Table of Contents

Preface

Getting Started
- Alcatel-Lucent 7210 SAS Services Configuration Process

Services Overview
- Introduction
- Service Types
- Service Policies
- Alcatel-Lucent Service Model
- Service Entities
- Customers
- Service Access Points (SAPs)
 - SAP Encapsulation Types and Identifiers
 - Ethernet Encapsulations
 - Default SAP on a Dot1q Port
 - Default SAPs on a QinQ Port (supported only on 7210 SAS-M devices configured in access-uplink mode)
- Configuration Notes for use of Default QinQ SAPs for transit service in a ring deployment
- Services and SAP Encapsulations
- SAP Configuration Considerations (applicable for both Network mode and access-uplink mode)
- QinQ SAP Configuration restrictions for 7210 SAS in Network mode only
- Service Distribution Points (SDPs)
 - SDP Binding
 - Spoke and MESH SDPs
 - SDP Using BGP Route Tunnel
 - SDP Keepalives
 - G.8032 Ethernet Ring Protection Switching
- Overview of G.8032 Operation
- Ethernet Ring Sub-Rings
 - Virtual and Non-Virtual Channel
- Lag Support
- OAM Considerations
- QoS Considerations
- Support Service and Solution Combinations
- Configuration guidelines for G.8032
- Service Creation Process Overview
- Deploying and Provisioning Services
 - Phase 1: Core Network Construction
Table of Contents

Phase 2: Service Administration .. 63
Phase 3: Service Provisioning ... 63
Configuration Notes ... 64
General .. 64
Configuring Global Service Entities with CLI 65
Service Model Entities .. 65
Basic Configuration ... 66
Common Configuration Tasks ... 68
Configuring Customers .. 68
Customer Information .. 68
Configuring an SDP .. 70
SDP Configuration Tasks ... 70
Configuring an SDP .. 71
Ethernet Connectivity Fault Management (ETH-CFM) 73
Common Actionable Failures ... 77
MEP and MIP Support ... 78
Configuring ETH-CFM Parameters .. 80
Applying ETH-CFM Parameters ... 82
Service Management Tasks ... 85
Modifying Customer Accounts .. 85
Deleting Customers ... 86
Modifying SDPs ... 87
Deleting SDPs ... 88
Global Services Command Reference .. 89

VLL Services

Cpipe Service Overview ... 120
Cpipe Service Modes .. 120
Unstructured Mode (SAToP) ... 120
Structured Mode (CESoPSN) ... 121
TDM Pseudowire Encapsulation .. 124
Circuit Emulation Parameters and Options 126
Epipe Service Overview .. 137
Eppe with PBB .. 137
Support for processing of packets received with more than 2 tags on a QinQ SAP in Epipe service (only on 7210 SAS-M network mode) .. 138
Configuration of Epipe service for processing of packets received with more than 2 tags on a QinQ SAP (only on 7210 SAS-M network mode) 140
Pseudowire Switching ... 142
Pseudowire Switching with Protection ... 143
Pseudowire Switching Behavior ... 145
Pseudowire Redundancy ... 146
Master-Slave Operation .. 148
VLL Resilience for a Switched Pseudowire Path 154
Pseudowire Redundancy Service Models 156
Redundant VLL Service Model .. 156
T-LDP Status Notification Handling Rules 158
Processing Endpoint SAP Active/Standby Status Bits 158
Access Node Resilience Using MC-LAG and Pseudowire Redundancy (in Access-Uplink Mode) 159
Processing and Merging ... 161
VLL Service Considerations .. 163
SDPs ... 163
SAP Encapsulations .. 164
VLAN Range for SAPs in an Epipe Service 164
Processing behavior for SAPs using VLAN ranges in access-uplink mode 164
VLAN Range SAPs feature Support and Restrictions 165
Processing behavior for SAPs using VLAN ranges in network mode .. 166
QoS Policies .. 167
Filter Policies ... 167
MAC Resources ... 168
Access Node Resilience Using MC-LAG and Pseudowire Redundancy ... 169
Configuring a VLL Service with CLI 171
Basic Configurations ... 172
Configuring VLL Components 173
Creating a Cpipe Service ... 174
Creating an Epipe Service in Network Mode 180
Creating an Epipe Service (for 7210 SAS-M in access uplink mode) .. 180
Creating an Epipe Service for 7210 SAS-M with range SAPs 182
Configuring Default QinQ SAPs for Transit Traffic in a Ring Scenario .. 187
Using Spoke SDP Control Words .. 192
Configuring VLL Resilience .. 193
Configuring VLL Resilience for a Switched Pseudowire Path .. 194
Service Management Tasks .. 196
Modifying a Cpipe Service .. 197
Deleting a Cpipe Service ... 198
Modifying Epipe Service Parameters 199
Disabling an Epipe Service ... 199
Re-Enabling an Epipe Service 200
Deleting an Epipe Service ... 200
VLL Services Command Reference 201

Virtual Private LAN Service
VPLS Service Overview .. 244
VPLS Packet Walkthrough in Network Mode 245
VPLS Packet Walkthrough in Access Uplink Mode 248
VPLS Features ... 251
VPLS Enhancements ... 251
VPLS over MPLS in Network Mode 252
VPLS over QinQ Spokes for 7210 SAS-M Configured in Access Uplink Mode 253
VPLS MAC Learning and Packet Forwarding 254
IGMP Snooping in Network Mode and Access-uplink Mode 255
Configuration Guidelines for IGMP Snooping 257
Multicast VLAN Registration (MVR) support 257
Table Management .. 259
Table of Contents

ARP and VPLS FIB Interactions ... 297
Routed VPLS Specific ARP Cache Behavior ... 298
 The allow-ip-int-binding VPLS Flag ... 298
Routed VPLS SAPs only Supported on Standard Ethernet Ports 298
 LAG Port Membership Constraints .. 299
 VPLS Feature Support and Restrictions .. 299
VPLS SAP Ingress IP Filter Override ... 300
 QoS Support for VPLS SAPs and IP interface in a Routed VPLS service 302
 Routed VPLS Supported Routing Related Protocols 302
 Spanning Tree and Split Horizon .. 302
Routed VPLS Caveats .. 303
Configuring a VPLS Service with CLI .. 305
 Basic Configuration .. 306
 Common Configuration Tasks ... 309
Configuring VPLS Components ... 310
 Configuring a VPLS Service .. 311
 Configuring a VPLS SAP ... 318
 Configuring SDP Bindings ... 329
Configuring VPLS Redundancy .. 331
 Creating a Management VPLS for SAP Protection 331
 Creating a Management VPLS for Spoke SDP Protection 333
 Configuring Load Balancing with Management VPLS 336
 Configuring Load Balancing with Management VPLS 338
 Configuring Selective MAC Flush .. 344
 Configuring Load Balancing with Management VPLS 345
Configuring BGP Auto-Discovery ... 347
 Configuration Steps .. 347
Configuring AS Pseudo-wire in VPLS ... 349
Service Management Tasks ... 351
 Modifying VPLS Service Parameters .. 351
 Modifying Management VPLS Parameters 352
 Deleting a Management VPLS .. 352
 Disabling a Management VPLS .. 353
 Deleting a VPLS Service ... 354
 Disabling a VPLS Service ... 354
 Re-Enabling a VPLS Service ... 355
VPLS Services Command Reference ... 357

IEEE 802.1ah Provider Backbone Bridging
IEEE 802.1ah Provider Backbone Bridging (PBB) Overview 438
PBB Features .. 439
 Integrated PBB-VPLS Solution ... 439
 PBB Technology .. 441
 PBB Mapping to Existing VPLS Configurations 442
 SAP Support .. 444
 PBB B-VPLS .. 444
 PBB I-VPLS .. 444
 PBB Packet Walkthrough .. 446
 PBB ELINE Service .. 448
Table of Contents

- **Internet Enhanced Service**
 - IES Service Overview ... 500
 - IES Features .. 501
 - IP Interfaces ... 501
 - SAPs ... 502
 - Encapsulations .. 502
 - Routing Protocols .. 502
 - CPE Connectivity Check 502
 - QoS Policies .. 503
 - CPU QoS for IES interfaces in access-uplink mode 503
 - CPU QoS for IES access interfaces in network mode 504
 - Filter Policies .. 504
 - IPv6 support for IES IP interfaces (applicable for only access-uplink mode) .. 505
 - VRRP support for IES IP interfaces 505
 - Configuring an IES Service with CLI 507
 - Basic Configuration .. 508
 - Common Configuration Tasks 510
 - Configuring IES Components 511
 - Configuring an IES Service 511
 - Configuring IES Interface Parameters 512
 - Configuring SAP Parameters 513
 - Configuring VRRP .. 513
 - Service Management Tasks 514
 - Modifying IES Service Parameters 514
 - Deleting an IES Service ... 515
 - Disabling an IES Service .. 516
 - Re-Enabling an IES Service 516
 - IES Services Command Reference 517

- **Virtual Private Routed Network Service**
 - VPRN Service Overview .. 550
 - Routing Prerequisites .. 551
 - BGP Support .. 552
 - Route Distinguishers .. 553
 - Route Reflector .. 553
Appendix: Split Horizon

Overview .. 942
Topology .. 942
Configuration Guidelines .. 943
Verification .. 945
List of Tables

Getting Started
Table 1: Configuration Process ...19

Services Overview
Table 2: Service and Encapsulation ..35
Table 3: SAP types in a service when QinQ SAP is in use (Network mode operation)37
Table 4: SAP and Service Combinations for 7210 SAS M in access-uplink mode38
Table 5: Defect conditions and priority settings ...77
Table 6: ETH-CFM Support Matrix for 7210 SAS-M78

VLL Services
Table 7: T1 Framing for CAS (RBS) Support in a T1 ESF Multi-frame123
Table 8: Unstructured Payload Defaults ..126
Table 9: Default and Minimum Payload Size for CESoPSN without CAS129
Table 10: Payload Size for T1 and E1 CESoPSN with CAS131
Table 11: Control Word Bit Description ...134
Table 12: Final Disposition of the packet based on per FC and per SAP policer or meter230

Virtual Private LAN Service
Table 13: Routing behavior in RVPLS and interaction ARP Cache and MAC FIB298
Table 14: ACL Lookup behavior with Ingress Override filter attached to an IES interface in a R-VPLS service. 300
Table 15: ACL Lookup behavior without Ingress Override filter attached to an IES interface in a R-VPLS service 301
Table 16: SAP BPDU Encapsulation States ..326
Table 17: Final Disposition of the packet based on per FC and per SAP policer or meter421

IEEE 802.1ah Provider Backbone Bridging

Internet Enhanced Service

Virtual Private Routed Network Service
Table 18: DSCP/FC Marking ..560
Table 19: Final Disposition of the packet based on per FC and per SAP policer or meter624
List of Figures

Services Overview
Figure 1: Service Entities for SAS M Network Mode ... 28
Figure 2: Service Access Point (SAP) for 7210 SAS-M in Network Mode 29
Figure 3: Multiple SAPs in a service using QinQ uplinks in access-uplink mode 30
Figure 4: Multiple SAPs on a Single Port (7210 in Network Mode) 31
Figure 5: MPLS Service Distribution Point (SDP) Pointing From ALA-A to ALA-B 42
Figure 6: G.8032 Ring in the Initial State ... 46
Figure 7: 0-1 G.8032 Ring in the Protecting State .. 47
Figure 8: 0-3 Ring Example .. 49
Figure 9: 0-4 G.8032 Sub-Ring ... 53
Figure 10: 0-5 Sub-Ring Configuration Example .. 55
Figure 11: 0-6 Sub-Ring Homed to VPLS ... 57
Figure 12: Service Creation and Implementation Flow ... 62
Figure 13: Ethernet OAM Model for Broadband Access - Residential 75
Figure 14: Ethernet OAM Model for Broadband Access - Wholesale 75

VLL Services
Figure 15: E1 Framing for CAS Support in an E1 Multi-frame 122
Figure 16: SAToP MPLS Encapsulation ... 124
Figure 17: CESoPSN MPLS Encapsulation .. 124
Figure 18: CESoPSN Packet Payload Format for Trunk-Specific n x 64 kb/s (with and without CAS transport) 125
Figure 19: Control Word Bit Structure ... 134
Figure 20: Epipe/VLL Service ... 137
Figure 21: Pseudowire Service Switching Node .. 142
Figure 22: VLL Resilience with Pseudowire Redundancy and Switching 143
Figure 23: VLL Resilience ... 146
Figure 24: Master-Slave Pseudowire Redundancy .. 148
Figure 25: VLL Resilience ... 151
Figure 26: VLL Resilience with Pseudowire Switching ... 153
Figure 27: VLL Resilience with Pseudowire Redundancy and Switching 155
Figure 28: Redundant VLL Endpoint Objects ... 156
Figure 29: Access Node Resilience .. 160
Figure 30: Access Node Resilience .. 170
Figure 31: Default QinQ SAP for Transit Traffic in a Ring Scenario 187
Figure 32: SDPs — Uni-Directional Tunnels .. 189
Figure 33: VLL Resilience ... 193
Figure 34: VLL Resilience with Pseudowire Switching .. 194

Virtual Private LAN Service
Figure 35: VPLS Service Architecture ... 245
Figure 36: Access Port Ingress Packet Format and Lookup 246
Figure 37: Network Port Egress Packet Format and Flooding 246
Figure 38: VPLS Service Architecture ... 248
Figure 39: Access Port Ingress Packet Format and Lookup 249
List of Figures

Figure 40: Network Port Egress Packet Format and Flooding .. 249
Figure 41: Access Resiliency .. 266
Figure 42: HVPLS with Spoke Redundancy .. 273
Figure 43: HVPLS Resiliency Based on AS Pseudowires ... 275
Figure 44: Dual Homed MTU-s in Two-Tier Hierarchy H-VPLS ... 276
Figure 45: HVPLS with SAP Redundancy ... 281
Figure 46: Dual Homed CE Connection to VPLS ... 283
Figure 47: BGP AD NLRI versus IP VPN NLRI .. 287
Figure 48: Generalized Pseudowire-ID FEC Element ... 288
Figure 49: BGP-AD and T-LDP Interaction .. 290
Figure 50: Example Configuration for Protected VPLS SAP .. 332
Figure 51: Example Configuration for Protected VPLS Spoke SDP 334
Figure 52: Example Configuration for Load Balancing with Management VPLS 336
Figure 53: Example Configuration for Load balancing Across Two Protected VPLS Spoke SDPs 338
Figure 54: Example Configuration for Load Balancing with Management VPLS 345
Figure 55: BGP AD Configuration Example .. 347
Figure 56: BGP-AD CLI Command Tree .. 348
Figure 57: Sample Topology-AS Pseudo-wire in VPLS ... 349

IEEE 802.1ah Provider Backbone Bridging
Figure 58: Large HVPLS Deployment ... 439
Figure 59: Large PBB-VPLS Deployment .. 440
Figure 60: QinQ Payload in Provider Header Example ... 441
Figure 61: PBB Mapping to VPLS Constructs ... 442
Figure 62: PBB Packet Walkthrough .. 446
Figure 63: Access Dual-Homing into PBB BEBs - Topology View 449

Internet Enhanced Service
Figure 64: Internet Enhanced Service .. 500

Virtual Private Routed Network Service
Figure 65: Virtual Private Routed Network .. 550
Figure 66: Route Distinguisher ... 553
Figure 67: Directly Connected IP Target .. 555
Figure 68: Multiple Hops to IP Target ... 555
Figure 69: Split Horizon Group Example .. 942
About This Guide

This guide describes subscriber services, mirroring support provided by the 7210 SAS-M. All the variants of 7210 SAS-M can be configured in two modes, that is, in network mode and in access-uplink mode. In network mode configuration, 7210 SAS-M uses IP/MPLS to provide service transport. In access-uplink mode configuration, 7210 SAS-M uses Ethernet QinQ technology to provide service transport. The appropriate mode can be selected by configuring the BOF appropriately.

Note: This user guide is applicable to all 7210 SAS-M platforms, unless specified otherwise.

NOTE: In either mode, it is expected that the user will only configure the required CLI parameters appropriate for the mode he intends to use. Unless otherwise noted, most of the configuration is similar in both the Network mode and access uplink mode.

This guide also contains examples to configure and implement various protocols and services.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring the 7210 SAS M. It is assumed that the network administrators have an understanding of networking principles and configurations. Protocols, standards, and services described in this manual include the following:

- CLI concepts
- Subscriber services
- Service mirroring
- Operation, Administration and Maintenance (OAM) operations
List of Technical Publications

The 7210 SAS M, X OS documentation set is composed of the following books:

- **7210 SAS M, X OS Basic System Configuration Guide**
 This guide describes basic system configurations and operations.

- **7210 SAS M, X OS System Management Guide**
 This guide describes system security and access configurations as well as event logging and accounting logs.

- **7210 SAS M, X OS Interface Configuration Guide**
 This guide describes card, Media Dependent Adapter (MDA), and port provisioning.

- **7210 SAS M, X OS Router Configuration Guide**
 This guide describes logical IP routing interfaces and associated attributes such as an IP address, port, link aggregation group (LAG) as well as IP and MAC-based filtering.

- **7210-SAS M OS Services Guide**
 This guide describes how to configure service parameters such as customer information and user services.

- **7210 SAS M, X OS OAM and Diagnostic Guide**
 This guide describes how to configure features such as service mirroring and Operations, Administration and Management (OAM) tools.

- **7210 SAS M OS Quality of Service Guide**
 This guide describes how to configure Quality of Service (QoS) policy management.
Technical Support

If you purchased a service agreement for your 7210 SAS-series router and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center:

Web: http://www1.alcatel-lucent.com/comps/pages/carrier_support.jhtml
In This Chapter

This book provides process flow information to configure provision services.

Alcatel-Lucent 7210 SAS Services Configuration Process

Table 1 lists the tasks necessary to configure subscriber services and configure mirroring. This guide is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscribers</td>
<td>Subscriber services</td>
<td>Configuring Global Service Entities with CLI on page 65</td>
</tr>
<tr>
<td></td>
<td>Global entities</td>
<td>Ethernet Pipe (Epippe) Services on page 136</td>
</tr>
<tr>
<td></td>
<td>VLL services</td>
<td>Virtual Private LAN Service on page 243</td>
</tr>
<tr>
<td></td>
<td>VPLS service</td>
<td>Internet Enhanced Service on page 465</td>
</tr>
<tr>
<td></td>
<td>IES service</td>
<td>Internet Enhanced Service on page 465</td>
</tr>
<tr>
<td></td>
<td>VPRN service</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>List of IEEE, IETF, and other proprietary entities.</td>
<td>Standards and Protocol Support on page 947</td>
</tr>
</tbody>
</table>
Services Command Reference

In This Chapter

This chapter provides the command reference trees for the 7210 SAS services.

Topics include:

- Global Services Commands
- Service Configuration Commands
 - Cpipe Service Configuration Commands on page 201
 - Epipe Service Configuration Commands on page 203
 - VPLS Service Configuration Commands on page 358
 - IES Service Configuration Commands on page 517
 - VPRN Service Configuration Commands on page 582
SERVICES OVERVIEW

In This Section

This section provides an overview of the 7210 SAS M-Series subscriber services, service model and service entities. Additional details on the individual subscriber services can be found in subsequent chapters.

Topics in this section include:

- Introduction on page 24
 → Service Types on page 25
 → Service Policies on page 26
- Alcatel-Lucent Service Model on page 27
- Service Entities on page 28
 → Customers on page 29
 → Service Access Points (SAPs) on page 29
 → Service Distribution Points (SDPs) on page 41
- Service Creation Process Overview on page 62
- Deploying and Provisioning Services on page 63
- Configuration Notes on page 64
Introduction

A service is a globally unique entity that refers to a type of connectivity service for either Internet or VPN connectivity. Each service is uniquely identified by a service ID and an optional service name within a service area. The 7210 SAS-Series service model uses logical service entities to construct a service. In the service model, logical service entities provide a uniform, service-centric configuration, management, and billing model for service provisioning.

In the 7210 SAS-Series, services can provide Layer 2/bridged service between a service access point (SAP) on one router and another service access point (a SAP is where traffic enters and exits the service) on the same (local) router or another router (distributed). A distributed service spans more than one router.

Note: SDPs are not supported on 7210 SAS-M devices configured in Access Uplink mode. Only local services can be configured on 7210 SAS-M configured in access-uplink mode.

Distributed services use service distribution points (SDPs) to direct traffic to another 7210 SAS M through a service tunnel. SDPs are created on each participating router, specifying the origination address (the router participating in the service communication) and the destination address of another router. SDPs are then bound to a specific customer service. Without the binding process, far-end router is not able to participate in the service (there is no service without associating an SDP with a service).
Service Types

The 7210 SAS M offers the following types of subscriber services which are described in more detail in the referenced chapters:

- Virtual Leased Line (VLL) services:
 → Ethernet pipe (Epipe) — A Layer 2 point-to-point VLL service for Ethernet frames. See Ethernet Pipe (Epipe) Services on page 136.
- Virtual Private LAN Service (VPLS) — A Layer 2 multipoint-to-multipoint VPN. See Virtual Private LAN Service on page 243.
- Internet Enhanced Service (IES) — A routed connectivity service used to transport in-band management traffic, this service is available for 7210 SAS-M devices configured in access-uplink mode. See Internet Enhanced Service on page 465.
- Virtual Private Routed Network (VPRN) — A Layer 3 IP multipoint-to-multipoint VPN service as defined in RFC 2547bis. See Virtual Private Routed Network Service on page 549.
Service Policies

Common to all 7210 SAS-Series connectivity services are policies that are assigned to the service. Policies are defined at a global level and then applied to a service on the router. Policies are used to define 7210 SAS-Series service enhancements. The types of policies that are common to all 7210 SAS-Series connectivity services are:

- **SAP Quality of Service (QoS) policies** which allow for different classes of traffic within a service at SAP ingress and access egress.

 QoS ingress and egress policies determine the QoS characteristics for a SAP. A QoS ingress policy applied to a SAP specifies the number of meters, meter characteristics (such as forwarding class, committed, and peak information rates, etc.) and the mapping of traffic to a forwarding class. A QoS egress policy defines the queue characteristics (such as CBS, CIR, PIR). A QoS policy must be created before it can be applied to a SAP. A single ingress and egress QoS policy can be associated with a SAP. A single access egress QoS policy can be associated with a port.

- **Filter policies** allow selective blocking of traffic matching criteria from ingressing or egressing a SAP.

 Filter policies, also referred to as access control lists (ACLs), control the traffic allowed in or out of a SAP based on MAC or IP match criteria. Associating a filter policy on a SAP is optional. Filter policies are identified by a unique filter policy ID. A filter policy must be created before it can be applied to a SAP. A single ingress and single egress filter policy can be associated with a SAP.

- **Scheduler policies** define the operating parameters (such as scheduling algorithm, weights per priority). They are associated with physical ports.

- **Accounting policies** define how to count the traffic usage for a service for billing purposes.

 The routers provide a comprehensive set of service-related counters. Accounting data can be collected on a per-service, per-forwarding class basis, which enables network operators to accurately measure network usage and bill each customer for each individual service using any of a number of different billing models.
Alcatel-Lucent Service Model

In the Alcatel-Lucent service model, the service edge routers are deployed at the provider edge. Services are provisioned on the service routers and transported across an IP and/or IP/MPLS provider core network in encapsulation tunnels created using MPLS label switched paths (LSPs).

The 7210 SAS M devices configured in access-uplink mode supports QinQ Layer 2 uplinks to transport the services to the provider edge in a hierarchical configuration.

The service model uses logical service entities to construct a service. The logical service entities are designed to provide a uniform, service-centric configuration, management, and billing model for service provisioning. Some benefits of this service-centric design include:

- Many services can be bound to a single customer.
- QoS policies, filter policies, and accounting policies are applied to each service instead of correlating parameters and statistics from ports to customers to services.

Service provisioning uses logical entities to provision a service where additional properties can be configured for bandwidth provisioning, QoS, security filtering, accounting/billing to the appropriate entity.
Service Entities

The basic logical entities in the service model used to construct a service are:

- **Customers** (see page 29)
- **Service Access Points (SAPs)** (see page 29)
- **Service Distribution Points (SDPs)** (see page 41) (for distributed services only)

![Figure 1: Service Entities for SAS M Network Mode](image-url)
Customers

The terms customers and subscribers are used synonymously. The most basic required entity is the customer ID value which is assigned when the customer account is created. To provision a service, a customer ID must be associated with the service at the time of service creation.

Service Access Points (SAPs)

Each subscriber service type is configured with at least one service access point (SAP). A SAP identifies the customer interface point for a service on an Alcatel-Lucent 7210 SAS M-Series router (Figure 3). The SAP configuration requires that slot, MDA, and port information be specified. The slot, MDA, and port parameters must be configured prior to provisioning a service (see the Cards, MDAs, and Ports sections of the 7210 SAS OS Interface Configuration Guide).

A SAP is a local entity to the router and is uniquely identified by:

- The physical Ethernet port
- The encapsulation type
- The encapsulation identifier (ID)

Depending on the encapsulation, a physical port can have more than one SAP associated with it. SAPs can only be created on ports designated as “access” in the physical port configuration.

Figure 2: Service Access Point (SAP) for 7210 SAS-M in Network Mode
SAP Encapsulation Types and Identifiers

The encapsulation type is an access property of a service Ethernet port. The appropriate encapsulation type for the port depends on the requirements to support multiple services on a single port on the associated SAP and the capabilities of the downstream equipment connected to the port. For example, a port can be tagged with IEEE 802.1Q (referred to as dot1q) encapsulation in which each individual tag can be identified with a service. A SAP is created on a given port by identifying the service with a specific encapsulation ID.

Ethernet Encapsulations

The following lists encapsulation service options on Ethernet ports:

- Null — Supports a single service on the port. For example, where a single customer with a single service customer edge (CE) device is attached to the port. The encapsulation ID is always 0 (zero).
- Dot1q — Supports multiple services for one customer or services for multiple customers (Figure 4). The encapsulation ID used to distinguish an individual service is the VLAN ID in the IEEE 802.1Q header. For example, the port is connected to a Ethernet switch (for example, a 7210 SAS E) with multiple downstream customers.
- QinQ — The QinQ encapsulation type adds a IEEE 802.1Q tag to the 802.1Q tagged packets entering the network to expand the VLAN space by tagging tagged packets, producing a double tagged frame. 7210 SAS M OS supports QinQ encapsulation for...
access ports in network mode. In access-uplink mode, QinQ encapsulation is supported for both access port and access uplink ports.

The following lists encapsulation service options on Ethernet access uplink ports:

- QinQ — The QinQ encapsulation type adds a IEEE 802.1Q tag to the 802.1Q tagged packets entering the network to expand the VLAN space by tagging tagged packets, producing a double tagged frame. On the 7210 SAS E, QinQ encapsulation is supported only on access uplink ports.

![Figure 4: Multiple SAPs on a Single Port (7210 in Network Mode)'](image-url)
Default SAP on a Dot1q Port

This feature introduces default SAP functionality on Dot1q-encapsulated ports. On a dot1q-encapsulated port where a default SAP is configured, all packets with q-tags not matching any explicitly defined SAPs will be assigned to this SAP. SAPs with default Dot1q encapsulation are supported in VPLS and Epipe services. Dot1q Default SAP are not supported in VPRNs. In this context, the character “*” indicates default which means allow through. The default SAP also accepts untagged or priority tagged packets. A default SAP must be configured explicitly. When a default SAP is not configured explicitly, packets not matching any explicitly defined SAPs will be dropped.

One of the applications where this feature can be applicable is an access connection of a customer who uses the whole port to access Layer 2 services. The internal VLAN tags are transparent to the service provider. This can be provided by a null encapsulated port.

In this type of environment, logically two SAPs exist, a management SAP and a service SAP. The management SAP can be created by specifying a VLAN tag which is reserved to manage the CPE. The service SAP covers all other VLANs and behaves as a SAP on a null-encapsulated port.

There a few constraints related for the use of default SAP on a Dot1q-encapsulated port:

- This type of SAP is supported only on VPLS and Epipe services and cannot be created in IES and VPRN services as it cannot preserve VLAN tag markings.
- For VPLS SAPs with STP enabled, STP listens to untagged and null-tagged BPDUs only. All other tagged BPDUs are forwarded like other customer packets. This is the same behavior as null-encapsulated ports.
- This type of SAP is mutually exclusive with a SAP defined by explicit null encapsulation (for example, 1/1/1:0). This avoids conflict as to which SAP untagged frames should be associated.
- IGMP snooping is not supported on a default SAP. This would require remembering VLAN tags per hosts. By not allowing IGMP snooping of this SAP, all IGMP packets will be transparently forwarded.

Default SAPs on a QinQ Port (supported only on 7210 SAS-M devices configured in access-uplink mode)

Default QinQ SAPs (notation - *.*) are used in ring ports to avoid the need to configure services on all the intermediate nodes in the ring which are transiting the service. Default QinQ SAPs matches all VLAN tagged traffic which is not classified into any other SAP configured on the same port. Only one EPIPE service with default QinQ SAPs is needed for transit service traffic on access-uplink ports. Default QinQ SAPs are allowed only on access-uplink ports and access ports.
It can co-exist with 0.* SAP on an access-uplink or access port. A default QinQ SAP accepts only tagged packets. Untagged packets or priority tagged packets are not accepted on Default QinQ SAPs.

When an EPIPE service with default QinQ SAPs on the ring ports is used for transit traffic in a ring deployment, no protection mechanism (example: STP or G.8032) is supported for Default QinQ SAPs. The upstream or head-end node on which the service originates must ensure the correct path on the ring is selected using either G.8032 or STP. When a VPLS service with default QinQ SAPs on the ring ports is used for transit traffic in a ring deployment, users can use either G8032 or M-VPLS with xSTP for ring protection. When using G8032, the state of the default QinQ SAPs in the VPLS service can be managed using a separate G8032 control instance.

NOTE: G8032 control instance cannot use Default QinQ SAPs.

Default QinQ SAP is available for use only in an EPIPE and a VPLS service created with svc-sap-type parameter set to "null-star". Default QinQ SAP can be configured along with other SAPs allowed in the same service (that is, service with svc-sap-type parameter set to "null-star").

Following features are available for use with Default QinQ SAPs configured in EPIPE and VPLS service (unless explicitly specified, below listed features are applicable for both EPIPE and VPLS service):

For Default QinQ SAPs on either access ports or access-uplink ports:

- MAC learning and aging is available for use in a VPLS service
- Per SAP MAC limit is available for use in a VPLS service
- Mac-move detection and Mac-pinning is available for use in a VPLS service
- Discard-unknown and discard-unknown-source is available for use in a VPLS service
- ETH-CFM and Y.1731 is not available for use
- STP (and all its different flavors) cannot be enabled in the service with Default QinQ SAPs
- MVPLS with xSTP can be used for loop prevention. The Default QinQ SAPs inherit the state from the associated MVPLS instance.
- G.8032 control instance cannot be configured in a service with Default QinQ SAP
- G8032 can be used for loop prevention in ring deployments, where the Default QinQ SAPs are configured on the ring ports in a VPLS service. A separate G8032 control instance needs to be configured for use on the ring ports and the service with Default QinQ ports needs to be associated with this G8032 control instance
- IGMP snooping is not available for use
- L2PT and BPDU translation is not available for use
- IP interface in a VPLS service is not supported in a service using this SAP

For Default QinQ SAPs created on Access-uplink Port:
• Ingress qos policy applied on an access uplink port is available for classification and policing on ingress.
• Egress qos policy applied on an access uplink port is available for egress queue shaping, scheduling and marking.
• SAP Ingress ACLs are available for use
• SAP Egress ACLs are not available for use
• SAP Ingress received count and SAP Egress forwarded count are available for use (appropriate accounting records can be used)

For Default QinQ SAPs created on access ports:
• SAP ingress qos policy is available for use
• Egress qos policy applied on an access port is available for egress shaping, scheduling and marking.
• SAP Ingress ACLs are available for use
• SAP egress ACLs are not available for use
• SAP Ingress Meter counters, SAP Ingress received count and SAP Egress forwarded counter are available for use (appropriate accounting records can be used)
Configuration Notes for use of Default QinQ SAPs for transit service in a ring deployment

- If an Epipe service is used with Default QinQ SAPs on the ring ports for transit service in a ring deployment, no protection mechanism is available for the transit service (that is, Epipe service with the Default QinQ SAPs on ring ports). Both Epipe and VPLS services which are originating on different nodes in the ring can use the transit service. Protection/Loop-detection mechanisms can be implemented for VPLS service configured in the ring nodes, by using MVPLS with XSTP on the nodes where the VPLS service is configured. No protection mechanisms are available for use with Epipe services on the node that originates the service.

- If a VPLS service is used with Default QinQ SAPs on the ring ports for transit service in a ring deployment, either MVPLS/xSTP or G8032 can be used to protect the transit service (that is, VPLS service with the Default QinQ SAPs on ring ports). In this case, VPLS service which are originating on different nodes in the ring and use the transit VPLS service are also protected. Epipe services which are originating on different nodes in the ring cannot use the transit VPLS service.

- When using VPLS service with Default QinQ SAPs for transit service with either G8032 or MVPLS with xSTP configured for protection, load-balancing of the traffic based on the VLAN IDs is not possible. If load-balancing is desired then it is better to use Epipe service with Default QinQ SAPs as the transit service.

Services and SAP Encapsulations

Table 2 lists the service and SAP Encapsulation information for Ethernet ports:

Table 2: Service and Encapsulation

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Encapsulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Null</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Dot1q</td>
</tr>
<tr>
<td>Ethernet</td>
<td>QinQ</td>
</tr>
</tbody>
</table>
SAP Configuration Considerations (applicable for both Network mode and access-uplink mode)

When configuring a SAP, consider the following (applicable to both network mode and access-uplink mode):

- A SAP is a local entity and only locally unique to a given device. The same SAP ID value can be used on another 7210 SAS-Series.
- There are no default SAPs. All SAPs in subscriber services must be created.
- The default administrative state for a SAP at creation time is administratively enabled.
- When a SAP is deleted, all configuration parameters for the SAP will also be deleted.
- A SAP is owned by and associated with the service in which it is created in each router.
- A port with a dot1q encapsulation type means the traffic for the SAP is identified based on a specific IEEE 802.1Q VLAN ID value. The VLAN ID is stripped off at SAP ingress and the appropriate VLAN ID placed on at SAP egress. As a result, VLAN IDs only have local significance, so the VLAN IDs for the SAPs for a service need not be the same at each SAP.
- If a port is administratively shutdown, all SAPs on that port will be operationally out of service.
- QinQ access SAPs of type Q1.0 is not supported.
- A SAP cannot be deleted until it has been administratively disabled (shutdown).
- Each SAP can have one each of the following policies assigned:
 - Ingress filter policy
 - Egress filter policy
 - Ingress QoS policy
 - Accounting policy
- Note: Access-egress QoS policy is assigned per access port.

- SAPs using connection-profile (to specify dot1q VLAN ranges) can be configured in a service only when svc-sap-type is set to 'dot1q-range'.
- When a service is configured to use svc-sap-type 'dot1q-range', the outermost V-LAN tag of the packets are not stripped when the packet is received on access port ingress. For more information on processing behavior for this type of service, see “Ethernet Pipe (Epipe) Services on page 136” section.
QinQ SAP Configuration restrictions for 7210 SAS in Network mode only

Listed below are the QinQ access SAP configuration guidelines for 7210 SAS in Network mode only.

The guidelines listed below are not applicable when the 7210 SAS- M is configured in access uplink mode and access uplink SAPs are in use.

- Processing of tagged packets received on SAPs configured in a service in which a QinQ SAP is also in use (not applicable when a QinQ SAP is not provisioned in a service).
- When a QinQ SAP is configured in a service, the number of VLAN tags in the packets received on NULL SAP, Dot1q SAP and QinQ SAP configured in the same service should match the number of VLAN tags implied by the port encapsulation mode. Packets that do not match are dropped by the hardware. I.e. packets received with more than two VLAN tags on a QinQ SAP are dropped, packets received with more than one VLAN tag on a Dot1q SAP are dropped and packets received with tags (even packet with a priority tag) on a NULL SAP are dropped. Henceforth in this document, such packets are referred to as extra-tag packets.
- When a QinQ SAP is configured in a service, the number of VLAN tags in the packets received on the VC/pseudowire of type ‘vc-vlan’ should be exactly one and packets received on the VC/pseudowire of type ‘vc-ether’ should contain no tags (not even priority tag). If either case, packets that contain more number of VLAN tags than the number mentioned above are dropped. Henceforth the document refers to such packets as extra-tag packets.
- The system will provide a limited amount of counters to count the number of extra-tag packets dropped on SAP ingress. These counters are intended for diagnostic use.
- Table 3 displays the SAP types allowed in a service when QinQ SAP is in use:

Table 3: SAP types in a service when QinQ SAP is in use (Network mode operation)

<table>
<thead>
<tr>
<th>SAP configured in the service</th>
<th>SAPs Not Allowed for configuration in the same service</th>
</tr>
</thead>
<tbody>
<tr>
<td>QinQ</td>
<td>Q.* SAP, Dot1q Default SAP</td>
</tr>
<tr>
<td>Q.*</td>
<td>Q1.Q2</td>
</tr>
<tr>
<td>Dot1q default SAP</td>
<td>Q1.Q2</td>
</tr>
</tbody>
</table>

0.* QinQ SAP configured in the service will accept only untagged or priority tagged packets, irrespective of whether a QinQ SAP is configured in the service or not.
NOTE: 7210 supports a mechanism to transport QinQ packets in an Epipe with 2 or more tags, with some restrictions. For more information, see “Epipe chapter”.

SAP configuration notes when operating the 7210-M in Access-Uplink mode only

When provisioned in access-uplink mode, the following SAP configuration guidelines are applicable.

The Table 4 provides details of SAP and service combinations allowed in access-uplink mode.

Table 4: SAP and Service Combinations for 7210 SAS M in access-uplink mode

<table>
<thead>
<tr>
<th>svc-sap-type</th>
<th>Access SAPs</th>
<th>Access Uplink SAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>null-star</td>
<td>Null SAP, dot1q Default SAP, Default QinQ SAP (. SAP)</td>
<td>Q.* SAP, Default QinQ SAP (. SAP)</td>
</tr>
<tr>
<td>dot1q-preserve</td>
<td>dot1q SAP (dot1q VLAN tag is not stripped on ingress) Q1.Q2 SAP (Q2 tag VLAN ID must match the dot1q SAP VLAN ID)</td>
<td>Q1.Q2 SAP (Q2 tag VLAN ID must match the dot1q SAP VLAN ID)</td>
</tr>
<tr>
<td>any</td>
<td>dot1q SAP Null SAP, dot1q SAP, dot1q explicit null SAP, Q1.Q2 SAP, Q.* SAP, 0.* SAP</td>
<td>Q1.Q2 SAP, Q.* SAP, 0.* SAP</td>
</tr>
<tr>
<td>Dot1q SAP</td>
<td>(dot1q VLAN tag not stripped on ingress), Q1.* SAP</td>
<td>Q1.* SAP</td>
</tr>
</tbody>
</table>

- ‘svc-sap-type’ parameter value determines the type of SAPs that are allowed to be provisioned in a service.
- A physical port can have only one SAP to be part of one service. Multiple SAPs can be defined over a physical port but each of these SAPs should belong to a different service.
- In the case of a service’s sap-type is specified as dot1q-preserve, all the SAPs configured in the service must have the same VLAN ID. The outermost VLAN tag of the packets received on access port is not stripped, when svc-sap-type is set to dot1q-preserve.
- Dot1q Default SAP cannot be configured when svc-sap-type is set to ‘any’
- When svc-sap-type is set to ‘any’ for a NULL SAP, the system processes and forwards only packets with no VLAN tag (that is, untagged). All other packets with one or more VLAN tags (even those with priority tag only) are not processed and dropped. Users can use the service with svc-sap-type set to ‘null-star’, to process and forward packets with one or more tags (including priority tag) on a null SAP.
• An ingress QoS policy and accounting policy is assigned per access uplink port and cannot be assigned per access uplink SAP.

• The **Default QinQ** SAP processes only tagged packets received on a QinQ port. All tagged packets that do not match the specific SAP tags configured on the same port are processed by this SAP. The **Default QinQ** SAP cannot process un-tagged packets, even if 0.* SAP is not configured for use on that port.

The Default QinQ SAPs is available for use with 0.* SAPs configured on the same port or in the same service. It is available for use with another default QinQ SAP configured in the same service (on a different port). In a VPLS service, the Default QinQ SAP is available for use with any other SAP type configured in a service configured with svc-sap-type parameter set to "null-star".

→ SAPs using connection-profile (to specify dot1q VLAN ranges or individual VLAN IDs) can be configured in a service only when svc-sap-type is set to 'dot1q-range'.

→ When a service is configured to use svc-sap-type 'dot1q-range', the outermost V-LAN tag of the packets are not stripped when the packet is received on access port ingress. For more information, see “Ethernet Pipe (Epipe) Services on page 136” chapter for processing behavior for this type of service.
Service Distribution Points (SDPs)

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

A service distribution point (SDP) acts as a logical way to direct traffic from one router to another through a uni-directional (one-way) service tunnel. The SDP terminates at the far-end device which directs packets to the correct service egress SAPs on that device. A distributed service consists of a configuration with at least one SAP on a local node, one SAP on a remote node, and an SDP binding the service to the service tunnel.

An SDP has the following characteristics:

- An SDP is locally unique to a participating routers. The same SDP ID can appear on other 7210 SAS-Series routers.
- An SDP uses the system IP address to identify the far-end edge router.
- An SDP is not specific to any one service or any type of service. Once an SDP is created, services are bound to the SDP. An SDP can also have more than one service type associated with it.
- All services mapped to an SDP use the same transport encapsulation type defined for the SDP.
- An SDP is a management entity. Even though the SDP configuration and the services carried within are independent, they are related objects. Operations on the SDP affect all the services associated with the SDP. For example, the operational and administrative state of an SDP controls the state of services bound to the SDP.

An SDP from the local device to a far-end router requires a return path SDP from the far-end 7210 SAS-Series back to the local router. Each device must have an SDP defined for every remote router to which it wants to provide service. SDPs must be created first, before a distributed service can be configured.

SDP Binding

To configure a distributed service from ALA-A to ALA-B, the SDP ID (1) must be specified in the service creation process in order to “bind” the service to the tunnel (the SDP). Otherwise, service traffic is not directed to a far-end point and the far-end device(s) cannot participate in the service (there is no service). To configure a distributed service from ALA-B to ALA-A, the SDP ID (5) must be specified.
Figure 5: MPLS Service Distribution Point (SDP) Pointing From ALA-A to ALA-B
Spoke and MESH SDPs

When an SDP is bound to a service, it is bound as either a spoke SDP or a mesh SDP. The type of SDP indicates how flooded traffic is transmitted. The 7210 SAS M supports both spoke and mesh SDPs.

A spoke SDP is treated like the equivalent of a traditional bridge “port” where flooded traffic received on the spoke SDP is replicated on all other “ports” and not transmitted on the port it was received.

All mesh SDPs bound to a service are logically treated like a single bridge “port” for flooded traffic where flooded traffic received on any mesh SDP on the service is replicated to other “ports” (spoke SDPs and SAPs) and not transmitted on any mesh SDPs.

SDP Using BGP Route Tunnel

SDP is enhanced to use BGP route tunnel to extend inter-AS support for L2VPN services. An SDP can be configured to use MPLS transport method. MPLS SDP support is enhanced to allow a BGP route tunnel to reach the far-end PE. A single method of tunneling is allowed per SDP (for example, LDP, RSVP-TE LSP or BGP route tunnel). BGP route tunnel method is excluded if multi-mode transport is enabled for an SDP.

For inter-AS far-end PE, next-hop for BGP route tunnel must be one of the local ASBR. The LSP type selected to reach the local ASBR (BGP labeled route next-hop) must be configured under the BGP global context. LDP must be supported to provide transport LSP to reach the BGP route tunnel next-hop.

Only BGP route labels can be used to transition from ASBR to the next-hop ASBR. The global BGP route tunnel transport configuration option must be entered to select an LSP to reach the PE node from ASBR node. On the last BGP segment, both “BGP+LDP” and LDP routes may be available to reach the far-end PE from the ASBR node. LDP LSP must be preferred due to higher protocol priority. This leads to just one label besides other labels in stack to identify VC/VPN at far-end PE nodes.

SDP Keepalives

SDP keepalives actively monitor the SDP operational state using periodic Alcatel-Lucent SDP ping echo request and echo reply messages. Alcatel-Lucent SDP ping is a part of Alcatel-Lucent’s suite of service diagnostics built on an Alcatel-Lucent service-level OA&M protocol. When SDP
ping is used in the SDP keepalive application, the SDP echo request and echo reply messages are a mechanism for exchanging far-end SDP status.

Configuring SDP keepalives on a given SDP is optional. SDP keepalives for a particular SDP have the following configurable parameters:

- Admin up/admin down state
- Hello time
- Message length
- Max drop count
- Hold down time

SDP keepalive echo request messages are only sent when the SDP is completely configured and administratively up and SDP keepalives is administratively up. If the SDP is administratively down, keepalives for the SDP are disabled.

SDP keepalive echo request messages are sent out periodically based on the configured Hello Time. An optional message length for the echo request can be configured. If max drop count echo request messages do not receive an echo reply, the SDP will immediately be brought operationally down.

If a keepalive response is received that indicates an error condition, the SDP will immediately be brought operationally down.

Once a response is received that indicates the error has cleared and the hold down time interval has expired, the SDP will be eligible to be put into the operationally up state. If no other condition prevents the operational change, the SDP will enter the operational state.

For information about configuring keepalive parameters, refer to Configuring an SDP on page 70.
G.8032 Ethernet Ring Protection Switching

Ethernet ring protection switching offers ITU-T G.8032 specification compliance to achieve resiliency for Ethernet Layer 2 networks. Similar to G.8031 linear protection (also called Automatic Protection Switching (APS)), G.8032 (Eth-ring) is built on Ethernet OAM and often referred to as Ring Automatic Protection Switching (R-APS).

Eth-rings are supported on VPLS SAPs. VPLS services supporting Rings SAPs can connect to other rings and Ethernet service using VPLS, and R-VPLS SAPs. Eth-rings enables rings for core network or access network resiliency. A single point of interconnection to other services is supported. The Eth-ring service is a VLAN service providing protection for ring topologies and the ability to interact with other protection mechanisms for overall service protection. This ensures failures detected by Eth-ring only result in R-APS switchover when the lower layer cannot recover and that higher layers are isolated from the failure.

Rings are preferred in data networks where the native connectivity is laid out in a ring or there is a requirement for simple resilient LAN services. Due to the symmetry and the simple topology, rings are viewed a good solution for access and core networks where resilient LANS are required. The Alcatel-lucent implementation can be used for interconnecting access rings and to provide traffic engineered backbone rings. The 7210 SAS implementation of G.8032 supports dual inter-connected rings with sub-rings.

Eth-rings use one VID per control per ring instance and use one (typically) or multiple VIDs for data instances per control instance. A dedicated control VLAN (ERP VLAN) is used to run the protocol on the control VID. G.8032 controls the active state for the data VLANs (ring data instances) associated with a control instance. Multiple control instances allow logically separate rings on the same topology. The Alcatel-lucent implementation supports dot1q, and qinq encapsulation for data ring instances. The control channel supports dot1q and qinq encapsulation.
Overview of G.8032 Operation

R-APS messages that carry the G.8032 protocol are sent on dedicated protocol VLAN called ERP VLAN (or Ring Control Instance). In a revertive case, G.8032 Protocol ensures that one Ring Protection Link (RPL) owner blocks the RPL link. R-APS messages are periodically sent around in both directions to inform other nodes in the Ring about the blocked port in the RPL owner node. In non-revertive mode any link may be the RPL link. Y.1731 Ethernet OAM CC is the basis of the RAPs messages. Y.1731 CC messages are typically used by nodes in the ring to monitor the health of each link in the ring in both directions. However CC messages are not mandatory. Other link layer mechanisms could be considered – for example LOS (Loss of Signal) when the nodes are directly connected.

Initially each Ring Node blocks one of its links and notifies other nodes in the ring about the blocked link. Once a ring node in the ring learns that another link is blocked, the node unblocks its blocked link possibly causing FDB flush in all links of the ring for the affected service VLANs, controlled by the ring control instance. This procedure results in unblocking all links but the one link and the ring normal (or idle) state is reached. In revertive mode the RPL link will be the link that is blocked when all links are operable after the revert time. In non-revertive mode the RPL link is no different than other ring links. Revertive mode offers predictability particularly when there are multiple ring instances and the operator can control which links are block on the different instances. Each time there is a topology change that affects Reachability, the nodes may flush the FDB and MAC learning takes place for the affected service VLANs, allowing forwarding of packets to continue. Figure 6 depicts this operational state:

![Figure 6: G.8032 Ring in the Initial State](image)

When a ring failure occurs, a node or nodes detecting the failure (enabled by Y.1731 OAM CC monitoring) send R-APS message in both directions. This allows the nodes at both ends of the failed link to block forwarding to the failed link preventing it from becoming active. In revertive mode, the RPL Owner then unblocks the previously blocked RPL and triggers FDB flush for all...
nodes for the affected service instances. The ring is now in protecting state and full ring connectivity is restored. MAC learning takes place to allow Layer 2 packet forwarding on a ring. The following picture depicts the failed link scenario.

![Figure 7: G.8032 Ring in the Protecting State](image)

Once the failed link recovers, the nodes that blocked the link again send the R-APS messages indicating no failure this time. This in turn triggers RPL Owner to block the RPL link and indicate the Blocked RPL link the ring in R-APS message, which when received by the nodes at the recovered link cause them to unblock that link and restore connectivity (again all nodes in the ring perform FDB Flush and MAC learning takes place). The ring is back in the normal (or idle) state.

Within each path, Y.1731 Maintenance Entity Group (MEG) Endpoints (MEPs) are used to exchange R-APS specific information (specifically to co-ordinate switchovers) as well as optionally fast Continuity Check Messages (CCM) providing an inherent fault detection mechanism as part of the protocol. Failure detection of a ring path by one of the mechanisms triggers to activate the protection links. Upon failure, re-convergence times are a dependent on the failure detection mechanisms. In the case of Y.1731, the CCM transmit interval determines the response time. The 7210 SAS device supports 100ms (millisecond) message timers that allows for quicker restoration times. Alternatively, 802.3ah (Ethernet in the First Mile) or simple Loss of Signal can act as a trigger for a protection switch where appropriate. In case of direct connectivity between the nodes, there is no need to use Ethernet CC messaging for liveliness detection.

Revertive and non-revertive behaviors are supported. The Ring protection link (RPL) is configured and Eth-rings can be configured to revert to the RPL upon recovery.

G.8032 supports multiple data channels (VIDs) or instances per ring control instance (R-APS tag). G.8032 also supports multiple control instances such that each instance can support RPLs on different links providing for a load balancing capability however once services have been assigned to one instance the rest of the services that need to be interconnected to those services must be on
the same instance. In other words each data instance is a separate data VLAN on the same physical topology. When there is any one link failure or any one node failure in the ring, G.8032 protocols are capable of restoring traffic between all remaining nodes in these data instances.

Ethernet R-APS can be configured on any port configured for access mode using dot1q, q-in-q encapsulation enabling support for Ethernet R-APS protected services on the service edge towards the customer site, or within the Ethernet backbone. ELINE and ELAN services can be afforded Ethernet R-APS protection and, although the Ethernet Ring providing the protection uses a ring for protection the services are configured independent of the Ring properties. The intention of this is to cause minimum disruption to the service during Ethernet R-APS failure detection and recovery.

In the 7210 SAS implementation, the Ethernet Ring is built from a VPLS service on each node with VPLS SAPs that provides Ring path with SAPs. As a result, most of the VPLS SAP features are available on Ethernet rings if desired. This results in a fairly feature rich ring service.

The control tag defined under each eth-ring is used for encapsulating and forwarding the CCMs and the G.8032 messages used for the protection function. If a failure of a link or node affects an active Ethernet ring segment, the services will fail to receive the CC messages exchanged on that segment or will receive a fault indication from the Link Layer OAM module.

For fault detection using CCMs three CC messages plus a configurable hold-off timer must be missed for a fault to be declared on the associated path. The latter mechanism is required to accommodate the existence of additional, 50 ms resiliency mechanism in the optical layer. After it receives the fault indication, the protection module will declare the associated ring link down and the G.8032 state machine will send the appropriate messages to open the RPL and flush the learned addresses.

Flushing is triggered by the G.8032 state machine and the 7210 SAS implementation allows flooding of traffic during the flushing interval to expedite traffic recovery.

The Figure 8 below illustrates a resilient Ring Service. In the ring example, a PBB ring (solid line) using VID 500 carries 2 service VLANs on I-SID 1000 and 1001 for Service VIDs (Dot1q 100 and QinQ 400.1 respectively). The RPL for the PBB ring is between A and B where B is the RPL owner. Also, illustrated in the figure below is a QinQ service on the (dotted line) ring that uses Dot1q VID 600 for the ring to connect service VLAN 100.50. The two rings have RPLs on different nodes which allow a form of load balancing. The example serves to illustrate that service encapsulations and ring encapsulation can be mixed in various combinations. Also, note that neither of the rings is a closed loop. A ring can restore connectivity when any one node or link fails to all remaining nodes within the 50ms transfer time (signaling time after detection).
Service Entities

Figure 8: 0-3 Ring Example

Sample Configuration:

```plaintext
configure eth-ring 1
  description "Ring PBB BLUE on Node B"
  revert-time 100
  guard-time 5
  ccm-hold-time down 100 up 200
  rpl-node owner
  path a 6/6/1 raps-tag 100 // CC Tag 100
    description "To A ring link"
    rpl-end
    eth-cfm
    mep 1 domain 1 association 1 direction down // Control MEP
    no shutdown
    exit
  exit
  no shutdown // would allow protect switching
  // in absence of the "force" cmd
  exit
path b 6/6/2 raps-tag 100 //Tag 100
  description "to D Ring Link"
  eth-cfm
  mep 1 domain 1 association 1 direction down
  no shutdown
  exit
  exit
no shutdown
exit
exit
service
  vpls 10 customer 1 create // Ring APS SAPs
```
description "Ring Control VID 100"
sap 6/6/1:100 eth-ring 1 create // TAG for the Control Path a
exit
sap 6/6/2:100 eth-ring 1 create // TAG for the Control Path b
exit
no shutdown
exit

service
vpls 40 customer 1 b-vpls create //Data Channel on Ring
description "Ethernet Ring 1 VID 500"
sap 6/6/1:500 eth-ring 1 create // TAG for the Data Channel Path a
exit
sap 6/6/2:500 eth-ring 1 create // TAG for the Data Channel Path b
exit

exit

service
epipe 100 pbb-epipe // CPE traffic
description "PBB epipe service for CPE"
pbb-tunnel 40 backbone-dest-mac 00:bb:bb:bb:bb:bb isid 100
sap 3/1/1:100 create
description "Default sap description for service id 100"
exit
no shutdown
exit
Ethernet Ring Sub-Rings

Ethernet Sub-Rings offer a dual redundant way to interconnect rings. The 7210 SAS supports Sub-Rings connected to major rings and a sub-ring connected to a VPLS (LDP based) for access rings support in VPLS networks. Figure 9 illustrates a Major ring and Sub Ring scenario. In this scenario, any link can fail in either ring (ERP1 or ERP2) and each ring is protected. Furthermore, the sub ring (ERP2) relies on the major Ring (ERP1) as part of its protection for the traffic from C and D. The nodes C and D are configured as inter connection nodes.
Sub-Rings and Major Rings run similar state machines for the ring logic, however there are some differences. When Sub-Rings protect a link, the flush messages are propagated to the major ring. (A special configuration allows control of this option on the 7210 SAS.) When major rings change topology, the flush is propagated around the major ring and does not continue to any sub-rings. The reason for this is that Major Rings are completely connected but Sub-Rings are dependent on another ring or network for full connectivity. The topology changes need to be propagated to the other ring or network usually. Sub-Rings offer the same capabilities as major rings in terms of control and data so that all link resource may be utilized.

Figure 9: 0-4 G.8032 Sub-Ring

Sub-Rings and Major Rings run similar state machines for the ring logic, however there are some differences. When Sub-Rings protect a link, the flush messages are propagated to the major ring. (A special configuration allows control of this option on the 7210 SAS.) When major rings change topology, the flush is propagated around the major ring and does not continue to any sub-rings. The reason for this is that Major Rings are completely connected but Sub-Rings are dependent on another ring or network for full connectivity. The topology changes need to be propagated to the other ring or network usually. Sub-Rings offer the same capabilities as major rings in terms of control and data so that all link resource may be utilized.
Virtual and Non-Virtual Channel

The 7210 SAS platform supports both the virtual channel and non-virtual channel for Sub-Ring control communication. In the virtual channel mode, a dedicated VID, other than the Major Ring RAPs control channel is configured as a data instance on the Major Ring. This allows the Sub-Ring control messages and state machine logic to behave similar to a major ring. In the non-virtual channel mode, the sub-ring is only connected by the RAPs control channels on the sub-ring itself. This mode offers slightly less redundancy in the RAPs messaging than the virtual channel mode since Sub-Ring RAPs messages are not propagated across the major ring. When non-virtual link is configured, the protocol allows RPL messages over the Sub-Ring blocked link.
Sub-Ring configuration is similar to Major Ring configuration and consists of three parts: Eth-ring instance configuration, Control VPLS configuration and data VPLS configuration (data instance or data channel). The Eth-ring configuration of a Sub-Ring is tied to a major ring and only one path is allowed. Note that a split horizon group is mandatory to ensure that Sub-Ring control messages from the major ring are only passed to the Sub-Ring control.

The Data VPLS can be configured on the major ring, and in the example, shares the same VID (SAP encapsulation) on both the Major Ring and the Sub-ring to keep data on the same VLAN ID everywhere. (Note that just like other services in the 7210 SAS the encapsulation VID is controlled by SAP configuration and the association to the controlling ring is by the eth-ring ring-id.)

Figure 10: 0-5 Sub-Ring Configuration Example
The following illustrates a sample Sub-Ring configuration on Node C:

```
eth-ring 2
    description "Ethernet Sub Ring on Ring 1"
    sub-ring virtual-link // Using a virtual link
        interconnect ring-id 1 // Link to Major Ring 1
            propagate-topology-change
    exit
    exit
    path a 1/1/3 raps-tag 100 // Ring control uses VID 100
eth-cfm
    mep 9 domain 1 association 4
        ccm-enable
        control-mep
        no shutdown
    exit
    exit
    no shutdown
    exit

Note: If the Sub-Ring is configured as a non-virtual-link, the Sub-Ring configuration above and on all the other Sub-Ring nodes for this Sub-Ring will be:

```
sub-ring non-virtual-link // Not using a virtual link
Control Channel for the Major Ring ERP1 illustrates that Major ring
control is still separate from Sub-ring control
vpls 10 customer 1 create
 description "Control VID 10 for Ring 1 Major Ring"
 stp shutdown
 sap 1/1/1:10 eth-ring 1 create
 stp shutdown
 exit
 sap 1/1/4:10 eth-ring 1 create
 stp shutdown
 exit
no shutdown
exit

Data configuration for the Sub-Ring
vpls 11 customer 1 create
 description "Data on VID 11 for Ring 1"
 stp shutdown
 sap 1/1/1:11 eth-ring 1 create // VID 11 used for ring
 stp shutdown
 exit
 sap 1/1/4:11 eth-ring 1 create
 stp shutdown
 exit
 sap 1/1/3:11 eth-ring 2 create // Sub-ring data
 stp shutdown
 exit
 sap 3/2/1:1 create
 description "Local Data SAP"
 stp shutdown
```
no shutdown
exit

# Control Channel for the Sub-Ring using a virtual link. This is
# a data channel as far as Ring 1 configuration. Other Ring 1
# nodes also need this VID to be configured.

vpls 100 customer 1 create
description "Control VID 100 for Ring 2 Interconnection"
split-horizon-group "s1" create //Ring Split horizon Group
exit
stp shutdown
sap 1/1/1:100 split-horizon-group "s1" eth-ring 1 create
stp shutdown
exit
stp shutdown
exit
sap 1/1/4:100 split-horizon-group "s1" eth-ring 1 create
stp shutdown
exit
stp shutdown
exit
sap 1/1/3:100 eth-ring 2 create
stp shutdown
exit
no shutdown
exit

Note: If the Sub Ring has been configured as a non-virtual-link, the configuration above will be
the following:

vpls 100 customer 1 create
description "Control VID 100 for Ring 2 Interconnection"
sap 1/1/3:100 eth-ring 2 create
stp shutdown
exit
no shutdown
exit
The following illustrates a sample Sub-Ring configuration for VPLS (at PE1):

```
eth-ring 1
 description "Ethernet Ring 1"
 guard-time 20
 no revert-time
 rpl-node nbr
 sub-ring non-virtual-link
 interconnect vpls // VPLS is interconnection type
 propagate-topology-change
 exit
exit
path a 1/1/3 raps-tag 1.1
 description "Ethernet Ring : 1 Path on LAG"
 eth-cfm
 mep 8 domain 1 association 8
 ccm-enable
 control-mep
 no shutdown
 exit
exit
no shutdown
exit
Configuration for the ring control interconnection termination:
vpls 1 customer 1 create
 description "Ring 1 Control termination"
 stp shutdown
 sap 1/1/3:1.1 eth-ring 1 create //path a control
 stp shutdown
 exit
 no shutdown
 exit
Configuration for the ring data into the LDP based VPLS Service
vpls 5 customer 1 create
 description "VPLS Service at PE1"
 stp
 no shutdown
 exit
 sap 1/1/3:2.2 eth-ring 1 create
 stp shutdown
 exit
 sap 1/1/5:1 create
 exit
 mesh-sdp 5001:5 create //sample LDP MPLS LSPs
 exit
 mesh-sdp 5005:5 create
 exit
```
Eth-Rings and Sub-Rings offer a way to build a scalable resilient Ethernet transport network. Figure 6 illustrates a hierarchical ring network using PBB where dual homed services are connected to a PBB based Ethernet Ring network. The major rings are connected by Sub-Rings to the top level major ring. These Sub-Rings require virtual channel and will not work with non-virtual channel. Ring flushing is contained to major rings, or in the case of a Sub-Ring link or node failure, to the Sub-Ring and the directly attached major rings.

---

**Lag Support**

In 7210, Eth-rings does not support Ethernet rings SAPS on LAGs.

---

**OAM Considerations**

Ethernet CFM can be enabled on each individual path under an Ethernet ring. Only down MEPs can be configured on each of them and CCM sessions can be enabled to monitor the liveliness of the path using interval of 100 msec. Different CCM intervals can be supported on the path a and path b in an Ethernet ring. CFM is optional if hardware supports Loss of Signal for example.

In 7210 SAS-M network mode, UP MEPs on service SAPs which multicast into the service and monitor the active path may be used to monitor services.

---

**QoS Considerations**

When Ethernet ring is configured on two ports located on different IOMs, the SAP queues and virtual schedulers will be created with the actual parameters on each IOM.

Ethernet ring CC messages transmitted over the SAP queues using the default egress QoS policy will use NC (network class) as a forwarding class. If user traffic is assigned to the NC forwarding class, it will compete for the same bandwidth resources with the Ethernet CCMs. As CCM loss could lead to unnecessary switching of the Ethernet ring, congestion of the queues associated with the NC traffic should be avoided. The operator must configure different QoS Policies to avoid...
congestion for the CCM forwarding class by controlling the amount of traffic assigned into the corresponding queue.

Details of the Ethernet ring applicability in the services solution can be found in the respective Layer 2 sections of the 7210 SAS M OS Services Guide.

Support Service and Solution Combinations

The Ethernet rings are supported Layer 2 service. The following considerations apply:

- Only ports in access mode can be configured as eth-ring paths.
- Dot1q and QinQ ports are supported as eth-ring path members.
- A mix of regular and multiple eth-ring SAPs and PWs can be configured in the same services.
Configuration guidelines for G.8032

For 7210 SAS-M devices in network mode, to improve service fail-over time due to failures in the ring path, users can use the CLI command `config> system>resourceprofile>g8032-fast-flood-enable`. When fast flood is enabled, on a failure detection in one of the paths of the eth-ring, along with MAC flush the system starts to flood the traffic onto the available path. The resources needed for this functionality are shared with filters and affects filter scaling. For more information refer to the command description of the command `g8032-fast-flood-enable` in the 7210 SAS-M,X Interface configuration guide for more details. For 7210 SAS-M devices in access-uplink mode, to improve the service fail-over time due to failures in the ring path, fast flood is enabled by default. On a failure detection in one of the paths of the eth-ring, along with MAC flush the system starts to flood the traffic onto the available path. No explicit user configuration is needed for this and it does not affect scaling for filters.

- Down MEPs used with services and G.8032 share common hardware resources.
- Service level MEPs are not available on all SAPs tied to an eth-ring instance on a port.
Service Creation Process Overview

Figure 12 displays the overall process to provision core and subscriber services.
Deploying and Provisioning Services

The service model provides a logical and uniform way of constructing connectivity services. The basic steps for deploying and provisioning services can be broken down into three phases.

---

Phase 1: Core Network Construction

Before the services are provisioned, the following tasks should be completed:

- Build the IP or IP/MPLS core network.
- Configure routing protocols.
- Configure MPLS LSPs (if MPLS is used).

---

Phase 2: Service Administration

Perform preliminary policy configurations to control traffic flow, operator access, and to manage fault conditions and alarm messages, the following tasks should be completed:

- Configure group and user access privileges.
- Build templates for QoS, filter and/or accounting policies needed to support the core services.

---

Phase 3: Service Provisioning

- Provision customer account information.
- If necessary, build any customer-specific QoS, filter or accounting policies.
- Provision the customer services on the service edge routers by defining SAPs, binding policies to the SAPs.
Configuration Notes

This section describes service configuration caveats.

General

Service provisioning tasks can be logically separated into two main functional areas, core tasks and subscriber tasks and are typically performed prior to provisioning a subscriber service.

Core tasks include the following:

- Create customer accounts
- Create template QoS, filter, scheduler, and accounting policies
- Create SDPs (Not applicable for 7210 SAS-M devices configured in Access Uplink mode)

Subscriber services tasks include the following:

- Create Epipe and VPLS services.
- Create a VPRN service (Supported only in 7210 SAS-M network mode)
- Bind SDPs (Not applicable for 7210 SAS-M devices configured in Access Uplink mode)
- Configure interfaces (where required) and SAPs
- Create exclusive QoS and filter policies

To send and receive inband management traffic (for 7210 SAS-M in configured in access uplink mode), create an IES service.
Configuring Global Service Entities with CLI

This section provides information to create subscriber (customer) accounts using the command line interface.

Topics include:

- Service Model Entities on page 65
- Configuring Customers on page 68
- ETH-CFM Features on page 88
- Service Management Tasks on page 85

Service Model Entities

The Alcatel-Lucent service model uses logical entities to construct a service. The service model contains four main entities to configure a service.

- Subscribers on page 68
- Services:
  - Ethernet Pipe (Epipe) Services on page 136
  - VPLS on page 305
  - IES on page 507
- Service Access Points (SAPs)
  - Ethernet Pipe (Epipe) Services on page 136
  - VPLS SAP on page 318
Basic Configuration

The most basic service configuration must have the following:

- A customer ID
- A service type
- A service ID
- A SAP identifying a port and encapsulation value
- For distributed services: an associated SDP (Not applicable for 7210 SAS-M devices configured in Access Uplink mode)

The following example provides an Epipe service configuration displaying the SDP and Epipe service entities. SDP ID 1 was created with the far-end node 10.20.1.2. Epipe ID 101 was created for customer ID 1 which uses the SDP ID 1.

```
A:ALA-7210M>config>service#
--
...sdp 1 mpls create
description "Default sdp description"
far-end 10.20.1.2
lsp "lsp_1_to_B"
signaling tldp
no vlan-vc-etype
path-mtu 9194
no adv-mtu-override
keep-alive
shutdown
hello-time 10
hold-down-time 10
max-drop-count 3
timeout 5
no message-length
exit
no collect-stats
no accounting-policy
no shutdown
exit
...
epipe 101 customer 1 vpn 101 create
description "Default epipe description for service id 101"
service-mtu 9194
sap lag-2:101 create
description "Default sap description for service id 101"
no tod-suite
dotlag
exit
ingress
qos 1
no filter
exit
spoke-sdp 101:101 vc-type ether create
```
no vlan-vc-tag
    ingress
        no vc-label
    exit
egress
    no vc-label
    exit
    no control-word
    no
dotlag
    mep 1 domain 5 association 101 direction down
        ccm-enable
        no ccm-ltm-priority
        low-priority-defect remErrXcon
        no mac-address
        no shutdown
    exit
    mep 1 domain 6 association 101 direction down
        ccm-enable
        no ccm-ltm-priority
        low-priority-defect remErrXcon
        no mac-address
        no shutdown
    exit
    exit
    no collect-stats
    no accounting-policy
    no precedence
    no shutdown
    exit
    no shutdown

...
Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure a customer account and an SDP. SDP configuration is not needed for 7210 SAS-M devices configured in Access Uplink mode.

Configuring Customers

The most basic customer account must have a customer ID. Optional parameters include:

- Description
- Contact name
- Telephone number

Customer Information

Use the following CLI syntax to create and input customer information:

**CLI Syntax:**
```
config>service# customer customer-id create
 contact contact-information
 description description-string
 phone phone-number
```
The following displays a basic customer account configuration.

A:ALA-12>config>service# info
-------------------------------------------
...  
customer 5 create
description "Alcatel Customer"
contact "Technical Support"
phone "650 555-5100"
exit
...
-------------------------------------------
A:A:ALA-12>config>service#
**Configuring an SDP**

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

The most basic SDP must have the following:

- A locally unique SDP identification (ID) number.
- The system IP address of the far-end routers.
- An SDP encapsulation type, MPLS.

---

**SDP Configuration Tasks**

This section provides a brief overview of the tasks that must be performed to configure SDPs and provides the CLI commands.

Consider the following SDP characteristics:

- SDPs can be created as MPLS.
- Each distributed service must have an SDP defined for every remote router to provide VLL, VPLS, and VPRN services.
- A distributed service must be bound to an SDP. By default, no SDP is associated with a service. Once an SDP is created, services can be associated to that SDP.
- An SDP is not specific or exclusive to any one service or any type of service. An SDP can have more than one service bound to it.
- The SDP IP address must be a 7210 SAS-Series system IP address.
- In order to configure an MPLS SDP, LSPs must be configured first and then the LSP-to-SDP association must be explicitly created.
- In the SDP configuration, automatic ingress and egress labeling (targeted LDP) is enabled by default. Ingress and egress VC labels are signaled over a TLDP connection between two 7210 SAS-Series routers.

Note that if signaling is disabled for an SDP, then services using that SDP must configure ingress and egress vc-labels manually.

To configure a basic SDP, perform the following steps:

1. Specify an originating node.
2. Create an SDP ID.
3. Specify an encapsulation type.
4. Specify a far-end node.
Configuring an SDP

Use the following CLI syntax to create an SDP and select an encapsulation type. Only MPLS encapsulation is supported.

NOTE: When you specify the far-end ip address, you are creating the tunnel. In essence, you are creating the path from Point A to Point B. When you configure a distributed service, you must identify an SDP ID. Use the show service sdp command to display the qualifying SDPs.

When specifying MPLS SDP parameters, you must specify an LSP. If an LSP name is specified, then RSVP is used for dynamic signaling within the LSP.

LSPs are configured in the config>router>mpls context. See the 7210 SAS M MPLS Guide for configuration and command information.

Use the following CLI syntax to create an MPLS SDP:

**CLI Syntax:**
```
config>service>sdp sdp-id [mpls] create
 adv-mtu-override
 description description-string
 far-end ip-address
 keep-alive
 hello-time seconds
 hold-down-time seconds
 max-drop-count count
 message-length octets
 timeout timeout
 no shutdown
 lsp lsp-name [lsp-name](only for MPLS SDPs)
 path-mtu octets
 signaling {off | tldp}
 no shutdown
```
The following displays an LSP-signalled MPLS SDP configuration.

A:ALA-12>config>service# info
-------------------------------------------
...
  sdp 8 mpls create
       description "MPLS-10.10.10.104"
       far-end 10.10.10.104
       lsp "to-104"
       keep-alive
       shutdown
       exit
       no shutdown
       exit
...
-------------------------------------------
A:ALA-12>config>service#
Ethernet Connectivity Fault Management (ETH-CFM)

Ethernet Connectivity Fault Management (ETH-CFM) is defined in two similar standards: IEEE 802.1ag and ITU-T Y.1731. They both specify protocols, procedures, and managed objects to support transport fault management, including discovery and verification of the path, detection and isolation of a connectivity fault for each Ethernet service instance. CFM functionalities are supported on 7210 SAS platforms.

The configuration is split into multiple areas. There is the base ETH-CFM configuration which defines the different Management constructs and administrative elements. This is performed in the ETH-CFM context. The individual management points are configure within the specific service contexts in which they are applied.

The 7210 SAS Services Guide provides the basic service applicable material to build the service specific management points, MEPs and MIPs.

The different service types support a subset of the features from the complete ETH-CFM suite.

ETH-CC used for continuity is available to all MEPs configured within a service. 7210 SAS-M support Down MEPs and UP MEPs, though the support is not available on all platforms. For more information, see the table below.

NOTE: UP MEPs cannot be created by default on system bootup. The user needs to explicitly allocate hardware resources for use with UP MEP feature, using the commands that appear under configure> system> resource-profile CLI context. Only after resources have been allocated by the user, UP MEPs are allowed to be created. Until resources are not allocated to UP MEP, the software fails all attempts to create an UP MEP.

The troubleshooting tools ETH-LBM/LBR, LTM/LTR ETH-TST defined by the IEEE 802.1ag specification and the ITU-T Y.1731 recommendation are applicable to all MEPs (MIPs where appropriate).

The advanced notification function AIS defined by the ITU-T Y.1731 is supported on Epipe services.

The advanced performance functions, 1DM, DMM/DMR and SLM/SLR are supported on all service MEPs.

For a description of the individual features and functions that are supported refer to the applicable OAM Diagnostics Guide.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Callout</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDM</td>
<td>One way Delay Measurement (Y.1731)</td>
</tr>
<tr>
<td>AIS</td>
<td>Alarm Indication Signal</td>
</tr>
<tr>
<td>CCM</td>
<td>Continuity check message</td>
</tr>
<tr>
<td>CFM</td>
<td>Connectivity fault management</td>
</tr>
<tr>
<td>DMM</td>
<td>Delay Measurement Message (Y.1731)</td>
</tr>
<tr>
<td>DMR</td>
<td>Delay Measurement Reply (Y.1731)</td>
</tr>
<tr>
<td>LBM</td>
<td>Loopback message</td>
</tr>
<tr>
<td>LBR</td>
<td>Loopback reply</td>
</tr>
<tr>
<td>LTM</td>
<td>Linktrace message</td>
</tr>
<tr>
<td>LTR</td>
<td>Linktrace reply</td>
</tr>
<tr>
<td>ME</td>
<td>Maintenance entity</td>
</tr>
<tr>
<td>MA</td>
<td>Maintenance association</td>
</tr>
<tr>
<td>MA-ID</td>
<td>Maintenance association identifier</td>
</tr>
<tr>
<td>MD</td>
<td>Maintenance domain</td>
</tr>
<tr>
<td>MEP</td>
<td>Maintenance association end point</td>
</tr>
<tr>
<td>MEP-ID</td>
<td>Maintenance association end point identifier</td>
</tr>
<tr>
<td>MHF</td>
<td>MIP half function</td>
</tr>
<tr>
<td>MIP</td>
<td>Maintenance domain intermediate point</td>
</tr>
<tr>
<td>OpCode</td>
<td>Operational Code</td>
</tr>
<tr>
<td>RDI</td>
<td>Remote Defect Indication</td>
</tr>
<tr>
<td>TST</td>
<td>Ethernet Test (Y.1731)</td>
</tr>
<tr>
<td>SLM</td>
<td>Synthetic Loss Message (Y.1731)</td>
</tr>
<tr>
<td>SLR</td>
<td>Synthetic Loss Reply (Y.1731)</td>
</tr>
</tbody>
</table>
ETH-CFM capabilities may be deployed in many different Ethernet service architectures. The Ethernet based SAPs and SDP bindings provide the endpoint on which the management points may be created. The basic functions can be used in different services, VPLS and Epipe. The ETH-CFM functionality is also applicable to broadband access networks. Two models of broadband access are shown below to illustrate how ETH-CFM could be deployed in these cases. (Figure 13 and Figure 14).

Figure 13: Ethernet OAM Model for Broadband Access - Residential

Figure 14: Ethernet OAM Model for Broadband Access - Wholesale

As shown in Figure 16 and Figure 17, the following functions are supported:
• CFM can be enabled or disabled on a SAP or SDP bindings basis.

• The eight ETH-CFM levels are suggested to be broken up numerically between customer 7-5, service provider 4-3 and Operator 2-1. Level 0 is meant to monitor direct connections without any MIPs and should be reserved for port-based facility MEPs. These can be configured, deleted or modified.

• Down MEP and UP MEP with an MEP-ID on a SAP binding for each MD level can be configured, modified, or deleted. Each MEP is uniquely identified by the MA-ID, MEP-ID tuple.
  → MEP creation on a SAP is allowed only for Ethernet ports (with null, q-tags, qinq encapsulations).

• MIP creation on a SAP for each MD level can be enabled and disabled. MIP creation is automatic or manual when it is enabled. When MIP creation is disabled for an MD level, the existing MIP is removed.
  → Only ingress MIPs are supported
  → MIP creation is not supported on mesh SDP bindings.
Common Actionable Failures

It is important to note that AIS operates independently from the low-priority-defect setting. The low-priority-defect setting configuration parameter affects only the ETH-CFM fault propagation and alarming outside the scope of AIS. Any fault in the MEP state machine generates AIS when it is configured. Table 4 illustrates the ETH-CC defect condition groups, configured low-priority-defect setting, priority and defect as it applies to fault propagation.

<table>
<thead>
<tr>
<th>Defect</th>
<th>Low Priority Defect</th>
<th>Description</th>
<th>Causes</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>DefNone</td>
<td>n/a</td>
<td>No faults in the association</td>
<td>Normal operations</td>
<td>n/a</td>
</tr>
<tr>
<td>DefRDICCM</td>
<td>allDef</td>
<td>Remote Defect Indication</td>
<td>Feedback mechanism to inform unidirectional faults exist. It provides the feedback loop to the node with the unidirectional failure conditions</td>
<td>1</td>
</tr>
<tr>
<td>DefMACStatus (default)</td>
<td>macRemErrXcon</td>
<td>MAC Layer</td>
<td>Remote MEP is indicating a remote port or interface not operational.</td>
<td>2</td>
</tr>
<tr>
<td>DefRemoteCCM</td>
<td>remErrXon</td>
<td>No communication from remote peer.</td>
<td>MEP is not receiving CCM from a configured peer. The timeout of CCM occurs at 3.5x the local CC interval. As per the specification, this value is not configurable.</td>
<td>3</td>
</tr>
<tr>
<td>DefErrorCCM</td>
<td>errXcon</td>
<td>Remote and local configures do not match required parameters.</td>
<td>Caused by different interval timer, domain level issues (lower value arriving at a MEP configured with a higher value), MEP receiving CCM with its MEPID</td>
<td>4</td>
</tr>
<tr>
<td>DefXconn</td>
<td>Xcon</td>
<td>Cross Connected Service</td>
<td>The service is receiving CCM packets from a different association. This could indicate that two services have merged or there is a configuration error on one of the SAP or bindings of the service, incorrect association identification.</td>
<td>5</td>
</tr>
</tbody>
</table>
### MEP and MIP Support

The following is a general table that indicates the ETH-CFM support for the different services and endpoints. It is not meant to indicate the services that are supported or the requirements for those services on the individual platforms.

**Table 6: ETH-CFM Support Matrix for 7210 SAS-M**

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>7210 SAS-M Network Mode MEP/MIP support</th>
<th>7210 SAS-M access-uplink Mode MEP/MIP support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epipe (Ethernet Access SAP/SDP)</td>
<td>Ethernet Point to Point</td>
<td>UP MEP, Down MEP</td>
<td>UP MEP, Down MEP</td>
</tr>
<tr>
<td>VPLS (Ethernet SAP/Spoke SDP)</td>
<td>Multipoint Ethernet</td>
<td>UP MEP, Down MEP, Ingress MIPs</td>
<td>UP MEP, Down MEP, Ingress MIPs</td>
</tr>
<tr>
<td>RVPLS (Ethernet Access SAP and Access-uplink SAP)</td>
<td>Routed VPLS service</td>
<td>Not applicable</td>
<td>None</td>
</tr>
<tr>
<td>RVPLS (IES Interface)</td>
<td>Routed VPLS service(IP interface)</td>
<td>Not applicable</td>
<td>None</td>
</tr>
<tr>
<td>PBB Epipe I-SAP</td>
<td>PBB Epipe service (SAP endpoint)</td>
<td>UP MEP</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PBB I-VPLS I-SAP</td>
<td>PBB ELAN/I-VPLS service (SAP endpoint)</td>
<td>None</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PBB B-VPLS B-SAP</td>
<td>PBB B-VPLS service (SAP endpoint)</td>
<td>None</td>
<td>Not applicable</td>
</tr>
<tr>
<td>IES (Ethernet SAP)</td>
<td>Internet Enhanced Service</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>VPRN (Ethernet SAP/SDP)</td>
<td>Virtual Private Routed Network</td>
<td>None</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

**Note:** Ethernet-Rings are not configurable under all service types. Any service restrictions for MEP direction or MIP support will override the generic capability of the Ethernet-Ring MPs. For more information on Ethernet-Rings, refer to the 7210 SAS M, X Interfaces Guide.
**Note:** An Ingress MIP or a Down MIP refers to an unidirectional MIP. In 7210, MIP is unidirectional in that only CFM OAM packets received in the ingress direction is processed.

**Note:** Routed VPLS Service is supported only in 7210 SAS-M access-uplink mode. It is not supported in 7210 SAS-M network mode.
Configuring ETH-CFM Parameters

Configuring ETH-CFM requires commands at two different hierarchy levels of the CLI.

A sample of the global ETH-CFM configuration which defines the domains, associations, linkage of the service id or function, and the globally applicable CCM parameters including the interval and building of the remote MEPs database is shown below.

The following example displays a sample configuration.

```
*A:ALU-7_A>config>eth-cfm# info

domain 1 name "1" level 1
 association 2 name "1345"
 bridge-identifier 100
 exit
 ccm-interval 60
 remote-mepid 2
 remote-mepid 3
 exit
 exit

*A:ALU-7_A>config>eth-cfm#
```

Defining the MEP and configuring service specific ETH-CFM parameters is performed within the service on the specific SAP or SDP binding. The example using the service VPLS 100 shows this configuration on the SAP.

```
*A:ALU-7_A>config>service# info

vpls 100 customer 1 create
description "VPLS service 100 - Used for MEP configuration example"
sap 2/2/1:20 create
description "2/2/1:20"
eth-cfm
 mep 1 domain 1 association 1 direction down
 no shutdown
 exit
 exit
exit
no shutdown
exit
customer 1 create
description "Default customer"
exit
exit

*A:ALU-7_A>config>service#
```

All of the examples shown above were based on IEEE 802.1ag. They are not capable of running Y.1731 functions. To build a Y.1731 context the domain format must be none.
The examples below show the global ETH-CFM configuration and the advanced Y.1731 functions that can be configured. The configuration will reject the configuration of Y.1731 functions within an IEEE 802.1ag context.

*A:7210-2# config>eth-cfm# info
---------------------------------------------------------------
domain 1 format none level 1
   association 1 format icc-based name "1234567890123"
   bridge-identifier 100
   exit
   ccm-interval 1
   exit
   exit

*A:7210-2# config>service# info
-----------------------------------------------
vpls 100 customer 1 create
   stp
   shutdown
   exit
   sap 2/2/1:40 create
   eth-cfm
     mep 1 domain 1 association 1 direction up
     ais-enable
     priority 2
     interval 60
     exit
     eth-test-enable
     test-pattern all-ones crc-enable
     exit
     no shutdown
     exit
     exit
     no shutdown
     exit
-----------------------------------------------

Notes:

- To be able to transmit and also receive AIS PDUs, a Y.1731 MEP must have **ais-enable** set.
- To be able to transmit and also receive ETH-Test PDUs, a Y.1731 MEP must have **eth-test-enable** set.
Applying ETH-CFM Parameters

Apply ETH-CFM parameters to the following entities.

**CLI Syntax:** config>service>epipe>sap
eth-cfm
  mep mep-id domain md-index association ma-index [direction {up | down}]
  ais-enable
    client-meg-level [[level [level ...]]]
    interval {1 | 60}
    priority priority-value
  ccm-enable
  ccm-ltm-priority priority
  eth-test-enable
    test-pattern {all-zeros | all-ones} [crc-enable]
  low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
  [no] shutdown

**CLI Syntax:** config>service>epipe>spoke-sdp
eth-cfm
  mep mep-id domain md-index association ma-index [direction {up | down}]
  ccm-enable
  ccm-ltm-priority priority
  eth-test-enable
    test-pattern {all-zeros | all-ones} [crc-enable]
  low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
  [no] shutdown

**CLI Syntax:** config>service>vpls>sap
eth-cfm
  mip
  mep mep-id domain md-index association ma-index [direction {up | down}]
  no mep mep-id domain md-index association ma-index
  ccm-enable
  ccm-ltm-priority priority
  eth-test-enable
    test-pattern {all-zeros | all-ones} [crc-enable]
  low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
  mac-address mac-address
  [no] shutdown
CLI Syntax: config>service>vpls>mesh-sdp sdp-id[:vc-id] [vc-type {ether|vlan}]
  eth-cfm
  mep mep-id domain md-index association ma-index [direction {up | down}]
  ccm-enable
  ccm-ltm-priority priority
  eth-test-enable
  test-pattern {all-zeros | all-ones} [crc-enable]
  low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
  mac-address mac-address
  no] shutdown

CLI Syntax: config>service>vpls
  spoke-sdp sdp-id:vc-id [vc-type {ether | vlan}] [split-horizon-group group-name] [no-endpoint]
  spoke-sdp sdp-id:vc-id [vc-type {ether | vlan}] [split-horizon-group group-name] endpoint endpoint
  eth-cfm
  map mep-id domain md-index association ma-index [direction {up | down}]
  ccm-enable
  ccm-ltm-priority priority
  eth-test-enable
  test-pattern {all-zeros | all-ones} [crc-enable]
  low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
  mac-address mac-address
  no] shutdown

CLI Syntax: oam
  eth-cfm linktrace mac-address mep mep-id domain md-index association ma-index [ttl ttl-value]

  eth-cfm loopback mac-address mep mep-id domain md-index association ma-index [send-count send-count] [size data-size] [priority priority]

  eth-cfm eth-test mac-address mep mep-id domain md-index association ma-index [priority priority] [data-length data-length]

  eth-cfm one-way-delay-test mac-address mep mep-id domain md-index association ma-index [priority priority]

  eth-cfm two-way-delay-test mac-address mep mep-id domain md-index association ma-index [priority priority]
eth-cfm two-way-slm-test mac-address mep mep-id domain md-index association ma-index [priority priority]
Service Management Tasks

This section discusses the following service management tasks:

- Modifying Customer Accounts on page 85
- Deleting Customers on page 86
- Modifying SDPs on page 87
- Deleting SDPs on page 88

Modifying Customer Accounts

To access a specific customer account, you must specify the customer ID. To display a list of customer IDs, use the show service customer command. Enter the parameter (description, contact, phone) and then enter the new information.

CLI Syntax:
```
config>service# customer customer-id create
[no] contact contact-information
[no] description description-string
[no] phone phone-number
```

Example:
```
config>service# customer 27 create
config>service>customer$ description "Western Division"
config>service>customer# contact "John Dough"
config>service>customer# no phone "(650) 237-5102"
```
Deleting Customers

The no form of the customer command removes a customer ID and all associated information. All service references to the customer must be shut down and deleted before a customer account can be deleted.

**CLI Syntax:**
config>service# no customer customer-id

**Example:**
config>service# epipe 5 customer 27 shutdown
config>service# epipe 9 customer 27 shutdown
config>service# no epipe 5
config>service# no epipe 9
config>service# no customer 27
Modifying SDPs

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

To access a specific SDP, you must specify the SDP ID. To display a list of SDPs, use the show service sdp command. Enter the parameter, such as description, far-end, and lsp, and then enter the new information.

NOTE: Once created, you cannot modify the SDP encapsulation type.

CLI Syntax: config>service# sdp  sd-p-id

Example: config>service# sdp 79
config>service>sdp# description "Path-to-107"
config>service>sdp# shutdown
config>service>sdp# far-end "10.10.10.107"
config>service>sdp# path-mtu 1503
config>service>sdp# no shutdown
Deleting SDPs

The no form of the `sdp` command removes an SDP ID and all associated information. Before an SDP can be deleted, the SDP must be shutdown and removed (unbound) from all customer services where it is applied.

**CLI Syntax:**
```
config>service# no sdp 79
```

**Example:**
```
config>service# epipe 5 spoke-sdp 79:5
config>service>epipe>sdp# shutdown
config>service>epipe>sdp# exit
config>service>epipe# exit
config>service# no sdp 79
```
Global Services Command Reference

Command Hierarchies

- Customer Commands on page 89
- Pseudowire (PW) Commands (applicable only for 7210 SAS-M network mode) on page 89
- SDP Commands (Applicable only to 7210 SAS-M in network mode) on page 91
- SAP Commands for 7210 SAS-M in Network mode on page 91
- ETH-CFM Configuration Commands on page 93
- SAP Commands for 7210 SAS-M in Access-uplink mode on page 92
- Show Commands on page 94

NOTE: All the CLI commands are not available in both access-uplink mode and network modes. Commands applicable to each mode is called out explicitly.

Customer Commands

```
config
 service
 [no] customer customer-id
 [no] contact contact-information
 [no] description description-string
 [no] phone phone-number
```

Pseudowire (PW) Commands (applicable only for 7210 SAS-M network mode)

```
config
 service
 [no] pw-template policy-id [use-provisioned-sdp] [create]
 accounting-policy acct-policy-id
 [no] accounting-policy
 [no] collect-stats
 [no] control-word
 [no] disable-learning
 [no] disable-aging
 [no] discard-unknown-source
 limit-mac-move [blockable|non-blockable]
 [no] limit-mac-move
 [no] vc-type
```
—  [no] force-vlan-vc-forwarding
—  igmp-snooping
  —  [no] fast-leave
  —  import policy-name
  —  no import
  —  last-member-query-interval 1/10 seconds
  —  no last-member-query-interval
  —  max-num-groups max-num-groups
  —  no max-num-groups
  —  query-interval seconds
  —  no query-interval
  —  query-response-interval seconds
  —  no query-response-interval
  —  robust-count robust-count
  —  no robust-count
  —  [no] send-queries
  —  version version
  —  no version
—  limit-mac-move {blockable | non-blockable}
—  no limit-mac-move
—  [no] mac-pinning
—  max-nbr-mac-addr table-size
—  no max-nbr-mac-addr
—  split-horizon-group group-name
—  no split-horizon-group
  —  description description-string
  —  no description
—  vc-type {ether | vlan}
—  vlan-vc-tag 0..4094
—  no vlan-vc-tag
SDP Commands (Applicable only to 7210 SAS-M in network mode)

Note: SDP commands are not applicable for 7210 SAS-M devices configured in Access Uplink mode.

