
- **ipv4-address**: a.b.c.d
- **ipv6-address**: x:x:x:x:x:x:x (eight 16-bit pieces)
  - x:x:x:x:d.d.d.d
  - x: [0 — FFFF]H
  - d: [0 — 255]D

**group group-name** — Clears route flap statistics for entries received from any BGP neighbors in the specified peer group.

**regex reg-exp** — Clears route flap statistics for all entries which have the regular expression and the AS path that matches the regular expression.

**policy policy-name** — Clears route flap statistics for entries that match the specified route policy.

**neighbor**

**Syntax**
```
neighbor {ip-address | as as-number | external | all} [soft | soft-inbound]
neighbor {ip-address | as as-number | external | all} statistics
neighbor ip-address end-of-rib
```

**Context**
```
clear>router>bgp
```

**Description**
This command resets the specified BGP peer or peers. This can cause existing BGP connections to be shutdown and restarted.

**Parameters**
- **ip-address** — Resets the BGP neighbor with the specified IP address.
  - **Values**
    - **ipv4-address**: a.b.c.d
    - **ipv6-address**: x:x:x:x:x:[-interface]
      - x:x:x:x:d.d.d.d:[-interface]
      - x: [0 — FFFF]H
      - d: [0 — 255]D
      - interface: 32 characters maximum, mandatory for link local addresses

- **as as-number** — Resets all BGP neighbors with the specified peer AS.
  - **Values**
    - 1 — 65535

- **external** — Resets all EBGP neighbors.

- **all** — Resets all BGP neighbors.

- **soft** — The specified BGP neighbor(s) re-evaluates all routes in the Local-RIB against the configured export policies.

- **soft-inbound** — The specified BGP neighbor(s) re-evaluates all routes in the RIB-In against the configured import policies.

- **statistics** — The BGP neighbor statistics.

- **end-of-rib** — Clears the routing information base (RIB). This command applies when the SR OS node is helping the BGP neighbor through a BGP graceful restart. When the clear router bgp neighbor
command is issued without the end-of-rib option and the neighbor is in the process of restarting, stale routes from the neighbor will be retained until the stale-routes-time is reached or else the neighbor exits graceful restart. When the command is issued with the end-of-rib option, stale routes from the neighbor are deleted immediately and graceful restart procedures are aborted.

**protocol**

**Syntax**  protocol

**Context**  clear>router>bgp

**Description**  Resets the entire BGP protocol.
Debug Commands

events

Syntax

```
events [neighbor ip-address | group name]
no events
```

Context

debug>router>bgp

Description

This command logs all events changing the state of a BGP peer.

Parameters

- **neighbor ip-address** — Debugs only events affecting the specified BGP neighbor.
  - **Values**
    - ipv4-address: `a.b.c.d` (host bits must be 0)
    - ipv6-address: `x:x:x:x:x:x:0` [-interface] (eight 16-bit pieces)
      - x: 0 — FFFF
      - d: 0 — 255
    - interface: 32 characters maximum, mandatory for link local addresses

- **group name** — Debugs only events affecting the specified peer group and associated neighbors.

graceful-restart

Syntax

```
graceful-restart [neighbor ip-address | group name]
no graceful-restart
```

Context

debug>router>bgp

Description

This command enables debugging for BGP graceful-restart.

The no form of the command disables the debugging.

Parameters

- **neighbor ip-address** — Debugs only events affecting the specified BGP neighbor.
  - **Values**
    - ipv4-address: `a.b.c.d` (host bits must be 0)
    - ipv6-address: `x:x:x:x:x:x:x:0` [-interface] (eight 16-bit pieces)
      - x: 0 — FFFF
      - d: 0 — 255
    - interface: 32 characters maximum, mandatory for link local addresses

- **group name** — Debugs only events affecting the specified peer group and associated neighbors.
keepalive

Syntax

keepalive [neighbor ip-addr | group name]
no keepalive

Context
debug>router>bgp

Description
This command decodes and logs all sent and received keepalive messages in the debug log.

Parameters
neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values
ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x::x:x:x:x[-interface]

x: [0 — FFFF]H
d: [0 — 255]D
interface: 32 characters maximum, mandatory for link local addresses)

group name — Debugs only events affecting the specified peer group and associated neighbors.

notification

Syntax

notification [neighbor ip-addr | group name]
no notification

Context
debug>router>bgp

Description
This command decodes and logs all sent and received notification messages in the debug log.

Parameters
neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values
ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x::x:x:x:x[-interface]

x: [0 — FFFF]H
d: [0 — 255]D
interface: 32 characters maximum, mandatory for link local addresses)

group name — Debugs only events affecting the specified peer group and associated neighbors.

open

Syntax

open [neighbor ip-addr | group name]
no open

Context
debug>router>bgp

Description
This command decodes and logs all sent and received open messages in the debug log.
Parameters  neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values  ipv4-address:  a.b.c.d (host bits must be 0)
         ipv6-address:  x:x:x:x:x:x:x:[-interface]
                          x:x:x:x:x:d.d.d.d:[-interface]
                                x: [0 — FFFF]H
                                d: [0 — 255]D
                                interface: 32 characters maximum, mandatory for link local
                                addresses)

         group name — Debugs only events affecting the specified peer group and associated neighbors.

outbound-route-filtering

Syntax  [no] outbound-route-filtering

Context  debug>router>bgp

Description  This command enables debugging for all BGP outbound route filtering (ORF) packets. ORF is used to
inform a neighbor of targets (using target-list) that it is willing to receive.

packets

Syntax  packets [neighbor ip-address | group name]

Context  debug>router>bgp

Description  This command decodes and logs all sent and received BGP packets in the debug log.

Parameters  neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values  ipv4-address:  a.b.c.d (host bits must be 0)
         ipv6-address:  x:x:x:x:x:x:x:[-interface]
                          x:x:x:x:x:d.d.d.d:[-interface]
                                x: [0 — FFFF]H
                                d: [0 — 255]D
                                interface: 32 characters maximum, mandatory for link local
                                addresses)

         group name — Debugs only events affecting the specified peer group and associated neighbors.
route-refresh

Syntax  
route-refresh [neighbor ip-address | group name]

no route-refresh

Context  
debug>router:bgp

Description  
This command enables and disables debugging for BGP route-refresh.

Parameters  
neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values  
ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x:x[-interface]
             x:x:x:x:x:d.d.d[-interface]
x: [0 — FFFF]H
d: [0 — 255]D
interface: 32 characters maximum, mandatory for link local addresses)

group name — Debugs only events affecting the specified peer group and associated neighbors.

rtm

Syntax  
rtm [neighbor ip-address | group name]

no rtm

Context  
debug>router:bgp

Description  
This command logs RTM changes in the debug log.

Parameters  
neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values  
ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x:x[-interface]
             x:x:x:x:x:d.d.d[-interface]
x: [0 — FFFF]H
d: [0 — 255]D
interface: 32 characters maximum, mandatory for link local addresses)

group name — Debugs only events affecting the specified peer group and associated neighbors.
socket

**Syntax**

socket [neighbor ip-address | group name]

no socket

**Context**

debug>router:bgp

**Description**

This command logs all TCP socket events to the debug log.

**Parameters**

neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

group name — Debugs only events affecting the specified peer group and associated neighbors.

**Values**

ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x:x:[interface]

x: [0 — FFFF]H
d: [0 — 255]D

interface: 32 characters maximum, mandatory for link local addresses)

**timers**

**Syntax**

timers [neighbor ip-address | group name]

no timers

**Context**

d debug>router:bgp

**Description**

This command logs all BGP timer events to the debug log.

**Parameters**

neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

group name — Debugs only events affecting the specified peer group and associated neighbors.

**Values**

ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x:x:[interface]

x: [0 — FFFF]H
d: [0 — 255]D

interface: 32 characters maximum, mandatory for link local addresses)
update

Syntax  update [neighbor ip-address | group name]

no update

Context  debug>router>bgp

Description  This command decodes and logs all sent and received update messages in the debug log.

Parameters

neighbor ip-address — Debugs only events affecting the specified BGP neighbor.

Values

ipv4-address: a.b.c.d (host bits must be 0)
ipv6-address: x:x:x:x:x:x[:interface]
x:x:x:x:d.d.d.d[-interface]
x: [0 — FFFF]H
d: [0 — 255]D
interface: 32 characters maximum, mandatory for link local addresses)

group name — Debugs only events affecting the specified peer group and associated neighbors.
Configuring Route Policies with CLI

This section provides information to configure route policies using the command line interface.

Topics in this section include:

- Route Policy Configuration Overview on page 780
  - When to Create Routing Policies on page 780
  - Policy Evaluation on page 782
- Configuring Route Policy Components on page 786
  - Creating a Route Policy on page 788
  - Beginning the Policy Statement on page 787
  - Configuring an Entry on page 790
  - Configuring a Prefix List on page 791
- Route Policy Configuration Management Tasks on page 792
Route Policy Configuration Overview

Route policies allow you to configure routing according to specifically defined policies. You can create policies and entries to allow or deny paths based on various parameters such as destination address, protocol, packet size, and community list.

Policies can be as simple or complex as required. A simple policy can block routes for a specific location or IP address. More complex policies can be configured using numerous policy statement entries containing matching conditions to specify whether to accept or reject the route, control how a series of policies are evaluated, and manipulate the characteristics associated with a route.

When to Create Routing Policies

Route policies are created in the config>router context. There are no default route policies. Each route policy must be explicitly created and applied. Applying route policies can introduce more efficiency as well as more complexity to routers’.

A route policy impacts the flow of routing information or packets within and through the router. A routing policy can be specified to prevent a particular customer’s routes to be placed in the route table which causes those routes to not forward traffic to various destinations and the routes are not advertised by the routing protocol to neighbors.

Route policies can be created to control:

- A protocol to export all the active routes learned by that protocol.
- Route characteristics to control which route is selected to act as the active route to reach a destination and advertise the route to neighbors.
- Protocol to import all routes into the routing table. A routing table must learn about particular routes to be able to forward packets and redistribute to other routing protocols.
- Damping.

Before a route policy is applied, analyze the policy’s purpose and be aware of the results (and consequences) when packets match the specified criteria and the associated actions and default actions, if specified, are executed. Membership reports can be filtered based on a specific source address.
# Default Route Policy Actions

Each routing protocol has default behaviors for the import and export of routing information. Table 17 shows the default behavior for each routing protocol.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Import</th>
<th>Export</th>
</tr>
</thead>
</table>
| OSPF     | Not applicable. All OSPF routes are accepted from OSPF neighbors and cannot be controlled via route policies. | • Internal routes: All OSPF routes are automatically advertised to all neighbors.  
• External routes: By default all non-OSPF learned routes are not advertised to OSPF neighbors |
| IS-IS    | Not applicable. All IS-IS routes are accepted from IS-IS neighbors and can not be controlled via route policies | • Internal routes: All IS-IS routes are automatically advertised to all neighbors.  
• External routes: By default all non-IS-IS learned routes are not advertised to IS-IS peers. |
| RIP      | By default, all RIP-learned routes are accepted. | • External routes: By default all non-RIP learned routes are not advertised to RIP peers. |
Policy Evaluation

Routing policy statements can consist of as few as one or several entries. The entries specify the matching criteria. A route is compared to the first entry in the policy statement. If it matches, the specified entry action is taken, either accepted or rejected. If the action is to accept or reject the route, that action is taken and the evaluation of the route ends.

If the route does not match the first entry, the route is compared to the next entry (if more than one is configured) in the policy statement. If there is a match with the second entry, the specified action is taken. If the action is to accept or reject the route, that action is taken and the evaluation of the route ends, and so on.

Each route policy statement can have a default-action clause defined. If a default-action is defined for one or more of the configured route policies, then the default actions should be handled in the following ways:

- The process stops when the first complete match is found and executes the action defined in the entry.
- If the packet does not match any of the entries, the system executes the default action specified in the policy statement.

Figure 24 depicts an example of the route policy process.

Route policies can also match a given route policy entry and continue to search for other entries within either the same route policy or the next route policy by specifying the next-entry or next-policy option in the entry’s action command. Policies can be constructed to support multiple states to the evaluation and setting of various route attributes.

Figure 25 depicts the next-policy and next-entry route processes.
Figure 24: Route Policy Process Example

ROUTE

POLICY-STATEMENT 274
DEFAULT ACTION
ENTRY 1
ENTRY 20
ENTRY 30
ENTRY ACTION: matches ACCEPT OR REJECT
matches ACCEPT OR REJECT
matches ACCEPT OR REJECT
no match

POLICY-STATEMENT 275
DEFAULT ACTION
ENTRY 1
ENTRY 2
ENTRY 3
ENTRY ACTION: matches ACCEPT OR REJECT
matches ACCEPT OR REJECT
matches ACCEPT OR REJECT
no match

DEFAULT ACTION SPECIFIED?
yes
PERFORM DEFAULT ACTION

no
PERFORM ACTION SPECIFIED BY PROTOCOL
See Table 17, Default Route Policy Actions, on page 781
Figure 25: Next Policy Logic Example
Basic Configurations

This section provides information to configure route policies and configuration examples of common tasks. The minimal route policy parameters that need to be configured are:

- Policy statement with the following parameters specified:
  - At least one entry
  - Entry action

Following is a sample route policy configuration:

```
A:ALA-B>config>router>policy-options# info
--
 policy-statement "aggregate-customer-peer-only"
 entry 1
 from
 community "all-customer-announce"
 exit
 action accept
 exit
 exit
 default-action reject
 exit
 exit
--
A:ALA-B>config>router>policy-options#
```

Configuring Route Policy Components

Use the CLI syntax displayed below to configure:

- Creating a Route Policy on page 788
- Beginning the Policy Statement on page 787
- Configuring an Entry on page 790
- Configuring a Prefix List on page 791
Beginning the Policy Statement

Use the following CLI syntax to begin a policy statement configuration. In order for a policy statement to be complete an entry must be specified (see Configuring an Entry on page 790).

**CLI Syntax:**
```
cfg-rtr> policy-options
 begin
 policy-statement name
 description text
```

The following error message displays when you try to modify a policy options command without entering `begin` first.

```A:ALA-B>cfg-rtr> policy-options# policy-statement “allow all”
MINOR: CLI The policy-options must be in edit mode by calling begin before any changes can be made.
```

The following example displays policy statement configuration command usage. These commands are configured in the `config-router` context.

**Example:**
```
cfg-rtr> policy-options
 policy-options# begin
```

There are no default policy statement options. All parameters must be explicitly configured.
Creating a Route Policy

To enter the mode to create or edit route policies, you must enter the `begin` keyword at the `config>router>policy-options` prompt. Other editing commands include:

- The `commit` command saves changes made to route policies during a session.
- The `abort` command discards changes that have been made to route policies during a session.

The following error message displays when the you try to modify a policy options command without entering `begin` first.

```plaintext
A:ALA-B>config>router>policy-options# policy-statement "allow all"
MINOR: CLI The policy-options must be in edit mode by calling begin before any changes can be made.

A:ALA-B>config>router>policy-options# info
#--
Policy
#--

 policy-options
 begin
 policy-statement "allow all"
 description "General Policy"
 ...
 exit
 exit
--
A:ALA-B>config>router>policy-options#
```
Configuring a Default Action

Specifying a default action is optional. The default action controls those packets not matching any policy statement entries. If no default action is specified for the policy, then the action associated with the protocol to which the routing policy was applied is performed. The default action is applied only to those routes that do not match any policy entries.

A policy statement must include at least one entry (see Configuring an Entry on page 790).

To enter the mode to create or edit route policies, you must enter the `begin` keyword at the `config>router>policy-options` prompt. Other editing commands include:

- The `commit` command saves changes made to route policies during a session.
- The `abort` command discards changes that have been made to route policies during a session.

The following example displays the default action configuration:
Configuring an Entry

An entry action must be specified. The other parameters in the entry action context are optional. Refer to the Route Policy Command Reference on page 819 for the commands and syntax.

The following example displays entry parameters and includes the default action parameters which were displayed in the previous section.

```
A:ALA-B>config>router>policy-options# info
--
policy-statement "1"
 entry 1
 to
 neighbor 10.10.10.104
 exit
 action accept
 exit
 exit
entry 2
 from
 protocol ospf 1
 exit
 to
 protocol ospf
 neighbor 10.10.0.91
 exit
 action accept
 exit
 exit
default-action accept
 . . .
 exit
exit
--
A:ALA-B>config>router>policy-options#
policy-statement "exporttmsgrt"
 entry 1
 from
 protocol vpn-leak
 exit
 action accept
 exit
 exit
entry 2
 from
 protocol tms
 exit
 action accept
 exit
 exit
 exit
commit
exit
exit
```
Configuring a Prefix List

The following example displays a prefix list configuration:

```
A:ALA-B>config>router>policy-options# info
--
prefix-list "western"
 prefix 10.10.0.1/32 exact
 prefix 10.10.0.2/32 exact
 prefix 10.10.0.3/32 exact
 prefix 10.10.0.4/32 exact
exit
damping "damptest123"
 half-life 15
 max-suppress 60
 reuse 750
exit
--
A:ALA-B>config>router>policy-options#
```
Route Policy Configuration Management Tasks

This section discusses the following route policy configuration management tasks:

- Editing Policy Statements and Parameters on page 792
- Deleting an Entry on page 794
- Deleting a Policy Statement on page 794

Editing Policy Statements and Parameters

Route policy statements can be edited to modify, add, or delete parameters. To enter the mode to edit route policies, you must enter the `begin` keyword at the `config>router> policy-options` prompt. Other editing commands include:

- The `commit` command saves changes made to route policies during a session.
- The `abort` command discards changes that have been made to route policies during a session.

The following example displays a changed configuration:

```
A:ALA-B>config>router>policy-options>policy-statement# info
--
description "Level 1"
entry 1
to
 protocol bgp
 neighbor 10.10.10.104
exit
action accept
exit
exit
entry 2
from
 protocol ospf
exit
to
 protocol ospf
 neighbor 10.10.0.91
exit
action accept
exit
exit
exit
entry 4
description "new entry"
from
 protocol isis
 area 0.0.0.20
exit
action reject
```
exit
default-action accept
    as-path add "test"
    community add "365"
    damping "flapper"
    next-hop 10.10.10.104
exit
----------------------------------------------------------------
Deleting an Entry

Use the following CLI syntax to delete a policy statement entry:

**CLI Syntax:**
```
config>router>policy-options
 begin
 commit
 abort
 policy-statement name
 no entry entry-id
```

The following example displays the commands required to delete a policy statement entry.

**Example:**
```
config>router>policy-options# begin
policy-options# policy-statement "1"
policy-options>policy-statement# no entry 4
policy-options>policy-statement# commit
```

Deleting a Policy Statement

Use the following CLI syntax to delete a policy statement:

**CLI Syntax:**
```
config>router>policy-options
 begin
 commit
 abort
 no policy-statement name
```

The following example displays the commands required to delete a policy statement.

**Example:**
```
config>router>policy-options# begin
policy-options# no policy-statement 1
policy-options# commit
```
In This Chapter

This chapter provides information about configuring route policies.

Topics in this chapter include:

- Configuring Route Policies on page 796
  → Policy Statements on page 797
    - Default Action Behavior on page 799
  → BGP and OSPF Route Policy Support on page 807
    - BGP Route Policies on page 808
    - Re-advertised Route Policies on page 809
    - Triggered Policies on page 809
  → When to Use Route Policies on page 816
- Route Policy Configuration Process Overview on page 817
- Configuration Notes on page 818
Alcatel-Lucent’s router supports two databases for routing information. The routing database is composed of the routing information learned by the routing protocols. The forwarding database is composed of the routes actually used to forward traffic through a router. In addition, link state databases are maintained by interior gateway protocols (IGPs) such as IS-IS and OSPF.

Routing protocols calculate the best route to each destination and place these routes in a forwarding table. The routes in the forwarding table are used to forward routing protocol traffic, sending advertisements to neighbors and peers.

A routing policy can be configured that will not place routes associated with a specific origin in the routing table. Those routes will not be used to forward data packets to the intended destinations and the routes are not advertised by the routing protocol to neighbors and peers.

Routing policies control the size and content of the routing tables, the routes that are advertised, and the best route to take to reach a destination. Careful planning is essential to implement route policies that can affect the flow of routing information or packets in and traversing through the router. Before configuring and applying a route policy, develop an overall plan and strategy to accomplish your intended routing actions.

There are no default route policies. Each policy must be created explicitly and applied to a routing protocol or to the forwarding table. Policy parameters are modifiable.
Policy Statements

Route policies contain policy statements containing ordered entries containing match conditions and actions you specify. The entries should be sequenced from the most explicit to least explicit. Packet forwarding and routing can be implemented according to your defined policies. Policy-based routing allows you to dictate where traffic can be routed, through specific paths, or whether to forward or drop the traffic. Route policies can match a given route policy entry and continue searching for other matches within either the same route policy or the next route policy.

The process can stop when the first complete match is found and executes the action defined in the entry, either to accept or reject packets that match the criteria or proceed to the next entry or the next policy. You can specify matching criteria based on source, destination, or particular properties of a route. Route policies can be constructed to support multiple stages to the evaluation and setting various route attributes. You can also provide more matching conditions by specifying criteria such as:

- Autonomous system (AS) path policy options — A combination of AS numbers and regular expression operators.
- Community list — A group sharing a common property.
- Prefix list — A named list of prefixes.
- To and From criteria — A route's source and destination.
Routing Policy Sub-Routines

It is possible to reference a routing policy from within a routing policy to construct powerful subroutine based policies.

A single level of policy sub-routines is supported. Policy sub-routines may evaluate true or false through matching and policy entry actions. A policy entry action of ‘accept’ will evaluate as true while a policy entry action of ‘reject’ will evaluate as false.

Policy Evaluation Command

Operators can evaluate a routing policy against a BGP neighbor, routing context, or individual prefix before applying the policy to the neighbor or routing context. This command will display prefixes that are rejected by a policy and what modifications are made by a policy.

Exclusive Editing for Policy Configuration

Operators can set an exclusive lock on policy edit sessions. When the exclusive flag is set by an operator that is editing policy, other users (console or SNMP) are restricted from being able to begin, edit, commit, or abort policy. An administrative override is made available to reset the exclusive flag in the event of a session failure.
Default Action Behavior

The default action specifies how packets are to be processed when a policy related to the route is not explicitly configured. The following default actions are applied in the event that:

- A route policy does not specify a matching condition, all the routes being compared with the route policy are considered to be matches.
- A packet does not match any policy entries, then the next policy is evaluated. If a match does not occur then the last entry in the last policy is evaluated.
- If no default action is specified, the default behavior of the protocol controls whether the routes match or not.

If a default action is defined for one or more of the configured route policies, then the default action is handled as follows:

- The default action can be set to all available action states including accept, reject, next-entry, and next-policy.
- If the action states accept or reject, then the policy evaluation terminates and the appropriate result is returned.
- If a default action is defined and no matches occurred with the entries in the policy, then the default action is used.
- If a default action is defined and one or more matches occurred with the entries of the policy, then the default action is not used.

Denied IP Prefixes

The following IP address prefixes are not allowed by the routing protocols and the Route Table Manager and are not be populated within the forwarding table:

- 0.0.0.0/8 or longer
- 127.0.0.0/8 or longer
- 224.0.0.0/4 or longer
- 240.0.0.0/4 or longer

Any other prefixes that need to be filtered can be filtered explicitly using route policies.
Controlling Route Flapping

Route damping is a controlled acceptance of unstable routes from BGP peers so that any ripple effect caused by route flapping across BGP AS border routers is minimized. The motive is to delay the use of unstable routes (flapping routes) to forward data and advertisements until the route stabilizes.

Alcatel-Lucent’s implementation of route damping is based on the following parameters:

- Figure of Merit — A route is assigned a Figure of Merit (FoM), which is proportional to the frequency of flaps. FoM should be able to characterize a route’s behavior over a period of time.
- Route flap — A route flap is not limited to the withdrawn route. It also applies to any change in the AS path or the next hop of a reachable route. A change in AS path or next hop indicates that the intermediate AS or the route-advertising peer is not suppressing flapping routes at the source or during the propagation. Even if the route is accepted as a stable route, the data packets destined to the route could experience unstable routing due to the unstable AS path or next hop.
- Suppress threshold — The threshold is a configured value that, when exceeded, the route is suppressed and not advertised to other peers. The state is considered to be down from the perspective of the routing protocol.
- Reuse threshold — When FoM value falls below a configured reuse threshold and the route is still reachable, the route is advertised to other peers. The FoM value decays exponentially after a route is suppressed. This requires the BGP implementation to decay thousands of routes from a misbehaving peer.

The two events that could trigger the route flapping algorithm are:

- Route flapping — If a route flap is detected within a configured maximum route flap history time, the route’s FoM is initialized and the route is marked as a potentially unstable route. Every time a route flaps, the FoM is increased and the route is suppressed if the FoM crosses the suppress threshold.
- Route reuse timer trigger — A suppressed route’s FoM decays exponentially. When it crosses the reuse threshold, the route is eligible for advertisement if it is still reachable.

If the route continues to flap, the FoM, with respect to time scale, looks like a sawtooth waveform with the exponential rise and decay of FoM. To control flapping, the following parameters can be configured:

- half-life — The half life value is the time, expressed in minutes, required for a route to remain stable in order for one half of the FoM value to be reduced. For example, if the half life value is 6 (minutes) and the route remains stable for 6 minutes, then the new FoM
value is 3. After another 6 minutes passes and the route remains stable, the new FoM value is 1.5.

- **max-suppress** — The maximum suppression time, expressed in minutes, is the maximum amount of time that a route can remain suppressed.

- **suppress** — If the FoM value exceeds the configured integer value, the route is suppressed for use or inclusion in advertisements.

- **reuse** — If the suppress value falls below the configured reuse value, then the route can be reused.
The ability to perform a filter match on confederations in the AS-PATH is supported. This feature allows customers to configure match criteria for specific confederation sets and sequences within the AS path so that they can be filtered out before cluttering the service provider’s routing information base (RIB).

SR OS uses regular expression strings to specify match criteria for:

- An AS path string; for example, “100 200 300”
- A community string; for example, “100:200” where 100 is the AS number, and 200 is the community-value.
- Any AS path beginning with a confederation SET or SEQ containing 65001 and 65002 only: for example “< 65001 65002 >.*”
- Any AS path containing a confederation SET or SEQ, regardless of the contents: for example, “.* <.* > .*”

A regular expression is expressed in terms of terms and operators. A term for an AS path regular expression is:

1. Regular expressions should always be enclosed in quotes.
2. An elementary term; for example, an AS number “200”
3. A range term composed of two elementary terms separated by the ‘-’ character like “200-300”.
4. The ‘.’ dot wild-card character which matches any elementary term.
5. A regular expression enclosed in parenthesis “( )”.
6. A regular expression enclosed in square brackets used to specify a set of choices of elementary or range terms; for example, [100-300 400] matches any AS number between 100 and 300 or the AS number 400.
A term for a community string regular expression is a string that is evaluated character by character and is composed of:

1. An elementary term which for a community string is any single digit like “4”.
2. A range term composed of two elementary terms separated by the ‘-’ character like “2-3”.
3. A colon ‘:’ to delimit the AS number from the community value
4. The ‘.’ dot wild-card character which matches any elementary term or ‘:’.
5. A regular expression enclosed in parenthesis “( )”.
6. A regular expression enclosed in square brackets used to specify a set of choices of elementary or range terms; for example, [1-37] matches any single digit between 1 and 3 or the digit 7.

The regular expression OPERATORS are listed in Table 18.

**Table 18: Regular Expression Operators**

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matches the term on alternate sides of the pipe.</td>
</tr>
<tr>
<td>*</td>
<td>Matches multiple occurrences of the term.</td>
</tr>
<tr>
<td>?</td>
<td>Matches 0 or 1 occurrence of the term.</td>
</tr>
<tr>
<td>+</td>
<td>Matches 1 or more occurrence of the term.</td>
</tr>
<tr>
<td>( )</td>
<td>Used to parenthesize so a regular expression is considered as one term.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Used to demarcate a set of elementary or range terms.</td>
</tr>
<tr>
<td>-</td>
<td>Used between the start and end of a range.</td>
</tr>
<tr>
<td>{m, n}</td>
<td>Matches least m and at most n repetitions of the term.</td>
</tr>
<tr>
<td>{m}</td>
<td>Matches exactly m repetitions of the term.</td>
</tr>
<tr>
<td>{m,}</td>
<td>Matches m or more repetitions of the term.</td>
</tr>
<tr>
<td>^</td>
<td>Matches the beginning of the string - only allowed for communities.</td>
</tr>
<tr>
<td>$</td>
<td>Matches the end of the string - only allowed for communities.</td>
</tr>
<tr>
<td>\</td>
<td>An escape character to indicate that the following character is a match criteria and not a grouping delimiter.</td>
</tr>
<tr>
<td>&lt; &gt;</td>
<td>Matches any AS path numbers containing a confederation SET or SEQ.</td>
</tr>
<tr>
<td>&amp;</td>
<td>Matches “:” between terms of a community string.</td>
</tr>
</tbody>
</table>
Examples of AS path and community string regular expressions are listed in Table 19.

**Table 19: AS Path and Community Regular Expression Examples**

<table>
<thead>
<tr>
<th>AS Path to Match Criteria</th>
<th>Regular Expression</th>
<th>Example Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null AS path</td>
<td>null*</td>
<td>Null AS path</td>
</tr>
<tr>
<td>AS path is 11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>AS path is 11 22 33</td>
<td>11 22 33</td>
<td>11 22 33</td>
</tr>
<tr>
<td>Zero or more occurrences of AS number 11</td>
<td>11*</td>
<td>Null AS path 11 11 11 11 11 11 ... 11</td>
</tr>
<tr>
<td>Path of any length that begins with AS numbers 11, 22, 33</td>
<td>11 22 33 .*</td>
<td>11 22 33 11 22 33 400 500 600</td>
</tr>
<tr>
<td>Path of any length that ends with AS numbers 44, 55, 66</td>
<td>.* 44 55 66</td>
<td>44 55 66 100 44 55 66 100 200 44 55 66 100 200 300 44 55 66 100 200 300 ... 44 55 66</td>
</tr>
<tr>
<td>One occurrence of the AS numbers 100 and 200, followed by one or more occurrences of the number 33</td>
<td>100 200 33+</td>
<td>100 200 33 100 200 33 33 100 200 33 33 33 100 200 33 33 33 ... 33</td>
</tr>
<tr>
<td>One or more occurrences of AS number 11, followed by one or more occurrences of AS number 22, followed by one or more occurrences of AS number 33</td>
<td>11+ 22+ 33+</td>
<td>11 22 33 11 11 22 33 11 11 22 22 33 11 11 22 22 33 33 11 ... 11 22 ... 22 33 ...33</td>
</tr>
</tbody>
</table>
| Path whose second AS number must be 11 or 22 | (. 11) | (. 22) | 100 11 200 22 300 400 ...
| or | | |
| Path of length one or two whose second AS number might be 11 or 22 | . (11 | 22) | .(11 | 22) | 100 200 11 300 22 |
Table 19: AS Path and Community Regular Expression Examples  (Continued)

<table>
<thead>
<tr>
<th>AS Path to Match Criteria</th>
<th>Regular Expression</th>
<th>Example Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path whose first AS number is 100 and second AS number is either 11 or 22</td>
<td>100 (11</td>
<td>22) .*</td>
</tr>
<tr>
<td>Either AS path 11, 22, or 33</td>
<td>[11 22 33]</td>
<td>11 22 33</td>
</tr>
<tr>
<td>Range of AS numbers to match a single AS number</td>
<td>10-14</td>
<td>10 or 11 or 12 or 13 or 14</td>
</tr>
<tr>
<td></td>
<td>[10-12]*</td>
<td>Null AS path</td>
</tr>
<tr>
<td></td>
<td>Null AS path</td>
<td>10 or 11 or 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 10 or 10 11 or 10 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 10 or 11 11 or 11 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 10 or 12 11 or 12 12</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Zero or one occurrence of AS number 11</td>
<td>11? or 11{0,1}</td>
<td>Null AS path</td>
</tr>
<tr>
<td>One through four occurrences of AS number 11</td>
<td>11{1,4}</td>
<td>11 11 11 11 11</td>
</tr>
<tr>
<td>One through four occurrences of AS number 11 followed by one occurrence of AS number 22</td>
<td>11{1,4} 22</td>
<td>11 22 11 11 11 11 11 11 11 11</td>
</tr>
<tr>
<td>Path of any length, except nonexistent, whose second AS number can be anything, including nonexistent</td>
<td>.* or .{0,}</td>
<td>100 100 200 100 22 33 44 55</td>
</tr>
<tr>
<td>AS number is 100. Community value is 200.</td>
<td>^100:200$</td>
<td>100:200</td>
</tr>
<tr>
<td>AS number is 11 or 22. Community value is any number.</td>
<td>^((11)</td>
<td>(22)):(.*$</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>AS number is 11. Community value is any number that starts with 1.</td>
<td>^11:(1.*)$</td>
<td>11:1 11:100 11:1100</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
### Table 19: AS Path and Community Regular Expression Examples (Continued)

<table>
<thead>
<tr>
<th>AS Path to Match Criteria</th>
<th>Regular Expression</th>
<th>Example Matches</th>
</tr>
</thead>
</table>
| AS number is any number. Community value is any number that ends with 1, 2, or 3. | ^(.*):(.*[1-3])$ | 11:1 100:2002 333:55553 ...
| AS number is 11 or 22. Community value is any number that starts with 3 and ends with 4, 5 or 9. | ^((11)|(22)):(3.*[459])$ | 11:34 22:3335 11:377779 ...
| AS number is 11 or 22. Community value ends in 33 or 44. | ^((11|22)):(.*((33)|(44)))$ | 11:33 22:99944 22:555533 ...
| Range of Community values | 100[^([1-9][0-9]1[0-9][0-9])2000]$ | 100:10 100:11 100: ... 100:2000 |


\(^{a.}\)The `null` keyword matches an empty AS path.
BGP and OSPF Route Policy Support

OSPF and BGP require route policy support. Figure 26 and Figure 28 display where route policies are evaluated in the protocol. Figure 26 depicts BGP which applies a route policy as an internal part of the BGP route selection process. Figure 28 depicts OSPF which applies routing policies at the edge of the protocol, to control only the routes that are announced to or accepted from the Route Table Manager (RTM).