```
config
 service
 sdp id [mpls] [create]
 no sdp id
 accounting-policy acct-policy-id
 no accounting-policy
 collect-stats acct-policy-id
 no collect-stats
 [no] adv-mtu-override
 [no] bgp-tunnel
 [no] collect-stats
 description description-string
 no description
 far-end ip-address
 no far-end
 keep-alive
 hello-time seconds
 no hello-time
 hold-down-time seconds
 no hold-down-time
 max-drop-count count
 no max-drop-count
 message-length octets
 no message-length
 [no] shutdown
 timeout timeout
 no timeout
 [no] ldp
 metric metric
 no metric
 [no] lsp lsp-name
 path-mtu octets
 no path-mtu
 [no] shutdown
 signaling [off | tldp]
```

SAP Commands for 7210 SAS-M in Network mode

```
config
 service
 epipe
 sap id [create] no sap id
 ies
 sap id [create]
```
SAP Commands for 7210 SAS-M in Access-uplink mode

```plaintext
config
 service
 epipe service-id [customer customer-id] [create] [sve-sap-type {null-star | dot1q-preserve | any | dot1q-range}] [customer-vid vlan-id]
 no epipe service-id
 sap sap-id [create]
 no sap sap-id
 ies service-id [customer customer-id] [create]
 no ies service-id
 sap sap-id [create]
 no sap sap-id
 vpls service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] [sve-sap-type {null-star | any | dot1q-preserve}] [customer-vid vlan-id]
 no vpls service-id
 sap sap-id [create]
 no sap sap-id
```
ETH-CFM Configuration Commands

```
config
 - eth-cfm
 - domain md-index [format md-name-format] [name md-name] level level
 - domain md-index
 - no domain md-index
 - association [format ma-name-format] name ma-name
 - association ma-index
 - no association ma-index
 - [no] bridge-identifier bridge-id
 - mhf-creation {none | explicit}
 - no mhf-creation
 - vlan vlan-id
 - no vlan
 - ccm-interval {100ms | 1 | 10 | 60 | 600}
 - no ccm-interval
 - [no] remote-mepid mep-id
 - slm
 - [no] inactivity-timer timer
```
Show Commands

show
  — service
    — customer [customer-id] [site customer-site-name]
    — sdps [sdps-id] [far-end ip-addr] [detail | keep-alive-history]
    — sdp-uds [sdps-id] [vc-id] [far-end ip-address]
    — pw-template [policy-id]
    — pw-template-using [policy-id]
    — service-using [epipe] [vpls] [mirror] [customer customer-id]
  — eth-ring [status]
  — eth-ring ring-index [path /a|b|f]
  — eth-cfm
    — association [ma-index] [detail]
    — cfm-stack-table [port [port-id [vlan vlan-id]] [level 0..7] [direction down]]
    — cfm-stack-table
    — cfm-stack-table port [all-ports] [level <0..7>] [direction <down>]
    — cfm-stack-table [port-id] [vlan <qtag|qtag>] [level <0..7>] [direction <down>]
    — cfm-stack-table facility [all-ports|all-lags|all-lag-ports|all-tunnel-meps|all-router-interfaces] [level <0..7>] [direction <down>]
    — cfm-stack-table facility lag [id] [tunnel <1..4094>] [level <0..7>] [direction <down>]
    — cfm-stack-table facility port [id] [level <0..7>] [direction <down>]
    — cfm-stack-table facility router-interface [ip-int-name] [level <0..7>] [direction <down>]
    — domain [md-index] [association ma-index | all-associations] [detail]
    — mep mep-id domain md-index association ma-index [loopback | linktrace]
    — mep mep-id domain md-index association ma-index remote-mepid mep-id | all-remote-mepids
    — mep mep-id domain md-index association ma-index eth-test-results [remote-peer mac-address]
    — mep mep-id domain md-index association ma-index one-way-delay-test [remote-peer mac-address]
    — mep mep-id domain md-index association ma-index two-way-delay-test [remote-peer mac-address]
    — mep mep-id domain md-index association ma-index two-way-slm-test [remote-peer mac-address]
Global Service Configuration Commands

Generic Commands

shutdown

Syntax [no] shutdown

Context config>dot1ag>mep
config>service>sdp
config>service>sdp>keep-alive

Description This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Services are created in the administratively down (shutdown) state. When a no shutdown command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities is described below in Special Cases.

The no form of this command places the entity into an administratively enabled state.

Special Cases Service Admin State — Bindings to an SDP within the service will be put into the out-of-service state when the service is shutdown. While the service is shutdown, all customer packets are dropped and counted as discards for billing and debugging purposes.

SDP (global) — When an SDP is shutdown at the global service level, all bindings to that SDP are put into the out-of-service state and the SDP itself is put into the administratively and operationally down states. Packets that would normally be transmitted using this SDP binding will be discarded and counted as dropped packets.

SDP (service level) — Shutting down an SDP within a service only affects traffic on that service from entering or being received from the SDP. The SDP itself may still be operationally up for other services.

SDP Keepalives — Enables SDP connectivity monitoring keepalive messages for the SDP ID. Default state is disabled (shutdown) in which case the operational state of the SDP-ID is not affected by the keepalive message state.
description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>description description-string</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Context</th>
<th>config&gt;service&gt;customer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>config&gt;service&gt;sdp</td>
</tr>
</tbody>
</table>

**Description**

This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the content in the configuration file.

The `no` form of this command removes the string from the configuration.

**Default**

No description associated with the configuration context.

**Parameters**

`string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Customer Management Commands

customer

Syntax  customer customer-id [create]
no customer customer-id

Context  config>service

Description  This command creates a customer ID and customer context used to associate information with a particular customer. Services can later be associated with this customer at the service level.

Each customer-id must be unique. The create keyword must follow each new customer customer-id entry.

Enter an existing customer customer-id (without the create keyword) to edit the customer’s parameters.

Default customer 1 always exists on the system and cannot be deleted.

The no form of this command removes a customer-id and all associated information. Before removing a customer-id, all references to that customer in all services must be deleted or changed to a different customer ID.

Parameters  customer-id — Specifies the ID number to be associated with the customer, expressed as an integer.

Values  1 — 2147483647

contact

Syntax  contact contact-information
no contact contact-information

Context  config>service>customer

Description  This command allows you to configure contact information for a customer.

Include any customer-related contact information such as a technician’s name or account contract name.

Default  No contact information is associated with the customer-id.

The no form of this command removes the contact information from the customer ID.

Parameters  contact-information — The customer contact information entered as an ASCII character string up to 80 characters in length. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Any printable, seven bit ASCII characters may be used within the string.
Customer Management Commands

phone

Syntax
[no] phone string

Context
config>service>customer customer-id

Description
This command adds telephone number information for a customer ID.

Default
none

The no form of this command removes the phone number value from the customer ID.

Parameters
string — The customer phone number entered as an ASCII string string up to 80 characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Any printable, seven bit ASCII characters may be used within the string.
Pseudowire Commands

pw-template

**Syntax**  
[no] pw-template policy-id [use-provisioned-sdp] [create]

**Context**  
config>service

**Description**  
This command configures an SDP template.

**Parameters**

- `use-provisioned-sdp` — Specifies whether to use an already provisioned SDP. When specified, the tunnel manager will be consulted for an existing active SDP. Otherwise, the default SDP template will be used to use for instantiation of the SDP.

- `create` — This keyword is required when first creating the configuration context. Once the context is created, it is possible to navigate into the context without the create keyword.

control-word

**Syntax**  
[no] control-word

**Context**  
config>service>pw-template

**Description**  
This command enables the use of the control word on pseudowire packets in VPLS and enables the use of the control word individually on each mesh-sdp or spoke-sdp. By default, the control word is disabled. When the control word is enabled, all VPLS packets, including the BPDU frames, are encapsulated with the control word when sent over the pseudowire. The T-LDP control plane behavior is the same as in the implementation of control word for VLL services. The configuration for the two directions of the Ethernet pseudowire should match.

The no form of the command reverts the mesh SDP or spoke-sdp to the default behavior of not using the control word.

**Default**  
no control-word
SDP Commands

Note: SDP commands are not applicable for 7210 SAS-M devices configured in Access-Uplink mode.

sdp

Syntax   sdp  sdp-id  [mpls]  [create]  
          no  sdp  sdp-id

Context   config>service

Description   This command creates or edits a Service Distribution Point (SDP). SDPs must be explicitly configured.

An SDP is a logical mechanism that ties a far-end 7210 SAS M to a particular service without having to specifically define far end SAPs. Each SDP represents a method to reach a 7210 SAS M router.

The other method is Multi-Protocol Label Switching (MPLS) encapsulation. A 7210 SAS M supports both signaled and non-signaled Label Switched Paths (LSPs) through the network. Non-signaled paths are defined at each hop through the network. Signaled paths are communicated by protocol from end to end using Resource ReserVation Protocol (RSVP). Paths may be manually defined or a constraint-based routing protocol (such as OSPF-TE or CSPF) can be used to determine the best path with specific constraints. An LDP LSP can also be used for an SDP when the encapsulation is MPLS. The use of an LDP LSP type or an RSVP/Static LSP type are mutually exclusive except when the mixed-lsp option is enabled on the SDP.

SDPs are created and then bound to services. Many services may be bound to a single SDP. The operational and administrative state of the SDP controls the state of the SDP binding to the service.

If sdp-id does not exist, a new SDP is created. When creating an SDP, the mpls keyword must be specified. SDPs are created in the admin down state (shutdown) and the no shutdown command must be executed once all relevant parameters are defined and before the SDP can be used.

If sdp-id exists, the current CLI context is changed to that SDP for editing and modification. For editing an existing SDP, the mpls keyword is specified. If a keyword is specified for an existing sdp-id, an error is generated and the context of the CLI will not be changed to the specified sdp-id.

The no form of this command deletes the specified SDP. Before an SDP can be deleted, it must be administratively down (shutdown) and not bound to any services. If the specified SDP is bound to a service, the no sdp command will fail generating an error message specifying the first bound service found during the deletion process. If the specified sdp-id does not exist an error will be generated.

Default   none

Parameters   sdp-id — The SDP identifier.

Values   1 — 17407

mpls — Specifies the SDP will use MPLS encapsulation and one LSP tunnels to reach the far-end device. Multiple MPLS SDPs may be created to a given destination device. Multiple MPLS SDPs to a single destination device are helpful when they use divergent paths.
accounting-policy

Syntax    accounting-policy acct-policy-id
          no accounting-policy

Context   config>service>sdp
          config>service>pw-template

Description  This command creates the accounting policy context that can be applied to an SDP. An accounting policy must be defined before it can be associated with a SDP. If the policy-id does not exist, an error message is generated.

A maximum of one accounting policy can be associated with a SDP at one time. Accounting policies are configured in the config>log context.

The no form of this command removes the accounting policy association from the SDP, and the accounting policy reverts to the default.

Default    Default accounting policy.

Parameters  acct-policy-id — Enter the accounting policy-id as configured in the config>log>accounting-policy context.

Values      1 — 99

collect-stats

Syntax    [no] collect-stats

Context   config>service>sdp
          config>service>pw-template

Description  This command enables accounting and statistical data collection for either the SDP. When applying accounting policies the data, by default, is collected in the appropriate records and written to the designated billing file.

When the no collect-stats command is issued the statistics are still accumulated by the IOM cards. However, the CPU will not obtain the results and write them to the billing file. If a subsequent collect-stats command is issued then the counters written to the billing file include all the traffic while the no collect-stats command was in effect.

Default    no collect-stats
discard-unknown-source

**Syntax**  
[no] discard-unknown-source

**Context**  
config>service>pw-template

**Description**  
When this command is enabled, packets received with an unknown source MAC address will be dropped only if the maximum number of MAC addresses have been reached. When disabled, the packets are forwarded based on the destination MAC addresses.

The no form of this command causes packets with an unknown source MAC addresses to be forwarded by destination MAC addresses.

**Default**  
no discard-unknown

limit-mac-move

**Syntax**  
limit-mac-move [blockable | non-blockable]  
no limit-mac-move

**Context**  
config>service>pw-template

**Description**  
This command indicates whether or not the mac-move agent will limit the MAC re-learn (move) rate.

**Default**  
blockable

**Parameters**

- **blockable** — The agent will monitor the MAC re-learn rate, and it will block it when the re-learn rate is exceeded.
- **non-blockable** — When specified, a SAP will not be blocked, and another blockable SAP will be blocked instead.

vc-type

**Syntax**  
vc-type {ether | vlan}

**Context**  
config>service>pw-template

**Description**  
This command overrides the default VC type signaled for the binding to the far end SDP. The VC type is a 15 bit-quantity containing a value which represents the type of VC. The actual signaling of the VC type depends on the signaling parameter defined for the SDP. If signaling is disabled, the vctype command can still be used to define the dot1q value expected by the far-end provider equipment.

A change of the bindings VC type causes the binding to signal the new VC type to the far end when signaling is enabled.

VC types are derived according to IETF draft-martini-l2circuit-trans-mpls.

- The VC type value for Ethernet is 0x0005.
- The VC type value for an Ethernet VLAN is 0x0004.
Parameters

ether — Defines the VC type as Ethernet. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings. Defining Ethernet is the same as executing no vc-type and restores the default VC type for the spoke SDP binding. (hex 5)

vlan — Defines the VC type as VLAN. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings.

vlan-vc-tag

Syntax

- vlan-vc-tag 0..4094
- no vlan-vc-tag [0..4094]

Context

config>service>pw-template

Description

This command specifies an explicit dot1q value used when encapsulating to the SDP far end. When signaling is enabled between the near and far end, the configured dot1q tag can be overridden by a received TLV specifying the dot1q value expected by the far end. This signaled value must be stored as the remote signaled dot1q value for the binding. The provisioned local dot1q tag must be stored as the administrative dot1q value for the binding.

When the dot1q tag is not defined, the default value of zero is stored as the administrative dot1q value. Setting the value to zero is equivalent to not specifying the value.

The no form of this command disables the command

Default

no vlan-vc-tag

Parameters

0..4094 — Specifies a valid VLAN identifier to bind an 802.1Q VLAN tag ID.

adv-mtu-override

Syntax

- [no] adv-mtu-override

Context

config>service>sdp

Description

This command overrides the advertised VC-type MTU of all spoke-sdps of Layer 2 services using this SDP-ID. When enabled, the router signals a VC MTU equal to the service MTU, which includes the Layer 2 header. It also allows this router to accept an MTU advertised by the far-end PE which value matches either its advertised MTU or its advertised MTU minus the Layer 2 headers.

By default, the router advertizes a VC-MTU equal to the Layer 2 service MTU minus the Layer 2 header and always matches its advertised MTU to that signaled by the far-end PE router, otherwise the spoke-sdp goes operationally down.

When this command is enabled on the SDP, it has no effect on a spoke-sdp of an IES/VPRN spoke interface using this SDP-ID. The router continues to signal a VC MTU equal to the net IP interface MTU, which is min (ip-mtu, sdp operational path mtu - Layer 2 headers). The router also continues to make sure that the advertised MTU values of both PE routers match or the spoke-sdp goes operationally down.

The no form of the command disables the VC-type MTU override and returns to the default behavior.
SDP Commands

**Default**
no adv-mtu-override

**bgp-tunnel**

**Syntax**

[no] bgp-tunnel

**Context**

config>service>sdp

**Description**

This command allows the use of BGP route tunnels available in the tunnel table to reach SDP far-end nodes. Use of BGP route tunnels are only available with MPLS-SDP. Only one of the transport methods is allowed per SDP - LDP, RSVP-LSP or BGP-Tunnel (BGP-Tunnel is not supported on multi-mode LSP)

The no form of the command disables resolving BGP route tunnel LSP for SDP far-end.

**Default**
no bgp-tunnel (BGP tunnel route to SDP far-end is disabled)

**far-end**

**Syntax**

far-end ip-address

no far-end

**Context**

config>service>sdp

**Description**

This command configures the system IP address of the far-end destination 7210 SAS M router for the Service Distribution Point (SDP) that is the termination point for a service.

The far-end IP address must be explicitly configured. The destination IP address must be a 7210 SAS M system IP address.

If the SDP uses MPLS encapsulation, the **far-end ip-address** is used to check LSP names when added to the SDP. If the “to IP address” defined within the LSP configuration does not exactly match the SDP **far-end ip-address**, the LSP will not be added to the SDP and an error will be generated.

An SDP cannot be administratively enabled until a **far-end ip-address** is defined. The SDP is operational when it is administratively enabled (**no shutdown**) and the **far-end ip-address** is contained in the IGP routing table as a host route. OSPF ABRs should not summarize host routes between areas. This can cause SDPs to become operationally down. Static host routes (direct and indirect) can be defined in the local device to alleviate this issue.

The **no** form of this command removes the currently configured destination IP address for the SDP. The **ip-address** parameter is not specified and will generate an error if used in the **no far-end** command. The SDP must be administratively disabled using the **config service sdp shutdown** command before the **no far-end** command can be executed. Removing the far end IP address will cause all **lsp-name** associations with the SDP to be removed.

**Default**
none

**Parameters**

ip-address — The system address of the far-end 7210 SAS M for the SDP in dotted decimal notation.
metric

Syntax  
metric metric  
no metric

Context  config>service>sdp

Description  This command specifies the metric to be used within the tunnel table manager for decision making purposes. When multiple SDPs going to the same destination exist, this value is used as a tie-breaker by tunnel table manager users such as MP-BGP to select the route with the lower value.

Parameters  
metric — Specifies the SDP metric.

  Values  0 — 65535

ldp

Syntax  [no] ldp

Context  config>service>sdp

Description  This command enables LDP-signaled LSP's on MPLS-encapsulated SDPs.

In MPLS SDP configurations either one LSP can be specified or LDP can be enabled. The SDP ldp and lsp commands are mutually exclusive. If an LSP is specified on an MPLS SDP, then LDP cannot be enabled on the SDP. To enable LDP on the SDP when an LSP is already specified, the LSP must be removed from the configuration using the no lsp lsp-name command.

Alternatively, if LDP is already enabled on an MPLS SDP, then an LSP cannot be specified on the SDP. To specify an LSP on the SDP, the LDP must be disabled. The LSP must have already been created in the config>router>mpls context with a valid far-end IP address. The above rules are relaxed when the mixed-lsp option is enabled on the SDP.

Default  no ldp (disabled)

lsp

Syntax  lsp lsp-name  
no lsp lsp-name

Context  config>service>sdp

Description  This command creates associations between one label switched paths (LSPs) and an Multi-Protocol Label Switching (MPLS) Service Distribution Point (SDP). This command is implemented only on MPLS-type encapsulated SDPs.

In MPLS SDP configurations either one LSP can be specified.

The LSP must have already been created in the config>router>mpls context with a valid far-end IP address. RSVP must be enabled.

If no LSP is associated with an MPLS SDP, the SDP cannot enter the operationally up state. The SDP can be administratively enabled (no shutdown) with no LSP associations. The lsp-name may be
shutdown, causing the association with the SDP to be operationally down (the LSP will not be used by the SDP).

The no form of this command deletes one LSP associations from an SDP. If the lsp-name does not exist as an association or as a configured LSP, no error is returned. An lsp-name must be removed from all SDP associations before the lsp-name can be deleted from the system. The SDP must be administratively disabled (shutdown) before the last lsp-name association with the SDP is deleted.

**Default** none

**Parameters**

- **lsp-name** — The name of the LSP to associate with the SDP. An LSP name is case sensitive and is limited to 32 ASCII 7-bit printable characters with no spaces. If an exact match of lsp-name does not already exist as a defined LSP, an error message is generated. If the lsp-name does exist and the LSP to IP address matches the SDP far-end IP address, the association is created.

**signaling**

**Syntax** signaling {off | tldp}

**Context** config>service>sdp

**Description** This command specifies the signaling protocol used to obtain the ingress and egress pseudowire labels in frames transmitted and received on the SDP. When signaling is **off** then labels are manually configured when the SDP is bound to a service. The signalling value can only be changed while the administrative status of the SDP is down.

The no form of this command is not applicable. To modify the signaling configuration, the SDP must be administratively shut down and then the signaling parameter can be modified and re-enabled.

**Default** tldp

**Parameters**

- **off** — Ingress and egress signal auto-labeling is not enabled. If this parameter is selected, then each service using the specified SDP must manually configure VPN labels. This configuration is independent of the SDP’s transport type, MPLS (RSVP or LDP).

- **tldp** — Ingress and egress pseudowire signaling using T-LDP is enabled.

**path-mtu**

**Syntax** path-mtu bytes

**Context** config>service>sdp

**Description** This command configures the Maximum Transmission Unit (MTU) in bytes that the Service Distribution Point (SDP) can transmit to the far-end device router without packet dropping or IP fragmentation overriding the SDP-type default path-mtu.

The default SDP-type **path-mtu** can be overridden on a per SDP basis. Dynamic maintenance protocols on the SDP like RSVP may override this setting.
If the physical mtu on an egress interface indicates the next hop on an SDP path cannot support the current path-mtu, the operational path-mtu on that SDP will be modified to a value that can be transmitted without fragmentation.

The no form of this command removes any path-mtu defined on the SDP and the SDP will use the system default for the SDP type.

**Default**

The default path-mtu defined on the system for the type of SDP is used.
SDP Keepalive Commands

keep-alive

Syntax  keepalive
Context  config>service>sdp
Description  Context for configuring SDP connectivity monitoring keepalive messages for the SDP ID.

SDP-ID keepalive messages use SDP Echo Request and Reply messages to monitor SDP connectivity. The operating state of the SDP is affected by the keepalive state on the SDP-ID. SDP Echo Request messages are only sent when the SDP-ID is completely configured and administratively up. If the SDP-ID is administratively down, keepalives for that SDP-ID are disabled. SDP Echo Requests (when sent for keepalive messages) are always sent with the originator-sdp-id. All SDP-ID keepalive SDP Echo Replies are sent using generic IP/GRE OAM encapsulation.

When a keepalive response is received that indicates an error condition, the SDP ID will immediately be brought operationally down. Once a response is received that indicates the error has cleared and the hold-down-time interval has expired, the SDP ID will be eligible to be put into the operationally up state. If no other condition prevents the operational change, the SDP ID will enter the operational state.

A set of event counters track the number of keepalive requests sent, the size of the message sent, non-error replies received and error replies received. A keepalive state value is kept indicating the last response event. A keepalive state timestamp value is kept indicating the time of the last event. With each keepalive event change, a log message is generated indicating the event type and the timestamp value.

The table below describes keepalive interpretation of SDP echo reply response conditions and the effect on the SDP ID operational status.

<table>
<thead>
<tr>
<th>Result of Request</th>
<th>Stored Response State</th>
<th>Operational State</th>
</tr>
</thead>
<tbody>
<tr>
<td>keepalive request timeout without reply</td>
<td>Request Timeout</td>
<td>Down</td>
</tr>
<tr>
<td>keepalive request not sent due to non-existent orig-sdp-id</td>
<td>Orig-SDP Non-Existent</td>
<td>Down</td>
</tr>
<tr>
<td>keepalive request not sent due to administratively down orig-sdp-id</td>
<td>Orig-SDP Admin-Down</td>
<td>Down</td>
</tr>
<tr>
<td>keepalive reply received, invalid origination-id</td>
<td>Far End: Originator-ID Invalid</td>
<td>Down</td>
</tr>
<tr>
<td>keepalive reply received, invalid responder-id</td>
<td>Far End: Responder-ID Error</td>
<td>Down</td>
</tr>
<tr>
<td>keepalive reply received, No Error</td>
<td>Success</td>
<td>Up (If no other condition prevents)</td>
</tr>
</tbody>
</table>

a. This condition should not occur.
hello-time

Syntax hello-time seconds
no hello-time

Context config>service>sdp>keep-alive

Description Configures the time period between SDP keepalive messages on the SDP-ID for the SDP connectivity monitoring messages. The no form of this command reverts the hello-time seconds value to the default setting.

Default hello-time 10 — 10 seconds between keepalive messages

seconds — The time period in seconds between SDP keepalive messages, expressed as a decimal integer.

Values 1 — 3600

hold-down-time

Syntax hold-down-time seconds
no hold-down-time

Context config>service>sdp>keep-alive

Description Configures the minimum time period the SDP will remain in the operationally down state in response to SDP keepalive monitoring. This parameter can be used to prevent the SDP operational state from “flapping” by rapidly transitioning between the operationally up and operationally down states based on keepalive messages.

When an SDP keepalive response is received that indicates an error condition or the max-drop-count keepalive messages receive no reply, the sdp-id will immediately be brought operationally down. If a keepalive response is received that indicates the error has cleared, the sdp-id will be eligible to be put into the operationally up state only after the hold-down-time interval has expired.

The no form of this command reverts the hold-down-time seconds value to the default setting.

Default hold-down-time 10 — The SDP is operationally down for 10 seconds after an SDP keepalive error.

Parameters seconds — The time in seconds, expressed as a decimal integer, the sdp-id will remain in the operationally down state before it is eligible to enter the operationally up state. A value of 0 indicates that no hold-down-time will be enforced for sdp-id.

Values 0 — 3600

max-drop-count

Syntax max-drop-count count
no max-drop-count

Context config>service>sdp>keep-alive
SDP Keepalive Commands

Description
This command configures the number of consecutive SDP keepalive failed request attempts or remote replies that can be missed after which the SDP is operationally downed. If the max-drop-count consecutive keepalive request messages cannot be sent or no replies are received, the SDP-ID will be brought operationally down by the keepalive SDP monitoring.

The no form of this command reverts the max-drop-count count value to the default settings.

Default
max-drop-count 3

Parameters
count — The number of consecutive SDP keepalive requests that are failed to be sent or replies missed, expressed as a decimal integer.

Values
1 — 5

message-length

Syntax
message-length octets
no message-length

Context config>service>sdp>keep-alive

Description
This command configures the SDP monitoring keepalive request message length transmitted.
The no form of this command reverts the message-length octets value to the default setting.

Default
0 — The message length should be equal to the SDP’s operating path MTU as configured in the path-mtu command. If the default size is overridden, the actual size used will be the smaller of the operational SDP-ID Path MTU and the size specified.

octets — The size of the keepalive request messages in octets, expressed as a decimal integer. The size keyword overrides the default keepalive message size.

Values
40 — 9198

timeout

Syntax
timeout timeout
no timeout

Context config>service>sdp>keep-alive

Description
This command configures the time interval that the SDP waits before tearing down the session.

Default
5

Parameters
timeout — The timeout time, in seconds.

Values
1 — 10
ETH-CFM Configuration Commands

eth-cfm

Syntax  

eth-cfm

Context  config

Description  This command enables the context to configure 802.1ag CFM parameters.

mep

Syntax  

mep mep-id domain md-index association ma-index vlan vlan-id

no mep mep-id domain md-index association ma-index

Context  config>port>ethernet>
config>lag>
config>router>if>

Description  This command provisions the maintenance endpoint (MEP). The no form of the command reverts to the default values.

Parameters  

mep-id — Specifies the maintenance association end point identifier.

Values  

1 — 81921

md-index — Specifies the maintenance domain (MD) index value.

Values  

1 — 4294967295

ma-index — Specifies the MA index value.

Values  

1 — 4294967295

vlan-id — Specific to tunnel facility MEPs which means this option is only applicable to the lag>eth-cfm> context. Used to specify the outer vlan id of the tunnel.

Values  

1 — 4094

ais-enable

Syntax  

[no] ais-enable

Context  config>port>ethernet>eth-cfm>mep
config>lag>eth-cfm>mep

Description  This command enables the reception of AIS messages. The no form of the command reverts to the default values.
client-meg-level

**Syntax**
```
client-meg-level [[level [level ...]]
```
no client-meg-level

**Context**
```
config>port>ethernet>eth-cfm>mep>ais-enable
config>lag>eth-cfm> mep>ais-enable
```

**Description**
This command configures the client maintenance entity group (MEG) level(s) to use for AIS message generation. Up to 7 levels can be provisioned with the restriction that the client MEG level must be higher than the local MEG level. Only the lowest client MEG level will be used for facility MEPs.

The **no** form of the command reverts to the default values.

**Parameters**
- **level** — Specifies the client MEG level.
  - **Values**: 1 — 7
  - **Default**: 1

---

interval

**Syntax**
```
interval {1 | 60}
```
no interval

**Context**
```
config>port>ethernet>eth-cfm>mep>ais-enable
config>lag>eth-cfm> mep>ais-enable
```

**Description**
This command specifies the transmission interval of AIS messages in seconds.

The **no** form of the command reverts to the default values.

**Parameters**
- **1 | 60** — The transmission interval of AIS messages in seconds.
  - **Default**: 1

---

priority

**Syntax**
```
priority priority-value
```
no priority

**Context**
```
config>port>ethernet>eth-cfm>mep>ais-enable
config>lag>eth-cfm> mep>ais-enable
```

**Description**
This command specifies the priority of the AIS messages generated by the node.

The **no** form of the command reverts to the default values.

**Parameters**
- **priority-value** — Specify the priority value of the AIS messages originated by the node.
  - **Values**: 0 — 7
  - **Default**: 7
ccm-enable

Syntax: [no] ccm-enable

Context: config>port>ethernet>eth-cfm>mep
         config>lag>eth-cfm>mep

Description: This command enables the generation of CCM messages.
The no form of the command disables the generation of CCM messages.

ccm-ltm-priority

Syntax: ccm-ltm-priority priority
         no ccm-ltm-priority

Context: config>port>ethernet>eth-cfm>mep>
         config>lag>eth-cfm>mep>
         config>router>if>eth-cfm>mep

Description: This command specifies the priority of the CCM and LTM messages transmitted by the MEP. Since
CCM does not apply to the Router Facility MEP only the LTM priority is of value under that context.
The no form of the command reverts to the default values.

Default: priority — Specifies the priority value

Values: 0 — 7

Default: 7

eth-test-enable

Syntax: [no] eth-test-enable

Context: config>port>ethernet>eth-cfm>mep>
         config>lag>eth-cfm>mep>
         config>router>if>eth-cfm>mep

Description: For this test to work, operators need to configure ETH-test parameters on both sender and receiver
nodes. The ETH-test then can be done using the following OAM commands:
oam eth-cfm eth-test mac-address mep mep-id domain md-index association ma-index [priority priority] [data-length data-length]
The no form of the command disables eth-test capabilities.

test-pattern

Syntax: test-pattern {all-zeros | all-ones} [crc-enable]
         no test-pattern
ETH-CFM Configuration Commands

**Context**

config>port>ethernet>eth-cfm>mep>eth-test>
config>lag>eth-cfm>mep>eth-test>
config>router>if>eth-cfm>mep>eth-test

**Description**

This command specifies the test pattern of the ETH-TEST frames. This does not have to be configured the same on the sender and the receiver.

The `no` form of the command reverts to the default values.

**Parameters**

- **all-zeros** — Specifies to use all zeros in the test pattern.
- **all-ones** — Specifies to use all ones in the test pattern.
- **crc-enable** — Generates a CRC checksum.

**Default**

all-zeros

---

**low-priority-defect**

**Syntax**

`low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}`

**Context**

config>port>ethernet>eth-cfm>mep>eth-test>
config>lag>eth-cfm>mep>eth-test>

**Description**

This command specifies the lowest priority defect that is allowed to generate a fault alarm. This setting is also used to determine the fault state of the MEP which, well enabled to do so, causes a network reaction.

**Default**

macRemErrXcon

**Values**

- **allDef** — DefRDICCM, DefMACstatus, DefRemoteCCM, DefErrorCCM, and DefXconCCM
- **macRemErrXcon** — Only DefMACstatus, DefRemoteCCM, DefErrorCCM, and DefXconCCM
- **remErrXcon** — Only DefRemoteCCM, DefErrorCCM, and DefXconCCM
- **errXcon** — Only DefErrorCCM and DefXconCCM
- **xcon** — Only DefXconCCM; or
- **noXcon** — No defects DefXcon or lower are to be reported

---

**mac-address**

**Syntax**

`mac-address mac-address`

`no mac-address`

**Context**

config>port>ethernet>eth-cfm>mep>
config>lag>eth-cfm>mep>
config>router>if>eth-cfm>mep

**Description**

This command specifies the MAC address of the MEP.

The `no` form of the command reverts to the MAC address of the MEP back to the default, that of the port, since this is SAP based.
Parameters

**mac-address** — Specifies the MAC address of the MEP.

**Values**

6-byte unicast mac-address (xx:xx:xx:xx:xx:xx or xx-xx-xx-xx-xx-xx) of the MEP.

Using the all zeros address is equivalent to the no form of this command.

**Default**

no mac-address

---

**domain**

**Syntax**

domain md-index [format md-name-format] [name md-name] level level
domain md-index
no domain md-index

**Context**

config>eth-cfm

**Description**

This command configures Connectivity Fault Management domain parameters.

The no form of the command removes the MD index parameters from the configuration.

**Parameters**

*md-index* — Specifies the Maintenance Domain (MD) index value.

**Values**

1 — 4294967295

*format* — Specifies a value that represents the type (format).

**Default**

string

*name md-name* — Specifies a generic Maintenance Domain (MD) name.

**Values**

1 — 43 characters

*level level* — Specifies the integer identifying the maintenance domain level (MD Level). Higher numbers correspond to higher maintenance domains, those with the greatest physical reach, with the highest values for customers' CFM packets. Lower numbers correspond to lower maintenance domains, those with more limited physical reach, with the lowest values for single bridges or physical links.

**Values**

0 — 7

---

**association**

**Syntax**

association ma-index [format ma-name-format] [name ma-name]
association ma-index
no association ma-index

**Context**

config>eth-cfm>domain

**Description**

This command configures the Maintenance Association (MA) for the domain.

*ma-index* — Specifies the MA index value.

**Values**

1 — 4294967295

*format* — Specifies a value that represents the type (format).

**Default**

integer
name ma-name — Specifies the part of the maintenance association identifier which is unique within the maintenance domain name.

Values 1 — 45 characters

bridge-identifier

Syntax [no] bridge-identifier bridge-id

Context config>eth-cfm>domain>association

Description This command configures the service ID for the domain association. The value must be configured to match the service-id of the service where MEPs for this association will be created. Note that there is no verification that the service with a matching service-id exists. This is not used for facility MEPs as they are not tied to services.

Parameters bridge-id — Specifies the bridge ID for the domain association.

Values 1 — 2147483647

mhf-creation

Syntax mhf-creation {none | explicit}

no mhf-creation

Context config>eth-cfm>domain>association>bridge-identifier

Description This command determines whether to allow automatic MIP creation for the MA.

Default none

Parameters none — Specifies that no MHFs can be created for this VID.

explicit — Specifies that MHFs can be created for this VID only on bridge ports through which this VID can pass, and only if a MEP is created at some lower MA level. There must be at least one lower level MEP provisioned on the same SAP.

vlan

Syntax vlan vlan-id

no vlan

Context config>eth-cfm>domain>association>bridge-identifier

Description This command configures the bridge-identifier primary VLAN ID. Note that it is informational only, and no verification is done to ensure MEPs on this association are on the configured VLAN.

Parameters vlan-id — Specifies a VLAN ID monitored by MA.

Values 0 — 4094
ccm-interval

Syntax  
```
ccm-interval {100ms | 1 | 10 | 60 | 600}
no ccm-interval
```

Context  
```
config>eth-cfm>domain>association
```

Description  
This command configures the CCM transmission interval for all MEPs in the association.

**NOTE:** 100ms timer value is supported only for service Down MEPs and G8032 Down MEPs on 7210 SAS-M. The minimum timer for service UP MEPs on 7210 SAS-M is 1 second. 

The `no` form of the command reverts the value to the default.

Default  
10 seconds

Parameters  
interval — Specifies the interval between CCM transmissions to be used by all MEPs in the MA.

Values  
1 second, 10 seconds, 60 seconds, 600 seconds, 100 milliseconds (100ms timers are supported only for service Down MEPs and G8032 MEPs)

remote-mepid

Syntax  
```
[no] remote-mepid mep-id
```

Context  
```
config>eth-cfm>domain>association
```

Description  
This command configures the remote maintenance association end point (MEP) identifier.

Parameters  
mep-id — Maintenance association end point identifier of a remote MEP whose information from the MEP database is to be returned.

Values  
1 — 8191

slm

Syntax  
```
slm
```

Context  
```
config>eth-cfm
```

Description  
This is the container that provides the global configuration parameters for ITU-T Synthetic Loss Measurement (ETH-SL).
inactivity-timer

**Syntax**

inactivity-timer *timer*  
[no] inactivity-timer

**Context**

config>eth-cfm>slm

**Description**

The time the responder keeps a test active. The time between packets exceed this values within a test the responder marks the previous test as complete. The timer treats any new packets from a peer with the same test-id, source-mac and MEP-ID as a new test responding with the sequence number one.

**Default**

100 seconds

**Parameters**

*timer* — Specifies the amount of time in seconds.

**Values**

10 100
In This Chapter

This section provides information about Virtual Leased Line (VLL) services and implementation notes.

Topics in this section include:

- Circuit Emulation (Cpipe) Services on page 120
- Ethernet Pipe (Epipe) Services on page 136
Circuit Emulation (Cpipe) Services

Note: Circuit Emulation Services are not supported on 7210 SAS-M devices configured in access uplink mode.

Cpipe Service Overview

Cpipe service is the Alcatel-Lucent implementation of TDM pseudowire VLL as defined in the IETF PWE3 working group.

The 7210 SAS M can support TDM circuit applications that are able to transport delay sensitive TDM traffic over a packet network. For example, in case of business that use legacy T1/E1 interfaces, Cpipe services provide transport services. Cpipe services over MPLS or GRE tunnels are supported.

The TDM traffic is transported encapsulated in a TDM VLL over the packet switched network (PSN). The entire T1/E1 frame or part of a frame ($n \times 64$ kb/s) is carried as a TDM VLL over the PSN. At the far end, the transport layer frame structure is regenerated when structured circuit emulation is used, or simply forwarded as part of the payload when unstructured circuit emulation is used.

Cpipe Service Modes

Cpipe services support unstructured circuit emulation mode (SAToP) as per RFC 4553, Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP), and structured circuit emulation mode (CESoPSN) for DS1, E1 and $n \times 64$ kb/s circuits as per RFC 5086, Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN).

Unstructured Mode (SAToP)

Structure-agnostic TDM over Packet (SAToP) is an unstructured circuit emulation mode used for the transport of unstructured TDM or structured TDM (where the structure is ignored).

Note: The word agnostic is used in RFC 4553, but it is not used in the literal sense. The meaning of agnostic in this case is unaware or independent. Therefore, structure-agnostic is used to mean structure-unaware or structure-independent.

As a structure-unaware or structure-independent service, SAToP service does not align to any framing; the framing mode for the port is set to unframed. For structured TDM, SAToP disregards...
the bit sequence and TDM structure in order to transport the entire signal over a PSN as a pseudowire.

---

**Structured Mode (CESoPSN)**

Structure-aware circuit emulation is used for the transport of structured TDM, taking at least some level of the structure into account. By selecting only the necessary \( n \geq 64 \) \( \text{kb/s} \) timeslots to transport, bandwidth utilization is reduced or optimized (compared to a full DS1 or E1). Full DS1s or E1s can be transported by selecting all the timeslots in the DS1 or E1 circuit. Framing bits (DS1) or FAS (E1) are terminated at the near end and reproduced at the far end.

When CESoPSN with Channel Associated Signaling (CAS) is selected, the ABCD bits are coded into the T1 or E1 multi-frame packets, transported within the TDM PW, and reconstructed in the T1 or E1 multi-frame at the far end for each timeslot. CAS includes four signaling bits (A, B, C, and D) in the messages sent over a voice trunk. These messages provide information such as the dialed digits and the call state (whether on-hook or off-hook).

The mechanism for E1 CAS is described in ITU-T G.732. When configured for E1 CAS, timeslot 17 carries the signaling information for the timeslots used for voice trunking. Each channel requires four signaling bits, so grouping 16 E1 frames into a multi-frame allows the signaling bits for all 30 channels to be trunked.

As shown in Figure 15, timeslot 1 of all frames within the E1 multi-frame is reserved for alignment, alarm indication, and CRC. For Frame 0, timeslot 17 is reserved for multi-frame alignment bits. For the remaining 15 frames, timeslot 17 contains ABCD bits for two channels.

Note: For E1 CAS, timeslots are numbered 1 to 32 on the 7210 SAS.

For T1 CAS, the signaling bits are transferred using Robbed Bit Signaling (RBS), where the least significant bit in the channel is used periodically to transport these bits instead of voice data.

T1 CAS is supported when ESF or SF framing is configured. ESF framing uses a 24-frame multi-frame and transfers all four signaling bits (ABCD). SF framing uses a 12-frame multi-frame and transfers only the AB bits. The signaling bits are carried in the least significant bit of the following frames:

- A bit in frame 6
- B bit in frame 12
- C bit in frame 18
- D bit in frame 24

Table 7 shows the structure of a T1 ESF multi-frame that uses RBS. The structure of a T1 SF multi-frame is based on 12 frames and only the A and B bits are available.
Figure 15: E1 Framing for CAS Support in an E1 Multi-frame
<table>
<thead>
<tr>
<th>Frame Number</th>
<th>F Bit</th>
<th>Assignments</th>
<th>Bit Numbers in Each Channel Timeslot</th>
<th>Signaling Channel Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FAS (1)</td>
<td>DL (2)</td>
<td>CRC (3)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>2</td>
<td>194</td>
<td>–</td>
<td>c1</td>
<td>1-8</td>
</tr>
<tr>
<td>3</td>
<td>387</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>4</td>
<td>580</td>
<td>0</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>5</td>
<td>773</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>6</td>
<td>966</td>
<td>e2</td>
<td></td>
<td>1-7</td>
</tr>
<tr>
<td>7</td>
<td>1159</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>8</td>
<td>1352</td>
<td>0</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>9</td>
<td>1545</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>10</td>
<td>1738</td>
<td>e3</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>11</td>
<td>1931</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>12</td>
<td>2124</td>
<td>1</td>
<td></td>
<td>1-7</td>
</tr>
<tr>
<td>13</td>
<td>2317</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>14</td>
<td>2510</td>
<td>e4</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>15</td>
<td>2703</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>16</td>
<td>2896</td>
<td>0</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>17</td>
<td>3089</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>18</td>
<td>3282</td>
<td>e5</td>
<td></td>
<td>1-7</td>
</tr>
<tr>
<td>19</td>
<td>3475</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>20</td>
<td>3668</td>
<td>1</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>21</td>
<td>3861</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>22</td>
<td>4054</td>
<td>e6</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>23</td>
<td>4247</td>
<td>m</td>
<td></td>
<td>1-8</td>
</tr>
<tr>
<td>24</td>
<td>4440</td>
<td>1</td>
<td></td>
<td>1-7</td>
</tr>
</tbody>
</table>

Notes:
1. FAS = Frame alignment signal (...001011....)
2. DL = 4 kb/s data link (in represents message bits)
3. CRC = CRC-6 block check field (e1 to e6 represent check bits)
4. Only applicable for CAS

Table 7: T1 Framing for CAS (RBS) Support in a T1 ESF Multi-frame
TDM Pseudowire Encapsulation

TDM circuits are MPLS-encapsulated as per RFC 4533 (SAToP) and RFC 5086 (CESoPSN), see figures below:

Figure 16: SAToP MPLS Encapsulation

Figure 17: CESoPSN MPLS Encapsulation

Figure 18 shows the format of the CESoPSN TDM payload (with and without CAS) for packets carrying trunk-specific 64 kb/s service. In CESoPSN, the payload size is dependent on the number of timeslots used.
Figure 18: CESoPSN Packet Payload Format for Trunk-Specific n x 64 kb/s (with and without CAS transport)

For CESoPSN without CAS, select the packet size so that an integer number of frames are transported. That is, if \( n \) timeslots per frame are to be encapsulated in a TDM PW, then the packet size must be a multiple of \( n \) (where \( n \) is not equal to 1). For example, if \( n = 4 \) timeslots, then the packet size can be 8, 12, 16 and so on.

For CESoPSN with CAS, the packet size is an integer number of frames, where the number of frames is 24 for T1 or 16 for E1, and is not user-configurable. The extra bytes for ABCD (CAS) signaling bits are not included when setting the packet size.

Note: The extra bytes for CAS signaling bits must be included when setting the service-mtu size.
Circuit Emulation Parameters and Options

All ports on the T1/E1 ASAP Adapter card can be configured independently to support TDM circuit emulation across the packet network. Structure-aware mode (CESoPSN) is supported for \( n \times 64 \) kb/s channel groups in DS1 and E1 circuits. Unstructured mode (SAToP) is supported for full DS1 and E1 circuits. The following parameters and options are described in this section:

- Unstructured
- Structured DS1/E1 CES without CAS
- Structured T1/E1 CES with CAS
- Packet Payload Size
- Jitter Buffer
- RTP Header
- Control Word

Unstructured

Unstructured CES is configured by choosing `satop-t1` or `satop-e1` as the `vc-type` when creating a Cpipe service. For DS1 and E1 unstructured circuit emulation, the framing parameter of the port must be set to `ds1-unframed` and `e1-unframed` (respectively) because SAToP service ignores the underlying framing. Additionally, channel group 1 must contain all 24 or 32 timeslots, which is configured automatically when channel group 1 is created.

For DS1 and E1 circuit emulation, the payload packet size is configurable and must be an integer value between 64 and 1514 octets and must be a multiple of 32. The payload packet size affects the packet efficiency and packetization delay. Table 8 shows the default values for packet size and packetization delay.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Payload Size (Octets)</th>
<th>Packetization Delay (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td>192</td>
<td>1.00</td>
</tr>
<tr>
<td>E1</td>
<td>256</td>
<td>1.00</td>
</tr>
</tbody>
</table>

**Note:** When using SAToP to transport DS1 traffic, the framing bit (bit 193) in the DS1 overhead is included and packed in the payload and sent over the PSN. If the underlying framing is ESF, then the Facility Data Link (FDL) channel is transported over the Cpipe as part of the SAToP service. No matter the case, the framing parameter of the port must be set to unframed.
Structured DS1/E1 CES without CAS

Structured CES without CAS is configured by choosing cesopsn as the vc-type when creating a Cpipe service. For n * 64 kb/s structured circuit emulation operation, the framing parameter of the port must be set to a framed setting (such as ESF for DS1). Each channel group contains n DS0s (timeslots), where n is between 1 and 24 timeslots for DS1 and between 1 and 31 timeslots for E1.

The packet payload size is configurable (in octets) and must be an integer multiple of the number of timeslots in the channel group. The minimum payload packet size is 2 octets (based on two frames per packet and one timeslot per frame). See Table 9 for default and minimum payload size values. The maximum payload packet size is 1514 octets.

Each DS1 or E1 frame contributes a number of octets to the packet payload. That number is equal to the number of timeslots configured in the channel group. Thus, a channel group with four timeslots contributes 4 octets to the payload. The timeslots do not need to be contiguous.

Note that a smaller packet size results in a lower packetization delay; however, it increases the packet overhead (when expressed as a percentage of the traffic).

Calculation of Payload Size

The payload size (S), in octets, can be calculated using the following formula:

\[ S = N \times F \]

Where:

N = the number of octets (timeslots) collected per received frame (DS1 or E1)

F = the number of received frames (DS1 or E1) that are accumulated in each CESoPSN packet.

For example, assume the packet collects 16 frames (F) and the channel group contains 4 octets (timeslots) (N). Then the packet payload size (S) is:

\[ S = 4 \text{ octets/frame } \times 16 \text{ frames} \]

= 64 octets

Calculation of Packetization Delay

Packetization delay is the time needed to collect the payload for a CESoPSN packet. DS1 and E1 frames arrive at a rate of 8000 frames per second. Therefore, the received frame arrival period is 125 µs.
In the previous example, 16 frames were accumulated in the CESoPSN packet. In this case, the packetization delay \( D \) can be calculated as follows:

\[
D = 125 \, \mu s/\text{frame} \times 16 \text{ frames}
\]

\[
= 2.000 \, \text{ms}
\]

Table 9 shows the default and minimum values for frames per packet, payload size, and packetization delay as they apply to the number of timeslots \( N \) that contribute to the packet payload. The default values are set by the operating system as follows:

- For \( N = 1 \), the default is 64 frames/packet
- For \( 2 \leq N \leq 4 \), the default is 32 frames/packet
- For \( 5 \leq N \leq 15 \), the default is 16 frames/packet
- For \( N \geq 16 \), the default is 8 frames/packet
Structured T1/E1 CES with CAS

Structured circuit emulation with CAS is supported for T1 and E1 circuits.

Structured CES with CAS service is configured by choosing cesopsn-cas as the vc-type when creating a Cpipe service. The DS1 or E1 service on the port associated with the Cpipe SAP should be configured to support CAS (via the signal-mode {cas} command) before configuring the Cpipe service to support DS1 or E1 with CAS. Refer to the 7210 SAS Interface Configuration Guide for information on configuring signal mode.

### Table 9: Default and Minimum Payload Size for CESoPSN without CAS

<table>
<thead>
<tr>
<th>Number of Timesteps (N)</th>
<th>Default Values</th>
<th>Minimum Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frames per Packet (F)</td>
<td>Payload Size (Octets)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>192</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>208</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>224</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>240</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>136</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>144</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>152</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>160</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>168</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>176</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>184</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>192</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>208</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>216</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>224</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>232</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>240</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>248</td>
</tr>
</tbody>
</table>
For n *64 kb/s structured circuit emulation with CAS, the implementation is almost identical to that of CES without CAS. When CAS operation is enabled, timeslot 16 cannot be included in the channel group on E1 carriers. The CAS option is enabled or disabled at the port level; therefore, it applies to all channel groups on that E1 port.

The packet size is based on 16 frames per packet for E1 when CAS is enabled and is not user-configurable. For example, if the number of timeslots is 4, then the payload size is 64 octets. This 16-frame fixed configuration is logical because an E1 multi-frame contains 16 frames; therefore, proper bit positioning for the A, B, C, and D CAS signaling bits can be ensured at each end of the pseudo wire. Table shows the payload sizes based on the number of timeslots.

For CAS, the signaling portion adds \((n/2)\) bytes \((n\) is an even integer) or \(((n+1)/2)\) bytes \((n\) is odd) to the packet, where \(n\) is the number of timeslots in the channel group. Note that you do not include the additional signaling bytes in the configuration setting of the TDM payload size. However, the operating system includes the additional bytes in the total packet payload, and the total payload must be accounted for when setting the service-mtu size. Continuing the example above, since \(n = 4\), the total payload is 64 octets plus \((4/2 = 2)\) CAS octets, or 66 octets. Refer to Figure 18 to see the structure of the CES with CAS payload.

CES fragmentation is not supported.

**Note:** If you configure the service-mtu size to be smaller than the total payload size (payload plus CAS bytes), then the Cpipe will not become operational. This must be considered if you change the service-mtu from its default value.
### Table 10: Payload Size for T1 and E1 CESoPSN with CAS

<table>
<thead>
<tr>
<th>Number of Timeslots</th>
<th>T1</th>
<th></th>
<th>E1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Frames per Packet</td>
<td>Payload Size (Octets)</td>
<td>Packetization Delay (ms)</td>
<td>Number of Frames per Packet</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>24</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>48</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>72</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>96</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>120</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>144</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>168</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>192</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>216</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>240</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>264</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>288</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>312</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>336</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>360</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>384</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>408</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>432</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>456</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>480</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
<td>504</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>528</td>
<td>3.00</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>552</td>
<td>3.00</td>
<td>16</td>
</tr>
</tbody>
</table>
Packet Payload Size

The packet payload size defines the number of octets contained in the payload of a TDM pseudowire packet when the packet is transmitted. Each DS0 (timeslot) in a DS1 or E1 frame contributes 1 octet to the payload, and the total number of octets contributed per frame depends on the number of timeslots in the channel group (for example, 10 timeslots contribute 10 octets per frame).

Jitter Buffer

A circuit emulation service uses a jitter buffer to ensure that received packets are tolerant to packet delay variation (PDV). The selection of jitter buffer size must take into account the size of the TDM-encapsulated packets (payload size). A properly configured jitter buffer provides continuous play-out, thereby avoiding discards due to overruns and under runs (packets arriving too early or too late). The maximum receive jitter buffer size is configurable for each SAP configured for circuit emulation. The range of values is from 1 to 250 ms in increments of 1 ms.

Configuration or Design Considerations

Determining the best configuration value for the jitter buffer may require some adjustments to account for the requirements of your network, which can change PDV as nodes are added or removed.

The buffer size must be set to at least three times the packetization delay and no greater than 32 times the packetization delay. Use a buffer size (in ms) that is equal to or greater than the peak-to-
peak packet delay variation (PDV) expected in the network used by circuit emulation service. For example, for a PDV of ±5 ms, configure the jitter buffer to be at least 10 ms.

**Note:** The jitter buffer setting and payload size (packetization delay) interact such that it may be necessary for the operating system to adjust the jitter buffer setting in order to ensure no loss of packets. Thus, the configured jitter buffer value may not be the value used by the system. Use the `show>service>id service_id>all` command to show the effective PDVT (packet delay variation tolerance).

The following values are the default jitter buffer times for structured circuits, where N is the number of timeslots:

- For \( N = 1 \), the default is 32 ms
- For \( 2 \leq N \leq 4 \), the default is 16 ms
- For \( 5 \leq N \leq 15 \), the default is 8 ms
- For \( N \geq 16 \), the default is 5 ms

Jitter buffer overrun and under run counters are available for statistics and can raise an alarm (optional) while the circuit is operational. For overruns, excess packets are discarded and counted. For under runs, an all-ones pattern is sent for unstructured circuits and an all-ones or a user-defined pattern is sent for structured circuits (based on configuration).

The circuit status and statistics can be displayed using the appropriate show command.

---

**RTP Header**

For all circuit emulation channels, the RTP in the header is optional (as per RFC 5086).

When enabled for absolute mode operation, an RTP header is inserted in the MPLS frame upon transmit. Absolute mode is defined in RFC 5086 and means that the ingress PE will set timestamps using the clock recovered from the incoming TDM circuit. When an MPLS frame is received, the RTP header is ignored. The RTP header mode is for TDM pseudowire interoperability purposes only and should be enabled when the other device requires an RTP header.
Control Word

The structure of the control word is mandatory for SAToP and is shown in Figure 19.

![Control Word Bit Structure](image)

Figure 19: Control Word Bit Structure

The control word descriptions are listed in the Table 11:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits 0 to 3</td>
<td>The use of bits 0 to 3 is described in RFC 4385. These bits are set to ‘0’ unless they are being used to indicate the start of an Associated Channel Header (ACH) for the purposes of VCCV.</td>
</tr>
<tr>
<td>L (Local TDM Failure)</td>
<td>The L bit is set to 1 if an abnormal condition of the attachment circuit such as LOS, LOF, or AIS has been detected and the TDM data carried in the payload is invalid. The L bit is cleared (set back to 0) when fault is rectified.</td>
</tr>
<tr>
<td>R (Remote Loss of Frames indication)</td>
<td>The R bit is set to 1 if the local CE-bound inter-working function (IWF) is in the packet loss state and cleared (reset to 0) after the local CE-bound IWF is no longer in the packet loss state.</td>
</tr>
<tr>
<td>M (Modifier)</td>
<td>The M bits are a 2-bit modifier field. For SAToP, M is set to 00 as per RFC 4553.</td>
</tr>
<tr>
<td>Sequence number</td>
<td>The sequence number is used to provide the common pseudowire sequencing function as well as detection of lost packets.</td>
</tr>
</tbody>
</table>
Error Situations

The CE-bound inter-working function (IWF) uses the sequence numbers in the control word to detect lost and incorrectly ordered packets. Incorrectly ordered packets that cannot be re-ordered are discarded.

For unstructured CES, the payload of received packets with the L bit set is replaced with an all-ones pattern. For structured CES, the payload of received packets with the L bit set is replaced with an all-ones or a user-configurable bit pattern. This is configured using the idle-payload-fill command. For structured CES with CAS, the signaling bits are replaced with an all-ones or a user-configurable bit pattern. This is configured using the idle-signal-fill command. Refer to the 7210 SAS Interface Configuration Guide for more information. All circuit emulation services can have a status of up, loss of packets (LOP) or admin down, and any jitter buffer overruns or under runs are logged.
Ethernet Pipe (Epipe) Services

This section provides information about the Epipe service and implementation notes.

Topics in this section include:

- Epipe Service Overview on page 137
  - SAP Encapsulations on page 164
  - QoS Policies on page 167
  - Filter Policies on page 167
  - MAC Resources on page 168
- Basic Configurations on page 172
- Common Configuration Tasks on page 172
  - Configuring VLL Components on page 173
    - Creating an Epipe Service in Network Mode on page 180
- Service Management Tasks on page 196
Epipe Service Overview

An Epipe service is a Layer 2 point-to-point service where the customer data is encapsulated and transported across a service provider’s network. An Epipe service is completely transparent to the subscriber’s data and protocols. The Epipe service does not perform any MAC learning. A local Epipe service consists of two SAPs on the same node, whereas a distributed Epipe service consists of two SAPs on different nodes.

Each SAP configuration includes a specific port on which service traffic enters the 7210 SAS router from the customer side (also called the access side). Each port is configured with an encapsulation type. If a port is configured with an IEEE 802.1Q (referred to as Dot1q) encapsulation, then a unique encapsulation value (ID) must be specified.

Figure 20: Epipe/VLL Service

Epipe with PBB

A pbb-tunnel may be linked to an Epipe to a B-VPLS. MAC switching and learning is not required for the point-to-point service (all packets ingressing the SAP are PBB encapsulated and forwarded to the PBB tunnel to the backbone destination MAC address and all the packets ingressing the B-VPLS destined for the ISID are PBB de-encapsulated and forwarded to the Epipe SAP. A fully specified backbone destination address must be provisioned for each PBB Epipe instance to be used for each incoming frame on the related I-SAP. If the backbone destination address is not found in the B-VPLS FDB then packets may be flooded through the B-VPLSs.

All B-VPLS constructs may be used including B-VPLS resiliency and OAM. Not all generic Epipe commands are applicable when using a PBB tunnel.
Support for processing of packets received with more than 2 tags on a QinQ SAP in Epipe service (only on 7210 SAS-M network mode)

NOTE: 7210 SAS-M access-uplink mode processes and forwards packets with more than 2 tags. Please see the configuration notes in the Services Chapter for restrictions and use of SAPs in access-uplink mode. This section is applicable only to 7210 SAS-M in network mode.

To forward packets with 2 or more tags using a QinQ SAP, a new Epipe service type is available for use when 7210 SAS-M is operating in ‘network’ mode. This new service will allow for configuration of a QinQ SAP as one endpoint and the following service entities as the other endpoint:

- MPLS spoke-SDP with vc-type set to vc-vlan.
  → The vc-vlan-tag to be must match the inner-tag VLAN ID value specified in the QinQ SAP.
- dot1q SAP
  → The VLAN value configured for the dot1q SAP must match the inner-tag VLAN ID value of the QinQ SAP.
- QinQ SAP
  → The VLAN ID value configured for the inner tag (that is, value of Q1 tag) of the QinQ SAP (that is, Q1.Q2 SAP) must be the same as the inner tag VLAN ID value of the other QinQ SAP.

The device will process the packet as given below in the forward direction:

- If the packet is received on a QinQ SAP, assign an incoming packet to this service based on matching the outermost two tags in the packet header (i.e. in other words the first two tags in the packet header). It will strip only the outermost tag (only a single tag) on ingress and forward the rest on to the other endpoint in the service (see below).
- If the other endpoint the packet is sent out of is a MPLS SDP, then MPLS encapsulation is added.
- If the other endpoint the packet is sent out of is a dot1q SAP packet is forwarded as is, without any egress VLAN checks. It is expected that operator will ensure that the inner tag of the packet matches the dot1q VLAN value.
- If the other endpoint the packet is sent out of is another QinQ SAP (for example, Q1.Q2 SAP), then another tag (that is, Q2 tag) is added to the packet and sent out of the QinQ SAP.

In the reverse direction, the device will process the packet as given below:
• When traffic is received on the MPLS SDP, the vc-vlan tag is retained as is and the VLAN tag corresponding to the outermost tag configured for the QinQ SAP (i.e. the other endpoint) is added to the packet. The system does not match the vc-vlan tag received in the packet with the configured value (i.e. the inner tag of the QinQ SAP). It is expected that operator will configure both end of the service appropriately to ensure only appropriate packets enter the service.

• When traffic is received on the dot1q SAP, the outermost tag is not stripped and the VLAN tag corresponding to the outermost tag configured for the QinQ SAP is added to the packet.

• If the packet is received on a QinQ SAP, assign an incoming packet to this service based on matching the outermost two tags in the packet header (that is, in other words the first two tags in the packet header). It will strip only the outermost tag (only a single tag) on ingress. The VLAN tag corresponding to the outermost tag configured for the QinQ SAP (that is, the other endpoint) is added to the packet and it is sent out of the QinQ SAP.

Thus, the device processes packets received with 2 or more tags using the MPLS SDP or a dot1q SAP while classifying on the QinQ SAP ingress using 2 tags.

Feature Support, Configuration notes and Restrictions

A new svc-sap-type value "qinq-inner-tag-preserve" is available for configuring the service. This must be used when creating a new Epipe service if this functionality is desired (For example: epipe 10 svc-sap-type qinq-inner-tag-preserve create).

• This service is available only in network mode.

• Epipe service created with the parameter svc-sap-type set to qinq-inner-tag-preserve will allow for only one QinQ SAP and only one SDP of vc-type ‘vc-vlan’. The system will not allow the user to use any other SAP in this new service, that is, NULL SAP, Q1. * SAP, 0.* SAP, etc, are not allowed for configuration in this service. The SDP cannot be of vc-type ‘vc-ether’.

• User can configure vlan-vc-tag value for the SDP, the dot1q SAP VLAN tag value and the inner tag VLAN value of a QinQ SAP to match the VLAN ID value of the inner tag specified in the Q1.Q2 SAP configured in the service (example: if the SAP is 1/1/10:Q1.Q2, then vlan-vc-tag must be set to Q2, the dot1q SAP VLAN value must be Q2, and the inner tag of another QinQ SAP must be set to Q2). If any other value, other than QinQ SAP's inner tag is configured for vlan-vc-tag or dot1q SAP VLAN value, or for the inner tag of the QinQ SAP then it will be errored out by the software. If vlan-vc-tag value is not configured, it defaults to use the inner VLAN tag value. It is highly recommended that the customer configure the vlan-vc-tag value to match the VLAN ID value of the inner tag configured for the QinQ SAP, to avoid misconfiguration.
• Existing QoS and ACL functionality for the Epipe service entities will continue to be available, with the following exceptions:
  → If the packet is received with more than 2 tags, then IP match-criteria cannot be used with SAP ingress QoS classification and ACLs (both Ingress and Egress ACLs).
  → If the packet is received with more than 2 tags, then Ethertype value in the mac-criteria cannot be used with SAP ingress QoS classification and ACLs (both Ingress and Egress ACLs).
  → Dot1p bits from the outermost tag (i.e. Q1 VLAN tag, if the SAP is 1/1/10:Q1.Q2) will be used for SAP ingress classification. Dot1p bits of the outermost tag will be marked on egress, if marking is enabled on the egress port. The Dot1p bit value of the vc-vlan-tag is not used to mark the Dot1p bits of the outermost VLAN tag, when the packets is exiting the QinQ SAP.

• OAM tools
  → MPLS OAM tools such as vccv-ping, vccv-trace, etc. is supported for the SDPs
  → Accounting and Statistics for the service entities (e.g. SAP and SDP) will be available as before

• Following Redundancy mechanisms available in Epipe service is supported when using MPLS SDP:
  → Epipe PW redundancy
  → MC-LAG based protection for access SAPs using the new service type (along with use PW redundancy)

Configuration of Epipe service for processing of packets received with more than 2 tags on a QinQ SAP (only on 7210 SAS-M network mode)

The following is the example when the user configures "vlan-vc-tag" value to match the inner tag specified in the Q1.Q2 SAP configured in the service :

*A:7210SAS>config>service# info
----------------------------------------------
epipe 10 svc-sap-type qinq-inner-tag-preserve customer 1 create
  sap 1/1/3:10.45 create
  exit
  spoke-sdp 111:69 vc-type vlan create
  vlan-vc-tag 45
  exit
no shutdown
----------------------------------------------

The following is the example of an Epipe service with QinQ SAP and dot1q SAP. In the example below, note that the Dot1q SAP's (1/1/4:45) VLAN value '45', matches the inner tag VLAN value specified with QinQ SAP (1/1/3:10.45).
The following is the example of an Epipe service with 2 QinQ SAPs. In the example below, note that the inner tag of both QinQ SAPs matches and is set to a value of '45'.

*A:7210>config>service# info
----------------------------------------------
epipe 10 svc-sap-type qinq-inner-tag-preserve customer 1 create
   sap 1/1/3:10.45 create
      no shutdown
   exit
   sap 1/1/4:45 create
      no shutdown
   exit
   no shutdown
exit
----------------------------------------------

---
Pseudowire Switching

Note: The 7210 SAS devices cannot be configured as S-PE nodes. They can be configured only in a T-PE nodes. The discussion in the following section is about T-PE applies to 7210 only.

The pseudowire switching feature provides the user with the ability to create a VLL service by cross-connecting two spoke SDPs. This feature allows the scaling of VLL and VPLS services in a large network in which the otherwise full mesh of PE devices would require thousands of Targeted LDP (T-LDP) sessions per PE node.

Services with one SAP and one spoke SDP are created normally on the PE; however, the target destination of the SDP is the pseudowire switching node instead of what is normally the remote PE. In addition, the user configures a VLL service on the pseudowire switching node (the S-PE node) using the two SDPs.

The pseudowire switching node acts in a passive role with respect to signalling of the pseudowires. It waits until one or both of the PEs sends the label mapping message before relaying it to the other PE. This is because it needs to pass the Interface Parameters of each PE to the other.

A pseudowire switching point TLV is inserted by the switching pseudowire to record its system address when relaying the label mapping message. This TLV is useful in a few situations:

- It allows for troubleshooting of the path of the pseudowire especially if multiple pseudowire switching points exist between the two PEs.
- It helps in loop detection of the T-LDP signalling messages where a switching point would receive back a label mapping message it had already relayed.
- The switching point TLV is inserted in pseudowire status notification messages when they are sent end-to-end or from a pseudowire switching node towards a destination PE.

Pseudowire OAM is supported for the manual switching pseudowires and allows the pseudowire switching node to relay end-to-end pseudowire status notification messages between the two PEs. The pseudowire switching node can generate a pseudowire status and send it to one or both of the PEs by including its system address in the pseudowire switching point TLV. This allows a PE to identify the origin of the pseudowire status notification message.

In the Figure 21, the user configures a regular Epipe VLL service PE1 and PE2. These services consist each of a SAP and a spoke SPD. However, the target destination of the SDP is actually not the remote PE but the pseudowire switching node. In addition, the user configures an Epipe VLL service on the pseudowire switching node using the two SDPs.

| 7210 PE1 (Epipe) | ---sdp 2:10--- | 7210 PW SW (Epipe) | ---sdp 7:15--- | 7210 PE2 (Epipe) |

Figure 21: Pseudowire Service Switching Node
Pseudowire Switching with Protection

Pseudowire switching scales VLL and VPLS services over a multi-area network by removing the need for a full mesh of targeted LDP sessions between PE nodes. Figure 22 illustrates the use of pseudowire redundancy to provide a scalable and resilient VLL service across multiple IGP areas in a provider network.

Figure 22: VLL Resilience with Pseudowire Redundancy and Switching

In the network in Figure 22, PE nodes act as masters and pseudowire switching nodes act as slaves for the purpose of pseudowire signaling. A switching node will need to pass the SAP Interface Parameters of each PE to the other. T-PE1 sends a label mapping message for the Layer 2 FEC to the peer pseudowire switching node” for example, S-PE1. It will include the SAP interface parameters, such as MTU, in the label mapping message. S-PE1 checks the FEC against the local information and if a match exists, it appends the optional pseudowire switching point TLV to the FEC TLV in which it records its system address. T-PE1 then relays the label mapping message to S-PE2. S-PE2 performs similar operations and forwards a label mapping message to T-PE2. The same procedures are followed for the label mapping message in the reverse direction, for example,
Pseudowire switching TLV is useful in a few situations. First, it allows for troubleshooting of the path of the pseudowire especially if multiple pseudowire switching points exist between the two T-PE nodes. Secondly, it helps in loop detection of the T-LDP signaling messages where a switching point receives back a label mapping message it already relayed. Finally, it can be inserted in pseudowire status messages when they are sent from a pseudowire switching node towards a destination PE.

Pseudowire status messages can be generated by the T-PE nodes and/or the S-PE nodes. Pseudowire status messages received by a switching node are processed and then passed on to the next hop. An S-PE node appends the optional pseudowire switching TLV, with its system address added to it, to the FEC in the pseudowire status notification message only if it originated the message or the message was received with the TLV in it. Otherwise, it means the message was originated by a T-PE node and the S-PE should process and pass the message without changes except for the VCID value in the FEC TLV.
Pseudowire Switching Behavior

In the network in Figure 22, PE nodes act as masters and pseudowire switching nodes act as slaves for the purpose of pseudowire signaling. This is because a switching node will need to pass the SAP interface parameters of each PE to the other. T-PE1 sends a label mapping message for the Layer 2 FEC to the peer pseudowire switching node, for example, S-PE1. It will include the SAP interface parameters, such as MTU, in the label mapping message. S-PE1 checks the FEC against the local information and if a match exists, it appends the optional pseudowire switching point TLV to the FEC TLV in which it records its system address. T-PE1 then relays the label mapping message to S-PE2. S-PE2 performs similar operation and forwards a label mapping message to T-PE2. The same procedures are followed for the label mapping message in the reverse direction, for example, from T-PE2 to T-PE1. S-PE1 and S-PE2 will effect the spoke SDP cross-connect only when both directions of the pseudowire have been signaled and matched.

Pseudowire status notification messages can be generated by the T-PE nodes and/or the S-PE nodes. Pseudowire status notification messages received by a switching node are processed and then passed on to the next hop. An S-PE node appends the optional pseudowire switching TLV, with its system address added to it, to the FEC in the pseudowire status notification message only if it originated the message or the message was received with the TLV in it. Otherwise, it means the message was originated by a T-PE node and the S-PE should process and pass the message without changes except for the VC ID value in the FEC TLV.

The merging of the received T-LDP status notification message and the local status for the spoke SDPs from the service manager at a PE complies with the following rules:

- When the local status for both spokes is up, the S-PE passes any received SAP or SDP-binding generated status notification message unchanged, for example, the status notification TLV is unchanged but the VC-ID in the FEC TLV is set to value of the pseudowire segment to the next hop.
- When the local operational status for any of the spokes is down, the S-PE always sends SDP-binding down status bits regardless if the received status bits from the remote node indicated SAP up/down or SDP-binding up/down.
Pseudowire Redundancy

Pseudowire redundancy provides the ability to protect a pseudowire with a pre-provisioned pseudowire and to switch traffic over to the secondary standby pseudowire in case of a SAP and/or network failure condition. Normally, pseudowires are redundant by the virtue of the SDP redundancy mechanism. For instance, if the SDP is an RSVP LSP and is protected by a secondary standby path and/or by Fast-Reroute paths, the pseudowire is also protected. However, there are a couple of applications in which SDP redundancy does not protect the end-to-end pseudowire path:

- There are two different destination PE nodes for the same VLL service. The main use case is the provision of dual-homing of a CPE or access node to two PE nodes located in different POPs. The other use case is the provision of a pair of active and standby BRAS nodes, or active and standby links to the same BRAS node, to provide service resiliency to broadband service subscribers.
- The pseudowire path is switched in the middle of the network and the SR-Series pseudowire switching node fails.

Pseudowire and VPLS link redundancy extends link-level resiliency for pseudowires and VPLS to protect critical network paths against physical link or node failures. These innovations enable the virtualization of redundant paths across the metro or core IP network to provide seamless and transparent fail-over for point-to-point and multi-point connections and services. When deployed with multi-chassis LAG, the path for return traffic is maintained through the pseudowire or VPLS switchover, which enables carriers to deliver “always on” services across their IP/MPLS networks.

Figure 23: VLL Resilience

If the Ethernet SAP on PE2 fails, PE2 notifies PE1 of the failure by either withdrawing the primary pseudowire label it advertised or by sending a pseudowire status notification with the code set to indicate a SAP defect. PE1 will receive it and will immediately switch its local SAP to
forward over the secondary standby spoke SDP. In order to avoid black holing of in-flight packets during the switching of the path, PE1 will accept packets received from PE2 on the primary pseudowire while transmitting over the backup pseudowire.

When the SAP at PE2 is restored, PE2 updates the new status of the SAP by sending a new label mapping message for the same pseudowire FEC or by sending pseudowire status notification message indicating that the SAP is back up. PE1 then starts a timer and reverts back to the primary at the expiry of the timer. By default, the timer is set to 0, which means PE1 reverts immediately. A special value of the timer (infinity) will mean that PE1 should never revert back to the primary pseudowire.

The behavior of the pseudowire redundancy feature is the same if PE1 detects or is notified of a network failure that brought the spoke SDP operational status to DOWN. The following are the events which will cause PE1 to trigger a switchover to the secondary standby pseudowire:

1. T-LDP peer (remote PE) node withdrew the pseudowire label.
2. T-LDP peer signaled a FEC status indicating a pseudowire failure or a remote SAP failure.
3. T-LDP session to peer node times out.
4. SDP binding and VLL service went down as a result of network failure condition such as the SDP to peer node going operationally down.

Alcatel-Lucent’s routers support the ability for a user-initiated manual switchover of the VLL path to the primary or any of the secondary be supported to divert user traffic in case of a planned outage such as in node upgrade procedures.
Master-Slave Operation

NOTE: 7210 SAS devices support only standby-signaling-master option. 7210 does not support the CLI command standby-signaling-slave. In the discussion below, reference to standby-signaling-slave command is only used to describe the solution. 7210 device can be used only where standby-signaling-master is used in the example below.

This section describes master-slave operation for pseudowire redundancy, as well as the algorithm used to select the active transmit object in a VLL endpoint.

Blocking the transmit direction of a VLL spoke SDP when the far-end PE signals standby are covered in this section. A solution the Rx direction of standby spoke SDP at the master endpoint in order to interoperate with PEs that play a slave role but do not support blocking the Tx direction on receiving a standby. However, blocking Tx on standby is a feasible approach since blocking Tx satisfies a majority of deployments.

Figure 24 illustrates the operation of master-slave pseudowire redundancy. In this scenario, an Epipe service is provided between CE1 and CE2. CE2 is dual homed to PE2 and PE3, and thus PE1 is dual-homed to PE2 and PE3 using Epipe spoke SDPs. The objectives of this feature is to ensure that only one pseudowire is used for forwarding in both directions by PE1, PE2 and PE3 in the absence of a native dual homing protocol between CE2 and PE2/PE3, such as MC-LAG. In normal operating conditions (the SAPs on PE2 and PE3 towards CE2 are both up and there are no defects on the ACs to CE2), PE2 and PE3 cannot choose which spoke SDP to forward on based on the status of the AC redundancy protocol.

Figure 24: Master-Slave Pseudowire Redundancy
Master-slave pseudowire redundancy adds the ability for the remote peer to react to the pseudowire standby status notification, even if only one spoke SDP terminates on the VLL endpoint on the remote peer. When the CLI command `standby-signaling-slave` is enabled at the spoke SDP or explicit endpoint level in PE2 and PE3, then any spoke SDP for which the remote peer signals PW FWD Standby will be blocked in the transmit direction.

This is achieved as follows. The `standby-signaling-master` state is activated on the VLL endpoint in PE1. In this case, a spoke SDP is blocked in the transmit direction at this master endpoint if it is either in operDown state, or it has lower precedence than the highest precedence spoke SDP, or the given peer PE signals one of the following pseudowire status bits:

- Pseudowire not forwarding (0x01)
- SAP (ingress) receive fault (0x02)
- SAP (egress) transmit fault (0x04)
- SDP binding (ingress) receive fault (0x08)
- SDP binding (egress) transmit fault (0x10)

The fact that the given spoke SDP has been blocked will be signaled to LDP peer through the pseudowire status bit (PW FWD Standby (0x20)). This will prevent traffic being sent over this spoke SDP by the remote peer, but obviously only in case that remote peer supports and reacts to pseudowire status notification. Previously, this applied only if the spoke SDP terminates on an IES, VPRN or VPLS. However, if standby-signaling-slave is enabled at the remote VLL endpoint then the Tx direction of the spoke SDP will also be blocked, according to the rules in Operation of Master-Slave Pseudowire Redundancy with Existing Scenarios on page 151.

Note that although master-slave operation provides bidirectional blocking of a standby spoke SDP during steady-state conditions, it is possible that the Tx directions of more than one slave endpoint can be active for transient periods during a fail-over operation. This is due to slave endpoints transitioning a spoke SDP from standby to active receiving and/or processing a pseudowire preferential forwarding status message before those transitioning a spoke SDP to standby. This transient condition is most likely when a forced switch-over is performed, or the relative preferences of the spoke SDPs is changed, or the active spoke SDP is shutdown at the master endpoint. During this period, loops of unknown traffic may be observed. Fail-overs due to common network faults that can occur during normal operation, a failure of connectivity on the path of the spoke SDP or the SAP, would not result in such loops in the data path.

**Local Rules at Slave VLL PE**

It must not be possible to configure standby-signaling-slave on endpoints or spoke SDPs bound to an IES, VPRN, ICB, MC-EP or that form part of an MC-LAG or MC-APS.

If ‘standby-signaling-slave’ is configured on a given spoke SDP or explicit endpoint, then the following rules apply. Note that the rules describe the case of several spoke SDPs in an explicit endpoint. The same rules apply to the case of a single spoke SDP outside of an endpoint where no endpoint exists:
Rules for processing endpoint SAP active/standby status bits:

→ Since the SAP in endpoint X is never a part of a MC-LAG/MC-APS instance, a forwarding status of ACTIVE is always advertised.

Rules for processing and merging local and received endpoint object status Up/Down operational status:

1. Endpoint ‘X’ is operationally UP if at least one of its objects is operationally UP. It is Down if all its objects are operationally down.

2. If all objects in endpoint ‘X’ transition locally to Down state, and/or received a “SAP Down” notification via remote T-LDP status bits or via SAP specific OAM signal, and/or received status bits of “SDP-binding down”, and/or received status bits of “PW not forwarding”, the node must send status bits of “SAP Down” over all ‘Y’ endpoint spoke SDPs.

3. Endpoint ‘Y’ is operationally UP if at least one of its objects is operationally UP. It is Down if all its objects are operationally down.

4. If a spoke SDP in endpoint ‘Y’, including the ICB spoke SDP, transitions locally to Down state, the node must send T-LDP “SDP-binding down” status bits on this spoke SDP.

5. If a spoke SDP in endpoint ‘Y’, received T-LDP “SAP down” status bits, and/or received T-LDP “SDP-binding down” status bits, and/or received status bits of “PW not forwarding”, the node saves this status and takes no further action. The saved status is used for selecting the active transmit endpoint object as per the pseudo-code in Section 5.1.2.

6. If all objects in endpoint ‘Y’, or a single spoke SDP that exists outside of an endpoint (and no endpoint exists), transition locally to down state, and/or received T-LDP “SAP Down” status bits, and/or received status bits of “PW not forwarding”, and/or the received status bits of ‘PW FWD standby’, the node must send a “SAP down” notification on the ‘X’ endpoint SAP via the SAP specific OAM signal, if applicable.

7. If the peer PE for a given object in endpoint ‘Y’ signals ‘PW FWD standby’, the spoke SDP must be blocked in the transmit direction and the spoke SDP is not eligible for selection by the active transmit selection rules.

8. If the peer PE for a given object in endpoint ‘Y’ does not signal ‘PW FWD standby’, then spoke SDP is eligible for selection.
Operation of Master-Slave Pseudowire Redundancy with Existing Scenarios

This section illustrates how master-slave pseudowire redundancy could operate.

VLL Resilience

Figure 25 displays a VLL resilience path example. An sample configuration follows.

Note that a revert-time value of zero (default) means that the VLL path will be switched back to the primary immediately after it comes back up.

PE1
configure service epipe 1
  endpoint X
  exit
  endpoint Y
  revert-time 0
  standby-signaling-master
  exit
  sap 1/1/1:100 endpoint X
  spoke-sdp 1:100 endpoint Y
  precedence primary
  spoke-sdp 2:200 endpoint Y
  precedence 1
PE2
configure service epipe 1
  endpoint X
  exit
sap 2/2/2:200 endpoint X
spoke-sdp 1:100
    standby-signaling-slave

PE3

configure service epipe 1
    endpoint X
    exit
    sap 3/3/3:300 endpoint X
    spoke-sdp 2:200
    standby-signaling-slave
VLL Resilience for a Switched PW Path

Figure 26 displays a VLL resilience for a switched pseudowire path example. A sample configuration follows.

**Figure 26: VLL Resilience with Pseudowire Switching**

**Configuration**

**T-PE1**
```plaintext
cfg service epipe 1
 endpoint X
 exit
 endpoint Y
 revert-time 100
 standby-signaling-master
 exit
 sap 1/1/1:100 endpoint X
 spoke-sdp 1:100 endpoint Y
 precedence primary
 spoke-sdp 2:200 endpoint Y
 precedence 1
 spoke-sdp 3:300 endpoint Y
 precedence 1
```

**T-PE2**
```plaintext
cfg service epipe 1
 endpoint X
 exit
 endpoint Y
 revert-time 100
```
VC switching indicates a VC cross-connect so that the service manager does not signal the VC label mapping immediately but will put this into passive mode.

configure service epipe 1 vc-switching
spoke-sdp 1:100
spoke-sdp 4:400

Figure 27 illustrates the use of both pseudowire redundancy and pseudowire switching to provide a resilient VLL service across multiple IGP areas in a provider network.
**Figure 27: VLL Resilience with Pseudowire Redundancy and Switching**

**Note:** 7210 SAS M supports only T-PE functionality. It does not support S-PE functionality.

Pseudowire switching is a method for scaling a large network of VLL or VPLS services by removing the need for a full mesh of T-LDP sessions between the PE nodes as the number of these nodes grows over time.

Note that it is possible that the secondary pseudowire path terminates on the same target PE as the primary, for example, T-PE2. This provides protection against network side failures but not against a remote SAP failure. When the target destination PE for the primary and secondary pseudowires is the same, T-PE1 will normally not switch the VLL path onto the secondary pseudowire upon receipt of a pseudowire status notification indicating the remote SAP is down since the status notification is sent over both the primary and secondary pseudowires. However, the status notification on the primary pseudowire may arrive earlier than the one on the secondary pseudowire due to the differential delay between the paths. This will cause T-PE1 to switch the path of the VLL to the secondary standby pseudowire and remain there until the status notification is cleared. At that point in time, the VLL path is switched back to the primary pseudowire due to the revertive behavior operation. The path will not switch back to a secondary path when it becomes up even if it has a higher precedence than the currently active secondary path.
This section describes the pseudowire redundancy scenarios as well as the algorithm used to select the active transmit object in a VLL endpoint.

The redundant VLL service model is described in the following section, Redundant VLL Service Model.

Redundant VLL Service Model

In order to implement pseudowire redundancy, a VLL service accommodates more than a single object on the SAP side and on the spoke SDP side. Figure 28 illustrates the model for a redundant VLL service based on the concept of endpoints.

![Figure 28: Redundant VLL Endpoint Objects](image)

A VLL service supports by default two implicit endpoints managed internally by the system. Each endpoint can only have one object, a SAP or a spoke SDP.

In order to add more objects, up to two (2) explicitly named endpoints may be created per VLL service. The endpoint name is locally significant to the VLL service. They are referred to as endpoint 'X' and endpoint 'Y' as illustrated in Figure 28.

Note that Figure 28 is merely an example and that the “Y” endpoint can also have an SAP and/or spoke SDP. The following details the four types of endpoint objects supported and the rules used when associating them with an endpoint of a VLL service:
• SAP — There can only be a maximum of one SAP per VLL endpoint.

• Primary spoke SDP — The VLL service always uses this pseudowire and only switches to a secondary pseudowire when it is down. The VLL service switches the path to the primary pseudowire when it is back up. The user can configure a timer to delay reverting back to primary or to never revert. There can only be a maximum of one primary spoke SDP per VLL endpoint.

• Secondary spoke SDP — There can be a maximum of four secondary spoke SDPs per endpoint. The user can configure the precedence of a secondary pseudowire to indicate the order in which a secondary pseudowire is activated.

• Inter-Chassis Backup (ICB) spoke SDP — Special pseudowire used for MC-LAG and pseudowire redundancy application. Forwarding between ICBs is blocked on the same node. The user has to explicitly indicate the spoke SDP is actually an ICB at creation time. There are however a few scenarios below where the user can configure the spoke SDP as ICB or as a regular spoke SDP on a given node. The CLI for those cases will indicate both options.

A VLL service endpoint can only use a single active object to transmit at any given time but can receive from all endpoint objects.

An explicitly named endpoint can have a maximum of one SAP and one ICB. Once a SAP is added to the endpoint, only one more object of type ICB spoke SDP is allowed. The ICB spoke SDP cannot be added to the endpoint if the SAP is not part of a MC-LAG instance. Conversely, a SAP which is not part of a MC-LAG instance cannot be added to an endpoint which already has an ICB spoke SDP.

An explicitly named endpoint, which does not have a SAP object, can have a maximum of four spoke SDPs and can include any of the following:

• A single primary spoke SDP.
• One or many secondary spoke SDPs with precedence.
• A single ICB spoke SDP.
T-LDP Status Notification Handling Rules

Referring to Figure 28 on page 156 as a reference, the following are the rules for generating, processing, and merging T-LDP status notifications in VLL service with endpoints. Note that any allowed combination of objects as specified in Redundant VLL Service Model on page 156 can be used on endpoints “X” and “Y”. The following sections refer to the specific combination objects in Figure 28 as an example to describe the more general rules.

Processing Endpoint SAP Active/Standy Status Bits

The advertised admin forwarding status of active/standby reflects the status of the local LAG SAP in MC-LAG application. If the SAP is not part of a MC-LAG instance, the forwarding status of active is always advertised.

When the SAP in endpoint “X” is part of a MC-LAG instance, a node must send T-LDP forwarding status bit of “SAP active/standby” over all “Y” endpoint spoke SDPs, except the ICB spoke SDP, whenever this status changes. The status bit sent over the ICB is always zero (active by default).

When the SAP in endpoint “X” is not part of a MC-LAG instance, then the forwarding status sent over all “Y” endpoint spoke SDP's should always be set to zero (active by default).
Access Node Resilience Using MC-LAG and Pseudowire Redundancy (in Access-Uplink Mode)

**Note:** This section is applicable for 7210 SAS-M devices configured in access-uplink mode.

Note that MC-Lag and pseudowire redundancy are not supported on the 7210-SAS M OS (in access-uplink mode), but the 7210 SAS D, E supports active/standby links which lets it to be dual-homed to two PEs that support MC-LAG.

**Figure 30** shows the use of both Multi-Chassis Link Aggregation (MC-LAG) in the access network and pseudowire redundancy in the core network to provide a resilient end-to-end VLL service to the customers. In the **Figure 30**, the 7210 SAS-M (network mode) can be used as the aggregation node. The nodes represented by 7210 in the figure can be 7210 SAS-D or 7210 SAS-E or 7210 SAS-M (access-uplink mode).
In this application, a new pseudowire status bit of active or standby indicates the status of the SAP in the MC-LAG instance in the SR-Series aggregation node. All spoke SDPs are of secondary type and there is no use of a primary pseudowire type in this mode of operation. Node A is in the active state according to its local MC-LAG instance and thus advertises active status notification messages to both its peer pseudowire nodes, for example, nodes C and D. Node D performs the same operation. Node B is in the standby state according to the status of the SAP in its local MC-LAG instance and thus advertises standby status notification messages to both nodes C and D. Node C performs the same operation.

The 7210 SAS node selects a pseudowire as the active path for forwarding packets when both the local pseudowire status and the received remote pseudowire status indicate active status. However, 7210 SAS device in standby status according to the SAP in its local MC-LAG instance is capable
of processing packets for a VLL service received over any of the pseudowires which are up. This is to avoid black holing of user traffic during transitions. The SR-Series standby node forwards these packets to the active node by the Inter-Chassis Backup pseudowire (ICB pseudowire) for this VLL service. An ICB is a spoke SDP used by a MC-LAG node to backup a MC-LAG SAP during transitions. The same ICB can also be used by the peer MC-LAG node to protect against network failures causing the active pseudowire to go down.

Note that at configuration time, the user specifies a precedence parameter for each of the pseudowires which are part of the redundancy set as described in the application in VLL Resilience for a Switched PW Path on page 153. The 7210 SAS node uses this to select which pseudowire to forward packet to in case both pseudowires show active/active for the local or remote status during transitions.

Only VLL service of type Epipe is supported in this application. Furthermore, ICB spoke SDP can only be added to the SAP side of the VLL cross-connect if the SAP is configured on a MC-LAG instance.

__Processing and Merging__

Endpoint “X” is operationally up if at least one of its objects is operationally up. It is down if all its objects are operationally down.

If the SAP in endpoint “X” transitions locally to the down state, or received a SAP down notification by SAP-specific OAM signal, the node must send T-LDP SAP down status bits on the “Y” endpoint ICB spoke SDP only. Note that Ethernet SAP does not support SAP OAM protocol. All other SAP types cannot exist on the same endpoint as an ICB spoke SDP since non Ethernet SAP cannot be part of a MC-LAG instance.

If the ICB spoke SDP in endpoint “X” transitions locally to down state, the node must send T-LDP SDP-binding down status bits on this spoke SDP.

If the ICB spoke SDP in endpoint “X” received T-LDP SDP-binding down status bits or pseudowire not forwarding status bits, the node saves this status and takes no further action. The saved status is used for selecting the active transmit endpoint object.

If all objects in endpoint “X” transition locally to down state, and/or received a SAP down notification by remote T-LDP status bits or by SAP specific OAM signal, and/or received status bits of SDP-binding down, and/or received status bits of pseudowire not forwarding, the node must send status bits of SAP down over all “Y” endpoint spoke SDPs, including the ICB.

Endpoint “Y” is operationally up if at least one of its objects is operationally up. It is down if all its objects are operationally down.

If a spoke SDP in endpoint “Y”, including the ICB spoke SDP, transitions locally to down state, the node must send T-LDP SDP-binding down status bits on this spoke SDP.
If a spoke SDP in endpoint “Y”, including the ICB spoke SDP, received T-LDP SAP down status bits, and/or received T-LDP SDP-binding down status bits, and/or received status bits of pseudowire not forwarding, the node saves this status and takes no further action. The saved status is used for selecting the active transmit endpoint object.

If all objects in endpoint “Y”, except the ICB spoke SDP, transition locally to down state, and/or received T-LDP SAP down status bits, and/or received T-LDP SDP-binding down status bits, and/or received status bits of pseudowire not forwarding, the node must send status bits of SDP-binding down over the “X” endpoint ICB spoke SDP only.

If all objects in endpoint “Y” transition locally to down state, and/or received T-LDP SAP down status bits, and/or received T-LDP SDP-binding down status bits, and/or received status bits of pseudowire not forwarding, the node must send status bits of SDP-binding down over the “X” endpoint ICB spoke SDP, and must send a SAP down notification on the “X” endpoint SAP by the SAP specific OAM signal if applicable. An Ethernet SAP does not support signaling status notifications.
VLL Service Considerations

This section describes various of the general 7210 SAS service features and any special capabilities or considerations as they relate to VLL services.

SDPs

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

The most basic SDPs must have the following:

- A locally unique SDP identification (ID) number.
- The system IP address of the originating and far-end routers.
- An SDP encapsulation type, MPLS.
SAP Encapsulations

The Epipe service is designed to carry Ethernet frame payloads, so it can provide connectivity between any two SAPs that pass Ethernet frames. The following SAP encapsulations are supported on the Epipe service:

- Ethernet null
- Ethernet dot1q
- QinQ

Note that while different encapsulation types can be used, encapsulation mismatch can occur if the encapsulation behavior is not understood by connecting devices and are unable to send and receive the expected traffic. For example if the encapsulation type on one side of the Epipe is dot1q and the other is null, tagged traffic received on the null SAP will potentially be double tagged when it is transmitted out of the Dot1q SAP.

VLAN Range for SAPs in an Epipe Service

7210 SAS VLAN ranges provide a mechanism to group a range of VLAN IDs as a single service entity. This allows the operator to provide the service treatment (forwarding, ACL, QoS, Accounting, and others) to the group of VLAN IDs as a whole.

NOTE: Grouping a range of VLAN IDs to a SAP is supported only for Virtual Leased Lines (VLL) Ethernet services.

Processing behavior for SAPs using VLAN ranges in access-uplink mode

The access SAPs that specifies VLAN range values (using connection-profile) is allowed only in E-Pipe service. The system allows only one range SAP in an Epipe service. It will fail any attempt to configure more than one range SAP in an Epipe service. Range SAP can be configured only on access ports. The other endpoint in the Epipe service has to be a “Q.* SAP” in access-uplink mode. The processing and forwarding behavior for packets received on range SAPs are listed below:

- No VLAN tags are removed/stripped on ingress of access dot1q SAP configured to use VLAN ranges. A single tag (Q1) is added to the frame when it is forwarded out of the Q1.* access-uplink SAP.
- When a packet is received on the access-uplink Q1.* SAP, the outermost tag is removed and the packet is forwarded out of the access dot1q range SAP. The system does not check if the inner VLAN tag matches the VLANs IDs (both range and individual values specified in the “connection-profile”) of the dot1q access SAPs configured in the service.
• The dot1q range sap can be supported in a service with svc-sap-type set to ‘dot1q-range’.
• Support available for 7210 SAS-M in Access-Uplink mode.

---

**VLAN Range SAPs feature Support and Restrictions**

- The access SAPs that specifies VLAN range values (using connection-profile) is allowed only in E-Pipe service. The system allows only one range SAP in an Epipe service. It will fail any attempt to configure more than one range SAP in an Epipe service. Range SAP can be configured only on access ports.

- In access-uplink mode, the dot1q range sap is allowed to be configured only in a service with svc-sap-type set to ‘dot1q-range’. In network mode, the dot1q range sap is allowed to be configured in a service with svc-sap-type set to ‘dot1q-range’.

- The access SAPs using VLAN range values are allowed only for Dot1q encapsulation port or LAG. A connection profile is used to specify either range of VLAN IDs or individual VLANs to be grouped together in a single SAP.

- A “connection profile” is used to specify either range of VLAN IDs or individual VLANs to be grouped together in a single SAP.

- No Dot1q default sap is allowed on the same access port as the one on which a SAP with a range is configured.

- Multiple “connection-profile” can be used per port or Lag as long as the VLAN value specified by each of them does not overlap. The number of VLAN ranges available per port/LAG is limited. The available number must be shared among all the SAPs on the port/LAG.

“Connection-profile”, associated with a SAP cannot be modified. To modify a connection profile, it must be removed from all SAPs that are using it.
Processing behavior for SAPs using VLAN ranges in network mode

- The access SAPs that specifies VLAN range values (using connection-profile) is allowed only in an E-Pipe service. The system allows only one range SAP in an Epipe service. It will fail any attempt to configure more than one range SAP in an Epipe service. Range SAP can be configured only on access ports. The other endpoint in the Epipe service has to be a Q.* access SAP or a spoke-sdp (PW) in network mode. The Spoke-SDP processing and forwarding behavior for packets received on range SAPs are listed below: No VLAN tags are removed/stripped on ingress of the access dot1q SAPs using VLAN range connection profile. When the other endpoint in the service is configured to be an Q1.* access SAP, 7210 adds another tag to the packet and forwards it out of that SAP. If the other endpoint in the service is configured to be a spoke-SDP whose vc-type is set to vc-ether, 7210 adds the appropriate MPLS PW and LSP encapsulations and forwards it out of the SDP.In the reverse direction, when the other endpoint is a Q1.* SAP and a packet is received on it, 7210 SAS removes the outermost VLAN tag and forwards the packet out of the access dot1q SAP using VLAN ranges. When the other endpoint is a spoke-sdp (whose vc-type is set to vc-ether), 7210 SAS removes the MPLS PW and LSP encapsulation and forwards the packet out of the access dot1q SAP using VLAN ranges. The system does not check if the VLAN in the packet matches the VLAN IDs of the dot1q access SAPs configured in the service.Filter policies are supported on SAP ingress. In 7210 SAS-M access-uplink mode, IP criteria and MAC criteria based filter policy is available for use with access SAPs. In 7210 SAS-M network mode, only MAC criteria based filter policy is available for use with access SAPs.

- QoS – Ingress classification, metering with hierarchical metering, marking, queuing and shaping for SAP ingress and SAP egress. On egress per port queues and shaping is available on 7210 SAS-M.

  → SAP ingress classification criteria is available for use with VLAN range SAPs is similar to that available for other SAPs supported in an Epipe service. Dot1p based ingress classification uses the Dot1p bits in the outermost VLAN tag for matching. On access egress, dot1p received from the SDP (on a network port) from another access port is preserved.

- The amount of hardware resources (such as CAM entries used for matching in QoS classification and ACL match, meters used in SAP ingress policy, and others.) consumed by a single range SAP is equivalent to the amount of resources consumed by a single SAP that specifies a single VLAN ID for service identification. In other words, the hardware has the ability to match a range of VLAN values and hence uses ‘X’ resources for a SAP using a VLAN range instead of X * n, where ‘n’ is the number of VLANs specified in the range and X is the amount of QoS or ACL resources needed.

- Ingress accounting support is similar to the support available for other SAPs in an Epipe service. Count of packets or octets received from individual VLANs configured in the connection profile is not available. No support for Egress SAP statistics and accounting is available.
Virtual Leased Line Services

- Mirroring is supported. In network mode, the use of service resiliency mechanisms such as MC-LAG and Epipe PW redundancy is supported.

QoS Policies

**Traffic Management** - Traffic management of Ethernet VLLs is achieved through the application of ingress QoS policies to SAPs and access egress QoS policies applied to the port. All traffic management is forwarding-class aware and the SAP ingress QoS policy identifies the forwarding class based on the rules configured to isolate and match the traffic ingressing on the SAP. Forwarding classes are determined based on the Layer 2 (Dot1p, MAC) or Layer 3 (IP, DSCP) fields of contained packets and this association of forwarding class at the ingress will determine both the queuing and the Dot1p bit setting of packets on the Ethernet VLL on the egress.

**SAP ingress classification and Policing** - The traffic at the SAP ingress is classified and metered according to the SLA parameters. All the traffic ingressing on the SAP is classified to a particular forwarding class. All the forwarding class is metered through and marked in-profile or put-profile based on the Meter parameters.

When applied to 7210 SAS M Epipe services, service ingress QoS policies only create the unicast queues defined in the policy. The multipoint queues are not created on the service. Note that both Layer 2 or Layer 3 criteria can be used in the QoS policies for traffic classification in a service.

**Egress Network DOT1P Marking** - Marking of IEEE DOT1P bits in VLAN tag is as per the FC-to-Dot1p map. For details see the default network QoS policy in the QoS user guide. This marking is applied at the port level on access ports and access uplink ports.

**Ingress Network Classification** - Ingress network classification is based on the Dot1p bits in the outer VLAN tag received on the access uplink port. Dot1p-to-FC mapping is based on the network ingress QoS policy.

Filter Policies

7210 SAS M Epipe services can have a single filter policy associated on both ingress and egress. Both MAC and IP filter policies can be used on Epipe services.

Note: In the IES service in access-uplink mode, ipv6 filter can be applied on access uplink SAP.
MAC Resources

Epiped services are point-to-point layer 2 VPNs capable of carrying any Ethernet payloads. Although an Epiped is a Layer 2 service, the 7210 SAS M Epiped implementation does not perform any MAC learning on the service, so Epiped services do not consume any MAC hardware resources.
Access Node Resilience Using MC-LAG and Pseudowire Redundancy

Note that MC-Lag and pseudowire redundancy are not supported on the 7210 SAS D, E, but the 7210 SAS D, E supports active/standby links which lets it to be dual-homed to two PEs (which can be 7210 SAS-M (network mode) or 7210 SAS-X or 7x50/SR based on network scaling requirements) that support MC-LAG.

Figure 30 shows the use of both Multi-Chassis Link Aggregation (MC-LAG) in the access network and pseudowire redundancy in the core network to provide a resilient end-to-end VLL service to the customers. The aggregation nodes A, B, C, D can be either 7210 SAS-M (network mode) or 7210 SAS-X or 7x50/SR nodes, depending on the network scaling requirements. In Figure 30, the 7210 SAS-M (network mode) and 7210 SAS-X can be use as the aggregation node. The nodes represented by 7210 in the figure can be 7210 SAS-D or 7210 SAS-E or 7210 SAS-M (access-uplink mode).
Figure 30: Access Node Resilience
Configuring a VLL Service with CLI

This section provides information to configure Virtual Leased Line (VLL) services using the command line interface.

Topics in this section include:

- Basic Configurations on page 172
- Common Configuration Tasks on page 172
  - Configuring VLL Components on page 173
    - Creating a Cpipe Service on page 174
    - Creating an Epipe Service in Network Mode on page 180
    - Using Spoke SDP Control Words on page 192
- Service Management Tasks on page 196
  - Cpipe
    - Modifying a Cpipe Service on page 197
    - Deleting a Cpipe Service on page 198
  - Epipe:
    - Modifying Epipe Service Parameters on page 199
    - Disabling an Epipe Service on page 199
    - Re-Enabling an Epipe Service on page 200
    - Deleting an Epipe Service on page 200
Basic Configurations

- Creating a Cpipe Service on page 174
- Creating an Epipe Service in Network Mode on page 180
- Using Spoke SDP Control Words on page 192
- Configuring VLL Resilience on page 193

Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure the VLL services and provides the CLI commands.

- Associate the service with a customer ID.
- Define SAP parameters
  - Optional - select ingress QoS policies (configured in the `config>qos` context).
  - Optional - select accounting policy (configured in the `config>log` context).
- Define spoke SDP parameters (Not applicable for 7210 SAS-M devices configured in Access Uplink mode).
- Enable the service.
Configuring VLL Components

This section provides VLL configuration examples for the VLL services:

• Creating a Cpipe Service on page 174
  → Basic Configuration on page 174
  → Configuration Requirements on page 177
  → Configuring Cpipe SAPs and Spoke SDPs on page 179
• Creating an Epipe Service in Network Mode on page 180
  → Configuring Epipe SAP Parameters on page 181
    – Local Epipe SAPs on page 182
    – Configuring Ingress SAP Parameters on page 186
Creating a Cpipe Service

Basic Configuration

The following fields require specific input (there are no defaults) to configure a basic Cpipe service:

- Customer ID
- Interface parameters
- Spoke SDP parameters

The following example displays a sample configuration of a Cpipe service.

*A:ces-A>config>service# cpipe 1
*A:ces-A>config>service>cpipe# info
----------------------------------------------
sap 1/2/1.1 create
exit
spoke-sdp 12:1 create
exit
no shutdown
----------------------------------------------

Use the following CLI syntax to create a Cpipe service. A route distinguisher must be defined in order for Cpipe to be operationally active.

**CLI Syntax:** config>service# cpipe service-id [customer customer-id] [vpn vpn-id] [vc-type {satop-e1 | satop-t1 | cesopsn | cesopsn-cas}] [vc-switching] [create]

The following displays a Cpipe service configuration example.

*A:ces-A>config>service>cpipe# cpipe 1 customer 1 vc-type satop-t1 create
sap 1/2/1.1 create
    ingress
    qos 12
    exit
spoke-sdp 12:1 create
exit
no shutdown
exit
*A:ces-A>config>service>cpipe# exit all
*A:ces-A>config>service>cpipe# info detail
----------------------------------------------
no description
service-mtu 1514
sap 1/2/1.1 create
    no description
    cem
    packet jitter-buffer 5 payload-size 192
report-alarm stray malformed pktloss overrun underrun
no report-alarm rpktloss rfault rrdi
no rtp-header
exit
ingress
gos 1
exit
no collect-stats
no accounting-policy
no shutdown
exit
spoke-sdp 12:1 create
  ingress
    no vc-label
  exit
egress
    no vc-label
  exit
no collect-stats
no accounting-policy
no precedence
no shutdown
exit
no shutdown

----------------------------------------------
*A:Dut-A>config>service>cpipe# info detail
----------------------------------------------
o no description
service-mtu 1514
endpoint "y" create
  no active-hold-delay
  no description
  no revert-time
exit
sap 1/2/1.2 create
  no description
cem
  packet jitter-buffer 32 payload-size 64
  report-alarm stray malformed pktloss overrun underrun
  no report-alarm rpktloss rfault rrdi
  no rtp-header
exit
ingress
gos 1
  no aggregate-meter-rate
exit
no collect-stats
no accounting-policy
no shutdown
exit
spoke-sdp 123:104 endpoint "y" create
  ingress
    no vc-label
  exit
egress
    no vc-label
  exit
no collect-stats
no accounting-policy
no precedence
no shutdown
exit
no shutdown
*A:Dut-A>config>service>cpipe#
Configuration Requirements

Before a Cpipe service can be provisioned, the following tasks must be completed:

- Configuring a DS1 Port on page 177
- Configuring a Channel Group on page 178

Configuring a DS1 Port

The following displays an example of a DS1 port configured for CES.

*A:ces-A# configure port 1/2/1
*A:ces-A>config>port# info
----------------------------------------------
tdm
ds1
   framing ds1-unframed
   clock-source adaptive
   report-alarm looped
   channel-group 1
   no shutdown
   exit
   no shutdown
   exit
   exit
   no shutdown
----------------------------------------------
*A:ces-A>config>port#
Configuring a Channel Group

The following displays an example of a DS1 channel group configured for CES.

*A:ces-A>config>port# info
----------------------------------------------------------
tdm
ds1
  framing ds1-unframed
  clock-source adaptive
  report-alarm looped
  channel-group 1
  no shutdown
exit
no shutdown
exit
exit
no shutdown
----------------------------------------------------------
*A:ces-A>config>port#

*A:ces-A>config>port# info detail
----------------------------------------------------------
description "DS1/E1"
tdm
  buildout short
  length 133
ds1
  framing ds1-unframed
  no loopback
  clock-source adaptive
  report-alarm ais los
  no report-alarm oof rai looped
  channel-group 1
  description "DS0GRP"
  mode access
  encap-type cem
  timeslots 1-24
  idle-payload-fill all-ones
  no shutdown
exit
no shutdown
exit
line-impedance 100
exit
no shutdown
----------------------------------------------------------
Configuring Cpipe SAPs and Spoke SDPs

The following output displays examples of Cpipe SAP and spoke SDP configurations.