Figure 26: BGP Route Policy Diagram
BGP Route Policies

Alcatel-Lucent’s implementation of BGP uses route policies extensively. The implied or default route policies can be overridden by customized route policies. The default BGP properties, with no route policies configured, behave as follows:

- Accept all BGP routes into the RTM for consideration.
- Announce all used BGP learned routes to other BGP peers
- Announce none of the IGP, static or local routes to BGP peers.

Figure 27: BGP Route Policy Diagram
Re-advertised Route Policies

Occasionally, BGP routes may be readvertised from BGP into OSPF, IS-IS, and RIP. OSPF export policies (policies control which routes are exported to OSPF) are not handled by the main OSPF task but are handled by a separate task or an RTM task that filters the routes before they are presented to the main OSPF task.

Triggered Policies

With triggered policy enabled, deletion and re-addition of a peer after making changes to export policy causes the new updates sent out to all peers.

Triggered policy is not honored if a new peer added to BGP. Update with the old policy is sent to the newly added peer. New policy does not get applied to the new peer until the peer is flapped.

With triggered policy enabled, if a new bgp/static route comes in, new addition or modification of an export policy causes the updates to sent out dynamically to all peers with the new/modified export policy.

When multiple peers, say P1, P2 and P3 share the same export policy, any modifications to export policy followed by clear soft on one of the peer P1, will send out routes to P1 only according to newly modified policy.

Though routes with newly modified policy are not sent to other peers (P2, and P3) as no clear soft issues on these peers, RIB-OUT will show that new routes with modified policy are sent to all the peers. RIB-IN on peers P2 and P3 are shown correctly.
Set MED to IGP Cost using Route Policies

This feature sets MED to the IGP cost of a route exported into BGP as an action in route policies. The `med-out` command in the bgp, group, and neighbor configuration context supports this option, but this method lacks per-prefix granularity. The enhanced `metric` command supported as a route policy action supports setting MED to a fixed number, or adding, or subtracting a fixed number from the received MED, and sets IGP cost option. The enhanced `metric {set {igp | number 1} | {add | subtract} number2 }` command is under `config>router>policy-options>policy-statement>entry>action`.

The `metric set igp` command, when used in a BGP export policy, have the same effect as the current `med-out igp` command, except that it applies only to the routes matched by the policy entry.

The effect of the metric set igp command depends on the route type and policy type as summarized in Table 20.

Table 20: Metric Set IGP Effect

<table>
<thead>
<tr>
<th>BGP Policy Type</th>
<th>Matched Route Type</th>
<th>Set Metric IGP Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export</td>
<td>Non-BGP route (static, OSPF, ISIS, etc.)</td>
<td>Add MED attribute. Set value to M.</td>
</tr>
<tr>
<td>Export</td>
<td>BGP route w/o MED</td>
<td>Add MED attribute. Set value to D.</td>
</tr>
<tr>
<td>Export</td>
<td>BGP route with MED (value A)</td>
<td>Overwrite MED attribute with value D.</td>
</tr>
</tbody>
</table>
BGP Policy Subroutines

Currently, BGP policies only support a single level/tier of configuration that makes configuring complicated policies difficult to meet Internet transit/peering policy requirements.

This feature allows an operator to configure a policy entry that may use a sub-policy as match criteria to improve the flexibility of match criteria. Only a single level of policy nesting is supported (the sub-policy must not have any sub-policies of its own).

Route Policies for BGP Next-Hop Resolution and Peer Tracking

This feature adds the flexibility to attach a route policy to the BGP next-hop resolution process; it also allows a route policy to be associated with the optional BGP peer-tracking function. BGP next-hop resolution is a fundamental part of BGP protocol operation; it determines the best matching route (or tunnel) for the BGP next-hop address and uses information about this resolving route in the best path selection algorithm and to program the forwarding table. Attaching a policy to BGP next-hop resolution provides more control over which IP routes in the routing table can become resolving routes. Similar flexibility is also available for BGP peer-tracking, which is an optional feature that allows the session with a BGP neighbor to be taken down if there is no IP route to the neighbor address or if the best matching IP route is rejected by the policy.
Routing Policy Parameterization

Routing policy parameterization allows operators a powerful and flexible configuration approach to routing policies for policies are often reused across BGP peers of a common type (transit; peer; customer; etc).

In current modes of operation as shown in Figure 29, an operator must create individual routing policies, prefix-lists, AS-Path lists, community lists, etc for each peer despite many times the policy ultimately being the same. In this case, should an operator with 100 peers with a common policy behavior but unique policies have to make a change to entry 135 in the policy, they must do it on all policies – a significant amount of work that can result in incorrect/inconsistent policy behavior.

![Figure 29: Route Policy Past Mode of Operation](image)

Using a parameter based system allows an operator to have a single policy that is consistent across all peers of a type, while retaining the flexibility to reference different policy functions (prefixes, prefix-lists, community lists, etc) with unique names if required, by defining variables and the variable value. This feature will be able to inherit some of these variables directly from the routing process (for example, “@peerAS” would be the configured BGP peer-AS).

Additionally, rather than policies being fixed and requiring many statements, the use of parameters and variables may be passed to simplify policy configuration. This reduces the number of policies...
required on a peering edge router with large numbers of peers where only small amounts of configuration changes between peers, such as the ASN and prefix-list name.

The approach taken to implement route policy parameterization is to re-use the sub-policy functionality introduced in SR-OS 11.0.

The logical flow of this is to configure a per-peer policy in which the variable names and values are defined. Using Figure 30 as the example, the following configuration would be applied:

```plaintext
configure router policy-options
policy-statement “peer1”
description “peer1 inbound at IXP ABC, using std-peering-inbound”
entry 10
from
 policy-variables
 name “@peer-prefix@” value “pfx-as65535”
 name “@localcm@” value “cm-as65535”
 name “@cm-reject@” value “cm-as65535-rejects”
 policy “std-peering-inbound”
 action accept
 prefix-list “pfx-as65535” prefix “6.5.5.0/24” through 32
 community cm-as65535-rejects members “65535:14”
 community cm-as65535 members “7750:65535”

policy-statement “peer2”
description “peer2 inbound at IXP ABC, using std-peering-inbound”
entry 10
from
 policy-variables
 name “@peer-as@” value “as64535”
 name “@cm-highpref@” value “cm-as64535-highpref”
 name “@localcm@” value “cm-as64535”
 sub-policy Match
 std-peering-inbound

policy-statement “peer3”
description “peer3 inbound at IXP ABC, using std-peering-inbound”
entry 10
from
 policy-variables
 name “@peer-as@” value “as63535”
 name “@localcm@” value “as63535”
 sub-policy Match
 std-peering-inbound
```

Figure 30: Route Policy Parameterization using sub-policies
action accept
as-path "as64535" "^64535$"
community cm-as64535-highpref members "64535:4000"
community cm-as64535 members "7750:64535"

policy-statement "peer3"
description "peer3 inbound at IXP ABC, using std-peering-inbound"
entry 10
from
  policy-variables
  name "@peer-as@" value "as63535"
  name "@peer-prefix" value "pfx-as63535"
  name "@localcm@" value "cm-as63535"
policy "std-peering-inbound"
  action accept
prefix-list "pfx-as63535" prefix "6.3.5.0/24" through 32
as-path "as63535" "^63535+$"
community "cm-as63535" members "7750:63535"

policy-statement "std-peering-inbound"
description "Standard inbound peering policy for all standard IXP peers"
entry 10
  community "@cm-reject@"
  action reject
entry 20
from
  prefix-list "@peer-prefix"
as-path "@peer-as@
  action accept
  local-preference 400
  community add "@localcm@"
entry 30
from
  community "@cm-highpref@"
  action accept
  local-preference "4000"
  community add "@cm-peeras@

This configuration would take slightly different actions depending on the peer.

Peer 1

- Prefixes that have a community matching ‘cm-as65535-rejects’ are specifically rejected.
- Prefix list ‘pfx-as65535’ is evaluated and prefixes accepted based on that prefix-list.
- Local-preference on accepted prefixes is set to 400.
- Community ‘7750:65535’ is added to accepted prefixes.
- As community-list ‘cm-65535-highpref’ doesn’t exist, this entry is not evaluated.

Peer 2

- As community-list ‘cm-64535-rejects’ doesn’t exist, this entry is not evaluated.
- Prefix list ‘pfx-as64535’ and AS-path ‘as64535’ is evaluated and prefixes accepted based on that prefix-list and AS-path combo.
- Local-preference on accepted prefixes is set to 400.
- Community ‘7750:64535’ is added to accepted prefixes.
- Prefixes matching ‘cm-as64535-highpref’ are set to a local-preference of 4000.

**Peer 3**

- As community-list ‘cm-as63535-rejects’ doesn’t exist, this entry is not evaluated.
- Prefix-list ‘pfx-as63535’ and AS-path ‘as63535’ is evaluated and prefixes accepted based on that prefix-list and AS-path combo.
- Local-preference on accepted prefixes is set to 400.
- Community ‘7750:63533’ is added on accepted prefixes.
- As community-list ‘cm-63535-highpref’ doesn’t exist, this entry is not evaluated.
When to Use Route Policies

The following are examples of circumstances of when to configure and apply unique route policies.

- When you want to control the protocol to allow all routes to be imported into the routing table. This enables the routing table to learn about particular routes to enable packet forwarding and redistributing packets into other routing protocols.
- When you want to control the exporting of a protocol’s learned active routes.
- When you want a routing protocol to announce active routes learned from another routing protocol, which is sometimes called route redistribution.
- When you want unique behaviors to control route characteristics. For example, change the route preference.
- When you want unique behaviors to control route characteristics. For example, change the route preference, AS path, or community values to manipulate the control the route selection.
- When you want to control BGP route flapping (damping).
Route Policy Configuration Process Overview

Figure 31 displays the process to provision basic route policy parameters.

Figure 31: Route Policy Configuration and Implementation Flow
Configuration Notes

This section describes route policy configuration caveats.

General

- When configuring policy statements, the policy statement name must be unique.
Route Policy Command Reference

Command Hierarchies

- Route Policy Configuration Commands on page 819
- Show Commands on page 822

Route Policy Configuration Commands

```plaintext
cfg
 [no] router
 [no] triggered-policy
 [no] policy-options
 abort
 as-path (policy options) name {regular-expression | null}
 [no] as-path (policy options) name
 as-path-group (policy options) name
 [no] as-path-group (policy options)
 [no] entry entry-id expression reg-exp
 begin [exclusive]
 commit
 community name members comm-id [comm-id] (up to 15 max)
 community name expression expression
 [no] community name [members comm-id]
 [no] damping name
 half-life minutes
 [no] half-life
 max-suppress minutes
 [no] max-suppress
 reuse integer
 [no] reuse
 suppress integer
 [no] suppress
 [no] exclusive-lock-time seconds
 [no] policy-statement name
 default-action {accept | next-entry | next-policy | reject}
 [no] default-action
 aigp-metric {number1 | igp | add number2}
 as-path [add | replace] name
 [no] as-path
 as-path-prepend as-number [repeat]
 [no] as-path-prepend
 community {add name [remove name]} | {remove name [add name]} | {replace name}
 [no] community
 damping {name | none}
 [no] damping
 local-preference local-preference
```
— no local-preference
— metric {add | subtract} metric
— metric set [igp | metric-value]
— no metric
— multicast-redirection {fwd-service service-id} ip-int-name
— no multicast-redirection
— next-hop ip-address
— no next-hop
— [no] next-hop-self
— origin {igp | egp | incomplete}
— no origin
— origin-validation-state state
— no origin-validation-state
— preference preference
— no preference
— [no] sticky-ecmp
— tag hex-string
— no tag
— type {type}
— no type
— description description-string
— no description
— [no] entry entry-id
— action {accept | next-entry | next-policy | reject}
— no action
— aigp-metric {number1 | igp | add number2}
— as-path {add | replace} name
— no as-path
— as-path-prepend as-number [ repeat]
— no as-path-prepend
— community { {add name [remove name]} | {remove name
— [add name]} | {replace name} }
— no community
— damping {name | none}
— no damping
— fc fc [priority {low | high}]
— no fc
— local-preference local-preference
— no local-preference
— metric {set {igp | number 1} | {add | subtract} number2}
— no metric
— next-hop ip-address
— no next-hop
— [no] next-hop-self
— [no] next-hop-self
— origin {igp | egp | incomplete}
— no origin
— origin-validation-state state
— no origin-validation-state
— policy name
— preference preference
— no preference
— [no] sticky-ecmp
— tag tag
— no tag
— type {type}
— no type
— description description-string
— no description
— [no] from
  — area area-id
  — no area
  — as-path name
  — no as-path
  — community name
  — no community
  — [no] external
  — family [ipv4] [ipv6] [mcast-ipv4] [mcast-ipv6] [vpn-ipv4] [vpn-ipv6] [l2-vpn] [mvpn-ipv4] [mvpn-ipv6] [mdt-safi] [flow-ipv4] [route-target] [mcast-ipv4]
  — no family
  — group-address prefix-list-name
  — no group-address
  — host-ip prefix-list-name
  — no host-ip
  — interface interface-name
  — no interface
  — level {1 | 2}
  — no level
  — mvpn-type {1 | 2 | 3 | 4 | 5 | 6 | 7}
  — no mvpn-type
  — neighbor {ip-address | prefix-list name}
  — no neighbor
  — origin {igp | egp | incomplete | any}
  — no origin
  — origin-validation-state state
  — no origin-validation-state
  — policy name
  — prefix-list name [name...(up to 5 max)]
  — no prefix-list
  — protocol protocol [all | instance instance]
  — no protocol
  — source-address ip-address
  — source-address prefix-list prefix-list-name
  — no source-address
  — tag tag
  — no tag
  — type type
  — no type
— [no] to
  — level {1 | 2}
  — no level
  — neighbor {ip-address | prefix-list name}
  — no neighbor
  — [no] prefix-list name [name...(up to 5 max)]
  — protocol protocol
  — no protocol
config
  — [no] router
    — [no] policy-options
      — [no] prefix-list name
        — prefix ip-prefix/prefix-length [exact | longer | through length | prefix-length-range length1-length2]
        — no prefix [ipv-prefix/prefix-length] [exact | longer | through length | prefix-length-range length1-length2]

Show Commands

show
  — router router-name
    — policy [name | damping | prefix-list name | as-path name | community name | admin]

show
  — router router-name
    — bgp
      — route
        — policy-test policy-name family family prefix/pfxlen[ longer] neighbor neighbor [display-rejects] [detail]
Route Policy Command Reference

Generic Commands

abort

Syntax abort
Context config>router>policy-options
This command is required to discard changes made to a route policy.
Default none

begin

Syntax begin (exclusive)
Context config>router>policy-options
Description This command is required in order to enter the mode to create or edit route policies.
Default none
Parameters exclusive — Specifies an exclusive lock on the policy configuration. Other CLI and SNMP users will be unable to edit the policy configuration until the lock is removed (via commit, abort, a timeout occurring, or a forced override).

commit

Syntax commit
Context config>router>policy-options
Description This command is required to save changes made to a route policy.
Default none
Generic Commands

description

Syntax

- `description string`
- `no description`

Context

- `config>router>policy-options>policy-statement`
- `config>router>policy-options>policy-statement>entry`

Description

This command creates a text description which is stored in the configuration file to help identify the content of the entity.

The `no` form of the command removes the string from the configuration.

Default

- `none`

Parameters

- `string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Route Policy Options

as-path (policy options)

Syntax

as-path name {reg-exp | null}
no as-path name

Context config>router>policy-options

Description

This command creates a route policy AS path regular expression statement to use in route policy entries.

The no form of the command deletes the AS path regular expression statement.

Default

No AS path regular expression statement is defined.

Parameters

name — The AS path regular expression name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

reg-exp — The AS path regular expression. Allowed values are any string up to 256 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. It is possible to declare a parameter in a policy (subpolicy) parameter starts with @ and ends with @.

null — The AS path expressed as an empty regular expression string.

as-path-group (policy options)

Syntax

as-path-group name
no as-path-group name

Context config>router>policy-options

Description

This command creates a route policy AS path regular expression statement to use in route policy entries.

The no form of the command deletes the AS path regular expression statement.

Default

No AS path regular expression statement is defined.

Parameters

name — The AS path regular expression name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. It is possible to declare a parameter in a policy (subpolicy) parameter starts with @ and ends with @.
entry

Syntax entry entry-id expression reg-exp
no entry

Context config>router>policy-options>as-path-group

Description This command creates the context to edit route policy entries within an autonomous system path group. Multiple entries can be created using unique entries. The router exits the filter when the first match is found and executes the action specified. For this reason, entries must be sequenced correctly from most to least explicit.

An entry does not require matching criteria defined (in which case, everything matches) but must have at least define an action in order to be considered complete. Entries without an action are considered incomplete and will be rendered inactive.

The no form of the command removes the specified entry from the autonomous system path group.

Default none

Parameters entry-id — The entry ID expressed as a decimal integer. An entry-id uniquely identifies match criteria and the corresponding action. It is recommended that multiple entries be given entry-ids in staggered increments. This allows users to insert a new entry in an existing policy without requiring renumbering of all the existing entries.

Values 1 — 4294967295

reg-exp — The AS path group regular expression. Allowed values are any string up to 256 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

community

Syntax community name members comm-id [comm-id]...(up to 15 max)
community name expression expression
no community name [members comm-id]

Context config>router>policy-options

Description This command creates a route policy community list to use in route policy entries.

The no form of the command deletes the community list or the provided community ID.

Default no community — No community names or members are specified.

Parameters name — The community list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
**comm-id** — The community ID. Note that up to 15 community ID strings can be specified up to a total maximum of 72 characters. A community ID can be specified in different forms.

**Values** 72 chars max

- `<2byte-asnumber:comm-val>|<reg-ex>|<ext-comm>|<well-known-comm>`
- `ext-comm <type>`:
  - `<ip-address:comm-val>`
  - `<reg-ex1&reg-ex2>`
  - `<ip-address&reg-ex2>`
  - `<2byte-asnumber:ext-comm-val>`
  - `<4byte-asnumber:comm-val>`

**2byte-asnumber** [0..65535]
**comm-val** [0..65535]
**reg-ex** [72 chars max]
**type** `target|origin`
**ip-address** `a.b.c.d`
**ext-comm-val** [0..4294967295]
**4byte-asnumber** [0..4294967295]
**reg-ex1** [63 chars max]
**reg-ex2** [63 chars max]
**well-known-comm** `null|no-export|no-export-subconfed|no-advertise`

- **as-num:comm.-value** — The as-num is the Autonomous System Number (ASN)

**Values**

- as-num: 1 — 65535
- comm-value: 0 — 65535

- **type** `{target | origin}:as-num:comm.-value` — The keywords target or origin denote the community as an extended community of type route target or route origin respectively. The as-num and comm.-value allow the same values as described above for regular community values.

- **reg-ex1 reg-ex2** — A regular expression string. Allowed values are any string up to 63 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

- **well-known-comm** — keywords `null`, `no-export`, `no-export-subconfed`, `no-advertise`.

**expression expression** — Specifies a logical expression containing terms and operators. It can contain sub-expressions enclosed in round brackets.

**Values** 900 chars max

- `<expression>` is one of the following:
  - `<expression> {AND|OR} <expression>`
  - `[NOT] ( <expression> )`
  - `[NOT] <comm-id>`

For example:

**from community expression** "[community list A] OR ([community list B] AND [community list C])"
exclusive-lock-time

**Syntax**
```
exclusive-lock-time seconds
no exclusive-lock
```

**Context**
```
config>router>policy-options
```

**Description**
This command specifies the inactivity timer for the exclusive lock time for policy editing. When a session is idle for greater than this time, the lock is removed and the configuration changes is aborted.

**Default**
300 seconds

**Parameters**
```
seconds — Specifies the duration the session with exclusive lock may be inactive.
```

**Values**
```
Values 1 - 3600
```

policy-options

**Syntax**
```
[no] policy-options
```

**Context**
```
config>router
```

**Description**
This command enables the context to configure route policies. Route policies are applied to the routing protocol.

The `no` form of the command deletes the route policy configuration.

**Default**
none

triggered-policy

**Syntax**
```
[no] triggered-policy
```

**Context**
```
config>router
```

**Description**
This command triggers route policy re-evaluation.

By default, when a change is made to a policy in the `config router policy options` context and then committed, the change is effective immediately. There may be circumstances when the changes should or must be delayed; for example, if a policy change is implemented that would effect every BGP peer on a router, the consequences could be dramatic. It is more effective to control changes on a peer by peer basis.

If the `triggered-policy` command is enabled, and a given peer is established, and you want the peer to remain up, then, in order for a change to a route policy to take effect, a `clear` command with the `soft` or `soft-inbound` option must be used. In other words, when a `triggered-policy` is enabled, any routine policy change or policy assignment change within the protocol will not take effect until the protocol is reset or a clear command is issued to re-evaluate route policies; for example, `clear router bgp neighbor x.x.x.x soft`. This keeps the peer up and the change made to a route policy is applied only to that peer, or group of peers.

**Default**
Non-dynamic route policy is disabled.
Route Policy Damping Commands

damping

Syntax    [no] damping name

Context    config>router>policy-options

Description    This command creates a context to configure a route damping profile to use in route policy entries.

The no form of the command deletes the named route damping profile.

Default    No damping profiles are defined.

Parameters    name — The damping profile name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

half-life

Syntax    half-life minutes
          no half-life

Context    config>router>policy-options>damping

Description    This command configures the half-life parameter for the route damping profile.

The half life value is the time, expressed in minutes, required for a route to remain stable in order for the Figure of Merit (FoM) value to be reduced by one half; for example, if the half life value is 6 (minutes) and the route remains stable for 6 minutes, then the new FoM value is 3 (minutes). After another 3 minutes pass and the route remains stable, the new FoM value is 1.5 (minutes).

When the FoM value falls below the reuse threshold, the route is once again considered valid and can be reused or included in route advertisements.

The no form of the command removes the half life parameter from the damping profile.

Default    No half life value is specified. The half life value must be explicitly configured.

Parameters    minutes — The half life in minutes expressed as a decimal integer.

  Values    1 — 45
**max-suppress**

**Syntax**

max-suppress minutes

no max-suppress

**Context**

config>router>policy-options>damping

**Description**

This command configures the maximum suppression parameter for the route damping profile. This value indicates the maximum time, expressed in minutes, that a route can remain suppressed. The no form of the command removes the maximum suppression parameter from the damping profile.

**Default**

No maximum suppression time is configured.

**Parameters**

minutes — The maximum suppression time, in minutes, expressed as a decimal integer.

**Values**

1 — 720

**reuse**

**Syntax**

reuse integer

no reuse

**Context**

config>router>policy-options>damping

**Description**

This command configures the reuse parameter for the route damping profile. When the Figure of Merit (FoM) value falls below the reuse threshold, the route is once again considered valid and can be reused or included in route advertisements. The no form of the command removes the reuse parameter from the damping profile.

**Default**

No reuse parameter is configured.

**Parameters**

integer — The reuse value expressed as a decimal integer.

**Values**

1 — 20000
suppress

Syntax  suppress integer
       no suppress

Context  config>router>policy-options>damping

Description  This command configures the suppression parameter for the route policy damping profile.

A route is suppressed when it has flapped frequently enough to increase the Figure of Merit (FoM) value to exceed the suppress threshold limit. When the FoM value exceeds the suppress threshold limit, the route is removed from the route table or inclusion in advertisements.

The no form of the command removes the suppress parameter from the damping profile.

Default  No suppress parameter is configured.

Parameters  integer — The suppress value expressed as a decimal integer.

Values  1 — 20000
Route Policy Prefix Commands

prefix-list

Syntax  
\[\text{no}\] prefix-list name

Context  
config>router>policy-options

Description  
This command creates a context to configure a prefix list to use in route policy entries. The no form of the command deletes the named prefix list.

Default  
none

Parameters  
name — The prefix list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. It is possible to declare a parameter in a policy (subpolicy) parameter starts with @ and ends with @.

prefix

Syntax  
\[\text{no}\] prefix ip-prefix/prefix-length { [exact | longer | through length ]] [prefix-length-range length1-length2 ] }

Context  
config>router>policy-options>prefix-list

Description  
This command creates a prefix entry in the route policy prefix list. The no form of the command deletes the prefix entry from the prefix list.

Parameters  
ip-prefix — The IP prefix for prefix list entry in dotted decimal notation.

Values  
ipv4-prefix:  a.b.c.d (host bits must be 0)
ipv4-prefix-length:  0 — 32
ipv6-prefix:  x:x:x:x:x:x:x:x (eight 16-bit pieces)
              x:x:x:x:x:x:d.d.d
              x: [0 — FFFF]H
              d: [0 — 255]D
ipv6-prefix-length:  0 — 128

exact — Specifies the prefix list entry only matches the route with the specified ip-prefix and prefix mask (length) values.

longer — Specifies the prefix list entry matches any route that matches the specified ip-prefix and prefix mask length values equal to or greater than the specified mask.
through length — Specifies the prefix list entry matches any route that matches the specified ip-prefix and has a prefix length between the specified length values inclusive.

Values 0 — 32

prefix-length-range length1 - length2 — Specifies a route must match the most significant bits and have a prefix length with the given range. The range is inclusive of start and end values.

Values 0 — 32, length2 > length1
Route Policy Entry Match Commands

entry

Syntax

entry entry-id
no entry

Context
config>router>policy-options>policy-statement

Description
This command creates the context to edit route policy entries within the route policy statement.

Multiple entries can be created using unique entries. The router exits the filter when the first match is found and executes the action specified. For this reason, entries must be sequenced correctly from most to least explicit.

An entry does not require matching criteria defined (in which case, everything matches) but must have at least define an action in order to be considered complete. Entries without an action are considered incomplete and will be rendered inactive.

The no form of the command removes the specified entry from the route policy statement.

Default
none

Parameters
entry-id — The entry ID expressed as a decimal integer. An entry-id uniquely identifies match criteria and the corresponding action. It is recommended that multiple entries be given entry-ids in staggered increments. This allows users to insert a new entry in an existing policy without requiring renumbering of all the existing entries.

Values
1 — 4294967295

area

Syntax
area area-id
no area

Context
config>router>policy-options>policy-statement>entry>from

Description
This command configures an OSPF area as a route policy match criterion.

This match criterion is only used in export policies.

All OSPF routes (internal and external) are matched using this criterion if the best path for the route is by the specified area.

The no form of the command removes the OSPF area match criterion.

Default
none

Parameters
area-id — The OSPF area ID expressed in dotted decimal notation or as a 32-bit decimal integer.

Values
0.0.0.0 — 255.255.255.255 (dotted decimal), 0 — 4294967295 (decimal)
as-path

Syntax       as-path name
no as-path

Context      config>router>policy-options>policy-statement>entry>from

Description  This command configures an AS path regular expression statement as a match criterion for the route policy entry.

If no AS path criterion is specified, any AS path is considered to match.

AS path regular expression statements are configured at the global route policy level (config>router>policy-options>as-path name).

The no form of the command removes the AS path regular expression statement as a match criterion.

Default      no as-path — Matches any AS path.

Parameters   name — Specifies an existing name. The AS path regular expression name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. It is possible to declare a parameter in a policy (subpolicy) parameter starts with @ and ends with @.

community

Syntax       community name
no community

Context      config>router>policy-options>policy-statement>entry>from

Description  This command configures a community list as a match criterion for the route policy entry.

If no community list is specified, any community is considered a match.

The no form of the command removes the community list match criterion.

Default      no community — Matches any community.

Parameters   name — The community list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. It is possible to declare a parameter in a policy (subpolicy) parameter starts with @ and ends with @.

The name specified must already be defined.
Route Policy Entry Match Commands

from

Syntax [no] from
Context config>router>policy-options>policy-statement>entry
Description This command creates the context to configure policy match criteria based on a route’s source or the protocol from which the route is received.

If no condition is specified, all route sources are considered to match.
The no form of the command deletes the source match criteria for the route policy statement entry.

external

Syntax [no] external
Context config>router>policy-options>policy-statement>entry>from
Description This command specifies the external route matching criteria for the entry.
Default no external

family

Syntax family [ipv4] [mcast-ipv4][vpn-ipv4][l2-vpn][mvpn-ipv4] [mvpn-ipv6] [mdt-safi] [flow-ipv4] [flow-ipv6] [route-target] [mcast-vpn-ipv4] [evpn] no family
Context config>router>policy-options>policy-statement>entry>from
Description This command specifies address families as matching conditions.
evpn — Specifies Ethernet VPN related information.
ipv4 — Specifies IPv4 routing information.
ipv6 — Specifies IPv6 routing information.
mcast-ipv4 — Specifies multicast IPv4 routing information.
mcast-ipv6 — Specifies multicast IPv6 routing information.
vpn-ipv4 — Specifies IPv4 VPN routing information.
l2-vpn — Exchanges Layer 2 VPN information.
mvpn-ipv4 — Exchanges Multicast VPN related information
mvpn-ipv6 — Exchanges Multicast VPN related information
mdt-safi — Exchange Multicast VPN (MDT-SAFI) related information
flow-ipv4 — Exchanges IPv4 flowspec routes belonging to AFI 1 and SAFI 133
flow-ipv6 — Exchange IPv6 flowspec routes belonging to AFI 2 and SAFI 133

route-target — Specifies to use route targets to be advertised to the peers if ORF is enabled for this peer group

mcast-vpn-ipv4 — Exchanges Multicast Routes in VPN using SAFI 129.

group-address

Syntax group-address prefix-list-name
no group-address

Context config>router>policy-options>policy-statement>entry>from

Description This command specifies the multicast group-address prefix list containing multicast group-addresses that are imbedded in the join or prune packet as a filter criterion. The prefix list must be configured prior to entering this command. Prefix lists are configured in the config>router>policy-options>prefix-list context.

The no form of the command removes the criterion from the configuration.

Default no group-address

Parameters prefix-list-name — The prefix-list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

The prefix-list-name is defined in the config>router>policy-options>prefix-list context.

host-ip

Syntax host-ip prefix-list-name

Context config>router>policy-options>policy-statement>entry>from

Description This command specifies a prefix list host IP address as a match criterion for the route policy-statement entry.