```
*A:ces-A>config>service>cpipe# info
--
cpipe 1 customer 1 vc-type satop-t1 create
 sap 1/2/1.1 create
 ingress
 qos 12
 exit
 exit
spoke-sdp 12:1 create
 exit
 no shutdown
exit
--
*A:ces-A>config>service>cpipe#
```
Creating an Epipe Service in Network Mode

Use the following CLI syntax to create an Epipe service.

CLI Syntax:  config>service# epipe service-id [customer customer-id] [create] [vpn vpn-id] description description-string no shutdown

The following displays an Epipe configuration example:

A:ALA-1>config>service# info
-------------------------------------------
... epipe 1101 customer 1 vpn 1101 create
description "Default epipe description for service id 1101"
no shutdown
exit
-------------------------------------------
A:ALA-1>config>service#

Creating an Epipe Service (for 7210 SAS-M in access uplink mode)

Use the following CLI syntax to create an Epipe service:

CLI Syntax:  config>service# epipe service-id [customer customer-id] [create] [svc-sap-type {null-star | dot1q | dot1q-preserve | any}] [customer-vid vlan-id] description description-string no shutdown

A:ALA-1>config>service# info
-------------------------------------------
... epipe 500 customer 1 svc-sap-type null-star create
description "Local Epipe Service with NULL SVC_SAP_TYPE"
no shutdown
exit
-------------------------------------------
A:ALA-1>config>service#
Configuring Epipe SAP Parameters

A default QoS policy is applied to each ingress SAP. Additional QoS policies can be configured in the `config=qos` context. Filter policies are configured in the `config=filter` context and explicitly applied to a SAP. There are no default filter policies.

Use the following CLI syntax to create:

- Local Epipe SAPs on page 182
- Distributed Epipe Service on page 184

**CLI Syntax:**
```
config>service# epipe service-id [customer customer-id]
 sap sap-id
 accounting-policy policy-id
 collect-stats
 description description-string
 no shutdown
 egress
 filter {ip ip-filter-name | mac mac-filter-name}
 ingress
 filter {ip ip-filter-name | mac mac-filter-name}
 qos policy-id
```
Local Epipe SAPs

To configure a basic local Epipe service, enter the `sap sap-id` command twice with different port IDs in the same service configuration.

By default, QoS policy ID 1 is applied to ingress service SAPs. Existing filter policies or other existing QoS policies can be associated with service SAPs on ingress and egress ports.

Ingress and Egress SAP parameters can be applied to local and distributed Epipe service SAPs.

This example displays the SAP configurations for local Epipe service 500 on SAP 1/1/2 and SAP 1/1/3 on ALA-1.

```
A:ALA-1>config>service# epipe 500 customer 5 create
config>service>epipe$ description "Local epipe service"
config>service>epipe# sap 1/1/2 create
config>service>epipe>.sap? ingress
config>service>epipe>.sap>ingress# qos 20
config>service>epipe>.sap>ingress# filter ip 1
config>service>epipe>.sap>ingress# exit
config>service>epipe>.sap? egress
config>service>epipe# sap 1/1/3 create
config>service>epipe>.sap? ingress
config>service>epipe>.sap>ingress# qos 555
config>service>epipe>.sap>ingress# filter ip 1
config>service>epipe>.sap>ingress# exit
config>service>epipe>.sap# no shutdown
config>service>epipe>.sap# exit

A:ALA-1>config>service# info
--
... epipe 500 customer 5 create
description "Local epipe service"
sap 1/1/2 create
 ingress
 qos 20
 filter ip 1
 exit
 exit
 sap 1/1/3 create
 ingress
 qos 555
 filter ip 1
 exit
 exit
 no shutdown
 exit
--
A:ALA-1>config>service#
```

Creating an Epipe Service for 7210 SAS-M with range SAPs

The following displays an example of connection-profile used to configure a range of SAPs and an Epipe configuration using the connection profile:

```
*A:7210SAS>config>connprof# info
```
----------------------------------------------
ethernet
ranges 0 2804-2805 2810-2811 2813 2832-2839
exit
----------------------------------------------
*A:7210SAS>config>service>epipe# info
----------------------------------------------
description "Default epipe description for service id 292"
sap 1/1/4:292.* create
description "Default sap description for service id 292"
exit
exit
sap 1/1/9:cp-292 create
description "Default sap description for service id 292"
exit
exit
no shutdown
----------------------------------------------
Distributed Epipe Service

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

To configure a distributed Epipe service, you must configure service entities on the originating and far-end nodes. You should use the same service ID on both ends (for example, Epipe 5500 on ALA-1 and Epipe 5500 on ALA-2). The **spoke-sdp sdp-id:vc-id** must match on both sides. A distributed Epipe consists of two SAPs on different nodes.

By default QoS policy ID 1 is applied to ingress service SAPs. On egress, QoS policies are associated with a port. Existing filter policies can be associated with service SAPs on ingress and egress.

Meters (defined in sap-ingress policies) can be applied on ingress. It is associated with SAPs. Scheduler Policies can be applied on egress. It is associated with a port.

Ingress and egress SAP parameters can be applied to local and distributed Epipe service SAPs.

For SDP configuration information, see Configuring an SDP on page 70. For SDP binding information, see Configuring SDP Bindings on page 189.

This example configures a distributed service between ALA-1 and ALA-2.

```
A:ALA-1>epipe 5500 customer 5 create
config>service>epipe$ description "Distributed epipe service to east coast"
config>service>epipe# sap 221/1/3:21 create
config>service>epipe>.sap# ingress
config>service>epipe>.sap>ingress# qos 555
config>service>epipe>.sap>ingress# filter ip 1
config>service>epipe>.sap>ingress# exit
config>service>epipe>.sap# no shutdown
config>service>epipe>.sap# exit
config>service>epipe#

A:ALA-2>config>service# epipe 5500 customer 5 create
config>service>epipe$ description "Distributed epipe service to west coast"
config>service>epipe# sap 441/1/4:550 create
config>service>epipe>.sap# ingress
config>service>epipe>.sap>ingress# filter ip 1020
config>service>epipe>.sap>ingress# exit
config>service>epipe>.sap# egress
config>service>epipe>.sap>egress# filter ip 6
config>service>epipe>.sap>egress# exit
config>service>epipe>.sap# no shutdown
config>service>epipe#
```

The following example displays the SAP configurations for ALA-1 and ALA-2:

```
A:ALA-1>config>service# info
--
...
epipe 5500 customer 5 vpn 5500 create
description "Distributed epipe service to east coast"
sap 221/1/3:21 create
 ingress
 qos 555
 filter ip 1
```
exit
exit
...
----------------------------------------------
A:ALA-1>config>service#

A:ALA-2>config>service# info
----------------------------------------------
...
epipe 5500 customer 5 vpn 5500 create
description "Distributed epipe service to west coast"
sap 441/1/4:550 create
  ingress
  qos 654
  filter ip 1020
exit

exit
exit
...
----------------------------------------------
A:ALA-2>config>service#
Configuring Ingress SAP Parameters

By default, QoS policy ID 1 is applied to ingress service SAPs. Existing filter policies or other existing QoS policies can be associated with service SAPs on ingress and egress ports.

Ingress and egress SAP parameters can be applied to local and distributed Epipe service SAPs.

This example displays SAP ingress and egress parameters.

```
ALA-1>config>service# epipe 5500
config>service>epipe# sap 1/1/3:21
config>service>epipe>sap# ingress
config>service>epipe>sap>ingress# qos 555
config>service>epipe>sap>ingress# filter ip 1
config>service>epipe>sap>ingress# exit
config>service>epipe>sap#
```

The following example displays the Epipe SAP ingress configuration:

```
A:ALA-1>config>service#
--
... epipe 5500 customer 5 vpn 5500 create
description "Distributed epipe service to east coast"
sap 1/1/3:21 create
 ingress
 qos 555
 filter ip 1
 exit
 exit
no shutdown
exit
--
A:ALA-1>config>service#
```
Configuring Default QinQ SAPs for Transit Traffic in a Ring Scenario

**Note:** Default QinQ SAPs are supported only on 7210 SAS-M devices configured in access-uplink mode.

![Figure 31: Default QinQ SAP for Transit Traffic in a Ring Scenario](image)

In the **Figure 31**, 7210-1 is used to deliver some services to customers connected to the device and additionally it needs to pass through transit from other nodes on the ring (example – traffic from 7210-2 to 7210-3 OR from 7210-2 to 7750 –SR onto the core network).

Without Default QinQ SAPs, user would need to configure a service on 7210-1, with access-uplink SAPs for each service originating on some other node in the ring. With support for Default QinQ SAPs, all traffic which does not need to be delivered to any customer service configured on 7210-1 can be switched using the EPIPE service. The example shown below provides the sample configuration commands in this scenario:

```
ALA-1>config>service# epipe 8 customer 1 svc-sap-type null-star create
sap 1/1/5:*.* create
 statistics
 ingress
 received-count
 exit
 exit
exit
sap 1/1/6:*.* create
 statistics
 ingress
 received-count
 exit
exit
```
exit
no shutdown
exit
Configuring SDP Bindings

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

Figure 32 displays an example of a distributed Epipe service configuration between two routers, identifying the service and customer IDs, and the uni-directional SDPs required to communicate to the far-end routers.

A spoke SDP is treated like the equivalent of a traditional bridge “port” where flooded traffic received on the spoke SDP is replicated on all other “ports” (other spoke and mesh SDPs or SAPs) and not transmitted on the port it was received.

![Figure 32: SDPs — Uni-Directional Tunnels](image)

Use the following CLI syntax to create a spoke SDP binding with an Epipe service:

**CLI Syntax:**
```
config>service# epipe service-id [customer customer-id]
spoke-sdp sdp-id:vc-id [vc-type {ether | vlan}]
 vlan-vc-tag 0..4094
 egress
 filter {ip ip-filter-id}
 vc-label egress-vc-label
 ingress
 filter {ip ip-filter-id}
 vc-label ingress-vc-label
no shutdown
```
The following example displays the command usage to bind an Epipe service between ALA-1 and ALA-2. This example assumes the SAPs have already been configured (see Distributed Epipe Service on page 184).

A:ALA-1>config>service# epipe 5500

```
config>service>epipe# spoke-sdp 2:123
config>service>epipe>spoke-sdp# egress
config>service>epipe>spoke-sdp>egress# vc-label 5500
config>service>epipe>spoke-sdp>egress# exit
config>service>epipe>spoke-sdp# ingress
config>service>epipe>spoke-sdp>ingress# vc-label 6600
config>service>epipe>spoke-sdp>ingress# exit
config>service>epipe>spoke-sdp# no shutdown
```

ALA-2>config>service# epipe 5500

```
config>service>epipe# spoke-sdp 2:456
config>service>epipe>spoke-sdp# egress
config>service>epipe>spoke-sdp>egress# vc-label 6600
config>service>epipe>spoke-sdp>egress# exit
config>service>epipe>spoke-sdp# ingress
config>service>epipe>spoke-sdp>ingress# vc-label 5500
config>service>epipe>spoke-sdp>ingress# exit
config>service>epipe>spoke-sdp# no shutdown
```

This example displays the SDP binding for the Epipe service between ALA-1 and ALA-2:

```
A:ALA-1>config>service# info
--
... epipe 5500 customer 5 vpn 5500 create
description "Distributed epipe service to east coast"
sap 1/1/3:21 create
 ingress
 qos 555
 filter ip 1
exit
exit
spoke-sdp 2:123 create
 ingress
 vc-label 6600
exit
egress
 vc-label 5500
exit
exit
no shutdown
exit
... --
```

```
A:ALA-2>config>service# info
--
... exit
```

```
A:ALA-1>config>service#
```

```
A:ALA-2>config>service# info
--
... exit
epipe 5500 customer 5 vpn 5500 create
description "Distributed epipe service to west coast"
```

```
A:ALA-2>config>service#
```
sap 441/1/4:550 create
-ingress
  qos 654
  filter ip 1020
  exit
exit
spoke-sdp 2:456 create
-ingress
  vc-label 5500
  exit
egress
  vc-label 6600
  exit
exit
no shutdown
exit
...
----------------------------------------------
A:ALA-2>config>service#
Using Spoke SDP Control Words

Note: SDPs are not supported by 7210 SAS-M devices configured in Access Uplink mode.

The control word command provides the option to add a control word as part of the packet encapsulation for PW types for which the control word is optional. These are Ethernet PW (epipe), ATM N:1 cell mode PWs (Apipe vc-types atm-vcc and atm-vpc) and VT PW (Apipe vc-type atm-cell). The control word might be needed because when ECMP is enabled on the network, packets of a given PW may be spread over multiple ECMP paths if the hashing router mistakes the PW packet payload for an IPv4 or IPv6 packet. This occurs when the first nibble following the service label corresponds to a value of 4 or 6.

The control word negotiation procedures described in Section 6.2 of RFC 4447 are not supported and therefore the service will only come up if the same C bit value is signaled in both directions. If a spoke-sdp is configured to use the control word but the node receives a label mapping message with a C-bit clear, the node releases the label with an “Illegal C-bit” status code per Section 6.1 of RFC 4447. As soon as the user enables control of the remote peer, the remote peer withdraws its original label and sends a label mapping with the C-bit set to 1 and the VLL service is up in both nodes.

When the control word is enabled, VCCV packets also include the VCCV control word. In that case, the VCCV CC type 1 (OAM CW) is signaled in the VCCV parameter in the FEC. If the control word is disabled on the spoke-sdp, then the Router Alert label is used. In that case, VCCV CC type 2 is signaled. Note that for a multi-segment PW (MS-PW), the CC type 1 is the only supported and thus the control word must be enabled on the spoke-sdp to be able to use VCCV-ping and VCCV-trace.

The following displays a spoke SDP control word configuration example:

```
-Dut-B>config>service>epipe# info
--
description "Default epipe description for service id 2100"
sap 1/2/7:4 create
description "Default sap description for service id 2100"
exit
spoke-sdp 1:2001 create
control-word
exit
no shutdown

*A:ALA-Dut-B>config>service>epipe#
To disable the control word on spoke-sdp 1:2001:
*A:ALA-Dut-B>config>service>epipe# info
--
description "Default epipe description for service id 2100"
sap 1/2/7:4 create
description "Default sap description for service id 2100"
exit
spoke-sdp 1:2001 create
exit
no shutdown

*A:ALA-Dut-B>config>service>epipe#
```
Configuring VLL Resilience

Figure 33 displays an example to create VLL resilience. Note that the zero revert-time value means that the VLL path will be switched back to the primary immediately after it comes back up.

Figure 33: VLL Resilience

PE1:

The following displays an example for the configuration on PE1.

*A:ALA-48>config>service>epipe# info
----------------------------------------------
    endpoint "x" create
    exit
    endpoint "y" create
    exit
    spoke-sdp 1:100 endpoint "y" create
        precedence primary
    exit
    spoke-sdp 2:200 endpoint "y" create
        precedence 1
    exit
    no shutdown
----------------------------------------------
*A:ALA-48>config>service>epipe#
Configuring VLL Resilience for a Switched Pseudowire Path

Note that the 7210 SAS M only supports T-PE functionality.

Figure 34: VLL Resilience with Pseudowire Switching

T-PE1

The following displays an example for the configuration on TPE1.

*A:ALA-48>config>service>epipe# info
------------------------------------------------------------
  endpoint "x" create
  exit
  endpoint "y" create
  exit
  sap 1/1/1:100 endpoint "x" create
  exit
  spoke-sdp 1:100 endpoint "y" create
  precedence primary
  exit
  spoke-sdp 2:200 endpoint "y" create
  precedence 1
  exit
  spoke-sdp 3:300 endpoint "y" create
  precedence 1
  exit
  no shutdown
------------------------------------------------------------
*A:ALA-48>config>service>epipe#
**T-PE2**

The following displays an example for the configuration on TPE2.

```
*A:ALA-49>config>service>epipe# info

 endpoint "x" create
 exit
 endpoint "y" create
 revert-time 100
 exit
 spoke-sdp 4:400 endpoint "y" create
 precedence primary
 exit
 spoke-sdp 5:500 endpoint "y" create
 precedence 1
 exit
 spoke-sdp 6:600 endpoint "y" create
 precedence 1
 exit
 no shutdown

*A:ALA-49>config>service>epipe#
```

**S-PE1**

The following displays an example for the configuration on S-PE1.

```
*A:ALA-50>config>service>epipe# info

 ...
 spoke-sdp 1:100 create
 exit
 spoke-sdp 4:400 create
 exit
 no shutdown

*A:ALA-49>config>service>epipe#
```
Service Management Tasks

This section discusses the following Cpipe service management tasks:

- Modifying a Cpipe Service on page 197
- Deleting a Cpipe Service on page 198

This section discusses the following Epipe service management tasks:

- Modifying Epipe Service Parameters on page 199
- Disabling an Epipe Service on page 199
- Re-Enabling an Epipe Service on page 200
- Deleting an Epipe Service on page 200
Modifying a Cpipe Service

The following example displays the Cpipe service configuration.

```
*A:ces-A>config>service>cpipe# info
--
cpipe 1 customer 1 vc-type satop-t1 create
 sap 1/2/1.1 create
 ingress
 qos 12
 exit
 exit
 spoke-sdp 12:1 create
 exit
 no shutdown
exit
--
*A:ces-A>config>service>cpipe
```
Deleting a Cpipe Service

A Cpipe service cannot be deleted until SAPs are shut down and deleted. If a spoke-SDP is defined, it must be shut down and removed from the configuration as well.

Use the following CLI syntax to delete a Cpipe service:

**CLI Syntax:**
```
config>service#
 [no] cpipe service-id [customer customer-id]
 [no] spoke-sdp sdp-id
 [no] shutdown
 shutdown
```
Modifying Epipe Service Parameters

The following displays an example of adding an accounting policy to an existing SAP:

Example: config>service# epipe 2
    config>service>epipe# sap 1/1/3:21
    config>service>epipe>sap# accounting-policy 14
    config>service>epipe>sap# exit

The following output displays the SAP configuration:

ALA-1>config>service# info
----------------------------------------------
  epipe 2 customer 6 vpn 2 create
    description "Distributed Epipe service to east coast"
    sap 1/1/3:21 create
    accounting-policy 14
    exit
    no shutdown
    exit
----------------------------------------------
ALA-1>config>service#

Disabling an Epipe Service

You can shut down an Epipe service without deleting the service parameters.

CLI Syntax: config>service> epipe service-id shutdown

Example: config>service# epipe 2
    config>service>epipe# shutdown
    config>service>epipe# exit
Re-Enabling an Epipe Service

To re-enable an Epipe service that was shut down.

CLI Syntax: config>service# epipe service-id
            no shutdown

Example: config>service# epipe 2
         config>service>epipe# no shutdown
         config>service>epipe# exit

Deleting an Epipe Service

Perform the following steps prior to deleting an Epipe service:

1. Shut down the SAP.
2. Delete the SAP.
3. Shut down the service.

Use the following CLI syntax to delete an Epipe service:

CLI Syntax: config>service
            [no] epipe service-id
            shutdown
            [no] sap sap-id
            shutdown

Example: config>service# epipe 2
         config>service>epipe# sap 1/1/3:21
         config>service>epipe>.sap# shutdown
         config>service>epipe>.sap# exit
         config>service>epipe> no sap 1/1/3:21
         config>service>epipe# epipe 2
         config>service>epipe# shutdown
         config>service>epipe# exit
         config>service# no epipe 2
VLL Services Command Reference

Command Hierarchies

- Cpipe Service Configuration Commands on page 201
- Epipe Service Configuration Commands on page 203

Cpipe Service Configuration Commands

Note: Cpipe service configuration commands are not supported on 7210 SAS M devices configured in access uplink mode.

```
config
 — service
 — cpipe service-id [customer customer-id] [vpn vpn-id] [vc-type {satop-e1 | satop-t1 | cesopsn | cesopsn-cas}] [create]
 — no cpipe service-id
 — description description-string
 — no description [description-string]
 — endpoint endpoint-name [create]
 — no endpoint endpoint-name
 — active-hold-delay active-endpoint-delay
 — no active-hold-delay
 — description description-string
 — no description [description-string]
 — revert-time revert-time infinite
 — no revert-time
 — sap sap-id [no-endpoint] [create]
 — sap sap-id endpoint endpoint-name [create]
 — no sap sap-id
 — [no] service-name
 — accounting-policy acct-policy-id
 — no accounting-policy [acct-policy-id]
 — cem
 — packet jitter-buffer milliseconds [payload-size bytes]
 — packet payload-size bytes
 — no packet
 — [no] report-alarm [stray] [malformed] [pktloss] [overrun]
 [underrun] [rpkttloss] [rfault] [rrdi]
 — [no] rtp-header
 — [no] collect-stats
 — description description-string
 — no description [description-string]
 — ingress
 — [no] qos [policy-id]
 — service-mtu octets
 — no service-mtu
```
— [no] service-name
— [no] shutdown
— spoke-sdp sd-id[:vc-id] [no-endpoint] [create]
— spoke-sdp sd-id:vc-id [create] endpoint endpoint-name [icb]
— no spoke-sdp sd-id[:vc-id]
  — accounting-policy acct-policy-id
  — no accounting-policy
  — description description-string
  — no description
  — [no] collect-stats
  — egress
    — vc-label egress-vc-label
    — no vc-label [egress-vc-label]
  — ingress
    — vc-label ingress-vc-label
    — no vc-label [ingress-vc-label]
  — precedence [precedence-value] primary
  — no precedence
  — [no] shutdown
Epipe Service Configuration Commands

- Epipe Global Commands on page 203
- Epipe SAP Configuration Commands on page 205
- Connection Profile Commands on page 209
- Show Commands on page 210
- Clear Commands on page 210
- [no] shutdown

Epipe Spoke SDP Configuration Commands on page 207

Note: Spoke SDP commands are not supported on 7210 SAS-M devices configured in Access Uplink mode.

Epipe Global Commands

```
config
 — service
 — [no] epipe service-id [customer customer-id] [create] [vpn vpn-id] [svc-sap-type { any | qinq-inner-tag-preserve}] (for 7210 SAS-M in Network mode)
 — epipe service-id [customer customer-id] [create][vpn vpn-id] [svc-sap-type { null-star | dot1q | dot1q-preserve|any| qinq-inner-tag-preserve}](for 7210 SAS-M in Access uplink mode)
 — no epipe service-id
 — description description-string
 — no description
 — [no] endpoint endpoint-name [create]
 — active-hold-delay active-endpoint-delay
 — no active-hold-delay
 — revert-time [revert-time | infinite]
 — no revert-time
 — standby-signaling-master
 — [no] standby-signaling-master
 — sap sap-id [create]
 — no sap sap-id
 — service-mtu octets (for 7210 SAS-M in Network mode)
 — no service-mtu
 — [no] service-mtu-check (for 7210 SAS-M in Network mode)
```
— [no] shutdown
— spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] [create] [no-endpoint]
— spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] [create] endpoint
— no spoke-sdp sdp-id[:vc-id]
Epipe SAP Configuration Commands

```plaintext
config
 — service
 — epipe service-id [customer customer-id] [create] [vpn vpn-id] [svc-sap-type \{ any | qinq- inner-tag-preserve \}] (for 7210 SAS-M in Network mode)
 — epipe service-id [customer customer-id] [create] [vpn vpn-id] [customer customer-id] [create] [vpn vpn-id] [svc-sap-type \{ null-star | dot1q dot1q-preserve \}] [customer-vid vlan-id] (for 7210 SAS-M in Access uplink mode)
 — sap sap-id [no-endpoint] [create] <with-aggregate-meter>
 — sap sap-id [endpoint endpoint-name] [create]
 — no sap sap-id
 — accounting-policy acct-policy-id
 — no accounting-policy acct-policy-id
 — [no] collect-stats
 — description description-string
 — no description
 — eth-cfm
 — [no] mep mep-id domain md-index association ma-index
 [direction {up | down}]
 — [no] ais-enable
 — [no] client-meg-level [[level [level ...]]]
 — [no] interval {1 | 60}
 — [no] priority priority-value
 — [no] ccm-enable
 — [no] ccm-ltm-priority priority
 — [no] description
 — [no] eth-test-enable
 — [no] bit-error-threshold bit-errors
 — [no] test-pattern {all-zeros | all-ones} [crc-enable]
 — low-priority-defect [allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon]
 — [no] mac-address mac-address
 — [no] one-way-delay-threshold seconds
 — [no] shutdown
 — egress
 — filter [ip ip-filter-id]
 — filter [ipv6 ipv6-filter-id]
 — filter [mac mac-filter-id] (app)
 — no filter [ip ip-filter-id] [ipv6 ipv6-filter-id] [mac mac-filter-id]
 — ingress
 — aggregate-meter-rate <rate-in-kbps> [burst <burst-in-kbits>]
 — no aggregate-meter-rate
 — filter [ip ip-filter-id]
 — filter [ipv6 ipv6-filter-id]
 — filter [mac mac-filter-id]
 — no filter [ip ip-filter-id] [ipv6 ipv6-filter-id] [mac mac-filter-id]
 — qos policy-id
 — no qos
```

Virtual Leased Line Services
— tod-suite tod-suite-name
— no tod-suite
— ethernet
    — [no] llf
— [no] shutdown
— statistics
    — ingress
        — counter-mode {in-out-profile-count|forward-drop-count}
        — [no] shutdown
Epipe Spoke SDP Configuration Commands

Note: Spoke SDP commands are not supported on 7210 SAS-M devices configured in Access Uplink mode.

```
config
 — service
 — epipe service-id [customer customer-id] [create] [vpn vpn-id](for 7210 SAS-M in Network mode)
 — epipe service-id [customer customer-id] [create] [vpn vpn-id][customer customer-id] [create] [vpn vpn-id] [svc-sap-type {null-star|dot1q|dot1q-preserve|any}][customer-vid vlan-id](for 7210 SAS-M in Access uplink mode)
 — spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}][create][no-endpoint]
 — spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}][create] endpoint
 — no spoke-sdp sdp-id[:vc-id]
 — accounting-policy acct-policy-id
 — no accounting-policy
 — [no] collect-stats
 — [no] control-word
 — [no] description
 — [no] egress
 — [no] vc-label egress-vc-label
 — mep
 — mep mep-id domain md-index association ma-index [direction {up | down}]
 — no mep mep-id domain md-index association ma-index
 — ais-enable
 — [no] ais-enable
 — client-meg-level [level [level ...]]
 — [no] client-meg-level
 — [no] ccm-enable
 — ccm-ltm-priority priority
 — [no] ccm-ltm-priority
 — [no] description
 — [no] eth-test-enable
 — bit-error-threshold bit-errors
 — no test-pattern
 — test-pattern {all-zeros|all-ones} [crc-enable]
 — interval {1|60}
 — no interval
 — [no] priority
 — priority priority-value
 — [no] low-priority-defect {use-if-tlv | suspendccm}
 — low-priority-defect {allDet | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
 — mac-address mac-address
 — no mac-address
 — [no] shutdown
 — [no] force-vlan-vc-forwarding
 — [no] ingress
 — [no] vc-label egress-vc-label
 — precedence [precedence-value | primary]
 — [no] precedence
 — [no] shutdown
```
— `vlan-vc-tag 0..4094`
— `no vlan-vc-tag [0..4094]`
Connection Profile Commands

config
  — connection-profile conn-prof-id [create]
  — no connection-profile conn-prof-id
    — description description-string
    — no description
    — ethernet
      — no ranges
      — ranges vlan ranges [vlan ranges...(upto 32 max)]
Show Commands

show
  — service
    — egress-label start-label [end-label]
    — id service-id
      — all
      — base
      — endpoint [endpoint-name]
      — epipe
      — labels
      — stp [sap-id] [detail]
    — sap-using [sap sap-id]
    — sap-using [ingress | egress] filter filter-id
    — sap-using [ingress] qos-policy qos-policy-id
    — service-using [epipe] [cpipe] [vpls] [mirror] [cpipe] [h-vpls] [i-vpls] [m-vpls] [sdp sdp-id]
      [customer customer-id]
  — connection-profile [conn-prof-id] [associations]

Clear Commands

clear
  — service
    — id service-id
    — statistics
      — id service-id
      — counters
      — sap sap-id {all |cem - only for 7210 SAS-M Network mode| counters | stp}
VLL Service Configuration Commands

- Generic Commands on page 212
- VLL Global Commands on page 215
- VLL SAP Commands on page 223
- VLL SDP Commands on page 234
- CES SAP Commands on page 238
Generic Commands

shutdown

Syntax:

no shutdown
config>service>cpipe
config>service>cpipe>sap
config>service>cpipe>spoke-sdp
config>service>epipe
config>service>epipe>sap
config>service>epipe>spoke-sdp
config>service>epipe>sap>eth-cfm>mep

Description:

This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Services are created in the administratively down (shutdown) state. When a no shutdown command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities is described below in Special Cases.

The no form of this command places the entity into an administratively enabled state.

description

Syntax:

description description-string
no description

Context:

config>service>cpipe
config>service>cpipe>endpoint
config>service>cpipe>sap
config>service>epipe
config>service>epipe>sap
config>service>epipe>spoke-sdp
config>connection-profile

Description:

This command creates a text description stored in the configuration file for a configuration context. The description command associates a text string with a configuration context to help identify the content in the configuration file.

The no form of this command removes the string from the configuration.

Default:

No description associated with the configuration context.

Parameters:

string — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
eth-cfm

**Syntax**
```
eth-cfm
```

**Context**
config>service>vpls
config>service>vpls>mesh-sdp
config>service>vpls>spoke-sdp
config>service>vll>sap

**Description**
This command enables the context to configure ETH-CFM parameters.

mep

**Syntax**
```
mep mep-id domain md-index association ma-index [direction {up | down}]
no mep mep-id domain md-index association ma-index
```

**Context**
config>service>epipe>sap>eth-cfm

**Description**
This command provisions the maintenance endpoint (MEP).

The no form of the command reverts to the default values.

Note: For more information on ETH-CFM support for different services, see Table 6, “ETH-CFM Support Matrix for 7210 SAS-D,” on page 64.

**Parameters**
- **mep-id** — Specifies the maintenance association end point identifier.
  
  **Values**
  - 1 — 8191

- **md-index** — Specifies the maintenance domain (MD) index value.
  
  **Values**
  - 1 — 4294967295

- **ma-index** — Specifies the MA index value.
  
  **Values**
  - 1 — 4294967295

- **direction up| down** — Indicates the direction in which the maintenance association (MEP) faces on the bridge port. Direction is not supported when a MEP is created directly under the vpls>eth-cfm construct (vMEP).
  
  down — Sends ETH-CFM messages away from the MAC relay entity.
  up — Sends ETH-CFM messages towards the MAC relay entity.
VLL Global Commands

cpipe

**Syntax**

cpipe service-id [customer customer-id] [vpn vpn-id] [vc-type {satop-e1 | satop-t1 | cesopsn | cesopsn-cas}] [create]

no cpipe service-id

**Context**

config>service

**Description**

This command configures a Circuit Emulation Services instance. When a service is created, the **customer** keyword and **customer-id** must be specified and associates the service with a customer. The **customer-id** must already exist having been created using the **customer** command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the **customer customer-id** is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect **customer-id** specified will result in an error.

By default, no services exist until they are explicitly created with this command.

The **no** form of this command deletes the service instance with the specified **service-id**. The service cannot be deleted until the service has been shutdown.

**Parameters**

- **service-id** — The unique service identification number or string identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The **service-id** must be the same number used for every 7210 SAS on which this service is defined.

  **Values**
  
  service-id: 1 — 2147483647

- **customer customer-id** — Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

  **Values**
  
  1 — 2147483647

- **vpn vpn-id** — Specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN ID. If this parameter is not specified, the VPN ID uses the same service ID number.

  **Values**
  
  1 — 2147483647

  **Default**
  
  null (0)

- **vc-type** — The vc-type defines the type of unstructured or structured circuit emulation service to be configured.

  **Values**
  
  satop-e1: unstructured E1 circuit emulation service
  satop-t1: unstructured DS1 circuit emulation service
  cesopsn: basic structured n*64 kbps circuit emulation service
  cesopsn-cas: structured n*64 kbps circuit emulation service with signaling

  **Default**
  
  cesopsn
create — Keyword used to create the service. The create keyword requirement can be enabled/disabled in the environment>create context.

epipe

Syntax
epipe service-id [customer customer-id] [create][vpn vpn-id] (for 7210 SAS-M in Network mode)
epipe service-id [customer customer-id] [create] [vpn vpn-id][customer customer-id] [create] [vpn vpn-id] [svc-sap-type {[null-star|dot1q-preserve|any|dot1q-range|qinq-inner-tag-preserve]}] [customer-vid vlan-id] (for 7210 SAS-M in Access uplink mode)

no epipe service-id

Context
config>service

Description
This command configures an Epipe service instance. This command is used to configure a point-to-point epipe service. An Epipe connects two endpoints defined as Service Access Points (SAPs). Both SAPs may be defined in one 7210 SAS.

No MAC learning or filtering is provided on an Epipe.

When a service is created, the customer keyword and customer-id must be specified and associates the service with a customer. The customer-id must already exist having been created using the customer command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the customer customer-id is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect customer-id specified will result in an error.

By default, no epipe services exist until they are explicitly created with this command.

The no form of this command deletes the epipe service instance with the specified service-id. The service cannot be deleted until the service has been shutdown.

Parameters

service-id — The unique service identification number or string identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The service-id must be the same number used for every 7210 SAS on which this service is defined.

Values

| service-id: | 1 — 2147483648 |
| svc-name: | 64 characters maximum |

customer customer-id — Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

Values

| 1 — 2147483647 |

vpn vpn-id — Specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN ID. If this parameter is not specified, the VPN ID uses the same service ID number.
Values | 1 — 2147483647
Default | null (0)

**svc-sap-type** — Specifies the type of service and allowed SAPs in the service.

**null-star** — Specifies that the allowed SAP in the service that can be Null SAP, dot1q Default SAP, Q.* SAP or Default QinQ SAP (also known as *. SAP). Supported only in 7210 SAS-M access-uplink mode.

**dot1q** — Specifies that the allowed SAP in the service are Dot1q SAPs and dot1q explicit null SAPs. Supported only in 7210 SAS-M access-uplink mode.

**dot1q-preserve** — Specifies that the allowed SAP in the service are Dot1q. The Dot1q ID is not stripped after packets matches the SAP. Supported only in 7210 SAS-M access-uplink mode.

**dot1q-range** — Specifies that the access SAP in the service can use VLAN ranges as the SAP tags. The VLAN ranges are configured using the configure> connection-profile CLI command. On ingress of the access dot1q SAP using VLAN ranges, the outermost tag is not removed before forwarding. Supported in both 7210 SAS-M network and access-uplink mode.

**any** — When svc-sap-type is set to any, for a NULL SAP, the system processes and forwards only packets with no VLAN tag (that is, untagged). All other packets with one or more VLAN tags (even those with priority tag only) are not processed and dropped. Users can use the service with svc-sap-type set to null-star, to process and forward packets with one or more tags (including priority tag) on a null SAP.

**qinq-inner-tag-preserve** — When svc-sap-type is set to this value, an Epipe service processes and forwards packets received with 3 tags on a QinQ SAP. Please read the Epipe chapter above to learn more about the support available and restrictions that apply. Supported only in 7210 SAS-M network mode.

**Default** | null-star

**customer-vid vlan-id** — Defines the dot1q VLAN ID to be specified while creating the local Dot1q SAP for svc-sap-type dot1q-preserve.

Values | 1 — 4094

**create** — Keyword used to create the service instance. The create keyword requirement can be enabled/disabled in the environment>create context.

### endpoint

**Syntax**

```
[no] endpoint endpoint-name
```

**Context**

- config>service>cpipe
- config>service>epipe

**Description**

This command configures a service endpoint.

**Parameters**

`endpoint-name` — Specifies an endpoint name.
active-hold-delay

Syntax  

active-hold-delay [active-hold-delay]
no active-hold-delay

Context  
config>service>epipe>endpoint

Description  
This command specifies that the node will delay sending the change in the T-LDP status bits for the VLL endpoint when the MC-LAG transitions the LAG subgroup which hosts the SAP for this VLL endpoint from active to standby or when any object in the endpoint. For example, SAP, ICB, or regular spoke SDP, transitions from up to down operational state.

By default, when the MC-LAG transitioned the LAG subgroup which hosts the SAP for this VLL endpoint from active to standby, the node sends immediately new T-LDP status bits indicating the new value of "standby" over the spoke SDPs which are on the mate-endpoint of the VLL. The same applies when any object in the endpoint changes an operational state from up to down.

There is no delay applied to the VLL endpoint status bit advertisement when the MC-LAG transitions the LAG subgroup which hosts the SAP from "standby" to "active" or when any object in the endpoint transitions to an operationally up state.

Default  
0 — A value of zero means that when the MC-LAG transitioned the LAG subgroup which hosts the SAP for this VLL endpoint from active to standby, the node sends immediately new T-LDP status bits indicating the new value of standby over the spoke SDPs which are on the mate-endpoint of the VLL. The same applies when any object in the endpoint changes an operational state from up to down.

Parameters  

active-hold-delay — Specifies the active hold delay in 100s of milliseconds.

Values  

0 — 60

revert-time

Syntax  

revert-time [revert-time | infinite]
no revert-time

Context  
config>service>epipe>endpoint

Description  
This command configures the time to wait before reverting back to the primary spoke SDP defined on this service endpoint, after having failed over to a backup spoke SDP.

Parameters  

revert-time — Specify the time, in seconds, to wait before reverting to the primary SDP.

Values  

0 — 600

infinite — Causes the endpoint to be non-revertive.

standby-signaling-master

Syntax  

[no] standby-signaling-master

Context  
config>service>vll>endpoint
**Virtual Leased Line Services**

**Description**
When this command is enabled, the pseudowire standby bit (value 0x00000020) will be sent to TLDP peer for each spoke-sdp of the endpoint that is selected as a standby.

This command is mutually exclusive with a VLL mate SAP created on a mc-lag/mc-aps or ICB. It is also mutually exclusive with vc-switching.

**Default**
no standby-signaling-master

**service-mtu**

Note: This command is supported on 7210 SAS-M in Network mode.

**Syntax**
- `service-mtu octets`
- `no service-mtu`

**Context**
`config>service>epipe`

**Description**
This command configures the service payload (Maximum Transmission Unit – MTU), in bytes, for a service. The specified MTU value overrides the service-type default MTU. The service-mtu defines the payload capabilities of the service. It is used by the system to validate the operational states of SAP and SDP bindings in a service.

The service MTU and a SAP service delineation encapsulation overhead (that is, 4 bytes for a dot1q tag) is used to derive the required MTU of the physical port or channel, on which the SAP is created.

If the required payload is larger than the port or channel MTU, the SAP transitions to an inoperative state.

If the required MTU is equal to or less than the port or channel MTU, the SAP transitions to an operative state.

The service MTU is compared to the path MTU associated with an SDP before binding an SDP to a service. The path MTU can be administratively defined in the context of the SDP. The default or administrative path MTU can be dynamically reduced based on:

- The MTU capabilities discovered by the tunneling mechanism of the SDP.
- The egress interface MTU capabilities based on the next hop in the tunnel path.

If the service MTU is greater than the path MTU, the SDP binding for the service transitions to an inoperative state. If the service MTU is equal to or less than the path MTU, the SDP binding transitions to an operative state.

If a service MTU, path MTU or a channel MTU is dynamically or administratively modified, the operational states of all associated SAP and SDP bindings are automatically re-evaluated.

The `no` form of the command restores the default service-mtu of the indicated service type to default value.

Note: To disable service MTU check, execute the command `no service-mtu-check`. Disabling service MTU check allows the packets to pass to the egress if the packet length is lesser than or equal to the MTU configured on the port.

**Default**
epipe: 1514

The following table displays MTU values for specific VC types.
octets — The size of the MTU in octets, expressed as a decimal integer, between 1 — 9194.

**service-name**

**Syntax**

```
service-name service-name
no service-name
```

**Context**

```
config>service>epipe
config>service>cpipe
```

**Description**

This command configures an optional service name, up to 64 characters in length, which adds a name identifier to a given service to then use that service name in configuration references as well as display and use service names in show commands throughout the system. This helps the service provider/administrator to identify and manage services within the 7750 SR, 7450 ESS and 7710 SR platforms.

All services are required to assign a service ID to initially create a service. However, either the service ID or the service name can be used to identify and reference a given service once it is initially created.

**Parameters**

- `service-name` — Specifies a unique service name to identify the service. Service names may not begin with an integer (0-9).

**service-mtu-check**

Note: This command is supported on 7210 SAS-M in Network mode.

**Syntax**

```
[no] service-mtu-check
```

**Context**

```
config>service>epipe
```

**Description**

The `no` form of this command disables the service MTU check.

Disabling service MTU check allows the packets to pass to the egress if the packet length is lesser than or equal to the MTU configured on the port. The length of the packet sent from a SAP is limited only by the access port MTU. In case of a pseudowire the length of a packet is limited by the network port MTU (including the MPLS encapsulation).
Note: If TLDP is used for signaling, the configured value for service-mtu is used during a pseudowire setup.

**Default** enabled
VLL SAP Commands

**sap**

**Syntax**
```
sap sap-id [create]
no sap sap-id
```

**Context**
```
config>service>epipe
```

**Description**
This command creates a Service Access Point (SAP) within a service. A SAP is a combination of port and encapsulation parameters which identifies the service access point on the interface and within the 7210 device. Each SAP must be unique.

All SAPs must be explicitly created. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

Enter an existing SAP without the `create` keyword to edit SAP parameters. The SAP is owned by the service in which it was created.

In a single physical port only one SAP can belong to one service. Multiple SAPs can be defined over a physical port but each of these SAPs should belong to different service.

A SAP can only be associated with a single service. A SAP can only be defined on a port that has been configured as an access port.

If a port is shutdown, all SAPs on that port become operationally down. When a service is shutdown, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded.

The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The following are supported:

- Ethernet SAPs support null, dot1q

The `no` form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

**Default**
No SAPs are defined.

**Special Cases**
A default SAP has the following format: port-id:*.*. This type of SAP is supported only on Ethernet MDAs and its creation is allowed only in the scope of Layer 2 services (Epipe and VPLS).

- `sap-id` — Specifies the physical port identifier portion of the SAP. See Common CLI Command Descriptions on page 939 for command syntax.
- `create` — Keyword used to create a SAP instance. The `create` keyword requirement can be enabled/disabled in the `environment>create` context.

**tod-suite**

**Syntax**
```
tod-suite tod-suite-name
no tod-suite
```

7210 SAS M Services Guide   Page 223
**VLL Service Configuration Commands**

**Context**  
`config>service>epipe>sap`

**Description**  
This command applies a time-based policy (filter or QoS policy) to the service SAP. The suite name must already exist in the `config>cron` context.

**Default**  
no tod-suite

**Parameters**  
tod-suite-name — Specifies collection of policies (ACLs, QoS) including time-ranges that define the full or partial behavior of a SAP. The suite can be applied to more than one SAP.

**accounting-policy**

**Syntax**  
`accounting-policy acct-policy-id`  
`no accounting-policy`

**Context**  
`config>service>epipe>sap`

**Description**  
This command creates the accounting policy context that can be applied to a SAP. An accounting policy must be defined before it can be associated with a SAP. If the `policy-id` does not exist, an error message is generated.

A maximum of one accounting policy can be associated with a SAP at one time. Accounting policies are configured in the `config>log` context.

The `no` form of this command removes the accounting policy association from the SAP, and the accounting policy reverts to the default.

**Default**  
Default accounting policy.

**Parameters**  
acct-policy-id — Enter the accounting `policy-id` as configured in the `config>log>accounting-policy` context.

**Values**  
1-99

**description**

**Syntax**  
`description description-string`  
`no description`

**Context**  
`config>service>epipe>sap`  
`config>service>epipe>spoke-sdp`

**Description**  
This command defines an ASCII string associated with egress-multicast-group-name. The `no` form of the command removes an existing description string from egress-multicast-group.

**Default**  
none
Parameters

*description-string* — The description command accepts a description-string parameter. The description-string parameter is an ASCII string of up to 80 characters in length. Only printable 127 bit ASCII characters are allowed. If the string contains spaces, the string must be specified with beginning and ending quotes.

**Values**
An ASCII string up to 80 characters in length.

**collect-stats**

**Syntax**

```plaintext
[no] collect-stats
```

**Context**

```plaintext
config>service>cpipe>sap
config>service>cpipe>spoke-sdp
config>service>epipe>sap
```

**Description**

This command enables accounting and statistical data collection for either the SAP, network port, or IP interface. When applying accounting policies the data, by default, is collected in the appropriate records and written to the designated billing file.

When the `no collect-stats` command is issued the statistics are still accumulated by the cards. However, the CPU will not obtain the results and write them to the billing file. If a subsequent `collect-stats` command is issued then the counters written to the billing file include all the traffic while the `no collect-stats` command was in effect.

**Default**

no collect-stats

**ethernet**

**Syntax**

```plaintext
ethernet
```

**Context**

```plaintext
config>service>epipe>sap
```

**Description**

Use this command to configure Ethernet properties in this SAP.

**llf**

**Syntax**

```plaintext
[no] llf
```

**Context**

```plaintext
config>service>epipe>sap>ethernet
```

**Description**

This command enables Link Loss Forwarding (LLF) on an Ethernet port. It provides an end-to-end OAM fault notification for Ethernet VLL service. LLF on an Ethernet port brings down the port when there is a local fault on the pseudowire or service, or a remote fault on the SAP or pseudowire, signaled with label withdrawal or TLDP status bits. It ceases when the fault disappears.

The Ethernet port must be configured for null encapsulation.

The `no` form of the command disables LLF.
bit-error-threshold

Syntax

bit-error-threshold errors
no bit-error-threshold

Context
config>service>epipe>sap>eth-cfm>mep>eth-test-enable

Description
This command is used to specify the threshold value of bit errors.

one-way-delay-threshold

Syntax

one-way-delay-threshold seconds

Context
config>service>vpls>sap>eth-cfm>mep

Description
This command enables/disables eth-test functionality on MEP.

Parameters
seconds — Specifies the one way delay threshold in seconds.

Values
0-600

Default
3
Connection Profile Commands

connection-profile

**Syntax**
```
connection-profile conn-prof-id [create]
no connection-profile conn-prof-id
```

**Context**
cfg

**Description**
This command creates a list of VLAN values to be assigned to a Dot1q SAP in an Epipe service. A connection profile can only be assigned to a Dot1q SAP which is part of an Epipe Service. The no form of this command deletes the profile from the configuration.

**Default** none

**Parameters**
- `conn-prof-id` — Specifies the profile number.
  - **Values**
    - 1 — 8000

ethernet

**Syntax**
```
ethernet
```

**Context**
cfg>connprof

**Description**
Provides the context to configure the VLAN ranges values.

**Default** none

ranges

**Syntax**
```
no ranges
ranges vlan-ranges [vlan-ranges...(upto 32 max)]
```

**Context**
cfg>connprof>ethernet

**Description**
Specifies the list of VLAN ranges or individual VLAN ID to be used for mapping the given VLANs to the Epipe SAP.

The system validates that the values specified are valid VLAN ID in the range 0-4094 (VLAN ID 4095 is reserved). Ranges are specified in the format ‘a-b ’, the expression (a < b) should be true. Up to about 32 individual VLAN values or VLAN ranges can be specified. A maximum of up to 8 VLAN ranges are allowed per connection profile.

**Default** none
**Parameters**  
*vlan-ranges* — Specifies the list of VLAN ranges or individual VLAN ID to be used for mapping the given VLANs to the Epipe SAP.

**Values**  
A list of space separated values specified as either a-b or individual VLAN IDs. Both the VLAN IDs and the value used for 'a' and 'b' must be in the range of 0-4094. Additionally, value 'a' must be less than value 'b'.

For example:

- `ranges 100-200 5 6 4000-4020`
- `ranges 4 5 6 10 11 12`
- `ranges 250-350 500-600 1000-1023`
## Service Filter and QoS Policy Commands

### egress

<table>
<thead>
<tr>
<th>Syntax</th>
<th>egress</th>
</tr>
</thead>
</table>
| Context  | config>service>cpipe>spoke-sdp  
|          | config>service>epipe>spoke-sdp  
|          | config>service>epipe>sap |

**Description**  
This command enables the context to configure egress SAP parameters.

### force-vlan-vc-forwarding

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] force-vlan-vc-forwarding</th>
</tr>
</thead>
</table>
| Context              | config>service>epipe>spoke-sdp  
|                      | config>service>vpls>spoke-sdp  |

**Description**  
This command forces vc-vlan-type forwarding in the data path for spoke which have either vc-type. This command is not allowed on vlan-vc-type SDPs. The **no** version of this command sets default behavior.

**Default**  
Per default this feature is disabled

### ingress

<table>
<thead>
<tr>
<th>Syntax</th>
<th>ingress</th>
</tr>
</thead>
</table>
| Context | config>service>epipe>sap  
|         | config>service>cpipe>sap  
|         | config>service>cpipe>spoke-sdp  
|         | config>service>epipe>sap>statistics |

**Description**  
This command enables the context to configure ingress SAP Quality of Service (QoS) policies. If no sap-ingress QoS policy is defined, the system default sap-ingress QoS policy is used for ingress processing.

### aggregate-meter-rate

<table>
<thead>
<tr>
<th>Syntax</th>
<th>aggregate-meter-rate rate-in-kbps [burst burst-in-kbits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no aggregate-meter-rate</td>
</tr>
</tbody>
</table>
| Context              | config>service>vpls>sap>ingress  
|                      | config>service>epipe>sap>ingress |

---

7210 SAS M Services Guide  
Page 229
Description
This command allows the user to configure the SAP aggregate policer. The rate of the SAP aggregate policer must be specified by the user. The user can optionally specify the burst size for the SAP aggregate policer. The aggregate policer monitors the traffic on different FCs and determines the destination of the packet. The packet is either forwarded to an identified profile or dropped.

The table below provides information about the final disposition of the packet based on the operating rate of the per FC policer and the per SAP aggregate policer:

<table>
<thead>
<tr>
<th>Per FC meter Operating Rate</th>
<th>Per FC Assigned Color</th>
<th>SAP aggregate meter Operating Rate</th>
<th>SAP aggregate meter color</th>
<th>Final Packet Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within CIR</td>
<td>Green</td>
<td>Within PIR</td>
<td>Green</td>
<td>Green or In-profile</td>
</tr>
<tr>
<td>Within CIR</td>
<td>Green</td>
<td>Above PIR</td>
<td>Red</td>
<td>Green or In-profile</td>
</tr>
<tr>
<td>Above CIR, Within PIR</td>
<td>Yellow</td>
<td>Within PIR</td>
<td>Green</td>
<td>Yellow or Out-of-Profile</td>
</tr>
<tr>
<td>Above CIR, Within PIR</td>
<td>Yellow</td>
<td>Above PIR</td>
<td>Red</td>
<td>Red or Dropped</td>
</tr>
<tr>
<td>Above PIR</td>
<td>Red</td>
<td>Within PIR</td>
<td>Green</td>
<td>Red or Dropped</td>
</tr>
<tr>
<td>Above PIR</td>
<td>Red</td>
<td>Above PIR</td>
<td>Red</td>
<td>Red or Dropped</td>
</tr>
</tbody>
</table>

Table 12: Final Disposition of the packet based on per FC and per SAP policer or meter.

When the SAP aggregate policer is configured, per FC policer can be only configured in “trtcnm2” mode (RFC 4115).

Note: The meter modes “srtcm” and “trtcnm1” are used in the absence of an aggregate meter.

The SAP ingress meter counters increment the packet or octet counts based on the final disposition of the packet.

If ingress Frame-based accounting is used, the SAP aggregate meter rate accounts for the Ethernet frame overhead. The system accounts for 12 bytes of IFG and 8 bytes of start delimiter.

The no form of the command removes the aggregate policer from use.

Default
no aggregate-meter-rate

Parameters

- **rate-in-kbps** — Specifies the rate in kilobits per second.
  - **Values** 01 — 20000000 | max
  - **Default** max

- **burst <burst-in-kilobits>** — Specifies the burst size for the policer in kilobits. The burst size cannot be configured without configuring the rate.
filter

Syntax

filter [ip ip-filter-id]
filter [ipv6 ipv6-filter-id]
filter [mac mac-filter-id]
no filter [ip ip-filter-id]
no filter [ipv6 ipv6-filter-id]
no filter [mac mac-filter-id]

Context

config>service>epipe>sap>egress
config>service>epipe>sap>ingress

Description

This command associates an IP filter policy with an ingress or egress Service Access Point (SAP) or IP interface.

Filter policies control the forwarding and dropping of packets based on IP matching criteria. Only one filter can be applied to a SAP at a time.

The `filter` command is used to associate a filter policy with a specified `filter-id` with an ingress or egress SAP. The `filter-id` must already be defined before the `filter` command is executed. If the filter policy does not exist, the operation will fail and an error message returned.

IP filters apply only to RFC 2427-routed IP packets. Frames that do not contain IP packets will not be subject to the filter and will always be passed, even if the filter's default action is to drop.

The `no` form of this command removes any configured filter ID association with the SAP or IP interface. The filter ID itself is not removed from the system.

Special Cases

Epipe — Both MAC and IP filters are supported on an Epipe service SAP.

Parameters

`ip ip-filter-id` — Specifies IP filter policy. The filter ID must already exist within the created IP filters.

Values 1 — 65535

`ipv6 ipv6-filter-id` — Specifies the IPv6 filter policy. The filter ID must already exist within the created IPv6 filters.

Values 1 — 65535

`mac mac-filter-id` — Specifies the MAC filter policy. The specified filter ID must already exist within the created MAC filters. The filter policy must already exist within the created MAC filters.

Values 1 — 65535
VLL Service Configuration Commands

qos

Syntax qos policy-id
no qos

Context config>service>cpipe>sap>ingress
config>service>epipe>sap>ingress

Description This command associates a Quality of Service (QoS) policy with an ingress Service Access Point (SAP).

QoS ingress policies are important for the enforcement of SLA agreements. The policy ID must be defined prior to associating the policy with a SAP or IP interface. If the policy-id does not exist, an error will be returned.

The qos command is used to associate ingress. The qos command only allows ingress policies to be associated on SAP ingress. Attempts to associate a QoS policy of the wrong type returns an error.

Only one ingress QoS policy can be associated with a SAP or IP interface at one time. Attempts to associate a second QoS policy of a given type will return an error.

By default, if no specific QoS policy is associated with the SAP for ingress, so the default QoS policy is used.

The no form of this command removes the QoS policy association from the SAP, and the QoS policy reverts to the default.

policy-id — The ingress policy ID to associate with SAP on ingress. The policy ID must already exist.

Values 1 — 65535

statistics

Syntax statistics

Context config>service>epipe>sap
config>service>vpls>sap

Description This command enables the context to configure the counters associated with SAP ingress and egress.

ingress

Syntax ingress

Context config>service>epipe>sap>statistics
config>service>vpls>sap>statistics

Description This command enables the context to configure the ingress SAP statistics counter.
counter-mode

**Syntax**

```
counter-mode {in-out-profile-count| forward-drop-count}
```

**Context**

```
config>service>epipe>sap>statistics>ingress
config>service>vpls>sap>statistics>ingress
```

**Description**

This command allows the user to set the counter mode for the counters associated with sap ingress meters (a.k.a. policers). A pair of counters is available with each meter. These counters count different events based on the counter mode value.

**Note:** The counter mode can be changed if an accounting policy is associated with a SAP. If the counter mode is changed the counters associated with the meter are reset and the counts are cleared. If an accounting policy is in use when the counter-mode is changed a new record will be written into the current accounting file.

**Note:** The configuration information is not saved across re-boot.

Execute the following sequence of commands to ensure a new accounting file is generated when the counter-mode is changed:

1. Execute the command `config>service>epipe/vpls>sap> no collect-stats`, to disable writing of accounting records.

2. Change the counter-mode to the desired value, execute the command `config>service>epipe/vpls>sap>counter-mode {in-out-profile-count| forward-drop-count}`.

3. Execute the command `config>service>epipe/vpls>sap> collect-stats`, to enable writing of accounting records.

The **no** form of the command restores the counter mode to the default value.

**Default**

when either in-out-profile-count or forward-drop-count is in use in-out-profile-count

**Parameters**

- **forward-drop-count** — If the counter mode is specified as "forward-drop-count", one counter counts the forwarded packets and octets received on ingress of a SAP and another counts the dropped packets. The forwarded count is the sum of in-profile and out-of-profile packets/octets received on SAP ingress. The dropped count is count of packets/octets dropped by the policer. A packet is determined to be in-profile or out-of-profile based on the meter rate parameters configured. A packet is dropped by the policer if it exceeds the configured PIR rate. The in-profile count and out-of-profile count is not individually available when operating in this mode.

- **in-out-profile-count** — If the counter mode is specified as "in-out-profile-count", one counter counts the total in-profile packets and octets received on ingress of a SAP and another counts the total out-of-profile packets and octets received on ingress of a SAP. A packet is determined to be in-profile or out-of-profile based on the meter rate parameters configured. A packet is dropped by the policer if it exceeds the configured PIR rate. Dropped counts are not maintained in hardware when this mode is used. It is obtained by subtracting the sum of in-profile count and out-of-profile count from the total SAP ingress received count and displayed.
VLL SDP Commands

Note: VLL SDP commands are not supported on 7210 SAS-M devices configured in access uplink mode.

spoke-sdp

Syntax

spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] [no-endpoint] [create]
spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] endpoint endpoint-name
no spoke-sdp sdp-id[:vc-id]

Context

config>service>cpipe
config>service>epipe

Description

This command binds a service to an existing Service Distribution Point (SDP). A spoke SDP is treated like the equivalent of a traditional bridge “port” where flooded traffic received on the spoke SDP is replicated on all other “ports” (other spoke or SAPs) and not transmitted on the port it was received.

The SDP has an operational state which determines the operational state of the SDP within the service. For example, if the SDP is administratively or operationally down, the SDP for the service will be down.

The SDP must already be defined in the config>service>sdp context in order to associate an SDP with an Epipe or VPL service. If the sdp sdp-id is not already configured, an error message is generated. If the sdp-id does exist, a binding between that sdp-id and the service is created.

SDPs must be explicitly associated and bound to a service. If an SDP is not bound to a service, no far-end 7210 SAS M devices can participate in the service.

The no form of this command removes the SDP binding from the service. The SDP configuration is not affected; only the binding of the SDP to a service. Once removed, no packets are forwarded to the far-end router.

Default

No sdp-id is bound to a service.

Special Cases

Epipe — At most, only one sdp-id can be bound to an Epipe service. Since an Epipe is a point-to-point service, it can have, at most, two end points. The two end points can be one SAP and one SDP or two SAPs. Vc-switching VLLs are an exception. If the VLL is a “vc-switching” VLL, then the two endpoints must both be SDPs.

Parameters

sdp-id — The SDP identifier. Allowed values are integers in the range of 1 to 17407 for existing SDPs.

vc-id — The virtual circuit identifier.

Values

1 — 4294967295

vc-type — This command overrides the default VC type signaled for the spoke binding to the far end of the SDP. The VC type is a 15 bit-quantity containing a value which represents the type of VC. The actual signaling of the VC type depends on the signaling parameter defined for the SDP. If signaling is disabled, the vc-type command can still be used to define the dot1q value expected by the far-end provider equipment. A change of the bindings VC type causes the binding to
signal the new VC type to the far end when signaling is enabled. VC types are derived according to IETF draft-martini-l2circuit-trans-mpls.

- The VC type value for Ethernet is 0x0005.
- The VC type value for an Ethernet VLAN is 0x0004.
- The VC type value for a VPLS service is defined as 0x000B.

**Values**

- **ether** — Defines the VC type as Ethernet. The **ether** and **vlan** keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings. Defining Ethernet is the same as executing **no vc-type** and restores the default VC type for the spoke SDP binding.

- **vlan** — Defines the VC type as VLAN. The **ether** and **vlan** keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings. The VLAN VC-type requires at least one dot1Q tag within each encapsulated Ethernet packet transmitted to the far end.

- **no endpoint** — Removes the association of a spoke SDP with an explicit endpoint name.

- **endpoint** **endpoint-name** — Specifies the name of the service endpoint.

### hash-label

**Syntax**

```
hash-label
no hash-label
```

**Context**

```
config>service>epipe>spoke-sdp
config>service>fpipe>spoke-sdp
config>service>ipipe>spoke-sdp
config>service>pw-template
config>service>vprn
config>service>vprn>interface>spoke-sdp
config>service>ies>interface>spoke-sdp
```

**Description**

This command enables the use of the hash label on a VLL or VPLS service bound to LDP or RSVP SDP. This feature is not supported on a service bound to a GRE SDP. This feature is also not supported on multicast packets forwarded using RSVP P2MP LPS or mLDP LSP in both the base router instance and in the multicast VPN (mVPN) instance. It is, however, supported when forwarding multicast packets using an IES spoke-interface.

When this feature is enabled, the ingress data path is modified such that the result of the hash on the packet header is communicated to the egress data path for use as the value of the label field of the hash label. The egress data path appends the hash label at the bottom of the stack (BoS) and sets the S-bit to one (1).

In order to allow applications where the egress LER infers the presence of the hash label implicitly from the value of the label, the Most Significant Bit (MSB) of the result of the hash is set before copying into the Hash Label. This means that the value of the hash label will always be in the range [524,288 - 1,048,575] and will not overlap with the signaled/static LSP and signaled/static service label ranges. This also guarantees that the hash label will not match a value in the reserved label range.
The (unmodified) result of the hash continues to be used for the purpose of ECMP and LAG spraying of packets locally on the ingress LER. Note, however, that for VLL services, the result of the hash is overwritten and the ECMP and LAG spraying will be based on service-id when ingress SAP shared queuing is not enabled. However, the hash label will still reflect the result of the hash such that an LSR can use it to perform fine grained load balancing of VLL PW packets.

Packets generated in CPM and that are forwarded labeled within the context of a service (for example, OAM packets) must also include a Hash Label at the BoS and set the S-bit accordingly. The TTL of the hash label is set to a value of 0.

control-word

Syntax

[no] control-word

Context

config>service>cpipe>spoke-sdp
config>service>epipe>spoke-sdp

Description

The control word command provides the option to add a control word as part of the packet encapsulation for pseudowire types for which the control word is optional. These are Ethernet pseudowires (Epipe).

The configuration for the two directions of the pseudowire must match because the control word negotiation procedures described in Section 6.2 of RFC 4447 are not supported. The C-bit in the pseudowire FEC sent in the label mapping message is set to 1 when the control word is enabled. Otherwise, it is set to 0.

The service will only come up if the same C-bit value is signaled in both directions. If a spoke-sdp is configured to use the control word but the node receives a label mapping message with a C-bit clear, the node releases the label with the an “Illegal C-bit” status code as per Section 6.1 of RFC 4447. As soon as the user also enabled the control the remote peer, the remote peer will withdraw its original label and will send a label mapping with the C-bit set to 1 and the VLL service will be up in both nodes.

precedence

Syntax

precedence [precedence-value | primary]

no precedence

Context

config>service>cpipe>spoke-sdp
config>service>epipe>spoke-sdp

Description

This command specifies the precedence of the SDP binding when there are multiple SDP bindings attached to one service endpoint. The value of zero can only be assigned to one SDP bind making it the primary SDP bind. When an SDP binding goes down, the next highest precedence SDP binding will begin to forward traffic.

The no form of the command returns the precedence value to the default.

Default

4

Parameters

precedence-value — Specifies the spoke SDP precedence.
Values
1 — 4

primary — Specifies to make this the primary spoke SDP.

vc-label

Syntax
[no] vc-label vc-label

Context
config>service>cpipe>spoke-sdp>egress
config>service>epipe>spoke-sdp>egress

Description
This command configures the egress VC label.

Parameters
vc-label — A VC egress value that indicates a specific connection.

Values
16 — 1048575

vc-label

Syntax
[no] vc-label vc-label

Context
config>service>cpipe>spoke-sdp>ingress
config>service>epipe>spoke-sdp>ingress

Description
This command configures the ingress VC label.

Parameters
vc-label — A VC ingress value that indicates a specific connection.

Values
2048 — 18431

vlan-vc-tag

Syntax
vlan-vc-tag 0..4094
no vlan-vc-tag [0..4094]

Context
config>service>epipe>spoke-sdp

Description
This command specifies an explicit dot1q value used when encapsulating to the SDP far end. When signaling is enabled between the near and far end, the configured dot1q tag can be overridden by a received TLV specifying the dot1q value expected by the far end. This signaled value must be stored as the remote signaled dot1q value for the binding. The provisioned local dot1q tag must be stored as the administrative dot1q value for the binding.

When the dot1q tag is not defined, the default value of zero is stored as the administrative dot1q value. Setting the value to zero is equivalent to not specifying the value.

The no form of this command disables the command

Parameters
0..4094 — Specifies a valid VLAN identifier to bind an 802.1Q VLAN tag ID.
CES SAP Commands

sap

Syntax

sap sap-id [no-endpoint] [create]
sap sap-id endpoint endpoint-name [create]
no sap sap-id

Context

config>service>cpipe

Description

This command creates a Service Access Point (SAP) within a service. A SAP is a combination of port and encapsulation parameters which identifies the service access point on the interface and within the service router. Each SAP must be unique.

All SAPs must be explicitly created. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

Enter an existing SAP without the create keyword to edit SAP parameters. The SAP is owned by the service in which it was created.

A SAP can only be associated with a single service. A SAP can only be defined on a port that has been configured as an access port using the config router interface port-type port-id mode access command. Channelized TDM ports are always access ports.

If a port is shutdown, all SAPs on that port become operationally down. When a service is shutdown, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded.

The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The no form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

Default

No SAPs are defined.

Special Cases

A SAP can be defined with Ethernet ports, SONET/SDH or TDM channels. At most, only one sdp-id can be bound to an VLL service. Since a VLL is a point-to-point service, it can have, at most, two end points. The two end points can be one SAP and one SDP or two SAPs. Up to 49 SDPs can be associated with a service in a single router. Each SDP must have a unique router destination or an error will be generated.

A default SAP has the following format: port-id:* . This type of SAP is supported only on Ethernet MDAs and its creation is allowed only in the scope of Layer 2 services. This type of SAP is mutually exclusive with a SAP defined by explicit null encapsulation (for example, 1/1/1:0).

Parameters

sap-id — Specifies the physical port identifier portion of the SAP definition.

port-id — Specifies the physical port ID in the slot/mda/port format.

If the card in the slot has Media Dependent Adapters (MDAs) installed, the port-id must be in the slot_number/MDA_number/port_number format. For example 6/2/3 specifies port 3 on MDA 2 in slot 6.
The *port-id* must reference a valid port type. When the *port-id* parameter represents TDM channels, the port ID must include the channel ID. A period “.” separates the physical port from the *channel-id*. The port must be configured as an access port.

**endpoint** — Adds a SAP endpoint association.

**no endpoint** — Removes the association of a SAP or a spoke-sdp with an explicit endpoint name.

**create** — Keyword used to create a SAP instance. The **create** keyword requirement can be enabled/disabled in the **environment>create** context.

### cem

**Syntax**

`cem`

**Context**

`config>service>cpipe>sap`

**Description**

This command enables the context to specify circuit emulation (CEM) properties.

### packet

**Syntax**

`packet jitter-buffer milliseconds [payload-size bytes]`

`packet payload-size bytes`

`no packet`

**Context**

`config>service>cpipe>sap`

**Description**

This command specifies the jitter buffer size, in milliseconds, and payload size, in bytes.

**Default**

The default value depends on the CEM SAP endpoint type, and if applicable, the number of timeslots:

<table>
<thead>
<tr>
<th>Endpoint Type</th>
<th>Timeslots</th>
<th>Default Jitter Buffer (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unstructuredE1</td>
<td>n/a</td>
<td>5</td>
</tr>
<tr>
<td>unstructuredT1</td>
<td>n/a</td>
<td>5</td>
</tr>
</tbody>
</table>

**Parameters**

- `milliseconds` — specifies the jitter buffer size in milliseconds (ms).
- `payload-size bytes` — Specifies the payload size (in bytes) of packets transmitted to the packet service network (PSN) by the CEM SAP. This determines the size of the data that will be transmitted over the service. If the size of the data received is not consistent with the payload size, then the packet is considered malformed.

- Configuring the payload size and jitter buffer to values that result in less than 2 packet buffers or greater than 32 packet buffers is not allowed.

- Setting the jitter buffer value to 0 sets it back to the default value.

| Values | 1 — 250 |
For unstructuredE1, unstructuredT1, unstructuredE3 and unstructuredT3, the payload size must be a multiple of 32 bytes.

Configuring the payload size and jitter buffer to values that result in less than 2 packet buffers or greater than 32 packet buffer is not allowed.

Setting the payload size to 0 sets it back to the default value.

Values 0, 64, 1472

---

report-alarm

**Syntax**

```bash
[no] report-alarm [stray] [malformed] [pktloss] [overrun] [underrun] [rpktloss] [rfault] [rrdi]
```

**Context**

`config>service>cpipe>sap>cem`

**Description**

This command indicates the type of CEM SAP alarm. The `no` form of the command removes the parameter from the configuration.

**Parameters**

- **stray** — Reports the reception of packets not destined for this CES circuit.
- **malformed** — Reports the reception of packet not properly formatted as CES packets.
- **pktloss** — Reports the lack of reception of CES packets.
- **overrun** — Reports the reception of too many CES packets resulting in an overrun of the receive jitter buffer.
- **underrun** — Reports the reception of too few CES packets resulting in an overrun of the receive jitter buffer.
- **rpktloss** — Reports that the remote peer is currently in packet loss status.
- **rfault** — Reports that the remote TDM interface is currently not in service.
- **rrdi** — Reports that the remote TDM interface is currently in RDI status.

---

rtp-header

**Syntax**