Default no host-ip

Parameters prefix-list-name — The prefix-list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

The prefix-list-name is defined in the config>router>policy-options>prefix-list context.
interface

**Syntax**

```
interface interface-name
no interface
```

**Context**

```
config>router>policy-options>policy-statement>entry>from
```

**Description**

This command specifies the router interface, specified either by name or address, as a filter criterion. The no form of the command removes the criterion from the configuration.

**Default**

`no interface`

**Parameters**

`ip-int-name` — Specify the name of the interface as a match criterion for this entry. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

level

**Syntax**

```
level {1 | 2}
no level
```

**Context**

```
config>router>policy-options>policy-statement>entry>from
config>router>policy-options>policy-statement>entry>to
```

**Description**

This command specifies the IS-IS route level as a match criterion for the entry.

**Default**

`no level`

**Parameters**

`1 | 2` — Matches the IS-IS route learned from level 1 or level 2.

mvpn-type

**Syntax**

```
mvpn-type {1 | 2 | 3 | 4 | 5 | 6 | 7}
no mvpn-type
```

**Context**

```
config>router>policy-options>polic-statement>entry>from
```

**Description**

This command allows match on ng-MVPN BGP route type when the policy is used for VRF-import/VRF-export/BGP global export policy. The policy will only be applied to multicast routes. The no form of the command disables `mvpn-type` in the policy evaluation.

**Default**

`no mvpn-type`

**Parameters**

`1 | 2 | 3 | 4 | 5 | 6 | 7` — BGP MVPN route-type as per RFC6514.
**neighbor**

**Syntax**

```plaintext
neighbor {ip-address | prefix-list name}
```

**Context**

```plaintext
config>router>policy-options>policy-statement>entry>to
config>router>policy-options>policy-statement>entry>from
```

**Description**

This command specifies the neighbor address as found in the source address of the actual join and prune message as a filter criterion. If no neighbor is specified, any neighbor is considered a match. The `no` form of the command removes the neighbor IP match criterion from the configuration.

**Default**

`no neighbor` — Matches any neighbor.

**Parameters**

- `ip-addr` — The neighbor IP address in dotted decimal notation.
- `prefix-list name` — The prefix-list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

The `name` specified must already be defined.

**origin**

**Syntax**

```plaintext
origin {igp | egp | incomplete | any}
```

**Context**

```plaintext
config>router>policy-options>policy-statement>entry>from
```

**Description**

This command will configure a match criteria for the origin attribute. Originally, the origin attribute was applicable only to BGP as a mandatory well-known BGP attribute.

**Default**

`no origin` — Matches any BGP origin attribute

**Parameters**

- `igp` — Configures matching path information originating within the local AS.
- `egp` — Configures matching path information originating in another AS.
- `incomplete` — Configures matching path information learned by another method.
- `any` — Specifies to ignore this criteria.
origin-validation-state

**Syntax**

```
origin-validation-state state
no origin-validation-state
```

**Context**

```
config>router>policy-options>policy-statement>entry>from
```

**Description**

This command is used to match BGP routes on the basis of origin validation state:
- Valid (0)
- Not-Found (1)
- Invalid (2)

**Default**

```
no origin-validation-state
```

**Parameters**

- valid — Match routes with an origin validation state of valid.
- notFound — Match routes with an origin validation state of Not Found.
- invalid — Match routes with an origin validation state of invalid.

policy-statement

**Syntax**

```
[no] policy-statement name
```

**Context**

```
config>router>policy-options
```

**Description**

This command creates the context to configure a route policy statement.

Route policy statements control the flow of routing information to and from a specific protocol, set of protocols, or to a specific BGP neighbor.

The **policy-statement** is a logical grouping of match and action criteria. A single **policy-statement** can affect routing in one or more protocols and/or one or more protocols peers/neighbors. A single **policy-statement** can also affect both the import and export of routing information.

The **no** form of the command deletes the policy statement.

**Default**

```
no policy-statement — No route policy statements are defined.
```

**Parameters**

- name — The route policy statement name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
policy

**Syntax**
```
policy name
```

**Context**
```
config>router>policy-options>policy-statement>from
```

**Description**
This command allows an operator to configure another policy to be used as a sub-routine for the route policy evaluation. Only a single layer of policy nesting may be configured.

**Parameters**
- `name` — The routing policy name to evaluate as part of the match criteria.

prefix-list

**Syntax**
```
prefix-list name [name...up to 5 max]
no prefix-list
```

**Context**
```
config>router>policy-options>policy-statement>entry>from
config>router>policy-options>policy-statement>entry>to
```

**Description**
This command configures a prefix list as a match criterion for a route policy statement entry.

- If no prefix list is specified, any network prefix is considered a match.
- The prefix lists specify the network prefix (this includes the prefix and length) a specific policy entry applies.
- A maximum of five prefix names can be specified.

**Default**
```
no prefix-list — Matches any network prefix.
```

**Parameters**
- `name` — The prefix list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

protocol

**Syntax**
```
protocol {protocol} [all | instance instance]
no protocol
```

**Context**
```
config>router>policy-options>policy-statement>entry>from
```

**Description**
This command configures a routing protocol as a match criterion for a route policy statement entry. This command is used for both import and export policies depending how it is used.

- If no protocol criterion is specified, any protocol is considered a match.
- The `no` form of the command removes the protocol match criterion.

**Default**
```
no protocol — Matches any protocol.
```
Route Policy Entry Match Commands

### Parameters

**protocol** — The protocol name to match on.

**Values**
- direct, static, bgp, isis, ospf, rip, aggregate, bgp-vpn, igmp, pim, ospf3, ldp, sub-mgmt, mld, managed, vpn-leak, tms, nat, periodic, ipsec

**instance** — The OSPF or IS-IS instance.

**Values**
- 1 — 31
- all — OSPF- or ISIS-only keyword.

### protocol

**Syntax**
```
protocol (protocol) [all | instance instance]
no protocol
```

**Context**
```
config>router>policy-options>policy-statement>entry>to
```

**Description**
This command configures a routing protocol as a match criterion for a route policy statement entry. This command is used for both import and export policies depending how it is used.

If no protocol criterion is specified, any protocol is considered a match.

The `no` form of the command removes the protocol match criterion.

**Default**
- `no protocol` — Matches any protocol.

### source-address

**Syntax**
```
source-address ip-address
source-address prefix-list prefix-list-name
no source-address
```

**Context**
```
config>router>policy-options>policy-statement>entry>from
```

**Description**
This command specifies the source address that is embedded in the join or prune packet as a filter criterion.

The `no` form of the command removes the criterion from the configuration.

**Default**
- none

**Description**
This command specifies a multicast data source address as a match criterion for this entry.
Parameters  

*ip-address* — The IP prefix for the IP match criterion in dotted decimal notation.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
</tr>
<tr>
<td>a.b.c.d</td>
</tr>
<tr>
<td>ipv6-address</td>
</tr>
<tr>
<td>x:x:x:x:x:x:x:x (eight 16-bit pieces)</td>
</tr>
<tr>
<td>x:x:x:x:x:d.d.d.d</td>
</tr>
<tr>
<td>x - [0..FFFF]H</td>
</tr>
<tr>
<td>d - [0..255]D</td>
</tr>
</tbody>
</table>

*prefix-list-name* — Specifies the prefix list name up to 32 characters in length.

*rrp-non-master* — Track routes with the state attribute carrying rrp-non-master state.

tag

**Syntax**

tag tag
	no tag

**Context**

config>router>policy-options>policy-statement>entry>from

**Description**

This command matches the tag value on routes of type static, periodic as well as the tag field on routes learned through an external LSA.

The `no` form of the command removes the tag field match criterion.

**Default**

no tag — Matches any external LSA tag field.

**Parameters**

tag — Matches a specific external LSA tag field.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-tag, 1 — 4294967295</td>
</tr>
</tbody>
</table>

to

**Syntax**

[no] to

**Context**

config>router>policy-options>policy-statement>entry

**Description**

This command creates the context to configure export policy match criteria based on a route’s destination or the protocol into which the route is being advertised.

If no condition is specified, all route destinations are considered to match.

The `to` command context only applies to export policies. If it is used for an import policy, match criteria is ignored.

The `no` form of the command deletes export match criteria for the route policy statement entry.
type

Syntax  
```
number type {1 | 2}
no number
```

Context  
```
config>router>policy-options>policy-statement>entry>from
```

Description  
This command configures an OSPF type metric as a match criterion in the route policy statement entry. If no type is specified, any OSPF type is considered a match. The `no` form of the command removes the OSPF type match criterion.

Parameters  
1 — Matches OSPF routes with type 1 LSAs.
2 — Matches OSPF routes with type 2 LSAs.
Route Policy Action Commands

**action**

**Syntax**

```plaintext
action {accept | next-entry | next-policy | reject}
no action
```

**Context**

```plaintext
config>router>policy-options>policy-statement>entry
```

**Description**

This command creates the context to configure actions to take for routes matching a route policy statement entry.

This command is required and must be entered for the entry to be active.

Any route policy entry without the `action` command will be considered incomplete and will be inactive.

The `no` form of the command deletes the action context from the entry.

**Default**

`no action` — No action is defined.

**Parameters**

- `accept` — Specifies routes matching the entry match criteria will be accepted and propagated.
- `next-entry` — Specifies that the actions specified would be made to the route attributes and then policy evaluation would continue with next policy entry (if any others are specified).
- `next-policy` — Specifies that the actions specified would be made to the route attributes and then policy evaluation would continue with next route policy (if any others are specified).
- `reject` — Specifies routes matching the entry match criteria would be rejected.

**aigp-metric**

**Syntax**

```plaintext
aigp-metric {number1 | igp | add number2}
no aigp-metric
```

**Context**

```plaintext
config>router>policy-options>policy-statement>entry>action
config>router>policy-options>policy-statement>default-action
```

**Description**

The effect of this command on a route matched and accepted by a route policy entry depends on how the policy is applied (BGP import policy vs. BGP export policy), the type of route and the specific form of the command.

In a BGP import policy this command is used to:

- Associate an AIGP metric with an IBGP route received with an empty AS path and no AIGP attribute.
- Associate an AIGP metric with an EBGP route received without an AIGP attribute that has an AS path containing only AS numbers belonging to the local AIGP administrative domain.
- Modify the received AIGP metric value prior to BGP path selection

In a BGP export policy this command is used to:
• Add the AIGP attribute and set the AIGP metric value in a BGP route originated by exporting a direct, static or IGP route from the routing table
• Remove the AIGP attribute from a route advertisement to a particular peer
• Modify the AIGP metric value in a route advertisement to a particular peer

Default: no aigp-metric

Parameters:

number1 — Administratively defined metric.
Values: 0 — 4294967295
Default: none

number2 — Administratively defined metric.
Values: 1 — 4294967295
Default: none

as-path

Syntax: as-path {add | replace} name
no as-path

Context: config>router>policy-options>policy-statement>default-action
config>router>policy-options>policy-statement>entry>action

Description: This command assigns a BGP AS path list to routes matching the route policy statement entry. If no AS path list is specified, the AS path attribute is not changed. The no form of the command disables the AS path list editing action from the route policy entry.

Default: no as-path — The AS path attribute is not changed.

Parameters:

add — Specifies that the AS path list is to be prepended to an existing AS list.
replace — Specifies AS path list replaces any existing as path attribute.

name — The AS path list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. It is possible to declare a parameter in a policy (subpolicy) parameter starts with @ and ends with @.

The name specified must already be defined.
as-path-prepend

**Syntax**

```
as-path-prepend as-num [repeat]
no as-path-prepend
```

**Context**

```
config>router>policy-options>policy-statement>default-action
cfg-router>policy-options>policy-statement>entry>action
```

**Description**

The command prepends a BGP AS number once or numerous times to the AS path attribute of routes matching the route policy statement entry.

If an AS number is not configured, the AS path is not changed.

If the optional `number` is specified, then the AS number is prepended as many times as indicated by the number.

The no form of the command disables the AS path prepend action from the route policy entry.

**Default**

`no as-path-prepend` — no AS number prepending configured.

**Parameters**

`as-num` — The AS number to prepend expressed as a decimal integer.

```
Values 1 — 4294967295
```

`repeat` — The number of times to prepend the specified AS number expressed as a decimal integer.

```
Values 1 — 50
```

community

**Syntax**

```
community {{add name [remove name]} | {remove name [add name]} | {replace name}}
no community
```

**Context**

```
config>router>policy-options>policy-statement>default-action
cfg-router>policy-options>policy-statement>entry>action
```

**Description**

This command adds or removes a BGP community list to or from routes matching the route policy statement entry.

If no community list is specified, the community path attribute is not changed.

The community list changes the community path attribute according to the `add` and `remove` keywords.

The no form of the command disables the action to edit the community path attribute for the route policy entry.

**Default**

`no community` — The community path attribute is not changed.

**Parameters**

`add` — The specified community list is added to any existing list of communities.

`remove` — The specified community list is removed from the existing list of communities.

`replace` — The specified community list replaces any existing community attribute.
Route Policy Action Commands

name — The community list name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

damping

Syntax damping {name | none}
no damping

Context config>router>policy-options>policy-statement >default-action
config>router>policy-options>policy-statement>entry>action

Description This command configures a damping profile used for routes matching the route policy statement entry. If no damping criteria is specified, the default damping profile is used.

The no form of the command removes the damping profile associated with the route policy entry.

Default no damping — Use the default damping profile.

Parameters name — The damping profile name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

The name specified must already be defined.

none — Disables route damping for the route policy.

fc

Syntax fc fc [priority {low | high}]
no fc

Context config>router>policy-options>policy-statement>entry>action$

Description This command associates a forwarding-class and optionally priority with the routes matched by a route policy entry. The command takes effect when the action of the route policy entry is accept, next-entry or next-policy. It has no effect except in route policies applied as VRF import policies, BGP import policies or RIP import policies.

The no form of the command removes the QoS association of the routes matched by the route policy entry.

Default no fc

Parameters fc — Specify the name of one of the predefined forwarding classes in the system.

Values be, l2, af, l1, h2, ef, h1, nc

Default none (no QoS information is associated with matched routes)
**Route Policies**

**priority** {low | high} — This parameter associates an enqueuing priority with routes matched by the policy entry. Specifying a priority is optional.

**Values**
- **high** — Setting the enqueuing parameter to **high** for a packet increases the likelihood of enqueuing the packet when the ingress queue is congested. Ingress enqueuing priority only affects ingress SAP queuing. Once the packet is placed in a buffer on the ingress queue, the significance of the enqueuing priority is lost.
- **low** — Setting the enqueuing parameter to **low** for a packet decreases the likelihood of enqueuing the packet when the ingress queue is congested. Ingress enqueuing priority only affects ingress SAP queuing. Once the packet is placed in a buffer on the ingress queue, the significance of the enqueuing priority is lost.

**Default** low

**default-action**

**Syntax**
```
default-action {accept | next-entry | next-policy | reject}
```

**Context**
```
config>router>policy-options>policy-statement
```

**Description**
This command enables the context to configure actions for routes that do not match any route policy statement entries when the **accept** parameter is specified.

The default action clause can be set to all available action states including: accept, reject, next-entry and next-policy. If the action states accept or reject then the policy evaluation terminates and the appropriate result is returned.

If a default action is defined and no match(es) occurred with the entries in the policy then the default action clause is used.

If a default action is defined and one or more matches occurred with the entries of the policy then the default action is not used.

The **no** form of the command deletes the **default-action** context for the policy statement.

**Default** no default-action — No default action is specified.

**Parameters**
- **accept** — Specifies routes matching the entry match criteria will be accepted and propagated.
- **next-entry** — Specifies that the actions specified would be made to the route attributes and then policy evaluation would continue with next policy entry (if any others are specified).
- **next-policy** — Specifies that the actions specified would be made to the route attributes and then policy evaluation would continue with next route policy (if any others are specified).
- **reject** — Specifies routes matching the entry match criteria would be rejected.
local-preference

Syntax  
```
local-preference preference
no local-preference
```

Context  
```
config>router>policy-options>policy-statement>default-action
cfg>router>policy-options>policy-statement>entry
```

Description  
This command assigns a BGP local preference to routes matching a route policy statement entry. If no local preference is specified, the BGP configured local preference is used. The `no` form of the command disables assigning a local preference in the route policy entry.

Default  
`No local-preference` — BGP default preference is assigned.

Parameters  
`preference` — The local preference expressed as a decimal integer.

Values  
0 — 4294967295

metric

Syntax  
```
metric {add|subtract} metric
metric set [igp|metric-value]
no metric
```

Context  
```
config>router>policy-options>policy-statement>default-action
cfg>router>policy-options>policy-statement>entry>action
```

Description  
In a BGP import or export policy, this command assigns a MED value to routes matched by the policy statement entry. The MED value may be set to a fixed value (overriding the received value), set to the routing table cost of the route used to resolve the NEXT_HOP of the BGP route (igp option), or modified by adding or subtracting a fixed value offset. The `no` form of the command removes the MED attribute from the matched routes.

Default  
`no metric` — Uses the configured metric (if defined) or do not advertise a metric.

Parameters  
`add` — Specified integer is added to any existing metric. If the result of the addition results in a number greater than 4294967295, the value 4294967295 is used.

`subtract` — Specified integer is subtracted from any existing metric. If the result of the subtraction results in a number less than 0, the value of 0 is used.

`set` — Specified integer replaces any existing metric.

`igp` — Sets the MED value to the routing table cost of the route used to resolve the NEXT_HOP of the BGP route.

`metric` — The metric modifier expressed as a decimal integer.

Values  
0 — 4294967295
multicast-redirection

**Syntax**
```
multicast-redirection [fwd-service service-id] ip-int-name
no multicast-redirection
```

**Context**
```
config>router>policy-options>policy-statement>default-action
```

**Description**
This command enables a redirection under a filtering policy. The filtering policy in this case becomes a redirection policy and it is defined under the `router>policy-option` hierarchy.

Currently all traffic is redirected and there is no ability to selectively redirect multicast traffic based on match conditions (multicast-groups, source IP address of IGMP messages, etc). Multicast redirection is supported between VPRN services and also between interfaces within the Global Routing Context. Multicast redirection is not supported between VPRN services and the Global Routing Context. Multicast redirection is supported in the wholesale/retail VPRN context.

Note that when redirecting from a VPRN instance to the GRT is not supported. Redirecting from a VPRN to a different VPRN is supported and redirecting from an IES to another IES is also supported.

**Default**
```
disabled
```

**Parameters**
- `fwd-service service-id` — Specifies the service to which traffic should be redirected. This option is applied only in the VPRN context. It is possible to redirect the multicast group into another service instance routing interface.
- `ip-int-name` — specifies the alternate interface to which IGMP messages are redirected.

next-hop

**Syntax**
```
next-hop ip-address
no next-hop
```

**Context**
```
config>router>policy-options>policy-statement>default-action
config>router>policy-options>policy-statement>entry>action
```

**Description**
This command assigns the specified next hop IP address to routes matching the policy statement entry.

If a next-hop IP address is not specified, the next-hop attribute is not changed.

The `no` form of the command disables assigning a next hop address in the route policy entry.

**Default**
```
no next-hop — The next hop attribute is not changed.
```

**Parameters**
- `ip-address` — The next hop IP address in dotted decimal notation.

**Values**
- IPv4-prefix: `a.b.c.d` (host bits must be 0)
- IPv4-prefix-length: `0` — `32`
- IPv6-prefix: `x:x:x:x:x:x:x:x` (eight 16-bit pieces)
- `x:x:x:x:x:d.d.d.d`
- `x: [0 — FFFF]H`
- `d: [0 — 255]D`
Route Policy Action Commands

next-hop-self

Syntax  

[no] next-hop-self

Context  
config>router>policy-options>policy-statement name>default-action
config>router>policy-options>policy-statement>entry>action

Description  
This command advertises a next hop IP address belonging to this router even if a third-party next hop is available to routes matching the policy statement entry.

The no form of the command disables advertising the next-hop-self option for the route policy entry.

Default  no next-hop-self — The next hop IP address is not changed.

next-hop-self

Syntax  

[no] next-hop-self [multihoming primary-anycast secondary-anycast]

Context  
config>router>policy-option>policy-statement>entry>action

Description  
This command configures the group or neighbor to always set the NEXTHOP path attribute to its own physical interface when advertising to a peer. This is primarily used to avoid third-party route advertisements when connected to a multi-access network.

In addition, this command can be used to enable and configure the multi-homing reliency mechanism replacing the usual BGP nexthop with a configured anycast address.

The no form of the command returns the setting of the BGP next-hop attribute to the default value determined by the BGP protocol.

Default  no next-hop-self

Parameters  

primary-anycast — Specifies the anycast address that the local node will use to replace the BGP nexthop address in route updates associated peers.

secondary-address — Specifies the anycast address that the local node is to track.

origin

Syntax  

origin {igp | egp | incomplete}
no origin

Context  
config>router>policy-options>policy-statement name>default-action
config>router>policy-options>policy-statement>entry>action

Description  
This command sets the BGP origin assigned to routes exported into BGP.

If the routes are exported into protocols other than BGP, this option is ignored.

The no form of the command disables setting the BGP origin for the route policy entry.

Default  no origin
Parameters

- **igp** — Sets the path information as originating within the local AS.
- **egp** — Sets the path information as originating in another AS.
- **incomplete** — Sets the path information as learned by some other means.

**origin-validation-state**

**Syntax**

```plaintext
origin-validation-state state
no origin-validation-state
```

**Context**

```plaintext
config>router>policy-options>policy-statement name>default-action
config>router>policy-options>policy-statement>entry>action
```

**Description**

This command is used to mark BGP IPv4 and IPv6 routes matching the **default-action** or a specific entry of a route policy with one of the 3 following origin validation states:

- Valid (0)
- Not-Found (1)
- Invalid (2)

**Default**

```
no origin-validation-state
```

**Parameters**

- **valid** — Marks the route as having an origin validation state of valid.
- **notFound** — Marks the route as having an origin validation state of Not Found.
- **invalid** — Marks the route as having an origin validation state of invalid.

**preference**

**Syntax**

```plaintext
preference preference
no preference
```

**Context**

```plaintext
config>router>policy-options>policy-statement name>default-action
config>router>policy-options>policy-statement>entry>action>action
```

**Description**

This command assigns a route preference to routes matching the route policy statement entry.

If no preference is specified, the default Route Table Manager (RTM) preference for the protocol is used.

The **no** form of the command disables setting an RTM preference in the route policy entry.

**Default**

```
no preference
```

**Parameters**

- **preference** — The route preference expressed as a decimal integer.

  **Values**

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 — 255 (0 represents unset - MIB only)</td>
</tr>
</tbody>
</table>
stickey-ecmp

Syntax

stickey-ecmp
no stickey-ecmp

Context

config>router>policy-options>policy-statement>entry>action
config>router>policy-options>policy-statement>default-action

Description

This command specifies that BGP routes matching an entry or default-action of a route policy should be
tagged internally as requiring sticky ECMP behavior. When a BGP route with multiple equal-cost BGP next-hops is programmed for sticky ECMP the failure of one or more of its BGP next-hops causes only the affected traffic flows to be re-distributed to the remaining next-hops; by default (without sticky-ECMP) all flows are potentially affected, even those using a next-hop that did not fail.

Default

no preference

tag

Syntax

tag tag
no tag

Context

config>router>policy-options>policy-statement>default-action
config>router>policy-options>policy-statement>entry>action

Description

This command assigns an OSPF tag to routes matching the entry. The tag value is used to apply a tag to a route for either an OSPF or RIP route. A hexadecimal value of 4 octets can be entered.

For OSPF, all four octets can be used.

For RIP, only the two most significant octets are used if more than two octets are configured.

The no form of the command removes the tag.

Default

no tag

Parameters

tag — Assigns an OSPF, RIP or ISIS tag to routes matching the entry.

Values

Accepts decimal or hex formats:

OSPF and ISIS: [0x0..0xFFFFFFFF]H
RIP: [0x0..0xFFFF]H

type

Syntax

type {type}
no type

Context

config>router>policy-options>policy-statement name=default-action
config>router>policy-options>policy-statement>entry>action

Description

This command sets the subtype for the Type 5 LSA (external LSA).
The **no** form of the command disables assigning a type in the route policy entry.

**Default**

2

**Parameters**

type — Specifies the type metric.

**Values**

- **Subtype 1** — The external metric in the external LSA is comparable with the internal metric, and thus one can sum up all the metrics along the path (both internal and external) to get the total cost to the destination.
- **Subtype 2** — The metric in the external LSA is much more important than the internal metric, so the internal metrics should only be considered when comparing two external routes that have the same external metric.
Show Commands

policy

Syntax  policy [name | prefix-list name | admin]

Context show>router

Description This command displays configured policy statement information.

Parameters policy name — Displays information similar to the info command for a specific policy-statement. If a name is provided, the matching policy-statement displays.

If no statement name is specified, a list of all policies statements and descriptions display.

prefix-list name — Displays the prefix lists configured in the route policy.

admin — If the keyword admin is included, the entire policy option configuration displays, including any un-committed configuration changes. This command is similar to the info command.

Output Route Policy Output — The following table describes route policy output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Displays a list of route policy names.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the description of each route policy.</td>
</tr>
<tr>
<td>Policies</td>
<td>The total number of policies configured.</td>
</tr>
</tbody>
</table>

The following route policy commands are displayed with different command parameter options:

- show router policy on page 857
- show router policy admin on page 858
- show router policy “BGP To RIP” on page 859
- show router policy damping on page 859

Sample Output

The show router policy command displays all configured route policies.

A:ALA-1# show router policy

Route Policies

Policy Description
Direct And Aggregate Policy Statement ABC

Policies :

7950 SR OS Routing Protocols Guide Page 857
The `show router policy admin` command is similar to the `info` command which displays information about the route policies and parameters.

```
A:ALA-1# show router policy admin
 prefix-list "All-Routes"
 prefix 0.0.0.0/0 longer
 prefix 2.0.0.0/8 longer
 prefix 3.0.0.0/8 longer
 prefix 4.0.0.0/8 longer
 prefix 5.0.0.0/8 longer
 prefix 6.0.0.0/8 exact
 prefix 224.0.0.0/24 longer
 exit
...
A:ALA-1#
```
The `show router policy name` command displays information about a specific route policy.

show router policy “BGP To RIP”

description "Policy Statement For 'BGP To RIP'"
entry 10
description "Entry For Policy 'BGP To RIP"
   from protocol bgp
   exit
to protocol rip
   exit
   action accept
      metric set 1
      next-hop 10.0.18.200
      tag 0x8008135
   exit
   exit
   default-action reject
A:ALA-1#

The `show router policy damping` command displays information about the route policy damping configurations.

A:ALA-1# show router policy damping

Route Damping Profiles
---------------------------------------------
damping "TEST-LOW"
   half-life 22
   max-suppress 720
   reuse 10000
   suppress 15000
   exit
damping "TEST-HIGH"
   half-life 22
   max-suppress 720
   reuse 1000
   suppress 5000
   exit
damping "TEST-MEDIUM"
   half-life 22
   max-suppress 720
   reuse 5000
   suppress 11000
   exit
---------------------------------------------
A:ALA-1#
policy-test

Syntax  
```
policy policy-name family family prefix prefix/pfxlen [longer] neighbor neighbor [display-rejects] [detail]
```  

Context  
```
show>router>bpg>routes
```  

Description  
This command allows an operator to evaluate an existing policy against the RIB to identify what prefixes are matched/not matched by the policy prior to attaching it to a routing neighbor or instance. When a prefix is rejected, the entry ID that rejected it is displayed.

When the policy evaluation tool is applied to vpn-ipv4 or vpn-ipv6 family types, a warning will be displayed to the operator about the possibility of hidden routes. If the vrf-import policy that is being evaluated is attempting to import RTs that were never before imported on the node, the routes will not be displayed (accepted or rejected) because they are not available in the RTM until the vrf-import policy is activated. This is due to the architecture of SR-OS storing MP-BGP routes in the RTM.

Configuration of ‘mp-bgp-keep’ under the BGP hierarchy will no longer suppress these routes by default, at the cost of higher memory requirements to store all MP-BGP routes received from MP-BGP neighbors.

Parameters  
- `policy name` — Specifies information of an existing configured and committed policy.
- `family` — Specifies ipv4 or ipv6 information. Default is ipv4.
- `prefix` — Spedivies IPv4 or IPv6 prefix/mask to be evaluated. The longer keyword may be specified to evaluate longer prefix matches. (Optional)
- `neighbor` — Specifies BGP neighbor (optional).
- `display-rejects` — Displays routes that were rejected by the policy. If this is not specified, only a count of rejected routes is shown.
- `detail` — Displays changes in the policy attributes. When the policy modifies route attributes, display the modifications made to the routes. This command requires an exact prefix to be specified. (Optional)

Sample Output
```
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 0.0.0.0/0 longer neighbor 220.0.0.2
===
BGP Router ID:11.11.11.10 AS:11 Local AS:11
===
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
===
BGP IPv4 Routes
Flag Network LocalPref MED
 Nexthop Path-Id VPNLabel
 As-Path
===
Accepted by Policy
4.0.0.6/32 None None
220.0.0.2 None -
14
```
A:sim-1# show router bgp policy-test bgpprefix6 prefix 0.0.0.0/0 longer neighbor 220.0.0.2

Total Routes : 17 Routes rejected : 16

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Flag  Network

Accepted by Policy
4.0.0.6/32

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 0.0.0.0/0 longer neighbor 220.0.0.2 display-rejects brief

Total Routes : 17 Routes rejected : 16

Rejected by Default action
2.2.2.2/32
Rejected by Default action
4.0.0.1/32
Rejected by Default action
4.0.0.2/32
Rejected by Default action
4.0.0.3/32
Rejected by Default action
4.0.0.4/32
Rejected by Default action
4.0.0.5/32
Accepted by Policy
4.0.0.6/32
Rejected by Default action
6.0.0.1/32
Rejected by Default action
7.0.0.1/32
Rejected by Default action
10.0.4.0/24
Rejected by Default action
10.12.0.0/24
Rejected by Default action
Show Commands

10.14.0.0/24
Rejected by Default action
10.24.0.0/24
Rejected by Default action
12.12.12.12/32
Rejected by Default action
220.0.0.2/32
Rejected by Default action
220.0.0.3/32
Rejected by Default action
221.0.0.2/32
---------------------------------------------------------------------
Total Routes : 17 Routes rejected : 16
---------------------------------------------------------------------
A:sim-1# show router bgp policy-test bgpprefix6 prefix 0.0.0.0/0 longer neighbor
220.0.0.2 display-rejects
---------------------------------------------------------------------
BGP Router ID: 11.11.11.10      AS: 11          Local AS: 11
---------------------------------------------------------------------
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
---------------------------------------------------------------------
BGP IPv4 Routes
---------------------------------------------------------------------
Flag  Network                                            LocalPref   MED
Nexthop                                            Path-Id     VPNLabel
As-Path
---------------------------------------------------------------------
Rejected by Default action
2.2.2.2/32                                          None        None
220.0.0.2                                          None        -
14
Rejected by Default action
4.0.0.1/32                                          None        None
220.0.0.2                                          None        -
14
Rejected by Default action
4.0.0.2/32                                          None        None
220.0.0.2                                          None        -
14
Rejected by Default action
4.0.0.3/32                                          None        None
220.0.0.2                                          None        -
14
Rejected by Default action
4.0.0.4/32                                          None        None
220.0.0.2                                          None        -
14
Rejected by Default action
4.0.0.5/32                                          None        None
220.0.0.2                                          None        -
14
Accepted by Policy
4.0.0.6/32                                          None        None
220.0.0.2                                          None        -
14
Rejected by Default action
6.0.0.1/32
   220.0.0.2
14
Rejected by Default action
7.0.0.1/32
   220.0.0.2
14
Rejected by Default action
10.0.4.0/24
   220.0.0.2
14
Rejected by Default action
10.12.0.0/24
   220.0.0.2
14
Rejected by Default action
10.14.0.0/24
   220.0.0.2
14
Rejected by Default action
10.24.0.0/24
   220.0.0.2
14
Rejected by Default action
12.12.12.12/32
   220.0.0.2
14
Rejected by Default action
220.0.0.2/32
   220.0.0.2
14
Rejected by Default action
220.0.0.3/32
   220.0.0.2
14
Rejected by Default action
220.0.0.2/32
   220.0.0.2
14
-----------------------------------------------------------------------------
Total Routes : 17 Routes rejected : 16
-----------------------------------------------------------------------------
A:sim-1# show router bgp policy-test bgpprefix6 prefix 4.0.0.1/32 detail neighbor
220.0.0.2 display-rejects
-----------------------------------------------------------------------------
BGP Router ID:11.11.11.10      AS:11          Local AS:11
-----------------------------------------------------------------------------
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
-----------------------------------------------------------------------------
BGP IPv4 Routes
-----------------------------------------------------------------------------
Rejected by Default action
Network        : 4.0.0.1/32
Nexthop        : 220.0.0.2
Path Id        : None
From           : 220.0.0.2
-----------------------------------------------------------------------------
Res. Nexthop : 10.14.0.4
Local Pref.  : None  Interface Name : to-sim-6
Aggregator AS : None  Aggregator : None
Atomic Aggr.  : Not Atomic  MED : None
AIGP Metric   : None
Connector     : None
Community     : target:65530:20
Cluster       : No Cluster Members
Originator Id : None  Peer Router Id : 14.14.14.10
Fwd Class     : None  Priority : None
Flags : 
Route Source  : External
AS-Path       : 14