```bash
[no] rtp-header
```

**Context**

`config>service>cpipe>sap>cem`

**Description**

This command specifies whether an RTP header is used when packets are transmitted to the packet service network (PSN) by the CEM SAP.

**Default**

`no rtp-header`
Service Filter and QoS Policy Commands

service-mtu

<table>
<thead>
<tr>
<th>Syntax</th>
<th>service-mtu octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>no service-mtu</td>
<td></td>
</tr>
</tbody>
</table>

**Context**

config>service>cpipe

**Description**

This command configures the service payload (Maximum Transmission Unit – MTU), in bytes, for the service. This MTU value overrides the service-type default MTU. The service-mtu defines the payload capabilities of the service. It is used by the system to validate the SAP and SDP binding’s operational state within the service.

The service MTU and a SAP’s service delineation encapsulation overhead (i.e., 4 bytes for a dot1q tag) is used to derive the required MTU of the physical port or channel on which the SAP was created. If the required payload is larger than the port or channel MTU, then the SAP will be placed in an inoperative state. If the required MTU is equal to or less than the port or channel MTU, the SAP will be able to transition to the operative state.

When binding an SDP to a service, the service MTU is compared to the path MTU associated with the SDP. The path MTU can be administratively defined in the context of the SDP. The default or administrative path MTU can be dynamically reduced due to the MTU capabilities discovered by the tunneling mechanism of the SDP or the egress interface MTU capabilities based on the next hop in the tunnel path.

If the service MTU is larger than the path MTU minus control word length (if applicable), the SDP binding for the service will be placed in an inoperative state with sdp-bind oper flag PathMTUTooSmall.

If the CEM SAP’s packet size is larger than the service MTU then the service will be placed in an inoperative state with service oper flag ServiceMTUTooSmall. The CEM SAP packet size is defined as CEM SAP payload-size plus rtp-header size (if applicable).

In the event that a service MTU, port or channel MTU, or path MTU is dynamically or administratively modified, then all associated SAP and SDP binding operational states are automatically re-evaluated.

The no form of this command returns the default service-mtu for the indicated service type to the default value.

**Default**

cpipe: 1514

octets — The size of the MTU in octets, expressed as a decimal integer, between 1 — 1514.
Virtual Private LAN Service

In This Chapter

This chapter provides information about Virtual Private LAN Service (VPLS), process overview, and implementation notes.

Topics in this chapter include:

- VPLS Service Overview on page 244
- VPLS Features on page 251
  - VPLS Packet Walkthrough in Network Mode on page 245
  - VPLS Enhancements on page 251
  - VPLS over MPLS in Network Mode on page 252
  - VPLS MAC Learning and Packet Forwarding on page 254
  - Table Management on page 259
  - VPLS and Spanning Tree Protocol on page 263
- VPLS Service Considerations on page 285
  - SAP Encapsulations on page 285
- Common Configuration Tasks on page 309
- Service Management Tasks on page 351
VPLS Service Overview

Virtual Private LAN Service (VPLS) is a class of virtual private network service that allows the connection of multiple sites in a single bridged domain over a provider-managed IP/MPLS network. The customer sites in a VPLS instance appear to be on the same LAN, regardless of their location. VPLS uses an Ethernet interface on the customer-facing (access) side which simplifies the LAN/WAN boundary and allows for rapid and flexible service provisioning. The 7210 SAS supports provisioning of access or uplink spokes to connect to the provider edge IP/MPLS routers.

VPLS offers a balance between point-to-point Frame Relay service and outsourced routed services (VPRN). VPLS enables each customer to maintain control of their own routing strategies. All customer routers in the VPLS service are part of the same subnet (LAN) which simplifies the IP addressing plan, especially when compared to a mesh constructed from many separate point-to-point connections. The VPLS service management is simplified since the service is not aware of nor participates in the IP addressing and routing.

A VPLS service provides connectivity between two or more SAPs on one (which is considered a local service) or more (which is considered a distributed service) service routers. The connection appears to be a bridged domain to the customer sites so protocols, including routing protocols, can traverse the VPLS service.

Other VPLS advantages include:

- VPLS is a transparent, protocol-independent service.
- There is no Layer 2 protocol conversion between LAN and WAN technologies.
- There is no need to design, manage, configure, and maintain separate WAN access equipment, thus, eliminating the need to train personnel on WAN technologies such as Frame Relay.
VPLS Packet Walkthrough in Network Mode

This section provides an example of VPLS processing of a customer packet sent across the network from site-A, which is connected to PE-Router-A through a 7210 SAS M to site-C, which is connected through 7210 SAS M to PE-Router-C (Figure 35) in an HVPLS configuration. This section does not discuss the processing on the PE routers, but only on 7210 SAS routers.

Figure 35: VPLS Service Architecture

1. 7210-A (Figure 36)
   a. Service packets arriving at 7210-A are associated with a VPLS service instance based on the combination of the physical port and the IEEE 802.1Q tag (VLAN-ID) in the packet
b. 7210-A learns the source MAC address in the packet and creates an entry in the FIB table that associates the MAC address to the service access point (SAP) on which it was received.

c. The destination MAC address in the packet is looked up in the FIB table for the VPLS instance. There are two possibilities: either the destination MAC address has already been learned (known MAC address) or the destination MAC address is not yet learned (unknown MAC address).

For a Known MAC Address (Figure 37):

d. If the destination MAC address has already been learned by 7210, an existing entry in the FIB table identifies the far-end PE-Router and the service VC-label (inner label) to be used before sending the packet to PE-Router-A.

e. The customer packet is sent on this LSP once the IEEE 802.1Q tag is stripped and the service VC-label (inner label) and the transport label (outer label) are added to the packet.

For an Unknown MAC Address (Figure 37):

f. If the destination MAC address has not been learned, 7210 will flood the packet to spoke SDPs that are participating in the service.

2. Core Router Switching
a. The PE router will encapsulate this packet in the appropriate MPLS header and transport it across the core network to the remote 7210-C.

3. 7210-C (Figure 36)

a. 7210-C associates the packet with the VPLS instance based on the VC label in the received packet after the stripping of the tunnel label.

b. 7210-C learns the source MAC address in the packet and creates an entry in the FIB table that associates the MAC address to the spoke SDP on which the packet was received.

c. The destination MAC address in the packet is looked up in the FIB table for the VPLS instance. Again, there are two possibilities: either the destination MAC address has already been learned (known MAC address) or the destination MAC address has not been learned on the access side of 7210-C (unknown MAC address).

d. If the destination MAC address has been learned by 7210-C, an existing entry in the FIB table identifies the local access port and the IEEE 802.1Q tag (if any) to be added before sending the packet to customer Location-C. The egress Q tag may be different than the ingress Q tag.

e. If the destination MAC address has not been learned, 7210 will flood the packet to all the access SAPs that are participating in the service.
VPLS Packet Walkthrough in Access Uplink Mode

This section provides an example of VPLS processing of a customer packet sent across the network from site-A, which is connected to PE-Router-A through a 7210 SAS M to site-C, which is connected through 7210 SAS M to PE-Router-C (Figure 35) in an HVPLS configuration. This section does not discuss the processing on the PE routers, but only on 7210 SAS routers.

Figure 38: VPLS Service Architecture

1. 7210-A (Figure 36)
   
   a. Service packets arriving at 7210-A are associated with a VPLS service instance based on the combination of the physical port and the IEEE 802.1Q tag (VLAN-ID) in the packet.
b. 7210-A learns the source MAC address in the packet and creates an entry in the FIB table that associates the MAC address to the service access point (SAP) on which it was received.

c. The destination MAC address in the packet is looked up in the FIB table for the VPLS instance. There are two possibilities: either the destination MAC address has already been learned (known MAC address) or the destination MAC address is not yet learned (unknown MAC address).

For a Known MAC Address (Figure 37):

d. If the destination MAC address has already been learned by 7210, an existing entry in the FIB table identifies destination uplink QinQ SAP to be used for sending the packet towards the PE-Router-A.

e. The customer packet is sent on this uplink SAP once the IEEE 802.1Q tag is stripped and the uplink SAP tag is added to the packet.

For an Unknown MAC Address (Figure 37):

f. If the destination MAC address has not been learned, 7210 will flood the packet to all the uplink SAPsspoke SDPs that are participating in the service.

Figure 39: Access Port Ingress Packet Format and Lookup

Figure 40: Network Port Egress Packet Format and Flooding

2. Core Router Switching
a. The PE router will encapsulate this packet in the appropriate MPLS header and transport it across the core network to the remote 7210-C.

3. 7210-C (Figure 36)

a. 7210-C associates the packet with the VPLS instance based on the VLAN tags in the received packet.

b. 7210-C learns the source MAC address in the packet and creates an entry in the FIB table that associates the MAC address to the access uplink port on which the packet was received.

c. The destination MAC address in the packet is looked up in the FIB table for the VPLS instance. Again, there are two possibilities: either the destination MAC address has already been learned (known MAC address) or the destination MAC address has not been learned on the access side of 7210-C (unknown MAC address).

d. If the destination MAC address has been learned by 7210-C, an existing entry in the FIB table identifies the local access port and the IEEE 802.1Q tag (if any) to be added before sending the packet to customer Location-C. The egress Q tag may be different than the ingress Q tag.

e. If the destination MAC address has not been learned, 7210 will flood the packet to all the access SAPs that are participating in the service.
VPLS Features

This section features:

- VPLS Enhancements on page 251
- VPLS and Spanning Tree Protocol on page 263
- VPLS Access Redundancy on page 276

VPLS Enhancements

Alcatel-Lucent’s VPLS implementation includes several enhancements beyond basic VPN connectivity. The following VPLS features can be configured individually for each VPLS service instance:

- Extensive MAC and IP filter support (up to Layer 4). Filters can be applied on a per SAP basis.
- Forwarding Information Base (FIB) management features including:
  - Configurable FIB size limit
  - FIB size alarms
  - MAC learning disable
  - Discard unknown
  - Separate aging timers for locally and remotely learned MAC addresses.
- Ingress rate limiting for broadcast, multicast, and destination unknown flooding on a per SAP basis.
- Implementation of Spanning Tree Protocol (STP) parameters on a per VPLS, per SAP and per spoke SDP basis.
- Optional SAP and/or spoke SDP redundancy to protect against node failure.
- IGMP snooping on a per-SAP and SDP basis.
VPLS over MPLS in Network Mode

The VPLS architecture proposed in draft-ietf-ppvpn-vpls-ldp-0x.txt specifies the use of provider equipment (PE) that is capable of learning, bridging, and replication on a per-VPLS basis. The PE routers that participate in the service are connected using MPLS Label Switched Path (LSP) tunnels in a full-mesh composed of mesh SDPs or based on an LSP hierarchy (Hierarchical VPLS (H-VPLS)) composed of mesh SDPs and spoke SDPs. The 7210 SAS M supports only H-VPLS.

Multiple VPLS services can be offered over the same set of LSP tunnels. Signaling specified in RFC 4905 is used to negotiate a set of ingress and egress VC labels on a per-service basis. The VC labels are used by the PE routers for de-multiplexing traffic arriving from different VPLS services over the same set of LSP tunnels.

VPLS/HVPLS is provided over MPLS by:

- Connecting 7210 SAS M to bridging-capable provider edge (PE) routers through a mesh/spoke SDP. The PE routers are connected using a full mesh of LSPs.
- Negotiating per-service VC labels using draft-Martini encapsulation.
- Replicating unknown and broadcast traffic in a service domain.
- Enabling MAC learning over tunnel and access ports (see VPLS MAC Learning and Packet Forwarding on page 254).
- Using a separate forwarding information base (FIB) per VPLS service.
VPLS over QinQ Spokes for 7210 SAS-M Configured in Access Uplink Mode

7210 SAS M devices configured in uplink mode support QinQ spokes or Dot1q spokes, which allows them to connect to upstream PE nodes which provides IP/MPLS transport.

VPLS is provided over QinQ/Dot1q spokes by:

- Connecting bridging-capable 7210 SAS devices.
- Replicating unknown and broadcast traffic in a service domain.
- Enabling MAC learning over QinQ/Dot1q spokes and access ports (see VPLS MAC Learning and Packet Forwarding).
- Using a separate forwarding information base (FIB) per VPLS service.
VPLS MAC Learning and Packet Forwarding

The 7210 SAS edge devices perform the packet replication required for broadcast and multicast traffic across the bridged domain. MAC address learning is performed by the 7210 SAS device to reduce the amount of unknown destination MAC address flooding.

Each 7210 SAS maintains a Forwarding Information Base (FIB) for each VPLS service instance and learned MAC addresses are populated in the FIB table of the service. All traffic is switched based on MAC addresses and forwarded between all participating nodes using the LSP tunnels. Unknown destination packets (for example, the destination MAC address has not been learned) are forwarded on all LSPs to all participating nodes for that service until the target station responds and the MAC address is learned by the 7210 SAS associated with that service.
IGMP Snooping in Network Mode and Access-uplink Mode

In Layer 2 switches, multicast traffic is treated like an unknown MAC address or broadcast frame, which causes the incoming frame to be flooded out (broadcast) on every port within a VLAN. Although this is acceptable behavior for unknowns and broadcast frames, this flooded multicast traffic may result in wasted bandwidth on network segments and end stations, as IP multicast hosts can join and be interested in only specific multicast groups.

IGMP snooping entails using information in Layer 3 protocol headers of multicast control messages to determine the processing at Layer 2. By doing so, an IGMP snooping switch provides the benefit of conserving bandwidth on those segments of the network in which no node has expressed interest in receiving packets addressed to the group address.

Note: In the following paragraph on IGMP snooping, reference to SDP is applicable only in network mode.

IGMP snooping can be enabled in the context of VPLS services. The IGMP snooping feature allows for optimization of the multicast data flow to only those SAPs or SDPs that are members of the group. The system builds a database of group members per service by listening to IGMP queries and reports from each SAP or SDP:

- When the switch receives an IGMP report from a host for a particular multicast group, the switch adds the host port number to the forwarding table entry.
- When it receives an IGMP leave message from a host, it removes the host port from the table entry, if no other group members are present. It also deletes entries if it does not receive periodic IGMP membership reports from the multicast clients.

The following are IGMP snooping features:

- IGMP v1, v2, and v3 are supported (RFC 1112, Host Extensions for IP Multicasting, and RFC 2236, Internet Group Management Protocol, Version 2). 7210 SAS-M supports IGMPv3 in access-uplink mode. 7210 SAS-M in network mode does not support IGMPv3.
- IGMP snooping can be enabled and disabled on individual VPLS service instances.
- IGMP snooping can be configured on individual SAPs that are part of a VPLS service. When IGMP snooping is enabled on a VPLS service, all its contained SAPs and SDPs automatically have snooping enabled.
- Fast leave terminates the multicast session immediately, rather than using the standard group-specific query to check if other group members are present on the network.
- SAPs and SDPs can be statically configured as multicast router ports. This allows the operator to control the set of ports to which IGMP membership reports are forwarded.
- Static multicast group membership on a per SAP and as per SDP basis can be configured.
• The maximum number of multicast groups (static and dynamic) that a SAP or SDP can join can be configured. An event is generated when the limit is reached.

• The maximum number of multicast groups (static and dynamic) that a VPLS instance simultaneously supports can be configured.

• Proxy summarization of IGMP messages reduces the number of IGMP messages processed by upstream devices in the network.

• IGMP filtering allows a subscriber to a service or the provider to block, receive, or transmit permission (or both) to individual hosts or a range of hosts.

The following types of filters can be defined:

→ Filter group membership that report from a particular host or range of hosts. This filtering is performed by importing an appropriately-defined routing policy into the SAP or SDP.

→ Filters that prevent a host from transmitting multicast streams into the network. The operator can define a data-plane filter (ACL) that drops all multicast traffic, and apply this filter to a SAP or SDP.
Configuration Guidelines for IGMP Snooping

The following IGMP snooping considerations apply:

- Layer 2 multicast is supported in VPLS services.
- IGMP snooping is not supported for VCs (either vc-ether or vc-vlan) with control-word enabled.
- IGMP snooping fast leave processing can be enabled only on SAPs and SDPs. IGMP snooping proxy summarization is enabled by default on SAPs and SDPs and cannot be disabled. Proxy summarization and fast leave processing are supported only on SDPs whose VC are configured to use vc-type ether and do not have control-word enabled.
- IGMP filtering using policies is available on SAPs and SDPs. It is supported only on SDPs whose VC are configured to use vc-type ether and do not have control-word enabled.
- Dynamic learning is only supported on SDPs whose VC are configured to use vc-type ether and do not have control-word enabled.
- SDPs that are configured to use VC of type 'vc-vlan' that need to be mrouter ports must be configured statically. Multicast group memberships for such SDPs must be configured statically. Dynamic learning is not available for these SDPs.
- IGMP snooping is not supported for control word enabled SDP.
- 7210 SAS-M in network mode does not support IGMPv3.

Multicast VLAN Registration (MVR) support

Multicast VLAN registration (MVR) allows operators to use a single network wide multicast VLAN (or a VPLS service) to deliver multicast traffic in the aggregation and access network and distribute the multicast traffic to subscribers using the VLANs specific to the subscribers. Use of single multicast VLAN saves bandwidth and eases operations. MVR must be used in conjunction with IGMP snooping. It uses the IGMP join and leave messages to determine the subscribers who are interested to receive a particular multicast stream.

Note: This feature is supported in 7210 SAS-M network mode and access-uplink mode.
**Configuration Guidelines for MVR**

In a MVR configuration, the svc-sap-type of the VPLS service that is the source, which is also known as 'mvr vpls service' and the svc-sap-type of the VPLS service that is the sink, which is also known as 'user vpls service' should match.
Table Management

The following sections describe VPLS features related to management of the Forwarding Information Base (FIB).

FIB Size

The following MAC table management features are required for each instance of a SAP or spoke SDP within a particular VPLS service instance:

- MAC FIB size limits — Allows users to specify the maximum number of MAC FIB entries that are learned locally for a SAP or remotely for a spoke SDP. If the configured limit is reached, then no new addresses will be learned from the SAP or spoke SDP until at least one FIB entry is aged out or cleared.
  → When the limit is reached on a SAP or spoke SDP, packets with unknown source MAC addresses are still forwarded (this default behavior can be changed by configuration). By default, if the destination MAC address is known, it is forwarded based on the FIB, and if the destination MAC address is unknown, it will be flooded. Alternatively, if discard unknown is enabled at the VPLS service level, unknown destination MAC addresses are discarded.
  → The log event SAP MAC limit reached is generated when the limit is reached. When the condition is cleared, the log event SAP MAC Limit Reached Condition Cleared is generated.
  → Disable learning at the VPLS service level allows users to disable the dynamic learning function on the service. Disable Learning is supported at the SAP and spoke SDP level as well.
  → Disable aging allows users to turn off aging for learned MAC addresses. It is supported at the VPLS service level, SAP level and spoke SDP level.

FIB Size Alarms

The size of the VPLS FIB can be configured with a low watermark and a high watermark, expressed as a percentage of the total FIB size limit. If the actual FIB size grows above the configured high watermark percentage, an alarm is generated. If the FIB size falls below the configured low watermark percentage, the alarm is cleared by the system.
Local and Remote Aging Timers

Like a Layer 2 switch, learned MACs within a VPLS instance can be aged out if no packets are sourced from the MAC address for a specified period of time (the aging time). In each VPLS service instance, there are independent aging timers for locally learned MAC and remotely learned MAC entries in the forwarding database (FIB). A local MAC address is a MAC address associated with a SAP because it ingressed on a SAP. A remote MAC address is a MAC address received by an SDP from another router for the VPLS instance. The local-age timer for the VPLS instance specifies the aging time for locally learned MAC addresses, and the remote-age timer specifies the aging time for remotely learned MAC addresses.

In general, the remote-age timer is set to a longer period than the local-age timer to reduce the amount of flooding required for destination unknown MAC addresses. The aging mechanism is considered a low priority process. In most situations, the aging out of MAC addresses can happen in within tens of seconds beyond the age time. To minimize overhead, local MAC addresses on a LAG port and remote MAC addresses, in some circumstances, can take up to two times their respective age timer to be aged out.

Disable MAC Aging

The MAC aging timers can be disabled which will prevent any learned MAC entries from being aged out of the FIB. When aging is disabled, it is still possible to manually delete or flush learned MAC entries. Aging can be disabled for learned MAC addresses on a SAP or a spoke SDP of a VPLS service instance.

Disable MAC Learning

When MAC learning is disabled for a service, new source MAC addresses are not entered in the VPLS FIB. MAC learning can be disabled for individual SAPs or spoke SDPs.

Unknown MAC Discard

Unknown MAC discard is a feature which discards all packets ingressing the service where the destination MAC address is not in the FIB. The normal behavior is to flood these packets to all endpoints in the service.

Unknown MAC discard can be used with the disable MAC learning and disable MAC aging options to create a fixed set of MAC addresses allowed to ingress and traverse the service.
VPLS and Rate Limiting

Traffic that is normally flooded throughout the VPLS can be rate limited on SAP ingress through the use of service ingress QoS policies. In a service ingress QoS policy, individual meters can be defined per forwarding class to provide rate-limiting/policing of broadcast traffic, MAC multicast traffic and unknown destination MAC traffic.

MAC Move

The MAC move feature is useful to protect against undetected loops in a VPLS topology as well as the presence of duplicate MACs in a VPLS service.

If two clients in the VPLS have the same MAC address, the VPLS will experience a high re-learn rate for the MAC. When MAC move is enabled, the 7210 SAS M will shut down the SAP or spoke SDP and create an alarm event when the threshold is exceeded.

MAC move allows sequential order port blocking. By configuration, some VPLS ports can be configured as “non-blockable” which allows simple level of control which ports are being blocked during loop occurrence.
Split Horizon SAP Groups and Split Horizon Spoke SDP Groups

**Note:** Split Horizon group is supported only on 7210 SAS-M devices configured in Network mode.

Within the context of VPLS services, a loop-free topology inside a fully meshed VPLS core is achieved by applying a split-horizon forwarding concept. The packets received from a mesh SDP are never forwarded to other mesh SDPs within the same service. The advantage of this approach is that no protocol is required to detect loops within the VPLS core network.

In applications such as DSL aggregation, it is useful to extend this split-horizon concept also to groups of SAPs and/or spoke SDPs. This extension is referred to as a split horizon SAP group. Traffic arriving on a SAP or a spoke SDP within a split horizon group will not be forwarded to other SAPs and spoke SDPs configured in the same split horizon group, but will be forwarded to other SAPs/spoke SDPs, which are not part of the split horizon group.

---

**Configuration Guidelines for use of Split Horizon Group in a VPLS Service**

In 7210 SAS devices, mesh SDPs cannot be configured in a service which uses split horizon group. Conversely, if a service has a mesh-sdp configured, split horizon group cannot be used in the same service.

Only one split horizon group per service is allowed for use.
VPLS and Spanning Tree Protocol

Alcatel-Lucent’s VPLS service provides a bridged or switched Ethernet Layer 2 network. Equipment connected to SAPs forward Ethernet packets into the VPLS service. The 7210 SAS participating in the service learns where the customer MAC addresses reside, on ingress SAPs.

Unknown destinations, broadcasts, and multicasts are flooded to all other SAPs in the service. If SAPs are connected together, either through misconfiguration or for redundancy purposes, loops can form and flooded packets can keep flowing through the network. Alcatel-Lucent’s implementation of the Spanning Tree Protocol (STP) is designed to remove these loops from the VPLS topology. This is done by putting one or several SAPs in the discarding state.

Alcatel-Lucent’s implementation of the Spanning Tree Protocol (STP) incorporates some modifications to make the operational characteristics of VPLS more effective.

The STP instance parameters allow the balancing between resiliency and speed of convergence extremes. Modifying particular parameters can affect the behavior. For information on command usage, descriptions, and CLI syntax, refer to Configuring a VPLS Service with CLI on page 305.

Spanning Tree Operating Modes

Per VPLS instance, a preferred STP variant can be configured. The STP variants supported are:

- **rstp** — Rapid Spanning Tree Protocol (RSTP) compliant with IEEE 802.1D-2004 - default mode
- **dot1w** — Compliant with IEEE 802.1w
- **comp-dot1w** — Operation as in RSTP but backwards compatible with IEEE 802.1w (this mode allows interoperability with some MTU types)
- **mstp** — Compliant with the Multiple Spanning Tree Protocol specified in IEEE 802.1Q-REV/D5.0-09/2005. This mode of operation is only supported in an mVPLS.

While the 7210 SAS initially uses the mode configured for the VPLS, it will dynamically fall back (on a per-SAP basis) to STP (IEEE 802.1D-1998) based on the detection of a BPDU of a different format. A trap or log entry is generated for every change in spanning tree variant.

Some older 802.1W compliant RSTP implementations may have problems with some of the features added in the 802.1D-2004 standard. Interworking with these older systems is improved with the comp-dot1w mode. The differences between the RSTP mode and the comp-dot1w mode are:

- The RSTP mode implements the improved convergence over shared media feature, for example, RSTP will transition from discarding to forwarding in 4 seconds when operating over shared media. The comp-dot1w mode does not implement this 802.1D-2004
improvement and transitions conform to 802.1w in 30 seconds (both modes implement fast convergence over point-to-point links).

- In the RSTP mode, the transmitted BPDUs contain the port's designated priority vector (DPV) (conforms to 802.1D-2004). Older implementations may be confused by the DPV in a BPDU and may fail to recognize an agreement BPDU correctly. This would result in a slow transition to a forwarding state (30 seconds). For this reason, in the comp-dot1w mode, these BPDUs contain the port's port priority vector (conforms to 802.1w).

The 7210 SAS supports two BDPU encapsulation formats, and can dynamically switch between the following supported formats (on a per-SAP basis):

- IEEE 802.1D STP
- Cisco PVST
Multiple Spanning Tree

The Multiple Spanning Tree Protocol (MSTP) extends the concept of the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) by allowing grouping and associating VLANs to Multiple Spanning Tree Instances (MSTI). Each MSTI can have its own topology, which provides architecture enabling load balancing by providing multiple forwarding paths. At the same time, the number of STP instances running in the network is significantly reduced as compared to Per VLAN STP (PVST) mode of operation. Network fault tolerance is also improved because a failure in one instance (forwarding path) does not affect other instances.

The 7210 SAS implementation of Management VPLS (mVPLS) is used to group different VPLS instances under single RSTP instance. Introducing MSTP into the mVPLS allows the following:

- Interoperation with traditional Layer 2 switches in access network.
- Provides an effective solution for dual homing of many business Layer 2 VPNs into a provider network.

Redundancy Access to VPLS

The GigE MAN portion of the network is implemented with traditional switches. Using MSTP running on individual switches facilitates redundancy in this part of the network. In order to provide dual homing of all VPLS services accessing from this part of the network, the VPLS PEs must participate in MSTP.

This can be achieved by the following:

- Configuring mVPLS on VPLS-PEs (only PEs directly connected to GigE MAN network).
- Assign different managed-vlan ranges to different MSTP instances.

Typically, the mVPLS would have SAPs with null encapsulations (to receive, send, and transmit MSTP BPDUs) and a mesh SDP to interconnect a pair of VPLS PEs.

Different access scenarios are displayed in Figure 41 as example network diagrams dually connected to the PBB PEs:

- **Access Type A** — Source devices connected by null or Dot1q SAPs
- **Access Type B** — One QinQ switch connected by QinQ/801ad SAPs
- **Access Type C** — Two or more ES devices connected by QinQ/802.1ad SAPs
The following mechanisms are supported for the I-VPLS:

- **STP/RSTP** can be used for all access types
- **M-VPLS with MSTP** can be used as is just for access Type A. MSTP is required for access type B and C.
- **LAG and MC-LAG** can be used for access Type A and B.
- **Split-horizon-group** does not require residential.
MSTP for QinQ SAPs

MSTP runs in a MVPLS context and can control SAPs from source VPLS instances. QinQ SAPs are supported. The outer tag is considered by MSTP as part of VLAN range control.

Provider MSTP

Provider MSTP is specified in (IEEE-802.1ad-2005). It uses a provider bridge group address instead of a regular bridge group address used by STP, RSTP, MSTP BPDUs. This allows for implicit separation of source and provider control planes.

The 802.1ad access network sends PBB PE P-MSTP BPDUs using the specified MAC address and also works over QinQ interfaces. P-MSTP mode is used in PBBN for core resiliency and loop avoidance.

Similar to regular MSTP, the STP mode (for example, PMSTP) is only supported in VPLS services where the m-VPLS flag is configured.
MSTP General Principles

MSTP represents modification of RSTP which allows the grouping of different VLANs into multiple MSTIs. To enable different devices to participate in MSTIs, they must be consistently configured. A collection of interconnected devices that have the same MST configuration (region-name, revision and VLAN-to-instance assignment) comprises an MST region.

There is no limit to the number of regions in the network, but every region can support a maximum of 16 MSTIs. Instance 0 is a special instance for a region, known as the Internal Spanning Tree (IST) instance. All other instances are numbered from 1 to 4094. IST is the only spanning-tree instance that sends and receives BPDUs (typically BPDUs are untagged). All other spanning-tree instance information is included in MSTP records (M-records), which are encapsulated within MSTP BPDUs. This means that single BPDU carries information for multiple MSTI which reduces overhead of the protocol.

Any given MSTI is local to an MSTP region and completely independent from an MSTI in other MST regions. Two redundantly connected MST regions will use only a single path for all traffic flows (no load balancing between MST regions or between MST and SST region).

Traditional Layer 2 switches running MSTP protocol assign all VLANs to the IST instance per default. The operator may then “re-assign” individual VLANs to a given MSTI by configuring per VLAN assignment. This means that a SR-Series PE can be considered as the part of the same MST region only if the VLAN assignment to IST and MSTIs is identical to the one of Layer 2 switches in access network.

MSTP in the 7210 SAS Platform

The 7210 SAS platform uses a concept of mVPLS to group different SAPs under a single STP instance. The VLAN range covering SAPs to be managed by a given mVPLS is declared under a specific mVPLS SAP definition. MSTP mode-of-operation is only supported in an mVPLS.

When running MSTP, by default, all VLANs are mapped to the CIST. On the VPLS level VLANs can be assigned to specific MSTIs. When running RSTP, the operator must explicitly indicate, per SAP, which VLANs are managed by that SAP.
Enhancements to the Spanning Tree Protocol

To interconnect 7210 SAS devices (PE devices) across the backbone, service tunnels (SDPs) are used. These service tunnels are shared among multiple VPLS instances. Alcatel-Lucent’s implementation of the Spanning Tree Protocol (STP) incorporates some enhancements to make the operational characteristics of VPLS more effective. The implementation of STP on the router is modified in order to guarantee that service tunnels will not be blocked in any circumstance without imposing artificial restrictions on the placement of the root bridge within the network. The modifications introduced are fully compliant with the 802.1D-2004 STP specification.

When running MSTP, spoke SDPs cannot be configured. Also, ensure that all bridges connected by mesh SDPs are in the same region. If not, the mesh will be prevented from becoming active (trap is generated).

In order to achieve this, all mesh SDPs are dynamically configured as either root ports or designated ports. The PE devices participating in each VPLS mesh determine (using the root path cost learned as part of the normal protocol exchange) which of the 7210 SAS devices is closest to the root of the network. This PE device is internally designated as the primary bridge for the VPLS mesh. As a result of this, all network ports on the primary bridges are assigned the designated port role and therefore remain in the forwarding state.

The second part of the solution ensures that the remaining PE devices participating in the STP instance see the SDP ports as a lower cost path to the root rather than a path that is external to the mesh. Internal to the PE nodes participating in the mesh, the SDPs are treated as zero cost paths towards the primary bridge. As a consequence, the path through the mesh are seen as lower cost than any alternative and the PE node will designate the network port as the root port. This ensures that network ports always remain in forwarding state.

A combination of the above mentioned features ensure that network ports are never blocked and maintain interoperability with bridges external to the mesh that are running STP instances.
L2PT Termination

L2PT is used to transparently transport protocol data units (PDUs) of Layer 2 protocols such as STP and PVST. This allows running these protocols between customer CPEs without involving backbone infrastructure.

7210 SAS M routers allow transparent tunneling of PDUs across the VPLS core. However, in some network designs, the VPLS PE is connected to CPEs through a legacy Layer 2 network, rather than having direct connections. In such environments termination of tunnels through such infrastructure is required.

L2PT tunnels protocol PDUs by overwriting MAC destination addresses at the ingress of the tunnel to a proprietary MAC address such as 01-00-0c-cd-cd-d0. At the egress of the tunnel, this MAC address is then overwritten back to MAC address of the respective Layer 2 protocol.

7210 SAS M nodes support L2PT termination for STP BPDUs. More specifically:

- At ingress of every SAP/spoke SDP, which is configured as L2PT termination, all PDUs with a MAC destination address, 01-00-0c-cd-cd-d0 will be intercepted and their MAC destination address will be overwritten to MAC destination address used for the corresponding protocol (PVST, STP, RSTP). The type of the STP protocol can be derived from LLC and SNAP encapsulation.
- In egress direction, all STP PDUs received on all VPLS ports will be intercepted and L2PT encapsulation will be performed for SAP/spoke SDPs configured as L2PT termination points. Because of the implementation reasons, PDU interception and redirection to CPM can be performed only at ingress. Therefore, to comply with the above requirement, as soon as at least 1 port of a given VPLS service is configured as L2PT termination port, redirection of PDUs to CPM will be set on all other ports (SAPs, spoke SDPs) of the VPLS service.

L2PT termination can be enabled only if STP is disabled in a context of the given VPLS service.
BPDU Translation

VPLS networks are typically used to interconnect different customer sites using different access technologies such as Ethernet and bridged-encapsulated ATM PVCs. Typically, different Layer 2 devices can support different types of STP and even if they are from the same vendor. In some cases, it is necessary to provide BPDU translation in order to provide an interoperable e2e solution.

To address these network designs, BPDU format translation is supported on 7210 SAS M devices. If enabled on a given SAP or spoke SDP, the system will intercept all BPDUs destined to that interface and perform required format translation such as STP-to-PVST or vice versa.

Similarly, BPDU interception and redirection to the CPM is performed only at ingress meaning that as soon as at least 1 port within a given VPLS service has BPDU translation enabled, all BPDUs received on any of the VPLS ports will be redirected to the CPM.

BPDU translation involves all encapsulation actions that the data path would perform for a given outgoing port (such as adding VLAN tags depending on the outer SAP and the SDP encapsulation type) and adding or removing all the required VLAN information in a BPDU payload.

This feature can be enabled on a SAP/spoke only if STP is disabled in the context of the given VPLS service.

L2PT and BPDU Translation

The protocols tunneled by L2PT are automatically passed towards the CPM and all carry the same specific Cisco MAC.

The existing L2PT limitations apply.

- The protocols apply only to VPLS.
- The protocols are mutually exclusive with running STP on the same VPLS as soon as one SAP/spoke has L2PT enabled.
- Forwarding occurs on the CPM.
VPLS Redundancy

The VPLS standard (RFC 4762, *Virtual Private LAN Services Using LDP Signalling*) includes provisions for hierarchical VPLS, using point-to-point spoke SDPs. Two applications have been identified for spoke SDPs:

- To connect to Multi-Tenant Units (MTUs) to PEs in a metro area network;
- To interconnect the VPLS nodes of two networks.

In both applications the spoke SDPs serve to improve the scalability of VPLS. While node redundancy is implicit in non-hierarchical VPLS services (using a full mesh of SDPs between PEs), node redundancy for spoke SDPs needs to be provided separately. In VPLS services, only two spoke-SDPs are allowed in an endpoint.

Alcatel-Lucent routers have implemented special features for improving the resilience of hierarchical VPLS instances, in both MTU and inter-metro applications.

Spoke SDP Redundancy for Metro Interconnection

When two or more meshed VPLS instances are interconnected by redundant spoke SDPs (as shown in Figure 42), a loop in the topology results. In order to remove such a loop from the topology, Spanning Tree Protocol (STP) can be run over the SDPs (links) which form the loop such that one of the SDPs is blocked. As running STP in each and every VPLS in this topology is not efficient, the node includes functionality which can associate a number of VPLSes to a single STP instance running over the redundant-SDPs. Node redundancy is thus achieved by running STP in one VPLS, and applying the conclusions of this STP to the other VPLS services. The VPLS instance running STP is referred to as the “management VPLS” or mVPLS.

In the case of a failure of the active node, STP on the management VPLS in the standby node will change the link states from disabled to active. The standby node will then broadcast a MAC flush LDP control message in each of the protected VPLS instances, so that the address of the newly active node can be re-learned by all PEs in the VPLS.

It is possible to configure two management VPLS services, where both VPLS services have different active spokes (this is achieved by changing the path-cost in STP). By associating different user VPLSes with the two management VPLS services, load balancing across the spokes can be achieved.
Figure 42: HVPLS with Spoke Redundancy
Spoke SDP Based Redundant Access

This feature provides the ability to have a node deployed as MTUs (Multi-Tenant Unit Switches) to be multi-homed for VPLS to multiple routers deployed as PEs without requiring the use of mVPLS.

In the configuration example displayed in Figure 42, the MTUs have spoke SDPs to two PEs devices. One is designated as the primary and one as the secondary spoke SDP. This is based on a precedence value associated with each spoke. If the primary and secondary spoke-SDPs have the same precedence value, the spoke-SDP with lower ID functions as the primary SDP.

The secondary spoke is in a blocking state (both on receive and transmit) as long as the primary spoke is available. When the primary spoke becomes unavailable (due to link failure, PEs failure, etc.), the MTU immediately switches traffic to the backup spoke and starts receiving/sending traffic to/from the standby spoke. Optional revertive operation (with configurable switch-back delay) is applicable only when one of the spokes is configured with precedence of primary. If not, this action does not take place. Forced manual switchover is also supported.

To speed up the convergence time during a switchover, MAC flush is configured. The MTUs generates a MAC flush message over the newly unblocked spoke when a spoke change occurs. As a result, the PEs receiving the MAC flush will flush all MACs associated with the impacted VPLS service instance and forward the MAC flush to the other PEs in the VPLS network if “propagate-mac-flush” is enabled.
Inter-Domain VPLS Resiliency Using Multi-Chassis Endpoints

Note: MC-EP is not supported in 7210 SAS devices. This section serves to provide an example on how 7210 SAS devices can be used as a MTUs device in an MC-EP solution. In this solution the 7750 SR routers provide the MC-EP functionality.

Inter-domain VPLS refers to a VPLS deployment where sites may be located in different domains. An example of inter-domain deployment can be where different Metro domains are interconnected over a Wide Area Network (Metro1-WAN-Metro2) or where sites are located in different autonomous systems (AS1-ASBRs-AS2).

Multi-chassis endpoint (MC-EP) provides an alternate solution that does not require RSTP at the gateway VPLS PEs while still using pseudowires to interconnect the VPLS instances located in the two domains.

MC-EP expands the single chassis endpoint based on active-standby pseudowires for VPLS shown in Figure 43. In the solution depicted by the Figure 43, 7210 devices are used as MTUs.

![Figure 43: HVPLS Resiliency Based on AS Pseudowires](image)

The active-standby pseudowire solution is appropriate for the scenario when only one VPLS PE (MTU-s) needs to be dual-homed to two core PEs (PE1 and PE2).
VPLS Access Redundancy

A second application of hierarchical VPLS is using MTUs that are MPLS-enabled which must have spoke SDPs to the closest PE node. To protect against failure of the PE node, an MTU can be dual-homed.

Listed below are several mechanisms that can be used to resolve a loop in an access network where 7210s are used

- STP-based access, with or without mVPLS.
- Ethernet APS using G.8032.

STP-Based Redundant Access to VPLS

In configuration shown in Figure 44, STP is activated on the MTU and two PEs in order to resolve a potential loop.

In order to remove such a loop from the topology, Spanning Tree Protocol (STP) can be run over the SDPs (links) which form the loop such that one of the SDPs is blocked. Running STP in every VPLS in this topology is not efficient as the node includes functionality which can associate a number of VPLSes to a single STP instance running over the redundant SDPs. Node redundancy is thus achieved by running STP in one VPLS. Thus, this applies the conclusions of this STP to the other VPLS services.

The VPLS instance running STP is referred to as the “management VPLS” or mVPLS. In the case of a failure of the active node, STP on the management VPLS in the standby node will change the link states from disabled to active. The standby node will then broadcast a MAC flush LDP control message in each of the protected VPLS instances, so that the address of the newly active node can
be re-learned by all PEs in the VPLS. It is possible to configure two management VPLS services, where both VPLS services have different active spokes (this is achieved by changing the path-cost in STP). By associating different user VPLSes with the two management VPLS services, load balancing across the spokes can be achieved.

In this configuration the scope of STP domain is limited to MTU and PEs, while any topology change needs to be propagated in the whole VPLS domain.

This is done by using “MAC-flush” messages defined by RFC 4762, Virtual Private LAN Services Using LDP Signaling. In the case where STP acts as a loop resolution mechanism, every Topology Change Notification (TCN) received in a context of STP instance is translated into an LDP-MAC address withdrawal message (also referred to as a MAC-flush message) requesting to clear all FDB entries except the ones learned from the originating PE. Such messages are sent to all PE peers connected through SDPs (mesh and spoke) in the context of VPLS service(s) which are managed by the given STP instance.
Redundant Access to VPLS Without STP

The Alcatel-Lucent implementation also alternative methods for providing a redundant access to LAYER 2 services, such as MC-LAG, MC-APS or MC-RING. Also in this case, the topology change event needs to be propagated into VPLS topology in order to provide fast convergence.

Figure 42 illustrates a dual-homed connection to VPLS service (PE-A, PE-B, PE-C, PE-D) and operation in case of link failure (between PE-C and L2-B). Upon detection of a link failure PE-C will send MAC-Address-Withdraw messages, which will indicate to all LDP peers that they should flush all MAC addresses learned from PE-C. This will lead that to a broadcasting of packets addressing affected hosts and re-learning process in case an alternative route exists.

Note that the message described here is different than the message described in previous section and in RFC 4762, Virtual Private LAN Services Using LDP Signaling. The difference is in the interpretation and action performed in the receiving PE. According to the standard definition, upon receipt of a MAC withdraw message, all MAC addresses, except the ones learned from the source PE, are flushed.

This section specifies that all MAC addresses learned from the source are flushed. This message has been implemented as an LDP address message with vendor-specific type, length, value (TLV), and is called the flush-mine message.

The advantage of this approach (as compared to RSTP based methods) is that only MAC-affected addresses are flushed and not the full forwarding database. While this method does not provide a mechanism to secure alternative loop-free topology, the convergence time is dependent on the speed of the given CE device will open alternative link (L2-B switch in Figure 57) as well as on the speed PE routers will flush their FDB.

In addition, this mechanism is effective only if PE and CE are directly connected (no hub or bridge) as it reacts to physical failure of the link.
MAC Flush Message Processing

The previous sections described operation principle of several redundancy mechanisms available in context of VPLS service. All of them rely on MAC flush message as a tool to propagate topology change in a context of the given VPLS. This section aims to summarize basic rules for generation and processing of these messages.

As described on respective sections, the 7210 SAS supports two types of MAC flush message, flush-all-but-mine and flush-mine. The main difference between these messages is the type of action they signal. Flush-all-but-mine requests clearing of all FDB entries which were learned from all other LDP peers except the originating PE. This type is also defined by RFC 4762 as an LDP MAC address withdrawal with an empty MAC address list.

Flush-all-mine message requests clearing all FDB entries learned from originating PE. This means that this message has exactly other effect then flush-all-but-mine message. This type is not included in RFC 4762 definition and it is implemented using vendor specific TLV.

The advantages and disadvantages of the individual types should be apparent from examples in the previous section. The description here focuses on summarizing actions taken on reception and conditions individual messages are generated.

Upon reception of MAC flush messages (regardless the type) SR-Series PE will take following actions:

- Clears FDB entries of all indicated VPLS services conforming the definition.
- Propagates the message (preserving the type) to all LDP peers, if “propagate-mac-flush” flag is enabled at corresponding VPLS level.

The flush-all-but-mine message is generated under following conditions:

- The flush-all-but-mine message is received from LDP peer and propagate-mac-flush flag is enabled. The message is sent to all LDP peers in the context of VPLS service it was received in.
- TCN message in a context of STP instance is received. The flush-all-but-mine message is sent to all LDP-peers connected with spoke and mesh SDPs in a context of VPLS service controlled by the given STP instance (based on mVPLS definition). The message is sent only to LDP peers which are not part of STP domain, which means corresponding spoke and mesh SDPs are not part of mVPLS.
- Flush-all-but-mine message is generated when switch over between spoke SDPs of the same endpoint occurs. The message is sent to LDP peer connected through newly active spoke SDP.
The flush-mine message is generated under following conditions:

- The flush-mine message is received from LDP peer and “propagate-mac-flush” flag is enabled. The message is sent to all LDP peers in the context of VPLS service it was received.

- The flush-mine message is generated when on a SAP or SDP transition from operationally up to an operationally down state and send-flush-on-failure flag is enabled in the context of the given VPLS service. The message is sent to all LDP peers connected in the context of the given VPLS service. Note, that enabling “send-flush-on-failure” the flag is blocked in VPLS service managed by mVPLS. This is to prevent that both messages are sent at the same time.

- The flush-mine message is generated when on a MC-LAG SAP or MC-APS SAP transition from an operationally up state to an operationally down state. The message is sent to all LDP peers connected in the context of the given VPLS service.

- The flush-mine message is generated when on a MC-RING SAP transition from operationally up to an operationally down state or when MC-RING SAP transitions to slave state. The message is sent to all LDP peers connected in the context of the given VPLS service.
MAC Flush with STP

A second application of Hierarchical VPLS is in the use of Multi Tenant Units (MTU). MTUs are typically not MPLS-enabled, and thus have Ethernet links to the closest PE node (see Figure 45 below). To protect against failure of the PE node, an MTU could be dual-homed and thus have two SAPs on two PE nodes. To resolve the potential loop, STP is activated on the MTU and the two PEs.

Like in the scenario above, STP only needs to run in a single VPLS instance, and the results of the STP calculations are applied to all VPLSes on the link. Equally, the standby node will broadcast MAC flush LDP messages in the protected VPLS instances when it detects that the active node has failed.
Selective MAC Flush

When using STP as described above is not appropriate, the “Selective MAC flush” feature can be used instead.

In this scenario, the 7210 SAS M that detects a port failure will send out a flush-all-from-ME LDP message to all PEs in the VPLS. The PEs receiving this LDP message will remove all MAC entries originated by the sender from the indicated VPLS.

A drawback of this approach is that selective MAC flush itself does not signal that a backup path was found, only that the previous path is no longer available. In addition, the selective MAC Flush mechanism is effective only if the CE and PE are directly connected (no intermediate hubs or bridges) as it reacts only to a physical failure of the link. Consequently it is recommended to use the MAC flush with STP method described above where possible.
Dual Homing to a VPLS Service

Figure 46 illustrates a dual-homed connection to VPLS service (PE-A, PE-B, PE-C, PE-D) and operation in case of link failure (between PE-C and L2-B). Upon detection of a link failure PE-C will send MAC-Address-Withdraw messages, which will indicate to all LDP peers that they should flush all MAC addresses learned from PE-C. This will lead to a broadcasting of packets addressing affected hosts and re-learning process in case an alternative route exists.

Note that the message described here is different than the message described in draft-ietf-l2vpn-vpls-ldp-xx.txt, Virtual Private LAN Services over MPLS. The difference is in the interpretation and action performed in the receiving PE. According the draft definition, upon receipt of a MAC-withdraw message, all MAC addresses, except the ones learned from the source PE, are flushed. This section specifies that all MAC addresses learned from the source are flushed. This message has been implemented as an LDP address message with vendor-specific type, length, value (TLV), and is called the flush-all-from-ME message.
The draft definition message is currently used in management VPLS which is using RSTP for recovering from failures in Layer 2 topologies. The mechanism described in this document represent an alternative solution.

The advantage of this approach (as compared to RSTP based methods) is that only MAC-affected addresses are flushed and not the full forwarding database. While this method does not provide a mechanism to secure alternative loop-free topology, the convergence time is dependent on the speed of the given CE device will open alternative link (L2-B switch in Figure 46) as well as on the speed PE routers will flush their FDB.

In addition, this mechanism is effective only if PE and CE are directly connected (no hub or bridge) as it reacts to physical failure of the link.
VPLS Service Considerations

This section describes various 7210 SAS service features and any special capabilities or considerations as they relate to VPLS services.

SAP Encapsulations

VPLS services are designed to carry Ethernet frame payloads, so it can provide connectivity between any SAPs that pass Ethernet frames. The following SAP encapsulations are supported on the VPLS service:

- Ethernet null
- Ethernet Dot1q
- Ethernet Dot1q Default
- Ethernet Dot1q Explicit Null

VLAN Processing

The SAP encapsulation definition on Ethernet ingress ports defines which VLAN tags are used to determine the service that the packet belongs:

1. Null encapsulation defined on ingress — Any VLAN tags are ignored and the packet goes to a default service for the SAP.
2. Dot1q encapsulation defined on ingress — Only first label is considered.
3. Dot1q Default encapsulation defined on ingress — Tagged packets not matching any of the configured VLAN encapsulations would be accepted. This is like a default SAP for tagged packets.
4. Dot1q Explicit Null encapsulation defined on ingress — Any untagged or priority tagged packets will be accepted.
BGP Auto-Discovery for LDP VPLS

BGP Auto Discovery (BGP AD) for LDP VPLS is a framework for automatically discovering the endpoints of a Layer 2 VPN offering an operational model similar to that of an IP VPN. This model allows carriers to leverage existing network elements and functions, including but not limited to, route reflectors and BGP policies to control the VPLS topology.

BGP AD is an excellent complement to an already established and well deployed Layer 2 VPN signaling mechanism target LDP providing one touch provisioning for LDP VPLS where all the related PEs are discovered automatically. The service provider may make use of existing BGP policies to regulate the exchanges between PEs in the same, or in different, autonomous system (AS) domains. The addition of BGP AD procedures does not require carriers to uproot their existing VPLS deployments and to change the signaling protocol.

BGP AD Overview

The BGP protocol establishes neighbor relationships between configured peers. An open message is sent after the completion of the three-way TCP handshake. This open message contains information about the BGP peer sending the message. This message contains Autonomous System Number (ASN), BGP version, timer information and operational parameters, including capabilities. The capabilities of a peer are exchanged using two numerical values: the Address Family Identifier (AFI) and Subsequent Address Family Identifier (SAFI). These numbers are allocated by the Internet Assigned Numbers Authority (IANA). BGP AD uses AFI 65 (L2VPN) and SAFI 25 (BGP VPLS).

Information Model

Following is the establishment of the peer relationship, the discovery process begins as soon as a new VPLS service instance is provisioned on the PE.

Two VPLS identifiers are used to indicate the VPLS membership and the individual VPLS instance:

- **VPLS-ID** — Membership information, unique network wide identifier; same value assigned for all VPLS switch instances (VSI) belonging to the same VPLS; encodable and carried as a BGP extended community in one of the following formats:
  - A two-octet AS specific extended community
  - An IPv4 address specific extended community
- VSI-ID— The unique identifier for each individual VSI, built by concatenating a route
distinguisher (RD) with a 4 bytes identifier (usually the system IP of the VPLS PE);
encoded and carried in the corresponding BGP NLRI.

In order to advertise this information, BGP AD employs a simplified version of the BGP VPLS
NLRI where just the RD and the next 4 bytes are used to identify the VPLS instance. There is no
need for Label Block and Label Size fields as T-LDP will take care of signaling the service labels
later on.

The format of the BGP AD NLRI is very similar with the one used for IP VPN as depicted in
Figure 47. The system IP may be used for the last 4 bytes of the VSI ID further simplifying the
addressing and the provisioning process.

![Figure 47: BGP AD NLRI versus IP VPN NLRI](image)

Network Layer Reachability Information (NLRI) is exchanged between BGP peers indicating how
to reach prefixes. The NLRI is used in the Layer 2 VPN case to tell PE peers how to reach the VSI
rather than specific prefixes. The advertisement includes the BGP next hop and a route target
(RT). The BGP next hop indicates the VSI location and is used in the next step to determine which
signaling session is used for pseudowire signaling. The RT, also coded as an extended community,
can be used to build a VPLS full mesh or a HVPLS hierarchy through the use of BGP import or
export policies.

BGP is only used to discover VPN endpoints and the corresponding far end PEs. It is not used to
signal the pseudowire labels. This task remains the responsibility of targeted-LDP (T-LDP).

---

FEC Element for T-LDP Signaling

Two LDP FEC elements are defined in RFC 4447, PW Setup & Maintenance Using LDP. The
original pseudowire-ID FEC element 128 (0x80) employs a 32-bit field to identify the virtual
circuit ID and it was used extensively in the initial VPWS and VPLS deployments. The simple
format is easy to understand but it does not provide the required information model for BGP
autodiscovery function. In order to support BGP AD and other new applications a new Layer 2
FEC element, the generalized FEC (0x81) is required.
The generalized pseudowire-ID FEC element has been designed for auto discovery applications. It provides a field, the address group identifier (AGI), that is used to signal the membership information from the VPLS-ID. Separate address fields are provided for the source and target address associated with the VPLS endpoints called the Source Attachment Individual Identifier (SAII) and respectively, Target Attachment Individual Identifier (TAII). These fields carry the VSI ID values for the two instances that are to be connected through the signaled pseudowire.

The detailed format for FEC 129 is depicted in Figure 48.

![Figure 48: Generalized Pseudowire-ID FEC Element](image)

Each of the FEC fields are designed as a sub-TLV equipped with its own type and length providing support for new applications. To accommodate the BGP AD information model the following FEC formats are used:

- AGI (type 1) is identical in format and content with the BGP extended community attribute used to carry the VPLS-ID value.
- Source AII (type 1) is a 4 bytes value destined to carry the local VSI-id (outgoing NLRI minus the RD).
• Target AII (type 1) is a 4 bytes value destined to carry the remote VSI-ID (incoming NLRI minus the RD).
BGP-AD and Target LDP (T-LDP) Interaction

BGP is responsible for discovering the location of VSIs that share the same VPLS membership. LDP protocol is responsible for setting up the pseudowire infrastructure between the related VSIs by exchanging service specific labels between them.

Once the local VPLS information is provisioned in the local PE, the related PEs participating in the same VPLS are identified through BGP AD exchanges. A list of far-end PEs is generated and triggers the creation, if required, of the necessary T-LDP sessions to these PEs and the exchange of the service specific VPN labels. The steps for the BGP AD discovery process and LDP session establishment and label exchange are shown in Figure 49.

Figure 49: BGP-AD and T-LDP Interaction

Key:

1. Establish I-BGP connectivity RR.
2. Configure VPN (10) on edge node (PE3).
3. Announce VPN to RR using BGP-AD.
4. Send membership update to each client of the cluster.
5. LDP exchange or inbound FEC filtering (IFF) of non-match or VPLS down.
6. Configure VPN (10) on edge node (PE2).
7. Announce VPN to RR using BGP-AD.
8. Send membership update to each client of the cluster.
9. LDP exchange or inbound FEC filtering (IFF) of non-match or VPLS down.
10. Complete LDP bidirectional pseudowire establishment FEC 129.

SDP Usage

Service Access Points (SAP) are linked to transport tunnels using Service Distribution Points (SDP). The service architecture of the 7210 platform allows services to be abstracted from the transport network.

MPLS transport tunnels are signaled using the Resource Reservation Protocol (RSVP-TE) or by the Label Distribution Protocol (LDP). The capability to automatically create an SDP only exists for LDP based transport tunnels. Using a manually provisioned SDP is available for both RSVP-TE and LDP transport tunnels. Refer to the appropriate 7210 SAS OS MPLS Guide for more information about MPLS, LDP, and RSVP.

Automatic Creation of SDPs

When BGP AD is used for LDP VPLS and LDP is used as the transport tunnel there is no requirement to manually create an SDP. The LDP SDP can be automatically instantiated using the information advertised by BGP AD. This simplifies the configuration on the service node.

Enabling LDP on the IP interfaces connecting all nodes between the ingress and the egress, builds transport tunnels based on the best IGP path. LDP bindings are automatically built and stored in the hardware. These entries contain an MPLS label pointing to the best next hop along the best path toward the destination.

When two endpoints need to connect and no SDP exists, a new SDP will automatically be constructed. New services added between two endpoints that already have an automatically created SDP will be immediately used. No new SDP will be constructed. The far-end information is gleaned from the BGP next hop information in the NLRI. When services are withdrawn with a BGP_Unreach_NLRI, the automatically established SDP will remain up as long as at least one service is connected between those endpoints. An automatically created SDP will be removed and the resources released when the only or last service is removed.
Manually Provisioned SDP

The carrier is required to manually provision the SDP if they create transport tunnels using RSVP-TE. Operators have the option to choose a manually configured SDP, if they use LDP as the tunnel signaling protocol. The functionality is the same regardless of the signaling protocol.

Creating a BGP-AD enabled VPLS service on an ingress node with the manually provisioned SDP option causes the Tunnel Manager to search for an existing SDP that connects to the far-end PE. The far-end IP information is gleaned from the BGP next hop information in the NLRI. If a single SDP exists to that PE, it is used. If no SDP is established between the two endpoints, the service remains down until a manually configured SDP becomes active.

When multiple SDPs exist between two endpoints, the tunnel manager selects the appropriate SDP. The algorithm preferred SDPs with the best (lower) metric. Should there be multiple SDPs with equal metrics, the operational state of the SDPs with the best metric is considered. If the operational state is the same, the SDP with the higher sdp-id is used. If an SDP with a preferred metric is found with an operational state that is not active, the tunnel manager flags it as ineligible and restarts the algorithm.

Automatic Instantiation of Pseudowires (SDP Bindings)

The choice of manual or auto provisioned SDPs has limited impact on the amount of required provisioning. Most of the savings are achieved through the automatic instantiation of the pseudowire infrastructure (SDP bindings). This is achieved for every auto-discovered VSIs through the use of the pseudowire template concept. Each VPLS service that uses BGP AD contains the “pw-template-binding” option defining specific layer 2 VPN parameters. This command references a “pw-template” which defines the pseudowire parameters. The same “pw-template” may be referenced by multiple VPLS services. As a result, changes to these pseudowire templates have to be treated with great care as they may impact many customers at once.

The Alcatel-Lucent implementation provides for safe handling of pseudowire templates. Changes to the pseudowire templates are not automatically propagated. Tools are provided to evaluate and distribute the changes. The following command is used to distribute changes to a “pw-template” at the service level to one or all services that use that template.

PERs-4# tools perform service id 300 eval-pw-template 1 allow-service-impact

If the service ID is omitted, then all services are updated. The type of change made to the “pw-template” influences how the service is impacted.

1. Adding or removing a split-horizon-group will cause the router to destroy the original object and recreate using the new value.
2. Changing parameters in the `vc-type {ether | vlan}` command requires LDP to re-signal the labels.

Both of these changes affect the services. Other changes are not service affected.

---

**Mixing Statically Configured and Auto-Discovered Pseudowires in a VPLS service**

The services implementation allows for manually provisioned and auto-discovered pseudowire (SDP bindings) to co-exist in the same VPLS instance (for example, both FEC128 and FEC 129 are supported). This allows for gradual introduction of auto discovery into an existing VPLS deployment.

As FEC 128 and 129 represent different addressing schemes, it is important to make sure that only one is used at any point in time between the same two VPLS instances. Otherwise, both pseudowires may become active causing a loop that might adversely impact the correct functioning of the service. It is recommended that FEC128 pseudowire be disabled as soon as the FEC129 addressing scheme is introduced in a portion of the network. Alternatively, RSTP may be used during the migration as a safety mechanism to provide additional protection against operational errors.

**Resiliency Schemes**

The use of BGP-AD on the network side, or in the backbone, does not affect the different resiliency schemes Alcatel-Lucent has developed in the access network. This means that both Multi-Chassis Link Aggregation (MC-LAG) and Management-VPLS (M-VPLS) can still be used.

BGP-AD may co-exist with Hierarchical-VPLS (H-VPLS) resiliency schemes (for example, dual homed MTU-s devices to different PE-rs nodes) using existing methods (M-VPLS and statically configured Active or Standby pseudowire endpoint).

If provisioned SDPs are used by BGP AD, M-VPLS may be employed to provide loop avoidance. However, it is currently not possible to auto-discover active or standby pseudowires and to instantiate the related endpoint.
Routed VPLS

Routed VPLS (R-VPLS) allows a VPLS instance to be associated with an IES IP interface.

**NOTE:** This is supported only in 7210 SAS-M in Access-Uplink mode and not in a Network mode.

Within an R-VPLS service, traffic with a destination MAC matching that of the associated IP interface is routed based on the IP forwarding table; all other traffic is forwarded based on the VPLS forwarding table.

The R-VPLS service can be associated with an IPv4 interface and supports only static routing. It is primarily designed for use of inband management of the node when operating the node in Access-Uplink mode. It is useful for an inband management of ring for 7210 nodes using a single IPv4 subnet.

**NOTE:** R-VPLS is primarily supported for inband management of the node and not for use to provide customer service.

IES IP Interface Binding

A standard IP interface within an existing IES service context may be bound to a service name. A VPLS service only supports binding for a single IP interface.

While an IP interface may only be bound to a single VPLS service, the routing context containing the IP interface (IES) may have other IP interfaces bound to other VPLS service contexts. In other words, Routed VPLS allows the binding of IP interfaces in IES services to be bound to VPLS services.

Assigning a Service Name to a VPLS Service

When a service name is applied to any service context, the name and service ID association is registered with the system. A service name cannot be assigned to more than one service ID. Special consideration is given to a service name that is assigned to a VPLS service that has the “configure>service>vpls>allow-ip-int-binding” command is enabled. If a name is applied to the VPLS service while the flag is set, the system scans the existing IES services for an IP interface that is bound to the specified service name. If an IP interface is found, the IP interface is attached to the VPLS service associated with the name. Only one interface can be bound to the specified name.

If the allow-ip-int-binding command is not enabled on the VPLS service, the system does not attempt to resolve the VPLS service name to an IP interface. As soon as the allow-ip-int-binding
flag is configured on the VPLS, the corresponding IP interface is adhered and become operational up. There is no need to toggle the shutdown or no shutdown command.

If an IP interface is not currently bound to the service name used by the VPLS service, no action is taken at the time of the service name assignment.

---

**Service Binding Requirements**

In the event that the defined service name is created on the system, the system checks to ensure that the service type is VPLS. If the created service type is VPLS, the IP interface is eligible to enter the operationally upstate.

---

**Bound Service Name Assignment**

In the event that a bound service name is assigned to a service within the system, the system first checks to ensure the service type is VPLS. Secondly the system ensures that the service is not already bound to another IP interface through the service name. If the service type is not VPLS or the service is already bound to another IP interface through the service ID, the service name assignment fails.

A single VPLS instance cannot be bound to two separate IP interfaces.

---

**Binding a Service Name to an IP Interface**

An IP interface within an IES service context may be bound to a service name at anytime. Only one interface can be bound to a service. When an IP interface is bound to a service name and the IP interface is administratively up, the system scans for a VPLS service context using the name and takes the following actions:

- If the name is not currently in use by a service, the IP interface is placed in an operationally down: Non-existent service name or inappropriate service type state.
- If the name is currently in use by a non-VPLS service or the wrong type of VPLS service, the IP interface is placed in the operationally down: Non-existent service name or inappropriate service type state.
- If the name is currently in use by a VPLS service without the allow-ip-int-binding flag set, the IP interface is placed in the operationally down: VPLS service allow-ip-intbinding flag not set state. There is no need to toggle the shutdown or no shutdown command.
- If the name is currently in use by a valid VPLS service and the allow-ip-int-binding flag is set, the IP interface is eligible to be placed in the operationally up state depending on other operational criteria being met.
IP Interface Attached VPLS Service Constraints

Once a VPLS service has been bound to an IP interface through its service name, the service name assigned to the service cannot be removed or changed unless the IP interface is first unbound from the VPLS service name.

A VPLS service that is currently attached to an IP interface cannot be deleted from the system unless the IP interface is unbound from the VPLS service name.

The allow-ip-int-binding flag within an IP interface attached VPLS service cannot be reset. The IP interface must first be unbound from the VPLS service name to reset the flag.

IP Interface and VPLS Operational State Coordination

When the IP interface is successfully attached to a VPLS service, the operational state of the IP interface is dependent upon the operational state of the VPLS service.

The VPLS service itself remains down until at least one virtual port (SAP, spoke-SDP or Mesh-SDP) is operational.

IP Interface MTU and Fragmentation

In 7210 SAS-M Access-Uplink mode, VPLS service MTU is not supported. The user must ensure that the port MTU is configured appropriately so that the largest packet traversing through any of the SAPs (virtual ports) of the VPLS service can be forwarded out of any of the SAPs. VPLS services do not support fragmentation and can discard packets larger than the configured port MTU.

When an IP interface is associated with a VPLS service, the IP-MTU is based on either the administrative value configured for the IP interface or an operational value derived from port MTU, of all the SAPs configured in the service. The port MTU excluding the Layer 2 Header and tags for all the ports which have SAPs configured in this VPLS service are considered and the minimum value among those are computed (which is called computed MTU). The operational value of the IP interface is set as follows:

- If the configured (administrative) value of IP MTU is greater than the computed MTU, then the operational IP MTU is set to the computed MTU.
- If the configured (administrative) value of IP MTU is lesser than or equal to the computed MTU, then operational IP MTU is set to the configured (administrative) value of IP MTU.
Unicast IP Routing into a VPLS Service

The IP interface MTU parameters may be changed at anytime.

ARP and VPLS FIB Interactions

Two address-oriented table entries are used when routing into a VPLS service. On the routing side, an ARP entry is used to determine the destination MAC address used by an IP next-hop. In the case where the destination IP address in the routed packet is a host on the local subnet represented by the VPLS instance, the destination IP address itself is used as the next-hop IP address in the ARP cache lookup. If the destination IP address is in a remote subnet that is reached by another router attached to the VPLS service, the routing lookup returns the local IP address on the VPLS service of the remote router is returned. If the next-hop is not currently in the ARP cache, the system generates an ARP request to determine the destination MAC address associated with the next-hop IP address. IP routing to all destination hosts associated with the next-hop IP address stops until the ARP cache is populated with an entry for the next-hop. The dynamically populated ARP entries age out according to the ARP aging timer.

**NOTE:** In 7210 static ARP, entries cannot be used.

The second address table entry that affects VPLS routed packets is the MAC destination lookup in the VPLS service context. The MAC associated with the ARP table entry for the IP next-hop may or may not currently be populated in the VPLS Layer 2FIB table. While the destination MAC is unknown (not populated in the VPLS FIB), the system is flooded with all packets destined to that MAC (routed or bridged) to all virtual ports within the VPLS service context. Once the MAC is known (populated in the VPLS FIB), all packets destined to the MAC (routed or bridged) is targeted to the specific virtual port where the MAC has been learned. As with ARP entries, static MAC entries may be created in the VPLS FIB. Dynamically learned MAC addresses are allowed to age out or be flushed from the VPLS FIB while static MAC entries always remain associated with a specific virtual port. Dynamic MACs may also be relearned on another VPLS virtual port than the current virtual port in the FIB. In this case, the system automatically moves the MAC FIB entry to the new VPLS virtual port.

**NOTE:** In 7210 SAS, whenever a MAC entry is removed from the VPLS FIB (either explicitly by the user or due to MAC aging or mac-move), ARP entries which match this MAC address is removed from the ARP cache. Though the VPLS FIB entries are not removed; an ARP entry ages out and is removed from the ARP cache.

**NOTE:** If the VPLS FIB limit is reached and we are no longer able to learn new MAC address, ARP will also not be learnt.
Routed VPLS Specific ARP Cache Behavior

In typical routing behavior, the system uses the IP route table to select the egress interface and then at the egress forwarding engine, an ARP entry is used forward the packet to the appropriate Ethernet MAC. With routed VPLS, the egress IP interface may be represented by multiple egress (VPLS service virtual ports).

The following tables describes how the ARP cache and MAC FIB entry states interact.

<table>
<thead>
<tr>
<th>ARP Cache Entry</th>
<th>MAC FIB Entry</th>
<th>Routing or System behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP Cache Miss (No Entry)</td>
<td>Known or Unknown</td>
<td>Triggers a request to control plane ARP processing module, to send out an ARP request, out of all the SAPs. (also known as virtual ports) of the VPLS instance.</td>
</tr>
<tr>
<td>ARP Cache Hit</td>
<td>Known</td>
<td>Forward to specific VPLS virtual port or SAP.</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>This behavior cannot happen typically in 7210 SAS, as and when a L2 entry is removed from the FDB, the matching MAC address is also removed from the ARP cache.</td>
</tr>
</tbody>
</table>

The allow-ip-int-binding VPLS Flag

The allow-ip-int-binding flag on a VPLS service context is used to inform the system that the VPLS service is enabled for routing support. The system uses the setting of the flag as a key to determine what type of ports the VPLS service may span.

The system also uses the flag state to define which VPLS features are configurable on the VPLS service to prevent enabling a feature that is not supported when routing support is enabled.

Routed VPLS SAPs only Supported on Standard Ethernet Ports

The allow-ip-int-binding flag is set (routing support enabled) on a VPLS service. SAPs within the service can be created on standard Ethernet ports.
LAG Port Membership Constraints

If a LAG has a non-supported port type as a member, a SAP for the routing-enabled VPLS service cannot be created on the LAG. Once one or more routing enabled VPLS SAPs are associated with a LAG, a non-supported Ethernet port type cannot be added to the LAG membership.

VPLS Feature Support and Restrictions

When the allow-ip-int-binding flag is set on a VPLS service, the following features cannot be enabled (The flag also cannot be enabled while any of these features are applied to the VPLS service.):

- SDPs used in spoke or mesh SDP bindings cannot be configured.
- The VPLS service type cannot be a M-VPLS.
- MVR from Routed VPLS and to another SAP is not supported.
- Default QinQ SAPs is not supported in R-VPLS service.
- The “allow-ip-int-binding” command cannot be used in a VPLS service which is acting as the G8032 control instance.
- IPv4 filters (ingress and egress) can be used with the R-VPLS SAPs. Additionally IP ingress override filters are supported which affects the behavior of the IP filters attached to the R-VPLS SAPs. Please see below for more information about use of ingress override filters.
- MAC filters (ingress and egress) are not supported for use with R-VPLS SAPs.
- VPLS IP interface is not allowed in a R-VPLS service. The converse also holds.
- VPLS service can use either access SAP or Access-Uplink SAPs.
- VPLS service can use the following 'svc-sap-type' values: any, dot1q-preserve and null-star. Only specific SAP combinations are allowed for a given svc-sap-type, except that default QinQ SAPs cannot be used in a R-VPLS service. The allowed SAP combinations are similar to that available in a plain VPLS service and is as given in the table above in the services Chapter (with the exception noted before).
- G8032 or mVPLS/STP based protection mechanism can be used with R-VPLS service. A separate G8032 control instance or a separate mVPLS/STP instance needs to be used and the R-VPLS SAPs needs to be associated with these control instances such that the R-VPLS SAP's forwarding state is driven by the control instance protocols.
- IGMP snooping is not supported in a VPLS service.
VPLS SAP Ingress IP Filter Override

When an IP Interface is attached to a VPLS service context, the VPLS SAP provisioned IP filter for ingress routed packets may be optionally overridden in order to provide special ingress filtering for routed packets. This allows different filtering for routed packets and non-routed packets. The filter override is defined on the IP interface bound to the VPLS service name. A separate override filter may be specified for IPv4 packet types.

If a filter for a given packet type (IPv4) is not overridden, the SAP specified filter is applied to the packet (if defined).

The following tables lists ACL Lookup behavior with and without Ingress Override filter attached to an IES interface in a R-VPLS service:

Table 14: ACL Lookup behavior with Ingress Override filter attached to an IES interface in a R-VPLS service.

<table>
<thead>
<tr>
<th>Type of traffic</th>
<th>SAP Ingress IPv4 Filter</th>
<th>SAP Egress IPv4 Filter</th>
<th>Ingress Override IPv4 Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC != IES IP interface MAC</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and Destination IP on same subnet as IES interface</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination Mac = IES IP interface mac and destination IP not on same subnet as IES IP interface and route to destination IP does not exist</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Destination Mac = IES IP interface mac and destination IP not on same subnet as IES IP interface and route to destination IP exists</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and IP TTL = 1</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 14: ACL Lookup behavior with Ingress Override filter attached to an IES interface in a R-VPLS service.

<table>
<thead>
<tr>
<th>Type of traffic</th>
<th>SAP Ingress IPv4 Filter</th>
<th>SAP Egress IPv4 Filter</th>
<th>Ingress Override IPv4 Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC = IES IP interface MAC and IPv4 packet with Options</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and IPv4 Multicast packet</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 15: ACL Lookup behavior without Ingress Override filter attached to an IES interface in a R-VPLS service.

<table>
<thead>
<tr>
<th>Type of traffic</th>
<th>SAP Ingress IPv4 Filter</th>
<th>SAP Egress IPv4 Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC != IES IP interface MAC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and Destination IP on same subnet as IES IP interface</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Destination Mac = IES IP interface mac and destination IP not on same subnet as IES IP interface and route to destination IP does not exist</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Destination Mac = IES IP interface MAC and destination IP not on same subnet as IES IP interface and route to destination IP exists</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and IP TTL = 1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and IPv4 packet with Options</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Destination MAC = IES IP interface MAC and IPv4 Multicast packet</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
**QoS Support for VPLS SAPs and IP interface in a Routed VPLS service**

- SAP ingress classification (IPv4 and MAC criteria) is supported for SAPs configured in the service. SAP ingress policies cannot be associated with IES IP interface.
- Egress Port based queuing and shaping are available. It is shared among all the SAPs on the port.
- Port based Egress Marking is supported for both routed packets and bridged packets. The existing access egress QoS policy can be used for Dot1p marking.
- IES IP interface bound to routed VPLS services, IES IP interface on access SAPs and IES IP interface on Access-Uplink SAPs are designed for use with inband management of the node. Consequently, they share a common set of queues for CPU bound management traffic. All CPU bound traffic is policed to pre-defined rates before being queued into CPU queues for application processing. The system uses meters per application or a set of applications. It does not allocate meters per IP interface. The possibility of CPU overloading has been reduced by use of these mechanisms. Users must use appropriate security policies either on the node or in the network to ensure that this does not happen.

**Routed VPLS Supported Routing Related Protocols**

The following lists the support available for routing protocols on IP interfaces bound to a VPLS service:

- Static-routing is supported
- BGP is not supported
- OSPF is not supported
- ISIS is not supported
- BFD is not supported
- VRRP is not supported
- ARP is supported
- DHCP Relay is not supported

**Spanning Tree and Split Horizon**

A routed VPLS context supports all spanning tree and port-based split horizon capabilities that a non-routed VPLS service supports.
**Routed VPLS Caveats**

- Static ARP cannot be configured with an IES IP interface that is associated with an R-VPLS, though static MAC can be configured in an R-VPLS service.
- Only Static routes are supported. No dynamic routing protocols are supported.
- Whenever a VPLS FIB entry is removed either due to user action, aging or mac-move, the corresponding ARP entry whose MAC address matches that of the MAC in the FIB is removed from the ARP cache.

**NOTE:** If the VPLS FIB limit is reached and we are no longer able to learn new MAC address, ARP will also not be learnt.
Configuring a VPLS Service with CLI

This section provides information to configure VPLS services using the command line interface.

Topics in this section include:

- Basic Configuration on page 306
- Common Configuration Tasks on page 309
  - Configuring VPLS Components on page 310
    - Creating a VPLS Service on page 311
    - Configuring a VPLS SAP on page 318
      - Configuring VPLS SAPs with Split Horizon on page 328
- Configuring VPLS Redundancy on page 331
  - Creating a Management VPLS for SAP Protection on page 331
  - Configuring Load Balancing with Management VPLS on page 338
- Service Management Tasks on page 351
  - Modifying VPLS Service Parameters on page 351
  - Modifying Management VPLS Parameters on page 352
  - Deleting a VPLS Service on page 354
  - Disabling a VPLS Service on page 354
  - Re-Enabling a VPLS Service on page 355
Basic Configuration

The following fields require specific input (there are no defaults) to configure a basic VPLS service:

- Customer ID (refer to Configuring Customers on page 68)
- For a local service, configure two SAPs, specifying local access ports and encapsulation values.
- For a distributed service, configure a SAP and an SDP (only for 7210 SAS-M devices in network mode) for each far-end node.

The following example displays a sample configuration of a local VPLS service on ALA-1.

For 7210 SAS-M devices configured in access-uplink mode:

*A:SAS-M-A0-2>config>service>vpls# info
---------------------------------------------
  stp
  shutdown
  exit
  sap 1/1/1:10.* create
     ingress
     filter mac 1
     exit
  exit
  sap 1/1/2:10.* create
  exit
no shutdown
---------------------------------------------
*A:SAS-M-A0-2>config>service>vpls#
*A:ALA-1>config>service>vpls# info
---------------------------------------------
...
  vpls 9001 customer 6 create
description "Local VPLS"
  stp
  shutdown
  exit
  sap 1/2/2:0 create
description "SAP for local service"
  exit
  sap 1/1/5:0 create
description "SAP for local service"
  exit
no shutdown
---------------------------------------------
*A:ALA-1>config>service>vpls#
*A:ALA-1>config>service# info
---------------------------------------------
...
  vpls 7 customer 7 create
  stp
  shutdown
  exit
  sap 1/1/21 create
The following example displays a sample configuration of a distributed VPLS service between ALA-1, ALA-2, and ALA-3.

```
vpls 9000 customer 6 create
 shutdown
 description "This is a distributed VPLS."
 stp
 shutdown
 exit
 sap 1/1/5:16 create
 description "VPLS SAP"
 exit
 spoke-sdp 2:22 create
 exit
 no shutdown
 exit
```

```
vpls 9000 customer 6 create
 shutdown
 description "This is a distributed VPLS."
 stp
 shutdown
 exit
 sap 1/1/3:33 create
 description "VPLS SAP"
 exit
 spoke-sdp 2:22 create
 exit
 no shutdown
 exit
```
Configuring a VPLS Service with CLI

description "VPLS SAP"
exit
spoke-sdp 2:22 create
exit
no shutdown
exit
...
----------------------------------------------
*A:ALA-3>config>service#
Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure both local VPLS services and provides the CLI commands.

For VPLS services:

1. Associate VPLS service with a customer ID
2. Define SAPs:
   - Select node(s) and port(s)
   - Optional — Select QoS policies other than the default (configured in `config>qos context`)
   - Optional — Select filter policies (configured in `config>filter context`)
   - Optional — Select accounting policy (configured in `config>log context`)
3. Modify STP default parameters (optional) (see VPLS and Spanning Tree Protocol on page 263)
4. Enable service
Configuring VPLS Components

Use the CLI syntax displayed below to configure the following entities:

- Creating a VPLS Service on page 311
  → Enabling MAC Move on page 312
- Configuring a VPLS SAP on page 318
  → Local VPLS SAPs on page 318
  → Configuring SAP-Specific STP Parameters on page 321
  → STP SAP Operational States on page 325
- Configuring VPLS Redundancy on page 331
Creating a VPLS Service

Use the following CLI syntax to create a VPLS service:

**CLI Syntax:**
```plaintext
config>service# vpls service-id [customer customer-id] [create]
config>service# vpls service-id [customer customer-id] [create]
 [vpn vpn-id] [m-vpls] (for 7210 SAS-M in Network mode)
config>service# vpls service-id [customer customer-id] [create]
 [vpn vpn-id] [m-vpls] [service-id] [customer <customer-id>] [create]
 [vpn <vpn-id>] [m-vpls] [svc-sap-type {null-star|dot1q-preserve|any}]
 [customer-vid <vlan-id>] (for 7210 SAS-M in Access uplink mode)
description description-string
no shutdown
```

The following example displays a VPLS configuration:

```plaintext
*A:ALA-1>config>service>vpls# info

... vpls 1000 customer 1 create
description "This is a VPLS with NULL SAP"
 stp
 shutdown
 exit
 no shutdown
 exit
vpls 2000 customer 6 create
description "This is a Distributed VPLS with DOT1Q SAP"
 stp
 shutdown
 exit
 no shutdown
 exit
...------------------------------
*A:ALA-1>config>service>vpls#
```
Enabling MAC Move

The **mac-move** feature is useful to protect against undetected loops in your VPLS topology as well as the presence of duplicate MACs in a VPLS service. For example, if two clients in the VPLS have the same MAC address, the VPLS will experience a high re-learn rate for the MAC and will shut down the SAP when the threshold is exceeded.

Use the following CLI syntax to configure **mac-move** parameters.

**CLI Syntax:**
```
config>service# vpls service-id [customer customer-id] [vpn vpn-id] [m-vpls]
 mac-move
 move-frequency frequency
 retry-timeout timeout
 no shutdown
```

The following example displays mac-move information.

```
*A:ALA-1# show service id 6 all
....
*A:ALA-1#

Forwarding Database specifics

Service Id : 1150 Mac Move : Disabled
Mac Move Rate : 2 Mac Move Timeout : 10
Table Size : 1000 Total Count : 1000
Learned Count : 1000 Static Count : 0
Remote Age : 900 Local Age : 300
High WaterMark : 95% Low Watermark : 90%
Mac Learning : Enabl Discard Unknown : Dsabl
Mac Aging : Enabl Relearn Only : True

....
*A:ALA-1#
```
Configuring STP Bridge Parameters in a VPLS

Modifying some of the Spanning Tree Protocol parameters allows the operator to balance STP between resiliency and speed of convergence extremes. Modifying particular parameters, mentioned below, must be done in the constraints of the following two formulae:

\[
2 \times (Bridge\_Forward\_Delay - 1.0\text{ seconds}) \geq Bridge\_Max\_Age \\
Bridge\_Max\_Age \geq 2 \times (Bridge\_Hello\_0\_Time + 1.0\text{ seconds})
\]

The following STP parameters can be modified at VPLS level:

- Bridge STP Admin State on page 313
- Mode on page 314
- Bridge Priority on page 314
- Max Age on page 315
- Forward Delay on page 315
- Hello Time on page 316
- MST Instances on page 317
- MST Max Hops on page 317
- MST Name on page 317
- MST Revision on page 317

STP always uses the locally configured values for the first three parameters (Admin State, Mode and Priority).

For the parameters Max Age, Forward Delay, Hello Time and Hold Count, the locally configured values are only used when this bridge has been elected root bridge in the STP domain, otherwise the values received from the root bridge are used. The exception to this rule is: when STP is running in RSTP mode, the Hello Time is always taken from the locally configured parameter. The other parameters are only used when running mode MSTP.

Bridge STP Admin State

The administrative state of STP at the VPLS level is controlled by the shutdown command.

When STP on the VPLS is administratively disabled, any BPDUs are forwarded transparently through the 7210 SAS M. When STP on the VPLS is administratively enabled, but the administrative state of a SAP is down, BPDUs received on such a SAP are discarded.

**CLI Syntax:**

```
cfg>service>vpls service-id# stp
 no shutdown
```
Mode

To be compatible with the different iterations of the IEEE 802.1D standard, the 7210 SAS M supports several variants of the Spanning Tree protocol:

- **rstp** — Rapid Spanning Tree Protocol (RSTP) compliant with IEEE 802.1D-2004 - default mode.
- **dot1w** — Compliant with IEEE 802.1w.
- **comp-dot1w** — Operation as in RSTP but backwards compatible with IEEE 802.1w (this mode was introduced for interoperability with some MTU types).
- **mstp** — Compliant with the Multiple Spanning Tree Protocol specified in IEEE 802.1Q REV/D5.0-09/2005. This mode of operation is only supported in an mVPLS.
- **pmstp** — Compliant with the Multiple Spanning Tree Protocol specified in IEEE 802.1Q REV/D3.0-04/2005 but with some changes to make it backwards compatible to 802.1Q 2003 edition and IEEE 802.1w.

See section *Spanning Tree Operating Modes on page 263* for details on these modes.

**CLI Syntax:**
```
config>service>vpls service-id# stp
 mode {rstp | comp-dot1w | dot1w | mstp|pmstp}
 Default: rstp
```

Bridge Priority

The **bridge-priority** command is used to populate the priority portion of the bridge ID field within outbound BPDUs (the most significant 4 bits of the bridge ID). It is also used as part of the decision process when determining the best BPDU between messages received and sent.

All values will be truncated to multiples of 4096, conforming with IEEE 802.1t and 802.1D-2004.

**CLI Syntax:**
```
config>service>vpls service-id# stp
 priority bridge-priority
 Range: 1 to 65535
 Default: 32768
 Restore Default: no priority
```
Max Age

The **max-age** command indicates how many hops a BPDU can traverse the network starting from the root bridge. The message age field in a BPDU transmitted by the root bridge is initialized to 0. Each other bridge will take the message_age value from BPDU's received on their root port and increment this value by 1. The message_age thus reflects the distance from the root bridge. BPDU's with a message age exceeding max-age are ignored.

STP uses the max-age value configured in the root bridge. This value is propagated to the other bridges by the BPDU's. The default value of **max-age** is 20. This parameter can be modified within a range of 6 to 40, limited by the standard STP parameter interaction formulae.

**CLI Syntax:**
```
config>service>vpls service-id# stp
max-age max-info-age
```

- **Range:** 6 to 40 seconds
- **Default:** 20 seconds
- **Restore Default:** no max-age

Forward Delay

RSTP, as defined in the IEEE 802.1D-2004 standards, will normally transition to the forwarding state by a handshaking mechanism (rapid transition), without any waiting times. If handshaking fails (e.g. on shared links, see below), the system falls back to the timer-based mechanism defined in the original STP (802.1D-1998) standard.

A shared link is a link with more than two Ethernet bridges (for example, a shared 10/100BaseT segment). The **port-type** command is used to configure a link as point-to-point or shared (see section SAP Link Type on page 324).

For timer-based transitions, the 802.1D-2004 standard defines an internal variable forward-delay, which is used in calculating the default number of seconds that a SAP spends in the discarding and learning states when transitioning to the forwarding state. The value of the forward-delay variable depends on the STP operating mode of the VPLS instance:

- in **rstp** mode, but only when the SAP has not fallen back to legacy STP operation, the value configured by the **hello-time** command is used;
- in all other situations, the value configured by the **forward-delay** command is used.

**CLI Syntax:**
```
config>service>vpls service-id# stp
forward-delay seconds
```

- **Range:** 4 to 30 seconds
- **Default:** 15 seconds
- **Restore Default:** no forward-delay
Hello Time

The **hello-time** command configures the Spanning Tree Protocol (STP) hello time for the Virtual Private LAN Service (VPLS) STP instance.

The *seconds* parameter defines the default timer value that controls the sending interval between BPDU configuration messages by this bridge, on ports where this bridge assumes the designated role.

The active hello time for the spanning tree is determined by the root bridge (except when the STP is running in RSTP mode, then the hello time is always taken from the locally configured parameter).

The configured hello-time value can also be used to calculate the bridge forward delay, see [Forward Delay on page 315](#).

**CLI Syntax:**
```
config>service>vpls service-id# stp
 hello-time hello-time
```
- **Range:** 1 to 10 seconds
- **Default:** 2 seconds
- **Restore Default:** no hello-time

Hold Count

The **hold-count** command configures the peak number of BPDUs that can be transmitted in a period of one second.

**CLI Syntax:**
```
config>service>vpls service-id# stp
 hold-count count-value
```
- **Range:** 1 to 10
- **Default:** 6
- **Restore Default:** no hold-count
**MST Instances**

You can create up to 15 MST-instances. They can range from 1 to 4094. By changing path-cost and priorities, you can make sure that each instance will form its own tree within the region, thus making sure different VLANs follow different paths.

You can assign non overlapping VLAN ranges to each instance. VLANs that are not assigned to an instance are implicitly assumed to be in instance 0, which is also called the CIST. This CIST cannot be deleted or created.

The parameter that can be defined per instance are mst-priority and vlan-range.

- mst-priority — The bridge-priority for this specific mst-instance. It follows the same rules as bridge-priority. For the CIST, the bridge-priority is used.
- vlan-range — The VLANs are mapped to this specific mst-instance. If no VLAN-ranges are defined in any mst-instances, then all VLANs are mapped to the CIST.

**MST Max Hops**

The mst-max-hops command defines the maximum number of hops the BPDU can traverse inside the region. Outside the region max-age is used.

**MST Name**

The MST name defines the name that the operator gives to a region. Together with MST revision and the VLAN to MST-instance mapping, it forms the MST configuration identifier. Two bridges that have the same MST configuration identifier form a region if they exchange BPDUs.

**MST Revision**

The MST revision together with MST-name and VLAN to MST-instance mapping define the MST configuration identifier. Two bridges that have the same MST configuration identifier form a region if they exchange BPDUs.
Configuring a VPLS SAP

A default QoS policy is applied to each ingress SAP. Additional QoS policies can be configured in the `config>qos` context. There are no default filter policies. Filter policies are configured in the `config>filter` context and must be explicitly applied to a SAP.

Use the following CLI syntax to create:

- Local VPLS SAPs on page 318
- Distributed VPLS SAPs on page 319

Local VPLS SAPs

To configure a local VPLS service, enter the `sap sap-id` command twice with different port IDs in the same service configuration.

```
*A:ALA-1>config>service# info
--
vpls 1150 customer 1 create
 fdb-table-size 1000
 fdb-table-low-wmark 5
 fdb-table-high-wmark 80
 local-age 60
 stp
 shutdown
 exit
 sap 1/1/1:1155 create
 exit
 sap 1/1/2:1150 create
 exit
 no shutdown
 exit
--
*A:ALA-1>config>service#`
```
Distributed VPLS SAPs

**Note:** Distributed VPLS service is not supported on 7210 SAS M devices configured in Access uplink mode.

To configure a distributed VPLS service, you must configure service entities on originating and far-end nodes. You must use the same service ID on all ends (for example, create a VPLS service ID 9000 on ALA-1, ALA-2, and ALA-3). A distributed VPLS consists of a SAP on each participating node and an SDP bound to each participating node.

For SDP configuration information, see Configuring an SDP on page 70. For SDP binding information, see Configuring SDP Bindings on page 329.

The following example displays a configuration of VPLS SAPs configured for ALA-1, ALA-2, and ALA-3.

```
*A:ALA-3>config>service# info
--
vpls 1150 customer 1 create
 fdb-table-size 1000
 fdb-table-low-wmark 5
 fdb-table-high-wmark 80
 local-age 60
 stp
 shutdown
 exit
 sap 1/1/1:1155 create
 exit
 sap 1/1/2:1150 create
 exit
 no shutdown
 exit
--
*A:ALA-3>config>service#
```
Configuring Default QinQ SAPs to Pass all Traffic from Access to Access-uplink Port without any Tag Modifications

Note: Default QinQ SAPs are supported only on 7210 SAS-M devices configured in access-uplink mode.

The following example displays the VPLS SAP configuration of Default QinQ SAPs:

ALA-1>config>service# vpls 9 customer 1 svc-sap-type null-star create
    shutdown
    stp
    shutdown
    exit
sap 1/1/5:*.* create
    statistics
    ingress
    received-count
    exit
    exit
exit
sap 1/1/6:*.* create
    statistics
    ingress
    received-count
    exit
    exit
exit
exit
Configuring SAP-Specific STP Parameters

When a VPLS has STP enabled, each SAP within the VPLS has STP enabled by default. The operation of STP on each SAP is governed by:

- SAP STP Administrative State on page 321
- SAP Virtual Port Number on page 322
- SAP Priority on page 322
- SAP Path Cost on page 323
- SAP Edge Port on page 323
- SAP Auto Edge on page 324
- SAP Link Type on page 324
- MST Instances on page 324

SAP STP Administrative State

The administrative state of STP within a SAP controls how BPDUs are transmitted and handled when received. The allowable states are:

- SAP Admin Up
  The default administrative state is up for STP on a SAP. BPDUs are handled in the normal STP manner on a SAP that is administratively up.
- SAP Admin Down
  An administratively down state allows a service provider to prevent a SAP from becoming operationally blocked. BPDUs will not originate out the SAP towards the customer.

If STP is enabled on VPLS level, but disabled on the SAP, received BPDUs are discarded. Discarding the incoming BPDUs allows STP to continue to operate normally within the VPLS service while ignoring the down SAP. The specified SAP will always be in an operationally forwarding state.

NOTE: The administratively down state allows a loop to form within the VPLS.

CLI Syntax:  

```plaintext
config>service>vpls>sap>stp#
[no] shutdown
Range: shutdown or no shutdown
Default: no shutdown (SAP admin up)
```
SAP Virtual Port Number

The virtual port number uniquely identifies a SAP within configuration BPDUs. The internal representation of a SAP is unique to a system and has a reference space much bigger than the 12 bits definable in a configuration BPDU. STP takes the internal representation value of a SAP and identifies it with it’s own virtual port number that is unique to every other SAP defined on the VPLS. The virtual port number is assigned at the time that the SAP is added to the VPLS.

Since the order in which SAPs are added to the VPLS is not preserved between reboots of the system, the virtual port number may change between restarts of the STP instance. To achieve consistency after a reboot, the virtual port number can be specified explicitly.

**CLI Syntax:**
```
config>service>vpls>sap# stp
 port-num number
```
- **Range:** 1 — 2047
- **Default:** (automatically generated)
- **Restore Default:** no port-num

SAP Priority

SAP priority allows a configurable “tie breaking” parameter to be associated with a SAP. When configuration BPDUs are being received, the configured SAP priority will be used in some circumstances to determine whether a SAP will be designated or blocked.

In traditional STP implementations (802.1D-1998), this field is called the port priority and has a value of 0 to 255. This field is coupled with the port number (0 to 255 also) to create a 16 bit value. In the latest STP standard (802.1D-2004) only the upper 4 bits of the port priority field are used to encode the SAP priority. The remaining 4 bits are used to extend the port ID field into a 12 bit virtual port number field. The virtual port number uniquely references a SAP within the STP instance. See SAP Virtual Port Number on page 322 for details on the virtual port number.

STP computes the actual SAP priority by taking the configured priority value and masking out the lower four bits. The result is the value that is stored in the SAP priority parameter. For example, if a value of 0 was entered, masking out the lower 4 bits would result in a parameter value of 0. If a value of 255 was entered, the result would be 240.

The default value for SAP priority is 128. This parameter can be modified within a range of 0 to 255, 0 being the highest priority. Masking causes the values actually stored and displayed to be 0 to 240, in increments of 16.

**CLI Syntax:**
```
config>service>vpls>sap>stp# priority stp-priority
 Range: 0 to 255 (240 largest value, in increments of 16)
 Default: 128
 Restore Default: no priority
```
SAP Path Cost

The SAP path cost is used by STP to calculate the path cost to the root bridge. The path cost in BPDUs received on the root port is incremented with the configured path cost for that SAP. When BPDUs are sent out other egress SAPs, the newly calculated root path cost is used.

STP suggests that the path cost is defined as a function of the link bandwidth. Since SAPs are controlled by complex queuing dynamics, in the 7210 SAS M the STP path cost is a purely static configuration.

The default value for SAP path cost is 10. This parameter can be modified within a range of 1 to 65535, 1 being the lowest cost.

**CLI Syntax:**
```
config>service>vpls>sap>stp#
poly-path-cost sap-path-cost
```

**Range:** 1 to 20000000

**Default:** 10

**Restore Default:** no path-cost

SAP Edge Port

The SAP edge-port command is used to reduce the time it takes a SAP to reach the forwarding state when the SAP is on the edge of the network, and thus has no further STP bridge to handshake with.

The edge-port command is used to initialize the internal OPER_EDGE variable. At any time, when OPER_EDGE is false on a SAP, the normal mechanisms are used to transition to the forwarding state (see Forward Delay on page 315). When OPER_EDGE is true, STP assumes that the remote end agrees to transition to the forwarding state without actually receiving a BPDU with an agreement flag set.

The OPER_EDGE variable will dynamically be set to false if the SAP receives BPDUs (the configured edge-port value does not change). The OPER_EDGE variable will dynamically be set to true if auto-edge is enabled and STP concludes there is no bridge behind the SAP.

When STP on the SAP is administratively disabled and re-enabled, the OPER_EDGE is re-initialized to the value configured for edge-port.

Valid values for SAP edge-port are enabled and disabled with disabled being the default.

**CLI Syntax:**
```
config>service>vpls>sap>stp#
[no] edge-port
```

**Default:** no edge-port
SAP Auto Edge

The SAP `edge-port` command is used to instruct STP to dynamically decide whether the SAP is connected to another bridge.

If auto-edge is enabled, and STP concludes there is no bridge behind the SAP, the `OPER_EDGE` variable will dynamically be set to true. If auto-edge is enabled, and a BPDU is received, the `OPER_EDGE` variable will dynamically be set to true (see SAP Edge Port on page 323).

Valid values for SAP auto-edge are enabled and disabled with enabled being the default.

CLI Syntax:  
```
config>service>vpls>sap>stp#
 [no] auto-edge
 Default: auto-edge
```

SAP Link Type

The SAP `link-type` parameter instructs STP on the maximum number of bridges behind this SAP. If there is only a single bridge, transitioning to forwarding state will be based on handshaking (fast transitions). If more than two bridges are connected by a shared media, their SAPs should all be configured as shared, and timer-based transitions are used.

Valid values for SAP link-type are shared and pt-pt with pt-pt being the default.

CLI Syntax:  
```
config>service>vpls>sap>stp#
 link-type {pt-pt|shared}
 Default: link-type pt-pt
 Restore Default: no link-type
```

MST Instances

The SAP `mst-instance` command is used to create MST instances at the SAP level. MST instance at a SAP level can be created only if MST instances are defined at the service level.

The parameters that can be defined per instance are `mst-path-cost` and `mst-port-priority`.

- `mst-path-cost` — Specifies path-cost within a given MST instance. The path-cost is proportional to link speed.
- `mst-port-priority` — Specifies the port priority within a given MST instance.
STP SAP Operational States

The operational state of STP within a SAP controls how BPDUs are transmitted and handled when received. Defined states are:

- Operationally Disabled
- Operationally Discarding
- Operationally Learning
- Operationally Forwarding

Operationally Disabled

Operationally disabled is the normal operational state for STP on a SAP in a VPLS that has any of the following conditions:

- VPLS state administratively down
- SAP state administratively down
- SAP state operationally down

If the SAP enters the operationally up state with the STP administratively up and the SAP STP state is up, the SAP will transition to the STP SAP discarding state.

When, during normal operation, the router detects a downstream loop behind a SAP, BPDUs can be received at a very high rate. To recover from this situation, STP will transition the SAP to disabled state for the configured forward-delay duration.

Operationally Discarding

A SAP in the discarding state only receives and sends BPDUs, building the local proper STP state for each SAP while not forwarding actual user traffic. The duration of the discarding state is explained in section Forward Delay.

Note: in previous versions of the STP standard, the discarding state was called a blocked state.

Operationally Learning

The learning state allows population of the MAC forwarding table before entering the forwarding state. In this state, no user traffic is forwarded.
Operationally Forwarding

Configuration BPDUs are sent out a SAP in the forwarding state. Layer 2 frames received on the SAP are source learned and destination forwarded according to the FIB. Layer 2 frames received on other forwarding interfaces and destined for the SAP are also forwarded.

SAP BPDU Encapsulation State

IEEE 802.1d (referred as dot1d) and Cisco’s per VLAN Spanning Tree (PVST) BPDU encapsulations are supported on a per SAP basis. The STP is associated with a VPLS service like PVST is per VLAN. The difference between the two encapsulations is in the Ethernet and LLC framing and a type-length-value (TLV) field trailing the BPDU. The encapsulation format cannot be configured by the user, the system automatically determines the encapsulation format based on the BPDUs received on the port.

The following table shows differences between Dot1d and PVST Ethernet BPDU encapsulations based on the interface encap-type field:

### Table 16: SAP BPDU Encapsulation States

<table>
<thead>
<tr>
<th>Field</th>
<th>dot1d encap-type null</th>
<th>dot1d encap-type dot1q</th>
<th>PVST encap-type null</th>
<th>PVST encap-type dot1q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC</td>
<td>01:80:c2:00:00:00</td>
<td>01:80:c2:00:00:00</td>
<td>N/A</td>
<td>01:00:0c:cc:cc:cd</td>
</tr>
<tr>
<td>Source MAC</td>
<td>Sending Port MAC</td>
<td>Sending Port MAC</td>
<td>N/A</td>
<td>Sending Port MAC</td>
</tr>
<tr>
<td>EtherType</td>
<td>N/A</td>
<td>0x81 00</td>
<td>N/A</td>
<td>0x81 00</td>
</tr>
<tr>
<td>Dot1p and CFI</td>
<td>N/A</td>
<td>0xe</td>
<td>N/A</td>
<td>0xe</td>
</tr>
<tr>
<td>Dot1q</td>
<td>N/A</td>
<td>VPLS SAP ID</td>
<td>N/A</td>
<td>VPLS SAP encap value</td>
</tr>
<tr>
<td>Length</td>
<td>LLC Length</td>
<td>LLC Length</td>
<td>N/A</td>
<td>LLC Length</td>
</tr>
<tr>
<td>LLC DSAP SSAP</td>
<td>0x4242</td>
<td>0x4242</td>
<td>N/A</td>
<td>0xaaaa (SNAP)</td>
</tr>
<tr>
<td>LLC CNTL</td>
<td>0x03</td>
<td>0x03</td>
<td>N/A</td>
<td>0x03</td>
</tr>
<tr>
<td>SNAP OUI</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>00 00 0c (Cisco OUI)</td>
</tr>
<tr>
<td>SNAP PID</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>01 0b</td>
</tr>
<tr>
<td>CONFIG</td>
<td>Standard 802.1d</td>
<td>Standard 802.1d</td>
<td>N/A</td>
<td>Standard 802.1d</td>
</tr>
<tr>
<td>TLV: Type &amp; Len</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>58 00 00 00 02</td>
</tr>
</tbody>
</table>
Each SAP has a Read-Only operational state that shows which BPDU encapsulation is currently active on the SAP. The states are:

- **Dot1d** — This state specifies that the switch is currently sending IEEE 802.1d standard BPDU. The BPDU are tagged or non-tagged based on the encapsulation type of the egress interface and the encapsulation value defined in the SAP. A SAP defined on an interface with encapsulation type Dot1q continues in the Dot1d BPDU encapsulation state until a PVST encapsulated BPDU is received in which case, the SAP will convert to the PVST encapsulation state. Each received BPDU must be properly IEEE 802.1q tagged if the interface encapsulation type is defined as Dot1q. PVST BPDU will be silently discarded if received when the SAP is on an interface defined with encapsulation type null.

- **PVST** — This state specifies that the switch is currently sending proprietary encapsulated BPDU. PVST BPDU are only supported on Ethernet interfaces with the encapsulation type set to Dot1q. The SAP continues in the PVST BPDU encapsulation state until a Dot1d encapsulated BPDU is received, in which case, the SAP reverts to the Dot1d encapsulation state. Each received BPDU must be properly IEEE 802.1q tagged with the encapsulation value defined for the SAP. PVST BPDU are silently discarded if received when the SAP is on an interface defined with a null encapsulation type.

Dot1d is the initial and only SAP BPDU encapsulation state for SAPs defined on Ethernet interface with encapsulation type set to null.

---

<table>
<thead>
<tr>
<th>TLV: VLAN</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>VPLS SAP encap value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding</td>
<td>As Required</td>
<td>As Required</td>
<td>N/A</td>
<td>As Required</td>
</tr>
</tbody>
</table>

Table 16: SAP BPDU Encapsulation States (Continued)
Configuring VPLS SAPs with Split Horizon

Note: Split Horizon group is supported only on 7210 SAS-M devices configured in Network mode.

To configure a VPLS service with a split horizon group, add the **split-horizon-group** parameter when creating the SAP. Traffic arriving on a SAP within a split horizon group will not be copied to other SAPs in the same split horizon group.

The following example displays a VPLS configuration with split horizon enabled:

```
*A:ALA-1>config>service# info
--
...vpls 800 customer 6001 vpn 700 create
description "VPLS with split horizon for DSL"
stp
shutdown
exit
sap 1/1/3:100 split-horizon-group DSL-group1 create
description "SAP for residential bridging"
exit
sap 1/1/3:200 split-horizon-group DSL-group1 create
description "SAP for residential bridging"
exit
split-horizon-group DSL-group1
description "Split horizon group for DSL"
exit
no shutdown
exit
...
--
*A:ALA-1>config>service#
```
Configuring SDP Bindings

Note: SDPs are not supported on 7210 SAS-M devices configured in Access uplink mode.

VPLS provides scaling and operational advantages. A hierarchical configuration eliminates the need for a full mesh of VCs between participating devices. Hierarchy is achieved by enhancing the base VPLS core mesh of VCs with access VCs (spoke) to form two tiers. Spoke SDPs are generally created between Layer 2 switches and placed at the Multi-Tenant Unit (MTU). The PE routers are placed at the service provider's Point of Presence (POP). Signaling and replication overhead on all devices is considerably reduced.

A spoke SDP is treated like the equivalent of a traditional bridge port where flooded traffic received on the spoke SDP is replicated on all other “ports” (other spoke SDPs or SAPs) and not transmitted on the port it was received (unless a split horizon group was defined on the spoke SDP, see section Configuring VPLS Spoke SDPs with Split Horizon on page 329).

A spoke SDP connects a VPLS service between two sites and, in its simplest form, could be a single tunnel LSP. A set of ingress and egress VC labels are exchanged for each VPLS service instance to be transported over this LSP. The PE routers at each end treat this as a virtual spoke connection for the VPLS service in the same way as the PE-MTU connections. This architecture minimizes the signaling overhead and avoids a full mesh of VCs and LSPs between the two metro networks.

A VC-ID can be specified with the SDP-ID. The VC-ID is used instead of a label to identify a virtual circuit. The VC-ID is significant between peer SRs on the same hierarchical level. The value of a VC-ID is conceptually independent from the value of the label or any other datalink specific information of the VC.

Configuring VPLS Spoke SDPs with Split Horizon

Note: Split Horizon group is supported only on 7210 SAS-M devices configured in Network mode.

To configure spoke SDPs with a split horizon group, add the split-horizon-group parameter when creating the spoke SDP. Traffic arriving on a SAP or spoke SDP within a split horizon group will not be copied to other SAPs or spoke SDPs in the same split horizon group.

The following example displays a VPLS configuration with split horizon enabled:

```
*A:ALA-1>config>service# info
--
... vpls 800 customer 6001 vpn 700 create
 description "VPLS with split horizon for DSL"
 stp
```
Configuring a VPLS Service with CLI

    shutdown
    exit
    spoke-sdp 51:15 split-horizon-group DSL-group1 create
    exit
    split-horizon-group DSL-group1
        description "Split horizon group for DSL"
    exit
    no shutdown
    exit
    ...
    ----------------------------------------------
    *A:ALA-1>config>service#


Configuring VPLS Redundancy

This section discusses the following service management tasks:

- Creating a Management VPLS for SAP Protection on page 331
- Creating a Management VPLS for Spoke SDP Protection on page 333
- Configuring Load Balancing with Management VPLS on page 338

Creating a Management VPLS for SAP Protection

This section provides a brief overview of the tasks that must be performed to configure a management VPLS for SAP protection and provides the CLI commands, see Figure 50. The tasks below should be performed on both nodes providing the protected VPLS service.

Before configuring a management VPLS, first read VPLS Redundancy on page 272 for an introduction to the concept of management VPLS and SAP redundancy.

1. Create an SDP to the peer node.
2. Create a management VPLS.
3. Define a SAP in the m-vpls on the port towards the 7210 SAS M. Note that the port must be dot1q. The SAP corresponds to the (stacked) VLAN on the 7210 SAS M in which STP is active.
4. Optionally modify STP parameters for load balancing (see Configuring Load Balancing with Management VPLS on page 338).
5. Create an SDP in the m-vpls using the SDP defined in Step 1. Ensure that this SDP runs over a protected LSP.
6. Enable the management VPLS service and verify that it is operationally up.
7. Create a list of VLANs on the port that are to be managed by this management VPLS.
8. Create one or more user VPLS services with SAPs on VLANs in the range defined by Step 6.
Configuring a VPLS Service with CLI

CLI Syntax:  
```
config>service# vpls service-id [customer customer-id] [create] [m-vpls]
 description description-string
 sap sap-id create
 managed-vlan-list
 range vlan-range
 stp
 no shutdown
```

The following example displays a VPLS configuration:

```
*A:ALA-1>config>service# info

vpls 2000 customer 6 m-vpls create
 stp
 no shutdown
 exit
 sap 1/1/1:100 create
 exit
 sap 1/1/2:200 create
 exit
 sap 1/1/3:300 create
 managed-vlan-list
 range 1-50
 exit
 no shutdown
 exit

*A:ALA-1>config>service#
```
Creating a Management VPLS for Spoke SDP Protection

Note: SDPs are not supported on 7210 SAS-M devices configured in Access uplink mode. But, Management VPLS can be used for protection of QinQ uplinks. Please refer to the example listed below.

This section provides a brief overview of the tasks that must be performed to configure a management VPLS for spoke SDP protection and provides the CLI commands, see Figure 51. The tasks below should be performed on all four nodes providing the protected VPLS service.

Before configuring a management VPLS, please first read Configuring a VPLS SAP on page 318 for an introduction to the concept of management VPLS and spoke SDP redundancy.

1. Create an SDP to the local peer node (node ALA-A2 in the example below).
2. Create an SDP to the remote peer node (node ALA-B1 in the example below).
3. Create a management VPLS.
4. Create a spoke SDP in the m-vpls using the SDP defined in Step 1. Ensure that this mesh-spoke SDP runs over a protected LSP (see note below).
5. Enable the management VPLS service and verify that it is operationally up.
6. Create a spoke SDP in the m-vpls using the SDP defined in Step 2. Optionally, modify STP parameters for load balancing.
7. Create one or more user VPLS services with spoke SDPs on the tunnel SDP defined by Step 2.

As long as the user spoke SDPs created in step 7 are in the same tunnel SDP with the management spoke SDP created in step 6, the management VPLS will protect them.
Figure 51: Example Configuration for Protected VPLS Spoke SDP

Use the following CLI syntax to create a management VPLS for spoke SDP protection:

**CLI Syntax:**
```
config>service# sdp sdp-id mpls create
 far-end ip-address
 lsp lsp-name
 no shutdown
```

**CLI Syntax:**
```
vpls service-id customer customer-id [m-vpls] create
description description-string
spoke-sdp sdp-id:vc-id create
stp
no shutdown
```
The following example displays a VPLS configuration:

*A:ALA-A1>config>service# info
----------------------------------------------
...
sdp 100 mpls create
  far-end 10.0.0.30
  lsp "toALA-B1"
  no shutdown
  exit
sdp 300 mpls create
  far-end 10.0.0.20
  lsp "toALA-A2"
  no shutdown
  exit
vpls 101 customer 1 m-vpls create
  spoke-sdp 100:1 create
  exit
  spoke-sdp 300:1 create
  exit
  stp
  exit
  no shutdown
  exit
...
----------------------------------------------
*A:ALA-A1>config>service#
Configuring Load Balancing with Management VPLS

With the concept of management VPLS, it is possible to load balance the user VPLS services across the two protecting nodes. This is done by creating two management VPLS instances, where both instances have different active QinQ spokes (by changing the STP path-cost). When different user VPLS services are associated with either the two management VPLS services, the traffic will be split across the two QinQ spokes. Load balancing can be achieved in SAP protection scenarios.

Note: the STP path costs in each peer node should be reversed.

CLI Syntax:

```
config>service# vpls service-id [customer customer-id] [create] [m-vpls] [svc-sap-type {null-star | dot1q | dot1q-preserve}] [customer-vid vlan-id]
 description description-string
 sap sap-id create
 managed-vlan-list
 range vlan-range
 stp
 no shutdown
```

The following example displays a VPLS configuration:

```
*A:ALA-1>config>service# info

vpls 100 customer 1 m-vpls svc-sap-type dot1q create
 stp
 no shutdown
 exit
 sap 1/1/2:100.* create
```
managed-vlan-list
  range 1-10
exit
stp
  path-cost 1
exit
exit
stp
  path-cost 1
exit
exit
no shutdown
exit
vpls 200 customer 6 m-vpls svc-sap-type dot1q create
  stp
  no shutdown
exit
sap 1/1/2:1000.* create
  managed-vlan-list
  range 110-200
exit
exit
stp
  path-cost 1
exit
exit
no shutdown
exit
vpls 101 customer 1 svc-sap-type dot1q create
  stp
    shutdown
exit
sap 1/1/1:100 create
exit
 sap 1/1/2:1.* create
exit
 sap 1/1/3:1.* create
exit
no shutdown
exit
vpls 201 customer 1 svc-sap-type dot1q create
  stp
    shutdown
exit
 sap 1/1/1:200 create
exit
 sap 1/1/2:110.* create
exit
 sap 1/1/3:110.* create
exit
no shutdown
exit
----------------------------------------------
*A:ALA-1>config>service#
Configuring Load Balancing with Management VPLS

With the concept of management VPLS, it is possible to load balance the user VPLS services across the two protecting nodes. This is done by creating two management VPLS instances, where both instances have different active spokes (by changing the STP path-cost). When different user VPLS services are associated with either the two management VPLS services, the traffic will be split across the two spokes.

Load balancing can be achieved in both the SAP protection and spoke SDP protection scenarios.

Figure 53: Example Configuration for Loadbalancing Across Two Protected VPLS Spoke SDPs

```
mvpls 100
MVPLS M1
Dut-A Spoke SDP 1201:100 (STP blocked); 1401:100
Dut-B - Spoke SDP 1201:100; 2301:100
Dut-C - Spoke SDP 1401:100; 2301:100

uvpls 101
UVPLS U1
Dut-B - Spoke SDP 1201:101; 2301:101
Dut-C - Spoke SDP 1401:101; 2301:101

mvpls 200
MVPLSM2
Dut-A - Spoke SDP 1202:200; 1402:200 (STP blocked)
Dut-B - Spoke SDP 1202:200; 2302:200
Dut-C - Spoke SDP 1402:200; 2302:200

uvpls 201
UVPLS U2
Dut-A - Spoke SDP 1202:201; 1402:201
Dut-B - Spoke SDP 1202:201; 2302:201
Dut-C - Spoke SDP 1402:201; 2302:201
```
Use the following CLI syntax to create a load balancing across two management VPLS instances:

**CLI Syntax:**
```
config>service# sdp sdp-id mpls create
far-end ip-address
lsp lsp-name
no shutdown
```

**CLI Syntax:**
```
vpls service-id customer customer-id [m-vpls] create
description description-string
spoke-sdp sdp-id:vc-id create
 stp
 path-cost
 no shutdown
```

This following output shows example configurations for load balancing across two protected VPLS spoke SDPs:

The configuration on ALA-A (SAS-M) is shown below.