Total Routes : 1 Routes rejected : 1

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.6/32 neighbor 220.0.0.2

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Accepted by Policy

Original Attributes

Network   : 4.0.0.6/32
Nexthop   : 220.0.0.2
Path Id   : None
From      : 220.0.0.2
Res. Nexthop : 10.14.0.4
Local Pref. : n/a  Interface Name : to-sim-6
Aggregator AS : None  Aggregator : None
Atomic Aggr. : Not Atomic  MED : None
AIGP Metric : None
Connector : None
Community : target:65530:20
Cluster : No Cluster Members
Originator Id : None  Peer Router Id : 14.14.14.10
Fwd Class : None  Priority : None
Flags : 
Route Source : External
AS-Path : 14

Modified Attributes

Network : 4.0.0.6/32
Nexthop : 220.0.0.2
Path Id : None
From : 220.0.0.2
Res. Nexthop : 10.14.0.4
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Pref.</td>
<td>None</td>
</tr>
<tr>
<td>Interface Name</td>
<td>to-sim-6</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>None</td>
</tr>
<tr>
<td>Aggregator</td>
<td>None</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>Not Atomic</td>
</tr>
<tr>
<td>MED</td>
<td>None</td>
</tr>
<tr>
<td>Connector</td>
<td>None</td>
</tr>
<tr>
<td>Community</td>
<td>2:11 2:12 2:13 target:65530:20</td>
</tr>
<tr>
<td>Cluster</td>
<td>No Cluster Members</td>
</tr>
<tr>
<td>Originator Id</td>
<td>None</td>
</tr>
<tr>
<td>Peer Router Id</td>
<td>14.14.14.10</td>
</tr>
<tr>
<td>Fwd Class</td>
<td>None</td>
</tr>
<tr>
<td>Priority</td>
<td>None</td>
</tr>
<tr>
<td>Flags</td>
<td></td>
</tr>
<tr>
<td>Route Source</td>
<td>External</td>
</tr>
<tr>
<td>AS-Path</td>
<td>14</td>
</tr>
</tbody>
</table>

```
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.6/32 longer neighbor 220.0.0.2
data
```

```
BGP IPv4 Routes
Flag Network LocalPref MED Nexthop Path-Id VPNLabel As-Path

Accepted by Policy
4.0.0.6/32 None None
220.0.0.2 None -
14

```

```
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.6/32 longer neighbor 220.0.0.2 detail
data
```

```
BGP IPv4 Routes
Flag Network

Accepted by Policy
4.0.0.6/32

```

```
Routes : 1
```

```
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
```

```
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
```

```
BGP IPv4 Routes
Flag Network

Accepted by Policy
4.0.0.6/32

```

```
Routes : 1
```
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24 longer neighbor 220.0.0.2 brief

BGP Router ID:11.11.11.10    AS:11    Local AS:11

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Flag Network

Accepted by Policy
4.0.0.6/32

Total Routes : 6 Routes rejected : 5

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24 longer neighbor 220.0.0.2 display-rejects detail

BGP Router ID:11.11.11.10    AS:11    Local AS:11

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

Flag Network

Rejected by Default action
4.0.0.1/32
Rejected by Default action
4.0.0.2/32
Rejected by Default action
4.0.0.3/32
Rejected by Default action
4.0.0.4/32
Rejected by Default action
4.0.0.5/32
Accepted by Policy
4.0.0.6/32

Total Routes : 6 Routes rejected : 5

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24 longer neighbor 220.0.0.2 display-rejects

BGP Router ID:11.11.11.10    AS:11    Local AS:11

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
BGP IPv4 Routes

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Path-Id</th>
<th>VPNLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.1/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>220.0.0.2</td>
<td>None</td>
<td></td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.2/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>220.0.0.2</td>
<td>None</td>
<td></td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.3/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>220.0.0.2</td>
<td>None</td>
<td></td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.4/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>220.0.0.2</td>
<td>None</td>
<td></td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.5/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>220.0.0.2</td>
<td>None</td>
<td></td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepted by Policy</td>
<td>4.0.0.6/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>220.0.0.2</td>
<td>None</td>
<td></td>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>

Total Routes : 6 Routes rejected : 5

A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24 longer neighbor 220.0.0.2 display-rejects brief

BGP Router ID: 11.11.11.10      AS: 11      Local AS: 11

Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best, b - backup

BGP IPv4 Routes

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Path-Id</th>
<th>VPNLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.1/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.2/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.3/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.4/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rejected by Default action</td>
<td>4.0.0.5/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Accepted by Policy</td>
<td>4.0.0.6/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
### Show Commands

---

Total Routes: 6 Routes rejected: 5

---

```
A:sim-1# show router bgp policy-test bgpprefix6 family ipv4 prefix 4.0.0.0/24 longer neighbor 220.0.0.2
```

---

**BGP Router ID:** 11.11.11.10  **AS:** 11  **Local AS:** 11  

Legend -  
Status codes:  
- `u` - used,  
- `s` - suppressed,  
- `h` - history,  
- `d` - decayed,  
- `*` - valid  

Origin codes:  
- `i` - IGP,  
- `e` - EGP,  
- `?` - incomplete,  
- `>` - best,  
- `b` - backup

---

**BGP IPv4 Routes**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Nexthop</th>
<th>Path-Id</th>
<th>VPNLabel</th>
<th>As-Path</th>
</tr>
</thead>
</table>

- **Accepted by Policy**
  - `4.0.0.6/32`: None None
  - `220.0.0.2`: None -
  - `14`: None

---

Total Routes: 6 Routes rejected: 5

---

```
A:sim-1# show router bgp policy-test bgpprefix44rej family vpn-ipv4 prefix 0.0.0.0/0 longer neighbor display-rejects
```

---

**BGP Router ID:** 11.11.11.10  **AS:** 11  **Local AS:** 11  

Legend -  
Status codes:  
- `u` - used,  
- `s` - suppressed,  
- `h` - history,  
- `d` - decayed,  
- `*` - valid  

Origin codes:  
- `i` - IGP,  
- `e` - EGP,  
- `?` - incomplete,  
- `>` - best,  
- `b` - backup

---

**BGP VPN-IPv4 Routes**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Network</th>
<th>LocalPref</th>
<th>MED</th>
<th>Nexthop</th>
<th>Path-Id</th>
<th>VPNLabel</th>
<th>As-Path</th>
</tr>
</thead>
</table>

- **Accepted by Policy**
  - `1:30:192.14.15.0/24`: None None
  - `220.0.0.2`: None
  - `14`: None

- **Accepted by Policy**
  - `65530:20:8.0.0.1/32`: None None
  - `220.0.0.2`: None
  - `14`: None

- **Accepted by Policy**
  - `65530:20:10.0.13.0/24`: None None
  - `220.0.0.2`: None
  - `14`: None

---

Page 868  
7950 SR OS Routing Protocols Guide
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Local Preference</th>
<th>Metric</th>
<th>Distance</th>
<th>Received by Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:10.23.0.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:13.13.13.13/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:20.20.20.5/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:20.20.20.6/32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>Rejected by Policy Entry = 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:44.44.44.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.15.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.16.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.17.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.18.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.19.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.20.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.21.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.22.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>65530:20:192.14.23.0/24</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>131070</td>
<td></td>
<td>Accepted by Policy</td>
</tr>
<tr>
<td>Route Description</td>
<td>Preference</td>
<td>Metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:192.14.25.0/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Accepted by Policy</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65530:20:196.34.0.0/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Accepted by Policy</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0.0.2:50:192.50.50.0/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Accepted by Policy</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0.0.2:50:220.0.0.2/32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0.0.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Accepted by Policy</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Routes: 22 Routes rejected: 1
Standards and Protocol Support

Note that this Standards Compliance list is subject to change.

**Ethernet Standards**
- IEEE 802.1ab-REV/D3 Station and Media Access Control Connectivity Discovery
- IEEE 802.1d Bridging
- IEEE 802.1p/Q VLAN Tagging
- IEEE 802.1s Multiple Spanning Tree
- IEEE 802.1w Rapid Spanning Tree Protocol
- IEEE 802.1x Port Based Network Access Control
- IEEE 802.1ad Provider Bridges
- IEEE 802.1ah Provider Backbone Bridges
- IEEE 802.1ag Service Layer OAM
- IEEE 802.3ah Ethernet in the First Mile
- IEEE 802.1ak Multiple MAC Registration Protocol
- IEEE 802.3 10BaseT
- IEEE 802.3ad Link Aggregation
- IEEE 802.3ae 10Gbps Ethernet
- IEEE 802.3ah Ethernet OAM
- IEEE 802.3x Flow Control
- IEEE 802.3z 1000BaseSX/LX
- ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks
- ITU-T G.8031 Ethernet linear protection switching
- ITU-T G.8032 Ethernet Ring Protection Switching (version 2)

**OSPF**
- RFC 1765 OSPF Database Overflow
- RFC 2328 OSPF Version 2
- RFC 2370 Opaque LSA Support
- RFC 2740 OSPF for IPv6 (OSPFv3)
- RFC 3101 OSPF NSSA Option
- RFC 3137 OSPF Stub Router Advertisement
- RFC 3623 Graceful OSPF Restart – GR helper
- RFC 3630 Traffic Engineering (TE) Extensions to OSPF Version 2
- RFC 4203 OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS) - (support of Link Local/Remote Identifiers and SRLG sub-TLVs)
- RFC 5185 OSPF Multi-Area Adjacency
- RFC5243 OSPF Database Summary List Optimization

**BGP**
- RFC 1397 BGP Default Route Advertisement
- RFC 1772 Application of BGP in the Internet
- RFC 1965 Confederations for BGP
- RFC 1997 BGP Communities Attribute
- RFC 2385 Protection of BGP Sessions via MD5
- RFC 2439 BGP Route Flap Dampening
- RFC 2558 Multiprotocol Extensions for BGP-4
- RFC 2918 Route Refresh Capability for BGP-4
- RFC 3107 Carrying Label Information in BGP
- RFC 3392 Capabilities Advertisement with BGP4
- RFC 4271 BGP-4 (previously RFC 1771)
- RFC 4360 BGP Extended Communities Attribute
- RFC 4364 BGP/MPLS IP Virtual Private Networks (VPNs) (previously RFC 2547bis BGP/MPLS VPNs)
- RFC 4456 BGP Route Reflection: Alternative to Full-mesh IBGP
- RFC 4486 Subcodes for BGP Cease Notification Message
- RFC 4577 OSPF as the Provider/ Customer Edge Protocol for BGP/ MPLS IP Virtual Private Networks (VPNs)
- RFC 4659 BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN
- RFC 4684 Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)
- RFC 4724 Graceful Restart Mechanism for BGP – GR helper
- RFC 4760 Multi-protocol Extensions for BGP
- RFC 4798 Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)
- RFC 4893 BGP Support for Four-octet AS Number Space
- RFC 5004 Avoid BGP Best Path Transitions from One External to Another
- RFC 5065 Confederations for BGP (obsoletes 3065)
- RFC 5291 Outbound Route Filtering Capability for BGP-4
- RFC 5575 Dissemination of Flow Specification Rules
- RFC 5668 4-Octet AS Specific BGP Extended Community
draft-ietf-idr-add-paths Advertisement of Multiple Paths in BGP
Advertiesment of the Best External Route in BGP
draft-ietf-idr-best-external

**IS-IS**
- RFC 1195 Use of OSI IS-IS for Routing in TCP/IP and Dual Environments
- RFC 2973 IS-IS Mesh Groups
- RFC 3359 Reserved Type, Length and Value (TLV) Codepoints in Intermediate System to Intermediate System
- RFC 3719 Recommendations for Interoperable Networks using Intermediate System to Intermediate System (IS-IS)
- RFC 3787 Recommendations for Interoperable IP Networks using
Intermediate System to Intermediate System (IS-IS)
RF C 4971 Intermediate System to Intermediate System (IS-IS)
Extensions for Advertising Router Information
RF C 5120 M-ISIS: Multi Topology (MT) Routing in IS-IS
RF C 5301 Dynamic Hostname Exchange Mechanism for IS-IS
RF C 5302 Domain-wide Prefix Distribution with Two-Level IS-IS
RF C 5303 Three-Way Handshake for IS-IS Point-to-Point Adjacencies
RF C 5304 IS-IS Cryptographic Authentication
RF C 5305 IS-IS Extensions for Traffic Engineering TE
RF C 5306 Restart Signaling for IS-IS
RF C 5307 IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)
RF C 5309 Point-to-Point Operation over LAN in Link State Routing Protocols
RF C 5310 IS-IS Generic Cryptographic Authentication
RF C 6213 IS-IS BFD-Enabled TLV
RF C 6329 IS-IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging
draft-ietf-isis-mi-02 IS-IS Multi-Instance
IPSec
RF C 2401 Security Architecture for the Internet Protocol
RF C 2406 IP Encapsulating Security Payload (ESP)
RF C 2409 The Internet Key Exchange (IKE)
RF C 2560 X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP
RF C 3706 IKE Dead Peer Detection
RF C 3947 Negotiation of NAT-Traversal in the IKE
RF C 3948 UDP Encapsulation of IPSec ESP Packets
RF C 4210 Internet X.509 Public Key Infrastructure
Certificate Management Protocol (CMP)
RF C 4211 Internet X.509 Public Key Infrastructure
Certificate Request Message Format (CRMF)
RF C 5996 Internet Key Exchange Protocol Version 2 (IKEv2)
RF C 5998 An Extension for EAP-Only Authentication in IKEv2
draft-ietf-ipsec-isakmp-xauth-06 – Extended Authentication within ISAKMP/Oakley (XAUTH)
draft-ietf-ipsec-isakmp-modecfg-05 – The ISAKMP Configuration Method
IPv6
RF C 1981 Path MTU Discovery for IPv6
RF C 2375 IPv6 Multicast Address Assignments
RF C 2460 Internet Protocol, Version 6 (IPv6) Specification
RF C 2461 Neighbor Discovery for IPv6
RF C 2462 IPv6 Stateless Address Autoconfiguration
RF C 2464 Transmission of IPv6 Packets over Ethernet Networks
RF C 2529 Transmission of IPv6 over IPv4 Domains without Explicit Tunnels
RF C 2545 Use of BGP-4 Multiprotocol Extension for IPv6 Inter-Domain Routing
RF C 2710 Multicast Listener Discovery (MLD) for IPv6
RF C 2740 OSPF for IPv6
RF C 3306 Unicast-Prefix-based IPv6 Multicast Addresses
RF C 3315 Dynamic Host Configuration Protocol for IPv6
RF C 3587 IPv6 Global Unicast Address Format
RFC3590 Source Address Selection for the Multicast Listener Discovery (MLD) Protocol
RFC 3810 Multicast Listener Discovery Version 2 (MLDv2) for IPv6
RFC 4007 IPv6 Scoped Address Architecture
RFC 4193 Unique Local IPv6 Unicast Addresses
RFC 4291 IPv6 Addressing Architecture
RFC 4443 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification
RFC 4552 Authentication/Confidentiality for OSPFv3
RFC 4659 BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN
RFC 5072 IP Version 6 over PPP
RFC 5095 Deprecation of Type 0 Routing Headers in IPv6
draft-ietf-isis-ipv6-05
draft-ietf-isis-wg-multi-topology-xx.txt
Multicast
RFC 1112 Host Extensions for IP Multicasting (Snooping)
RFC 2236 Internet Group Management Protocol, (Snooping)
RFC 3376 Internet Group Management Protocol, Version 3 (Snooping)
RFC 2362 Protocol Independent Multicast-Sparse Mode (PIMSM)
RFC 3618 Multicast Source Discovery Protocol (MSDP)
RFC 3446 Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)
RFC 4604 Using IGMPv3 and MLDv2 for Source-Specific Multicast
RFC 4607 Source-Specific Multicast for IP
RFC 4608 Source-Specific Protocol Independent Multicast in 232/8
RFC 4610 Anycast-RP Using Protocol Independent Multicast (PIM)
draft-ietf-pim-sm-bsr-06. Bootstrap Router (BSR) Mechanism for PIM
draft-rosen-vpn-mcast-15.txt Multicast in MPLS/BGP IP VPNs
draft-ietf-l3vpn-mcast-2547bis-mcast-07: Multicast in MPLS/BGP IP VPNs
draft-ietf-l3vpn-2547bis-mcast-bgp-05: BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs
RFC 3956: Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address
MPLS-GENERAL
RFC 2430 A Provider Architecture DiffServ & TE
RFC 2474 Definition of the DS Field in the IPv4 and IPv6 Headers (Rev)
RFC 2597 Assured Forwarding PHB Group (rev.3260)
RFC 2598 An Expedited Forwarding PHB
RFC 3031 MPLS Architecture
RFC 3032 MPLS Label Stack Encoding
RFC 3140 Per-Hop Behavior Identification Codes
RFC 3443 Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks
RFC 4182 Removing a Restriction on the use of MPLS Explicit NULL
RFC 4209 Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE)
RFC 5332 MPLS Multicast Encapsulations