```
MVPLS 100 configs
*A:ALA-A# configure service vpls 100
*A:ALA-A>config>service>vpls# info
--
description "Default tls description for service id 100"
stp
 no shutdown
exit
sap lag-3:100 create
description "Default sap description for service id 100"
managed-vlan-list
 range 101-110
exit
exit
spoke-sdp 1201:100 create
 stp
 path-cost 100
exit
exit
spoke-sdp 1401:100 create
exit
no shutdown
--
*A:ALA-A>config>service>vpls#

UVPLS 101 configs
*A:ALA-A>config>service# vpls 101
*A:ALA-A>config>service>vpls# info
--
description "Default tls description for service id 101"
sap lag-3:101 create
description "Default sap description for service id 101"
exit
spoke-sdp 1201:101 create
```
Configuring a VPLS Service with CLI

    exit
    spoke-sdp 1401:101 create
    exit
    no shutdown
    -------------------------------------------------------------
    *A:ALA-A>config>service>vpls#

    # MVPLS 200 configs
    *A:ALA-A# configure service vpls 200
    *A:ALA-A>config>service>vpls# info
    -------------------------------------------------------------
    description "Default tls description for service id 200"
    stp
    no shutdown
    exit
    sap lag-3:200 create
    description "Default sap description for service id 200"
    managed-vlan-list
    range 201-210
    exit
    exit
    spoke-sdp 1202:200 create
    exit
    spoke-sdp 1402:200 create
    stp
    path-cost 100
    exit
    exit
    no shutdown
    -------------------------------------------------------------
    *A:ALA-A>config>service>vpls#

    # UVPLS 201 configs
    *A:ALA-A>config>service# vpls 201
    *A:ALA-A>config>service>vpls# info
    -------------------------------------------------------------
    description "Default tls description for service id 201"
    sap lag-3:201 create
    description "Default sap description for service id 201"
    exit
    spoke-sdp 1202:201 create
    exit
    spoke-sdp 1402:201 create
    exit
    exit
    no shutdown
    -------------------------------------------------------------
    *A:ALA-A>config>service>vpls# exit all
The configuration on ALA-B (7x50), the top left node is shown below. It is configured such that it becomes the root bridge for MVPLS 100 and MVPLS 200.

```
MVPLS 100 configs
*A:ALA-B# configure service vpls 100
*A:ALA-B>config>service>vpls# info
--
description "Default tls description for service id 100"
stp
 priority 0
 no shutdown
exit
spoke-sdp 1201:100 create
exit
spoke-sdp 2301:100 create
exit
 no shutdown
--
*A:ALA-B>config>service>vpls#

UVPLS 101 configs
*A:ALA-B>config>service# vpls 101
*A:ALA-B>config>service>vpls# info
--
description "Default tls description for service id 101"
spoke-sdp 1201:101 create
exit
spoke-sdp 2301:101 create
exit
 no shutdown
--
*A:ALA-B>config>service>vpls#

MVPLS 200 configs
*A:ALA-B# configure service vpls 200
*A:ALA-B>config>service>vpls# info
--
description "Default tls description for service id 200"
stp
 priority 0
 no shutdown
exit
spoke-sdp 1202:200 create
exit
spoke-sdp 2302:200 create
exit
 no shutdown
--
*A:ALA-B>config>service>vpls#
```
The configuration on ALA-C (7210), the top right node is shown below.

```plaintext
MVPLS 100 configs
*A:ALA-C# configure service vpls 100
*A:ALA-C>config>service>vpls# info
--
 description "Default tls description for service id 100"
 stp
 priority 4096
 no shutdown
 exit
 spoke-sdp 1401:100 create
 exit
 spoke-sdp 2301:101 create
 exit
 no shutdown
--
*A:ALA-C>config>service>vpls#
```

```plaintext
UVPLS 101 configs
*A:ALA-C>config>service# vpls 101
*A:ALA-C>config>service>vpls# info
--
 description "Default tls description for service id 101"
 spoke-sdp 1401:101 create
 exit
 spoke-sdp 2301:101 create
 exit
 no shutdown
--
*A:ALA-C>config>service>vpls#
```
```bash
MVPLS 200 configs
*A:ALA-C# configure service vpls 200
*A:ALA-C>config>service>vpls# info
--
 description "Default tls description for service id 200"
 stp
 priority 4096
 no shutdown
 exit
 spoke-sdp 1402:200 create
 exit
 spoke-sdp 2302:200 create
 exit
 no shutdown
--
*A:ALA-C>config>service>vpls#

UVPLS 201 configs
*A:ALA-C>config>service# vpls 201
*A:ALA-C>config>service>vpls# info
--
 description "Default tls description for service id 201"
 spoke-sdp 1402:201 create
 exit
 spoke-sdp 2302:201 create
 exit
 no shutdown
--
*A:ALA-C>config>service>vpls#```
Configuring Selective MAC Flush

Use the following CLI syntax to enable selective MAC Flush in a VPLS.

CLI Syntax:
```
config>service# vpls service-id
    send-flush-on-failure
```

Use the following CLI syntax to disable selective MAC Flush in a VPLS.

CLI Syntax:
```
config>service# vpls service-id
    no send-flush-on-failure
```
Configuring Load Balancing with Management VPLS

With the concept of management VPLS, it is possible to load balance the user VPLS services across the two protecting nodes. This is done by creating two management VPLS instances, where both instances have different active QinQ spokes (by changing the STP path-cost). When different user VPLS services are associated with either the two management VPLS services, the traffic will be split across the two QinQ spokes. Load balancing can be achieved in SAP protection scenarios.

![Diagram showing configuration for load balancing with management VPLS]

Figure 54: Example Configuration for Load Balancing with Management VPLS

Note: the STP path costs in each peer node should be reversed.

CLI Syntax:
```
config>service# vpls service-id [customer customer-id] [create][m-vpls] [svc-sap-type {null-star | any | dot1q-preserve}] [customer-vid vlan-id]

description description-string

.sap sap-id create

.managed-vlan-list

.range vlan-range

stp

no shutdown
```

The following example displays a VPLS configuration:
```
*ALA-1>config>service# info

----------------------------------------------
vpls 100 customer 1 m-vpls svc-sap-type any create
stp
no shutdown
exit
.sap 1/1:100.* create
.managed-vlan-list
```
Configuring a VPLS Service with CLI

```
range 1-10
exit
stp
path-cost 1
exit
exit
stp
path-cost 1
exit
exit
managed-vlan-list
range 1-10
exit
exit
no shutdown
exit
vpls 200 customer 6 m-vpls svc-sap-type any create
stp
no shutdown
exit
sap 1/1/3:500.* create
managed-vlan-list
range 110-200
exit
exit
sap 1/1/3:2000.* create
managed-vlan-list
range 110-200
exit
stp
path-cost 1
exit
exit
sti
no shutdown
exit
vpls 101 customer 1 svc-sap-type any create
stp
shutdown
exit
sap 1/1/1:100 create
exit
sap 1/1/2:1.* create
exit
sap 1/1/3:1.* create
exit
no shutdown
exit
vpls 201 customer 1 svc-sap-type any create
stp
shutdown
exit
sap 1/1/1:200 create
exit
sap 1/1/2:110.* create
exit
sap 1/1/3:110.* create
exit
no shutdown
exit
```

A:ALA-1>config>service#
Configuring BGP Auto-Discovery

This section provides important information to explain the different configuration options used to populate the required BGP AD and generate the LDP generalized pseudowire-ID FEC fields. There are a large number of configuration options that are available with this feature. Not all these configurations are required to start using BGP AD. At the end of this section, it will be apparent that a very simple configuration will automatically generate the required values used by BGP and LDP. In most cases, deployments will provide full mesh connectivity between all nodes across a VPLS instance. However, capabilities are available to influence the topology and build hierarchies or hub and spoke models.

Configuration Steps

Using Figure 55, assume PE6 was previously configured with VPLS 100 as indicated by the configurations lines in the upper right. The BGP AD process will commence after PE134 is configured with the VPLS 100 instance as shown in the upper left. This shows a very basic and simple BGP AD configuration. The minimum requirement for enabling BGP AD on a VPLS instance is configuring the VPLS-ID and point to a pseudowire template.

In many cases, VPLS connectivity is based on a pseudowire mesh. To reduce the configuration requirement, the BGP values can be automatically generated using the VPLS-ID and the MPLS router-ID. By default, the lower six bytes of the VPLS-ID are used to generate the RD and the RT values. The VSI-ID value is generated from the MPLS router-ID. All of these parameters are configurable and can be coded to suit requirements and build different topologies.

Figure 55: BGP AD Configuration Example

In many cases, VPLS connectivity is based on a pseudowire mesh. To reduce the configuration requirement, the BGP values can be automatically generated using the VPLS-ID and the MPLS router-ID. By default, the lower six bytes of the VPLS-ID are used to generate the RD and the RT values. The VSI-ID value is generated from the MPLS router-ID. All of these parameters are configurable and can be coded to suit requirements and build different topologies.
A helpful command displays the service information, the BGP parameters and the SDP bindings in use. When the discovery process is completed successfully each endpoint will have an entry for the service.

PE134> # show service l2-route-table

When only one of the endpoints has an entry for the service in the l2-routing-table, it is most likely a problem with the RT values used for import and export. This would most likely happen when different import and export RT values are configured using a router policy or the route-target command.

Service specific commands continue to be available to display service specific information, including status.

PERs6# show service sdp-using

BGP AD advertises the VPLS-ID in the extended community attribute, VSI-ID in the NLRI and the local PE ID in the BGP next hop. At the receiving PE, the VPLS-ID is compared against locally provisioned information to determine whether the two PEs share a common VPLS. If it is found that they do, the BGP information is used in the signaling phase.

Configuring AS Pseudo-wire in VPLS

In Figure 57, Pseudo-wire is configured on MTU. A sample configuration on the MTU is listed below:

```plaintext
*A:MTU>config>service>vpls>endpoint# back
*A:MTU>config>service>vpls# info
----------------------------------------------
  send-flush-on-failure
  stp shutdown
  exit
  endpoint "vpls1" create
    description "vpls1_endpoint"
    revert-time 60
    ignore-standby-signaling
    no suppress-standby-signaling
    block-on-mesh-failure
  exit
  sap 1/1/3 create
  exit
  spoke-sdp 301:1 endpoint "vpls1" create
    stp
    shutdown
    exit
    block-on-mesh-failure
  exit
  spoke-sdp 302:1 endpoint "vpls1" create
    stp
    shutdown
    exit
    block-on-mesh-failure
  exit
  no shutdown
----------------------------------------------
*A:MTU>config>service>vpls#
```
Service Management Tasks

This section discusses the following service management tasks:

- Modifying VPLS Service Parameters on page 351
- Modifying Management VPLS Parameters on page 352
- Deleting a Management VPLS on page 352
- Disabling a Management VPLS on page 353
- Deleting a VPLS Service on page 354

Modifying VPLS Service Parameters

You can change existing service parameters. The changes are applied immediately. To display a list of services, use the `show service service-using vpls` command. Enter the parameter such as description SAP and then enter the new information.

The following displays a modified VPLS configuration.

```
*A:ALA-1>config>service>vpls# info
----------------------------------------------
description "This is a different description."
disable-learning
disable-aging
discard-unknown
local-age 500
stp
  shutdown
exit
sdp 1/1/5:22 create
description "VPLS SAP"
exit
exit
no shutdown
----------------------------------------------
*A:ALA-1>config>service>vpls#
```
Modifying Management VPLS Parameters

To modify the range of VLANs on an access port that are to be managed by an existing management VPLS, first the new range should be entered and afterwards the old range removed. If the old range is removed before a new range is defined, all customer VPLS services in the old range will become unprotected and may be disabled.

CLI Syntax:
```plaintext
config>service# vpls service-id
           sap sap-id
           managed-vlan-list
           [no] range vlan-range
```

Deleting a Management VPLS

As with normal VPLS service, a management VPLS cannot be deleted until SAPs and SDPs are unbound (deleted), interfaces are shutdown, and the service is shutdown on the service level.

Use the following CLI syntax to delete a management VPLS service:

CLI Syntax:
```plaintext
config>service
           [no] vpls service-id
           shutdown
           [no] spoke-sdp sdp-id
           [no] sap sap-id
           shutdown
```
Disabling a Management VPLS

You can shut down a management VPLS without deleting the service parameters.

When a management VPLS is disabled, all associated user VPLS services are also disabled (to prevent loops). If this is not desired, first un-manage the user’s VPLS service by removing them from the managed-vlan-list or moving the spoke SDPs on to another tunnel SDP.

CLI Syntax:

```
config>service
  vpls service-id
  shutdown
```

Example:

```
config>service# vpls 1
config>service>vpls# shutdown
config>service>vpls# exit
```
Deleting a VPLS Service

A VPLS service cannot be deleted until SAPs and SDPs (not applicable for 7210 SAS-M devices configured in Access uplink mode) are unbound (deleted), interfaces are shutdown, and the service is shutdown on the service level.

Use the following CLI syntax to delete a VPLS service:

CLI Syntax:
```
config>service
   [no] vpls service-id
       shutdown
   [no] spoke-sdp sdp-id
       shutdown
    sap sap-id
   no sap sap-id
       shutdown
```

Disabling a VPLS Service

You can shut down a VPLS service without deleting the service parameters.

CLI Syntax: config>service> vpls service-id
```
   [no] shutdown
```

Example: config>service# vpls 1
```
   config>service>vplsl# shutdown
   config>service>vplsl# exit
```
Re-Enabling a VPLS Service

To re-enable a VPLS service that was shut down.

CLI Syntax:
```
config>service> vpls service-id [no] shutdown
```

Example:
```
config>service# vpls 1
config>service>vpls# no shutdown
config>service>vpls# exit
```
VPLS Services Command Reference

Command Hierarchies

- Global Commands on page 358
- SAP Commands on page 361
- Mesh SDP Commands on page 364
- Spoke SDP Commands on page 360
- Routed VPLS Commands applicable only to 7210 SAS-M on page 368
- Show Commands on page 369
- Clear Commands on page 370
- Debug Commands on page 371
VPLS Service Configuration Commands

Global Commands

```
config  
   -- service
       -- vpls service-id [customer customer-id] [create] (for 7210 SAS-M in Network mode)
       -- vpls service-id [customer customer-id] [create] [ vpn vpn-id ] [ m-vpls ] <service-id> [ svc-sap-type {null-star|dot1q-preserve|any} ] [ customer-vid <vlan-id> ] (for 7210 SAS-M in Access uplink mode)
       -- no vpls service-id

       -- bgp
           -- no vpls service-id

           -- bgp
               -- pw-template-binding policy-id [split-horizon-group group-name]
               -- import-rt [ext-community...|up to 5 max|]
               -- no pw-template-binding policy-id
               -- route-distinguisher [ip-addr:comm-val | as-number:ext-comm-val]
               -- no route-distinguisher
               -- route-target [ext-community | {[export ext-community] | [import ext-community]}
               -- no route-target
               -- vlsi-export policy-name [policy-name...|up to 5 max]
               -- no vlsi-export
               -- vlsi-import policy-name [policy-name...|up to 5 max]
               -- no vlsi-import

       -- [no] bgp-ad
           -- [no] shutdown
           -- vpls-id vpls-id
           -- vlsi
                -- prefix low-order-vsi-id
                -- no prefix

           -- description description-string
           -- no description
           -- [no] disable-aging
           -- [no] disable-learning
           -- [no] discard-unknown
           -- endpoint endpoint-name [create]
           -- no endpoint

               -- block-on-mesh-failure
               -- [no] block-on-mesh-failure
               -- description description-string
               -- no description
               -- [no] ignore-standby-signaling
               -- [no] mac-pinning
               -- max-nbr-mac-addr table-size
               -- max-nbr-mac-addr
               -- revert-time revert-time | infinite
               -- no revert-time
               -- static-mac ieee-address [create]
               -- no static-mac
               -- [no] suppress-standby-signaling

           -- eth-cfm
               -- [no] mep mep-id domain md-index association ma-index [direction {up|down}]
               -- [no] mep mep-id domain md-index association ma-index
                -- [no] ccm-enable
```
Virtual Private LAN Services

- ccm-ltm-priority priority
- no ccm-ltm-priority
- [no] description
- [no] eth-test-enable
 - [no] test-pattern [all-zeros | all-ones] [crc-enable]
- low-priority-defect [allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon]
- mac-address mac-address
- no mac-address
- one-way-delay-threshold seconds
- [no] shutdown
- tunnel-fault [accept | ignore]
- [no] fdb-table-high-wmark high-water-mark
- [no] fdb-table-low-wmark low-water-mark
- fdb-table-size table-size
- no fdb-table-size [table-size]
- igmp-snooping
 - mvr
 - description description-string
 - no description
 - group-policy policy-name
 - no group-policy
 - [no] shutdown
 - query-interval seconds
 - no query-interval
 - query-src-ip seconds
 - no query-src-ip
 - report-src-ip ip-address
 - no report-src-ip
 - robust-count robust-count
 - no robust-count
- [no] interface ip-int-name [create] (for 7210 SAS M in access uplink mode)
 - address ip-address [mask] [netmask]
 - no address
 - arp-timeout seconds
 - no arp-timeout
 - description description-string
 - no description
 - mac ieee-address
 - no mac
 - [no] shutdown
 - static-arp ip-address ieee-address
 - no static-arp ip-address [ieee-address]
- local-age aging-timer
- no local-age
- [no] mac-move
 - move-frequency frequency
 - no move-frequency
 - retry-timeout timeout
 - no retry-timeout
 - [no] shutdown
- mfib-table-high-wmark high-water-mark
— no mfib-table-high-wmark
— mfib-table-low-wmark low-water-mark
— no mfib-table-low-wmark
— mfib-table-size table-size
— no mfib-table-size
— [no] propagate-mac-flush
— remote-age aging-timer
— no remote-age
— [no] send-flush-on-failure
— service-ntu octets (for 7210 SAS-M in Network mode)
— no service-ntu
— no service-ntu-check (for 7210 SAS-M in Network mode)
— [no] shutdown
— split-horizon-group group-name [create]
 — description description-string
 — no description
— stp
 — forward-delay forward-delay
 — no forward-delay
 — hello-time hello-time
 — no hello-time
 — hold-count BDPU tx hold count
 — no hold-count
 — max-age max-age
 — no max-age
 — mode {rstp | comp-dot1w | dot1w | mstp | pmstp}
 — no mode
 — [no] mst-instance mst-inst-number
 — mst-port-priority bridge-priority
 — no mst-port-priority
 — [no] vlan-range vlan-range
 — mst-max-hops hops-count
 — no mst-max-hops
 — mst-name region-name
 — no mst-name
 — mst-revision revision-number
 — no mst-revision
 — priority bridge-priority
 — no priority
 — [no] shutdown
SAP Commands

```plaintext
config
  service
    vpls service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] (for 7210 SAS-M in network mode)
    vpls service-id [customer customer-id] [create] [vpn vpn-id] service-id [create] [vpn vpn-id]
      [m-vpls] [svc-sap-type {null-star | dot1q | dot1q-preserve}] [customer-vid vlan-id](for 7210 SAS-M in access uplink mode uplink mode)
    no vpls service-id
      sap sap-id [split-horizon-group group-name] [create] [eth-ring ring-index] [create](for 7210 SAS-M in Network mode)
      no sap sap-id
        accounting-policy acct-policy-id
        no accounting-policy
        bpdu-translation {auto | pvst | stp}
        no bpdu-translation
        [no] collect-stats
        description description-string
        no description
        [no] disable-agging
        [no] disable-learning
        [no] discard-unknown-source
        egress
          filter ip ip-filter-id
          filter ipv6 ipv6-filter-id
          filter mac mac-filter-id
          no filter [ip ip-filter-id] [ipv6 ipv6-filter-id] [mac mac-filter-id]
        eth-cfm
          mep mep-id domain md-index association ma-index [direction {up | down}]
          no mep mep-id domain md-index association ma-index
            [no] ais-enable
            client-meg-level [level [level...]]
            no client-meg-level
            [no] description
            interval {1 60}
            no interval
            priority priority-value
            no priority
            [no] ccm-enable
            ccm-ltm-priority priority
            no ccm-ltm-priority
            description description-string
            no description
            [no] eth-test-enable
            bit-error-threshold bit-errors
            test-pattern {all-zeros | all-ones} [crc-enable]
            no test-pattern
            low-priority-defect [allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon]
            mac-address mac-address
            no mac-address
            one-way-delay-threshold seconds
```
VPLS Services Command Reference

shutdown

igmp-snooping

fast-leave

import policy-name

no import

last-member-query-interval interval

no last-member-query-interval

max-num-groups max-num-groups

no max-num-groups

mrouter-port

no mrouter-port

mvr

from-vpls service-id

no from-vpls

to-sap sap-id

no to-sap

query-interval interval

no query-interval

query-response-interval interval

no query-response-interval

robust-count count

no robust-count

send-queries

static

[no] group group-address

[no] source ip-address (applicable only in access-uplink mode)

[no] starg

version version

no version

ingress

aggregate-meter-rate rate-in-kbps [burst burst-in-kbits]

no aggregate-meter-rate

filter ip ip-filter-id

filter [ipv6 ipv6-filter-id]

filter mac mac-filter-id

no filter [ip ip-filter-id] [ipv6 ipv6-filter-id] [mac mac-filter-id]

qos policy-id

no qos

l2pt-termination

no l2pt-termination

limit-mac-move [blockable | non-blockable]

no limit-mac-move

mac-pinning

managed-vlan-list

[no] default-sap

[no] range vlan-range

max-nbr-mac-addr table-size

no max-nbr-mac-addr

[no] shutdown

statistics

ingress

counter-mode [in-out-profile-count|forward-drop-count]

drop-count-extra-vlan-tag-pkts

no drop-count-extra-vlan-tag-pkts

stp
 — [no] auto-edge
 — [no] edge-port
 — link-type {pt-pt | shared}
 — no link-type [pt-pt | shared]
 — mst-instance mst-inst-number
 — mst-path-cost inst-path-cost
 — no mst-path-cost
 — mst-port-priority stp-priority
 — no mst-port-priority
 — path-cost sap-path-cost
 — no path-cost
 — [no] port-num virtual-port-number
 — priority stp-priority
 — no priority
 — no root-guard
 — root-guard
 — [no] shutdown
 — tod-suite tod-suite-name
 — no tod-suite
Mesh SDP Commands

Note: Mesh SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

```
config
  — service
    — [no] vpls service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] [create] [vpn vpn-id] [m-vpls] (for 7210 SAS-M in Network mode)
    — [no] vpls service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] [svc-sap-type {null-star|dot1q-preserve|any}] [customer-vid vlan-id] (for 7210 SAS-M in Access uplink mode)
    — mesh-sdp sdp-id [vc-id] [vc-type {ether|vlan}]
    — no mesh-sdp sdp-id[vc-id]
      — accounting-policy acct-policy-id
      — no accounting-policies
      — [no] collect-stats
      — [no] control-word
      — description description-string
      — no description
      — egress
        — no vc-label [egress-vc-label]
  — eth-cfm
    — mep mep-id domain md-index association ma-index [direction {up|down}]
    — no mep mep-id domain md-index association ma-index
      — [no] ais-enable
        — client-meg-level [[level [level...]]]
        — no client-meg-level
        — interval {1 | 60}
        — no interval
        — priority priority-value
        — no priority
      — [no] ccm-enable
      — ccm-ltm-priority priority
      — no ccm-ltm-priority
      — [no] description description-string
      — [no] eth-test-enable
        — bit-error-threshold bit-errors
        — test-pattern {all-zeros | all-ones} [crc-enable]
        — no test-pattern
      — low-priority-defect {allDef | macRemErrXcon | remErrXcon | errXcon | xcon | noXcon}
      — mac-address mac-address
      — no mac-address
      — one-way-delay-threshold seconds
      — [no] shutdown
    — [no] force-vlan-vc-forwarding
  — igmp-snooping
    — [no] fast-leave
    — import policy-name
    — [no] import
    — last-member-query-interval interval
    — no last-member-query-interval
    — max-num-groups max-num-groups
```
— no max-num-groups
— [no] mrouter-port
— query-interval interval
— no query-interval
— query-response-interval interval
— no query-response-interval
— robust-count count
— no robust-count
— [no] send-queries
— static
 — [no] group grp-ip-address
 — [no] starg
— version version
— no version

— ingress
 — vc-label egress-vc-label
— [no] mac-pinning
— [no] static-mac ieee-address
— [no] static-mac ieee-address [create][no] shutdown
— statistics
 — ingress[no] drop-count-extra-vlan-tag-pkts
— vlan-vc-tag 0..4094
— no vlan-vc-tag [0..4094]
Spoke SDP Commands

Note: Spoke SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

```
config
  — service
    — [no] vpls service-id [customer customer-id] [create] [vpn vpn-id] [mvpls] (for 7210 SAS-M in Network mode)
    — [no] vpls service-id [customer customer-id] [create] [vpn vpn-id] [mvpls] [d>] [m-vpls] [svc-sap-type {null-star|dot1q-preserve|any}] [customer-vid <vlan-id>] (for 7210 SAS-M in Access uplink mode)
    — spoke-sdp sdp-id[:vc-id] [vc-type {ether|vlan}] [create] [split-horizon-group group-name] endpoint endpoint-name
    — no spoke-sdp sdp-id[:vc-id]
      — accounting-policy acct-policy-id
      — no accounting-policy
      — [no] block-on-mesh-failure
      — bpdu-translation {auto|pvst|stp}
      — no bpdu-translation
      — [no] collect-stats
      — [no] control-word
      — description description-string
      — no description
      — [no] disable-agging
      — [no] disable-learning
      — [no] discard-unknown-source
      — eth-cfm
        — mep mep-id domain md-index association ma-index [direction {up} {down}]
        — no mep mep-id domain md-index association ma-index [no] ais-enable
          — client-meg-level [{level [level...]}]
          — no client-meg-level
          — interval {1 | 60}
          — no interval
          — priority priority-value
          — no priority
        — [no] ccm-enable
        — ccm-ltm-priority priority
        — no ccm-ltm-priority
        — [no] description description-string [no] eth-test-enable
          — bit-error-threshold bit-errors
          — test-pattern {all-zeros|all-ones} [cre-enable]
          — no test-pattern low-priority-defect {allDef|macRemErrXcon|remErrXcon|errXcon|xcon|noXcon}
          — mac-address mac-address
          — no mac-address one-way-delay-threshold seconds
      — egress
        — vc-token egress-vc-label
        — no vc-token [egress-vc-label]
        — [no] force-vlan-vc-forwarding
```
— igmp-snooping
 — [no] fast-leave
 — import policy-name
 — no import
 — last-member-query-interval interval
 — no last-member-query-interval
 — max-num-groups max-num-groups
 — no max-num-groups
 — [no] mrouter-port
 — query-interval interval
 — no query-interval
 — query-response-interval interval
 — no query-response-interval
 — robust-count count
 — no robust-count
 — [no] send-queries
 — static
 — [no] group group-address
 — [no] starg
 — version version
 — no version
— [no] ignore-standby-signaling
— ingress
 — vc-label egress-vc-label
 — no vc-label [egress-vc-label]
— [no] l2pt-termination
— limit-mac-move [blockable | non-blockable]
— no limit-mac-move
— [no] mac-pinning
— max-nbr-mac-addr table-size
— no max-nbr-mac-addr
— precedence precedence-value | primary
— no precedence
— [no] shutdown
— [no] static-mac ieee-address statistics
 — ingress
 — [no] drop-count-extra-vlan-tag-pkts
— stp
 — [no] auto-edge
 — [no] edge-port
 — link-type {pt-pt | shared}
 — no link-type [pt-pt | shared]
 — path-cost sap-path-cost
 — no path-cost
 — [no] port-num virtual-port-number
 — priority stp-priority
 — no priority no root-guard
 — root-guard
 — [no] shutdown
— vlan-vc-tag 0..4094
— no vlan-vc-tag [0..4094]
Routed VPLS Commands applicable only to 7210 SAS-M

NOTE: The command “allow-ip-int-binding” is applicable for 7210 SAS-M in Access-Uplink mode.

config
 service
 vpls service-id [customer customer-id] [vplsr vpn-id] [m-vpls] [create]
 service-name service-name
 no service-name
 [no] allow-ip-int-binding
Show Commands

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

show
 — service
 — egress-label egress-label1 [egress-label2]
 — fdb
 — fdb-mac ieee-address [expiry]
 — id service-id
 — all
 — base [msap] [bfd]
 — endpoint [endpoint-name]
 — fdb [sap sap-id] [expiry] [mac ieee-address [expiry]] [detail] [expiry]
 — igmp-snooping
 — all
 — base
 — mvr
 — mrouter [detail]
 — port-db sap sap-id [detail]
 — port-db sap sap-id group grp-address
 — port-db sdp sdp-id:vc-id [detail]
 — port-db sdp sdp-id:vc-id group grp-address
 — proxy-db [detail]
 — proxy-db [group grp-ip-address]
 — querier
 — static [sap sap-id]
 — statistics [sap sap-id] [sdp sdp-ic:vc-id]
 — labels
 — l2pt disabled
 — l2pt [detail]
 — mac-move
 — mfib [brief]
 — mfib group grp-address [mstp-configuration]
 — sap sap-id [detail]
 — sdp [sdp-id] far-end ip-address [detail]
 — split-horizon-group [group-name]
 — stp [detail]
 — ingress-label start-label [end-label]
 — sap-using [sap sap-id]
 — sap-using ingress egress filter filter-id
 — sap-using ingress egress qos-policy qos-policy-id
 — sap-using ingress egress
 — sdp [sdp-id] far-end ip-address [detail] [keep-alive-history]
 — sdp-using [sdp-id]:vc-id] far-end ip-address
 — service-using [vpls]
Clear Commands

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

clear
 — service
 — id service-id
 — fdb {all | mac ieee-address | sap sap-id | mesh-sdp sdp-id[:vc-id] | spoke-sdp sdp-id[:vc-id]}
 — igmp-snooping
 — port-db sap sap-id [group grp-address]
 — querier
 — statistics [all | sap sap-id | sdp sdp-id[:vc-id] | mesh-sdp sdp-id[:vc-id] | ingress-vc-label]
 — spoke-sdp sdp-id[:vc-id] ingress-vc-label
 — spoke-sdp sdp-id[:vc-id]
 — stp
 — detected-protocols [all | sap sap-id]
 — statistics
 — id service-id
 — cem (applicable only for 7210 SAS-M in Network mode)
 — counters
 — mesh-sdp sdp-id[:vc-id] {all | counters | stp}
 — spoke-sdp sdp-id[:vc-id] {all | counters | stp | l2pt}
 — stp
 — sap sap-id {all | counters | stp}
 — sdp sap-id {keep-alive}
Debug Commands

```
debug — service
      — id service-id
```
VPLS Service Configuration Commands

Generic Commands

shutdown

Syntax
 [no] shutdown

Context
 config>service>vpls
 config>service>vpls>snooping
 config>service>vpls>igmp-snooping
 config>service>vpls>sap
 config>service>vpls>sap>stp
 config>service>vpls>stp
 config>service>vpls>sap>spoke-sdp>stp
 config>service>vpls>bgp-ad

Description
 This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

 The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

 Services are created in the administratively down (shutdown) state. When a no shutdown command is entered, the service becomes administratively up and then tries to enter the operationally up state.

 Default administrative states for services and service entities is described below in Special Cases.

 The no form of this command places the entity into an administratively enabled state.

description

Syntax
 description description-string
 no description

Context
 config>service>vpls
 config>service>vpls>split-horizon-group
 config>service>vpls>igmp-snooping>mvr
 config>service>vpls>sap
 config>service>vpls>sap>spoke-sdp
 config>service>pw-template>split-horizon-group

Description
 This command creates a text description stored in the configuration file for a configuration context.

 The description command associates a text string with a configuration context to help identify the content in the configuration file.

 The no form of this command removes the string from the configuration.
Default

No description associated with the configuration context.

Parameters

`string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
VPLS Service Commands

vpls

Syntax

vpls service-id [customer customer-id] [create] service-id [customer customer-id] [create]
[vpn vpn-id] [m-vpls] (for 7210 SAS-M in network mode)
vpls service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] service-id [customer
customer-id] [create] [vpn vpn-id] [m-vpls] [svc-sap-type {null-star|dot1q-preserve|any}]
[customer-vid vlan-id] (for 7210 SAS-M in access uplink mode)
vpls service-id customer customer-id vpn vpn-id [m-vpls] [bvpls | i-vpls] [create]
no vpls service-id

Context

config>service

Description

This command creates or edits a Virtual Private LAN Services (VPLS) instance. The vpls command
is used to create or maintain a VPLS service. If the service-id does not exist, a context for the service
is created. If the service-id exists, the context for editing the service is entered.

A VPLS service connects multiple customer sites together acting like a zero-hop, Layer 2 switched
domain. A VPLS is always a logical full mesh.

When a service is created, the create keyword must be specified if the create command is enabled in
the environment context. When a service is created, the customer keyword and customer-id must be
specified and associates the service with a customer. The customer-id must already exist having been
created using the customer command in the service context. Once a service has been created with a
customer association, it is not possible to edit the customer association. The service must be deleted
and recreated with a new customer association.

Once a service is created, the use of the customer customer-id is optional for navigating into the
service configuration context. Attempting to edit a service with the incorrect customer-id specified
will result in an error.

More than one VPLS service may be created for a single customer ID.

By default, no VPLS instances exist until they are explicitly created.

The no form of this command deletes the VPLS service instance with the specified service-id. The
service cannot be deleted until all SAPs defined within the service ID have been shutdown and
deleted, and the service has been shutdown.

Parameters

any — Allows any SAP type. When svc-sap-type is set to any, for a NULL SAP, the system
processes and forwards only packets with no VLAN tag (that is, untagged). All other packets
with one or more VLAN tags (even those with priority tag only) are not processed and dropped.

Users can use the service with svc-sap-type set to 'null-star' to process and forward packets with
one or more tags (including priority tag) on a null SAP.

Default null-star

service-id — The unique service identification number identifying the service in the service domain.

This ID must be unique to this service and may not be used for any other service of any type. The
service-id must be the same number used for every 7210 SAS on which this service is defined.

Values service-id: 1 — 2147483648
customer customer-id — Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

Values 1 — 2147483647

m-vpls — Specifies a management VPLS.

create — This keyword is mandatory while creating a VPLS service.

customer-vid vlan-id — Defines the dot1q VLAN ID to be specified while creating the local Dot1q SAP for svc-sap-type dot1q-preserve.

Values 1 — 4094

dot1q-preserve — Specifies that the allowed SAP in the service are Dot1q. The Dot1q ID is not stripped after packets matches the SAP.

Default null-star

null-star — Specifies that the allowed SAP in the service which can be Null SAP, dot1q Default SAP,Q.* SAP or Default QinQ SAP.

svc-sap-type-Specifies the type of service and allowed SAPs in the service.

bgp

Syntax bgp

Context config>service>vpls

This command enables the context to configure the BGP related parameters to BGP AD.

block-on-mesh-failure

Syntax [no] block-on-mesh-failure

Context config>service>vpls>spoke-sdp

Description This command enables blocking (brings the entity to an operationally down state) after all configured SDPs or endpoints are in operationally down state. This event is signalled to corresponding T-LDP peer by withdrawing service label (status-bit-signaling non-capable peer) or by setting “PW not forwarding” status bit in T-LDP message (status-bit-signaling capable peer).

Default disabled

bpdu-translation

Syntax bpdu-translation {auto | pvst | stp}

no bpdu-translation

Context config>service>vpls>spoke-sdp
config>service>vpls>sap

Description
This command enables the translation of BPDUs to a given format, meaning that all BPDUs transmitted on a given SAP or spoke SDP will have a specified format.
The no form of this command reverts to the default setting.

Default
no bpdu-translation

Parameters
auto — Specifies that appropriate format will be detected automatically, based on type of bpdus received on such port.

pvst — Specifies the BPDU-format as PVST. Note that the correct VLAN tag is included in the payload (depending on encapsulation value of outgoing SAP).

stp — Specifies the BPDU-format as STP.

l2pt-termination

Syntax
l2pt-termination
no l2pt-termination

Context
config>service>vpls>sap

Description
This command enables Layer 2 Protocol Tunneling (L2PT) termination on a given SAP. L2PT termination will be supported only for STP BPDUs.

This feature can be enabled only if STP is disabled in the context of the given VPLS service.

Default
no l2pt-termination

disable-aging

Syntax
[no] disable-aging

Context
config>service>vpls
config>service>vpls>spoke-sdp
config>service>vpls>sap
config>template>vpls-template
config>service>pw-template

Description
This command disables MAC address aging across a VPLS service or on a VPLS service SAP.

Like in a Layer 2 switch, learned MACs can be aged out if no packets are sourced from the MAC address for a period of time (the aging time). In each VPLS service instance, there are independent aging timers for local learned MAC and remote learned MAC entries in the VPLS forwarding database (FDB). The disable-aging command turns off aging for local and remote learned MAC addresses.

When no disable-aging is specified for a VPLS, it is possible to disable aging for specific SAPs and/or spoke SDPs by entering the disable-aging command at the appropriate level.

When the disable-aging command is entered at the VPLS level, the disable-aging state of individual SAPs or SDPs will be ignored.
The `no` form of this command enables aging on the VPLS service.

Default

`no disable-aging`

disable-learning

Syntax

```
[no] disable-learning
```

Context

```
config>service>vpls
config>service>pw-template
config>template>vpls-template
```

Description

This command disables learning of new MAC addresses in the VPLS forwarding database (FDB) for the service instance.

When `disable-learning` is enabled, new source MAC addresses will not be entered in the VPLS service forwarding database.

When `disable-learning` is disabled, new source MAC addresses will be learned and entered into the VPLS forwarding database.

This parameter is mainly used in conjunction with the `discard-unknown` command.

The `no` form of this command enables learning of MAC addresses.

Default

`no disable-learning` (Normal MAC learning is enabled)

discard-unknown

Syntax

```
[no] discard-unknown
```

Context

```
config>service>vpls
```

Description

By default, packets with unknown destination MAC addresses are flooded. If `discard-unknown` is enabled at the VPLS level, packets with unknown destination MAC address will be dropped instead (even when configured FIB size limits for VPLS or SAP are not yet reached).

The `no` form of this command allows flooding of packets with unknown destination MAC addresses in the VPLS.

Default

`no discard-unknown` — Packets with unknown destination MAC addresses are flooded.

endpoint

Syntax

```
endpoint endpoint-name [create]
no endpoint
```

Context

```
config>service>vpls
```

Description

This command configures a service endpoint.
Parameters

`endpoint-name` — Specifies an endpoint name up to 32 characters in length.

`create` — This keyword is mandatory while creating a service endpoint.

description

Syntax

```
description description-string
no description
```

Context

```
config>service>vpls>endpoint
```

This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the content in the configuration file.

The `no` form of this command removes the string from the configuration.

Default

No description associated with the configuration context.

Parameters

`string` — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

ignore-standby-signaling

Syntax

```
[no] ignore-standby-signaling
```

Context

```
config>service>vpls>endpoint
config>service>vpls>spoke-sdp
```

Description

When this command is enabled, the node will ignore standby-bit received from TLDP peers for the given spoke SDP and performs internal tasks without taking it into account.

This command is present at endpoint level as well as spoke SDP level. If the spoke SDP is part of the explicit-endpoint, it is not possible to change this setting at the spoke SDP level. The existing spoke SDP will become part of the explicit-endpoint only if the setting is not conflicting. The newly created spoke SDP which is a part of the given explicit-endpoint will inherit this setting from the endpoint configuration.

Default

disabled

revert-time

Syntax

```
revert-time revert-time | infinite
no revert-time
```

Context

```
config>service>vpls>endpoint
```

Description

This command configures the time to wait before reverting to primary spoke SDP.
In a regular endpoint the revert-time setting affects just the pseudowire defined as primary (precedence 0). For a failure of the primary pseudowire followed by restoration the revert-timer is started. After it expires the primary pseudowire takes the active role in the endpoint. This behavior does not apply for the case when both pseudowires are defined as secondary. For example, if the active secondary pseudowire fails and is restored it will stay in standby until a configuration change or a force command occurs.

Parameters

- **revert-time** — Specifies the time to wait, in seconds, before reverting back to the primary spoke SDP defined on this service endpoint, after having failed over to a backup spoke SDP.

 Values

 - 0 — 600
 - *infinite* — Specifying this keyword makes endpoint non-revertive.

split-horizon-group

Syntax

```
split-horizon-group group-name [create]
```

Context

`config>service>pw-template`

Description

This command is used to create a new split horizon group for the VPLS instance. Traffic arriving on a SAP or spoke SDP within this split horizon group will not be copied to other SAPs or spoke SDPs in the same split horizon group.

A split horizon group must be created before SAPs and spoke SDPs can be assigned to the group. The split horizon group is defined within the context of a single VPLS instance. The same `group-name` can be re-used in different VPLS instances.

Note: In 7210-SAS devices, use of SAP or spoke-SDP Split-horizon group and Mesh-SDP are mutually exclusive.

The `no` form of the command removes the group name from the configuration.

Parameters

- **group-name** — Specifies the name of the split horizon group to which the SAP or Spoke-SDP belongs.

 - `create` — Mandatory keyword to create a split-horizon group.

static-mac

Syntax

```
static-mac ieee-address [create]
no static-mac
```

Context

`config>service>vpls>endpoint`

Description

This command assigns a static MAC address to the endpoint. In the FDB, the static MAC is then associated with the active spoke SDP.

Default

`none`

Parameters

- **ieee-address** — Specifies the static MAC address to the endpoint.

 Values

 - 6-byte mac-address (xx:xx:xx:xx:xx:xx or xx-xx-xx-xx-xx-xx). (Note: This value cannot be all zeros.)
create — This keyword is mandatory while creating a static MAC.

suppress-standby-signaling

Syntax [no] suppress-standby-signaling
Context config>service>vpls>endpoint
Description When this command is enabled, the pseudowire standby bit (with value 0x00000020) will not be sent to T-LDP peer when the given spoke is selected as a standby. This allows faster switchover as the traffic will be sent over this SDP and discarded at the blocking side of the connection. This is particularly applicable to multicast traffic.
Default enabled

propagate-mac-flush

Syntax [no] propagate-mac-flush
Context config>service>vpls
Description This command specifies whether MAC flush messages received from the given LDP are propagated to all spoke and mesh SDPs within the context of this VPLS service. The propagation will follow the split-horizon principle and any data-path blocking in order to avoid the looping of these messages.
Default no propagate-mac-flush

fdb-table-high-wmark

Syntax [no] fdb-table-high-wmark high-water-mark
Context config>service>vpls
Description This command specifies the value to send logs and traps when the threshold is reached.
Parameters high-water-mark — Specify the value to send logs and traps when the threshold is reached.
Values 0—100
Default 95%

fdb-table-low-wmark

Syntax [no] fdb-table-low-wmark low-water-mark
Context config>service>vpls
Description This command specifies the value to send logs and traps when the threshold is reached.
Parameters

`low-water-mark` — Specify the value to send logs and traps when the threshold is reached.

Values

0—100

Default

90%

fdb-table-size

Syntax

`fdb-table-size table-size`

`no fdb-table-size [table-size]`

Context

`config>service>vpls`

Description

This command specifies the maximum number of MAC entries in the forwarding database (FDB) for the VPLS instance on this node.

The `fdb-table-size` specifies the maximum number of forwarding database entries for both learned and static MAC addresses for the VPLS instance.

The `no` form of this command returns the maximum FDB table size to default.

Default

250 — Forwarding table of 250 MAC entries.

Parameters

`table-size` — Specifies the maximum number of MAC entries in the FDB.

vsi-export

Syntax

`vsi-export policy-name [policy-name...(up to 5 max)]`

`no vsi-export`

Context

`config>service>vpls>bgp-ad`

`config>service>vpls>bgp`

Description

This command specifies the name of the VSI export policies to be used for BGP auto-discovery, if this feature is configured in the VPLS service. If multiple policy names are configured, the policies are evaluated in the order they are specified. The first policy that matches is applied.

The policy name list is handled by the SNMP agent as a single entity.

vsi-import

Syntax

`vsi-import policy-name [policy-name...(up to 5 max)]`

`no vsi-import`

Context

`config>service>vpls>bgp-ad>vsi-id`

`config>service>vpls>bgp`

Description

This command specifies the name of the VSI import policies to be used for BGP auto-discovery, if this feature is configured in the VPLS service. If multiple policy names are configured, the policies
are evaluated in the order they are specified. The first policy that matches is applied. The policy name list is handled by the SNMP agent as a single entity.

route-target

Syntax

```
route-target {ext-community}{{[export ext-community][import ext-community]}}
no route-target
```

Context

```
config>service>vpls>bgp-ad
config>service>vpls>bgp
```

Description

This command configures the route target (RT) component that will be signaled in the related MPBGP attribute to be used for BGP auto-discovery, if this feature is configured in the VPLS service.

If this command is not used, the RT is built automatically using the VPLS ID. The ext-comm can have the same two formats as the VPLS ID, a two-octet AS-specific extended community, IPv4 specific extended community.

The following rules apply:

- If BGP AD VPLS-id is configured & no RT is configured under BGP node - RT = VPLS-ID.
- If BGP AD VPLS-id is not configured then an RT value must be configured under BGP node.
 (this is the case when only BGP VPLS is configured)
- If BGP AD VPLS-id is configured and an RT value is also configured under BGP node, the configured RT value prevails

Parameters

- `export ext-community` — Specify communities allowed to be sent to remote PE neighbors.
- `import ext-community` — Specify communities allowed to be accepted from remote PE neighbors.

pw-template-binding

Syntax

```
pw-template-binding policy-id [split-horizon-group group-name] [import-rt {extcommunity,...(up to 5 max)}]
no pw-template-bind policy-id
```

Context

```
config>service>vpls>bgp-ad
config>service>vpls>bgp
```

Description

This command binds the advertisements received with the route target (RT) that matches the configured list (either the generic or the specified import) to a specific pw-template. If the RT list is not present the pw-template is used for all of them.

The pw-template-binding applies to BGP-AD, if this feature is configured in the VPLS service.

The tools perform commands can be used to control the application of changes in pw-template for BGP-AD.

The no form of the command removes the values from the configuration.
Virtual Private LAN Services

Default none

Parameters
- **policy-id** — Specifies an existing policy ID.

 Values

 1 — 2147483647

- **split-horizon-group group-name** — The specified group-name overrides the split horizon group template settings.

- **import-rt ext-comm** — Specify communities allowed to be accepted from remote PE neighbors. An extended BGP community in the type:x:y format. The value x can be an integer or IP address.

 The type can be the target or origin. x and y are 16-bit integers.

 Values

 - **target:** {ip-addr:comm-val | 2byte-asnumber:ext-comm-val | 4byte-asnumber:comm-val}
 - **ip-addr** a.b.c.d
 - **comm-val** 0 — 65535
 - **2byte-asnumber** 0 — 65535
 - **ext-comm-val** 0 — 4294967295
 - **4byte-asnumber** 0 — 4294967295

route-distinguisher

Syntax
route-distinguisher [ip-addr:comm-val | as-number:ext-comm-val]

no route-distinguisher

Context
config>service>vpls>bgp-ad>vsi-id

config>service>vpls>bgp

Description
This command configures the Route Distinguisher (RD) component that will be signaled in the MPBGP NLRI for L2VPN AFI. This value will be used for BGP-AD, if this feature is configured in the VPLS service.

If this command is not configured, the RD is automatically built using the BGP-AD VPLS ID. The following rules apply:

- If BGP AD VPLS-id is configured & no RD is configured under BGP node - RD = VPLS-ID.
- If BGP AD VPLS-id is not configured then an RD value must be configured under BGP node (this is the case when only BGP VPLS is configured).
- If BGP AD VPLS-id is configured and an RD value is also configured under BGP node, the configured RD value prevails Values and format (6 bytes, other 2 bytes of type is automatically generated)

Parameters
- **ip-addr:comm-val** — Specifies the IP address.

 Values

 - **ip-addr** a.b.c.d
 - **comm-val** 0 — 65535

- **as-number:ext-comm-val** — Specifies the AS number and the

 Values

 - **as-number** 1 — 65535
 - **ext-comm-val** 0 — 4294967295
local-age

Syntax
local-age aging-timer
no local-age

Context
config>service>vpls

Description
Specifies the aging time for locally learned MAC addresses in the forwarding database (FDB) for the Virtual Private LAN Service (VPLS) instance. In a VPLS service, MAC addresses are associated with a Service Access Point (SAP). MACs associated with a SAP are classified as local MACs, and MACs associated with are remote MACsQinQ / access uplink SAPs.

Like in a Layer 2 switch, learned MACs can be aged out if no packets are sourced from the MAC address for a period of time (the aging time). The local-age timer specifies the aging time for local learned MAC addresses.

The no form of this command returns the local aging timer to the default value.

Default
local age 300 — Local MACs aged after 300 seconds.

Parameters
aging-timer — The aging time for local MACs expressed in seconds.

Values
60 — 86400

mac-move

Syntax
[no] mac-move

Context
config>service>vpls

Description
This command enables the context to configure MAC move attributes. A sustained high re-learn rate can be a sign of a loop somewhere in the VPLS topology. Typically, STP detects loops in the topology, but for those networks that do not run STP, the mac-move feature is an alternative way to protect your network against loops.

When enabled in a VPLS, mac-move monitors the re-learn rate of each MAC. If the rate exceeds the configured maximum allowed limit, it disables the SAP where the source MAC was last seen. The SAP can be disabled permanently (until a shutdown/no shutdown command is executed) or for a length of time that grows linearly with the number of times the given SAP was disabled. You have the option of marking a SAP as non-blockable in the config>service>vpls>sap>limit-mac-move context. This means that when the re-learn rate has exceeded the limit, another (blockable) SAP will be disabled instead.

The mac-move command enables the feature at the service level for SAPs, as only those objects can be blocked by this feature.

The operation of this feature is the same on the SAP. For example, if a MAC address moves from SAP to SAP, one will be blocked to prevent thrashing.

mac-move will disable a VPLS port when the number of relearns detected has reached the number of relearns needed to reach the move-frequency in the 5-second interval. For example, when the move-frequency is configured to 1 (relearn per second) mac-move will disable one of the VPLS ports when 5 relearns were detected during the 5-second interval because then the average move-frequency of 1 relearn per second has been reached. This can already occur in the first second if the real relearn rate is 5 relearns per second or higher.
The `no` form of this command disables MAC move.

move-frequency

Syntax

```
move-frequency frequency
no move-frequency
```

Context

```
config>service>vpls>mac-move
```

Description

This command indicates the maximum rate at which MAC's can be re-learned in the VPLS service, before the SAP where the moving MAC was last seen is automatically disabled in order to protect the system against undetected loops or duplicate MAC's.

The `no` form of the command reverts to the default value.

Default

2 (when mac-move is enabled). For example, 10 relearns in a 5 second period.

Parameters

- `frequency` — Specifies the rate, in 5-second intervals for the maximum number of relearns.

 Values

 1 — 100

retry-timeout

Syntax

```
retry-timeout timeout
no retry-timeout
```

Context

```
config>service>vpls>mac-move
```

Description

This indicates the time in seconds to wait before a SAP that has been disabled after exceeding the maximum relearn rate is reenabled.

It is recommended that the retry-timeout value is larger or equal to 5s * cumulative factor of the highest priority port so that the sequential order of port blocking will not be disturbed by re-initializing lower priority ports.

A zero value indicates that the SAP will not be automatically re-enabled after being disabled.

If, after the SAP is reenabled it is disabled again, the effective retry timeout is doubled in order to avoid thrashing.

The `no` form of the command reverts to the default value.

Default

10 (when mac-move is enabled)

Parameters

- `timeout` — Specifies the time, in seconds, to wait before a SAP that has been disabled after exceeding the maximum relearn rate is reenabled.

 Values

 0 — 120

mfib-table-high-wmark

Syntax

```
[no] mfib-table-high-wmark high-water-mark
```

Virtual Private LAN Services

Context config>service>vpls

Description This command specifies the multicast FIB high watermark. When the percentage filling level of the multicast FIB exceeds the configured value, a trap is generated and/or a log entry is added.

Parameters high-water-mark — Specifies the multicast FIB high watermark as a percentage.

<table>
<thead>
<tr>
<th>Values</th>
<th>1 — 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>95%</td>
</tr>
</tbody>
</table>

mfib-table-low-wmark

Syntax [no] mfib-table-low-wmark low-water-mark

Context config>service>vpls

Description This command specifies the multicast FIB low watermark. When the percentage filling level of the Multicast FIB drops below the configured value, the corresponding trap is cleared and/or a log entry is added.

Parameters low-water-mark — Specifies the multicast FIB low watermark as a percentage.

<table>
<thead>
<tr>
<th>Values</th>
<th>1 — 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>90%</td>
</tr>
</tbody>
</table>

mfib-table-size

Syntax mfib-table-size size

Context config>service>vpls

Description This command specifies the maximum number of (s,g) entries in the multicast forwarding database (MFIB) for this VPLS instance.

The mfib-table-size parameter specifies the maximum number of multicast database entries for both learned and static multicast addresses for the VPLS instance. When a table-size limit is set on the mfib of a service which is lower than the current number of dynamic entries present in the mfib then the number of entries remains above the limit.

The no form of this command removes the configured maximum MFIB table size.

Default none

Parameters size — The maximum number of (s,g) entries allowed in the Multicast FIB.

remote-age

Syntax remote-age seconds

Context config>service>vpls

Description This command specifies the time interval in seconds after which the remote age counter is reset.

Parameters seconds — The time interval in seconds.

<table>
<thead>
<tr>
<th>Values</th>
<th>1 — 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>300</td>
</tr>
</tbody>
</table>
Context config>service>vpls
config>template>vpls-template

Description Specifies the aging time for remotely learned MAC addresses in the forwarding database (FDB) for the Virtual Private LAN Service (VPLS) instance. In a VPLS service, MAC addresses are associated with a Service Access Point (SAP) or with a Service Distribution Point (SDP). MACs associated with a SAP are classified as local MACs, and MACs associated with an SDP are remote MACs.

Like in a layer 2 switch, learned MACs can be aged out if no packets are sourced from the MAC address for a period of time (the aging time). In each VPLS service instance, there are independent aging timers for local learned MAC and remote learned MAC entries in the FDB. The remote-age timer specifies the aging time for remote learned MAC addresses. To reduce the amount of signaling required between switches configure this timer larger than the local-age timer.

The no form of this command returns the remote aging timer to the default value.

Default remote age 900 — Remote MACs aged after 900 seconds

Parameters seconds — The aging time for remote MACs expressed in seconds.

Values 60 — 86400

send-flush-on-failure

Note: This command is applicable on 7210 SAS-M devices configured in network mode.

Syntax [no] send-flush-on-failure

Context config>service>vpls

Description This command enables sending out “flush-all-from-ME” messages to all LDP peers included in affected VPLS, in the event of physical port failures or “oper-down” events of individual SAPs. This feature provides an LDP-based mechanism for recovering a physical link failure in a dual-homed connection to a VPLS service. This method provides an alternative to RSTP solutions where dual homing redundancy and recovery, in the case of link failure, is resolved by RSTP running between a PE router and CE devices. If the endpoint is configured within the VPLS and send-flush-on-failure is enabled, flush-all-from-me messages will be sent out only when all spoke SDPs associated with the endpoint go down.

This feature cannot be enabled on management VPLS.

Default no send-flush-on-failure

service-mtu

Note: This command is supported on 7210 SAS-M in Network mode.

Syntax service-mtu octets
no service-mtu

Context config>service>vpls
Description

This command configures the service payload (Maximum Transmission Unit – MTU), in bytes, for the service. This MTU value overrides the service-type default MTU. The `service-mtu` defines the payload capabilities of the service. It is used by the system to validate the SAP and SDP binding’s operational state within the service.

The service MTU and a SAP’s service delineation encapsulation overhead (i.e., 4 bytes for a dot1q tag) is used to derive the required MTU of the physical port or channel on which the SAP was created. If the required payload is larger than the port or channel MTU, then the SAP will be placed in an inoperative state. If the required MTU is equal to or less than the port or channel MTU, the SAP will be able to transition to the operative state.

When binding an SDP to a service, the service MTU is compared to the path MTU associated with the SDP. The path MTU can be administratively defined in the context of the SDP. The default or administrative path MTU can be dynamically reduced due to the MTU capabilities discovered by the tunneling mechanism of the SDP or the egress interface MTU capabilities based on the next hop in the tunnel path. If the service MTU is larger than the path MTU, the SDP binding for the service will be placed in an inoperative state. If the service MTU is equal to or less than the path MTU, then the SDP binding will be placed in an operational state.

In the event that a service MTU, port or channel MTU, or path MTU is dynamically or administratively modified, then all associated SAP and SDP binding operational states are automatically re-evaluated.

For i-VPLS and EPIPEs bound to a b-VPLS, the service-mtu must be at least 18 bytes smaller than the b-VPLS service MTU to accommodate the PBB header.

The `no` form of this command returns the default `service-mtu` for the indicated service type to the default value.

Note: To disable service MTU check execute the command `no service-mtu-check`. Disabling service MTU check allows the packets to pass to the egress if the packet length is lesser than or equal to the MTU configured on the port.

Default

VPLS: 1514

The following table displays MTU values for specific VC types.

<table>
<thead>
<tr>
<th>VC-Type</th>
<th>Example Service MTU</th>
<th>Advertised MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>1514</td>
<td>1500</td>
</tr>
<tr>
<td>Ethernet (with preserved dot1q)</td>
<td>1518</td>
<td>1504</td>
</tr>
<tr>
<td>VPLS</td>
<td>1514</td>
<td>1500</td>
</tr>
<tr>
<td>VPLS (with preserved dot1q)</td>
<td>1518</td>
<td>1504</td>
</tr>
<tr>
<td>VLAN (dot1p transparent to MTU value)</td>
<td>1514</td>
<td>1500</td>
</tr>
<tr>
<td>VLAN (QinQ with preserved bottom Qtag)</td>
<td>1518</td>
<td>1504</td>
</tr>
</tbody>
</table>

The size of the MTU in octets, expressed as a decimal integer.

Values

1 — 9194
service-mtu-check

Note: This command is supported on 7210 SAS-M in Network mode.

Syntax

[no] service-mtu-check

Context config>service>vpls

Description The no form of this command disables the service MTU checks. Disabling service MTU check allows the packets to pass to the egress if the packet length is lesser than or equal to the MTU configured on the port. The length of the packet sent from a SAP is limited only by the access port MTU. In case of a pseudowire the length of a packet is limited by the network port MTU (including the MPLS encapsulation).

Note: If TLDP is used for signaling, the configured value for service-mtu is used during a pseudowire setup.

Default enabled

split-horizon-group

Note: This command is supported on 7210 SAS-M in Network mode. It is not available in 7210 SAS-M in access-uplink mode.

Syntax

[no] split-horizon-group [group-name] [create]

Context config>service>vpls

Description This command creates a new split horizon group for the VPLS instance. Traffic arriving on a SAP or spoke SDP within this split horizon group will not be copied to other SAPs or spoke SDPs in the same split horizon group.

A split horizon group must be created before SAPs and spoke SDPs can be assigned to the group.

The split horizon group is defined within the context of a single VPLS. The same group-name can be re-used in different VPLS instances.

Note: In 7210-SAS devices, use of SAP or Spoke-SDP Split-horizon group and Mesh-SDP are mutually exclusive.

The no form of the command removes the group name from the configuration.

Parameters

- group-name — Specifies the name of the split horizon group to which the SAP or spoke-SDP belongs.
- create — Mandatory keyword to create a split-horizon group.

root-guard

Syntax

[no] root-guard

Context config>service>vpls>sap>stp
config>service>vpls>spoke-sdp>stp
Description This command specifies whether this port is allowed to become an STP root port. It corresponds to the restrictedRole parameter in 802.1Q. If set, it can cause lack of spanning tree connectivity.

Default no root-guard

tod-suite

Syntax
```
tod-suite tod-suite-name  
no tod-suite  
```

Context config>service>vpls>sap

Description This command applies a time-based policy (filter or QoS policy) to the service SAP. The suite name must already exist in the `config>cron` context.

Default no tod-suite

Parameters
- `tod-suite-name` — Specifies collection of policies (ACLs, QoS) including time-ranges that define the full or partial behavior of a SAP. The suite can be applied to more than one SAP.

vsi-id

Syntax
```
vsid  
```

Context config>service>vpls>bgp-ad

Description This command enables the context to configure the Virtual Switch Instance Identifier (VSI-ID).

prefix

Syntax
```
prefix low-order-vsi-id  
no prefix  
```

Context config>service>vpls>bgp-ad>vsi-id

Description This command specifies the low-order 4 bytes used to compose the Virtual Switch Instance Identifier (VSI-ID) to use for NLRI in BGP auto-discovery in this VPLS service.

If no value is set, the system IP address will be used.

Default no prefix

Parameters
- `low-order-vsi-id` — Specifies a unique VSI ID.

 Values 0— 4294967295
service-name

Syntax

```
service-name service-name
no service-name
```

Context

```
config>service>vpls
```

Description

This command configures an optional service name, up to 64 characters in length, which adds a name identifier to a given service to then use that service name in configuration references as well as display and use service names in show commands throughout the system. This helps the service provider/administrator to identify and manage services within the 7750 SR, 7450 ESS and 7710 SR platforms.

All services are required to assign a service ID to initially create a service. However, either the service ID or the service name can be used to identify and reference a given service once it is initially created.

Parameters

```
service-name — Specifies a unique service name to identify the service. Service names may not begin with an integer (0-9).
```

allow-ip-int-binding

Syntax

```
[no] allow-ip-int-binding
```

Context

```
config>service>vpls
```

Description

The allow-ip-int-binding command that sets a flag on the VPLS service that enables the ability to attach an IES IP interface to the VPLS service in order to make the VPLS service routable. When the allow-ip-int-binding command is not enabled, the VPLS service cannot be attached to an IP interface.

Please refer to the Virtual Private LAN Service on page 243 for VPLS Configuration Constraints for Enabling allow-ip-int-binding.

When attempting to set the allow-ip-int-binding VPLS flag, the system first checks to see if the correct configuration constraints exist for the VPLS service and the network ports. In Release 5.0 the following VPLS features must be disabled or not configured for the allow-ip-int-binding flag to set:

- SAP ingress QoS policies applied to the VPLS SAPs cannot have MAC match criteria defined
- The VPLS service type cannot be B-VPLS or M-VPLS and it cannot be an I-VPLS service bound to a B-VPLS context
- MVR from Routed VPLS and to another SAP is not supported

Once the VPLS allow-ip-int-binding flag is set on a VPLS service, the above features cannot be enabled on the VPLS service.

VPLS SERVICE NAME BOUND TO IP INTERFACE WITHOUT ALLOW-IP-INT-BINDING FLAG SET

In the event that a service name is applied to a VPLS service and that service name is also bound to an IP interface but the allow-ip-int-binding flag has not been set on the VPLS service context, the system attempt to resolve the service name between the VPLS service and the IP interface will fail. After the allow-ip-int-binding flag is successfully set on the VPLS service, either the service name on the VPLS service must be removed and re-applied or the IP interface must be re-initialized using the shutdown or no shutdown commands. This will cause the system to re-attempt the name resolution process between the IP interface and the VPLS service.
The no form of the command resets the allow-ip-int-binding flag on the VPLS service. If the VPLS service currently has an IP interface from an IES service attached, the no allow-ip intbinding command will fail. Once the allow-ip-int-binding flag is reset on the VPLS service, the configuration restrictions associated with setting the flag are removed.
VPLS Interface Commands

Note: VPLS interface commands are supported only on 7210 SAS-M devices configured in access uplink mode.

interface

Syntax

[no] interface ip-int-name

Context

config>service>vpls

Description

This command creates a logical IP routing interface for a VPLS service. Once created, attributes such as IP address and service access points (SAP) can be associated with the IP interface.

The interface command, under the context of services, is used to create and maintain IP routing interfaces within the VPLS service IDs. The IP interface created is associated with the VPLS management routing instance. This instance does not support routing.

Interface names are case-sensitive and must be unique within the group of defined IP interfaces defined for the network core router instance. Interface names in the dotted decimal notation of an IP address are not allowed. For example, the name “1.1.1.1” is not allowed, but “int-1.1.1.1” is allowed. Show commands for router interfaces use either interface names or the IP addresses. Use unique IP address values and IP address names to maintain clarity. Duplicate interface names can exist in different router instances.

Enter a new name to create a logical router interface. When an existing interface name is entered, the user enters the router interface context for editing and configuration.

By default, no default IP interface names are defined within the system. All VPLS IP interfaces must be explicitly defined in an enabled state.

The no form of this command removes the IP interface and the entire associated configuration. The interface must be administratively shutdown before issuing the no interface command.

For VPLS services, the IP interface must be shutdown before the SAP on that interface is removed.

For VPLS service, ping and traceroute are the only applications supported.

Parameters

ip-int-name — Specifies the name of the IP interface. Interface names must be unique within the group of defined IP.

An interface name:

- Should not be in the form of an IP address.
- Can be from 1 to 32 alphanumeric characters.
- If the string contains special characters (such as #,$,spaces), the entire string must be enclosed within double quotes.

If ip-int-name already exists within the service ID, the context changes to maintain that IP interface. If ip-int-name already exists within another service ID, an error occurs and the context does not change to that IP interface. If ip-int-name does not exist, the interface is created and the context is changed to that interface for further command processing.
address

Syntax

address {ip-address/mask | ip-address netmask}
address ip-address mask

Context

config>service>vpls>interface

Description

This command assigns an IP address and an IP subnet, to a VPLS IP router interface. Only one IP address can be associated with an IP interface. An IP address must be assigned to each VPLS IP interface. An IP address and a mask are used together to create a local IP prefix. The defined IP prefix must be unique within the context of the routing instance. It cannot overlap with other existing IP prefixes defined as local subnets on other IP interfaces in the same routing context within the 7210 SAS.

The IP address for the interface can be entered in either CIDR (Classless Inter-Domain Routing) or traditional dotted decimal notation. The show commands display CIDR notation and is stored in configuration files.

By default, no IP address or subnet association exists on an IP interface until it is explicitly created. Use the no form of this command to remove the IP address assignment from the IP interface. When the no address command is entered, the interface becomes operationally down.

<table>
<thead>
<tr>
<th>Address</th>
<th>Admin State</th>
<th>Oper State</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Address</td>
<td>Up</td>
<td>Down</td>
</tr>
<tr>
<td>No Address</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Down</td>
<td>Down</td>
</tr>
</tbody>
</table>

The operational state is a read-only variable and the only controlling variables are the address and admin states. The address and admin states are independent and can be set independently. If an interface is in an administratively up state and an address is assigned, it becomes operationally up.

Parameters

ip-address — The IP address of the IP interface. The ip-address portion of the address command specifies the IP host address that will be used by the IP interface within the subnet.

This address must be unique within the subnet and specified in dotted decimal notation. Allowed values are IP addresses in the range 1.0.0.0 – 223.255.255.255 (with support of /31 subnets).

/ — The forward slash is a parameter delimiter and separates the ip-address portion of the IP address from the mask that defines the scope of the local subnet. No spaces are allowed between the ipaddress, the "/" and the mask-length parameter. If a forward slash is not immediately following the ip-address, a dotted decimal mask must follow the prefix.

mask-length — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the ip-address from the mask-length parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address. The values allowed are integers in the range 0 – 30. Note that a mask length of 32 is reserved for system IP addresses.
mask — The subnet mask in dotted decimal notation. When the IP prefix is not specified in CIDR notation, a space separates the ip-address from a traditional dotted decimal mask. The mask parameter indicates the complete mask that will be used in a logical ‘AND’ function to derive the local subnet of the IP address. Allowed values are dotted decimal addresses in the range 128.0.0.0 – 255.255.255.252. Note that a mask of 255.255.255.255 is reserved for system IP addresses.

Values 1 — 16383

arp-timeout

Syntax

- arp-timeout seconds
- no arp-timeout

Context config>service>vpls>interface

Description This command configures the minimum time in seconds an ARP entry learned on the IP interface will be stored in the ARP table. ARP entries are automatically refreshed when an ARP request or gratuitous ARP is seen from an IP host, otherwise, the ARP entry is aged from the ARP table. If arp-timeout is set to a value of zero seconds, ARP aging is disabled.

The default value for arp-timeout is 14400 seconds (4 hours).

The no form of this command restores arp-timeout to the default value.

Default 14400 seconds

Parameters seconds — The minimum number of seconds a learned ARP entry will be stored in the ARP table, expressed as a decimal integer. A value of zero specifies that the timer is inoperative and learned ARP entries will not be aged.

Values 0 — 65535

mac

Syntax

- mac ieee-address
- no mac

Context config>service>vpls>interface

Description This command assigns a specific MAC address to a VPLS IP interface.

The no form of the command returns the MAC address of the IP interface to the default value.

Default The system chassis MAC address.

Parameters ieee-address — Specifies the 48-bit MAC address for the static ARP in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee, and ff are hexadecimal numbers. Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.
static-arp

Syntax static-arp ip-address ieee-address
no static-arp ip-address [ieee-address]

Context config>service>vpls>interface

Description This command configures a static address resolution protocol (ARP) entry associating a subscriber IP address with a MAC address for the core router instance. A static ARP can only be configured if it exists on the network attached to the IP interface.

If an entry for a particular IP address already exists and a new MAC address is configured for the IP address, the existing MAC address will be replaced with the new MAC address.

The no form of the command removes a static ARP entry.

Default None

Parameters ip-address — Specifies the IP address for the static ARP in dotted decimal notation.

ieee-mac-address — Specifies the 48-bit MAC address for the static ARP in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee and ff are hexadecimal numbers. Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.
VPLS STP Commands

stp

Syntax
stp

Context
config>service>vpls
config>service>vpls>sap
config>template>vpls-template

Description
This command enables the context to configure the Spanning Tree Protocol (STP) parameters. Alcatel-Lucent’s STP is simply the Spanning Tree Protocol (STP) with a few modifications to better suit the operational characteristics of VPLS services. The most evident change is to the root bridge election. Since the core network operating between Alcatel-Lucent’s service routers should not be blocked, the root path is calculated from the core perspective.

auto-edge

Syntax
auto-edge
no auto-edge

Context
config>service>vpls>sap>stp
config>service>vpls>spoke-sdp>stp

Description
This command configures automatic detection of the edge port characteristics of the SAP or spoke SDP.

The no form of this command returns the auto-detection setting to the default value.

Default
auto-edge
edge-port

Syntax [no] edge-port

Context config>service>vpls>sap>stp
 config>service>vpls>spoke-sdp>stp

Description This command configures the SAP or SDP as an edge or non-edge port. If auto-edge is enabled for the SAP, this value will be used only as the initial value.

RSTP, however, can detect that the actual situation is different from what edge-port may indicate. Initially, the value of the SAP or spoke SDP parameter is set to edge-port. This value will change if:

- A BPDU is received on that port. This means that after all there is another bridge connected to this port. Then the edge-port becomes disabled.
- If auto-edge is configured and no BPDU is received within a certain period of time, RSTP concludes that it is on an edge and enables the edge-port.

The no form of this command returns the edge port setting to the default value.

Default no edge-port

forward-delay

Syntax forward-delay seconds
 no forward-delay

Context config>service>vpls>stp
 config>template>vpls-template>stp

Description RSTP, as defined in the IEEE 802.1D-2004 standards, will normally transition to the forwarding state via a handshaking mechanism (rapid transition), without any waiting times. If handshaking fails (e.g. on shared links, see below), the system falls back to the timer-based mechanism defined in the original STP (802.1D-1998) standard.

A shared link is a link with more than two nodes (for example, a shared 10/100BaseT segment). The port-type command is used to configure a link as point-to-point or shared.

For timer-based transitions, the 802.1D-2004 standard defines an internal variable forward-delay, which is used in calculating the default number of seconds that a SAP spends in the discarding and learning states when transitioning to the forwarding state.

The value of the forward-delay variable depends on the STP operating mode of the VPLS instance:

- in rstp or mstp mode, but only when the SAP has not fallen back to legacy STP operation, the value configured by the hello-time command is used;
- in all other situations, the value configured by the forward-delay command is used.

Default 15 seconds

Parameters seconds — The forward delay timer for the STP instance in seconds.

Values 4 — 30
hello-time

Syntax

```
hello-time hello-time
no hello-time
```

Context

```
config>service>vpls>stp
config>template>vpls-template>stp
```

Description

This command configures the Spanning Tree Protocol (STP) hello time for the Virtual Private LAN Service (VPLS) STP instance.

The hello time parameter defines the default timer value that controls the sending interval between BPDU configuration messages by this bridge, on ports where this bridge assumes the designated role.

The active hello time for the spanning tree is determined by the root bridge (except when the STP is running in RSTP mode, then the hello time is always taken from the locally configured parameter).

The configured hello-time can also be used to calculate the forward delay. See auto-edge on page 398.

The **no** form of this command returns the hello time to the default value.

Default

2 seconds

Parameters

`hello-time` — The hello time for the STP instance in seconds.

Values

1 — 10

hold-count

Syntax

```
hold-count BDPU tx hold count
no hold-count
```

Context

```
config>service>vpls>stp
config>template>vpls-template>stp
```

Description

This command configures the peak number of BPDUs that can be transmitted in a period of one second.

The **no** form of this command returns the hold count to the default value.

Default

6

Parameters

`BDPU tx hold count` — The hold count for the STP instance in seconds.

Values

1 — 10
link-type

Syntax: \texttt{link-type \{pt-pt | shared\}}

no link-type

Context: \texttt{config>service>vpls>sap>stp}
\texttt{config>service>vpls>spoke-sdp>stp}

Description: This command instructs STP on the maximum number of bridges behind this SAP. If there is only a single bridge, transitioning to forwarding state will be based on handshaking (fast transitions). If more than two bridges are connected via a shared media, their SAP should all be configured as shared, and timer-based transitions are used.

The \texttt{no} form of this command returns the link type to the default value.

Default: \texttt{pt-pt}

mst-instance

Syntax: \texttt{mst-instance \textit{mst-inst-number}}

Context: \texttt{config>service>vpls>sap>stp}

Description: This command enables the context to configure MSTI related parameters at SAP level. This context can be open only for existing mst-instances defined at the service level.

Default: \texttt{none}

Parameters: \texttt{mst-inst-number} — Specifies an existing Multiple Spanning Tree Instance number.

Values: \texttt{1 — 4094}

mst-path-cost

Syntax: \texttt{mst-path-cost \textit{inst-path-cost}}

\texttt{no mst-path-cost}

Context: \texttt{config>service>vpls>sap>stp>mst-instance}

Description: This command specifies path-cost within a given instance. If a loop occurs, this parameter indicates the probability of a given port being assigned a forwarding state. (The highest value expresses lowest priority).

The \texttt{no} form of this command sets port-priority to its default value.

Default: The path-cost is proportional to link speed.

Parameters: \texttt{inst-path-cost} — Specifies the contribution of this port to the MSTI path cost.

Values: \texttt{1 — 20000000}
mst-port-priority

Syntax
```plaintext
mst-port-priority stp-priority  
no mst-port-priority
```

Context
```plaintext
config>service>vpls>sap>stp>mst-instance
```

Description
This command specifies the port priority within a given instance. If a loop occurs, this parameter indicates the probability of a given port being assigned a forwarding state. The **no** form of this command sets port-priority to its default value.

Default
128

Parameters
```plaintext
stp-priority — Specifies the value of the port priority field.
```

max-age

Syntax
```plaintext
max-age seconds  
no max-age
```

Context
```plaintext
config>service>vpls>stp  
config>template>vpls-template>stp
```

Description
This command indicates how many hops a BPDU can traverse the network starting from the root bridge. The message age field in a BPDU transmitted by the root bridge is initialized to 0. Each other bridge will take the message_age value from BPDUs received on their root port and increment this value by 1. The message_age thus reflects the distance from the root bridge. BPDUs with a message_age exceeding max-age are ignored.

STP uses the max-age value configured in the root bridge. This value is propagated to the other bridges via the BPDUs.

The **no** form of this command returns the max_age to the default value.

Default
20 seconds

Parameters
```plaintext
seconds — The max info age for the STP instance in seconds. Allowed values are integers in the range 6 to 40.
```
mode

Syntax mode \{rstp | comp-dot1w | dot1w | mstp | pmstp\}

Context config>service>vpls>stp

Description This command specifies the version of Spanning Tree Protocol the bridge is currently running.
See section Spanning Tree Operating Modes on page 263 for details on these modes.
The no form of this command returns the STP variant to the default.

Default rstp

Parameters

dot1w — Corresponds to the mode where the Rapid Spanning Tree is backward compatible with IEEE 802.1w.
compdot1w — Corresponds to the Rapid Spanning Tree Protocol fully conformant to IEEE 802.1w.
mstp — Sets MSTP as the STP mode of operation. Corresponds to the Multiple Spanning Tree Protocol specified in 802.1Q REV/D5.0-09/2005
pmstp — The PMSTP mode is only supported in VPLS services where the mVPLS flag is configured.

mst-instance

Syntax [no] mst-instance mst-inst-number

Context config>service>vpls>stp

Description This command creates the context to configure Multiple Spanning Tree Instance (MSTI) related parameters. MSTP supports “16” instances. The instance “0” is mandatory (by protocol) and cannot be created by the CLI. The software automatically maintains this instance.

Default none

Parameters mst-inst-number — Specifies the Multiple Spanning Tree instance.

Values 1 — 4094

mst-priority

Syntax mst-priority bridge-priority

no mst-priority

Context config>service>vpls>stp>mst-instance

Description This command specifies the bridge priority for this specific Multiple Spanning Tree Instance for this service. The bridge-priority value reflects likelihood that the switch will be chosen as the regional
root switch (65535 represents the least likely). It is used as the highest 4 bits of the Bridge ID included in the MSTP BPDU’s generated by this bridge.

The values of the priority are only multiples of 4096 (4k). If a value is specified that is not a multiple of 4K, the value is replaced by the closest multiple of 4K (lower than the value entered).

The no form of this command sets the bridge-priority to its default value.

Default 32768 — All instances that are created by the `vlan-range` command do not have explicit definition of bridge-priority and will inherit the default value.

Parameters

- `bridge-priority` — Specifies the priority of this specific Multiple Spanning Tree Instance for this service.
 - **Values**
 - 0 — 65535

vlan-range

- **Syntax**
 - `[no] vlan-range [vlan-range]

- **Context**
 - config>service>vpls>stp>mst-instance

- **Description**
 - This command specifies a range of VLANs associated with a certain MST-instance. This range applies to all SAPs of the mVPLS.

 Every VLAN range that is not assigned within any of the created `mst-instance` is automatically assigned to mst-instance 0. This instance is automatically maintained by the software and cannot be modified. Changing the VLAN range value can be performed only when the given mst-instance is shutdown.

 The no form of this command removes the `vlan-range` from given `mst-instance`.

- **Parameters**
 - `vlan-range` — The first VLAN range specifies the left-bound (i.e., minimum value) of a range of VLANs that are associated with the mVPLS SAP. This value must be smaller than (or equal to) the second VLAN range value. The second VLAN range specifies the right-bound (i.e., maximum value) of a range of VLANs that are associated with the mVPLS SAP.

 - **Values**
 - 1 — 4094

mst-max-hops

- **Syntax**
 - mst-max-hops `hops-count`
 - no mst-max-hops

- **Context**
 - config>service>vpls>stp

- **Description**
 - This command specifies the number of hops in the region before BPDU is discarded and the information held for the port is aged out. The root bridge of the instance sends a BPDU (or M-record) with remaining-hop-count set to configured `<max-hops>`. When a bridge receives the BPDU (or M-record), it decrements the received remaining-hop-count by 1 and propagates it in BPDU (or M-record) it generates.

 The no form of this command sets the `hops-count` to its default value.
Virtual Private LAN Services

Default

20

Parameters

hops-count — Specifies the maximum number of hops.

Values

1 — 40

mst-name

Syntax

mst-name region-name
no mst-name

Context
config>service>vpls>stp

Description
This command defines an MST region name. Two bridges are considered as a part of the same MST region as soon as their configuration of the MST region name, the MST-revision and VLAN-to-instance assignment is identical.

The no form of this command removes region-name from the configuration.

Default
no mst-name

Parameters

region-name — Specifies an MST-region name up to 32 characters in length.

mst-revision

Syntax

mst-revision revision-number

Context
config>service>vpls>stp
config>service>vpls>spoke-sdp>stp

Description
This command defines the MST configuration revision number. Two bridges are considered as a part of the same MST region if their configured MST-region name, MST-revision, and VLAN-to-instance are identical.

The no form of this command returns MST configuration revision to its default value.

Default
0

Parameters

revision-number — Specifies the MSTP region revision number to define the MSTP region.

Values

0 — 65535

path-cost

Syntax

path-cost sap-path-cost
no path-cost

Context
config>service>vpls>sap>stp
config>service>vpls>spoke-sdp>stp

Description
This command configures the Spanning Tree Protocol (STP) path cost for the SAP or spoke SDP.
The path cost is used by STP to calculate the path cost to the root bridge. The path cost in BPDUs received on the root port is incremented with the configured path cost for that SAP. When BPDUs are sent out other egress SAPs or spoke SDPs, the newly calculated root path cost is used.

STP suggests that the path cost is defined as a function of the link bandwidth. Since SAPs are controlled by complex queuing dynamics, in the 7210 SAS the STP path cost is a purely static configuration.

The `no` form of this command returns the path cost to the default value.

path-cost — The path cost for the SAP or spoke SDP.

Values
- 1 — 200000000 (1 is the lowest cost)
- Default: 10

port-num

Syntax

```
[no] port-num virtual-port-number
```

Context

```
config>service>vpls>sap>stp
config>service>vpls>spoke-sdp>stp
```

Description

This command configures the virtual port number which uniquely identifies a SAP within configuration bridge protocol data units (BPDUs). The internal representation of a SAP is unique to a system and has a reference space much bigger than the 12 bits definable in a configuration BPDU. STP takes the internal representation value of a SAP and identifies it with its own virtual port number that is unique to every other SAP defined on the TLS. The virtual port number is assigned at the time that the SAP is added to the TLS. Since the order that the SAP was added to the TLS is not preserved between reboots of the system, the virtual port number may change between restarts of the STP instance.

The virtual port number cannot be administratively modified.

priority

Syntax

```
priority bridge-priority
no priority
```

Context

```
config>service>vpls>stp
config>template>vpls-template>stp
```

Description

The bridge-priority command is used to populate the priority portion of the bridge ID field within outbound BPDUs (the most significant 4 bits of the bridge ID). It is also used as part of the decision process when determining the best BPU between messages received and sent. All values will be truncated to multiples of 4096, conforming with IEEE 802.1t and 802.1D-2004.

The `no` form of this command returns the bridge priority to the default value.

Default

By default, the bridge priority is configured to 4096 which is the highest priority.

Parameters

- `bridge-priority` — The bridge priority for the STP instance.
Values

Allowed values are integers in the range of 4096 — 65535 with 4096 being the highest priority. The actual bridge priority value stored/used is the number entered with the lowest 12 bits masked off which means the actual range of values is 4096 to 61440 in increments of 4096.

Syntax

priority stp-priority
no priority

Context

cfg>service>vpls>spoke-sdp
cfg>service>vpls>sap>stp

Description

This command configures the Alcatel-Lucent Spanning Tree Protocol (STP) priority for the SAP or spoke SDP.

STP priority is a configurable parameter associated with a SAP or spoke SDP. When configuration BPDU's are received, the priority is used in some circumstances as a tie breaking mechanism to determine whether the SAP or spoke SDP will be designated or blocked.

In traditional STP implementations (802.1D-1998), this field is called the port priority and has a value of 0 to 255. This field is coupled with the port number (0 to 255 also) to create a 16 bit value. In the latest STP standard (802.1D-2004) only the upper 4 bits of the port priority field are used to encode the SAP or spoke SDP priority. The remaining 4 bits are used to extend the port ID field into a 12 bit virtual port number field. The virtual port number uniquely references a SAP within the STP instance.

STP computes the actual priority by taking the input value and masking out the lower four bits. The result is the value that is stored in the priority parameter. For instance, if a value of 0 is entered, masking out the lower 4 bits results in a parameter value of 0. If a value of 255 is entered, the result is 240.

The no form of this command returns the STP priority to the default value.

Default

128

Parameters

stp-priority — The STP priority value for the SAP. Allowed values are integers in the range of 0 to 255, 0 being the highest priority. The actual value used for STP priority (and stored in the configuration) will be the result of masking out the lower 4 bits, thus the actual value range is 0 to 240 in increments of 16.

Default

128
VPLS SAP Commands

sap

Syntax

```markdown
sap sap-id [split-horizon-group group-name] [create] [eth-ring ring-index] (for 7210 SAS-M in Network mode)
sap sap-id [create] (for 7210 SAS-M in Access uplink mode)
no sap sap-id
```

Note: eth-ring is not supported on 7210 SAS M configured in Access uplink mode.

Context

`config>service>vpls`

Description

This command creates a Service Access Point (SAP) within a service. A SAP is a combination of port and encapsulation parameters which identifies the service access point on the interface and within the 7210 SAS. Each SAP must be unique.

A physical port can have only one SAP to be part of one service. Multiple SAPs can be defined over a physical port but each of these SAPs should belong to a different service.

All SAPs must be explicitly created. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

Enter an existing SAP without the `create` keyword to edit SAP parameters. The SAP is owned by the service in which it was created.

A SAP can only be associated with a single service. A SAP can only be defined on a port that has been configured as an access port using the `config interface port-type port-id mode access` command.

If a port is shutdown, all SAPs on that port become operationally down. When a service is shutdown, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded. The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The `no` form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

This command is also used to create a Ring APS Control SAP or a Data SAP whose traffic is protected by a Ring APS Instance.

Note: Eth-ring is not supported on 7210 SAS M configured in Access uplink mode.

Default

No SAPs are defined.

Special Cases

A default SAP has the following format: port-id:* This type of SAP is supported only on Ethernet MDAs and its creation is allowed only in the scope of Layer 2 services (Epipe and VPLS). The 7210 SAS supports explicit null encapsulation for VPLS service.

Parameters

- `sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.
- `create` — Keyword used to create a SAP instance. The `create` keyword requirement can be enabled/disabled in the `environment>create` context.
eth-ring — The keyword to create an instance of a Ring APS Control SAP or a Data SAP whose traffic is protected by a Ring APS Instance.

ring-index — Specifies the ring index of the Ethernet ring.

split-horizon-group group-name — Specifies the name of the split horizon group to which the SAP belongs.

discard-unknown-source

Syntax

[no] discard-unknown-source

Context

config>service>vpls>sap

Description

When this command is enabled, packets received on a SAP or a spoke SDP with an unknown source MAC address will be dropped only if the maximum number of MAC addresses for that SAP or spoke SDP (see max-nbr-mac-addr on page 415) has been reached. If max-nbr-mac-addr has not been set for the SAP or spoke SDP, enabling discard-unknown-source has no effect.

When disabled, the packets are forwarded based on the destination MAC addresses.

The no form of this command causes packets with an unknown source MAC addresses to be forwarded by destination MAC addresses in VPLS.

Default

no discard-unknown-source

config>service>vpls
ETH-CFM Service Commands

eth-cfm

Syntax

```
eth-cfm
```

Context

```
config>service>vpls
config>service>vpls>mesh-sdp
config>service>vpls>spoke-sdp
config>service>vpls>sap
```

Description

This command enables the context to configure ETH-CFM parameters.

mep

Syntax

```
mep mep-id domain md-index association ma-index [direction {up | down}]
no mep mep-id domain md-index association ma-index
```

Context

```
config>service>vpls>mesh-sdp>eth-cfm
config>service>vpls>sap>eth-cfm
```

Description

This command configures the ETH-CFM maintenance endpoint (MEP).

Parameters

- **mep-id** — Specifies the maintenance association end point identifier.
 - **Values**
 - 1 — 8191
- **md-index** — Specifies the maintenance domain (MD) index value.
 - **Values**
 - 1 — 4294967295
- **ma-index** — Specifies the MA index value.
 - **Values**
 - 1 — 4294967295
- **direction up|down** — Indicates the direction in which the maintenance association (MEP) faces on the bridge port. Direction is not supported when a MEP is created directly under the vpls>eth-cfm construct (vMEP).
 - **Values**
 - **down** — Sends ETH-CFM messages away from the MAC relay entity.
 - **up** — Sends ETH-CFM messages towards the MAC relay entity.

ais-enable

Syntax

```
[no] ais-enable
```

Context

```
config>service>vpls>mesh-sdp>eth-cfm>mep
config>service>epipe>spoke-sdp>eth-cfm>mep
```
Description This command enables the generation and the reception of AIS messages.

client-meg-level

Syntax
\[client-meg-level \] \[/[level [level ...]]\]
no client-meg-level

Context config>service>vpls>mesh-sdp>eth-cfm>mep>ais-enable

Description
This command configures the client maintenance entity group (MEG) level(s) to use for AIS message generation. Up to 7 levels can be provisioned with the restriction that the client MEG level must be higher than the local MEG level.

Parameters
level — Specifies the client MEG level.

 Values
 1 — 7

 Default
 1

interval

Syntax
interval \{1 | 60\}
no interval

Context config>service>vpls>mesh-sdp>eth-cfm>mep>ais-enable

Description
This command specifies the transmission interval of AIS messages in seconds.

Parameters
1 | 60 — The transmission interval of AIS messages in seconds.

 Default
 1

priority

Syntax
priority priority-value
no priority

Context config>service>vpls>mesh-sdp>eth-cfm>mep>ais-enable

Description
This command specifies the priority of AIS messages originated by the node.

Parameters
priority-value — Specify the priority value of the AIS messages originated by the node.

ccm-enable

Syntax
[no] ccm-enable

Context config>service>vpls>mep
config>service>vpls>sap>eth-cfm>mep
Virtual Private LAN Services

```yaml
config>service>vpls>mesh-sdp>mep
```

Description
This command enables the generation of CCM messages. The `no` form of the command disables the generation of CCM messages.

ccm-ltm-priority

Syntax
```
ccm-ltm-priority priority
no ccm-ltm-priority
```

Context
```
config>service>vpls>sap>eth-cfm>mep
config>service>vpls>mesh-sdp>mep
```

Description
This command specifies the priority value for CCMs and LTMs transmitted by the MEP. The `no` form of the command removes the priority value from the configuration.

Default
The highest priority on the bridge-port.

Parameters
- `priority` — Specifies the priority of CCM and LTM messages.

 Values
 - `0 — 7`

eth-test-enable

Syntax
```
[no] eth-test-enable
```

Context
```
config>service>vpls>spoke-sdp>eth-cfm>mep
config>service>vpls>mesh-sdp>eth-cfm>mep
```

Description
For ETH-test to work, operators need to configure ETH-test parameters on both sender and receiver nodes. The ETH-test then can be done using the following OAM commands:

```
oam eth-cfm eth-test mac-address mep mep-id domain md-index association ma-index [priority priority] [data-length data-length]
```

A check is done for both the provisioning and test to ensure the MEP is an Y.1731 MEP (MEP provisioned with domain format none, association format icc-based). If not, the operation fails. An error message in the CLI and SNMP will indicate the problem.

test-pattern

Syntax
```
test-pattern {all-zeros | all-ones} [crc-enable]
no test-pattern
```

Context
```
config>service>vpls>sap>eth-cfm>mep>eth-test-enable
config>service>vpls>mesh-sdp>eth-cfm>mep>eth-test-enable
```

Description
This command configures the test pattern for eth-test frames. The `no` form of the command removes the values from the configuration.
Parameters

all-zeros — Specifies to use all zeros in the test pattern.
all-ones — Specifies to use all ones in the test pattern.
crc-enable — Generates a CRC checksum.

Default all-zeros

low-priority-defect

Syntax low-priority-defect {allDef|macRemErrXcon|remErrXcon|xcon|noXcon}

Context config>service>vpls>mesh-sdp>eth-cfm>mep
config>service>epipe>sap>eth-cfm>mep>eth-test-enable

Description This command specifies the lowest priority defect that is allowed to generate a fault alarm.

Default macRemErrXcon

Values allDef DefRDICCM, DefMACstatus, DefRemoteCCM, DefErrorCCM, and DefXconCCM
macRemErrXcon Only DefMACstatus, DefRemoteCCM, DefErrorCCM, and DefXconCCM
remErrXcon Only DefRemoteCCM, DefErrorCCM, and DefXconCCM
errXcon Only DefErrorCCM and DefXconCCM
xcon Only DefXconCCM; or
noXcon No defects DefXcon or lower are to be reported

mac-address

Syntax mac-address mac-address
no mac-address

Context config>service>vpls>mesh-sdp>eth-cfm>mep

Description This command specifies the MAC address of the MEP.
The no form of this command reverts the MAC address of the MEP back to that of the port (if the MEP is on a SAP) or the bridge (if the MEP is on a spoke).

Parameters mac-address — Specifies the MAC address of the MEP.

Values 6-byte mac-address in the form of xx:xx:xx:xx:xx:xx or xx-xx-xx-xx-xx-xx of the MEP. Must be unicast. Using the all zeros address is equivalent to the no form of this command.
one-way-delay-threshold

Syntax

one-way-delay-threshold seconds

Context

config>service>vpls>sap>eth-cfm>mep

Description

This command enables/disables eth-test functionality on MEP.

Parameters

seconds — Specifies the one way delay threshold, in seconds.

Values

- 0..600

Default

- 3

tunnel-fault

Syntax
tunnel-fault {accept | ignore}

Context

config>service>vpls>eth-cfm
config>service>vpls>sap>eth-cfm

Description

Allows the individual service SAPs to react to changes in the tunnel MEP state. When tunnel-fault accept is configured at the service level, the SAP will react according to the service type. EPIPE will set the operational flag and VPLS, IES and VPRN SAP operational state will become down on failure or up on clear. This command triggers the OAM mapping functions to mate SAPs and bindings in an EPIPE service as well as setting the operational flag. If AIS generation is the requirement for the EPIPE services this command is not required. See the command ais-enable under epipe>sap>eth-cfm>ais-enable for more details. This works in conjunction with the tunnel-fault accept on the individual SAPs. Both must be set to accept to react to the tunnel MEP state. By default the service level command is “ignore” and the sap level command is “accept”. This means simply changing the service level command to “accept” will enable the feature for all SAPs. This is not required for EPIPE services that only wish to generate AIS on failure.

Parameters

- accept — Share fate with the facility tunnel MEP
- ignore — Do not share fate with the facility tunnel MEP

Default

- ignore (Service Level)
- accept (SAP Level for EPIPE and VPLS)

limit-mac-move

Syntax

limit-mac-move [blockable | non-blockable]
no limit-mac-move

Context

config>service>vpls>spoke-sdp
config>service>vpls>sap

Description

This command indicates whether or not the mac-move agent, when enabled using config>service>vpls>mac-move or config>service>epipe>mac-move, will limit the MAC re-learn (move) rate on this SAP.
Virtual Private LAN Services

Default: blockable

Parameters:

- **blockable** — The agent will monitor the MAC re-learn rate on the SAP, and it will block it when the re-learn rate is exceeded.

- **non-blockable** — When specified, this SAP will not be blocked, and another blockable SAP will be blocked instead.

mac-pinning

Syntax: [no] mac-pinning

Context:
- config>service>vpls>sap
- config>service>vpls>spoke-sdp
- config>service>vpls>mesh-sdp
- config>service>pw-template

Description:
This command disables re-learning of MAC addresses on other mesh SDPs within the VPLS. The MAC address remains attached to a given Mesh for duration of its age-timer. The age of the MAC address entry in the FIB is set by the age timer. If mac-aging is disabled on a given VPLS service, any MAC address learned on a mesh with mac-pinning enabled remains in the FIB on this mesh forever. Every event that otherwise results in re-learning is logged (MAC address; original - mesh SDP; new - mesh SDP).

Default: MAC pinning is not enabled by default.

max-nbr-mac-addr

Syntax: max-nbr-mac-addr table-size

Context:
- config>service>vpls>sap
- config>service>vpls>spoke-sdp
- config>service>vpls>endpoint
- config>service>pw-template

Description:
This command specifies the maximum number of FDB entries for both learned and static MAC addresses for this SAP, spoke SDP or endpoint. When the configured limit has been reached, and discard-unknown-source has been enabled for this SAP or spoke SDP (see discard-unknown-source on page 409), packets with unknown source MAC addresses will be discarded. The no form of the command restores the global MAC learning limitations for the SAP or spoke SDP.

Default: no max-nbr-mac-addr

Parameters:

- **table-size** — Specifies the maximum number of learned and static entries allowed in the FDB of this service.
statistics

Syntax: statistics
Context: config>service>vpls>sap
Description: This command enables the context to configure the counters associated with SAP ingress and egress.

ingress

Syntax: ingress
Context: config>service>epipe>sap>statistics
cfg>service>vpls>sap>statistics
Description: This command enables the context to configure the ingress SAP statistics counter.

counter-mode

Syntax: counter-mode {in-out-profile-count| forward-drop-count}
Context: config>service>epipe>sap>statistics>ingress
cfg>service>vpls>sap>statistics>ingress
Description: This command allows the user to set the counter mode for the counters associated with SAP ingress meters (a.k.a. policers). A pair of counters is available with each meter. These counters count different events based on the counter mode value.

Note: The counter mode can be changed if an accounting policy is associated with a SAP. If the counter mode is changed, the counters associated with the meter are reset and the counts are cleared. If an accounting policy is in use when the counter-mode is changed, a new record will be written into the current accounting file.

Execute the following sequence of commands to ensure a new accounting file is generated when the counter-mode is changed:

1. Execute the command `config>service>epipe/vpls>sap> no collect-stats`, to disable writing of accounting records.
2. Change the counter-mode to the desired value, execute the command `config>service>epipe/vpls>sap>counter-mode {in-out-profile-count| forward-drop-count}`.
3. Execute the command `config>service>epipe/vpls>sap>collect-stats`, to enable writing of accounting records.

The `no` form of the command restores the counter mode to the default value.

Default: in-out-profile-count
Parameters

forward-drop-count — If the counter mode is specified as "forward-drop-count", one counter counts the forwarded packets and octets received on ingress of a SAP and another counts the dropped packets. The forwarded count is the sum of in-profile and out-of-profile packets/octets received on SAP ingress. The dropped count is count of packets/octets dropped by the policer. A packet is determined to be in-profile or out-of-profile based on the meter rate parameters configured. A packet is dropped by the policer if it exceeds the configured PIR rate. The in-profile count and out-of-profile count is not individually available when operating in this mode.

in-out-profile-count — If the counter mode is specified as "in-out-profile-count", one counter counts the total in-profile packets and octets received on ingress of a SAP and another counts the total out-of-profile packets and octets received on ingress of a SAP. A packet is determined to be in-profile or out-of-profile based on the meter rate parameters configured. A packet is dropped by the policer if it exceeds the configured PIR rate. Dropped counts are not maintained in hardware when this mode is used. It is obtained by subtracting the sum of in-profile count and out-of-profile count from the total SAP ingress received count and displayed.

static-mac

Syntax

```plaintext
[no] static-mac ieee-mac-address [create]
```

Context

- config>service>vpls>sap
- config>service>vpls>mesh-sdp
- config>service>vpls>spoke-sdp

Description

This command creates a local static MAC entry in the Virtual Private LAN Service (VPLS) forwarding database associated with the Service Access Point (SAP).

In a VPLS service, MAC addresses are associated with a Service Access Point (SAP) or with a Service Distribution Point (SDP). MACs associated with a SAP are classified as local MACs, and MACs associated with an SDP are remote MACs.

Local static MAC entries create a permanent MAC address to SAP association in the forwarding database for the VPLS instance so that MAC address will not be learned on the edge device.

Note that static MAC definitions on one edge device are not propagated to other edge devices participating in the VPLS instance, that is, each edge device has an independent forwarding database for the VPLS.

Only one static MAC entry (local or remote) can be defined per MAC address per VPLS instance. By default, no static MAC address entries are defined for the SAP.

The no form of this command deletes the static MAC entry with the specified MAC address associated with the SAP from the VPLS forwarding database.

Parameters

- **ieee-mac-address** — Specifies the 48-bit MAC address for the static ARP in the form

 `aa:bb:cc:dd:ee:ff` or `aa-bb-cc-dd-ee-ff` where `aa`, `bb`, `cc`, `dd`, `ee` and `ff` are hexadecimal numbers.

 Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.

- **create** — This keyword is mandatory when specifying a static MAC address.
managed-vlan-list

Syntax
```
managed-vlan-list
```

Context
```
config>service>vpls>sap
```

Description
This command enables the context to configure VLAN ranges to be managed by a management VPLS. The list indicates, for each SAP, the ranges of associated VLANs that will be affected when the SAP changes state.

This command is only valid when the VPLS in which it is entered was created as a management VPLS.

default-sap

Syntax
```
[no] default-sap
```

Context
```
config>service>vpls>sap>managed-vlan-list
```

Description
This command adds a default SAP to the managed VLAN list.

The **no** form of the command removes the default SAP to the managed VLAN list.

range

Syntax
```
[no] range vlan-range
```

Context
```
config>service>vpls>sap>managed-vlan-list
```

Description
This command configures a range of VLANs on an access port that are to be managed by an existing management VPLS.

This command is only valid when the VPLS in which it is entered was created as a management VPLS, and when the SAP in which it was entered was created on an Ethernet port with encapsulation type of dot1q.

To modify the range of VLANs, first the new range should be entered and afterwards the old range removed. See Modifying VPLS Service Parameters on page 351.

Default
None

Parameters

- **vlan-range** — Specify the VLAN start value and VLAN end value. The end-vlan must be greater than start-vlan. The format is `<start-vlan>-<end-vlan>`

 Values

 - start-vlan: 0 — 4094
 - end-vlan: 0 — 4094
VPLS Filter and QoS Policy Commands

egress

Syntax
dgress

Context
cfg-service<vpls>sap

Description
This command enables the context to configure egress filter policies.
If no egress filter is defined, no filtering is performed.

ingress

Syntax
ingress

Context
cfg-service<vpls>sap

Description
This command enables the context to configure ingress SAP Quality of Service (QoS) policies and filter policies.
If no sap-ingress QoS policy is defined, the system default sap-ingress QoS policy is used for ingress processing. If no ingress filter is defined, no filtering is performed.

filter

Syntax
filter ip ip-filter-id
filter ipv6 ipv6-filter-id
filter mac mac-filter-id

Context
cfg-service<vpls>sap sg egress
cfg-service<vpls>sap sg ingress
cfg-service<vpls>sap spoke-sdp egress

Description
This command associates an IP filter policy or MAC filter policy with an ingress or egress Service Access Point (SAP) or IP interface.
Filter policies control the forwarding and dropping of packets based on IP or MAC matching criteria.
There are two types of filter policies: IP and MAC. Only one type may be applied to a SAP at a time.
The **filter** command is used to associate a filter policy with a specified filter ID with an ingress or egress SAP. The filter ID must already be defined before the **filter** command is executed. If the filter policy does not exist, the operation will fail and an error message returned.
In general, filters applied to SAPs (ingress or egress) apply to all packets on the SAP. One exception is non-IP packets are not applied to IP match criteria, so the default action in the filter policy applies to these packets.
The **no** form of this command removes any configured filter ID association with the SAP or IP interface. The filter ID itself is not removed from the system.
Special Cases
VPLS — Both MAC and IP filters are supported on a VPLS service SAP.

Parameters

- **ip ip-filter-id** — Specifies IP filter policy. The filter ID must already exist within the created IP filters.
 - **Values**
 - 1 — 65535

- **ipv6 ipv6-filter-id** — Specifies the IPv6 filter policy. The filter ID must already exist within the created IPv6 filters.
 - **Values**
 - 1 — 65535

- **mac mac-filter-id** — Specifies the MAC filter policy. The specified filter ID must already exist within the created MAC filters. The filter policy must already exist within the created MAC filters.
 - **Values**
 - 1 — 65535

qos

Syntax

- **qos policy-id**
- **no qos**

Context

- config>service>vpls>sap>ingress
- config>service>epipe>sap>ingress

Description

This command associates a Quality of Service (QoS) policy with an ingress Service Access Point (SAP) or IP interface.

QoS ingress policies are important for the enforcement of SLA agreements. The policy ID must be defined prior to associating the policy with a SAP. If the `policy-id` does not exist, an error will be returned.

The qos command is used to associate ingress apolicies. The qos command only allows ingress policies to be associated on SAP ingress. Attempts to associate a QoS policy of the wrong type returns an error.

Only one ingress QoS policy can be associated with a SAP at one time. Attempts to associate a second QoS policy of a given type will return an error.

By default, if no specific QoS policy is associated with the SAP for ingress, so the default QoS policy is used.

The no form of this command removes the QoS policy association from the SAP, and the QoS policy reverts to the default.

- **policy-id** — The ingress policy ID to associate with SAP on ingress. The policy ID must already exist.
 - **Values**
 - 1 — 65535

aggregate-meter-rate

Syntax

- **aggregate-meter-rate rate-in-kbps [burst burst-in-kbits]**
- **no aggregate-meter-rate**

Context

- config>service> vpls> sap> ingress
- config>service>epipe> sap> ingress
Description

This command allows the user to configure the SAP aggregate policer. The rate of the SAP aggregate policer must be specified by the user. The user can optionally specify the burst size for the SAP aggregate policer. The aggregate policer monitors the traffic on different FCs and determines the destination of the packet. The packet is either forwarded to an identified profile or dropped.

The table below provides information about the final disposition of the packet based on the operating rate of the per FC policer and the per SAP aggregate policer:

<table>
<thead>
<tr>
<th>Per FC meter Operating Rate</th>
<th>Per FC Assigned Color</th>
<th>SAP aggregate meter Operating Rate</th>
<th>SAP aggregate meter color</th>
<th>Final Packet Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within CIR</td>
<td>Green</td>
<td>Within PIR</td>
<td>Green</td>
<td>In-profile</td>
</tr>
<tr>
<td>Within CIR</td>
<td>Green</td>
<td>Above PIR</td>
<td>Red</td>
<td>In-profile</td>
</tr>
<tr>
<td>Above CIR, Within PIR</td>
<td>Yellow</td>
<td>Within PIR</td>
<td>Green</td>
<td>Yellow or Out-of-Profile</td>
</tr>
<tr>
<td>Above CIR, Within PIR</td>
<td>Yellow</td>
<td>Above PIR</td>
<td>Red</td>
<td>Red or Dropped</td>
</tr>
<tr>
<td>Above PIR</td>
<td>Red</td>
<td>Within PIR</td>
<td>Green</td>
<td>Red or Dropped</td>
</tr>
<tr>
<td>Above PIR</td>
<td>Red</td>
<td>Above PIR</td>
<td>Red</td>
<td>Red or Dropped</td>
</tr>
</tbody>
</table>

Table 17: Final Disposition of the packet based on per FC and per SAP policier or meter.

When the SAP aggregate policer is configured, per FC policer can be only configured in “trtcm2” mode (RFC 4115).

Note: The meter modes “srtcm” and “trtcm1” are used in the absence of an aggregate meter.

The SAP ingress meter counters increment the packet or octet counts based on the final disposition of the packet.

If ingress Frame-based accounting is used, the SAP aggregate meter rate accounts for the Ethernet frame overhead. The system accounts for 12 bytes of IFG and 8 bytes of start delimiter.

The no form of the command removes the aggregate policer from use.

Default

no aggregate-meter-rate

Parameters

`rate-in-kbps` — Specifies the rate in kilobits per second.

Values

0 — 20000000 | max

Default

max

`burst <burst-in-kilobits>` — Specifies the burst size for the policer in kilobits. The burst size cannot be configured without configuring the rate.
Values 4 — 2146959
Default 512

accounting-policy

Syntax accounting-policy acct-policy-id
no accounting-policy

Context config>service>vpls>spoke-sdp
 config>service>vpls>mesh-sdp
 config>service>vpls>sap

Description This command creates the accounting policy context that can be applied to a SAP. An accounting policy must be defined before it can be associated with a SAP. If the policy-id does not exist, an error message is generated. A maximum of one accounting policy can be associated with a SAP at one time. Accounting policies are configured in the config>log context.

The no form of this command removes the accounting policy association from the SAP, and the accounting policy reverts to the default.

Default Default accounting policy.

Parameters acct-policy-id — Enter the accounting policy-id as configured in the config>log>accounting-policy context.

Values 1 — 99

collect-stats

Syntax [no] collect-stats

Context config>service>vpls>spoke-sdp
 config>service>vpls>mesh-sdp
 config>service>vpls>sap

Description This command enables accounting and statistical data collection for either the SAP, network port, or IP interface. When applying accounting policies the data, by default, is collected in the appropriate records and written to the designated billing file.

When the no collect-stats command is issued the statistics are still accumulated by the cards. However, the CPU will not obtain the results and write them to the billing file. If a subsequent collect-stats command is issued then the counters written to the billing file include all the traffic while the no collect-stats command was in effect.

Default no collect-stats
VPLS SDP Commands

mesh-sdp

Syntax

```
mesh-sdp sdp-id[:vc-id] [vc-type {ether | vlan}]
no mesh-sdp sdp-id[:vc-id]
```

Context

```
config>service>vplsl
```

Description

This command binds a VPLS service to an existing Service Distribution Point (SDP). Mesh SDPs bound to a service are logically treated like a single bridge “port” for flooded traffic where flooded traffic received on any mesh SDP on the service is replicated to other “ports” (spoke SDPs and SAPs) and not transmitted on any mesh SDPs.

Note that this command creates a binding between a service and an SDP. The SDP has an operational state which determines the operational state of the SDP within the service. For example, if the SDP is administratively or operationally down, the SDP for the service will be down.

The SDP must already be defined in the config>service>sdp context in order to associate the SDP with a valid service. If the `sdp sdp-id` is not already configured, an error message is generated. If the `sdp-id` does exist, a binding between that `sdp-id` and the service is created.

SDPs must be explicitly associated and bound to a service. If an SDP is not bound to a service, no far-end devices can participate in the service.

The `no` form of this command removes the SDP binding from the service. The SDP configuration is not affected; only the binding of the SDP to a service. Once removed, no packets are forwarded to the far-end router.

Default

No `sdp-id` is bound to a service.

Special Cases

VPLS — Several SDPs can be bound to a VPLS. Each SDP must be destined to a different router. If two `sdp-id` bindings terminate on the same router, an error occurs and the second SDP is binding is rejected.

Parameters

- `sdp-id` — The SDP identifier.

 Values

 1 — 17407

- `vc-id` — The virtual circuit identifier. This value is used to validate the VC ID portion of each mesh SDP binding defined in the service. The default value of this object is equal to the service ID.

 Values

 1 — 4294967295

- `vc-type` — This command overrides the default VC type signaled for the spoke or mesh binding to the far end of the SDP. The VC type is a 15 bit-quantity containing a value which represents the type of VC. The actual signaling of the VC type depends on the signaling parameter defined for the SDP. If signaling is disabled, the `vc-type` command can still be used to define the dot1q value expected by the far-end provider equipment. A change of the bindings VC type causes the binding to signal the new VC type to the far end when signaling is enabled.

VC types are derived according to IETF `draft-martini-l2circuit-trans-mpls`.

- The VC type value for Ethernet is 0x0005.
- The VC type value for an Ethernet VLAN is 0x0004.
ether — Defines the VC type as Ethernet. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings. Defining Ethernet is the same as executing no vc-type and restores the default VC type for the spoke SDP binding. (hex 5)

vlan — Defines the VC type as VLAN. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for mesh SDP bindings.

spoke-sdp

Syntax spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] [create] [split-horizon-group group-name]
no spoke-sdp sdp-id[:vc-id] [vc-type {ether | vlan}] [create]

Context config>service>vpls

Description This command binds a service to an existing Service Distribution Point (SDP). A spoke SDP is treated like the equivalent of a traditional bridge “port” where flooded traffic received on the spoke SDP is replicated on all other “ports” (other spoke and mesh SDPs or SAPs) and not transmitted on the port it was received.

The SDP has an operational state which determines the operational state of the SDP within the service. For example, if the SDP is administratively or operationally down, the SDP for the service will be down.

The SDP must already be defined in the config>service>sdp context in order to associate an SDP with a VPLS service. If the sdp sdp-id is not already configured, an error message is generated. If the sdp-id does exist, a binding between that sdp-id and the service is created.

SDPs must be explicitly associated and bound to a service. If an SDP is not bound to a service, no far-end devices can participate in the service.

The no form of this command removes the SDP binding from the service. The SDP configuration is not affected; only the binding of the SDP to a service. Once removed, no packets are forwarded to the far-end router.

Default No sdp-id is bound to a service.

Special Cases VPLS — Several SDPs can be bound to a VPLS service. Each SDP must use unique vc-ids. An error message is generated if two SDP bindings with identical vc-ids terminate on the same router. Split horizon groups can only be created in the scope of a VPLS service.

Parameters sdp-id — The SDP identifier.

Values 1 — 17407

vc-id — The virtual circuit identifier.

Values 1 — 4294967295

create — This keyword is mandatory while creating a spoke SDP.

ether — Defines the VC type as Ethernet. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings. Defining Ethernet is the same as executing no vc-type and restores the default VC type for the spoke SDP binding. (hex 5)
split-horizon-group group-name — Specifies the name of the split horizon group to which the SDP belongs.

vc-type — This command overrides the default VC type signaled for the spoke or mesh binding to the far end of the SDP. The VC type is a 15 bit-quantity containing a value which represents the type of VC. The actual signaling of the VC type depends on the signaling parameter defined for the SDP. If signaling is disabled, the vc-type command can still be used to define the Dot1Q value expected by the far-end provider equipment. A change of the bindings VC type causes the binding to signal the new VC type to the far end when signaling is enabled. VC types are derived according to IETF draft-martini-l2circuit-trans-mpls.

- The VC type value for Ethernet is 0x0005.
- The VC type value for an Ethernet VLAN is 0x0004.

Values ether, vlan

vlan — Defines the VC type as VLAN. The ethernet and vlan keywords are mutually exclusive. When the VC type is not defined then the default is Ethernet for spoke SDP bindings. The VLAN VC-type requires at least one dot1Q tag within each encapsulated Ethernet packet transmitted to the far end.

geress

Syntax egress

Context config>service>vpls>mesh-sdp
config>service>vpls>spoke-sdp

Description This command configures the egress SDP context.

ingress

Syntax ingress

Context config>service>vpls>mesh-sdp
config>service>vpls>spoke-sdp

Description This command configures the ingress SDP context.

vc-label

Syntax [no] vc-label vc-label

Context config>service>vpls>mesh-sdp>egress
config>service>vpls>spoke-sdp>egress

Description This command configures the egress VC label.

Parameters vc-label — A VC egress value that indicates a specific connection.
vc-label

Syntax [no] vc-label vc-label

Context config>service>vpls>mesh-sdp>ingress
 config>service>vpls>spoke-sdp>ingress

Description This command configures the ingress VC label.

Parameters vc-label — A VC ingress value that indicates a specific connection.

Values 16 — 1048575

vlan-vc-tag

Syntax vlan-vc-tag 0..4094
 no vlan-vc-tag [0..4094]

Context config>service>vpls>spoke-sdp
 config>service>vpls>mesh-sdp

Description This command specifies an explicit Dot1q value used when encapsulating to the SDP far end. When signaling is enabled between the near and far end, the configured Dot1q tag can be overridden by a received TLV specifying the Dot1q value expected by the far end. This signalled value must be stored as the remote signalled Dot1q value for the binding. The provisioned local Dot1q tag must be stored as the administrative Dot1q value for the binding.

When the Dot1q tag is not defined, the default value of zero is stored as the administrative dot1q value. Setting the value to zero is equivalent to not specifying the value.

The no form of this command disables the command.

Default no vlan-vc-tag

Parameters 0..4094 — Specifies a valid VLAN identifier to bind an 802.1Q VLAN tag ID.
fast-leave

Syntax [no] fast-leave

Context config>service>vpls>sap>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping
config>service>pw-template>igmp-snooping

Description This command enables fast leave. When IGMP fast leave processing is enabled, the 7210 SAS M will immediately remove a SAP or SDP from the multicast group when it detects an IGMP “leave” on that SAP or SDP. Fast leave processing allows the switch to remove a SAP or SDP that sends a 'leave' from the forwarding table without first sending out group-specific queries to the SAP or SDP, and thus speeds up the process of changing channels (‘zapping’).

Fast leave should only be enabled when there is a single receiver present on the SAP or SDP.
When fast leave is enabled, the configured last-member-query-interval value is ignored.

Default no fast-leave

from-vpls

Syntax from-vpls service-id
no from-vpls

Context config>service>vpls>sap>igmp-snooping>mvr

Description This command configures the VPLS from which multicast traffic is copied upon receipt of an IGMP join request. IGMP snooping must be enabled on the MVR VPLS.

Default no from-vpls

Parameters service-id — Specifies the MVR VPLS from which multicast channels should be copied into this SAP.

Values service-id: 1 — 2147483648

group

Syntax [no] group grp-address

Context config>service>vpls>sap>igmp-snooping>static
config>service>vpls>spoke-sdp>igmp-snooping>static
config>service>vpls>mesh-sdp>igmp-snooping>static
This command adds a static multicast group as a (*, g). When a static IGMP group is added, multicast data for that (*,g) is forwarded to the specific SAP without receiving any membership report from a host.

Default none

Parameters

- **grp-address** — Specifies an IGMP multicast group address that receives data on an interface. The IP address must be unique for each static group.

group-policy

Syntax

```plaintext
group-policy policy-name
no group-policy
```

Context

`config>service>vpls>igmp-snooping>mvr`

Description

This command identifies filter policy of multicast groups to be applied to this VPLS entity. The sources of the multicast traffic must be a member of the VPLS.

The **no** form of the command removes the policy association from the VPLS configuration.

Default No group policy is specified.

Parameters

- **policy-name** — The group policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Routing policies are configured in the `config>router>policy-options` context. The router policy must be defined before it can be imported.

force-vlan-vc-forwarding

Syntax

```plaintext
[no] force-vlan-vc-forwarding
```

Context

- `config>service>epipe>spoke-sdp`
- `config>service>vpls>mesh-sdp`
- `config>service>vpls>spoke-sdp`
- `config>service>pw-template`

This command forces vc-vlan-type forwarding in the data path for spoke/mesh SDPs which have either vc-type. This command is not allowed on vlan-vc-type SDPs.

The **no** form of this command sets default behavior.

Default disabled
igmp-snooping

Syntax igmp-snooping

Context config>service>vpls
 config>service>vpls>sap
 config>service>vpls>spoke-sdp
 config>service>vpls>mesh-sdp
 config>service>pw-template

Description This command enables the Internet Group Management Protocol (IGMP) snooping context.

Default none

import

Syntax import policy-name
 no import

Context config>service>vpls>sap>igmp-snooping
 config>service>vpls>spoke-sdp>igmp-snooping
 config>service>vpls>mesh-sdp>igmp-snooping
 config>service>pw-template>igmp-snooping

Description This command specifies the import routing policy to be used for IGMP packets to be used on this SAP or SDP. Only a single policy can be imported on a single SAP or SDP at any time. The no form of the command removes the policy association from the SAP or SDP.

Default no import — No import policy is specified.

Parameters policy-name — The import policy name. Values can be string up to 32 characters long of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. These policies are configured in the config>router>policy-options context The router policy must be defined before it can be imported.

last-member-query-interval

Syntax last-member-query-interval tenths-of-seconds
 no last-member-query-interval

Context config>service>vpls>sap>igmp-snooping
 config>service>vpls>spoke-sdp>igmp-snooping
 config>service>vpls>mesh-sdp>igmp-snooping
 config>service>pw-template>igmp-snooping

Description This command configures the maximum response time used in group-specific queries sent in response to ‘leave’ messages, and is also the amount of time between 2 consecutive group-specific queries. This value may be tuned to modify the leave latency of the network. A reduced value results
in reduced time to detect the loss of the last member of a group.
The configured last-member-query-interval is ignored when fast-leave is enabled on the SAP or SDP.

Default 10

Parameters
- `seconds` — Specifies the frequency, in tenths of seconds, at which query messages are sent.
- **Values** 1 — 50

max-num-groups

Syntax
```
max-num-groups count
```

Context
```
config>service>vpls>sap>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping
config>service>pw-template>igmp-snooping
```

Description
This command defines the maximum number of multicast groups that can be joined on this SAP or SDP. If the node receives an IGMP join message that would exceed the configured number of groups, the request is ignored.

Default no max-num-groups

Parameters
- `count` — Specifies the maximum number of groups that can be joined on this SAP or SDP.

mrouter-port

Syntax
```
[no] mrouter-port
```

Context
```
config>service>vpls>sap>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping
```

Description
This command specifies whether a multicast router is attached behind this SAP.

Configuring a SAP or SDP as an mrouter-port will have a double effect. Firstly, all multicast traffic received on another SAP or SDP will be copied to this SAP or SDP. Secondly, IGMP reports generated by the system as a result of someone joining or leaving a multicast group, will be sent to this SAP or SDP.

If two multicast routers exist in the network, one of them will become the active querier. While the other multicast router (non-querier) stops sending IGMP queries, it should still receive reports to keep its multicast trees up to date. To support this, the mrouter-port should be enabled on all SAPs or SDPs connecting to a multicast router.

Note that the IGMP version to be used for the reports (v1 or v2) can only be determined after an initial query has been received. Until such time no reports are sent on the SAP or SDP, even if mrouter-port is enabled.

If the `send-queries` command is enabled on this SAP, the mrouter-port parameter can not be set.
mvr

Syntax
```
mvr
```

Context
```
config>service>vpls>igmp-snooping
config>service>vpls>sap>igmp-snooping
```

Description
This command enables the context to configure Multicast VPLS Registration (MVR) parameters.

query-interval

Syntax
```
query-interval seconds
no query-interval
```

Context
```
config>service>vpls>igmp-snooping
config>service>vpls>sap>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping
config>service>pw-template>igmp-snooping
```

Description
This command configures the IGMP query interval. If the `send-queries` command is enabled, this parameter specifies the interval between two consecutive general queries sent by the system on this SAP or SDP. The configured query-interval must be greater than the configured query-response-interval. If send-queries is not enabled on this SAP or SDP, the configured query-interval value is ignored.

Default
125

Parameters

- `seconds` — The time interval, in seconds, that the router transmits general host-query messages.

 Values

 2 — 1024

query-src-ip

Note: This command is supported only on 7210 SAS-M devices configured in Network mode.

Syntax
```
query-src-ip ip-address
no query-src-ip
```

Context
```
config>service>vpls>igmp-snooping
```

Description
This command configures the IP source address used in IGMP queries.
query-response-interval

Syntax query-response-interval seconds

Context config>service>vpls>sap>igmp-snooping
 config>service>vpls>spoke-sdp>igmp-snooping
 config>service>vpls>mesh-sdp>igmp-snooping
 config>service>pw-template>igmp-snooping

Description This command configures the IGMP query response interval. If the send-queries command is enabled, this parameter specifies the maximum response time advertised in IGMP queries.

The configured query-response-interval must be smaller than the configured query-interval.

If send-queries is not enabled on this SAP or SDP, the configured query-response-interval value is ignored.

Default 10

Parameters seconds — Specifies the length of time to wait to receive a response to the host-query message from the host.

Values 1 — 1023

report-src-ip

Syntax report-src-ip-address
 no report-src-ip

Context config>service>vpls>igmp-snooping

Description This parameter specifies the source IP address used when generating IGMP reports. According to the IGMPv3 standard, a zero source address is allowed in sending IGMP reports. However, for interoperability with some multicast routers, the source IP address of IGMP group reports can be configured using this command.

Default 0.0.0.0

Parameters ip-address — The source IP source address in transmitted IGMP reports.

robust-count

Syntax robust-count robust-count
 no robust-count

Context config>service>vpls>igmp-snooping
 config>service>vpls>sap>igmp-snooping
 config>service>vpls>spoke-sdp>igmp-snooping
 config>service>vpls>mesh-sdp>igmp-snooping
 config>service>pw-template>igmp-snooping
Description

If the **send-queries** command is enabled, this parameter allows tuning for the expected packet loss on a SAP or SDP. The robust-count variable allows tuning for the expected packet loss on a subnet and is comparable to a retry count. If this SAP or SDP is expected to be 'lossy', this parameter may be increased. IGMP snooping on this SAP or SDP is robust to (robust-count-1) packet losses.

If send-queries is not enabled, this parameter will be ignored.

Default

2

Parameters

robust-count — Specifies the robust count for the SAP or SDP.

Values

- config>service>vpls>sap>igmp-snooping: 2—7
- config>service>vpls>igmp-snooping: 1—255
- config>service>vpls>spoke->sdp>igmp-snooping: 2—7
- config>service>vpls>mesh-sdp>igmp-snooping: 2—7

precedence

Syntax

`precedence precedence-value| primary
no precedence`

Context

config>service>vpls>spoke-sdp

Description

This command configures the spoke SDP precedence.

Default

4

Parameters

precedence-value — Specify the spoke SDP precedence.

Values

- 0 — 4

primary — Specifies that the precedence is primary.

propagate-mac-flush

Syntax

`[no] propagate-mac-flush`

Context

config>service>vpls

Description

This command specifies whether MAC flush messages received from the given LDP are propagated to all spoke and mesh SDPs within the context of this VPLS service. The propagation will follow the split-horizon principle and any data-path blocking in order to avoid the looping of these messages.

Default

no propagate-mac-flush

send-queries

Syntax

`[no] send-queries`

Context

config>service>vpls>sap>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping
config>service>pw-template>igmp-snooping

Description

This command specifies whether to send IGMP general query messages on the SAP or SDP.

When `send-queries` is configured, all type of queries generate themselves are of the configured version. If a report of a version higher than the configured version is received, the report will get dropped and a new wrong version counter will get incremented. If `send-queries` is not configured, the version command has no effect. The version used will be the version of the querier.

Default

`no send-queries`

`starg`

Syntax

```
[no] starg
```

Context

config>service>vpls>sap>igmp-snooping>static>group
config>service>vpls>spoke-sdp>igmp-snooping>static>group
config>service>vpls>mesh-sdp>igmp-snooping>static>group

Description

This command adds a static (*,g) entry to allow multicast traffic for the corresponding multicast group from any source. This command can only be enabled if no existing source addresses for this group are specified.

The `no` form of the command removes the starg entry from the configuration.

Default

`no starg`

`static`

Syntax

```
static
```

Context

config>service>vpls>sap>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping

Description

This command enables access to the context to configure static group addresses. Static group addresses can be configured on a SAP or SDP. When present either as a (*,g) entry, multicast packets matching the configuration will be forwarded even if no join message was registered for the specific group.

Default

`none`
version

Syntax

```
version version
no version
```

Context

```
config>service>vpls>sap>igmp-snooping
config>service>vpls>mesh-sdp>igmp-snooping
config>service>vpls>spoke-sdp>igmp-snooping
config>service>vpls>mesh-sdp>snooping>static
config>service>pw-template>igmp-snooping
```

Description

This command specifies the version of IGMP which is running on this SAP or SDP. This object can be used to configure a router capable of running either value. For IGMP to function correctly, all routers on a LAN must be configured to run the same version of IGMP on that LAN.

When the `send-query` command is configured, all type of queries generate ourselves are of the configured version. If a report of a version higher than the configured version is received, the report gets dropped and a new “wrong version” counter is incremented.

If the `send-query` command is not configured, the **version** command has no effect. The version used on that SAP or will be the version of the querier.

Note: IGMP V3 is supported only on 7210 SAS-M devices configured in access-uplink mode. IGMP V3 is not supported on 7210 SAS-M devices configured in network mode.

Parameters

version — Specify the IGMP version.

to-sap

Syntax

```
to-sap sap-id
no to-sap
```

Context

```
config>service>vpls>sap>igmp-snooping>mvr
```

Description

This command/configures the SAP to which the multicast data needs to be copied.

In some scenarios, the multicast traffic should not be copied from the MVR VPLS to the SAP on which the IGMP message was received (standard MVR behaviour) but to another SAP.

Default

```
no to-sap
```

Parameters

sap-id — Specifies the SAP to which multicast channels should be copied.
IEEE 802.1ah Provider Backbone Bridging

In This Chapter

Note: PBB is supported on 7210 SAS-M devices configured in Network mode devices.

This chapter provides information about Provider Backbone Bridging (PBB), process overview, and implementation notes.

Topics in this chapter include:

- IEEE 802.1ah Provider Backbone Bridging (PBB) Overview on page 438
- PBB Features on page 439
 - Integrated PBB-VPLS Solution on page 439
 - PBB Technology on page 441
 - PBB Mapping to Existing VPLS Configurations on page 442
 - SAP Support on page 444
 - PBB Packet Walkthrough on page 446
 - PBB ELINE Service on page 448
 - MAC Flush on page 500
 - Access Multi-Homing for Native PBB (B-VPLS over SAP Infrastructure) on page 449
 - PBB QoS on page 450
 - PBB OAM on page 583
- Configuration Examples on page 454
IEEE 802.1ah Provider Backbone Bridging (PBB) Overview

IEEE 802.1ah draft standard (IEEE802.1ah), also known as Provider Backbone Bridges (PBB), defines an architecture and bridge protocols for interconnection of multiple Provider Bridge Networks (PBNs - IEEE802.1ad QinQ networks). PBB is defined in IEEE as a connectionless technology based on multipoint VLAN tunnels. IEEE 802.1ah employs Provider MSTP as the core control plane for loop avoidance and load balancing. As a result, the coverage of the solution is limited by STP scale in the core of large service provider networks. The 7210 SAS M in network mode supports a native PBB Ethernet backbone deployment.

The IEEE model for PBB is organized around a B-component handling the provider backbone layer and an I-component concerned with the mapping of Customer or Provider Bridge (QinQ) domain (for example, MACs, VLANs) to the provider backbone (for example, B-MACs, B-VLANs), that is, the I-component contains the boundary between the Customer and Backbone MAC domains. PBB encapsulates customer payload in a provider backbone Ethernet header, providing for Customer MAC hiding capabilities. With PBB, 7210 devices can be used for tier-1/2 aggregation, encapsulating customer service frames in PBB, allowing the PE-rs devices deployed in the metro core to be aware of only provider MAC addresses and for metro service scaling.

7210 devices fully support only native PBB deployment. They do not support the integrated PBB VPLS model. In particular, 7210 devices do not support use of SDPs in PBB services.
PBB Features

Integrated PBB-VPLS Solution

HVPLS introduced a service-aware device in a central core location in order to provide efficient replication and controlled interaction at domain boundaries. The core network facing provider edge (N-PE) devices have knowledge of all VPLS services and customer MAC addresses for local and related remote regions resulting in potential scalability issues as depicted in Figure 58.

![Figure 58: Large HVPLS Deployment](image)

In a large VPLS deployment, it is important to improve the stability of the overall solution and to speed up service delivery. These goals are achieved by reducing the load on the N-PEs and respectively minimizing the number of provisioning touches on the N-PEs.

The integrated PBB-VPLS model introduces an additional PBB hierarchy in the VPLS network to address these goals as depicted in Figure 59.
PBB encapsulation is added at the user facing PE (U-PE) to hide the customer MAC addressing and topology from the N-PE devices. The core N-PEs need to only handle backbone MAC addressing and do not need to have visibility of each customer VPN. As a result, the integrated PBB-VPLS solution decreases the load in the N-PEs and improves the overall stability of the backbone.

In Figure 59, 7210 devices can only be used as U-PEs supporting only native Ethernet PBB services.
PBB Technology

IEEE 802.1ah specification encapsulates the customer or QinQ payload in a provider header as shown in Figure 60.

PBB adds a regular Ethernet header where the B-DA and B-SA are the backbone destination and respectively, source MACs of the edge U-PEs. The backbone MACs (B-MACs) are used by the core N-PE devices to switch the frame through the backbone.

A special group MAC is used for the backbone destination MAC (B-DA) when handling an unknown unicast, multicast or broadcast frame. This backbone group MAC is derived from the I-service instance identifier (ISID) using the rule: a standard group OUI (01-1E-83) followed by the 24 bit ISID coded in the last three bytes of the MAC address.

The BVID (backbone VLAN ID) field is a regular DOT1Q tag and controls the size of the backbone broadcast domain.

The following ITAG (standard Ether-type value of 0x88E7) has the role of identifying the customer VPN to which the frame is addressed through the 24 bit ISID.
PBB Features

PBB Mapping to Existing VPLS Configurations

The IEEE model for PBB is organized around a B-component handling the provider backbone layer and an I-component concerned with the mapping of the customer/provider bridge (QinQ) domain (MACs, VLANs) to the provider backbone (B-MACs, B-VLANs). For example, the I-component contains the boundary between the customer and backbone MAC domains.

Alcatel-Lucent’s implementation is extending the IEEE model for PBB to allow support for MPLS pseudowires using a chain of two VPLS context linked together as depicted in Figure 61.

7210 does not support MPLS pseudowires in a PBB B-component and PBB I-component.

![Figure 61: PBB Mapping to VPLS Constructs](image)

Note: I-PW and B-PW are not supported on 7210 SAS devices.

A VPLS context is used to provide the backbone switching component. The white circle marked B, referred to as backbone-VPLS (B-VPLS) operates on backbone MAC addresses providing a core multipoint infrastructure that may be used for one or multiple customer VPNs. Alcatel-Lucent’s B-VPLS implementation allows the use of native PBB infrastructures.

Note: 7210 implementation allows the use of only native PBB over Ethernet infrastructures.

Another VPLS context (I-VPLS) can be used to provide the multipoint I-component functionality emulating the ELAN service (refer to the triangle marked “I” in Figure 61). Similar to B-VPLS, I-VPLS inherits from the regular VPLS and native Ethernet (SAPs) handoffs accommodating this way different types of access: for example, direct customer link, QinQ or HVPLS.
In order to support PBB ELINE (point-to-point service), the use of an Epipe as I-component is allowed. All Ethernet SAPs supported by a regular Epipe are also supported in the PBB Epipe.

Note: 7210 implementation allows the use of only native PBB over Ethernet infrastructures.
SAP Support

PBB B-VPLS

- **SAPs**
 - Ethernet DOT1Q is supported — This is applicable to most PBB use cases, for example, one backbone VLAN ID used for native Ethernet tunneling.
 - Ethernet null is supported — This is supported for a direct connection between PBB PEs, for example, no BVID is required.
 - Default SAP types are blocked in the CLI for the B-VPLS SAP.
- **The following rules apply to the SAP processing of PBB frames:**
 - For “transit frames” (not destined to a local BMAC), there is no need to process the ITAG component of the PBB Frames. Regular Ethernet SAP processing is applied to the backbone header (BMACs and BVID).
 - If a local I-VPLS instance is associated with the B-VPLS, “local frames” originated/terminated on local I-VPLS(s) are PBB encapsulated/de-encapsulated using the pbb-etype = 0x88e7.

PBB I-VPLS

- **Port Level**
 - All existing Ethernet encapsulation types are supported (for example, null, dot1q, qinq).
- **SAPs**
 - The I-VPLS SAPs can co-exist on the same port with SAPs for other business services, for example, VLL, VPLS SAPs.
 - All existing Ethernet encapsulation are supported: null, dot1q, qinq.

Existing SAP processing rules still apply for the I-VPLS case; the SAP encapsulation definition on Ethernet ingress ports defines which VLAN tags are used to determine the service that the packet belongs to:

- Null encap defined on ingress — Any VLAN tags are ignored and the packet goes to a default service for the SAP.
- Dot1q encap defined on ingress — only first VLAN tag is considered;
- Qinq encap defined on ingress — both VLAN tags are considered; wildcard support for the inner VLAN tag.
• For dot1q/qinq encapsulations, traffic encapsulated with VLAN tags for which there is no definition is discarded.

• Note that any VLAN tag used for service selection on the I-SAP is stripped before the PBB encapsulation is added. Appropriate VLAN tags are added at the remote PBB PE when sending the packet out on the egress SAP.
PBB Packet Walkthrough

This section describes the walkthrough for a packet that traverses the B-VPLS and I-VPLS instances using the example of a unicast frame between two customer stations as depicted in the following network diagram Figure 62.

![PBB Packet Walkthrough Diagram]

Figure 62: PBB Packet Walkthrough

The station with CMAC (customer MAC) X wants to send a unicast frame to CMAC Y through the PBB-VPLS network. A customer frame arriving at PBB-VPLS U-PE1 is encapsulated with the PBB header. The local I-VPLS FIB on U-PE1 is consulted to determine the destination BMAC of
the egress U-PE for CMAC Y. In our example, B2 is assumed to be known as the B-DA for Y. If CMAC Y is not present in the U-PE1 forwarding database, the PBB packet is sent in the B-VPLS using the standard group MAC address for the ISID associated with the customer VPN.

Next, only the Backbone Header in green is used to switch the frame through the green B-VPLS/ VPLS instances in the N-PEs. At the receiving U-PE2, the CMAC X is learned as being behind BMAC B1; then the PBB encapsulation is removed and the lookup for CMAC Y is performed.
PBB Features

PBB ELINE Service

ELINE service is defined in PBB (IEEE 802.1ah) as a point-to-point service over the B-component infrastructure. Alcatel-Lucent’s implementation offers support for PBB ELINE through the mapping of multiple Epipe services to a Backbone VPLS infrastructure.

The use of Epipe scales the ELINE services as no MAC switching, learning or replication is required in order to deliver the point-to-point service.

All packets ingressing the customer SAP are PBB encapsulated and unicasted through the B-VPLS “tunnel” using the backbone destination MAC of the remote PBB PE.

All the packets ingressing the B-VPLS destined for the Epipe are PBB de-encapsulated and forwarded to the customer SAP.

PBB Resiliency for PBB epipe service

The PBB epipe service can be protected using G.8032 (the G8032 instance is created to protect the PBB B-VPLS service). For more information and for an example see Overview of G.8032 Operation.

PBB Resiliency for B-VPLS

The following VPLS resiliency mechanisms are also supported in PBB VPLS:

- Native Ethernet resiliency supported in both I-VPLS and B-VPLS contexts
- Distributed LAG, MC-LAG, RSTP
- MSTP in a management VPLS monitoring (B- or I-) SAPs.
- The G.8032 is supported for B-VPLS service. The G.8032 support is used only with PBB Epipe service from the current releases and cannot be used with PBB I-VPLS service.
Access Multi-Homing for Native PBB (B-VPLS over SAP Infrastructure)

Alcatel-Lucent PBB implementation allows the operator to use a native Ethernet infrastructure as the PBB core. Native Ethernet tunneling can be emulated using Ethernet SAPs to interconnect the related B-VPLS instances. This kind of solution might fit certain operational environments where Ethernet services was provided in the past using QinQ solution. The drawback is that no LDP signaling is available to provide support for Access Multi-homing for Epipe (pseudowire Active/Standby status) or I-VPLS services (LDP MAC Withdraw). An alternate solution is required.

A PBB network using Native Ethernet core is depicted in Figure 63. MC-LAG is used to multi-home a number of edge switches running QinQ to PBB BEBs.

![Figure 63: Access Dual-Homing into PBB BEBs - Topology View](CL0001B)

The interrupted line from the MC-LAG represents the standby, inactive link; the solid line is the active link. The BEBs are dual-homed to two core switches BCB1 and BCB2 using native Ethernet SAPs on the B-VPLS side. Multi-point B-VPLS with MSTP for loop avoidance can be used as the PBB core tunneling.
PBB QoS

The following QoS processing rules apply for PBB B-VPLS SAPs:

B-VPLS SAP ingress

- If dot1p classification is enabled, the BTAG fields will be used by default to evaluate the internal forwarding class (fc) and discard profile if there is a BTAG field.
- If dot1p classification is not explicitly enabled or the packets are untagged then the default fc and profile is assigned.

B-VPLS SAP egress

- If the access port based policy contains FC and profile to dot1p mapping, this entry is used to mark the dot1p bits in the B-TAG of the frame going out of the SAP. The I-Tag of the frame is not modified in any case.
- If no explicit mapping exists, the related dot1p DE bits are set to zero on both ITAG and BTAG if the frame is originated locally from an I-VPLS. If the frame is transiting the B-VPLS the ITAG stays unchanged, the BTAG is set according to the type of ingress SAP.
 → If the ingress SAP is tagged, the values of the dot1p, DE bits are preserved in the BTAG going out on the egress SAP.
 → If the ingress SAP is untagged, the dot1p, DE bits are set to zero in the BTAG going out on the egress SAP.

I-SAP Ingress

- SAP ingress classification using mac-criteria or IP DSCP is supported.

I-SAP Egress (for 7210 SAS-M)

- Access port based marking is supported for I-SAPs (dot1q and QinQ SAPs).
PBB ACL Support

Filter policies are supported for ingress and egress of PBB I-SAP in both PBB epipe and PBB VPLS service.

Only MAC criteria Filter policies is available for use with PBB B-SAPs on ingress with the following functionality:

- For PBB B-VPLS B-SAPs, the MAC filter matches the outer MAC header fields (that is, B-DA, B-SA, B-Tag) for traffic received on a B-SAP and forwarded to another B-SAP in the system.
- For PBB B-VPLS B-SAPs, the MAC filter matches the inner MAC header fields (that is, the customer MAC DA, SA and VLAN tags) for traffic received on a B-SAP and forwarded out of an I-SAP in the system.

Only MAC criteria filter policies is available for use with PBB B-SAPs on egress. This filter policy only matches the BCB traffic. BEB traffic (that is, PBB originated traffic) cannot be matched using the egress filter policy attached to PBB B-SAP.

Configuration Guidelines

Listed below are the configuration guidelines for a PBB service:

- PBB services are supported only on 7210 SAS-M devices configured in network mode.
- A PBB service instance (identified by the ISID) cannot be used to encapsulate customer payloads with additional VLAN tags, if that service instance is being used to transport frames received on a QinQ access SAP. If a particular service instance is in use by a QinQ access SAP, then the system drops the packets that are received with additional tags on all the SAPs (NULL or Dot1q) using the same instance. Packets received with one or more tags on a NULL SAP, more than one tag on a Dot1q SAP, and more than two tags on a QinQ SAP are classified as packets with additional VLAN tags.
- Service MTU is not available for use.
- Port-based SHG is available for use with I-VPLS and B-VPLS service. Service based SHG is not available for use in an I-VPLS and a B-VPLS service.
- The system uses the internal loopback to flood/replicate BUM traffic received on the B-SAP, to create an additional copy for processing in the I-VPLS context. The system also uses the internal loopback to for egress port mirroring. The user needs to ensure that aggregate amount of mirrored traffic in the system and the BUM traffic received on a B-SAP does not exceed the available internal loopback bandwidth. Ingress meters can be used to limit the amount of BUM received and processed from a B-SAP and user can limit the number of ports setup for port egress mirroring to control the maximum amount of
traffic that needs to be circulated for two pass processing using the internal loopback.

NOTE: If only PBB Epipe is used (no I-VPLS service is configured for use), then egress port mirroring can be enabled without affecting PBB traffic, since PBB Epipe traffic does not use the two-pass approach.

• Multiple B-SAPs on the same port cannot be part of the same B-VPLS service. Two B-SAPs on the same port need to be configured in two different services.

• Processing rules for packets received with multiple B-tags on a SAP:
 → If the B-Tag header has two tags, the packet is processed and forwarded appropriately and sent out of an I-SID service or another B-VPLS B-SAP.
 → If the node is acting as a pure BCB (with no ISID/service termination), then the packets are flooded and switched appropriately and if the node is acting as a BCB + BEB, then the packets are flooded and switched appropriately on the B-SAPs, but they will not switched or flooded to a I-SAPs (both VPLS and Epipe I-SAPs).

• PBB I-tag etype is not configurable, it is set to 0x88e7.

• PBB B-tag etype is not configurable; it is set to 0x8100.

• PBB packets received from a destination MAC address other than the one configured in the epipe service is not accepted by 7210 devices.

• In the current release, PBB packets with UCA bit set are dropped.

• Aging of MAC addresses learnt in the B-domain - As long as a Customer MAC (C-MAC) or an Epipe service is associated with an B-SA/B-MAC, do not age out the B-SA. When the last customer MAC ages out or the last epipe service using the particular B-SA MAC is removed, remove the corresponding B-SA entry. This means that as long as an epipe service is associated with a particular PBB destination MAC address, the corresponding B-MAC will not age out and will occupy an entry in the L2 learning table. Note, that if only I-VPLS is in use, then aging out of C-MAC will automatically trigger aging out B-MAC, when the last C-MAC associated with the B-MAC is aged out.

Configuration Guidelines (for 7210 SAS-M)

Listed below are the configuration guidelines specific to 7210 SAS-M devices configured in Network mode:

When “discard-unknown” is enabled on a B-VPLS, the following behavior can be observed:

• Unknown unicast (B-DA) packets arriving on a B-SAP are dropped.

• Unknown unicast (C-DA) packets arriving on a B-SAP are processed normally in the I-VPLS, if the B-DA is not unknown unicast.

• Unknown unicast (C-DA) packets arriving on an I-SAP are not dropped and are flooded in the B-VPLS, because B-DA is equal to the “Group Mcast MAC” and is a known value
• Mac-protect feature is not available for use in I-VPLS or B-VPLS service
• Port based SHG is available for use with both I-VPLS and B-VPLS service. Service based SHG is not available in both.
Use the CLI syntax displayed to configure PBB.

PBB ELAN and ELINE

Use the following CLI syntax to bring up PBB B-VPLS - common to both ELAN and ELINE services:

CLI Syntax:
```bash
config>service# vpls 200 customer 1 b-vpls create
description "This is a B-VPLS."
sap 3/1/3:33 create
description "B-VPLS SAP"
```

Use the following CLI syntax to bring up PBB ELAN:

CLI Syntax:
```bash
config>service# vpls 2000 customer 6 i-vpls create
description "This is an I-VPLS."
sap 4/1/3:20 create
description "I-VPLS SAP"
backbone-vpls 200
```

Use the following CLI syntax to bring up PBB ELINE:

CLI Syntax:
```bash
config>service# epipe 1000 customer 10 create pbb-epipe
description "This is an Epipe."
sap 4/1/3:20 create
description "Epipe SAP"
pbb-tunnel 200 backbone-dest-mac 00-01-10-1E-C6-67 isid 752
```
MC-LAG Multihoming for Native PBB

This section describes a configuration example for BEB C configuration given the following assumptions:

- BEB C and BEB D are MC-LAG peers
- B-VPLS 100 on BEB C and BEB D
- VPLS 1000 on BEB C and BEB D
- MC-LAG 1 on BEB C and BEB D

CLI Syntax:

```plaintext
service pbb
  source-bmac ab-ac-ad-ef-00-00
port 1/1/1
  ethernet
    encap-type qinq
lag 1
  port 1/1/1 priority 20
  lACP active administrative-key 32768
redundancy
  multi-chassis
    peer 1.1.1.3 create
    source-address 1.1.1.1
    mc-lag
      lag 1 lACP-key 1 system-id 00:00:00:01:01:01
      system-priority 100
    source-bmac-lsb use-lACP-key

service vpls 100 bvpls
  sap 2/2/2:100 // bvid 100
  mac-notification
    no shutdown

service vpls 101 bvpls
  sap 2/2/2:101 // bvid 101
  mac-notification
    no shutdown
// no per BVPLS source-bmac configuration, the chassis one (ab-ac-ad-ef-00-00) is used

service vpls 1000 ivpls
  backbone-vpls 100
  sap lag-1:1000 // automatically associates the SAP with ab-ac-ad-ef-00-01 (first 36 bits from BVPLS 100 sbmac+16bit source-bmac-lsb)
```
service vpls 1001 ivpls
 backbone-vpls 101
 sap lag-1:1001 //automatically associates the SAP with ab-ac-ad-
 ef-00-01(first 36 bits from BVPLS 101 sbmac+16bit source-bmac-lsb)
PBB Command Reference

Command Hierarchies

- Global Commands on page 531
- Show Commands on page 457
- Clear Commands on page 458
- Debug Commands on page 458

```plaintext
config
  — service
    — pbb
      — mac-name name ieee-address
      — no mac-name
      — source-bmac ieee-address
      — no source-bmac

config
  — service
    — [no] vpls service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] [svc-sap-type {null-star|dot1q-preserve|any}] [customer-vid vlan-id] [b-vpls] [i-vpls]
      — backbone-vpls service-id [isid isid]
      — no backbone-vpls
      — pbb
        — no source-bmac ieee-address

config
  — service
    — [no] epipe service-id [customer customer-id] [create] [vpn vpn-id] svc-sap-type {null-star|dot1q-preserve|any} [customer-vid vlan-id] [ppb-epipe]
      — [no] pbb-tunnel service-id backbone-dest-mac mac-name ieee-address isid ISID
```

Show Commands

```plaintext
show
  — eth-cfm
    — association [ma-index] [detail]
    — cfm-stack-table [port port-id] [vlan qtag,qtag] [sdp sd-id,sid] [level 0..7] [direction up|down]
    — domain [md-index] [association ma-index] [all-associations [detail]]
    — mep mep-id domain md-index association ma-index [loopback] [linktrace]

  — service
    — id service-id
      — i-vpls
      — epipe
      — all
```
Command Hierarchies

 — base
 — fdb {info | mac ieee-address | sap sap-id | detail | endpoint endpoint} [expiry]
 [pbb]
 — stp [detail]
 — isid-using [ISID]
 — pbb
 — base
 — mac-name [detail]
 — mac-name
 — mac-name mac-name detail
 — service-using [b-vpls] [l-vpls]

Clear Commands

clear

 — service
 — id service-id
 — fdb {all | mac ieee-address | sap sapid}
 — stp
 — detected-protocols [all | sap sap-id]
 — statistics
 — id service-id
 — counters
 — stp
 — sap sap-id {all | counters | stp }

Debug Commands

debug

 — service
 — id service-id
 — [no] event-type {config-change | svc-oper-status-change | sap-oper-status-change}]
 — [no] sap sap-id
 — stp
 — all-events
 — [no] bpdu
 — [no] core-connectivity
 — [no] exception
 — [no] fsm-state-changes
 — [no] fsm-timers
 — [no] port-role
 — [no] port-state
 — [no] sap sap-id
PBB Service Commands

VPLS Service Commands

vpls

Syntax

```
vpls service-id [customer customer-id] [create][ vpn vpn-id] [m-vpls]
service-id [customer customer-id] [create] [vpn vpn-id] [m-vpls] [svc-sap-type {null-star|dot1q-preserve|any}] [customer-vid vlan-id] [b-vpls]
no vpls service-id
```

Context

config>service

Description

This command creates or edits a Virtual Private LAN Services (VPLS) instance. The `vpls` command is used to create or maintain a VPLS service. If the `service-id` does not exist, a context for the service is created. If the `service-id` exists, the context for editing the service is entered.

A VPLS service connects multiple customer sites together acting like a zero-hop, layer 2 switched domain. A VPLS is always a logical full mesh.

When a service is created, the `create` keyword must be specified if the `create` command is enabled in the environment context. When a service is created, the `customer` keyword and `customer-id` must be specified and associates the service with a customer. The `customer-id` must already exist having been created using the `customer` command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the `customer customer-id` is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect `customer-id` specified will result in an error.

More than one VPLS service may be created for a single customer ID.

By default, no VPLS instances exist until they are explicitly created.

The `no` form of this command deletes the VPLS service instance with the specified `service-id`. The service cannot be deleted until all SAPs and SDPs defined within the service ID have been shutdown and deleted, and the service has been shutdown.

Parameters

- `any` — Allows any SAP type. When `svc-sap-type` is set to any, for a NULL SAP, the system processes and forwards only packets with no VLAN tag (that is, untagged). All other packets with one or more VLAN tags (even those with priority tag only) are not processed and dropped. Users can use the service with `svc-sap-type` set to `null-star` to process and forward packets with one or more tags (including priority tag) on a null SAP.

 Default null-star

- `service-id` — The unique service identification number identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The `service-id` must be the same number used for every 7210 SAS on which this service is defined.

 Values

 1 — 2147483648
b-vpls — Creates a backbone-vpls.

create — This keyword is mandatory while creating a VPLS service.

customer customer-id — Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

Values 1 — 2147483647

customer-vid vlan-id — Defines the dot1q VLAN ID to be specified while creating the local Dot1q SAP for svc-sap-type dot1q-preserve.

Default 1 — 4094
dot1q-preserve — Specifies that the allowed SAP in the service are Dot1q. The Dot1q ID is not stripped after packets matches the SAP.

Default null-star

m-vpls — Specifies a management VPLS.

null-star — Specifies that the allowed SAP in the service are either null SAPs or Dot1q* SAPs.

svc-sap-type — Specifies the type of service and allowed SAPs in the service.

vpn vpn-id — Specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN identification number.

Values 1 — 2147483647

Default null (0)

pbb

Syntax pbb

Context config>service
 config>service>vpls

Description This command configures PBB parameters.

mac-name

Syntax mac-name name ieee-address
 no mac-name name

Context config>service>pbb

Description This command configures the MAC name for the MAC address. It associates an ASCII name with an IEEE MAC to improve the PBB Epipe configuration. It can also change the dest-BMAC in one place instead of 1000s of Epipe.

Parameters name — Specifies the MAC name up to 32 characters in length.

ieee-address — The MAC address assigned to the MAC name. The value should be input in either a xx:xx:xx:xx:xx:xx or xx-xx-xx-xx-xx-xx format.
source-bmac

Syntax: source-bmac ieee-address
no source-bmac

Context: config>service>pbb

Description: This command configures the base source BMAC for the B-VPLS. The first 32 bits must be the same with what is configured in the MC-LAG peer. If the base source BMAC is not configured, it inherits the chassis level BMAC configured under the PBB object added in the previous section.

Parameters:
- ieee-address — The MAC address assigned to the BMAC. The value should be input in either a xx:xx:xx:xx:xx:xx or xx-xx-xx-xx-xx-xx format.

backbone-vpls

Syntax: backbone-vpls service-id [isid isid]
no backbone-vpls

Context: config>service>vpls
config>service>vpls>pbb

Description: This command configures B-VPLS service associated with the I-VPLS.

Parameters:
- service-id — Specifies the service ID.
 - Values: 1..2147483648
- isid — Specifies the ISID.
 - Values: 0..16777215
Epipe Service Commands

epipe

Syntax

epipe service-id [customer customer-id] [create] [vpn vpn-id] [customer customer-id] [create] [vpn vpn-id] [svc-sap-type {null-star|dot1q|dot1q-preserve|any}] [customer-vid vlan-id] [pbb-epipe]

no epipe service-id

Context

config>service

Description

This command configures an Epipe service instance. This command is used to configure a point-to-point epipe service. An Epipe connects two endpoints defined as Service Access Points (SAPs). Both SAPs may be defined in one 7210 SAS.

No MAC learning or filtering is provided on an Epipe.

When a service is created, the customer keyword and customer-id must be specified and associates the service with a customer. The customer-id must already exist having been created using the customer command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the customer customer-id is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect customer-id specified will result in an error.

By default, no epipe services exist until they are explicitly created with this command.

The no form of this command deletes the epipe service instance with the specified service-id. The service cannot be deleted until the service has been shutdown.

Parameters

service-id — The unique service identification number identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The service-id must be the same number used for every 7210 on which this service is defined.

Values

1 — 2147483648

any — When svc-sap-type is set to any, for a NULL SAP, the system processes and forwards only packets with no VLAN tag (that is, untagged). All other packets with one or more VLAN tags (even those with priority tag only) are not processed and dropped. Users can use the service with svc-sap-type set to null-star, to process and forward packets with one or more tags (including priority tag) on a null SAP.

Default null-star

create — Keyword used to create the service instance. The create keyword requirement can be enabled/disabled in the environment>create context.

customer customer-id — Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

Values

1 — 2147483647
customer-vid vlan-id — Defines the dot1q VLAN ID to be specified while creating the local Dot1q SAP for svc-sap-type dot1q-preserve.

Values 1 — 4094

dot1q — Specifies that the allowed SAP in the service are Dot1q SAPs and dot1q explicit null SAPs.
dot1q-preserve — Specifies that the allowed SAP in the service are Dot1q. The Dot1q ID is not stripped after packet matches the SAP.
null-star — Specifies that the allowed SAP in the service are either null SAPs or Dot1q default SAPs.
pbb-epipe — keyword used to create a pbb-epipe.
svc-sap-type — Specifies the type of service and allowed SAPs in the service.

vpn vpn-id — Specifies the VPN ID number which allows you to identify virtual private networks (VPNs) by a VPN ID. If this parameter is not specified, the VPN ID uses the same service ID number.

Values 1 — 2147483647
Default null (0)

pbb-tunnel

Syntax pbb-tunnel service-id backbone-dest-mac {mac-name | ieee-mac} isid ISID
no pbb-tunnel

Context config>service>epipe

Description This command configures a Provider Backbone Bridging (PBB) tunnel with Backbone VPLS (B-VPLS) service information.

Parameters service-id — Specifies the B-VPLS service for the PBB tunnel associated with this service.

Values 1 — 2147483648

backbone-dest-mac {mac-name | ieee-mac} — Specifies the backbone destination MAC-address for PBB packets.

isid ISID — Specifies a 24 bit service instance identifier for the PBB tunnel associated with this service. As part of the PBB frames, it is used at the destination PE as a demultiplexor field.

Values 0 — 16777215
PBB Show Commands

eth-cfm

Syntax eth-cfm
Context show
Description This command displays 802.1ag CFM information.

association

Syntax association [ma-index] [detail]
Context show>eth-cfm
Description Shows association information.
Parameters ma-index — Specifies the MA index value.
 Values 1 — 4294967295
detail — Displays all association detail.

Output */A:alcag1-R6# show eth-cfm association
 CFM Association Table
 Md-index Ma-index Name CCM-interval Bridge-id
 --
 1 1 ivpls 1 5000
 --
 */A:alcag1-R6#

cfm-stack-table

Syntax cfm-stack-table
 cfm-stack-table port [port-id> [vlan qtag[,qtag]] [level 0..7] [direction up | down]
 cfm-stack-table sdp [sdp-id[:vc-id]>] [level 0..7] [direction up | down]
 cfm-stack-table virtual [service-id] [level 0..7]
Context show>eth-cfm
Description Summarizes all MEPs/MIPs.
Parameters port-id — Displays information about the specified port.
 Values port-id slot/mda/port[,channel]
 lag-id lag-id
Show Commands

lag keyword

id 1 — 200

\textit{sdp-id[vc-id]} — Specifies an existing SDP and VC ID.

\textbf{Values} 1 — 17407

\textit{qtag} — Specifies the qtag value.

\textbf{Values} 0 — 4094

\textit{level} — Specifies the level.

\textbf{Values} 0 — 7

\textit{direction up | down} — Indicates the direction in which the maintenance association (MEP or MIP) faces on the bridge port.

down — Displays continuity check information configured away from the MAC relay entity.

down — Displays continuity check information configured toward the MAC relay entity.

\textit{service-id} — Specifies information about the specified service ID.

\textbf{Values} 1 — 2147483648

Sample Output

*A:alcag1-R6# show eth-cfm cfm-stack-table

==
<table>
<thead>
<tr>
<th>CFM SAP Stack Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sap</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1/2/9:5</td>
</tr>
<tr>
<td>No Matching Entries</td>
</tr>
</tbody>
</table>

*A:alcag1-R6#

domain

\textbf{Syntax} domain [md-index] [association ma-index] | all-associations [detail]]

\textbf{Context} show>eth-cfm>domain

\textbf{Description} This command displays domain information.

\textbf{Parameters} md-index — Specifies the maintenance domain (MD) index value.

\textbf{Values} 1 — 4294967295

ma-index — Specifies the MA index value.

\textbf{Values} 1 — 4294967295

all-associations — Displays information all maintenance associations.
detail — Displays detailed information.

Sample Output

```
*A:alcag1-R6# show eth-cfm domain

CMF Domain Table

<table>
<thead>
<tr>
<th>Md-index</th>
<th>Level</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>ivpls</td>
<td>charString</td>
</tr>
</tbody>
</table>

*A:alcag1-R6# show eth-cfm mep 51 domain 1 association 1

Mep Information

<table>
<thead>
<tr>
<th>Md-index</th>
<th>Ma-index</th>
<th>MepId</th>
<th>IfIndex</th>
<th>FngState</th>
<th>LowestDefectPri</th>
<th>HighestDefect</th>
<th>Defect Flags</th>
<th>Mac Address</th>
<th>CcmLtmPriority</th>
<th>CcmTx</th>
<th>CcmSequenceErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>51</td>
<td>38043648</td>
<td>fngReset</td>
<td>allDef</td>
<td>none</td>
<td>None</td>
<td>00:ae:ae:ae:ae:ae</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

mep

Syntax

```
mep mep-id domain md-index association ma-index [loopback] [linktrace]
```

Context

```
show>eth-cfm>domain
```

Description

This command displays Maintenance Endpoint (MEP) information.

Parameters

- **mep-id** — Specifies the maintenance association endpoint identifier.
 - **Values**
 - 1 — 8191

- **md-index** — Specifies the maintenance domain (MD) index value.
 - **Values**
 - 1 — 4294967295

- **ma-index** — Specifies the MA index value.
 - **Values**
 - 1 — 4294967295

- **loopback** — Displays loopback information for the specified MEP.
- **linktrace** — Displays linktrace information for specified MEP.
Sample Output

*A:alcag1-R6# oam eth-cfm loopback 00:af:af:af:af mep 51 domain 1 association 1
eth-cfm Loopback Test Initiated: Mac-Address: 00:af:af:af:af, out sap: 1/2/9:5
Sent 1 packets, received 1 packets [0 out-of-order, 0 Bad Msdu] -- OK
*A:alcag1-R6#

*A:alcag1-R6# oam eth-cfm linktrace 00:af:af:af:af:af mep 51 domain 1 association 1
Index Ingress Mac Egress Mac Relay Action
----- -------------------- -------------------- ---------- ----------
1 00:00:00:00:00:00 00:AF:AF:AF:AF:AF rlyHit terminate
----- -------------------- -------------------- ---------- ----------
No more responses received in the last 5 seconds.
*A:alcag1-R6#

id

Syntax id service-id
Context show>service
Description This command displays information on a specific service ID.
Parameters

Values

all — Displays detailed information about the service.
base — Displays basic service information.
fdb — Displays FDB entries.
epipe — Displays the e-pipe services associated with the B-VPLS service.
i-vpls — Displays the I-VPLS services associated with this B-VPLS service.
stp — Display STP information.

all

Syntax all
Context show>service>id
Description Displays detailed information for all aspects of the service.

Output Show All Service-ID Output — The following table describes the show all service-id command output fields:
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Specifies the type of service.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>The date and time of the most recent status change to this customer.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the service</td>
</tr>
<tr>
<td>Vc Switching</td>
<td>Displays the status of VC switching.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs specified for this service.</td>
</tr>
<tr>
<td>Uplink Type</td>
<td>Displays the mode of the device.</td>
</tr>
<tr>
<td>Vpn Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>SAP</td>
<td>Displays the SAP ID.</td>
</tr>
<tr>
<td>Encap</td>
<td>The value of the label used to identify this SAP on the access port.</td>
</tr>
<tr>
<td>QinQ Ethertype</td>
<td>Displays the configured QinQ Ethertype value</td>
</tr>
<tr>
<td>Dot1Q Ethertype</td>
<td>Displays the configured Dot1Q Ethertype value</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>Displays the split horizon group information</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through the port to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through the port to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Ingr IP Fltr-Id</td>
<td>Ingress IP filter ID.</td>
</tr>
<tr>
<td>Egr IP Fltr-Id</td>
<td>Egress IP filter ID</td>
</tr>
<tr>
<td>Ingr Mac Fltr-Id</td>
<td>Ingress MAC filter ID</td>
</tr>
<tr>
<td>Egr Mac Fltr-Id</td>
<td>Egress MAC filter ID</td>
</tr>
<tr>
<td>Ingr IPv6 Fltr-Id</td>
<td>Ingress IPv6 filter ID</td>
</tr>
<tr>
<td>Egr IPv6 Fltr-Id</td>
<td>Egress IPv6 filter ID</td>
</tr>
</tbody>
</table>
Show Commands

#### Label	Description
Endpoint | Displays the endpoint name
Acct. Pol | Indicates the accounting policy applied to the SAP.
Collect Stats | Specifies whether accounting statistics are collected on the SAP.

QoS parameters

Ingress qos-policy | The SAP ingress QoS policy ID.
Classifiers Allocated | Displays the number of classifiers allocated.
Classifiers Used | Displays the number of classifiers used.
Meters Allocated | Displays the number of meters allocated.
Meters Used | Displays the number of meters used.
Ingress Stats | The number of received packets/octets for this SAP.
Egress Stats | The number of packets/octets forwarded out of this SAP.

PBB Tunnel Point parameters

B-vpls | Displays the B-VPLS ID.
Backbone-dest-MAC | Displays the back bone destination MAC address.
Isid | Displays the ISID number.
Flood | Specifies whether or not the traffic is flooded in the B-VPLS for the Destination instead of unicast. If the backbone destination MAC is in the B-VPLS FDB, then it will be unicast.
Oper-dest-MAC | Displays the operational destination MAC address.
i-Vpls Count | Displays the count of I-VPLS bound to B-VPLS.
b-Vpls Status | Displays the operational state of the B-VPLS service.
Epipe Count | Displays the count of Epipe bound to B-VPLS.

Sample Output

Sample output for PBB Epipe:

```
*A:7210-SAS>show>service# id 1000 all
```

Service Detailed Information

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Vpn Id</th>
<th>Service Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
<td>Epipe</td>
<td>(Not Specified)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PBB Show Commands

Last Status Change: 04/04/2001 22:18:48
Last Mgmt Change : 04/04/2001 21:28:34
Admin State : Up Oper State : Up
MTU : n/a
MTU Check : n/a
Vc Switching : False
SAP Count : 1 SDP Bind Count : 0
Uplink Type: : MPLS

Service Destination Points(SDPs)
No Matching Entries

Service Access Points

SAP 1/1/15:1000
Service Id : 1000
SAP : 1/1/15:1000 Encap : q-tag
Description : (Not Specified) Admin State : Up Oper State : Up
Flags : None
Last Status Change : 04/04/2001 21:29:23
Last Mgmt Change : 04/04/2001 21:28:34
Dot1Q Ethertype : 0x8100 QinQ Ethertype : 0x8100
Split Horizon Group: (Not Specified)
Admin MTU : 1518 Oper MTU : 1518
Ingr IP Fltr-Id : n/a Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a Egr Mac Fltr-Id : n/a
Ingr IPv6 Fltr-Id : n/a Egr IPv6 Fltr-Id : n/a
tod-suite : None Endpoint : N/A
Acct. Pol : None Collect Stats : Disabled

QOS
Ingress qos-policy : 1
Aggregate Policer
rate : n/a burst : n/a

Ingress QoS Classifier Usage
Classifiers Allocated: 4 Meters Allocated : 2
Classifiers Used : 1 Meters Used : 1

Sap Statistics

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Stats:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Drop Stats:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extra-Tag Drop Stats:</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Sap per Meter stats (in/out counter mode)

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Meter 1 (Unicast)</td>
<td>For. InProf : 0</td>
</tr>
<tr>
<td>For. OutProf : 0</td>
<td>0</td>
</tr>
</tbody>
</table>

PBB Tunnel Point

<table>
<thead>
<tr>
<th>B-vpls</th>
<th>Backbone-dest-MAC</th>
<th>Isid</th>
<th>AdmMTU</th>
<th>OperState</th>
<th>Flood</th>
<th>Oper-dest-MAC</th>
</tr>
</thead>
</table>

Last Status Change: 04/04/2001 22:18:48
Last Mgmt Change: 04/04/2001 22:18:48

Service Endpoints

No Endpoints found.

Sample output for I-VPLS:

*A:7210-SAS>show>service#

Service Detailed Information

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Vpn Id</th>
<th>Service Type</th>
<th>Description</th>
<th>Customer Id</th>
<th>Last Status Change</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>i-VPLS</td>
<td>(Not Specified)</td>
<td>1</td>
<td>04/04/2001 22:14:30</td>
<td>04/04/2001 22:15:06</td>
</tr>
</tbody>
</table>

Admin State : Up Oper State : Up
MTU : n/a MTU Check : n/a
SAP Count : 1 SDP Bind Count : 0
Snd Flush on Fail : Disabled
Uplink Type : MPLS
b-Vpls Id : 2 Oper ISID : 200
b-Vpls Status : Up

Split Horizon Group specifics

Service Destination Points(SDPs)

No Matching Entries

Service Access Points
Service Id : 200
SAP : 1/1/15:200 Encap : q-tag
Description : (Not Specified)
Admin State : Up Oper State : Up
Flags : None
Last Status Change : 04/04/2001 22:14:30
Last Mgmt Change : 04/04/2001 22:14:22
Dot1Q Ethertype : 0x8100 QinQ Ethertype : 0x8100
Split Horizon Group: (Not Specified)

Max Nbr of MAC Addr: No Limit Total MAC Addr : 0
Learned MAC Addr : 0 Static MAC Addr : 0
Admin MTU : 1518 Oper MTU : 1518
Ingr IP Fltr-Id : n/a Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a Egr Mac Fltr-Id : n/a
Ingr IPV6 Fltr-Id : n/a Egr IPV6 Fltr-Id : n/a
tod-suite : None
Mac Learning : Enabled Discard Unkwn Srce: Disabled
Mac Aging : Enabled Mac Pinning : Disabled
BPDU Translation : Disabled L2PT Termination : Disabled

Acct. Pol : None Collect Stats : Disabled

Stp Admin State : Up Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A Port State : Forwarding
Port Number : 2049 Port Priority : 128
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : N/A
Link Type : Pt-pt BFDU Encap : Dot1d
Root Guard : Disabled Active Protocol : N/A
Last BFDU from : N/A
CIST Desig Bridge : N/A Designated Port : N/A

Forward transitions: 0 Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0 Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0 TCN BPDUs tx : 0
TC bit BPDUs rcvd : 0 TC bit BPDUs tx : 0
RST BPDUs rcvd : 0 RST BPDUs tx : 0
MST BPDUs rcvd : 0 MST BPDUs tx : 0

ARP host
Admin State : outOfService
Host Limit : 1 Min Auth Interval : 15 minutes

QOS
Ingress qos-policy : 1
Aggregate Policer
rate : n/a burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4 Meters Allocated : 2
Classifiers Used : 2 Meters Used : 2

Sap Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats:</td>
<td>0</td>
</tr>
<tr>
<td>Egress Stats:</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Drop Stats:</td>
<td>0</td>
</tr>
<tr>
<td>Extra-Tag Drop Stats: n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Sap per Meter stats (in/out counter mode)

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Meter 1 (Unicast)</td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Meter 11 (Multipoint)</td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
</tr>
</tbody>
</table>

VPLS Spanning Tree Information

| VPLS oper state | Up |
| Stp Admin State | Down |
| Mode | Rstp |
| Bridge Id | 80:00.00:25:ba:08:f6:20 |
| Bridge Priority | 32768 |
| Topology Change | Inactive |
| Last Top. Change | 0d 00:00:00 |
| Top. Change Count | 0 |
| Root Bridge | N/A |
| Primary Bridge | N/A |
| Root Path Cost | 0 |
| Rcvd Hello Time | 0 |
| Root Priority | 0 |
| Root Max Age | 0 |
| Root Forward Delay | 0 |
| Bridge Hello Time | 2 |
| Bridge Max Age | 20 |
| Bridge Fwd Delay | 15 |

Forwarding Database specifics

| Service Id | 200 |
| Mac Move Rate | 2 |
| Mac Move Retries | 3 |
| Table Size | 250 |
| Learned Count | 0 |
| Remote Age | 900 |
| High Watermark | 95% |
| Mac Learning | Enabled |
| Mac Aging | Enabled |
| Mac Move | Disabled |
| Mac Move Timeout | 10 |
| Total Count | 0 |
| Static Count | 0 |
| Local Age | 300 |
| Low Watermark | 90% |
| Mac Learning | Disabled |
| Mac Aging | False |
Sample output for B-VPLS service:

*A:7210-SAS>show>service# id 2 all

Service Detailed Information

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Vpn Id</th>
<th>Service Type</th>
<th>Description</th>
<th>Customer Id</th>
<th>Last Status Change</th>
<th>Last Mgmt Change</th>
<th>Admin State</th>
<th>Oper State</th>
<th>MTU</th>
<th>MTU Check</th>
<th>SAP Count</th>
<th>SDP Bind Count</th>
<th>Snd Flush on Fail</th>
<th>Uplink Type</th>
<th>Oper Backbone Src</th>
<th>i-Vpls Count</th>
<th>Epipe Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>b-VPLS</td>
<td>(Not Specified)</td>
<td>1</td>
<td>04/04/2001 22:13:57</td>
<td>04/04/2001 22:13:57</td>
<td>Up</td>
<td>Up</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
<td>0</td>
<td>Disabled</td>
<td>MPLS</td>
<td>00:25:ba:08:f6:20</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Split Horizon Group specifics

Service Destination Points(SDPs)

No Matching Entries

Service Access Points

SAP 1/1/2:2

<table>
<thead>
<tr>
<th>Service Id</th>
<th>SAP</th>
<th>Encap</th>
<th>Description</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Flags</th>
<th>Last Status Change</th>
<th>Last Mgmt Change</th>
<th>Dot1Q Ethertype</th>
<th>QinQ Ethertype</th>
<th>PBB Ethertype</th>
<th>Split Horizon Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/1/2:2</td>
<td>q-tag</td>
<td>(Not Specified)</td>
<td>Up</td>
<td>Up</td>
<td>None</td>
<td>04/04/2001 22:13:57</td>
<td>04/04/2001 22:13:54</td>
<td>0x8100</td>
<td>0x8100</td>
<td>0x88e7</td>
<td>(Not Specified)</td>
</tr>
</tbody>
</table>

Max Nbr of MAC Addr: No Limit
Learned MAC Addr: 0
Static MAC Addr: 0
Admin MTU: 1518
Oper MTU: 1518
Ingr Mac Fltr-Id: n/a
Egr Mac Fltr-Id: n/a
tod-suite: None
Mac Learning: Enabled
Discard Unkwn Srce: Disabled
Mac Aging: Enabled
Mac Pinning: Disabled
BFDU Translation: Disabled
L2PT Termination: Disabled
Acct. Pol : None Collect Stats : Disabled

Stp Service Access Point specifics

Stp Admin State : Up Stp Oper State : Down
Core Connectivity : Down Port State : Forwarding
Port Role : N/A Port Priority : 128
Port Number : 2048 Port Path Cost : 10
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : N/A
Link Type : Pt-pt BPDU Encap : Dot1d
Root Guard : Disabled Active Protocol : N/A
Last BPDUs from : N/A Designated Port : N/A
CIST Design Bridge : N/A Designated Port : N/A
Forward transitions: 0 Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0 Cfg BPDUs tx : 0
TC BPDUs rcvd : 0 TC BPDUs tx : 0
RST BPDUs rcvd : 0 RST BPDUs tx : 0
MST BPDUs rcvd : 0 MST BPDUs tx : 0

ARP host

Admin State : outOfService
Host Limit : 1 Min Auth Interval : 15 minutes

QOS

Ingress qos-policy : 1

Aggregate Policer

rate : n/a burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4 Meters Allocated : 2
Classifiers Used : 2 Meters Used : 2

Sap Statistics

Ingress Stats: 0 0
Egress Stats: 0 0
Ingress Drop Stats: 0 0
Extra-Tag Drop Stats: n/a n/a

Sap per Meter stats (in/out counter mode)

Packets Octets
Ingress Meter 1 (Unicast)
For. InProf : 0 0
For. OutProf : 0 0
Ingress Meter 11 (Multipoint)
For. InProf : 0
For. OutProf : 0

VPLS Spanning Tree Information

VPLS oper state : Up Core Connectivity : Down
Stp Admin State : Down Stp Oper State : Down
Mode : Rstp Vcp Active Prot. : N/A
Bridge Id : 80:00.00:25:ba:08:f6:20 Bridge Instance Id: 0
Bridge Priority : 32768 Tx Hold Count : 6
Topology Change : Inactive Bridge Hello Time : 2
Last Top. Change : 0d 00:00:00 Bridge Max Age : 20
Top. Change Count : 0 Bridge Fwd Delay : 15
Root Bridge : N/A
Primary Bridge : N/A
Root Path Cost : 0 Root Forward Delay: 0
Rcvd Hello Time : 0 Root Max Age : 0
Root Priority : 0 Root Port : N/A

Forwarding Database specifics

Service Id : 2 Mac Move : Disabled
Mac Move Rate : 2 Mac Move Timeout : 10
Mac Move Retries : 3
Table Size : 250 Total Count : 0
Learned Count : 0 Static Count : 0
Remote Age : 900 Local Age : 300
High Watermark : 95% Low Watermark : 90%
Mac Learning : Enabled Discard Unknown : Disabled
Mac Aging : Enabled Relearn Only : False

Related i-Vpls services for b-Vpls service 2

i-Vpls SvcId Oper ISID Admin Oper
200 200 Up Up
Number of Entries : 1

Related Epipe services for b-Vpls service 2

Epipe SvcId Oper ISID Admin Oper
1000 1000 Up Up
Number of Entries : 1

Service Endpoints
No Endpoints found.
Show Commands

*AT210-SAS>show>service#

base

Syntax
base

Context
show>service>id

Description
This command displays basic information about the service including service type, description and SAPs.

Output
Show service ID base output — The following table describes the command output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Specifies the type of service.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>The date and time of the most recent status change to this customer.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the service.</td>
</tr>
<tr>
<td>Vc Switching</td>
<td>Displays the status of VC switching.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs specified for this service.</td>
</tr>
<tr>
<td>Uplink Type</td>
<td>Displays the mode of the device.</td>
</tr>
<tr>
<td>Vpn Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>SAP</td>
<td>Displays the SAP ID.</td>
</tr>
<tr>
<td>Encap</td>
<td>The value of the label used to identify this SAP on the access port.</td>
</tr>
<tr>
<td>Vpn Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>SAP</td>
<td>Displays the SAP ID.</td>
</tr>
</tbody>
</table>
Sample output for PBB Epipe service:

*A:7210-SAS>show>service# id 1000 base

<table>
<thead>
<tr>
<th>Service Basic Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id : 1000</td>
</tr>
<tr>
<td>Service Type : Epipe</td>
</tr>
<tr>
<td>Description : (Not Specified)</td>
</tr>
<tr>
<td>Customer Id : 1</td>
</tr>
<tr>
<td>Last Status Change : 04/04/2001 22:18:48</td>
</tr>
<tr>
<td>Last Mgmt Change : 04/04/2001 21:28:34</td>
</tr>
<tr>
<td>Admin State : Up</td>
</tr>
<tr>
<td>Oper State : Up</td>
</tr>
<tr>
<td>MTU : n/a</td>
</tr>
<tr>
<td>MTU Check : n/a</td>
</tr>
<tr>
<td>Vc Switching : False</td>
</tr>
<tr>
<td>SAP Count : 1</td>
</tr>
<tr>
<td>SDP Bind Count : 0</td>
</tr>
<tr>
<td>Uplink Type : MPLS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Access & Destination Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>sap:1/1/15:1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PBB Tunnel Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-vpls Backbone-dest-MAC Isid AdmMTU OperState Flood Oper-dest-MAC</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
</tbody>
</table>

Last Status Change: 04/04/2001 22:18:48
Last Mgmt Change: 04/04/2001 22:18:48

PBB Tunnel Point

- **B-vpls**: Displays the B-VPLS ID.
- **Backbone-dest-MAC**: Displays the back bone destination MAC address.
- **Isid**: Displays the ISID number.
- **Flood**: Specifies whether or not the traffic is flooded in the B-VPLS for the Destination instead of unicast. If the backbone destination MAC is in the B-VPLS FDB, then it will be unicast.
- **b-Vpls Status**: Displays the operational state of the B-VPLS service
- **b-Vpls Id**: Displays the B-VPLS ID.
Sample output for I-VPLS service:

*A:7210-SAS>show>service# id 200 base

===
<table>
<thead>
<tr>
<th>Service Basic Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id : 200</td>
</tr>
<tr>
<td>Vpn Id : 0</td>
</tr>
<tr>
<td>Service Type : i-VPLS</td>
</tr>
<tr>
<td>Description : (Not Specified)</td>
</tr>
<tr>
<td>Customer Id : 1</td>
</tr>
<tr>
<td>Last Status Change : 04/04/2001 22:14:30</td>
</tr>
<tr>
<td>Last Mgmt Change : 04/04/2001 22:15:06</td>
</tr>
<tr>
<td>Admin State : Up</td>
</tr>
<tr>
<td>Oper State : Up</td>
</tr>
<tr>
<td>MTU : n/a</td>
</tr>
<tr>
<td>MTU Check : n/a</td>
</tr>
<tr>
<td>SAP Count : 1</td>
</tr>
<tr>
<td>SDP Bind Count : 0</td>
</tr>
<tr>
<td>Snd Flush on Fail : Disabled</td>
</tr>
<tr>
<td>Uplink Type : MPLS</td>
</tr>
<tr>
<td>b-Vpls Id : 2</td>
</tr>
<tr>
<td>Oper ISID : 200</td>
</tr>
<tr>
<td>b-Vpls Status : Up</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Service Access & Destination Points</td>
</tr>
<tr>
<td>Identifier</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>sap:1/1/15:200</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
</tbody>
</table>

Sample output for B-VPLS service:

*A:7210-SAS>show>service# id 2 base

===
<table>
<thead>
<tr>
<th>Service Basic Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id : 2</td>
</tr>
<tr>
<td>Vpn Id : 0</td>
</tr>
<tr>
<td>Service Type : b-VPLS</td>
</tr>
<tr>
<td>Description : (Not Specified)</td>
</tr>
<tr>
<td>Customer Id : 1</td>
</tr>
<tr>
<td>Last Mgmt Change : 04/04/2001 22:13:57</td>
</tr>
<tr>
<td>Admin State : Up</td>
</tr>
<tr>
<td>Oper State : Up</td>
</tr>
<tr>
<td>MTU : n/a</td>
</tr>
<tr>
<td>MTU Check : n/a</td>
</tr>
<tr>
<td>SAP Count : 1</td>
</tr>
<tr>
<td>SDP Bind Count : 0</td>
</tr>
<tr>
<td>Snd Flush on Fail : Disabled</td>
</tr>
<tr>
<td>Uplink Type : MPLS</td>
</tr>
<tr>
<td>Oper Backbone Src : 00:25:ba:08:f6:20</td>
</tr>
<tr>
<td>i-Vpls Count : 1</td>
</tr>
<tr>
<td>Epipe Count : 1</td>
</tr>
</tbody>
</table>
PBB Show Commands

Service Access & Destination Points

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/1:2:2</td>
<td>q-tag</td>
<td>1518</td>
<td>1518</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

*A:7210-SAS>show>service#

fdb

Syntax