MPLS — LDP
RFC 3037 LDP Applicability
RFC 3478 Graceful Restart Mechanism for LDP – GR helper
RFC 5036 LDP Specification
RFC 5283 LDP extension for Inter-Area LSP
RFC 5443 LDP IGP Synchronization
RFC 6388 LDP Extensions for Point-to-Multipoint and Multipoint-to-Multipoint LSP
RFC 6826 Multipoint LDP in-band signaling for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths
draft-pdutta-mpls-ldp-hello-reduce-04, Targeted LDP Hello Reduction

MPLS/RSPV-TE
RFC 2702 Requirements for Traffic Engineering over MPLS
RFC 2747 RSVP Cryptographic Authentication
RFC 2961 RSVP Refresh Overhead Reduction Extensions
RFC 3097 RSVP Cryptographic Authentication - Updated Message Type Value
RFC 3209 Extensions to RSVP for Tunnels
RFC 3473 Generalized Multi-Protocol Label Switching (GMPLS) Signaling
RFC 3564 Requirements for Diff-Serv-aware TE
RFC 3906 Calculating Interior Gateway Protocol (IGP) Routes Over Traffic Engineering Tunnels
RFC 4090 Fast reroute Extensions to RSVP-TE for LSP Tunnels
RFC 4124 Protocol Extensions for Support of DiffServ-aware MPLS Traffic Engineering
RFC 4125 Maximum Allocation Bandwidth Constraints Model for DiffServ-aware MPLS Traffic Engineering
RFC 4127 Russian Dolls Bandwidth Constraints Model for DiffServ-aware MPLS Traffic Engineering
RFC 4561 Definition of a RRO Node-Id Sub-Object
RFC 4875 Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)
RFC 5151 Inter-domain MPLS and GMPLS Traffic Engineering – RSVP-TE Extensions
RFC 5152 MPLS Traffic Engineering Soft Preemption
RFC 5817 Graceful Shutdown in GMPLS Traffic Engineering Networks
draft-newton-mpls-te-dynamic-overbooking-00 A DiffServ-TE Implementation Model to dynamically change booking factors during failure events

MPLS — OAM
RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
RFC 5424 Mechanism for Performing Label Switched Path Ping (LSP Ping) over MPLS Tunnels
RFC 6425 Detecting Data Plane Failures in Point-to-Multipoint Multiprotocol Label Switching (MPLS) - Extensions to LSP Ping

MPLS-TP (7750/7450 only)
RFC 5586 MPLS Generic Associated Channel
RFC 5921 A Framework for MPLS in Transport Networks
RFC 5960 MPLS Transport Profile Data Plane Architecture
RFC 6370 MPLS-TP Identifiers
RFC 6378 MPLS-TP Linear Protection
RFC 6428 Proactive Connectivity Verification, Continuity Check and Remote Defect indication for MPLS Transport Profile
RFC 6426 MPLS On-Demand Connectivity and Route Tracing
RFC 6478 Pseudowire Status for Static Pseudowires
draft-ietf-mpls-tp-ethernet-addressing-02 MPLS-TP Next-Hop Ethernet Addressing

RIP
RFC 1058 RIP Version 1
RFC 2080 RIPng for IPv6
RFC 2082 RIP-2 MD5 Authentication
RFC 2453 RIP Version 2

TCP/IP
RFC 768 UDP
RFC 1350 The TFTP Protocol (Rev.
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 951 BootP (rev)
RFC 1519 CIDR
RFC 1542 Clarifications and Extensions for the Bootstrap Protocol
RFC 1812 Requirements for IPv4 Routers
Standards and Protocols

RFC 2347 TFTP option Extension
RFC 2328 TFTP Blocksize Option
RFC 2349 TFTP Timeout Interval and Transfer Size option
RFC 2401 Security Architecture for Internet Protocol
RFC 2428 FTP Extensions for IPv6 and NATs
RFC 3596 DNS Extensions to Support IP version 6
RFC 2401 Security Architecture for Internet Protocol
RFC 2428 FTP Extensions for IPv6 and NATs
RFC 3596 DNS Extensions to Support IP version 6
RFC 5880 Bidirectional Forwarding Detection
RFC 5881 BFD IPv4 and IPv6 (Single Hop)
RFC 5883 BFD for Multihop Paths
RFC 5286 Basic Specification for IP Fast Reroute: Loop-Free Alternates
draft-litkowski-rtgwg-lfa-manageability-01 Operational management of Loop Free Alternates

VRRP
RFC 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol
RFC 3768 Virtual Router Redundancy Protocol
draft-ietf-vrrp-unified-spec-02 Virtual Router Redundancy Protocol Version 3 for IPv4 and IPv6

PPP
RFC 1332 PPP IPCP
RFC 1377 PPP OSINLCP
RFC 1638/2878PPP BCP
RFC 1661 PPP (rev RFC2151)
RFC 1662 PPP in HDLC-like Framing
RFC 1877 PPP Internet Protocol Control Protocol Extensions for Name Server Addresses
RFC 1989 PPP Link Quality Monitoring
RFC 1990 The PPP Multilink Protocol (MP)
RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP)
RFC 2516 A Method for Transmitting PPP Over Ethernet
RFC 2615 PPP over SONET/SDH
RFC 2686 The Multi-Class Extension to Multi-Link PPP

Frame Relay
FRF.1.2 - PVC User-to-Network Interface (UNI) Implementation Agreement
FRF.5 - Frame Relay/ATM PVC Network Interworking Implementation
FRF2.2. PVC Network-to- Network Interface (NNI) Implementation Agreement.
FRF.12 Frame Relay Fragmentation Implementation Agreement
FRF.16.1 Multilink Frame Relay UNI/NNI Implementation Agreement
ITU-T Q.933 Annex A Additional procedures for Permanent Virtual Connection (PVC) status management

ATM
RFC 1626 Default IP MTU for use over ATM AAL5
RFC 2514 Definitions of Textual Conventions and OBJECT_IDENTITIES for ATM Management
RFC 2515 Definition of Managed Objects for ATM Management RFC 2684 Multiprotocol Encapsulation over ATM Adaptation Layer 5
AF-TM-0121.000 Traffic Management Specification Version 4.1
ITU-T Recommendation I.610 B-ISDN Operation and Maintenance Principles and Functions version 11/95
ITU-T Recommendation I.432.1 BISDN user-network interface – Physical layer specification: General characteristics
GR-1248-CORE Generic Requirements for Operations of ATM Network Elements (NEs). Issue 3
GR-1113-CORE Bellcore, Asynchronous Transfer Mode (ATM) and ATM Adaptation Layer (AAL) Protocols Generic Requirements, Issue 1
AF-ILMI-0065.000 Integrated Local Management Interface (ILMI) Version 4.0
AF-TM-0150.00 Addendum to Traffic Management v4.1 optional

minimum desired cell rate indication for UBR
AF-PHY-0086.001 Inverse Multiplexing for ATM (IMA) Specification Version 1.1

DHCP
RFC 2131 Dynamic Host Configuration Protocol (REV)
RFC 3046 DHCP Relay Agent Information Option (Option 82)
RFC 1534 Interoperation between DHCP and BOOTP

Policy Management and Credit Control
3GPP TS 29.212 Policy and Charging Control (PCC) over Gx/Sd Reference Point (Release 11) - Gx support as it applies to wireline environment (BNG)
RFC 3588 Diameter Base Protocol
RFC 4006 Diameter Credit Control Application

NAT
RFC 6333 Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion
RFC 6334 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite
RFC 6888 Common Requirements For Carrier-Grade NATs (CGNs)
RFC 5508 NAT Behavioral Requirements for ICMP
RFC 5382 NAT Behavioral Requirements for TCP
RFC 6146 Statefull NAT64

VPLS
RFC 4761 Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling
RFC 4762 Virtual Private LAN Services Using LDP
RFC 5501 Requirements for Multicast Support in Virtual Private LAN Services
RFC 6074 Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)
draft-ietf-il2vpn-vpls-mcast-13. Multicast in VPLS
### Standards and Protocols

**RFC 7041** Extensions to the Virtual Private LAN Service (VPLS) Provider Edge (PE) Model for Provider Backbone Bridging

**RFC 3985** Pseudo Wire Emulation Edge-to-Edge (PWE3)

**RFC 4385** Pseudo Wire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN

**RFC 3916** Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)

**RFC 4717** Encapsulation Methods for Transport ATM over MPLS Networks

**RFC 4816** PWE3 ATM Transparent Cell Transport Service

**RFC 4448** Encapsulation Methods for Transport of Ethernet over MPLS Networks

**RFC 4619** Encapsulation Methods for Transport of Frame Relay over MPLS Networks

**RFC 3956** IANA Allocations for PWE3

**RFC 4447** Pseudowire Setup and Maintenance Using LDP

**RFC 5085** Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires

**RFC 5086** Structure-Aware Time Division Multiplexing (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)

**RFC 5659** An Architecture for Multi-Segment Pseudowire Emulation Edge-to-Edge

**RFC 5885** Bidirectional Forwarding Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification (VCCV)

**RFC 6310** Pseudowire (PW) OAM Message Mapping

**RFC 6391** Flow Aware Transport of Pseudowires over an MPLS PSN

**RFC 6575** ARP Mediation for IP Interworking of Layer 2 VPN

**RFC 6718** Pseudowire Redundancy

**RFC 6870** Pseudowire Preferential Forwarding Status bit

**draft-ietf-pwe3-dynamic-ms-pw-16** Dynamic Placement of Multi-Segment Pseudowires

**MFA Forum 9.0.0** The Use of Virtual trunks for ATM/MPLS Control Plane Interworking

**MFA Forum 12.0.0** Multiservice Interworking - Ethernet over MPLS

**MFA Forum 13.0.0** Fault Management for Multiservice Interworking v1.0

**MFA Forum 16.0.0** Multiservice Interworking - IP over MPLS

### Voice /Video Performance:

**ITU-T G.107** The E Model - A computational model for use in planning.


**ITU-T Rec. P.564** Conformance testing for voice over IP transmission quality assessment models

**ITU-T G.1020 Appendix I** Performance Parameter Definitions for Quality of Speech and other Voiceband Applications Utilizing IP Networks-Mean Absolute Packet Delay Variation.& Markov Models.


### Circuit Emulation

**RFC 4553** Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)

**RFC 5086** Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)

**MEF-8 Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet Networks, October 2004**

**RFC 5287** Control Protocol Extensions for the Setup of Time-Division Multiplexing (TDM) Pseudowires in MPLS Networks

### SONET/SDH

**ITU-G.841** Telecommunication Standardization Section of ITU, Types and Characteristics of SDH Networks Protection Architecture, issued in October 1998 and as augmented by Corrigendum1 issued in July 2002

### AAA

**RFC 2865** Remote Authentication Dial In User Service

**RFC 2866** RADIUS Accounting draft-grant-tacacs-02. The TACACS+ Protocol

### SSH

**RFC 4250** The Secure Shell (SSH) Protocol Assigned Numbers

**RFC 4251** The Secure Shell (SSH) Protocol Architecture

**RFC 4254** The Secure Shell (SSH) Connection Protocol

### OpenFlow

**ONF OpenFlow Switch Specification Version 1.3.1 (Hybrid-switch/FlowTable)**

### Timing


**ITU-T G.781** Telecommunication Standardization Section of ITU, Synchronization layer functions, issued 09/2008

**ITU-T G.813** Telecommunication Standardization Section of ITU, Timing characteristics of SDH equipment slave clocks (SEC), issued 03/2003.

**GR-1244-CORE** Clocks for the Synchronized Network: Common Generic Criteria, Issue 3, May 2005


ITU-T G.8265.1 Telecommunication Standardization Section of ITU, Precision time protocol telecom profile for frequency synchronization, issued 10/2010.


**Network Management**

ITU-T X.721 Information technology-OSI-Structure of Management Information

ITU-T X.734 Information technology-OSI-Systems Management: Event Report Management Function

M.3100/3120 Equipment and Connection Models

TMF 509/613 Network Connectivity Model

RFC 1157 SNMPv1

RFC 1215 A Convention for Defining Traps for use with the SNMP

RFC 1657 BGP4-MIB

RFC 1724 RIPv2-MIB

RFC 1850 OSPF-MIB

RFC 1907 SNMPv2-MIB

RFC 2011 IP-MIB

RFC 2138 RADIUS

RFC 2206 RSVP-MIB

RFC 2452 IPv6 Management Information Base for the Transmission Control Protocol

RFC 2465 Management Information Base for IPv6: Textual Conventions and General Group

RFC 2558 SONET-MIB

RFC 2571 SNMP-FRAMEWORKMIB

RFC 2572 SNMP-MPD-MIB

RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB

RFC 2574 SNMP-USER-BASED-SMMIB

RFC 2575 SNMP-VIEW-BASEDACM-MIB

RFC 2576 SNMP-COMMUNITY-MIB

RFC 2578 Structure of Management Information Version 2 (SMIv2)

RFC 2665 EtherLike-MIB

RFC 2819 RMON-MIB

RFC 2863 IF-MIB

RFC 2864 INVERTED-STACK-MIB

RFC 2987 VRRP-MIB

RFC 3014 NOTIFICATION-LOGMIB

RFC 3019 IP Version 6 Management Information Base for The Multicast Listener Discovery Protocol

RFC 3164 Syslog

RFC 3273 HCRMON-MIB


RFC 3412 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)

RFC 3413 Simple Network Management Protocol (SNMP) Applications

RFC 3414 User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)

RFC 3418 SNMP MIB

RFC 3826 The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model

RFC 4113 Management Information Base for the User Datagram Protocol (UDP)

RFC 4292 IP-FORWARD-MIB

RFC 4293 MIB for the Internet Protocol


RFC 6242 Using the NETCONF Protocol over Secure Shell (SSH)

draft-ietf-bfd-mib-00 Bidirectional Forwarding Detection Management Information Base

draft-ietf-isis-wg-mib-06 Management Information Base for Intermediate System to Intermediate System (IS-IS)

draft-ietf-ospf-mib-update-04 OSPF Version 2 Management Information Base

draft-ietf-mboned-msdp-mib-01 Multicast Source Discovery protocol MIB

draft-ietf-mpls-lsr-mib-06 Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base

draft-ietf-mpls-te-mib-04 Multiprotocol Label Switching (MPLS) Traffic Engineering Management Information Base

draft-ietf-mpls-te-mib-07 MPLS Label Switching Router Management Information Base Using SMIv2

IANA ifType MIB

IEEE 802.3- LAG-MIB