```
fdb {info | mac ieee-address | sap sap-id | detail | endpoint endpoint} [expiry] [pbb]
```

Context

```
show>service>id
```

Description

This command displays FDB entries for a given MAC address.

Parameters

- `sap sap-id` — Specifies the physical port identifier portion of the SAP
- `detail` — Displays detailed information.
- `expiry` — Displays time until MAC is aged out.
- `endpoint` — Displays endpoint information.
- `pbb` — Displays PBB information.

Output

Show FDB Information — The following table describes service FDB output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>Displays the service ID.</td>
</tr>
<tr>
<td>Mac Move Rate</td>
<td>Displays the maximum rate at which MAC's can be re-learned in this service, before the SAP where the moving MAC was last seen is automatically disabled in order to protect the system against undetected loops or duplicate MAs. The rate is computed as the maximum number of re-learns allowed in a 5 second interval: for example, the default rate of 2 re-learns per second corresponds to 10 re-learns in a 5 second period.</td>
</tr>
<tr>
<td>Mac Move Retries</td>
<td>Displays the number of times retries are performed for re-enabling the SAP.</td>
</tr>
<tr>
<td>Table Size</td>
<td>Specifies the maximum number of learned and static entries allowed in the FDB of this service.</td>
</tr>
<tr>
<td>Learned Count</td>
<td>Displays the current number of learned entries in the FDB of this service.</td>
</tr>
</tbody>
</table>
Show Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Age</td>
<td>Displays the number of seconds used to age out FDB entries learned on an SAP. These entries correspond to MAC addresses learned on remote SAPs.</td>
</tr>
<tr>
<td>High Watermark</td>
<td>Displays the utilization of the FDB table of this service at which a table full alarm will be raised by the agent.</td>
</tr>
<tr>
<td>Mac Learning</td>
<td>Specifies whether the MAC learning process is enabled.</td>
</tr>
<tr>
<td>Mac Aging</td>
<td>Indicates whether the MAC aging process is enabled.</td>
</tr>
<tr>
<td>Mac Move</td>
<td>Displays the administrative state of the MAC movement feature associated with this service.</td>
</tr>
<tr>
<td>Mac Move Timeout</td>
<td>Displays the time in seconds to wait before a SAP that has been disabled after exceeding the maximum re-learn rate is re-enabled. A value of zero indicates that the SAP will not be automatically re-enabled after being disabled. If after the SAP is re-enabled it is disabled again, the effective retry timeout is doubled in order to avoid thrashing.</td>
</tr>
<tr>
<td>Total Count</td>
<td>Displays the total number of learned entries in the FDB of this service.</td>
</tr>
<tr>
<td>Static Count</td>
<td>Displays the current number of static entries in the FDB of this service.</td>
</tr>
<tr>
<td>Local Age</td>
<td>Displays the number of seconds used to age out FDB entries learned on local SAPs.</td>
</tr>
<tr>
<td>Low Watermark</td>
<td>Displays the utilization of the FDB table of this service at which a table full alarm will be cleared by the agent.</td>
</tr>
<tr>
<td>Discard Unknown</td>
<td>Specifies whether frames received with an unknown destination MAC are discarded.</td>
</tr>
<tr>
<td>Relearn Only</td>
<td>Displays, that when enabled, either the FDB table of this service is full, or that the maximum system-wide number of MAC’s supported by the agent has been reached, and thus MAC learning is temporary disabled, and only MAC re-learns can take place.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:7210-SAS>show>service# id 200 fdb

Forwarding Database, Service 200

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Mac Move</th>
<th>Mac Move Rate</th>
<th>Mac Move Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Disabled</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Page 482 7210-SAS M Services Guide
PBB Show Commands

Table Size: 250 Total Count: 0
Learned Count: 0 Static Count: 0
Remote Age: 900 Local Age: 300
High Watermark: 95% Low Watermark: 90%
Mac Learning: Enabled Discard Unknown: Disabled
Mac Aging: Enabled Relearn Only: False

*A:7210-SAS>show>service#

*A:7210-SAS>show>service# id 2 fdb

Forwarding Database, Service 2

Service Id: 2 Mac Move: Disabled
Mac Move Rate: 2 Mac Move Timeout: 10
Mac Move Retries: 3
Table Size: 250 Total Count: 0
Learned Count: 0 Static Count: 0
Remote Age: 900 Local Age: 300
High Watermark: 95% Low Watermark: 90%
Mac Learning: Enabled Discard Unknown: Disabled
Mac Aging: Enabled Relearn Only: False

*A:7210-SAS>show>service#

stp

Syntax stp [detail]

Context show>service>id

Description This command displays information for the spanning tree protocol instance for the service.

Parameters detail — Displays detailed information.

Output Show Service-ID STP Output — The following table describes show service-id STP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Id</td>
<td>Specifies the MAC address used to identify this bridge in the network.</td>
</tr>
<tr>
<td>Top. Change Count</td>
<td>Specifies the total number of topology changes detected by the Spanning Tree Protocol instance associated with this service since the management Entity was last reset or initialized.</td>
</tr>
</tbody>
</table>
Show Commands

Root Bridge
Specifies the bridge identifier of the root of the spanning tree as determined by the Spanning Tree Protocol instance associated with this service. This value is used as the Root Identifier parameter in all Configuration BPDUs originated by this node.

Stp Oper State
Displays the operational state of the STP.

Primary Bridge
Specifies the bridge identifier of the root of the spanning tree as determined by the Spanning Tree Protocol instance associated with this service. This value is used as the Root Identifier parameter in all Configuration BPDUs originated by this node.

Topology Change
Specifies whether a topology change is currently in progress.

Mode
Displays the mode of the STP.

Last Top. Change
Specifies the time (in hundredths of a second) since the last time a topology change was detected by the Spanning Tree Protocol instance associated with this service.

Root Port
Specifies the port number of the port which offers the lowest cost path from this bridge to the root bridge.

Backbone VPLS
Displays the ID of the B-VPLS.

Sample

```
*A:7210-SAS>show>service# id 200 stp

===============================================================================
Stp info, Service 200
===============================================================================
Bridge Id          : 80:00.00:25:ba:08:f6:20  Top. Change Count : 0
Root Bridge        : N/A                      Stp Oper State    : Down
Primary Bridge     : N/A                      Topology Change   : Inactive
Mode               : Rstp                     Last Top. Change  : 0d 00:00:00
Vcp Active Prot.   : N/A
Root Port          : N/A                      External RPC      : 0
===============================================================================
Stp port info
===============================================================================
Sap/Sdp Id         Oper-State  Port-Role  Port-State  Port-Num  Oper-Edge  Link-Type  Active Prot.
-------------------------------------------------------------------------------
Backbone VPLS      Up          N/A       Forward    2048     N/A       N/A       N/A
1/1/15:200         Up          N/A       Forward    2049     N/A       Pt-pt      N/A
```

A:7210-SAS>show>service#
isid-using

Syntax
`isid-using [ISID]`

Context
`show>service`

Description
This command displays services using ISID.

Parameters
`ISID` — Displays the service using the specified I-component Service ID (ISID).

Values
0 — 16777215

Sample

```
*A:7210-SAS>show>service# isid-using

****************************************************************************
Services
****************************************************************************
SvcId  ISID  Type  b-Vpls  Adm  Opr  SvcMtu  CustId
-------------------------------------------------------------------------------
 100    100  i-VPLS  1  Up   Up   1514   1
 200    200  i-VPLS  2  Up   Up   1514   1
 1000   1000 Epipe  1  Up   Up   1514   1
 3000   3000  Epipe  1  Up   Up   1514   1
-------------------------------------------------------------------------------
Matching Services : 4
****************************************************************************
*A:7210-SAS>show>service#
```

Label

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SvcId</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>ISID</td>
<td>Displays the ISID number.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates the type of service.</td>
</tr>
<tr>
<td>b-Vpls</td>
<td>Displays the B-VPLS ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>Specifies the operating status of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The current status of the service.</td>
</tr>
<tr>
<td>SvcMtu</td>
<td>Indicates the service MTU value.</td>
</tr>
<tr>
<td>CustId</td>
<td>Displays the customer ID.</td>
</tr>
</tbody>
</table>

i-vpls
Show Commands

Syntax
i-vpls

Context
show>service>id

Description
Displays I-VPLS services associated with the B-VPLS service. This command only applies when the service is a B-VPLS.

Output
Show i-vpls Information — The following table describes service I-vpls output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Vpls SvcId</td>
<td>Displays the service ID of the I-VPLS service</td>
</tr>
<tr>
<td>Oper ISID</td>
<td>Displays the ISID number.</td>
</tr>
<tr>
<td>Admin</td>
<td>Specifies the operating status of the service.</td>
</tr>
<tr>
<td>Oper</td>
<td>The current status of the service.</td>
</tr>
</tbody>
</table>

Sample Output

*A:7210-SAS>show>service# id 2 i-vpls

===
<table>
<thead>
<tr>
<th>Related i-Vpls services for b-Vpls service 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Vpls SvcId</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>---------------</td>
</tr>
</tbody>
</table>

Number of Entries : 1

===

*A:7210-SAS>show>service#

epipe

Syntax
epipe

Context
show>service>id

Description
This command displays information the Epipe information for the PBB service.

Output
Show Epipe Information — The following table describes service Epipe output fields.
PBB Show Commands

isid-using

Syntax
`isid-using [ISID]`

Context
`show>service`

Description
This command displays the services using ISID.

Parameters
- **ISID** — Displays the service using the specified I-component Service ID (ISID).

 Values
 0 — 16777215

Output
- **Show Epipe Information** — The following table describes service Epipe output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SvcId</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>ISID</td>
<td>Displays the ISID number.</td>
</tr>
</tbody>
</table>

Sample Output

A:7210-SAS>show>service# id 2 epipe

```
===============================================================================
Related Epipe services for b-Vpls service 2
===============================================================================
<table>
<thead>
<tr>
<th>Epipe SvcId</th>
<th>Oper ISID</th>
<th>Admin</th>
<th>Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>
Number of Entries : 1
===============================================================================
*A:7210-SAS>show>service# id 200 epipe*
```
Show Commands

Sample Output

*A:7210-SAS>show>service# isid-using

Services

<table>
<thead>
<tr>
<th>SvcId</th>
<th>ISID</th>
<th>Type</th>
<th>b-Vpls</th>
<th>Adm</th>
<th>Opr</th>
<th>SvcMtu</th>
<th>CustId</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>i-VPLS</td>
<td>1</td>
<td>Up</td>
<td>Up</td>
<td>1514</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>i-VPLS</td>
<td>2</td>
<td>Up</td>
<td>Up</td>
<td>1514</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>Epipe</td>
<td>2</td>
<td>Up</td>
<td>Up</td>
<td>1514</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>Epipe</td>
<td>1</td>
<td>Up</td>
<td>Up</td>
<td>1514</td>
<td>1</td>
</tr>
</tbody>
</table>

Matching Services : 4

*A:7210-SAS>show>service#

service-using

Syntax service-using [b-vpls] [i-vpls]

Context show>service

Description This command displays the services matching certain usage properties. If no optional parameters are specified, all services defined on the system are displayed.

Parameters b-vpls — Displays matching Epipe services.

i-vpls — Displays matching VPLS instances.

Output Show Epipe Information — The following table describes service Epipe output fields.
PBB Show Commands

Sample Output

*A:7210-SAS>show>service# service-using b-vpls

===
Services [bvpls]
===
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b-VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>04/04/2001 23:22:12</td>
</tr>
<tr>
<td>2</td>
<td>b-VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>04/04/2001 22:13:57</td>
</tr>
</tbody>
</table>

Matching Services : 2

===
*A:7210-SAS>show>service#

mac-name

Syntax mac-name [detail]
Context show>service>pbb
Description This command displays information on a specific MAC name.
Parameters detail — Displays detail information.
Sample Output

*A:7210-SAS>show>service# pbb mac-name test detail

<table>
<thead>
<tr>
<th>Svc-Id</th>
<th>ISID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No Matching Entries

*A:7210-SAS>show>service#
PBB Clear Commands

id

Syntax

id service-id

Context
clear>service
clear>service>statistics

Description

This command clears commands for a specific service.

Parameters

- **service-id** — The ID that uniquely identifies a service.

| Values | service-id: 1 — 214748364 |

statistics

Syntax

statistics

Context
clear>service>stats

Description

This command clears session statistics for this service.

fdb

Syntax

fdb {all | mac ieee-address | sap sap-id} }

Context
clear>service>id

Description

This command clears FDB entries for the service.

Parameters

- **all** — Clears all FDB entries.
- **mac ieee-address** — Clears only FDB entries in the FDB table with the specified 48-bit MAC address. The MAC address can be expressed in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee and ff are hexadecimal numbers.
- **sap sap-id** — Specifies the physical port identifier portion of the SAP definition.

sap

Syntax

sap service-id

Context
clear>service>statistics

Description

This command clears statistics for the SAP bound to the service.
Show Commands

Parameters sap-id — See Common CLI Command Descriptions on page XXX for command syntax.

counters

Syntax counters
Context clear>service>statistics>id
Description This command clears all traffic queue counters associated with the service ID.

stp

Syntax stp
Context clear>service>statistics>id
Description Clears all spanning tree statistics for the service ID.

detected-protocols

Syntax detected-protocols {all | sap sap-id}
Context clear>service>id>stp
Description RSTP automatically falls back to STP mode when it receives an STP BPDU. The clear detected protocols command forces the system to revert to the default RSTP mode on the SAP.
Parameters all — Clears all detected protocol statistics.

sap-id — Clears the specified lease state SAP information.
PBB Debug Commands

Id

Syntax

```plaintext
id service-id
```

Context

debug>service

Description

This command debugs commands for a specific service.

Parameters

- `service-id` — The ID that uniquely identifies a service.

 Values

 - `service-id: 1 — 214748364`

event-type

Syntax

```plaintext
[no] event-type {config-change | svc-oper-status-change | sap-oper-status-change}
```

Context

debug>service?id

Description

This command enables a particular debugging event type. The no form of the command disables the event type debugging.

Parameters

- `config-change` — Debugs configuration change related events.
- `svc-oper-status-change` — Debugs service operational status changes.
- `sap-oper-status-change` — Debugs SAP operational status changes.

sap

Syntax

```plaintext
[no] sap sap-id
```

Context

debug>service?id

Description

This command enables debugging for a particular SAP.

Parameters

- `sap-id` — Specifies the SAP ID.

stp

Syntax

```plaintext
stp
```

Context

debug>service?id

Description

This command enables the context for debugging STP.
Show Commands

all-events

Syntax all-events
Context debug>service>id>stp
Description This command enables STP debugging for all events.

bpdu

Syntax [no] bpdu
Context debug>service>id>stp
Description This command enables STP debugging for received and transmitted BPDUs.

core-connectivity

Syntax [no] core-connectivity
Context debug>service>id>stp
Description This command enables STP debugging for core connectivity.

exception

Syntax [no] exception
Context debug>service>id>stp
Description This command enables STP debugging for exceptions.

fsm-state-changes

Syntax [no] fsm-state-changes
Context debug>service>id>stp
Description This command enables STP debugging for FSM state changes.

fsm-timers

Syntax [no] fsm-timers
Context debug>service>id>stp
Description: This command enables STP debugging for FSM timer changes.

port-role

Syntax

```
[no] port-role
```

Context

debug>service>id>stp

Description

This command enables STP debugging for changes in port roles.

port-state

Syntax

```
[no] port-state
```

Context

debug>service>id>stp

Description

This command enables STP debugging for port states.

sap

Syntax

```
[no] sap sap-id
```

Context

debug>service>id>stp

Description

This command enables STP debugging for a specific SAP.

Parameters

- `sap-id` — Specifies the physical port identifier portion of the SAP definition.
Show Commands
In This Chapter

This chapter provides information about Internet Enhanced Services when 7210 SAS-M is operated in Network mode and in Access-uplink mode, the process overview, and implementation notes. NOTE: When 7210 SAS-M is operated in network mode, IES is designed to provide service (or in-band management of the node). When 7210 SAS-M is operated in access-uplink mode, IES is designed for in-band management of the node. This chapter explicitly notes if a feature is supported in network mode or access-uplink mode.

Topics in this chapter include:

- IES Service Overview on page 500
- IES Features on page 501
 - IP Interfaces on page 501
 - Subscriber Interfaces on page 583
 - Encapsulations on page 502
 - Routing Protocols on page 502
 - CPE Connectivity Check on page 502
 - QoS Policies on page 503
 - Filter Policies on page 504
- Configuring an IES Service with CLI on page 507
- Basic Configuration on page 508
- Common Configuration Tasks on page 510
- Service Management Tasks on page 514
IES Service Overview

Internet Enhanced Service (IES) is a routed connectivity service where the subscriber communicates with an IP router interface to send and receive Internet traffic. An IES has one or more logical IP routing interfaces each with a SAP which acts as the access point to the subscriber’s network.

NOTE: In access-uplink mode, IES is primarily designed for in-band management of the node.

IES allows IP interfaces to participate in the same routing instance used for service network core routing connectivity. IES services require that the IP addressing scheme used by the subscriber be unique between other provider addressing schemes and potentially the entire Internet. While IES is part of the routing domain, the usable IP address space may be limited. This allows a portion of the service provider address space to be reserved for service IP provisioning, and be administered by a separate, but subordinate address authority.

IP interfaces defined within the context of an IES service must have a SAP associated as the uplink access point to the subscriber network. Multiple IES services are created to segregate subscriber owned IP interfaces.

![Figure 64: Internet Enhanced Service](image)

The IES service provides in-band management connectivity. Other features include:

- Multiple IES services are created to separate IP interfaces.
- More than one IES service can be created for a single customer ID.
- More than one IP interface can be created within a single IES service ID. All IP interfaces created within an IES service ID belong to the same customer.

In access-uplink mode, the IES services provide IP connectivity to the node for in-band management of the node. Most of the management tasks supported with the out-of-band management port are supported with in-band management.
IES Features

This section describes various general service features and any special capabilities or considerations as they relate to IES services.

IP Interfaces

IES customer IP interfaces can be configured with most of the options found on the core IP interfaces. The advanced configuration options supported are:

- VRRP - for IES services with more than one IP interface (available only in network mode)
- ICMP Options

In network mode, configuration options found on core IP interfaces not supported on IES IP interfaces are:

- NTP broadcast receipt.
Encapsulations

The following SAP encapsulation is supported on IES services in both network mode and access-uplink mode:

- Ethernet null
- Ethernet dot1q
- Ethernet QinQ

In 7210 SAS-M access-uplink mode, the following access-uplink SAP encapsulations are supported:

- Ethernet QinQ (access-uplink QinQ SAP)

Routing Protocols

In network mode, the IES IP interfaces are restricted as to the routing protocols that can be defined on the interface based on the fact that the customer has a different routing domain for this service. The IES IP interfaces support the following routing protocols:

- OSPF
- Static routing
- IS-IS

In access-uplink mode, only static routing is supported. Dynamic routing protocols such as OSPF, IS-IS, and others are not supported.

Note that the SAP for the IES IP interface is created at the IES service level, but the routing protocols for the IES IP interface are configured at the routing protocol level for the main router instance.

CPE Connectivity Check

Static routes are used within many IES services. Unlike dynamic routing protocols, there is no way to change the state of routes based on availability information for the associated CPE.
connectivity check adds flexibility so that unavailable destinations will be removed from the service provider’s routing tables dynamically and minimize wasted bandwidth.

The availability of the far-end static route is monitored through periodic polling. The polling period is configured. If the poll fails a specified number of sequential polls, the static route is marked as inactive.

An ICMP ping mechanism is used to test the connectivity. If the connectivity check fails and the static route is de-activated, the router will continue to send polls and re-activate any routes that are restored.

QoS Policies

When applied to 7750 SR IES services, service ingress QoS policies only create the unicast meters defined in the policy. The multipoint queues are not created on the service. With IES services, service egress QoS policies function as with other services where the class-based queues are created as defined in the policy.

In access-uplink mode, IES IP interface associated with an access SAP supports use of service ingress QoS policies. IES IP interface associated with an access-uplink SAP does not support use of service ingress QoS policies. IES IP interfaces associated with an access-uplink SAP share the port based ingress and egress QoS policies.

Note that both MAC and IPv4 criteria can be used in the QoS policies for traffic classification in an IES.

CPU QoS for IES interfaces in access-uplink mode

In access-uplink mode, IES IP interface bound to routed VPLS services, IES IP interface on access SAPs and IES IP interface on Access-Uplink SAPs are designed for use with inband management of the node. Consequently, they share a common set of queues for CPU bound management traffic. All CPU bound traffic is policed to pre-defined rates before being queued into CPU queues for application processing. The system uses meters per application or a set of applications. It does not allocate meters per IP interface. The possibility of CPU overloading has been reduced by use of these mechanisms. Users must use appropriate security policies either on the node or in the network to ensure that this does not happen.
CPU QoS for IES access interfaces in network mode

Traffic bound to CPU received on IES access interfaces are policed/rate-limited and queued into CPU queues. The software allocates a policer per IP application or a set of IP applications, for rate-limiting CPU bound IP traffic from all IES access SAPs. The policers CIR/PIR values are set to appropriate values based on feature scaling and these values are not user configurable. The software allocates a set of queues for CPU bound IP traffic from all IES access SAPs. The queues are either shared by a set of IP applications or in some cases allocated to an IP application. The queues are shaped to appropriate rate based on feature scaling. The shaper rate is not user configurable.

NOTE: The instance of queues and policers used for traffic received on network port IP interfaces is different for traffic received from access port IP interfaces. Additionally the network CPU queues are accorded higher priority than the access CPU queues. This is done to provide better security and mitigate the risk of access traffic affecting network side.

Filter Policies

In network mode, only IP filter policies can be applied to IES services.

In access-uplink mode, only IP filter policies can be applied to IES service when either access SAP or access-uplink SAP is associated with the service.
IPv6 support for IES IP interfaces (applicable for only access-uplink mode)

NOTE: IPv6 addressing is supported for IES IP interfaces in access-uplink mode. IPv6 is not supported with IES IP interfaces in network mode.

In access-uplink mode, IES IP interfaces associated with access-uplink SAPs support IPv6 addressing. IPv6 can be used for in-band management of the node using the IES IP interface.

NOTE: IPv6 IES IP interfaces on access-uplink SAPs is supported only on 7210 SAS-M in access-uplink mode.

IPv4 and IPv6 route table lookup entries are shared. Before adding routes for IPv6 destinations, route entries in the routed lookup table needs to be allocated for IPv6 addresses. This can be done using the CLI command config> system> resource-profile> max-ipv6-routes. This command allocates route entries for /64 IPv6 prefix route lookups. The system does not allocate any IPv6 route entries by default and user needs to allocate some resources before using IPv6. For the command to take effect the node must be rebooted after making the change. For more information, see the example below and the 7210 SAS Basic System Configuration Guide.

A separate route table is used for IPv6 /128-bit prefix route lookup. A limited amount of IPv6 /128 prefixes route lookup entries is supported. The software enables lookups in this table by default (in other words no user configuration is required to enable Ipv6 /128-bit route lookup).

NOTE: IPv6 interfaces are allowed to be created without allocating IPv6 route entries.

NOTE: IPv6 is not supported for IES IP interfaces associated with access SAPs.

Following features and restrictions is applicable for IPv6 IES IP interfaces:

- IPv6 interfaces supports only static routing.
- Only port-based ingress QoS policies are supported.
- IPv6 filter policies can be used on SAP ingress and egress.
- Routing protocols, such as OSPFv3, and others are not supported.
- A limited amount of IPv6 /128 prefixes route lookup entries is supported on 7210 SAS-M.
- VRRP is not supported.

VRRP support for IES IP interfaces

NOTE: VRRP for IPv4 is supported for IES IP interfaces in network mode only. VRRP is not supported in access-uplink mode. VRRP for IPv6 is not supported.
The Virtual Router Redundancy Protocol (VRRP) for IPv4 is defined in the IETF RFC 3768, Virtual Router Redundancy Protocol. VRRP describes a method of implementing a redundant IP interface shared between two or more routers on a common LAN segment, allowing a group of routers to function as one virtual router. When this IP interface is specified as a default gateway on hosts directly attached to this LAN, the routers sharing the IP interface prevent a single point of failure by limiting access to this gateway address. For more information on use of VRRP, see the “7210 SAS Router Configuration User Guide”.
Configuring an IES Service with CLI

This section provides information to configure IES services using the command line interface.

Topics in this section include:

- Basic Configuration on page 508
- Common Configuration Tasks on page 510
 - Configuring IES Components on page 511
 - Configuring an IES Service on page 511
 - Configuring IES Interface Parameters on page 512
 - Configuring SAP Parameters on page 513
 - Configuring VRRP on page 513
- Service Management Tasks on page 514
 - Modifying IES Service Parameters on page 514
 - Deleting an IES Service on page 515
 - Disabling an IES Service on page 516
 - Re-Enabling an IES Service on page 516
Basic Configuration

The most basic IES service configuration has the following entities:

- Customer ID (refer to Configuring Customers on page 68)
- An interface to create and maintain IP routing interfaces within IES service ID.
- A SAP on the interface specifying the access port and encapsulation values.

The following example displays a sample configuration of an IES service on ALA-48 on an access-uplink SAP (applicable for access-uplink mode only).

*A:ALA-48>config>service# info
--
ies 1000 customer 50 create
description "to internet"
interface "to-web" create
 address 10.1.1.1/24
 sap 1/1/5:0.* create
 exit
exit
no shutdown
--
*A:ALA-48>config>service#

The following example displays a basic IES service configuration for IPv6, along with the use of max-ipv6-routes in 7210 SAS-M access-uplink mode:

The following displays an example of allocation of IPv6 routes on the node:

*A:7210SAS>config>system>res-prof# info
--
max-ipv6-routes 1000
--

NOTE: the node must be rebooted after the above change.

*A:ALA-50>config>service# info
--
ies 1000 customer 50 vpn 1000 create
description "to inband-mgmt"
interface "to-mgmt" create
ipv6
 address 10::1/24
 sap 1/1/10:10.* create
 exit
 exit
no shutdown
--
*A:ALA-50>config>service#

The following example displays a sample configuration of an IES service on ALA-50.

*A:ALA-50>config>service# info
--
ies 1000 customer 50 vpn 1000 create
description "to internet"
interface "to-web" create
 address 10.1.1.1/24
 sap 1/1/10:100 create
 exit
exit
no shutdown

A:ALA-50>config>service#
Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure IES services and provides the CLI commands.

1. Associate an IES service with a customer ID.
2. Associate customer ID with the service.
3. Assign an IP address.
4. Create an interface.
5. Define SAP parameters on the interface
 → Select node(s) and port(s).
 → Optional — select filter policies (configured in the `config>filter` context).
6. Enable service.
Configuring IES Components

Use the CLI syntax to configure the following entities:

- Configuring an IES Service on page 511
- Configuring IES Interface Parameters on page 512
 -> Configuring SAP Parameters on page 513
 -> Configuring VRRP on page 513

Configuring an IES Service

Use the following CLI syntax to create an IES service:

The following example displays a basic IES service configuration.

A:ALA-48>config>service#
--
... ies 1001 customer 1730 create
description "to-internet"
no shutdown
exit
--
A:ALA-48>config>service#
Configuring IES Interface Parameters

in network mode:

```
*A:7210-SAS>config>service>ies>if# info
----------------------------------------------
  arp-timeout 10000
  allow-directed-broadcasts
  icmp
    ttl-expired 120 38
  exit
  arp-populate
  ip-mtu 1000
  host-connectivity-verify interval 500 timeout 50 retry-count 15
  delayed-enable 150
  bfd 150 receive 300 multiplier 15 echo-receive 3000
  local-proxy-arp
  remote-proxy-arp
  loopback
*A:7210-SAS>config>service>ies>if#
----------------------------------------------
```

The following example displays an IES configuration with interface parameters in access-uplink mode:

```
*A:7210-SAS>config>service>ies>if# info
----------------------------------------------
  arp-timeout 10000
  allow-directed-broadcasts
  icmp
    ttl-expired 120 38
  exit
  ip-mtu 1000
----------------------------------------------
*A:7210-SAS>config>service>ies>if#
```
Configuring SAP Parameters

A SAP is a combination of a port and encapsulation parameters which identifies the service access point on the interface and within the router. Each SAP must be unique within a router.

When configuring IES access SAP parameters, a default QoS policy is applied to each SAP ingress. Additional QoS policies must be configured in the config>qos context. Filter policies are configured in the config>filter context and must be explicitly applied to a SAP. There are no default filter policies.

This example displays an IES SAP configuration.

```
A:ALA-A>config>service>ies>if# info
----------------------------------------------
address 10.10.36.2/24
sap 1/1/3:100 create
  ingress
  qos 101
  exit
exit
----------------------------------------------
A:ALA-A>config>service>ies>if#
```

Configuring VRRP

Configuring VRRP parameters on an IES interface is optional and is available only in network mode and is not supported in access-uplink mode. VRRP can be configured in either an owner or non-owner mode. The owner is the VRRP router whose virtual router IP address is the same as the real interface IP address. This is the router that responds to packets addressed to one of the IP addresses for ICMP pings, TCP connections and related addresses. All other virtual router instances participating in this message domain should have the same VRID configured and cannot be configured as an owner.

The following example displays the IES configuration:

```
A:ALA-A>config>service>ies>if# info
----------------------------------------------
address 10.10.36.2/24
vrrp 2 owner
  backup 10.10.36.2
  authentication-type password
  authentication-key "3WErEDozyQ" hash
  exit
exit
----------------------------------------------
A:ALA-A>config>service#
```
Service Management Tasks

This section discusses the following service management tasks:

- Modifying IES Service Parameters on page 514
- Deleting an IES Service on page 515

Modifying IES Service Parameters

Existing IES service parameters in the CLI or NMS can be modified, added, removed, enabled or disabled. The changes are applied immediately to all services when the charges are applied.

To display a list of customer IDs, use the `show service customer` command.
Enter the parameter(s) (such as description SAP information) and then enter the new information.

The following displays the modified service:

```plaintext
*A:ALA-A>config>service>ies# info
----------------------------------------------
ies 1000 customer 50 create
description "This is a new description"
interface "to-web" create
    address 10.1.1.1/24
    mac 00:dc:98:1d:00:00
    sap 1/1/5:0.* create
    exit
    exit
    no shutdown
    exit
----------------------------------------------
*A:ALA-A>config>service#```

Deleting an IES Service

An IES service cannot be deleted until SAPs and interfaces are shut down and deleted and the service is shutdown on the service level.

Use the following CLI syntax to delete an IES service:

**CLI Syntax:**

```
config>service#
 [no] ies service-id
 shutdown
 [no] interface ip-int-name
 shutdown
 [no] sap sap-id
 shutdown
```
Disabling an IES Service

An IES service can be shut down without deleting the service parameters.

**CLI Syntax:**
```
config>service> ies service-id
 shutdown
```

Re-Enabling an IES Service

To re-enable an IES service that was shut down.

**CLI Syntax:**
```
config>service> ies service-id
 [no] shutdown
```

**Example:**
```
config>service# ies 2000
config>service>ies# no shutdown
config>service>ies# exit
```
IES Services Command Reference

Command Hierarchies

- Global Commands (applicable for both network mode and access-uplink mode) on page 517
- Interface Commands (applicable for network mode) on page 517
- Routed VPLS Commands (applicable for access-uplink mode) on page 518
- VRRP Commands (applicable only for network mode) on page 521
- Interface SAP Commands for 7210 SAS-E on page 286
- Show Commands on page 523

Global Commands (applicable for both network mode and access-uplink mode)

```
config
 — service
 — ies service-id [customer customer-id]
 — no ies service-id
 — description description-string
 — no description
 — interface
 — no interface
 — service-name service-name
 — no service-name
 — [no] shutdown
```

Interface Commands (applicable for network mode)

```
config
 — service
 — ies service-id [customer customer-id] [create]
 — [no] interface ip-int-name [create]
 — address {ip-address/mask | ip-address netmask}
 — no address
 — arp-timeout seconds
 — no arp-timeout
 — bfd transmit-interval [receive receive-interval] [multiplier multiplier] [echo-receive echo-interval]
```
IES Services Command Reference

— no bfd
— description description-string
— no description
— iemp
  — redirects [number seconds]
  — no redirects
  — ttl-expired [number seconds]
  — no ttl-expired
  — unreachables [number seconds]
  — no unreachables
— [no] loopback
— [no] ieee-address
— [no] sap sap-id [create]
— [no] shutdown
— [no] static-arp ip-address [ieee-address]
— [no] vrrp virtual-router-id

Routed VPLS Commands (applicable for access-uplink mode)

Note: These commands are supported only in Access-Uplink mode.

config
  — service
    — ies service-id [customer customer-id] [vpn vpn-id]
    — interface ip-interface-name [create]
    — no interface-interface-name
    — vpls service-name
    — no vpls
      — ingress
        — v4-routed-overide-filter ip-filter-id
        — no v4-routed-overide-filter
Interface SAP Commands (applicable for network mode)

```
config
 — service
 — ies service-id [customer customer-id] [vpn vpn-id][create]
 — [no] interface ip-int-name
 — [no] sap sap-id [create]
 — accounting-policy acct-policy-id
 — no accounting-policy
 — collect-stats
 — no collect-stats
 — description description-string
 — no description
 — egress
 — filter [ip ip-filter-id] [ipv6 ipv6-filter-id]
 — no filter
 — ingress
 — [no] aggregate-meter-rate rate-in-kbps [burst burst-in-kbits]
 — filter [ip ip-filter-id] [ipv6 ipv6-filter-id]
 — no filter
 — [no] qos policy-id statistics
 — egress
 — [no] forwarded-count ingress
 — counter-mode {packet | octet}
 — [no] received-count
 — [no] tod-suite tod-suite-name
 — [no] shutdown
```
Interface commands (applicable for access-uplink mode)

```plaintext
config
 — service
 — ies service-id [customer customer-id]
 — interface
 — [no] interface ip-int-name
 — address {[ip-address/netmask]} [broadcast all-ones|host-ones]
 — no address
 — arp-timeout seconds
 — no arp-timeout
 — allow-directed-broadcasts
 — no allow-directed-broadcasts
 — description long description-string
 — no description
 — icmp
 — redirects [number seconds]
 — no redirects
 — ttl-expired [number seconds]
 — no ttl-expired
 — unreachable [number seconds]
 — no unreachable
 — mask-reply
 — no mask-reply
 — ip-mtu octets
 — no ip-mtu
 — [no] ipv6
 — [no] loopback
 — [no] ieee-address
 — [no] sap sap-id [create]
 — [no] shutdown
 — [no] static-arp ip-address [ieee-address]
```

Interface SAP commands (applicable for access-uplink mode)

```plaintext
config
 — service
 — ies service-id [customer customer-id] [vpn vpn-id]
 — [no] interface ip-int-name
 — [no] sap sap-id
 — description description-string
 — no description
 — egress
 — [no] filter [ip ip-filter-id]
 — [no] filter [ipv6 ip-filter-id]
 — ingress
 — [no] aggregate-meter-rate rate-in-kbps [burst burst-in-kbits]
 — [no] filter [ip ip-filter-id]
 — [no] filter [ipv6 ip-filter-id]
 — [no] qos policy-id
 — [no] shutdown
```
VRRP Commands (applicable only for network mode)

```plaintext
config
 service
 ies service-id [customer customer-id] [vpn vpn-id]
 interface ip-int-name
 vrrp virtual-router-id [owner]
 no vrrp virtual-router-id
 authentication-key {authentication-key | hash-key} [hash | hash2]
 no authentication-key
 [no] backup ip-address
 [no] init-delay [service-id] interface interface-name dst-ip ip-address
 init-delay seconds
 no init-delay
 mac ieee-address
 no mac
 [no] master-int-inherit
 message-interval {{seconds} {milliseconds milliseconds}}
 no message-interval
 [no] ping-reply
 policy vrrp-policy-id
 no policy
 [no] preempt
 priority priority
 no priority
 [no] shutdown
 [no] ssh-reply
 [no] standby-forwarding
 [no] telnet-reply
 [no] traceroute-reply
```
Interface IPv6 commands (supported only for access-uplink SAPs)

```
 config
 -- service
 -- ies service-id [customer customer-id] [create]
 -- [no] interface ip-int-name [create]
 -- ipv6
 -- no ipv6
 -- [no] address ipv6-address/prefix-length [eui-64] [preferred]
 -- icmp6
 -- [no] packet-too-big number seconds
 -- [no] param-problem number seconds
 -- [no] redirects number seconds
 -- [no] time-exceeded number seconds
 -- [no] unreachables number seconds
 -- [no] link-local-address ipv6-address [preferred]
 -- [no] local-proxy-nd
 -- [no] neighbor ipv6-address mac-address
 -- [no] proxy-nd-policy policy-name [policy-name...(upto 5 max)]
```
Show Commands

show
  — service
    — customer [customer-id] [site customer-site-name]
    — sap-using [sap sap-id]
    — sap-using interface [ip-address | ip-int-name]
    — sap-using [ingress | egress] filter filter-id
    — sap-using [ingress] qos-policy qos-policy-id
    — service-using [ies] [customer customer-id]
    — id service-id
      — all
        — arp [ip-address][mac ieee-address][sap sap-id][interface ip-int-name]
        — base
        — interface [ip-address | ip-int-name] [detail]
IES Service Configuration Commands

Generic Commands

shutdown

Syntax: [no] shutdown

Context: config>service>ies
config>service>ies>if

Description: This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics. The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Services are created in the administratively down (shutdown) state. When a no shutdown command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities is described below in Special Cases.

The no form of this command places the entity into an administratively enabled state.

Special Cases

IES — The default administrative status of an IES service is down. While the service is down, all its associated virtual router interfaces will be operationally down. The administrative state of the service is not reflected in the administrative state of the virtual router interface.

For example if:
1) An IES service is operational and an associated interface is shut down.
2) The IES service is administratively shutdown and brought back up.
3) The interface shutdown will remain in administrative shutdown state.

A service is regarded as operational provided that one IP Interface is operational.

IES IP Interfaces — When the IP interface is shutdown, it enters the administratively and operationally down states. For a SAP bound to the IP interface, no packets are transmitted out the SAP and all packets received on the SAP will be dropped while incrementing the packet discard counter.

description

Syntax: description long description-string
no description

Context: config>service>ies

Description: This command creates a text description stored in the configuration file for a configuration context. The description command associates a text string with a configuration context to help identify the content in the configuration file.

The no form of this command removes the string from the configuration.
<table>
<thead>
<tr>
<th>Default</th>
<th>No description associated with the configuration context.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td><em>string</em> — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.</td>
</tr>
</tbody>
</table>
### IES Global Commands

#### ies

**Syntax**

```
ies service-id customer customer-id [create]
no ies service-id
```

**Context**

`config>service`

**Description**

This command creates or edits an IES service instance.

The `ies` command is used to create or maintain an Internet Enhanced Service (IES). If the `service-id` does not exist, a context for the service is created. If the `service-id` exists, the context for editing the service is entered.

IP interfaces defined within the context of an IES service ID must have a SAP created.

When a service is created, the `customer` keyword and `customer-id` must be specified and associates the service with a customer. The `customer-id` must already exist having been created using the `customer` command in the service context. Once a service has been created with a customer association, it is not possible to edit the customer association. The service must be deleted and recreated with a new customer association.

Once a service is created, the use of the `customer customer-id` is optional for navigating into the service configuration context. Attempting to edit a service with the incorrect `customer-id` specified will result in an error.

More than one IP interface may be created within a single IES service ID.

By default, no IES service instances exist until they are explicitly created.

The `no` form of this command deletes the IES service instance with the specified `service-id`. The service cannot be deleted until all the IP interfaces defined within the service ID have been shutdown and deleted.

**Parameters**

- `service-id` — The unique service identification number or string identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The `service-id` must be the same number used for every 7750 SR, 7450 ESS and 7710 SR on which this service is defined.

  **Values**

  | service-id: | 1 — 2147483648 |

- `customer customer-id` — Specifies the customer ID number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.

  **Values**

  | 1 — 2147483647 |

---

#### service-name

**Syntax**

```
service-name service-name
no service-name
```
IES Global Commands

<table>
<thead>
<tr>
<th>Context</th>
<th>config&gt;service&gt;ies</th>
</tr>
</thead>
</table>
| Description | This command configures an optional service name, up to 64 characters in length, which adds a name identifier to a given service to then use that service name in configuration references as well as display and use service names in show commands throughout the system. This helps the service provider/administrator to identify and manage services within the 7750 SR, 7450 ESS and 7710 SR platforms.

All services are required to assign a service ID to initially create a service. However, either the service ID or the service name can be used to identify and reference a given service once it is initially created. |
| Parameters | service-name — Specifies a unique service name to identify the service. Service names may not begin with an integer (0-9). |
IES Interface IPv6 Commands

ipv6

**Syntax**

```
[no] ipv6
```

**Context**

config>service>ies>if

**Description**

This command enables the context to configure IPv6 for an IES interface.

address

**Syntax**

```
address ipv6-address/prefix-length [eui-64]
no address ipv6-address/prefix-length
```

**Context**

config>service>ies>if>ipv6

**Description**

This command assigns an IPv6 address to the IES interface.

**Parameters**

`ipv6-address/prefix-length` — Specify the IPv6 address on the interface.

- **Values**
  - `ipv6-address/prefix: ipv6-address x:x:x:x:x:x:x (eight 16-bit pieces)`
  - `x:x:x:x:x:x:d.d.d`
  - `x [0 — FFFF]H`
  - `d [0 — 255]D`
  - `prefix-length 1 — 128`

  `eui-64` — When the `eui-64` keyword is specified, a complete IPv6 address from the supplied prefix and 64-bit interface identifier is formed. The 64-bit interface identifier is derived from MAC address on Ethernet interfaces. For interfaces without a MAC address, for example ATM interfaces, the Base MAC address of the chassis is used.

icmp6

**Syntax**

```
icmp6
```

**Context**

config>service>ies>if>ipv6

**Description**

This command configures ICMPv6 parameters for the IES interface.

packet-too-big

**Syntax**

```
packet-too-big [number seconds]
no packet-too-big
```

**Context**

config>service>ies>if>ipv6>icmp6
IES Global Commands

**Description**
This command specifies whether “packet-too-big” ICMPv6 messages should be sent. When enabled, ICMPv6 “packet-too-big” messages are generated by this interface.

The no form of the command disables the sending of ICMPv6 “packet-too-big” messages.

**Default**
100 10

**Parameters**
- **number** — Specifies the number of “packet-too-big” ICMPv6 messages to send in the time frame specified by the seconds parameter.
  - **Values**
    - 10 — 1000
  - **Default**
    - 100

- **seconds** — Specifies the time frame in seconds that is used to limit the number of “packet-too-big” ICMPv6 messages issued.
  - **Values**
    - 1 — 60
  - **Default**
    - 10

---

**param-problem**

**Syntax**
```shell
param-problem [number seconds]
no packet-too-big
```

**Context**
config>service>ies>if>ipv6>icmp6

**Description**
This command specifies whether “parameter-problem” ICMPv6 messages should be sent. When enabled, “parameter-problem” ICMPv6 messages are generated by this interface.

The no form of the command disables the sending of “parameter-problem” ICMPv6 messages.

**Default**
100 10

- **number** — Specifies the number of “parameter-problem” ICMPv6 messages to send in the time frame specified by the seconds parameter.
  - **Values**
    - 10 — 1000
  - **Default**
    - 100

- **seconds** — Specifies the time frame in seconds that is used to limit the number of “parameter-problem” ICMPv6 messages issued.
  - **Values**
    - 1 — 60
  - **Default**
    - 10

---

**redirects**

**Syntax**
```shell
redirects [number seconds]
no redirects
```

**Context**
config>service>ies>if>ipv6>icmp6
IES Service Configuration Commands

**Description**
This command configures ICMPv6 redirect messages. When enabled, ICMPv6 redirects are generated when routes are not optimal on this router and another router on the same subnetwork has a better route in order to alert that node that a better route is available. When disabled, ICMPv6 redirects are not generated.

**Default**
100 10

- **number** — Specifies the number of version 6 redirects are to be issued in the time frame specified by the `seconds` parameter.
  - **Values**
    - 10 — 1000
  - **Default**
    - 100
- **seconds** — Specifies the time frame in seconds that is used to limit the number of version 6 redirects issued.
  - **Values**
    - 1 — 60
  - **Default**
    - 10

### time-exceeded

**Syntax**
time-exceeded [number seconds]
no time-exceeded

**Context**
config>service>ies>if>ipv6>icmp6

**Description**
This command specifies whether “time-exceeded” ICMPv6 messages should be sent. When enabled, ICMPv6 “time-exceeded” messages are generated by this interface. When disabled, ICMPv6 “time-exceeded” messages are not sent.

**Default**
100 10

- **number** — Specifies the number of “time-exceeded” ICMPv6 messages are to be issued in the time frame specified by the `seconds` parameter.
  - **Values**
    - 10 — 1000
  - **Default**
    - 100
- **seconds** — Specifies the time frame in seconds that is used to limit the number of “time-exceeded” ICMPv6 message to be issued.
  - **Values**
    - 1 — 60
  - **Default**
    - 10

### unreachable

**Syntax**
unreachables [number seconds]
no unreachables

**Context**
config>service>ies>if>ipv6>icmp6
IES Global Commands

**Description**

This command specifies that ICMPv6 host and network unreachable messages are generated by this interface.

When disabled, ICMPv6 host and network unreachable messages are not sent.

**Default**

100 10

- **number** — Specifies the number of destination unreachable ICMPv6 messages are issued in the time frame specified by the **seconds** parameter.
  
  **Values**
  
  10 — 1000
  
  **Default**
  
  100

- **seconds** — Specifies the time frame in seconds that is used to limit the number of destination unreachable ICMPv6 messages to be issued.
  
  **Values**
  
  1 — 60
  
  **Default**
  
  10

**link-local-address**

**Syntax**

```
link-local-address ipv6-address [preferred]
```

```
no link-local-address
```

**Context**

```
config>service>ies>if>ipv6
```

**Description**

This command configures the IPv6 link local address.

**local-proxy-nd**

**Syntax**

```
[no] local-proxy-nd
```

**Context**

```
config>service>ies>if>ipv6
```

**Description**

This command enables local proxy neighbor discovery on the interface.

The **no** form of the command disables local proxy neighbor discovery.

**proxy-nd-policy**

**Syntax**

```
proxy-nd-policy policy-name [policy-name...(up to 5 max)]
```

```
no proxy-nd-policy
```

**Context**

```
config>service>ies>if>ipv6
```

**Description**

This command applies a proxy neighbor discovery policy for the interface.

**Parameters**

- **policy-name** — Specifies an existing neighbor discovery policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains
special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. The specified policy name(s) must already be defined.

neighbor

**Syntax**

neighbor ipv6-address mac-address  
no neighbor ipv6-address

**Context**

config>service>ies>if>ipv6

**Description**

This command configures IPv6-to-MAC address mapping on the IES interface.

**Default**

none

**Parameters**

*ipv6-address* — The IPv6 address of the interface for which to display information.

**Values**

x:x:x:x:x:x:x:x  (eight 16-bit pieces)  
x:x:x:x:d.d.d  
x: [0 — FFFF]H  
d: [0 — 255]D  
prefix-length [1..128]

*mac-address* — Specifies the 48-bit MAC address for the IPv6-to-MAC address mapping in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee and ff are hexadecimal numbers. Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.
IES Interface Commands

interface

**Syntax**

- `interface ip-int-name`
- `no interface ip-int-name`

**Context**

`config>service>ies`

**Description**

This command creates a logical IP routing interface for an Internet Enhanced Service (IES). Once created, attributes like an IP address and service access point (SAP) can be associated with the IP interface.

The `interface` command, under the context of services, is used to create and maintain IP routing interfaces within IES service IDs. The `interface` command can be executed in the context of an IES service ID. The IP interface created is associated with the service core network routing instance and default routing.

Interface names are case sensitive and must be unique within the group of defined IP interfaces defined for `config service ies interface` (that is, the network core router instance). Interface names must not be in the dotted decimal notation of an IP address. For example, the name “1.1.1.1” is not allowed, but “int-1.1.1.1” is allowed. Show commands for router interfaces use either interface names or the IP addresses. Use unique IP address values and IP address names to maintain clarity. It could be unclear to the user if the same IP address and IP address name values are used. Although not recommended, duplicate interface names can exist in different router instances.

When a new name is entered, a new logical router interface is created. When an existing interface name is entered, the user enters the router interface context for editing and configuration.

By default, there are no default IP interface names defined within the system. All IES IP interfaces must be explicitly defined. Interfaces are created in an enabled state.

The `no` form of this command removes IP the interface and all the associated configuration. The interface must be administratively shutdown before issuing the `no interface` command.

For IES services, the IP interface must be shutdown before the SAP on that interface may be removed.

**Parameters**

`ip-int-name` — Specifies the name of the IP interface. Interface names must be unique within the group of defined IP interfaces for `config router interface` and `config service ies interface` commands. An interface name cannot be in the form of an IP address. Interface names can be from 1 to 32 alphanumeric characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

If `ip-int-name` already exists within the service ID, the context will be changed to maintain that IP interface. If `ip-int-name` already exists within another service ID, an error will occur and context will not be changed to that IP interface. If `ip-int-name` does not exist, the interface is created and context is changed to that interface for further command processing.
IES Interface Commands

**address**

**Syntax**

```plaintext
address {ip-address/mask | ip-address netmask}
address ip-address mask
no address
```

**Context**

```plaintext
config>service>ies>if
```

**Description**

This command assigns an IP address and subnet, to an IES IP router interface. Only one IP address can be associated with an IP interface. An IP address must be assigned to each IES IP interface. An IP address and a mask are used together to create a local IP prefix. The defined IP prefix must be unique within the context of the routing instance. It cannot overlap with other existing IP prefixes defined as local subnets on other IP interfaces in the same routing context within the 7210 SAS.

The IP address for the interface can be entered in either CIDR (Classless Inter-Domain Routing) or traditional dotted decimal notation. The show commands display CIDR notation and is stored in configuration files.

By default, no IP address or subnet association exists on an IP interface until it is explicitly created. Use the `no` form of this command to remove the IP address assignment from the IP interface. When the `no address` command is entered, the interface becomes operationally down.

<table>
<thead>
<tr>
<th>Address</th>
<th>Admin state</th>
<th>Oper state</th>
</tr>
</thead>
<tbody>
<tr>
<td>No address</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>No address</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>down</td>
<td>down</td>
</tr>
</tbody>
</table>

The operational state is a read-only variable and the only controlling variables are the address and admin states. The address and admin states are independent and can be set independently. If an interface is in an administratively up state and an address is assigned, it becomes operationally up.

**ip-address** — The IP address of the IP interface. The `ip-address` portion of the `address` command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation. Allowed values are IP addresses in the range 1.0.0.0 – 223.255.255.255 (with support of /31 subnets).

**/** — The forward slash is a parameter delimiter and separates the `ip-address` portion of the IP address from the mask that defines the scope of the local subnet. No spaces are allowed between the `ip-address`, the “/” and the `mask-length` parameter. If a forward slash is not immediately following the `ip-address`, a dotted decimal mask must follow the prefix.

**mask-length** — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the `ip-address` from the `mask-length` parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address. Allowed values are integers in the range 0 – 30. Note that a mask length of 32 is reserved for system IP addresses.

**mask** — The subnet mask in dotted decimal notation. When the IP prefix is not specified in CIDR notation, a space separates the `ip-address` from a traditional dotted decimal mask. The `mask`
IES Service Configuration Commands

parameter indicates the complete mask that will be used in a logical ‘AND’ function to derive the local subnet of the IP address. Allowed values are dotted decimal addresses in the range 128.0.0.0 – 255.255.255.252. Note that a mask of 255.255.255.255 is reserved for system IP addresses.

arp-timeout

Syntax

arp-timeout seconds
go arp-timeout

Context

config>service>ies>if

Description

This command configures the minimum time in seconds an ARP entry learned on the IP interface will be stored in the ARP table. ARP entries are automatically refreshed when an ARP request or gratuitous ARP is seen from an IP host, otherwise, the ARP entry is aged from the ARP table. If arp-timeout is set to a value of zero seconds, ARP aging is disabled. The no form of this command restores arp-timeout to the default value.

Default

14400 seconds

Parameters

seconds — The minimum number of seconds a learned ARP entry will be stored in the ARP table, expressed as a decimal integer. A value of zero specifies that the timer is inoperative and learned ARP entries will not be aged.

Values

0 — 65535

allow-directed-broadcasts

Syntax

[no] allow-directed-broadcasts

Context

config>service>ies>if

Description

This command enables the forwarding of directed broadcasts out of the IP interface. A directed broadcast is a packet received on a local router interface destined for the subnet broadcast address on another IP interface. The allow-directed-broadcasts command on an IP interface enables or disables the transmission of packets destined to the subnet broadcast address of the egress IP interface.

When enabled, a frame destined to the local subnet on this IP interface will be sent as a subnet broadcast out this interface. Care should be exercised when allowing directed broadcasts as it is a well-known mechanism used for denial-of-service attacks.

When disabled, directed broadcast packets discarded at this egress IP interface will be counted in the normal discard counters for the egress SAP.

By default, directed broadcasts are not allowed and will be discarded at this egress IP interface.

The no form of this command disables the forwarding of directed broadcasts out of the IP interface.

Default

no allow-directed-broadcasts — Directed broadcasts are dropped.
IES Interface Commands

**delayed-enable**

**Syntax**

```markdown
delayed-enable seconds [init-only]
```

**no delayed-enable**

**Context**

`config>service>ies>if`

**Description**

This command delays making interface operational by the specified number of seconds. In environments with many subscribers, it can take time to synchronize the subscriber state between peers when the subscriber-interface is enabled (perhaps, after a reboot). To ensure that the state has time to be synchronized, the delayed-enable timer can be specified. The optional parameter init-only can be added to use this timer only after a reboot.

**Default**

`no delayed-enable`

**Parameters**

- `seconds` — Specifies the number of seconds to delay before the interface is operational.

  **Values**

  1 — 1200

**ip-mtu**

**Syntax**

```markdown
ip-mtu octets
```

**no ip-mtu**

**Context**

`config>service>ies>if`

**Description**

This command configures the maximum IP transmit unit (packet) for the interface. The MTU that is advertised from the IES size is:

\[
\text{MINIMUM}((SdpOperPathMtu - EtherHeaderSize), (Configured ip-mtu))
\]

By default (for Ethernet network interface) if no ip-mtu is configured, the packet size is \((1568 - 14) = 1554\).

The **no** form of the command returns the default value.

**Default**

`no ip-mtu`

**Parameters**

- `octets` — Specifies the number of octets in the IP-MTU.

  **Values**

  512 — 9000

**loopback**

**Syntax**

```markdown
[no] loopback
```

**Context**

`config>service>ies>if`

**Description**

This command specifies that the associated interface is a loopback interface that has no associated physical interface. As a result, the associated IES interface cannot be bound to a SAP.

Note that you can configure an IES interface as a loopback interface by issuing the loopback command.
command instead of the **sap** command. The loopback flag cannot be set on an interface where a SAP is already defined and a SAP cannot be defined on a loopback interface.

**Default**  
none

---

### static-arp

**Syntax**  
```plaintext
static-arp ip-address ieee-mac-address
no static-arp ip-address
```

**Context**  
```plaintext
config>service>ies>if
```

**Description**  
This command configures a static address resolution protocol (ARP) entry associating a subscriber IP address with a MAC address for the core router instance. This static ARP appears in the core routing ARP table. A static ARP can only be configured if it exists on the network attached to the IP interface.

If an entry for a particular IP address already exists and a new MAC address is configured for the IP address, the existing MAC address will be replaced with the new MAC address.

The **no** form of the command removes a static ARP entry.

**Default**  
None

**Parameters**  
- **ip-address** — Specifies the IP address for the static ARP in IP address dotted decimal notation.
- **ieee-mac-address** — Specifies the 48-bit MAC address for the static ARP in the form `aa:bb:cc:dd:ee:ff` or `aa-bb-cc-dd-ee-ff` where `aa`, `bb`, `cc`, `dd`, `ee` and `ff` are hexadecimal numbers. Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.

---

### vpls

**Syntax**  
```plaintext
vpls service-name
```

**Context**  
```plaintext
config>service
config>service>ies>if
```

**Description**  
The **vpls** command, within the IP interface context, is used to bind the IP interface to the specified service name.

The system does not attempt to resolve the service name provided until the IP interface is placed into the administratively up state (no shutdown). Once the IP interface is administratively up, the system scans the available VPLS services that have the allow-ip-int-binding flag set for a VPLS service associated with the name. If the service name is bound to the service name when the IP interface is already in the administratively up state, the system will immediately attempt to resolve the given name.

If a VPLS service is found associated with the name and with the allow-ip-int-binding flag set, the IP interface will be attached to the VPLS service allowing routing to and from the service virtual ports once the IP interface is operational.
A VPLS service associated with the specified name that does not have the allow-ip-int-binding flag set or a non-VPLS service associated with the name will be ignored and will not be attached to the IP interface.

If the service name is applied to a VPLS service after the service name is bound to an IP interface and the VPLS service allow-ip-int-binding flag is set at the time the name is applied, the VPLS service is automatically resolved to the IP interface if the interface is administratively up or when the interface is placed in the administratively up state.

If the service name is applied to a VPLS service without the allow-ip-int-binding flag set, the system does not attempt to resolve the applied service name to an existing IP interface bound to the name. To rectify this condition, the flag must first be set and then the IP interface must enter or reenter the administratively up state.

While the specified service name may be assigned to only one service context in the system, it is possible to bind the same service name to more than one IP interface. If two or more IP interfaces are bound to the same service name, the first IP interface to enter the administratively up state (if currently administratively down) or to reenter the administratively up state (if currently administratively up) when a VPLS service is configured with the name and has the allow-ip-intbinding flag set will be attached to the VPLS service. Only one IP interface is allowed to attach to a VPLS service context. No error is generated for the remaining non-attached IP interfaces using the service name.

Once an IP interface is attached to a VPLS service, the name associated with the service cannot be removed or changed until the IP interface name binding is removed. Also, the allow-ip-int-binding flag cannot be removed until the attached IP interface is unbound from the service name. Unbinding the service name from the IP interface causes the IP interface to detach from the VPLS service context. The IP interface may then be bound to another service name or a SAP or SDP binding may be created for the interface using the sap or spoke-sdp commands on the interface.

Default
none

Parameters

service-name — The service-name parameter is required when using the IP interface vpls command and specifies the service name that the system will attempt to resolve to an allow-ip-int-binding enabled VPLS service associated with the name. The specified name is expressed as an ASCII string comprised of up to 32 characters. It does not need to already be associated with a service and the system does not check to ensure that multiple IP interfaces are not bound to the same name.

**ingress**

**Syntax**

```
ingress
```

**Context**

```
config>service>ies>if>vpls
```

**Description**

The ingress node in this context under the vpls binding is used to define the routed ip-filter-id optional filter overrides.

**v4-routed-override-filter**

**Syntax**

```
v4-routed-override-filter ip-filter-id
```

Page 540  7210-SAS M Services Guide
no v4-routed-override-filter

Context config>service>ies>if>vpls>ingress

Description The v4-routed-override-filter command is used to specify an IP filter ID that is applied to all ingress packets entering the VPLS service. The filter overrides any existing ingress IP filter applied to SAPs or SDP bindings for packets associated with the routing IP interface. The override filter is optional and when it is not defined or it is removed, the IP routed packets uses the any existing ingress IP filter on the VPLS virtual port.

The no form of the command is used to remove the IP routed override filter from the ingress IP interface. When removed, the IP ingress routed packets within a VPLS service attached to the IP interface uses the IP ingress filter applied to the packets virtual port when defined.

Default none

Parameters ip-filter-id — Specifies the ID for the IP filter policy. Allowed values are an integer in the range of 1 and 65535 that corresponds to a previously created IP filter policy in the configure>filter>ip-filter context.

Values 1 — 65535
IES Interface Commands

IES Interface ICMP Commands

icmp

<table>
<thead>
<tr>
<th>Syntax</th>
<th>icmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;service&gt;ies&gt;if</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables the context to configure Internet Control Message Protocol (ICMP) parameters on an IES service</td>
</tr>
</tbody>
</table>

mask-reply

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] mask-reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;service&gt;ies&gt;if&gt;icmp</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables responses to Internet Control Message Protocol (ICMP) mask requests on the router interface. If a local node sends an ICMP mask request to the router interface, the mask-reply command configures the router interface to reply to the request. By default, the router instance will reply to mask requests. The no form of this command disables replies to ICMP mask requests on the router interface.</td>
</tr>
<tr>
<td>Default</td>
<td>mask-reply — Reply to ICMP mask requests.</td>
</tr>
</tbody>
</table>

redirects

<table>
<thead>
<tr>
<th>Syntax</th>
<th>redirects [number seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;service&gt;ies&gt;if&gt;icmp</td>
</tr>
<tr>
<td>Description</td>
<td>This command configures the rate for Internet Control Message Protocol (ICMP) redirect messages issued on the router interface. When routes are not optimal on this router and another router on the same subnetwork has a better route, the router can issue an ICMP redirect to alert the sending node that a better route is available. The redirects command enables the generation of ICMP redirects on the router interface. The rate at which ICMP redirects is issued can be controlled with the optional number and seconds parameters by indicating the maximum number of redirect messages that can be issued on the interface for a given time interval. By default, generation of ICMP redirect messages is enabled at a maximum rate of 100 per 10 second time interval. (Default: redirects 100 10) The no form of this command disables the generation of icmp redirects on the router interface.</td>
</tr>
<tr>
<td>No Syntax</td>
<td>no redirects</td>
</tr>
</tbody>
</table>

\[number\] seconds
IES Service Configuration Commands

Default redirects 100 10 — Maximum of 100 redirect messages in 10 seconds

Parameters

- **number** — The maximum number of ICMP redirect messages to send. This parameter must be specified with the **seconds** parameter.
  - **Values** 10 — 1000

- **seconds** — The time frame in seconds used to limit the **number** of ICMP redirect messages that can be issued.
  - **Values** 1 — 60

**ttl-expired**

**Syntax**

```
ttl-expired number seconds
no ttl-expired
```

**Context**

```
config>service>ies>if>icmp
```

**Description**

This command configures the rate Internet Control Message Protocol (ICMP) TTL expired messages are issued by the IP interface.

By default, generation of ICMP TTL expired messages is enabled at a maximum rate of 100 per 10 second time interval.

The **no** form of this command disables the limiting the rate of TTL expired messages on the router interface.

**Default**

```
ttl-expired 100 10
```

**Parameters**

- **number** — The maximum number of ICMP TTL expired messages to send, expressed as a decimal integer. This parameter must be specified with the **seconds** parameter.
  - **Values** 10 — 1000

- **seconds** — The time frame in seconds used to limit the **number** of ICMP TTL expired messages that can be issued, expressed as a decimal integer.
  - **Values** 1 — 60

**unreachables**

**Syntax**

```
unreachables [number seconds]
no unreachables
```

**Context**

```
config>service>ies>if>icmp
```

**Description**

This command configures the rate for ICMP host and network destination unreachable messages issued on the router interface.

The **unreachables** command enables the generation of ICMP destination unreachables on the router interface. The rate at which ICMP unreachables is issued can be controlled with the optional **number** and **time** parameters by indicating the maximum number of destination unreachable messages which can be issued on the interface for a given time interval.
IES Interface Commands

By default, generation of ICMP destination unreachable messages is enabled at a maximum rate of 10 per 60 second time interval.

The no form of this command disables the generation of icmp destination unreachable messages on the router interface.

**Default**

unreachables 100 10

**Parameters**

number — The maximum number of ICMP unreachable messages to send. This parameter must be specified with the seconds parameter.

**Values**

10 — 1000

seconds — The time frame in seconds used to limit the number of ICMP unreachable messages that can be issued.

**Values**

1 — 60

**hash-label**

**Syntax**

[no] hash-label

**Context**

config>service>ies>if>spoke-sdp

**Description**

This command enables the use of the hash label on a VLL, VPLS, or VPRN service bound to LDP or RSVP SDP as well as to a VPRN service using the autobind mode with the with the ldp, rsvp-te, or mpls options. This feature is not supported on a service bound to a GRE SDP or for a VPRN service using the autobind mode with the gre option.

When this feature is enabled, the ingress data path is modified such that the result of the hash on the packet header is communicated to the egress data path for use as the value of the label field of the hash label. The egress data path appends the hash label at the bottom of the stack (BoS) and sets the S-bit to 1 to indicate that.

In order to allow for applications whereby the egress LER infers the presence of the hash label implicitly from the value of the label, the Most Significant Bit (MSB) of the result of the hash is set before copying into the hash label. This means that the value of the hash label will always be in the range [524,288 — 1,048,575] and will not overlap with the signaled/static LSP and signaled/static service label ranges. This also guarantees that the hash label will not match a value in the reserved label range.

The (unmodified) result of the hash continues to be used for the purpose of ECMP and LAG spraying of packets locally on the ingress LER. Note however that for VLL services, the result of the hash is overwritten and the ECMP and LAG spraying will be based on service-id when ingress SAP shared queuing is not enabled. However, the hash label will still reflect the result of the hash such that an LSR can use it to perform fine grained load balancing of VLL pseudowire packets.

Packets that are generated in CPM and forwarded labeled within the context of a service (for example, OAM packets) must also include a hash label at the BoS and set the S-bit accordingly.

The TTL of the hash label is set to a value of 1.

The no form of this command disables the use of the hash label.

**Default**

no hash-label
IES SAP Commands

sap

Syntax

**sap sap-id [create]**
**no sap sap-id**

Context

config>service>ies>if

Description

This command creates a Service Access Point (SAP) within a service. A SAP is a combination of port and encapsulation parameters which identifies the service access point on the interface and within the router. Each SAP must be unique.

All SAPs must be explicitly created. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object.

Enter an existing SAP without the create keyword to edit SAP parameters. The SAP is owned by the service in which it was created.

A SAP can only be associated with a single service. A SAP can only be defined on a port that has been configured as an access uplink port using the configure port port number ethernet mode access uplink command.

If a port is shutdown, all SAPs on that port become operationally down. When a service is shutdown, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded. The operational state of a SAP is relative to the operational state of the port on which the SAP is defined.

The no form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.

Default

No SAPs are defined.

Special Cases

IES — A SAP is defined within the context of an IP routed interface. Each IP interface is limited to a single SAP definition. Attempts to create a second SAP on an IP interface will fail and generate an error; the original SAP will not be affected.

Parameters

**sap-id** — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

**port-id** — Specifies the physical port ID in the slot/mda/port format.

If the card in the slot has Media Dependent Adapters (MDAs) installed, the port-id must be in the slot_number/MDA_number/port_number format. For example 1/1/1 specifies port 1 on MDA 1 in slot 1.

The port-id must reference a valid port type. The port must be configured as an uplink access port.

**create** — Keyword used to create a SAP instance. The create keyword requirement can be enabled/disabled in the environment>create context.
IES Filter Commands

filter

Syntax

filter ip ip-filter-id

Context

config>service>ies>if>sap>egress
config>service>ies>if>sap>ingress

Description

This command associates a filter policy with an ingress or egress Service Access Point (SAP). Filter policies control the forwarding and dropping of packets based on the matching criteria.

The filter command is used to associate a filter policy with a specified ip-filter-id with an ingress or egress SAP. The filter policy must already be defined before the filter command is executed. If the filter policy does not exist, the operation will fail and an error message returned.

In general, filters applied to SAPs (ingress or egress) apply to all packets on the SAP. One exception is non-IP packets are not applied to the match criteria, so the default action in the filter policy applies to these packets.

The no form of this command removes any configured filter ID association with the SAP. The filter ID itself is not removed from the system.

Special Cases

IES — Only IP filters are supported on an IES IP interface, and the filters only apply to routed traffic.

Parameters

ip — Keyword indicating the filter policy is an IP filter.

ip-filter-id — Specifies the ID for the IP filter policy. Allowed values are an integer in the range of 1 and 65535 that corresponds to a previously created IP filter policy in the configure>filter>ip-filter context.

Values

1 — 65535

egress

Syntax

egress

Context

config>service>ies>if>sap

Description

This command enables the context to apply egress policies.
ingress

**Syntax**  ingress
**Context**  config>service>ies>if>sap
**Description**  This command enables the context to apply ingress policies

 tod-suite

**Syntax**  tod-suite  tod-suite-name
no tod-suite
**Context**  config>service>ies>if>sap
**Description**  This command applies a time-based policy (filter or QoS policy) to the service SAP. The suite name must already exist in the config>cron context.
**Default**  no tod-suite
**Parameters**  

tod-suite-name — Specifies collection of policies (ACLs, QoS) including time-ranges that define the full or partial behavior of a SAP. The suite can be applied to more than one SAP.
Virtual Private Routed Network Service

In This Chapter

This chapter provides information about the Virtual Private Routed Network (VPN) service and implementation notes.

Topics in this chapter include:

- VPRN Service Overview on page 550
- VPRN Features on page 557
  - IP Interfaces on page 558
  - QoS Policies on page 559
  - Filter Policies on page 559
  - DSCP Marking on page 560
  - CE to PE Routing Protocols on page 563
  - PE to PE Tunneling Mechanisms on page 563
  - Per VRF Route Limiting on page 563
  - Spoke SDPs on page 658
  - Service Label Mode of a VPRN on page 580
- Configuring a VPRN Service with CLI on page 565
- Common Configuration Tasks on page 567
- Service Management Tasks on page 576
RFC2547b is an extension to the original RFC 2547, which details a method of distributing routing information and forwarding data to provide a Layer 3 Virtual Private Network (VPN) service to end customers.

Each Virtual Private Routed Network (VPRN) consists of a set of customer sites connected to one or more PE routers. Each associated PE router maintains a separate IP forwarding table for each VPRN. Additionally, the PE routers exchange the routing information configured or learned from all customer sites via MP-BGP peering. Each route exchanged via the MP-BGP protocol includes a Route Distinguisher (RD), which identifies the VPRN association.

The service provider uses BGP to exchange the routes of a particular VPN among the PE routers that are attached to that VPN. This is done in a way which ensures that routes from different VPNs remain distinct and separate, even if two VPNs have an overlapping address space. The PE routers distribute routes from other CE routers in that VPN to the CE routers in a particular VPN. Since the CE routers do not peer with each other there is no overlay visible to the VPN's routing algorithm.

When BGP distributes a VPN route, it also distributes an MPLS label for that route. On a SR-Series, the label distributed with a VPN route depends on the configured label-mode of the VPRN that is originating the route.

Before a customer data packet travels across the service provider's backbone, it is encapsulated with the MPLS label that corresponds, in the customer's VPN, to the route which best matches the packet's destination address. The MPLS packet is further encapsulated with either another MPLS label or GRE tunnel header, so that it gets tunneled across the backbone to the proper PE router. Each route exchanged by the MP-BGP protocol includes a route distinguisher (RD), which identifies the VPRN association. Thus the backbone core routers do not need to know the VPN routes. Figure 65 displays a VPRN network diagram example.

Note: VPRN services is supported only in 7210 SAS-M network mode.
Routing Prerequisites

RFC 2547bis requires the following features:

- Multi-protocol extensions
- Extended BGP community support
- BGP capability negotiation
- Parameters defined in RFC 2918

Tunneling protocol options are as follows:

- Label Distribution Protocol (LDP)
- MPLS RSVP-TE tunnels
BGP Support

BGP is used with BGP extensions mentioned in Routing Prerequisites on page 551 to distribute VPRN routing information across the service provider’s network.

BGP was initially designed to distribute IPv4 routing information. Therefore, multi-protocol extensions and the use of a VPN-IPv4 address were created to extend BGP’s ability to carry overlapping routing information. A VPN-IPv4 address is a 12-byte value consisting of the 8-byte route distinguisher (RD) and the 4-byte IPv4 IP address prefix. The RD must be unique within the scope of the VPRN. This allows the IP address prefixes within different VRFs to overlap.
Route Distinguishers

The route distinguisher (RD) is an 8-byte value consisting of 2 major fields, the Type field and value field. The type field determines how the value field should be interpreted. The 7210 SAS implementation supports the three (3) type values as defined in the internet draft.

| Type Field (2-bytes) | Value Field (6-bytes) |

**Figure 66: Route Distinguisher**

The three Type values are:

- **Type 0:** Value Field — Administrator subfield (2 bytes)
  Assigned number subfield (4 bytes)
  The administrator field must contain an AS number (using private AS numbers is discouraged). The Assigned field contains a number assigned by the service provider.

- **Type 1:** Value Field — Administrator subfield (4 bytes)
  Assigned number subfield (2 bytes)
  The administrator field must contain an IP address (using private IP address space is discouraged). The Assigned field contains a number assigned by the service provider.

- **Type 2:** Value Field — Administrator subfield (4 bytes)
  Assigned number subfield (2 bytes)
  The administrator field must contain a 4-byte AS number (using private AS numbers is discouraged). The Assigned field contains a number assigned by the service provider.

Route Reflector

Per RFC2547bis the use of Route Reflectors is supported in the service provider core. Multiple sets of route reflectors can be used for different types of BGP routes, including IPv4 and VPN-IPv4. 7210 can only be used a route reflector client. It cannot be used as a route reflector ("server").
CE to PE Route Exchange

Routing information between the Customer Edge (CE) and Provider Edge (PE) can be exchanged by the following methods:

- Static Routes
- E-BGP

Each protocol provides controls to limit the number of routes learned from each CE router.

Route Redistribution

Routing information learned from the CE-to-PE routing protocols and configured static routes should be injected in the associated local VPN routing/forwarding (VRF). In the case of dynamic routing protocols, there may be protocol specific route policies that modify or reject certain routes before they are injected into the local VRF.

Route redistribution from the local VRF to CE-to-PE routing protocols is to be controlled via the route policies in each routing protocol instance, in the same manner that is used by the base router instance.

The advertisement or redistribution of routing information from the local VRF to or from the MP-BGP instance is specified per VRF and is controlled by VRF route target associations or by VRF route policies.

VPN-IP routes imported into a VPRN, have the protocol type bgp-vpn to denote that it is an VPRN route. This can be used within the route policy match criteria.
CPE Connectivity Check

Static routes are used within many IES and VPRN services. Unlike dynamic routing protocols, there is no way to change the state of routes based on availability information for the associated CPE. CPE connectivity check adds flexibility so that unavailable destinations will be removed from the VPRN routing tables dynamically and minimize wasted bandwidth.

The availability of the far-end static route is monitored through periodic polling. The polling period is configured. If the poll fails a specified number of sequential polls, the static route is marked as inactive.

Figure 67: Directly Connected IP Target

Figure 68: Multiple Hops to IP Target
Either ICMP ping or unicast ARP mechanism can be used to test the connectivity. ICMP ping is preferred.

If the connectivity check fails and the static route is de-activated, the 7210 SAS router will continue to send polls and re-activate any routes that are restored.
VPRN Features

This section describes various VPRN features and any special capabilities or considerations as they relate to VPRN services.

- **IP Interfaces on page 558**
  - Encapsulations on page 558
  - QoS Policies on page 559
  - Filter Policies on page 559
- **CE to PE Routing Protocols on page 563**
  - PE to PE Tunneling Mechanisms on page 563
  - Per VRF Route Limiting on page 563
- **Spoke SDPs on page 658**
  - Multicast Protocols Supported in the Provider Network on page 667
IP Interfaces

VPRN customer IP interfaces can be configured with most of the same options found on the core IP interfaces.

The advanced configuration options supported are:

- VRRP
- ICMP Options

Configuration options found on core IP interfaces not supported on VPRN IP interfaces are:

- NTP broadcast receipt

SAPs

Encapsulations

The following SAP encapsulations are supported on the 7210 SAS VPRN service:

- Ethernet null
- Ethernet dot1q
- QinQ
- LAG
QoS Policies

When applied to a VPRN SAP, service ingress QoS policies only create the unicast queues defined in the policy.

For 7210 SAS M devices configured in Network mode (with VPRN services), access egress policies are available for use on access ports. Service egress QoS policies are not supported.

Note that both Layer 2 (but dot1p only) or Layer 3 criteria can be used in the QoS policies for traffic classification in an VPRN.

Filter Policies

Ingress and egress IPv4 filter policies can be applied to VPRN SAPs.
DSCP Marking

DSCP values, dot1p values and forwarding class for all applications is assigned by the system. On ingress, the system uses meters with default values to rate-limit all applications to system defined values. A separate queue and policer is used, one each for all access ports and for all network ports.

Table 18: DSCP/FC Marking

<table>
<thead>
<tr>
<th>Protocol</th>
<th>IPv4</th>
<th>IPv6</th>
<th>DSCP Marking</th>
<th>Dot1P Marking</th>
<th>Default FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td></td>
<td></td>
<td>7</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>BGP</td>
<td>48</td>
<td>7</td>
<td></td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>BFD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telnet</td>
<td>34</td>
<td>4</td>
<td></td>
<td>H2</td>
<td></td>
</tr>
<tr>
<td>TFTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSH (SCP)</td>
<td>34</td>
<td>4</td>
<td></td>
<td>H2</td>
<td></td>
</tr>
<tr>
<td>SNMP (get, set, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNMP trap/log</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>syslog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAM ping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMP ping</td>
<td>0</td>
<td>0</td>
<td></td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Traceroute</td>
<td>7</td>
<td>0</td>
<td></td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>TACPLUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNTP/NTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Default DSCP Mapping Table

*A:7210-SAS>show>qos# dscp-table

<table>
<thead>
<tr>
<th>DSCP Name</th>
<th>DSCP Value</th>
<th>TOS (bin)</th>
<th>TOS (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>0</td>
<td>0000 0000</td>
<td>00</td>
</tr>
<tr>
<td>cp1</td>
<td>1</td>
<td>0000 0100</td>
<td>04</td>
</tr>
<tr>
<td>cp2</td>
<td>2</td>
<td>0000 1000</td>
<td>08</td>
</tr>
<tr>
<td>cp3</td>
<td>3</td>
<td>0000 1100</td>
<td>0C</td>
</tr>
<tr>
<td>cp4</td>
<td>4</td>
<td>0001 0000</td>
<td>10</td>
</tr>
<tr>
<td>cp5</td>
<td>5</td>
<td>0001 0100</td>
<td>14</td>
</tr>
<tr>
<td>cp6</td>
<td>6</td>
<td>0001 1000</td>
<td>18</td>
</tr>
<tr>
<td>cp7</td>
<td>7</td>
<td>0001 1100</td>
<td>1C</td>
</tr>
<tr>
<td>cs1</td>
<td>8</td>
<td>0010 0000</td>
<td>20</td>
</tr>
<tr>
<td>cp9</td>
<td>9</td>
<td>0010 0100</td>
<td>24</td>
</tr>
<tr>
<td>af11</td>
<td>10</td>
<td>0010 1000</td>
<td>28</td>
</tr>
<tr>
<td>cp11</td>
<td>11</td>
<td>0010 1100</td>
<td>2C</td>
</tr>
<tr>
<td>af12</td>
<td>12</td>
<td>0011 0000</td>
<td>30</td>
</tr>
<tr>
<td>cp13</td>
<td>13</td>
<td>0011 0100</td>
<td>34</td>
</tr>
<tr>
<td>af13</td>
<td>14</td>
<td>0011 1000</td>
<td>38</td>
</tr>
<tr>
<td>cp15</td>
<td>15</td>
<td>0011 1100</td>
<td>3C</td>
</tr>
<tr>
<td>cs2</td>
<td>16</td>
<td>0100 0000</td>
<td>40</td>
</tr>
<tr>
<td>cp17</td>
<td>17</td>
<td>0100 0100</td>
<td>44</td>
</tr>
<tr>
<td>af21</td>
<td>18</td>
<td>0100 1000</td>
<td>48</td>
</tr>
<tr>
<td>cp19</td>
<td>19</td>
<td>0100 1100</td>
<td>4C</td>
</tr>
<tr>
<td>af22</td>
<td>20</td>
<td>0101 0000</td>
<td>50</td>
</tr>
<tr>
<td>cp21</td>
<td>21</td>
<td>0101 0100</td>
<td>54</td>
</tr>
<tr>
<td>af23</td>
<td>22</td>
<td>0101 1000</td>
<td>58</td>
</tr>
<tr>
<td>cp23</td>
<td>23</td>
<td>0101 1100</td>
<td>5C</td>
</tr>
<tr>
<td>cs3</td>
<td>24</td>
<td>0110 0000</td>
<td>60</td>
</tr>
<tr>
<td>cp25</td>
<td>25</td>
<td>0110 0100</td>
<td>64</td>
</tr>
<tr>
<td>af31</td>
<td>26</td>
<td>0110 1000</td>
<td>68</td>
</tr>
<tr>
<td>cp27</td>
<td>27</td>
<td>0110 1100</td>
<td>6C</td>
</tr>
<tr>
<td>af32</td>
<td>28</td>
<td>0111 0000</td>
<td>70</td>
</tr>
<tr>
<td>cp29</td>
<td>29</td>
<td>0111 0100</td>
<td>74</td>
</tr>
<tr>
<td>af33</td>
<td>30</td>
<td>0111 1000</td>
<td>78</td>
</tr>
<tr>
<td>cp31</td>
<td>31</td>
<td>0111 1100</td>
<td>7C</td>
</tr>
<tr>
<td>cs4</td>
<td>32</td>
<td>1000 0000</td>
<td>80</td>
</tr>
<tr>
<td>cp33</td>
<td>33</td>
<td>1000 0100</td>
<td>84</td>
</tr>
<tr>
<td>af41</td>
<td>34</td>
<td>1000 1000</td>
<td>88</td>
</tr>
<tr>
<td>cp35</td>
<td>35</td>
<td>1000 1100</td>
<td>8C</td>
</tr>
<tr>
<td>af42</td>
<td>36</td>
<td>1001 0000</td>
<td>90</td>
</tr>
<tr>
<td>cp37</td>
<td>37</td>
<td>1001 0100</td>
<td>94</td>
</tr>
<tr>
<td>af43</td>
<td>38</td>
<td>1001 1000</td>
<td>98</td>
</tr>
<tr>
<td>cp39</td>
<td>39</td>
<td>1001 1100</td>
<td>9C</td>
</tr>
<tr>
<td>cs5</td>
<td>40</td>
<td>1010 0000</td>
<td>A0</td>
</tr>
<tr>
<td>cp41</td>
<td>41</td>
<td>1010 0100</td>
<td>A4</td>
</tr>
<tr>
<td>cp42</td>
<td>42</td>
<td>1010 1000</td>
<td>A8</td>
</tr>
<tr>
<td>cp43</td>
<td>43</td>
<td>1010 1100</td>
<td>AC</td>
</tr>
<tr>
<td>cp44</td>
<td>44</td>
<td>1011 0000</td>
<td>B0</td>
</tr>
<tr>
<td>cp45</td>
<td>45</td>
<td>1011 0100</td>
<td>B4</td>
</tr>
<tr>
<td>ef</td>
<td>46</td>
<td>1011 1000</td>
<td>B8</td>
</tr>
<tr>
<td>cp47</td>
<td>47</td>
<td>1011 1100</td>
<td>BC</td>
</tr>
</tbody>
</table>
The default forwarding class mapping is used for all DSCP names/values for which there is no explicit forwarding class mapping.
CE to PE Routing Protocols

The 7210 SAS VPRN supports the following PE to CE routing protocols:

- BGP
- Static

PE to PE Tunneling Mechanisms

The 7210 SAS supports multiple mechanisms to provide transport tunnels for the forwarding of traffic between PE routers within the 2547bis network.

The 7210 SAS VPRN implementation supports the use of:

- RSVP-TE protocol to create tunnel LSP's between PE routers
- LDP protocol to create tunnel LSP's between PE routers

These transport tunnel mechanisms provide the flexibility of using dynamically created LSPs where the service tunnels are automatically bound (the “autobind” feature) and the ability to provide certain VPN services with their own transport tunnels by explicitly binding SDPs if desired. When the autobind is used, all services traverse the same LSPs and do not allow alternate tunneling mechanisms or the ability to craft sets of LSP's with bandwidth reservations for specific customers as is available with explicit SDPs for the service.

Per VRF Route Limiting

The 7210 SAS allows setting the maximum number of routes that can be accepted in the VRF for a VPRN service. There are options to specify a percentage threshold at which to generate an event that the VRF table is near full and an option to disable additional route learning when full or only generate an event.
Service Label Mode of a VPRN

The 7210 SAS allocates one unique (platform-wide) service label per VRF. All VPN-IP routes exported by the PE from a particular VPRN service with that configuration have the same service label. When the PE receives a terminating MPLS packet, the service label value determines the VRF to which the packet belongs. A lookup of the IP packet DA in the forwarding table of the selected VRF determines the next-hop interface.
Configuring a VPRN Service with CLI

This section provides information to configure Virtual Private Routed Network (VPRN) services using the command line interface.

Topics in this section include:

• Basic Configuration on page 566
• Common Configuration Tasks on page 567
  → Configuring VPRN Components on page 568
    – Creating a VPRN Service on page 568
    – Configuring Global VPRN Parameters on page 569
    – Configuring VPRN Protocols - BGP on page 571
    – Configuring a VPRN Interface on page 573
    – Configuring a VPRN Interface SAP on page 575
• Service Management Tasks on page 576
  → Modifying VPRN Service Parameters on page 576
  → Deleting a VPRN Service on page 577
  → Disabling a VPRN Service on page 578
  → Re-enabling a VPRN Service on page 579
Basic Configuration

The following fields require specific input (there are no defaults) to configure a basic VPRN service:

- Customer ID (refer to Configuring Customers on page 68)
- Specify interface parameters
- Specify spoke SDP parameters

The following example displays a sample configuration of a VPRN service.

*A:ALA-1>config>service>vprn# info
----------------------------------------------
vrf-import "vrfImpPolCust1"
vrf-export "vrfExpPolCust1"
autonomous-system 10000
route-distinguisher 10001:1
auto-bind ldp
vrf-target target:10001:1
interface "to-ce1" create
    address 11.1.0.1/24
    exit
sap 1/1/10:1 create
    ingress
        qos 100
    exit
    egress
        qos 1010
        filter ip 10
    exit
exit
exit
exit
static-route 6.5.0.0/24 next-hop 10.1.1.2
bgp
    router-id 10.0.0.1
    group "to-ce1"
        export "vprnBgpExpPolCust1"
        peer-as 65101
        neighbor 10.1.1.2
    exit
exit
exit
no shutdown
----------------------------------------------
*A:ALA-1>config>service>vprn#*
Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure a VPRN service and provides the CLI commands.

1. Associate a VPRN service with a customer ID.
2. Define an autonomous system (optional).
3. Define a route distinguisher (mandatory).
4. Define VRF route-target associations or VRF import/export policies.
5. Create an interface.
6. Define SAP parameters on the interface.
   → Select node(s) and port(s).
   → Optional - select QoS policies other than the default (configured in config>qos context).
   → Optional - select filter policies (configured in config>filter context).
   → Optional - select accounting policy (configured in config>log context).
7. Define BGP parameters (optional).
   → BGP must be enabled in the config>router>bgp context.
8. Enable the service.
Configuring VPRN Components

This section provides VPRN configuration examples for the following entities:

- Creating a VPRN Service on page 568
- Configuring Global VPRN Parameters on page 569
- Configuring Router Interfaces on page 570
- Configuring VPRN Protocols - BGP on page 571

Creating a VPRN Service

Use the following CLI syntax to create a VPRN service. A route distinguisher must be defined in order for VPRN to be operationally active.

**CLI Syntax:**

```
config>service# vprn service-id [customer customer-id]
 route-distinguisher [ip-address: number1 | asn: number2]
 description description-string
 no shutdown
```

The following example displays a VPRN service configuration.

```
*A:ALA-1>config>service# info
--
... vprn 1 customer 1 create
 route-distinguisher 10001:0
 no shutdown
 exit
...--
*A:ALA-1>config>service>vprn#
```
Configuring Global VPRN Parameters

Refer to VPRN Services Command Reference on page 581 for CLI syntax to configure VPRN parameters.

The following example displays a VPRN service with configured parameters.

```
*A:ALA-1>config>service# info
--
... vprn 1 customer 1 create
 vrf-import "vrfImpPolCust1"
 vrf-export "vrfExpPolCust1"
 autonomous-system 10000
 route-distinguisher 10001:1
 exit
 no shutdown
 exit
...--
*A:ALA-1>config>service#
```
Configuring Router Interfaces

Refer to the 7210 SAS OS Router Configuration Guide for command descriptions and syntax information to configure router interfaces.

The following example displays a router interface configurations:

```
ALA48>config>router# info
#--
echo "IP Configuration"
#--
...
 interface "if1"
 address 2.2.2.1/24
 exit
 interface "if2"
 address 10.49.1.46/24
 port 1/1/34
 exit
 interface "if3"
 address 11.11.11.1/24
 exit
...
#--
ALA48>config>router#
```
Configuring VPRN Protocols - BGP

The autonomous system number and router ID configured in the VPRN context only applies to that particular service.

The minimal parameters that should be configured for a VPRN BGP instance are:

- Specify an autonomous system number for the router. See Configuring Global VPRN Parameters on page 569.
- Specify a router ID - Note that if a new or different router ID value is entered in the BGP context, then the new values takes precedence and overwrites the VPRN-level router ID. See Configuring Global VPRN Parameters on page 569.
- Specify a VPRN BGP peer group.
- Specify a VPRN BGP neighbor with which to peer.
- Specify a VPRN BGP peer-AS that is associated with the above peer.

VPRN BGP is administratively enabled upon creation. Minimally, to enable VPRN BGP in a VPRN instance, you must associate an autonomous system number and router ID for the VPRN service, create a peer group, neighbor, and associate a peer AS number. There are no default VPRN BGP groups or neighbors. Each VPRN BGP group and neighbor must be explicitly configured.

All parameters configured for VPRN BGP are applied to the group and are inherited by each peer, but a group parameter can be overridden on a specific basis. VPRN BGP command hierarchy consists of three levels:

- The global level
- The group level
- The neighbor level

For example:

**CLI Syntax:**  
```
config>service>vprn>bgp# (global level)
group (group level)
neighbor (neighbor level)
```

Note that the local-address must be explicitly configured if two systems have multiple BGP peer sessions between them for the session to be established.

For more information about the BGP protocol, refer to the 7210 SAS OS Router configuration Guide.
Configuring VPRN BGP Group and Neighbor Parameters

A group is a collection of related VPRN BGP peers. The group name should be a descriptive name for the group. Follow your group, name, and ID naming conventions for consistency and to help when troubleshooting faults.

All parameters configured for a peer group are applied to the group and are inherited by each peer (neighbor), but a group parameter can be overridden on a specific neighbor-level basis.

After a group name is created and options are configured, neighbors can be added within the same autonomous system to create IBGP connections and/or neighbors in different autonomous systems to create EGBP peers. All parameters configured for the peer group level are applied to each neighbor, but a group parameter can be overridden on a specific neighbor basis.
VPRN BGP CLI Syntax

Use the CLI syntax to configure VPRN BGP parameters (BGP Configuration Commands on page 586).

The following example displays a VPRN BGP configuration:

```
*A:ALA-1>config>service# info
..............................
... vprn 1 customer 1 create
 vrf-import "vrfImpPolCust1"
 vrf-export "vrfExpPolCust1"
 autonomous-system 10000
 route-distinguisher 10001:1
 auto-bind ldp
 vrf-target target:10001:1
 interface "to-cel" create
 address 11.1.0.1/24
 sap 1/1/10:1 create
 ingress
 qos 100
 exit
 egress
 qos 1010
 filter ip 6
 exit
 exit
 static-route 6.5.0.0/24 next-hop 10.1.1.2
 bgp
 router-id 10.0.0.1
 group "to-cel"
 export "vprnBgpExpPolCust1"
 peer-as 65101
 neighbor 10.1.1.2
 exit
 exit
 spoke-sdp 2 create
 exit
 no shutdown
 exit
...
*A:ALA-1>config>service#
```

Configuring a VPRN Interface

Interface names associate an IP address to the interface, and then associate the IP interface with a physical port. The logical interface can associate attributes like an IP address, port, Link Aggregation Group (LAG) or the system.

There are no default interfaces.
Note that you can configure a VPRN interface as a loopback interface by issuing the `loopback` command instead of the `sap sap-id` command. The loopback flag cannot be set on an interface where a SAP is already defined and a SAP cannot be defined on a loopback interface.

When using mtrace/mstat in a Layer 3 VPN context then the configuration for the VPRN should have a loopback address configured which has the same address as the core instance's system address (BGP next-hop).

Refer to Show Commands on page 590 for CLI commands and syntax.

The following example displays a VPRN interface configuration:

```
*A:7210 SAS>config>service>vprn>if# info detail
--
 no description
 no address
 no mac
 arp-timeout 14400
 no allow-directed-broadcasts
 icmp
 mask-reply
 redirects 100 10
 unreachable 100 10
 ttl-expired 100 10
 exit
 no arp-populate
 dhcp
 shutdown
 no description
 proxy-server
 shutdown
 no emulated-server
 no lease-time
 exit
 no option
 no server
 no trusted
 no lease-populate
 no gi-address
 no relay-plain-bootp
 no use-arp
 exit
 no authentication-policy
 no ip-mtu
 no host-connectivity-verify
 no delayed-enable
 no bfd
 ipcp
 no peer-ip-address
 no dns
 exit
 no proxy-arp-policy
 no local-proxy-arp
 no remote-proxy-arp
 no shutdown
--
*A:7210 SAS>config>service>vprn>if#`
```
Configuring a VPRN Interface SAP

A SAP is a combination of a port and encapsulation parameters which identifies the service access point on the interface and within the 7210 SAS. Each SAP must be unique within a router. A SAP cannot be defined if the interface loopback command is enabled.

When configuring VPRN interface SAP parameters, a default QoS policy is applied to each ingress and egress SAP. Additional QoS policies and scheduler policies must be configured in the config>qos context. Filter policies are configured in the config>filter context and must be explicitly applied to a SAP. There are no default filter policies.

The following example displays a VPRN interface SAP configuration:

```
*A:ALA-1>config>service# info
--
... vprn 1 customer 1 create
 vrf-import "vrfImpPolCust1"
 vrf-export "vrfExpPolCust1"
 autonomous-system 10000
 route-distinguisher 10001:1
 auto-bind ldp
 vrf-target target:10001:1
 interface "to-ce1" create
 address 11.1.0.1/24
 sap 1/1/10:1 create
 ingress
 qos 100
 exit
 egress
 qos 1010
 filter ip 6
 exit
 exit
 exit
 static-route 6.5.0.0/24 next-hop 10.1.1.2
 spoke-sdp 2 create
 exit
 no shutdown
 exit
 ...--
*A:ALA-1>config>service#
```
Service Management Tasks

This section discusses the following service management tasks:

- Modifying VPRN Service Parameters on page 576
- Deleting a VPRN Service on page 577

Modifying VPRN Service Parameters

Use the CLI syntax to modify VPRN parameters (VPRN Services Command Reference on page 581).

The following example displays the VPRN service creation output.

*A:ALA-1>config>service# info
----------------------------------------------
... vprn 1 customer 1 create
shutdown
tvrf-import "vrfImpPolCust1"
//vrf-export "vrfExpPolCust1"
maximum-routes 2000
autonomous-system 10000
route-distinguisher 10001:1
interface "to-ce1" create
    address 10.1.1.1/24
    sap 1/1/10:1 create
    exit
exit
static-route 6.5.0.0/24 next-hop 10.1.1.2
bgp
    router-id 10.0.0.1
    group "to-ce1"
        export "vprnBgpExpPolCust1"
        peer-as 65101
        neighbor 10.1.1.2
        exit
exit
exit
spoke-sdp 2 create
exit
exit
... 
----------------------------------------------
*A:ALA-1>config>service>vprn#
Deleting a VPRN Service

An VPRN service cannot be deleted until SAPs and interfaces are shut down and deleted. If protocols and/or a spoke-SDP are defined, they must be shut down and removed from the configuration as well.

Use the following CLI syntax to delete a VPRN service:

CLI Syntax:  config>service#
             [no] vprn service-id [customer customer-id]
             shutdown
             [no] interface ip-int-name
             shutdown
             [no] sap sap-id
             [no] bgp
             shutdown
             [no] spoke-sdp sdp-id
             [no] shutdown
Disabling a VPRN Service

A VPRN service can be shut down without deleting any service parameters.

**CLI Syntax:**
```
cfg>service# vprn service-id [customer customer-id] shutdown
```

**Example:**
```
cfg>service# vprn 1
 cfg>service>vprn# shutdown
 cfg>service>vprn# exit

*A:ALA-1>cfg>service# info
--
... vprn 1 customer 1 create
 shutdown
 vrf-import "vrfImpPolCust1"
 vrf-export "vrfExpPolCust1"
 autonomous-system 10000
 route-distinguisher 10001:1
 auto-bind ldp
 vrf-target target:10001:1
 interface "to-ce1" create
 address 11.1.0.1/24
 sap 1/1/10:1 create
 ingress
 qos 100
 exit
 egress
 qos 1010
 filter ip 6
 exit
 exit
 static-route 6.5.0.0/24 next-hop 10.1.1.2
 bgp
 router-id 10.0.0.1
 group "to-ce1"
 export "vprnBgpExpPolCust1"
 peer-as 65101
 neighbor 10.1.1.2
 exit
 exit
 spoke-sdp 2 create
 exit
 exit
 exit
 ...
--
A:ALA-1>cfg>service#
```
Re-enabling a VPRN Service

To re-enable a VPRN service that was shut down.

CLI Syntax:  
```
config>service#
vprn service-id [customer customer-id]
no shutdown
```
Configuring a VPRN Service with CLI
VPRN Services Command Reference

Command Hierarchies

- VPRN Service Configuration Commands on page 582
  → Interface Commands on page 583
- Show Commands on page 590
- Clear Commands on page 592
- Debug Commands on page 593
config
  — service
    — vprn service-id [customer customer-id]
    — no vprn service-id
      — auto-bind {ldp | rsvp-te | mpls}
      — no auto-bind
      — autonomous-system as-number
      — no autonomous-system
      — description description-string
      — no description
      —
      — maximum-routes number [log-only] [threshold percent]
      — no maximum-routes
      — route-distinguisher [ip-address:number1 | asn:number2]
      — no route-distinguisher
      — router-id ip-address
      — no router-id
      — [no] shutdown
      — snmp-community community-name [version SNMP-version]
      — no snmp-community community-name
      — source-address
        — application app [ip-int-name | ip-address]
        — no application app
      — [no] spoke-sdp sdp-id
        — description description-string
        — no description
        — [no] shutdown
      — [no] static-route {ip-prefix/prefix-length | ip-prefix netmask} [preference preference] [metric metric] [tag tag] [enable | disable] {next-hop ip-int-name|ip-address | [cpe-check cpe-ip-address] [interval seconds] [drop-count count] [log]} [prefix-list prefix-list-name [all|none]]
      — [no] static-route {ip-prefix/prefix-length | ip-prefix netmask} [preference preference] [metric metric] [tag tag] [enable | disable] indirect ip-address [cpe-check cpe-ip-address] [interval seconds] [drop-count count] [log] [prefix-list prefix-list-name [all|none]]
      — [no] static-route {ip-prefix/prefix-length | ip-prefix netmask} [preference preference] [metric metric] [tag tag] [enable | disable] blank-hole [prefix-list prefix-list-name [all|none]]
      — vrf-export policy-name [policy-name...(upto 5 max)]
      — no vrf-export
      — vrf-import policy-name [policy-name...(upto 5 max)]
      — no vrf-import
      — vrf-target {ext-comm| [export ext-comm][import ext-comm]}
      — no vrf-target
      — [no] shutdown
### Interface Commands

```
config
 — service
 — vprn service-id [customer customer-id]
 — no vprn service-id
 — [no] interface ip-int-name
 — address ip-address[/mask] [netmask] [broadcast [all-ones | host-ones]]
 — no address
 — [no] allow-directed-broadcasts
 — arp-timeout [seconds]
 — no arp-timeout
 — bfd transmit-interval [receive receive-interval] [multiplier multiplier][echo-receive echo-interval]
 — no bfd
 — delayed-enable seconds
 — no delayed-enable
 — description description-string
 — no description [description-string]
 — icmp
 — [no] mask-reply
 — redirects number seconds
 — no redirects [number seconds]
 — ttl-expired number seconds
 — no ttl-expired [number seconds]
 — unreachable number seconds
 — no unreachable [number seconds]
 — [no] local-proxy-arp
 — [no] loopback
 — [no] proxy-arp-policy policy-name [policy-name...(upto 5 max)]
 — proxy-arp-policy ieee-address
 — no proxy-arp-policy
 — [no] remote-proxy-arp
 — static-arp ieee-address
 — [no] static-arp [ieee-address]
 — [no] shutdown
 — static-arp ip-address ieee-address
 — [no] static-arp ip-address [ieee-address]
 — [no] vrrp virtual-router-id
```
Interface VRRP Commands

```plaintext
config
 — service
 — vprn service-id [customer customer-id]
 — no vprn service-id
 — interface ip-int-name
 — vrrp virtual-router-id [owner]
 — no vrrp virtual-router-id
 — authentication-key {authentication-key | hash-key} [hash | hash2]
 — no authentication-key
 — [no] backup ip-address
 — [no] init-delay [service-id] interface interface-name dst-ip ip-address
 — init-delay seconds
 — no init-delay
 — [no] master-int-inherit
 — message-interval {[seconds] [milliseconds milliseconds]}
 — no message-interval
 — [no] ping-reply
 — policy vrrp-policy-id
 — no policy
 — [no] preempt
 — priority priority
 — no priority
 — [no] shutdown
 — [no] ssh-reply
 — [no] standby-forwarding
 — [no] telnet-reply
 — [no] traceroute-reply
```
Interface SAP Commands

```
config
 -- service
 -- vprn service-id [customer customer-id]
 -- no vprn service-id
 -- [no] interface ip-int-name [create] [tunnel]
 -- sap sap-id
 -- accounting-policy acct-policy-id
 -- no accounting-policy [acct-policy-id]
 -- [no] collect-stats
 -- description description-string
 -- no description [description-string]
 -- egress
 -- filter ip ip-filter-id
 -- no filter [ip ip-filter-id]
 -- qos policy-id
 -- no qos policy-id
 -- ingress
 -- aggregate-meter-rate <rate-in-kbps> [burst <burst-in-kbits>]
 -- no aggregate-meter-rate
 -- filter ip ip-filter-id
 -- no filter [ip ip-filter-id]
 -- qos policy-id
 -- no qos [policy-id]
 -- [no] shutdown
 -- statistics
 -- ingress
 -- counter-mode {in-out-profile-count|forward-drop-count}
```
BGP Configuration Commands

```
config
 — service
 — vprn service-id [customer customer-id]
 — no vprn service-id
 — [no] bgp
 — [no] advertise-inactive
 — [no] aggregator-id-zero
 — always-compare-med {zero | infinity}
 — no always-compare-med
 — [no] as-path-ignore
 — auth-keychain name
 — authentication-key [authentication-key | hash-key] [hash | hash2]
 — no authentication-key
 — [no] connect-retry seconds
 — [no] damping
 — description description-string
 — no description
 — [no] disable-4byte-asn
 — disable-capability-negotiation
 — no disable-capability-negotiation
 — disable-communities [standard] [extended]
 — no disable-communities
 — [no] disable-fast-external-failover
 — [no] enable-peer-tracking
 — export policy-name [policy-name...(upto 5 max)]
 — no export
 — family [ipv4]
 — no family
 — hold-time seconds [strict]
 — no hold-time
 — import policy-name [policy-name...(up to 5 max)]
 — no import
 — keepalive seconds
 — no keepalive
 — local-preference ip-address
 — no local-preference
 — local-as
 — local-as as-number [private]
 — no local-as
 — local-preference local-preference
 — no local-preference
 — loop-detect {drop-peer | discard-route | ignore-loop} off
 — no loop-detect
 — med-out {number | igp-cost}
 — no med-out
 — min-as-origination seconds
 — no min-as-origination
 — min-route-advertisement seconds
 — no min-route-advertisement
 — multihop ttl-value
 — no multihop
 —
 — next-hop-self
```
— no next-hop-self
— preference preference
— no preference
— peer-as as number
— no peer-as
— [no] path-mtu-discovery
— [no] rapid-withdrawal
— [no] remove-private
— router-id ip-address
— no router-id
— [no] shutdown
— [no] group name [dynamic-peer]
  — [no] advertise-inactive
  — [no] aggregate-id-zero
  — [no] as-override
  — auth-keychain name
  — authentication-key [authentication-key | hash-key] [hash | hash2]
  — no authentication-key
  — connect-retry seconds
  — no connect-retry
  — [no] damping
  — description description-string
  — no description
  — [no] disable-4byte-asn
  — disable-communities [standard] [extended]
  — no disable-communities
  — [no] disable-fast-external-failover
  — [no] enable-peer-tracking
  — export policy-name [policy-name...(upto 5 max)]
  — no export
  — family [ipv4]
  — no family
  — hold-time seconds [strict]
  — no hold-time
  — import policy-name [policy-name...(upto 5 max)]
  — no import
  — keepalive seconds
  — no keepalive
  — local-address ip-address
  — no local-address
  — local-as as-number [private]
  — no local-as
  — local-preference local-preference
  — no local-preference
  — loop-detect [drop-peer|discard-route|ignore-loop|off]
  — no loop-detect
  — med-out [number | igp-cost]
  — no med-out
  — min-as-origination seconds
  — no min-as-origination
  — min-route-advertisement seconds
  — no min-route-advertisement
  — multihop ttl-value
— no multihop
— [no] next-hop-self
— peer-as as-number
— no peer-as
— preference preference
— no preference
— [no] path-mtu-discovery
— prefix-limit limit [log-only] [threshold percent]
— no prefix-limit
— [no] remove-private
— [no] shutdown
— ttl-security min-ttl-value
— no ttl-security
— type {internal | external}
— no type
— [no] neighbor ip-address
  — [no] advertise-inactive
  — [no] aggregator-id-zero
  — [no] as-override
  — auth-keychain name
  — authentication-key [authentication-key | hash-key]
    [hash | hash2]
  — no authentication-key
  — connect-retry seconds
  — no connect-retry
  — [no] damping
  — description description-string
  — no description
  — [no] disable-4byte-asn
  — disable-communities [standard] [extended]
  — no disable-communities
  — [no] disable-fast-external-failover
  — [no] enable-peer-tracking
  — export policy-name [policy-name...(upto 5 max)]
  — no export
  — family [ipv4]
  — no family
  — hold-time seconds [strict]
  — no hold-time
  — import policy-name [policy-name...(upto 5 max)]
  — no import
  — keepalive seconds
  — no keepalive
  — local-address ip-address
  — no local-address
  — local-as as-number [private]
  — no local-as
  — local-preference local-preference
  — no local-preference
  — loop-detect {drop-peer | discard-route | ignore-loop | off}
    [off]
  — no loop-detect
  — med-out {number | igp-cost}
  — no med-out
  — min-as-origination seconds
— no min-as-origination
— min-route-advertisement seconds
— no min-route-advertisement
— multihop ttl-value
— no multihop
— [no] next-hop-self
— peer-as as-number
— no peer-as
— preference preference
— no preference
— [no] path-mtu-discovery
— prefix-limit limit [log-only] [threshold percent]
— no prefix-limit
— [no] remove-private
— [no] shutdown
— ttl-security min-ttl-value
— no ttl-security
— type {internal | external}
— no type
Show Commands

`show`  
  `— service`  
    `— egress-label start-label [end-label]`  
    `— ingress-label start-label [[end-label]`  
    `— id service-id`  
      `— all`  
      `— base`  
      `— sap [sap-id [detail]]`  
      `— sdp [sdp-id | far-end ip-address] [detail]`  
    `— labels`  
    `— sap-using [sap sap-id]`  
    `— sap-using interface [ip-address | ip-int-name]`  
    `— sap-using [ingress | egress] filter filter-id`  
    `— sap-using [ingress] qos-policy qos-policy-id`  
    `— sdp-using [sdp-id | far-end ip-address] [detail | keep-alive-history]`  
    `— sdp-using [sdp-id];vc-id]`  
    `— service-using [vprn] [sdp sdp-id] [customer customer-id]`
show
  — router [vprn-service-id]
    — aggregate [family] [active]
    — arp [<ip-int-name|ip-address[/mask>][mac|ieee-mac-address][summary][local|dynamic|static|managed]
    — bgp
      — auth-keychain [keychain]
      — damping [ip-prefix[/prefix-length]] [decayed|history|suppressed] [detail] [ipv4]
      — damping [ip-prefix[/prefix-length]] [decayed|history|suppressed] [detail] vpn-ipv4
      — group [name] [detail] inter-as-label
      — neighbor [ip-address [detail]
      — neighbor [as-number [detail]
      — neighbor [ip-address [[family family] filter1][filter3]]
      — neighbor [as-number [[family family] filter2]]
      — next-hop [family] [ip-address [detail]]
      — paths
      — routes [family family] [prefix [detail | longer]]
      — routes [family family] [prefix [hunt | brief]]
      — routes [family family] [community comm-id]
      — routes [family family] [aspath-regex reg-ex]
      — routes [family] [ipv6-prefix[/prefix-length] [detail | longer][hunt [brief]]]
      — summary [all]
    — interface [ip-address | ip-int-name [detail]]
    — summary [family family] [neighbor ip-address]
    — route-table [family] [ip-address[/prefix-length] [longer|exact][protocol protocol-name][summary]]
    — static-arp [ip-address | ip-int-name | mac ieee-mac-address]
    — static-route [ip-prefix[/mask]] [preference preference] [next-hop ip-address [detail]
    — tunnel-table [ip-address[/mask] [protocol protocol | sdp sdp-id]
    — tunnel-table [summary]
Clear Commands

clear
  — router
    — bgp
      — damping [{prefix/mask [neighbor ip-address]] | {group name}]
      — flap-statistics [{ip-prefix/mask} [neighbor ip-address]] | {group group-name} | [regex reg-exp] | [policy policy-name]
    — neighbor {ip-address | as as-number | external | all} [soft | soft-inbound | statistics]
    — protocol
    — forwarding-table [slot-number]
    — interface [ip-int-name | ip-address] [icmp] [statistics]

clear
  — service
    — id service-id
      — spoke-sdp sdp-id:vc-id ingress-vc-label
    — statistics
      — sap sap-id {all | counters | stp}
      — sdp sdp-id keep-alive
      — id service-id
        — counters
        — spoke-sdp sdp-id:vc-id {all | counters | stp}
        — spoke-sdp
Debug Commands

dump
  — service
    — id service-id
      — [no] event-type {config-change | svc-oper-status-change | sap-oper-status-change | sdpbind-oper-status-change}
      — [no] sap sap-id
        — event-type {config-change | oper-status-change}
      — [no] sdp sdp-id:vc-id
        — event-type {config-change | oper-status-change}
    — stp
      — [no] all-events
      — [no] bpdu
      — [no] core-connectivity
      — [no] exception
      — [no] fsm-state-changes
      — [no] fsm-timers
      — [no] port-role
      — [no] port-state
      — [no] sap sap-id
      — [no] sdp sdp-id:vc-id
VPRN Service Configuration Commands

Generic Commands

shutdown

Syntax  [no] shutdown

Context  config>service>vprn
          config>service>vprn>if
          config>service>vprn>if>sap
          config>service>vprn>if>sap>static-host
          config>service>vprn>bgp
          config>service>vprn>bgp>group
          config>service>vprn>bgp>group>neighbor
          config>service>vprn>spoke-sdp

Description  This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

Services are created in the administratively down (shutdown) state. When a no shutdown command is entered, the service becomes administratively up and then tries to enter the operationally up state. Default administrative states for services and service entities is described below in Special Cases.

The no form of this command places the entity into an administratively enabled state.

If the AS number was previously changed, the BGP AS number inherits the new value.

Special Cases  Service Admin State — Bindings to an SDP within the service will be put into the out-of-service state when the service is shutdown. While the service is shutdown, all customer packets are dropped and counted as discards for billing and debugging purposes.

A service is regarded as operational providing that one IP Interface SAP and one SDP is operational.

VPRN BGP — This command disables the BGP instance on the given IP interface. Routes learned from a neighbor that is shutdown are immediately removed from the BGP database and RTM. If BGP is globally shutdown, then all group and neighbor interfaces are shutdown operationally. If a BGP group is shutdown, all member neighbor interfaces are shutdown operationally. If a BGP neighbor is shutdown, just that neighbor interface is operationally shutdown.
description

Syntax  
\[ \text{description} \ \text{description-string} \]
\[ \text{no description} \]

Context  
\begin{align*}
\text{config>service>vprn>bgp} \\
\text{config>service>vprn} \\
\text{config>service>vprn>if} \\
\text{config>service>vprn>if>sap} \\
\text{config>service>vprn>bgp} \\
\text{config>service>vprn>bgp>group} \\
\text{config>service>vprn>bgp>group>neighbor}
\end{align*}

Description  
This command creates a text description stored in the configuration file for a configuration context. The \texttt{description} command associates a text string with a configuration context to help identify the content in the configuration file.

The \texttt{no} form of this command removes the string from the configuration.

Default  
No description associated with the configuration context.

Parameters  
\textit{string} — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (\#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Global Commands

vprn

**Syntax**

```
 vprn service-id [customer customer-id] [create]
 no vprn service-id
```

**Context**

```
 config>service
```

**Description**

This command creates or edits a Virtual Private Routed Network (VPRN) service instance.

If the `service-id` does not exist, a context for the service is created. If the `service-id` exists, the context for editing the service is entered.

VPRN services allow the creation of customer-facing IP interfaces in the same routing instance used for service network core routing connectivity. VPRN services require that the IP addressing scheme used by the subscriber must be unique between it and other addressing schemes used by the provider and potentially the entire Internet.

IP interfaces defined within the context of an VPRN service ID must have a SAP created as the access point to the subscriber network.

When a service is created, the `customer` keyword and `customer-id` must be specified and associates the service with a customer. The `customer-id` must already exist having been created using the customer command in the service context. When a service is created with a customer association, it is not possible to edit the customer association. The service must be deleted and re-created with a new customer association.

When a service is created, the use of the `customer customer-id` is optional to navigate into the service configuration context. If attempting to edit a service with the incorrect `customer-id` results in an error.

Multiple VPRN services are created to separate customer-owned IP interfaces. More than one VPRN service can be created for a single customer ID. More than one IP interface can be created within a single VPRN service ID. All IP interfaces created within an VPRN service ID belongs to the same customer.

The `no` form of the command deletes the VPRN service instance with the specified `service-id`. The service cannot be deleted until all the IP interfaces and all routing protocol configurations defined within the service ID have been shutdown and deleted.

**Default**

None — No VPRN service instances exist until they are explicitly created.

**Parameters**

- `service-id` — The unique service identification number identifying the service in the service domain. This ID must be unique to this service and may not be used for any other service of any type. The `service-id` must be the same number used for every 7210 SAS on which this service is defined.

  **Values**

  - `service-id`: 1 — 2147483648
  - `svc-name`: 64 characters maximum

- `customer customer-id` — Specifies an existing customer identification number to be associated with the service. This parameter is required on service creation and optional for service editing or deleting.
auto-bind

**Syntax**  
auto-bind {ldp | rsvp-te | mpls}

**no auto-bind**

**Context**  
config>service>vprn

**Description**  
This command specifies the automatic binding type for the SDP assigned to this service.

**Default**  
None — The auto-bind type must be explicitly specified.

**Parameters**

- **ldp** — Specifies LDP to be the automatic binding for the SDP assigned to the service.
- **rsvp-te** — Specifies RSVP-TE to be the automatic binding for the SDP assigned to the service.
- **mpls** — Specifies that both LDP and RSVP-TE can be used to resolve the BGP nexthop for VPRN routes in an associated VPRN instance.

autonomous-system

**Syntax**  
autonomous-system as-number

**no autonomous-system**

**Context**  
config>service>vprn

**Description**  
This command defines the autonomous system (AS) to be used by this VPN routing/forwarding (VRF). This command defines the autonomous system to be used by this VPN routing. The no form of the command removes the defined AS from this VPRN context.

**Default**  
no autonomous-system

**Parameters**

- **as-number** — Specifies the AS number for the VPRN service.

  **Values**  
  1 — 4294967295

export-limit

**Syntax**  
export-limit num-routes

**no export-limit**

**Context**  
config>service>vprn>grt-lookup

**Description**  
This command provides the ability to limit the total number of routes exported from the VRF to the GRT. The value zero (0) provides an override that disables the maximum limit. Setting this value to zero (0) will not limit the number of routes exported from the VRF to the GRT. Configuring a range of one (1) to 1000 will limit the number of routes to the specified value.

The no form of the command sets the export-limit to a default of five (5).
Virtual Private Routed Network Services

**Default**

export-limit 5

**Parameters**

*num-routes* — Specifies maximum number of routes that can be exported.

**Values**

0 — 1000

**maximum-routes**

**Syntax**

maximum-routes number [log-only] [threshold percentage]

no maximum-routes

**Context**

config>service>vprn

**Description**

This command specifies the maximum number of remote routes that can be held within a VPN routing/forwarding (VRF) context. Note that local, host, static and aggregate routes are not counted.

Note that the VPRN service ID must be in a shutdown state in order to modify maximum-routes command parameters.

If the log-only parameter is not specified and the maximum-routes value is set below the existing number of routes in a VRF, then the offending RIP peer (if applicable) is brought down (but the VPRN instance remains up). BGP peering will remain up but the exceeding BGP routes will not be added to the VRF.

The maximum route threshold can dynamically change to increase the number of supported routes even when the maximum has already been reached. Protocols will resubmit their routes which were initially rejected.

The no form of the command disables any limit on the number of routes within a VRF context. Issue the no form of the command only when the VPRN instance is shutdown.

**Default**

0 or disabled — The threshold will not be raised.

**Parameters**

*number* — An integer that specifies the maximum number of routes to be held in a VRF context.

**Values**

1 — 2147483647

*log-only* — This parameter specifies that if the maximum limit is reached, only log the event. log-only does not disable the learning of new routes.

*threshold percentage* — The percentage at which a warning log message and SNMP trap should be set. There are two warnings, the first is a mid-level warning at the threshold value set and the second is a high-level warning at level between the maximum number of routes and the mid-level rate ( [mid+max] / 2 ).

**Values**

0 — 100
route-distinguisher

Syntax:  
```
route-distinguisher [ip-address:number | asn:number]
```

Context:  
```
config>service>vprn
```

Description:  
This command sets the identifier attached to routes the VPN belongs to. Each routing instance must have a unique (within the carrier’s domain) route distinguisher associated with it. A route distinguisher must be defined for a VPRN to be operationally active.

Default:  
no route-distinguisher

Parameters:  
The route distinguisher is a 6-byte value that can be specified in one of the following formats:

- `ip-address:number` — Specifies the IP address in dotted decimal notation. The assigned number must not be greater than 65535.
- `asn:number` — The ASN is a 2-byte value less than or equal to 65535. The assigned number can be any 32-bit unsigned integer value.

router-id

Syntax:  
```
router-id ip-address
```

Context:  
```
config>service>vprn
config>service>vprn:bgp
```

Description:  
This command sets the router ID for a specific VPRN context.

If neither the router ID nor system interface are defined, the router ID from the base router context is inherited.

The `no` form of the command removes the router ID definition from the given VPRN context.

Default:  
no router-id

Parameters:  
`ip-address` — The IP address must be given in dotted decimal notation.

service-name

Syntax:  
```
service-name service-name
```

Context:  
```
config>service>vprn
```

Description:  
This command configures an optional service name, up to 64 characters in length, which adds a name identifier to a given service to then use that service name in configuration references as well as display and use service names in show commands throughout the system. This helps the service provider/administrator to identify and manage services within the 7210 SAS platforms.
All services are required to assign a service ID to initially create a service. However, either the service ID or the service name can be used to identify and reference a given service once it is initially created.

**Parameters**  
`service-name` — Specifies a unique service name to identify the service. Service names may not begin with an integer (0-9).

### sgt-qos

**Syntax**  
`sgt-qos`

**Context**  
`config>service>vprn`

**Description**  
This command enables the context to configure DSCP/Dot1p re-marking for self-generated traffic.

### application

**Syntax**  
`application dscp-app-name dscp {dscp-value | dscp-name}
application dot1p-app-name dot1p dot1p-priority
no application {dscp-app-name | dot1p-app-name}`

**Context**  
`config>service>vprn>sgt-qos`

**Description**  
This command configures DSCP/Dot1p re-marking for self-generated traffic. When an application is configured using this command, then the specified DSCP name/value is used for all packets generated by this application within the router instance it is configured.

Using the value configured in this command:
- Sets the DSCP bits in the IP packet.
- Maps to the FC. This value will be signaled from the CPM to the egress forwarding complex.
- Based on this signaled FC the egress forwarding complex QoS policy sets the IEEE802.1 dot1P and LSP EXP bits.
- The Dot1P and the LSP EXP bits are set by the egress complex for all packets based on the signaled FC. This includes ARP and IS-IS packets that, due to their nature, do not carry DSCP bits.
- The DSCP value in the egress IP header will be as configured in this command. The egress QoS policy will not overwrite this value.

Only one DSCP name/value can be configured per application, if multiple entries are configured then the subsequent entry overrides the previous configured entry.

The `no` form of this command reverts back to the default value.

**Parameters**  
`dscp-app-name` — Specifies the DSCP application name.

**Values**  
ldp, rsvp, bgp, rip, msdp, pim, ospf, mld, telnet, tftp, ftp, ssh, snmp, snmp-notification, syslog, icmp, traceroute, tacplus, dns, ntp, radius, cflowd, dhcp, bootp, ndis, vrrp, srtp

`dscp-value` — Specifies a value when this packet egresses the respective egress policy should provide the mapping for the DSCP value to either LSP-EXP bits or IEEE 802.1p (Dot1P) bits as appropriate otherwise the default mapping applies.
Values 0 — 63
dscp-name — Specifies the DSCP name.
Values none, be, ef, cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp9, cs1, cs2, cs3, cs4, cs5, nc1, nc2,
af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cp11, cp13,
af15, cp17, cp19, cp21, cp23, cp25, cp27, cp29, cp31, cp33, cp35, cp37, cp39,
cp41, cp42, cp43, cp44, cp45, cp47, cp49, cp50, cp51, cp52, cp53, cp54, cp55,
cp57, cp58, cp59, cp60, cp61, cp62, cp63
dotp-priority — Specifies the Dot1P priority.
Values 0 — 7
dotp-app-name — Specifies the Dot1P application name.
Values arp, isis
dscp
Syntax dscp dscp-name fc fc-name
no dscp dscp-name
Context config>service>vprn>sgt-qos
Description This command creates a mapping between the DiffServ Code Point (DSCP) of the self generated
traffic and the forwarding class.

Self generated traffic that matches the specified DSCP will be assigned to the corresponding
forwarding class. Multiple commands can be entered to define the association of some or all sixty-
four DiffServ code points to the forwarding class. For undefined code points, packets are assigned to
the forwarding class specified under the default-action command.
All DSCP names that defines a DSCP value must be explicitly defined.
The no form of this command removes the DiffServ code point to forwarding class association. The
default-action then applies to that code point value.
Default none
Parameters dscp-name — The name of the DiffServ code point to be associated with the forwarding class.
DiffServ code point can only be specified by its name and only an existing DiffServ code point
can be specified. The software provides names for the well known code points.
Values be, ef, cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp9, cs1, cs2, cs3, cs4, cs5, nc1, nc2, af11,
af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cp11, cp13,
af15, cp17, cp19, cp21, cp23, cp25, cp27, cp29, cp31, cp33, cp35, cp37, cp39,
cp41, cp42, cp43, cp44, cp45, cp47, cp49, cp50, cp51, cp52, cp53, cp54, cp55,
cp57, cp58, cp59, cp60, cp61, cp62, cp63
fc fc-name — Specifies the forwarding class name. All packets with DSCP value or MPLS EXP bits
that is not defined will be placed in this forwarding class.
Default None, the fc name must be specified
Values be, l2, af, l1, h2, ef, h1, nc
single-sfm-overload

Syntax  

```
single-sfm-overload [holdoff-time holdoff-time]
nosingle-sfm-overload
```

Context  

```
config>service>vprn
```

Description  

This command, if enabled, will cause the IGP protocols (either IS-IS or OSPF) for the service to enter an overload state when the node only has a single SFM functioning.

The no form of this command causes the overload state to be cleared.

Default  

```
no single-sfm-overload
```

Parameters  

```
holdoff-time — This parameter specifies the delay between the detection of a single SFM and enacting the overload state.
Values
1—600 seconds
Default
0 seconds
```

snmp-community

Syntax  

```
snmp-community community-name [version SNMP-version]
nosnmp-community [community-name]
```

Context  

```
config>service>vprn
```

Description  

This command sets the SNMP community name to be used with the associated VPRN instance. If an SNMP community name is not specified, then SNMP access is not allowed.

The no form of the command removes the SNMP community name from the given VPRN context.

Default  

```
None — The SNMP community must be explicitly specified.
```

Parameters  

```
community-name — Specifies one or more SNMP community names.
version SNMP-version — Specifies the SNMP version.
Values
v1, v2c, both
```

source-address

Syntax  

```
source-address
```

Context  

```
config>service>vprn
```

Description  

This command enables the context to specify the source address and application that should be used in all unsolicited packets.
application

Syntax application app [ip-int-name|ip-address]
no application app

Context config>service>vprn>source-address

Description This command specifies the source address and application.

Parameters app — Specify the application name.
  Values telnet, ssh, traceroute, ping

ip-int-name | ip-address — Specifies the name of the IP interface or IP address. If the string contains
special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

static-route

Syntax [no] static-route {ip-prefix/prefix-length | ip-prefix netmask} [preference preference] [metric
metric] [tag tag] [enable | disable] {next-hop ip-int-name | ip-address | ipsec-tunnel ipsec-
tunnel-name} [bfd-enable | {cpe-check cpe-ip-address [interval seconds] [drop-count
count] [log]}]
[no] static-route {ip-prefix/prefix-length | ip-prefix netmask} [preference preference] [metric
metric] [tag tag] [enable | disable] indirect ip-address [cpe-check cpe-ip-address [interval
seconds][drop-count count] [log]]
[no] static-route {ip-prefix/prefix-length | ip-prefix netmask} [preference preference] [metric
metric] [tag tag] [enable | disable] black-hole

Context config>service>vprn

Description This command creates static route entries within the associated router instance. When configuring a
static route, either next-hop, indirect or black-hole must be configured.

The no form of the command deletes the static route entry. If a static route needs to be removed when
multiple static routes exist to the same destination, then as many parameters to uniquely identify the
static route must be entered.

If a CPE connectivity check target address is already being used as the target address in a different
static route, then cpe-check parameters must match. If they do not, the new configuration command
will be rejected.

If a static-route command is issued with no cpe-check target but the destination prefix/netmask and
next-hop matches a static route that did have an associated cpe-check, the cpe-check test will be
removed from the associated static route.

Default No static routes are defined.

Parameters ip-prefix — The destination address of the aggregate route in dotted decimal notation.
  Values ipv4-prefix a.b.c.d (host bits must be 0)
  ipv4-prefix-length 0 — 32
**netmask** — The subnet mask in dotted decimal notation.

**Values**  
0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

**ip-int-name** — The name of the IP interface. Interface names must be unique within the group of defined IP interfaces for `config router interface` and `config service ies interface` commands. An interface name cannot be in the form of an IP address. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed with single quotes.

**ip-address** — The IP address of the IP interface. The `ip-addr` portion of the `address` command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation.

**Values**  
ipv4-address a.b.c.d (host bits must be 0)

**enable** — Static routes can be administratively enabled or disabled. Use the `enable` parameter to re-enable a disabled static route. In order to enable a static route, it must be uniquely identified by the IP address, mask, and any other parameter that is required to identify the exact static route.

The administrative state is maintained in the configuration file.

**Default**  
enable

**disable** — Static routes can be administratively enabled or disabled. Use the `disable` parameter to disable a static route while maintaining the static route in the configuration. In order to enable a static route, it must be uniquely identified by the IP address, mask, and any other parameter that is required to identify the exact static route.

The administrative state is maintained in the configuration file.

**Default**  
enable

**interval seconds** — This optional parameter specifies the interval between ICMP pings to the target IP address.

**Values**  
1 — 255 seconds

**Default**  
1 seconds

**drop-count count** — This optional parameter specifies the number of consecutive ping-replies that must be missed to declare the CPE down and to de-active the associated static route.

**Values**  
Value range: 1 — 255

**Default**  
3

**log** — This optional parameter enables the ability to log transitions between active and in-active based on the CPE connectivity check. Events should be sent to the system log, syslog and SNMP traps.

**next-hop [ip-address | ip-int-name]** — Specifies the directly connected next hop IP address used to reach the destination. If the next hop is over an unnumbered interface, the `ip-int-name` of the unnumbered interface (on this node) can be configured.

The `next-hop` keyword and the `indirect` or `black-hole` keywords are mutually exclusive. If an identical command is entered (with the exception of either the `indirect` or `black-hole` parameters), then this static route will be replaced with the newly entered command, and unless specified, the respective defaults for preference and metric will be applied.
The ip-addr configured here can be either on the network side or the access side on this node. This address must be associated with a network directly connected to a network configured on this node.

**ipsec-tunnel ipsec-tunnel-name** — specifies an IPSec tunnel name up to 32 characters in length.

**indirect ip-address** — Specifies that the route is indirect and specifies the next hop IP address used to reach the destination.

The configured ip-addr is not directly connected to a network configured on this node. The destination can be reachable via multiple paths. The static route remains valid as long as the address configured as the indirect address remains a valid entry in the routing table. Indirect static routes cannot use an ip-prefix/mask to another indirect static route.

The indirect keyword and the **next-hop** or **black-hole** keywords are mutually exclusive. If an identical command is entered (with the exception of either the next-hop or black-hole parameters), then this static route will be replaced with the newly entered command and unless specified the respective defaults for preference and metric will be applied.

The ip-addr configured can be either on the network or the access side and is normally at least one hop away from this node.

**black-hole** — Specifies a black hole route meaning that if the destination address on a packet matches this static route it will be silently discarded.

The black-hole keyword is mutually exclusive with either the next-hop or indirect keywords. If an identical command is entered, with exception of either the next-hop or indirect parameters, then the static route is replaced with the new command, and unless specified, the respective defaults for preference and metric are applied.

**preference preference** — The preference of this static route (as opposed to the routes from different sources such as BGP or OSPF), expressed as a decimal integer. When modifying the preference value of an existing static route, unless specified, the metric will not change.

If multiple routes are learned with an identical preference using the same protocol, the lowest cost route is used. If multiple routes are learned with an identical preference using the same protocol and the costs (metrics) are equal, then the decision of which route to use is determined by the configuration of the ECMP command.

**Default** 5

**Values** 1 — 255

**metric metric** — The cost metric for the static route, expressed as a decimal integer. This value is used when importing this static route into other protocols such as OSPF. This value is also used to determine the static route to install in the forwarding table: When modifying the metrics of an existing static route, unless specified, the preference will not change.

If there are multiple static routes with the same preference but unequal metrics, the lower cost (metric) route is installed. If there are multiple static routes with equal preference and metrics then ECMP rules apply. If there are multiple routes with unequal preferences, then the lower preference route is installed.

**Default** 1

**Values** 0 — 65535

**tag** — Adds a 32-bit integer tag to the static route. The tag is used in route policies to control distribution of the route into other protocols.
Virtual Private Routed Network Services

Values
  1..4294967295

**bfd-enable** — Associates the state of the static route to a BFD session between the local system and the configured nexthop. This keyword cannot be configured if the nexthop is **indirect** or a **blackhole** keywords are specified.

**cpe-check target-ip-address** — This parameter specifies the IP address of the target CPE device. ICMP pings will be sent to this target IP address. This parameter must be configured to enable the CPE connectivity feature for the associated static route. The target-ip-address cannot be in the same subnet as the static route subnet itself to avoid possible circular references. This option is mutually exclusive with BFD support on a given static route.

**Default** no cpe-check enabled

---

**vrf-export**

**Syntax**
```
vrf-export policy [policy...]
no vrf-export
```

**Context**
```
config>service>vprn
```

**Description**
This command specifies the export policies to control routes exported from the local VPN routing/forwarding (VRF) to other VRFs on the same or remote PE routers (via MP-BGP).

The **no** form of the command removes all route policy names from the export list.

**Default**
None — No routes are exported from the VRF by default.

**Parameters**
```
policy — The route policy statement name.
```

---

**vrf-import**

**Syntax**
```
vrf-import policy [policy...]
no vrf-import
```

**Context**
```
config>service>vprn
```

**Description**
This command sets the import policies to control routes imported to the local VPN routing/forwarding (VRF) from other VRFs on the same or remote PE routers (via MP-BGP). BGP-VPN routes imported with a vrf-import policy will use the BGP preference value of 170 when imported from remote PE routers, or retain the protocol preference value of the exported route when imported from other VRFs on the same router, unless the preference is changed by the policy.

The **no** form of the command removes all route policy names from the import list

**Default**
None — No routes are accepted into the VRF by default.

**Parameters**
```
policy — The route policy statement name.
```
vrf-target

Syntax

vrf-target {ext-community | export ext-community | import ext-community}
no vrf-target

Context  config>service>vprn

Description
This command facilitates a simplified method to configure the route target to be added to advertised routes or compared against received routes from other VRFs on the same or remote PE routers (via MP-BGP).

BGP-VPN routes imported with a vrf-target statement will use the BGP preference value of 170 when imported from remote PE routers, or retain the protocol preference value of the exported route when imported from other VRFs in the same router.

Specified vrf-import or vrf-export policies override the vrf-target policy.

The no form of the command removes the vrf-target

Default
no vrf-target

Parameters

ext-comm — An extended BGP community in the type:x:y format. The value x can be an integer or IP address. The type can be the target or origin. x and y are 16-bit integers.

Values

ip-addr a.b.c.d
comm-val [0..65535]
2byte-asnumber [0..65535]
ext-comm-val [0..4294967295]
4byte-asnumber [0..4294967295]

import ext-community — Specify communities allowed to be accepted from remote PE neighbors.

export ext-community — Specify communities allowed to be sent to remote PE neighbors.
SDP Commands

spoke-sdp

Syntax

[no] spoke-sdp sdp-id

Context

cfg>service>vprn

Description

This command binds a service to an existing Service Distribution Point (SDP). A spoke SDP is treated like the equivalent of a traditional bridge “port” where flooded traffic received on the spoke SDP is replicated on all other “ports” (other spoke and mesh SDPs or SAPs) and not transmitted on the port it was received.

The SDP has an operational state which determines the operational state of the SDP within the service. For example, if the SDP is administratively or operationally down, the SDP for the service will be down.

The SDP must already be defined in the config>service>sdp context in order to associate an SDP with a VPRN service. If the sdp sdp-id is not already configured, an error message is generated. If the sdp-id does exist, a binding between that sdp-id and the service is created.

SDPs must be explicitly associated and bound to a service. If an SDP is not bound to a service, no far-end 7210 SAS devices can participate in the service.

The no form of this command removes the SDP binding from the service. The SDP configuration is not affected; only the binding of the SDP to a service. Once removed, no packets are forwarded to the far-end router.

Default

No sdp-id is bound to a service.

Special Cases

VPRN — Several SDPs can be bound to a VPRN service. Each SDP must be destined to a different 7210 SAS router. If two sdp-id bindings terminate on the same 7210 SAS, an error occurs and the second SDP binding is rejected.

Parameters

sdp-id — The SDP identifier. Allowed values are integers in the range of 1 and 17407 for existing SDPs.

vc-id — The virtual circuit identifier.

Values

1 — 4294967295
**Interface Commands**

**interface**

**Syntax**

```
interface ip-int-name
no interface ip-int-name
```

**Context**

`config>service>vprn`

**Description**

This command creates a logical IP routing interface for a Virtual Private Routed Network (VPRN). Once created, attributes like an IP address and service access point (SAP) can be associated with the IP interface.

The `interface` command, under the context of services, is used to create and maintain IP routing interfaces within VPRN service IDs. The `interface` command can be executed in the context of an VPRN service ID. The IP interface created is associated with the service core network routing instance and default routing table. The typical use for IP interfaces created in this manner is for subscriber internet access.

Interface names are case sensitive and must be unique within the group of defined IP interfaces defined for `config router interface` and `config service vprn interface`. Interface names must not be in the dotted decimal notation of an IP address. For example, the name “1.1.1.1” is not allowed, but “int-1.1.1.1” is allowed. Show commands for router interfaces use either interface names or the IP addresses. Use unique IP address values and IP address names to maintain clarity. It could be unclear to the user if the same IP address and IP address name values are used. Although not recommended, duplicate interface names can exist in different router instances.

The available IP address space for local subnets and routes is controlled with the `config router service-prefix` command. The `service-prefix` command administers the allowed subnets that can be defined on service IP interfaces. It also controls the prefixes that may be learned or statically defined with the service IP interface as the egress interface. This allows segmenting the IP address space into `config router` and `config service` domains.

When a new name is entered, a new logical router interface is created. When an existing interface name is entered, the user enters the router interface context for editing and configuration.

By default, there are no default IP interface names defined within the system. All VPRN IP interfaces must be explicitly defined. Interfaces are created in an enabled state.

The `no` form of this command removes IP the interface and all the associated configuration. The interface must be administratively shutdown before issuing the `no interface` command.

For VPRN services, the IP interface must be shutdown before the SAP on that interface may be removed. VPRN services do not have the `shutdown` command in the SAP CLI context. VPRN service SAPs rely on the interface status to enable and disable them.

**Parameters**

```
ip-int-name — Specifies the name of the IP interface. Interface names must be unique within the group of defined IP interfaces for `config router interface` and `config service vprn interface` commands. An interface name cannot be in the form of an IP address. Interface names can be from 1 to 32 alphanumeric characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
If `ip-int-name` already exists within the service ID, the context will be changed to maintain that IP interface. If `ip-int-name` already exists within another service ID or is an IP interface defined within the `config router` commands, an error will occur and context will not be changed to that IP interface. If `ip-int-name` does not exist, the interface is created and context is changed to that interface for further command processing.

address

Syntax

```
address ip-address/mask | ip-address netmask [broadcast [all-ones | host-ones]]
```

Context

```
config>service>vprn>if
```

Description

Assigns an IP address, IP subnet, and broadcast address format to a VPRN IP router interface. Only one IP address can be associated with an IP interface.

An IP address must be assigned to each VPRN IP interface. An IP address and a mask are used together to create a local IP prefix. The defined IP prefix must be unique within the context of the routing instance. It cannot overlap with other existing IP prefixes defined as local subnets on other IP interfaces in the same routing context within the 7210 SAS.

The local subnet that the `address` command defines must be part of the services address space within the routing context using the `config router service-prefix` command. The default is to disallow the complete address space to services. Once a portion of the address space is allocated as a service prefix, that portion can be made unavailable for IP interfaces defined within the `config router interface` CLI context for network core connectivity with the `exclude` option in the `config router service-prefix` command.

The IP address for the interface can be entered in either CIDR (Classless Inter-Domain Routing) or traditional dotted decimal notation. The show commands display CIDR notation and is stored in configuration files.

By default, no IP address or subnet association exists on an IP interface until it is explicitly created. Use the `no` form of this command to remove the IP address assignment from the IP interface. When the `no address` command is entered, the interface becomes operationally down.

<table>
<thead>
<tr>
<th>Address</th>
<th>Admin state</th>
<th>Oper state</th>
</tr>
</thead>
<tbody>
<tr>
<td>No address</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>No address</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>down</td>
<td>down</td>
</tr>
</tbody>
</table>

The operational state is a read-only variable and the only controlling variables are the address and admin states. The address and admin states are independent and can be set independently. If an interface is in an administratively up state and an address is assigned, it becomes operationally up and the protocol interfaces and the MPLS LSPs associated with that IP interface will be reinitialized.
ip-address — The IP address of the IP interface. The *ip-address* portion of the *address* command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation. Allowed values are IP addresses in the range 1.0.0.0 – 223.255.255.255 (with support of /31 subnets).

/ — The forward slash is a parameter delimiter and separates the *ip-address* portion of the IP address from the mask that defines the scope of the local subnet. No spaces are allowed between the *ip-address*, the “/” and the *mask-length* parameter. If a forward slash is not immediately following the *ip-address*, a dotted decimal mask must follow the prefix.

mask-length — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the *ip-address* from the *mask-length* parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address. Allowed values are integers in the range 0 – 30. Note that a mask length of 32 is reserved for system IP addresses.

mask — The subnet mask in dotted decimal notation. When the IP prefix is not specified in CIDR notation, a space separates the *ip-address* from a traditional dotted decimal mask. The *mask* parameter indicates the complete mask that will be used in a logical ‘AND’ function to derive the local subnet of the IP address. Allowed values are dotted decimal addresses in the range 128.0.0.0 – 255.255.255.252. Note that a mask of 255.255.255.255 is reserved for system IP addresses.

broadcast — The optional *broadcast* parameter overrides the default broadcast address used by the IP interface when sourcing IP broadcasts on the IP interface. If no broadcast format is specified for the IP address, the default value is *host-ones* which indicates a subnet broadcast address. Use this parameter to change the broadcast address to *all-ones* or revert back to a broadcast address of *host-ones*.

The broadcast format on an IP interface can be specified when the IP address is assigned or changed.

This parameter does not affect the type of broadcasts that can be received by the IP interface. A host sending either the local broadcast (*all-ones*) or the valid subnet broadcast address (*host-ones*) will be received by the IP interface.

Default

host-ones

all-ones — The *all-ones* keyword following the *broadcast* parameter specifies the broadcast address used by the IP interface for this IP address will be 255.255.255.255, also known as the local broadcast.

host-ones — The *host-ones* keyword following the *broadcast* parameter specifies that the broadcast address used by the IP interface for this IP address will be the subnet broadcast address. This is an IP address that corresponds to the local subnet described by the *ip-address* and the *mask-length* or *mask* with all the host bits set to binary one. This is the default broadcast address used by an IP interface.

The *broadcast* parameter within the *address* command does not have a negate feature, which is usually used to revert a parameter to the default value. To change the *broadcast* type to *host-ones* after being changed to *all-ones*, the *address* command must be executed with the *broadcast* parameter defined.
allow-directed-broadcasts

Syntax
`[no] allow-directed-broadcasts`

Context
`config>service>vprn>if`

Description
This command controls the forwarding of directed broadcasts out of the IP interface.

A directed broadcast is a packet received on a local router interface destined for the subnet broadcast address on another IP interface. The `allow-directed-broadcasts` command on an IP interface enables or disables the transmission of packets destined to the subnet broadcast address of the egress IP interface.

When enabled, a frame destined to the local subnet on this IP interface will be sent as a subnet broadcast out this interface. Care should be exercised when allowing directed broadcasts as it is a well-known mechanism used for denial-of-service attacks.

When disabled, directed broadcast packets discarded at this egress IP interface will be counted in the normal discard counters for the egress SAP.

By default, directed broadcasts are not allowed and will be discarded at this egress IP interface.

The `no` form of this command disables the forwarding of directed broadcasts out of the IP interface.

Default
`no allow-directed-broadcasts` — Directed broadcasts are dropped.

bfd

Syntax
`bfd transmit-interval [receive receive-interval] [multiplier multiplier] [echo-receive echo-interval]`

`no bfd`

Context
`config>service>vprn>if`

This command specifies the BFD parameters for the associated IP interface. If no parameters are defined the default value are used.

The multiplier specifies the number of consecutive BFD messages that must be missed from the peer before the BFD session state is changed to down and the upper level protocols (OSPF, IS-IS, BGP or PIM) is notified of the fault.

The `no` form of the command removes BFD from the associated IGP protocol adjacency.

Default
`no bfd`

Parameters

- `transmit-interval` — Sets the transmit interval for the BFD session.
 - **Values**
 - 10 — 100000
 - **Default**
 - 100

- `receive receive-interval` — Sets the receive interval for the BFD session.
 - **Values**
 - 10 — 100000
 - **Default**
 - 100
multiplier multiplier — Set the multiplier for the BFD session.

Values 3—20
Default 3

echo-receive echo-interval — Sets the minimum echo receive interval, in milliseconds, for the BFD session.

Values 100—100000
Default 100

local-proxy-arp

Syntax [no] local-proxy-arp

Context config>service>vprn>if

Description This command enables local proxy ARP. When local proxy ARP is enabled on an IP interface, the system responds to all ARP requests for IP addresses belonging to the subnet with its own MAC address, and thus will become the forwarding point for all traffic between hosts in that subnet. When local-proxy-arp is enabled, ICMP redirects on the ports associated with the service are automatically blocked.

Default no local-proxy-arp

loopback

Syntax [no] loopback

Context config>service>vprn>if

Description This command specifies that the associated interface is a loopback interface that has no associated physical interface. As a result, the associated interface cannot be bound to a SAP.

When using mtrace/mstat in a Layer 3 VPN context then the configuration for the VPRN should have a loopback address configured which has the same address as the core instance's system address (BGP next-hop).

Default None

proxy-arp-policy

Syntax [no] proxy-arp-policy policy-name [policy-name...(up to 5 max)]

Context config>service>vprn>if

Description This command enables a proxy ARP policy for the interface.
The no form of this command disables the proxy ARP capability.
Virtual Private Routed Network Services

Default

no proxy-arp

Parameters

colicy-name — The export route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

remote-proxy-arp

Syntax

[no] remote-proxy-arp

Context

cfg>service>vprn>if

This command enables remote proxy ARP on the interface.

Remote proxy ARP is similar to proxy ARP. It allows the router to answer an ARP request on an interface for a subnet that is not provisioned on that interface. This allows the router to forward to the other subnet on behalf of the requester. To distinguish remote proxy ARP from local proxy ARP, local proxy ARP performs a similar function but only when the requested IP is on the receiving interface.

Default

no remote-proxy-arp

static-arp

Syntax

[no] static-arp ip-address ieee-mac-address

Context

cfg>service>vprn>if

Description

This command configures a static address resolution protocol (ARP) entry associating a subscriber IP address with a MAC address for the core router instance. This static ARP will appear in the core routing ARP table. A static ARP can only be configured if it exists on the network attached to the IP interface. If an entry for a particular IP address already exists and a new MAC address is configured for the IP address, the existing MAC address will be replaced with the new MAC address.

The no form of this command removes a static ARP entry.

Default

none

Parameters

ip-address — Specifies the IP address for the static ARP in IP address dotted decimal notation.

ieee-mac-address — Specifies the 48-bit MAC address for the static ARP in the form

\texttt{aabb:ccdd:eeff} or \texttt{aa-bb-cc-dd-ee-ff} where \texttt{aa}, \texttt{bb}, \texttt{cc}, \texttt{dd}, \texttt{ee} and \texttt{ff} are hexadecimal numbers. Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.
Interface ICMP Commands

icmp

Syntax
icmp

Context
config>service>vprn>if
cfg=config>service>vprn>sub-if>grp-if
cfg=config>service>vprn>nw-if

Description
This command configures Internet Control Message Protocol (ICMP) parameters on a VPRN service.

mask-reply

Syntax
[no] mask-reply

Context
config>service>vprn>if>icmp
cfg=config>service>vprn>sub-if>grp-if>icmp
cfg=config>service>vprn>nw-if>icmp#

Description
This command enables responses to Internet Control Message Protocol (ICMP) mask requests on the router interface.
If a local node sends an ICMP mask request to the router interface, the mask-reply command configures the router interface to reply to the request.
By default, the router instance will reply to mask requests.
The no form of this command disables replies to ICMP mask requests on the router interface.

Default
mask-reply — Reply to ICMP mask requests.

redirects

Syntax
redirects [number seconds]
no redirects

Context
config>service>vprn>if>icmp
cfg=config>service>vprn>sub-if>grp-if>icmp
cfg=config>service>vprn>nw-if>icmp#

Description
This command configures the rate for Internet Control Message Protocol (ICMP) redirect messages issued on the router interface.
When routes are not optimal on this router and another router on the same subnetwork has a better route, the router can issue an ICMP redirect to alert the sending node that a better route is available.
The redirects command enables the generation of ICMP redirects on the router interface. The rate at which ICMP redirects is issued can be controlled with the optional number and seconds parameters.
by indicating the maximum number of redirect messages that can be issued on the interface for a given time interval.

By default, generation of ICMP redirect messages is enabled at a maximum rate of 100 per 10 second time interval.

The no form of this command disables the generation of icmp redirects on the router interface.

Default

`redirects 100 10` — Maximum of 100 redirect messages in 10 seconds.

Parameters

`number` — The maximum number of ICMP redirect messages to send. This parameter must be specified with the `seconds` parameter.

```plaintext
Values 10 — 1000
```

`seconds` — The time frame in seconds used to limit the `seconds` of ICMP redirect messages that can be issued.

```plaintext
Values 1 — 60
```

ttl-expired

Syntax

`ttl-expired number seconds`

`no ttl-expired`

Context

`config>service>vprn>if>icmp`

`config>service>vprn>sub-if>grp-if>icmp`

`config>service>vprn>nw-if>icmp`

Description

Configures the rate Internet Control Message Protocol (ICMP) TTL expired messages are issued by the IP interface.

By default, generation of ICMP TTL expired messages is enabled at a maximum rate of 100 per 10 second time interval.

The no form of this command disables the limiting the rate of TTL expired messages on the router interface.

Default

`ttl-expired 100 10`

Parameters

`number` — The maximum number of ICMP TTL expired messages to send, expressed as a decimal integer. This parameter must be specified with the `seconds` parameter.

```plaintext
Values 10 — 1000
```

`seconds` — The time frame in seconds used to limit the `number` of ICMP TTL expired messages that can be issued, expressed as a decimal integer.

```plaintext
Values 1 — 60
```
unreachables

Syntax unreachables [number seconds]

no unreachables

Context config>service>vprn>if>icmp
config>service>vprn>sub-if>grp-if>icmp
config>service>vprn>nw-if>icmp#

Description This command enables and configures the rate for ICMP host and network destination unreachable messages issued on the router interface.

The unreachables command enables the generation of ICMP destination unreachables on the router interface. The rate at which ICMP unreachables is issued can be controlled with the optional number and seconds parameters by indicating the maximum number of destination unreachable messages which can be issued on the interface for a given time interval.

By default, generation of ICMP destination unreachable messages is enabled at a maximum rate of 10 per 10 second time interval.

The no form of this command disables the generation of icmp destination unreachable messages on the router interface.

Default unreachables 100 10

Parameters number — The maximum number of ICMP unreachable messages to send. This parameter must be specified with the seconds parameter.

Values 10 — 1000

seconds — The time frame in seconds used to limit the number of ICMP unreachable messages that can be issued.

Values 1 — 60
Interface SAP Commands

sap

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sap sap-id [create]</code></td>
<td>This command creates a Service Access Point (SAP) within a service. A SAP is a combination of port and encapsulation parameters which identifies the service access point on the interface and within the 7210 SAS. Each SAP must be unique. All SAPs must be explicitly created. If no SAPs are created within a service or on an IP interface, a SAP will not exist on that object. Enter an existing SAP without the <code>create</code> keyword to edit SAP parameters. The SAP is owned by the service in which it was created. A SAP can only be associated with a single service. A SAP can only be defined on a port that has been configured as an access port using the <code>config interface port-type port-id mode access</code> command. Channelized TDM ports are always access ports. If a port is shutdown, all SAPs on that port become operationally down. When a service is shutdown, SAPs for the service are not displayed as operationally down although all traffic traversing the service will be discarded. The operational state of a SAP is relative to the operational state of the port on which the SAP is defined. The <code>no</code> form of this command deletes the SAP with the specified port. When a SAP is deleted, all configuration parameters for the SAP will also be deleted.</td>
</tr>
<tr>
<td><code>no sap sap-id</code></td>
<td>No SAPs are defined.</td>
</tr>
</tbody>
</table>

Context

`config>service>vprn>if`

Description

VPRN — A VPRN SAP must be defined on an Ethernet interface.

`sap ipsec-id.private | public:tag` — This parameter associates an IPSec group SAP with this interface. This is the public side for an IPSec tunnel. Tunnels referencing this IPSec group in the private side may be created if their local IP is in the subnet of the interface subnet and the routing context specified matches with the one of the interface.

This context will provide a SAP to the tunnel. The operator may associate an ingress and egress QoS policies as well as filters and virtual scheduling contexts. Internally this creates an Ethernet SAP that will be used to send and receive encrypted traffic to and from the MDA. Multiple tunnels can be associated with this SAP. The “tag” will be a dot1q value. The operator may see it as an identifier. The range is limited to 1 — 4094.

Parameters

`sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

`port-id` — Specifies the physical port ID in the `slot/mda/port` format.

If the card in the slot has Media Dependent Adapters (MDAs) installed, the `port-id` must be in the `slot_number/MDA_number/port_number` format. For example 2/3 specifies port 3 on MDA 2 in slot.
The `port-id` must reference a valid port type. When the `port-id` parameter represents SONET/SDH and TDM channels, the port ID must include the channel ID. A period “.” separates the physical port from the `channel-id`. The port must be configured as an access port.

If the SONET/SDH port is configured as clear-channel then only the port is specified.

create — Keyword used to create a SAP instance.

split-horizon-group `group-name` — Specifies the name of the split horizon group to which the SAP belongs.

tod-suite

Syntax

```
tod-suite tod-suite-name
no tod-suite
```

Context

`config>service>vprn>if>sap`

Description

This command applies a time-based policy (filter or QoS policy) to the SAP. The suite name must already exist in the `config>cron` context.

Default

`no tod-suite`

Parameters

`tod-suite-name` — Specifies collection of policies (ACLs, QoS) including time-ranges that define the full or partial behavior of a SAP or a subscriber. The suite can be applied to more than one SAP.

accounting-policy

Syntax

```
accounting-policy acct-policy-id
no accounting-policy
```

Context

`config>service>vprn>if>sap`

Description

This command creates the accounting policy context that can be applied to an interface SAP or interface SAP spoke SDP.

An accounting policy must be defined before it can be associated with a SAP. If the `policy-id` does not exist, an error message is generated.

A maximum of one accounting policy can be associated with a SAP at one time. Accounting policies are configured in the `config>log` context.

The `no` form of this command removes the accounting policy association from the SAP, and the accounting policy reverts to the default.

Default

Default accounting policy.

Parameters

`acct-policy-id` — Enter the accounting `policy-id` as configured in the `config>log>accounting-policy` context.

Values

1 — 99
collect-stats

Syntax [no] collect-stats
Context config>service>vprn>if>sap
Description This command enables accounting and statistical data collection for either an interface SAP or interface SAP spoke SDP, or network port. When applying accounting policies the data, by default, is collected in the appropriate records and written to the designated billing file.

When the no collect-stats command is issued the statistics are still accumulated by the IOM cards. However, the CPU will not obtain the results and write them to the billing file. If a subsequent collect-stats command is issued then the counters written to the billing file include all the traffic while the no collect-stats command was in effect.

Default no collect-stats

arp-timeout

Syntax arp-timeout seconds
no arp-timeout
Context config>service>vprn>if
Description This command configures the minimum time in seconds an ARP entry learned on the IP interface will be stored in the ARP table. ARP entries are automatically refreshed when an ARP request or gratuitous ARP is seen from an IP host, otherwise, the ARP entry is aged from the ARP table. If arp-timeout is set to a value of zero seconds, ARP aging is disabled.

The no form of this command restores arp-timeout to the default value.

Default 14400 seconds
Parameters seconds — The minimum number of seconds a learned ARP entry will be stored in the ARP table, expressed as a decimal integer. A value of zero specifies that the timer is inoperative and learned ARP entries will not be aged.

Values 0 — 65535

delayed-enable

Syntax delayed-enable seconds [init-only]
no delayed-enable
Context config>service>vprn>if
Description This command delays making interface operational by the specified number of seconds.

In environments with many subscribers, it can take time to synchronize the subscriber state between peers when the subscriber-interface is enabled (perhaps, after a reboot). To ensure that the state has time to be synchronized, the delayed-enable timer can be specified. The optional parameter init-only can be added to use this timer only after a reboot.
Default: no delayed-enable

Parameters:

- **seconds** — Specifies the number of seconds to delay before the interface is operational.

 Values: 1 — 1200

- **init-only** — Delays the initialization of the subscriber-interface to give the rest of the system time to complete necessary tasks such as allowing routing protocols to converge and/or to allow MCS to sync the subscriber information. The delay only occurs immediately after a reboot.
Interface SAP Filter and QoS Policy Commands

egress

Syntax
`egress`

Context
`config>service>vprn>if>sap`

Description
This command enables the context to configure egress SAP Quality of Service (QoS) policies and filter policies.

If no sap-egress QoS policy is defined, the system default sap-egress QoS policy is used for egress processing. If no egress filter is defined, no filtering is performed.

ingress

Syntax
`ingress`

Context
`config>service>vprn>if>sap`

Description
This command enables the context to configure ingress SAP Quality of Service (QoS) policies and filter policies.

If no sap-ingress QoS policy is defined, the system default sap-ingress QoS policy is used for ingress processing. If no ingress filter is defined, no filtering is performed.

filter

Syntax
`filter ip ip-filter-id
filter [mac mac-filter-id]
no filter [ip ip-filter-id]
no filter [mac mac-filter-id]
no filter`

Context
`config>service>vprn>if>sap>egress
config>service>vprn>if>sap>ingress`

Description
This command associates an IP filter policy with an ingress or egress Service Access Point (SAP) or IP interface. Filter policies control the forwarding and dropping of packets based on IP matching criteria.

The `filter` command is used to associate a filter policy with a specified `ip-filter-id` with an ingress or egress SAP. The `ip-filter-id` must already be defined before the `filter` command is executed. If the filter policy does not exist, the operation will fail and an error message returned.

In general, filters applied to SAPs (ingress or egress) apply to all packets on the SAP. One exception is non-IP packets are not applied to IP match criteria, so the default action in the filter policy applies to these packets.
The no form of this command removes any configured filter ID association with the SAP or IP interface. The filter ID itself is not removed from the system unless the scope of the created filter is set to local.

Parameters

ip ip-filter-id — Specifies IP filter policy. The filter ID must already exist within the created IP filters.

Values

1 — 65535

mac mac-filter-id — Specifies the MAC filter policy. The specified filter ID must already exist within the created MAC filters. The filter policy must already exist within the created MAC filters.

Values

1— 65535

aggregate-meter-rate

Syntax

`aggregate-meter-rate rate-in-kbps [burst burst-in-kbits]`

no aggregate-meter-rate

Context

config>service>vpls>sap>ingress

Description

This command allows the user to configure the SAP aggregate policer. The rate of the SAP aggregate policer must be specified by the user. The user can optionally specify the burst size for the SAP aggregate policer. The aggregate policer monitors the traffic on different FCs and determines the destination of the packet. The packet is either forwarded to an identified profile or dropped.

The table below provides information about the final disposition of the packet based on the operating rate of the per FC policer and the per SAP aggregate policer:

<table>
<thead>
<tr>
<th>Per FC meter Operating Rate</th>
<th>Per FC Assigned Color</th>
<th>SAP aggregate meter Operating Rate</th>
<th>SAP aggregate meter color</th>
<th>Final Packet Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within CIR</td>
<td>Green</td>
<td>Within PIR</td>
<td>Green</td>
<td>Green or In-profile</td>
</tr>
<tr>
<td>Within CIR</td>
<td>Green</td>
<td>Above PIR</td>
<td>Red</td>
<td>Green or In-profile</td>
</tr>
<tr>
<td>Above CIR, Within PIR</td>
<td>Yellow</td>
<td>Within PIR</td>
<td>Green</td>
<td>Yellow or Out-of-Profile</td>
</tr>
<tr>
<td>Above CIR, Within PIR</td>
<td>Yellow</td>
<td>Above PIR</td>
<td>Red</td>
<td>Red or Dropped</td>
</tr>
<tr>
<td>Above PIR</td>
<td>Red</td>
<td>Within PIR</td>
<td>Green</td>
<td>Red or Dropped</td>
</tr>
<tr>
<td>Above PIR</td>
<td>Red</td>
<td>Above PIR</td>
<td>Red</td>
<td>Red or Dropped</td>
</tr>
</tbody>
</table>

Table 19: Final Disposition of the packet based on per FC and per SAP policer or meter.
When the SAP aggregate policer is configured, per FC policer can be only configured in “trtcm2” mode (RFC 4115).

Note: The meter modes “srtcm” and “trtcm1” are used in the absence of an aggregate meter.

The SAP ingress meter counters increment the packet or octet counts based on the final disposition of the packet.

If ingress Frame-based accounting is used, the SAP aggregate meter rate accounts for the Ethernet frame overhead. The system accounts for 12 bytes of IFG and 8 bytes of start delimiter.

The `no` form of the command removes the aggregate policer from use.

Default

`no aggregate-meter-rate`

Parameters

`rate-in-kbps` — Specifies the rate in kilobits per second.

Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 — 2000000</td>
<td>max</td>
</tr>
</tbody>
</table>

Default

`max`

`burst <burst-in-kilobits>` — Specifies the burst size for the policer in kilobits. The burst size cannot be configured without configuring the rate.

Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 — 2146959</td>
<td></td>
</tr>
</tbody>
</table>

Default

`512`

QoS

Syntax

`qos policy-id`

`no qos`

Context

`config>service>vprn>if.sap>egress`

`config>service>vprn>if.sap>ingress`

Description

Associates a Quality of Service (QoS) policy with an ingress or egress Service Access Point (SAP) or IP interface. QoS ingress and egress policies are important for the enforcement of SLA agreements. The policy ID must be defined prior to associating the policy with a SAP or IP interface. If the `policy-id` does not exist, an error will be returned.

The `qos` command is used to associate both ingress and egress QoS policies. The `qos` command only allows ingress policies to be associated on SAP or IP interface ingress and egress policies on SAP or IP interface egress. Attempts to associate a QoS policy of the wrong type returns an error. Only one ingress and one egress QoS policy can be associated with a SAP or IP interface at one time. Attempts to associate a second QoS policy of a given type will return an error.

When an ingress QoS policy is defined on an ingress IP interface that is bound to a VPRN, the policy becomes associated with every SAP on the VPRN and augments the QoS policy that is defined on each SAP. Packets that are bridged will be processed using the policy defined on the VPRN SAP; packets that are routed will be processed using the policy defined in the IES IP interface-binding context.

When an egress QoS policy is associated with an IP interface that has been bound to a VPRN, the policy becomes associated with every SAP on the VPRN and augments the egress QoS policy that is defined on each SAP. Packets that are bridged will be processed using the policy defined on the
VPRN SAP; packets that are routed will be processed using the policy defined in the IP interface-binding context.

By default, no specific QoS policy is associated with the SAP or IP interface for ingress or egress, so the default QoS policy is used.

The **no** form of this command removes the QoS policy association from the SAP or IP interface, and the QoS policy reverts to the default.

Parameters

- **policy-id** — The ingress/egress policy ID to associate with SAP or IP interface on ingress/egress. The policy ID must already exist.

Values

- 1 — 65535
Interface VRRP Commands

vrrp

Syntax

vrrp virtual-router-id [owner]
no vrrp virtual-router-id

Context
config>service>vprn>if

Description
This command creates or edits a Virtual Router ID (VRID) on the service IP interface. A VRID is internally represented in conjunction with the IP interface name. This allows the VRID to be used on multiple IP interfaces while representing different virtual router instances.

Two VRRP nodes can be defined on an IP interface. One, both, or none may be defined as owner. The nodal context of vrrp virtual-router-id is used to define the configuration parameters for the VRID.

The no form of this command removes the specified VRID from the IP interface. This terminates VRRP participation for the virtual router and deletes all references to the VRID. The VRID does not need to be shutdown in order to remove the virtual router instance.

Default
No default

Parameters

virtual-router-id — The virtual-router-id parameter specifies a new virtual router ID or one that can be modified on the IP interface.

Values
1 — 255

authentication-key

Syntax

authentication-key [authentication-key | hash-key] [hash | hash2]
no authentication-key

Context
config>service>vprn>if>vrrp
config>service>vprn>if

Description
The authentication-key command, within the vrrp virtual-router-id context, is used to assign a simple text password authentication key to generate master VRRP advertisement messages and validate received VRRP advertisement messages.

The authentication-key command is one of the few commands not affected by the presence of the owner keyword. If simple text password authentication is not required, this command is not required. If the command is re-executed with a different password key defined, the new key will be used immediately. If a no authentication-key command is executed, the password authentication key is restored to the default value. The authentication-key command may be executed at any time, altering the simple text password used when authentication-type password authentication method is used by the virtual router instance. The authentication-type password command does not need to be executed prior to defining the authentication-key command.

To change the current in-use password key on multiple virtual router instances:

- Identify the current master
• Shutdown the virtual router instance on all backups
• Execute the authentication-key command on the master to change the password key
• Execute the authentication-key command and no shutdown command on each backup key

The no form of this command restores the default null string to the value of key.

Default
No default. The authentication data field contains the value 0 in all 16 octets.

Parameters

authentication-key — The key parameter identifies the simple text password used when VRRP Authentication Type 1 is enabled on the virtual router instance. Type 1 uses a string eight octets long that is inserted into all transmitted VRRP advertisement messages and compared against all received VRRP advertisement messages. The authentication data fields are used to transmit the key.

The key parameter is expressed as a string consisting of up to eight alpha-numeric characters. Spaces must be contained in quotation marks (" "). The quotation marks are not considered part of the string.

The string is case sensitive and is left-justified in the VRRP advertisement message authentication data fields. The first field contains the first four characters with the first octet (starting with IETF RFC bit position 0) containing the first character. The second field holds the fifth through eighth characters. Any unspecified portion of the authentication data field is padded with the value 0 in the corresponding octet.

Values
Any 7-bit printable ASCII character.

<table>
<thead>
<tr>
<th>Exceptions:</th>
<th>ASCII Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double quote</td>
<td>ASCII 34</td>
</tr>
<tr>
<td>Carriage Return</td>
<td>ASCII 13</td>
</tr>
<tr>
<td>Line Feed</td>
<td>ASCII 10</td>
</tr>
<tr>
<td>Tab</td>
<td>ASCII 9</td>
</tr>
<tr>
<td>Backspace</td>
<td>ASCII 8</td>
</tr>
</tbody>
</table>

hash-key — The hash key. The key can be any combination of ASCII characters up to 22 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (" ").

This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

hash — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.
backup

Syntax
[no] backup ip-address

Context
config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description
This command configures virtual router IP addresses for the interface.

init-delay

Syntax
init-delay seconds
no init-delay

Context
config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description
This command configures a VRRP initialization delay timer.

Default
no init-delay

Parameters
seconds — Specifies the initialization delay timer for VRRP, in seconds.

Values
1 — 65535

mac

Syntax
[no] mac ieee-mac-address

Context
config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description
This command assigns a specific MAC address to an IP interface.

The no form of this command returns the MAC address of the IP interface to the default value.

Default
The physical MAC address associated with the Ethernet interface that the SAP is configured on.

Parameters
ieee-mac-address — Specifies the 48-bit MAC address for the static ARP in the form
aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee and ff are hexadecimal numbers.
Allowed values are any non-broadcast, non-multicast MAC and non-IEEE reserved MAC addresses.

master-int-inherit

Syntax
[no] master-int-inherit

Context
config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description
This command allows the master instance to dictate the master down timer (non-owner context only).
VPRN Service Configuration Commands

Default

no master-int-inherit

message-interval

Syntax

message-interval { [seconds] [milliseconds milliseconds]}
no message-interval

Context

config>service>vprn>if
config>service>vprn>if>ipv6>vrrp

Description

This command sets the advertisement timer and indirectly sets the master down timer on the virtual router instance. The message-interval setting must be the same for all virtual routers participating as a virtual router. Any VRRP advertisement message received with an Advertisement Interval field different than the virtual router instance configured message-interval value will be silently discarded.

The message-interval command is available in both non-owner and owner vrrp virtual-router-id nodal contexts. If the message-interval command is not executed, the default message interval of 1 second will be used.

The no form of this command restores the default message interval value of 1 second to the virtual router instance.

Parameters

seconds — The number of seconds that will transpire before the advertisement timer expires.

Values

1 — 255

Default

1

milliseconds milliseconds — Specifies the milliseconds time interval between sending advertisement messages. This parameter is not supported on single-slot chassis.

Values

100 — 900

ping-reply

Syntax

[no] ping-reply

Context

config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description

This command enables the non-owner master to reply to ICMP Echo Requests directed at the virtual router instances IP addresses. The ping request can be received on any routed interface.

Ping must not have been disabled at the management security level (either on the parental IP interface or based on the Ping source host address). When ping-reply is not enabled, ICMP Echo Requests to non-owner master virtual IP addresses are silently discarded.

Non-owner backup virtual routers never respond to ICMP Echo Requests regardless of the setting of ping-reply configuration.

The ping-reply command is only available in non-owner vrrp virtual-router-id nodal context. If the ping-reply command is not executed, ICMP Echo Requests to the virtual router instance IP addresses will be silently discarded.
The `no` form of this command restores the default operation of discarding all ICMP Echo Request messages destined to the non-owner virtual router instance IP addresses.

Default

`no ping-reply`

policy

Syntax

```
policy [vrrp-policy-id]
no policy
```

Context

```
config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp
```

Description

This command associates a VRRP priority control policy with the virtual router instance (non-owner context only).

Parameters

- `vrrp-policy-id` — Specifies a VRRP priority control policy.
 - **Values**
 - `1 — 9999`

preempt

Syntax

```
preempt
no preempt
```

Context

```
config>service>vprn>if
config>service>vprn>if>ipv6>vrrp
```

Description

This command provides the ability of overriding an existing non-owner master to the virtual router instance. Enabling preempt mode is recommended for proper operation of the base-priority and `vrrp-policy-id` definitions on the virtual router instance. If the virtual router cannot preempt an existing non-owner master, the effect of the dynamic changing of the in-use priority is greatly diminished.

The preempt command is only available in the non-owner `vrrp virtual-router-id` nodal context. The owner may not be preempted due to the fact that the priority of non-owners can never be higher than the owner. The owner will always preempt all other virtual routers when it is available.

Non-owner virtual router instances will only preempt when preempt is set and the current master has an in-use message priority value less than the virtual router instances in-use priority.

A master non-owner virtual router will only allow itself to be preempted when the incoming VRRP Advertisement message Priority field value is one of the following:

- Greater than the virtual router in-use priority value
- Equal to the in-use priority value and the source IP address (primary IP address) is greater than the virtual router instance primary IP address

The `no` form of this command prevents a non-owner virtual router instance from preempting another, less desirable virtual router. Use the preempt command to restore the default mode.

Default

`preempt`
priority

Syntax

priority priority
no priority

Context

config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description

The priority command provides the ability to configure a specific priority value to the virtual router instance. In conjunction with an optional policy command, the base-priority is used to derive the in-use priority of the virtual router instance.

The priority command is only available in the non-owner vrrp virtual-router-id nodal context. The priority of owner virtual router instances is permanently set to 255 and cannot be changed. For non-owner virtual router instances, if the priority command is not executed, the base-priority will be set to 100.

The no form of this command restores the default value of 100 to base-priority.

Parameters

base-priority — The base-priority parameter configures the base priority used by the virtual router instance. If a VRRP priority control policy is not also defined, the base-priority will be the in-use priority for the virtual router instance.

Values

1 — 254

Default

100

ssh-reply

Syntax

[no] ssh-reply

Context

config>service>vprn>if>vrrp

Description

This command enables the non-owner master to reply to SSH Requests directed at the virtual router instance’s IP addresses. The SSH request can be received on any routed interface. SSH must not have been disabled at the management security level (either on the parental IP interface or based on the SSH source host address). Proper login and CLI command authentication is still enforced.

When ssh-reply is not enabled, SSH packets to non-owner master virtual IP addresses are silently discarded. Non-owner backup virtual routers never respond to SSH regardless of the ssh-reply configuration.

The ssh-reply command is only available in non-owner vrrp virtual-router-id nodal context. If the ssh-reply command is not executed, SSH packets to the virtual router instance IP addresses will be silently discarded.

The no form of this command restores the default operation of discarding all SSH packets destined to the non-owner virtual router instance IP addresses.

Default

no ssh-reply
standby-forwarding

Syntax

[no] standby-forwarding

Context

config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description

This command allows the forwarding of packets by a standby router. The `no` form of the command specifies that a standby router should not forward traffic sent to virtual router's MAC address. However, the standby router should forward traffic sent to the standby router's real MAC address.

Default

no standby-forwarding

telnet-reply

Syntax

[no] telnet-reply

Context

config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description

This command enables the non-owner master to reply to TCP port 23 Telnet Requests directed at the virtual router instance’s IP addresses. The Telnet request can be received on any routed interface. Telnet must not have been disabled at the management security level (either on the parental IP interface or based on the Telnet source host address). Proper login and CLI command authentication is still enforced.

When telnet-reply is not enabled, TCP port 23 Telnet packets to non-owner master virtual IP addresses are silently discarded.

Non-owner backup virtual routers never respond to Telnet Requests regardless of the telnet-reply configuration.

The telnet-reply command is only available in non-owner VRRP nodal context. If the telnet-reply command is not executed, Telnet packets to the virtual router instance IP addresses will be silently discarded.

The `no` form of this command restores the default operation of discarding all Telnet packets destined to the non-owner virtual router instance IP addresses.

Default

no telnet-reply

traceroute-reply

Syntax

[no] traceroute-reply

Context

config>service>vprn>if>vrrp
config>service>vprn>if>ipv6>vrrp

Description

This command is valid only if the VRRP virtual router instance associated with this entry is a non-owner.
When this command is enabled, a non-owner master can reply to traceroute requests directed to the virtual router instance IP addresses.

A non-owner backup virtual router never responds to such traceroute requests regardless of the `traceroute-reply` status.

Default

`no traceroute-reply`
PIM Commands

pim

Syntax [no] pim
Context config>service>vprn
Description This command configures a Protocol Independent Multicast (PIM) instance in the VPRN service. When an PIM instance is created, the protocol is enabled. PIM is used for multicast routing within the network. Devices in the network can receive the multicast feed requested and non-participating routers can be pruned. The supports PIM sparse mode (PIM-SM).

The no form of the command deletes the PIM protocol instance removing all associated configuration parameters.

Default none

apply-to

Syntax apply-to (all | none)
Context config>service>vprn>pim
Description This command creates a PIM interface with default parameters.

If a manually created interface or modified interface is deleted, the interface will be recreated when the apply-to command is executed. If PIM is not required on a specific interface, then execute a shutdown command.

The apply-to command is saved first in the PIM configuration structure, all subsequent commands either create new structures or modify the defaults as created by the apply-to command.

Default none (keyword)
Parameters all — Specifies that all VPRN and non-VPRN interfaces are automatically applied in PIM.

none — No interfaces are automatically applied in PIM. PIM interfaces must be manually configured.
import

Syntax

import {join-policy | register-policy} [policy-name [, policy-name] policy-name]

no import {join-policy | register-policy}

Context

config>service>vprn>pim

Description

This command specifies the import route policy to be used for determining which routes are accepted from peers. Route policies are configured in the config>router>policy-options context. When an import policy is not specified, BGP routes are accepted by default.

The no form of the command removes the policy association from the IGMP instance.

Default

no import join-policy

no import register-policy

Parameters

- **join-policy** — Use this command to filter PIM join messages which prevents unwanted multicast streams from traversing the network.

- **register-policy** — This keyword filters register messages. PIM register filters prevent register messages from being processed by the RP. This filter can only be defined on an RP. When a match is found, the RP immediately sends back a register-stop message.

- **policy-name** — The route policy name. Allowed values are any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. Route policies are configured in the config>router>policy-options context.

interface

Syntax

[no] interface ip-int-name

Context

config>service>vprn>pim

Description

This command enables PIM on an interface and enables the context to configure interface-specific parameters. By default interfaces are activated in PIM based on the apply-to command, and do not have to be configured on an individual basis unless the default values must be changed.

The no form of the command deletes the PIM interface configuration for this interface. If the apply-to command parameter is configured, then the no interface form must be saved in the configuration to avoid automatic (re)creation after the next apply-to is executed as part of a reboot.

The shutdown command can be used to disable an interface without removing the configuration for the interface.

Default

Interfaces are activated in PIM based on the apply-to command.

Parameters

- **ip-int-name** — Specify the interface name. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
bdf-enable

Syntax

```
[b]no bdf-enable
```

Context

```
config>service>vprn>pim>if
```

Description

This command enables the use of bi-directional forwarding (BFD) to control the state of the associated protocol interface. By enabling BFD on a given protocol interface, the state of the protocol interface is tied to the state of the BFD session between the local node and the remote node. The parameters used for the BFD are set via the BFD command under the IP interface.

The `no` form of this command removes BFD from the associated IGP protocol adjacency.

Default

no bdf-enable

bsm-check-rtr-alert

Syntax

```
[b]no bsm-check-rtr-alert
```

Context

```
config>service>vprn>pim>if
```

Description

This command enables the checking of router alert option in the bootstrap messages received on this interface.

Default

no bsm-check-rtr-alert

hello-interval

Syntax

```
hello-interval
[b]no hello-interval
```

Context

```
config>service>vprn>pim>if
config>service>vprn>pim>mdt>default
```

Description

This command configures the frequency at which PIM Hello messages are transmitted on this interface.

The `no` form of this command reverts to the default value.

Default

30

Parameters

- `hello-interval` — Specifies the hello interval in seconds. A 0 (zero) value disables the sending of hello messages.

 Values

 0 — 255 seconds
hello-multiplier

Syntax

```
hello-multiplier deci-units
no hello-multiplier
```

Context

```
config>service>vprn>pim>if
cfg>service>vprn>pim>mdt>default
```

Description

This command configures the multiplier to determine the holdtime for a PIM neighbor. The `hello-multiplier` in conjunction with the `hello-interval` determines the holdtime for a PIM neighbor.

Parameters

- `deci-units` — Specify the value, specified in multiples of 0.1, for the formula used to calculate the hello-holdtime based on the hello-multiplier:

 `(hello-interval * hello-multiplier) / 10`

 This allows the PIMv2 default timeout of 3.5 seconds to be supported.

Values

- `20 — 100`

Default

- `35`

improved-assert

Syntax

```
[no] improved-assert
```

Context

```
config>service>vprn>pim>if
cfg>service>vprn>pim>mdt>default
```

Description

This command enables improved assert processing on this interface. The PIM assert process establishes a forwarder for a LAN and requires interaction between the control and forwarding planes. The assert process is started when data is received on an outgoing interface. This could impact performance if data is continuously received on an outgoing interface.

When enabled, the PIM assert process is done entirely on the control-plane with no interaction between the control and forwarding plane.

Default

- `enabled`

max-groups

Syntax

```
max-groups value
no max-groups
```

Context

```
config>service>vprn>pim>if
```

Description

This command configures the maximum number of groups for which PIM can have downstream state based on received PIM Joins on this interface. This does not include IGMP local receivers on the interface. When this configuration is changed dynamically to a value lower than the currently
accepted number of groups, the groups that are already accepted are not deleted. Only new groups will not be allowed. When this object has a value of 0, there is no limit to the number of groups.

Parameters

- **value** — Specifies the maximum number of groups for this interface.

 Values

 1 — 16000

multicast-senders

Syntax

```
multicast-senders {auto | always | never}
```

no multicast-senders

Context

```
config>service>vprn>pim>if
```

Description

This command configures the way subnet matching is done for incoming data packets on this interface. An IP multicast sender is an user entity to be authenticated in a receiving host.

Parameters

- **auto** — Subnet matching is automatically performed for incoming data packets on this interface.
- **always** — Subnet matching is always performed for incoming data packets on this interface.
- **never** — Subnet matching is never performed for incoming data packets on this interface.

priority

Syntax

```
priority dr-priority
```

no priority

Context

```
config>service>vprn>pim>if
```

Description

This command sets the priority value to become the rendezvous point (RP) that is included in bootstrap messages sent by the router. The RP is sometimes called the bootstrap router. The **priority** command indicates whether the router is eligible to be a bootstrap router. The **no** form of the command disqualifies the router to participate in the bootstrap election.

Default

1 (The router is the least likely to become the designated router.)

Parameters

- **dr-priority** — Specifies the priority to become the designated router. The higher the value, the higher the priority.

 Values

 1 — 4294967295
sticky-dr

Syntax
sticky-dr [priority dr-priority]
no sticky-dr

Context config>service>vprn>pim>if

Description This command enables sticky-dr operation on this interface. When enabled, the priority in PIM hellos sent on this interface when elected as the designated router (DR) will be modified to the value configured in dr-priority. This is done to avoid the delays in forwarding caused by DR recovery, when switching back to the old DR on a LAN when it comes back up.

By enabling sticky-dr on this interface, it will continue to act as the DR for the LAN even after the old DR comes back up.

The no form of the command disables sticky-dr operation on this interface.

Default disabled

Parameters
priority dr-priority — Sets the DR priority to be sent in PIM Hello messages following the election of that interface as the DR, when sticky-dr operation is enabled.

Values 1 — 4294967295

three-way-hello

Syntax three-way-hello [compatibility-mode]
no three-way-hello

Context config>service>vprn>pim>if
config>service>vprn>pim>mdt>default

Description This command configures the compatibility mode for enabling the three way hello.

Parameters compatibility-mode — Specifies to enable the three way hello.

tracking-support

Syntax [no] tracking-support

Context config>service>vprn>pim>if
config>service>vprn>pim>mdt>default

Description This command sets the the T bit in the LAN Prune Delay option of the Hello Message. This indicates the router's capability to disable Join message suppression.

Default no tracking-support
mdt

Syntax
```
mdt
```

Context
```
config>service>vprn>pim>interface
```

Description
This command enables the context for a multicast distribution tree (MDT) to carry multicast traffic from customer sites associated with the multicast domain. Multicast-capable routers create distribution trees that control the path that IP multicast traffic takes through the network to deliver traffic to all receivers. There are two types of MDTs, source trees and shared trees. The root of the source tree is the source of the multicast tree whose branches form a spanning tree through the network to the receivers. It is also referred to as a shortest path tree (SPT) because the tree uses the shortest path through the network.

Shared trees use a common root that is placed at a specific place in the network. This shared root is called the rendezvous point (RP).

All PEs that are configured with the same MDT address will become members of this group and receive multicast traffic from each other.

The source address used in MDT group address packets is the loopback address configured for the VPRN, if the loopback address is removed the service we will attempt to find another loop-back address for the VPRN instance, if no loopback address exists then multicast tunnel for the VPRN instance will be administratively down. The show command will reflect the reason why the PIM-SM instance is down.

Addressing conflicts in the core can be avoided by installing import policies on the main PIM access interfaces.

To enable multicast in a VPRN this parameter must be configured. If it is not configured, no PIM-SM will not be initialized for this VPRN, and the show command will indicate that the default MDT address is missing. If the address is removed using the no form of this command, Multicast will be shut down for this instance and an error indication is displayed when a show command is executed.

Use the no form of this command to remove default MDT address from the configuration.

Default
none

data

Syntax
```
data {grp-ip-address/mask | grp-ip-address netmask}
```

Context
```
config>service>vprn>pim>mdt
```

Description
This command configures a pool of addresses that can be used to generate data only MDT tunnels.

Parameters
- `grp-ip-address` — The multicast group IP address expressed in dotted decimal notation.
 - **Values**
 - 224.0.0.0 — 239.255.255.255
- `mask` — The mask associated with the IP prefix expressed as a mask length or in dotted decimal notation; for example /16 for a sixteen-bit mask. The mask can also be entered in dotted decimal notation (255.255.0.0).
 - **Values**
 - 4 — 32
netmask — The subnet mask in dotted decimal notation.

Values
- 0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

data-delay-interval

Syntax

```
data-delay-interval value
no data-delay-interval
```

Context

`config>service>vprn>pim>mdt`

Description

This command specifies the interval, in seconds, before the provider edge (PE) router connected to the source switches traffic from default Multicast Distribution Tree (MDT) to the data MDT group.

Default

3 seconds

Parameters

`value` — Specifies the data delay interval in seconds.

Values
- 3 — 180

data-threshold

Syntax

```
data-threshold {c-grp-ip-address/mask | c-grp-ip-address netmask} mdt-threshold
```

Context

`config>service>vprn>pim>mdt`

Description

This command configures the threshold for a group prefix.

Parameters

`grp-ip-address` — The multicast group IP address expressed in dotted decimal notation.

Values
- 224.0.0.0 — 239.255.255.255

`mask` — The mask associated with the IP prefix expressed as a mask length or in dotted decimal notation; for example /16 for a sixteen-bit mask. The mask can also be entered in dotted decimal notation (255.255.0.0).

Values
- 4 — 32

`netmask` — The subnet mask in dotted decimal notation.

Values
- 0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

`mdt-threshold` — Specifies the threshold, in kilo-bits per second (kbps), for the group to which this C-(S,G) belongs. For a C-group G configured with a threshold, a C-(S,G) is mapped to a Data Multicast Tunnel (MT) only if the C-(S,G)'s rate exceeds this configured threshold.
default

Syntax default grp-ip-address
 no default

Context config>service>vprn>pim>mdt

Description This command configures a default multicast distribution tree (MDT) group address used by the core instance of PIM to identify multicast traffic for this VPRN instance. All PE’s that are configured with the same MDT address will become members of this group and receive multicast traffic from each other.

The no form of this command removes the MDT default address from the configuration.

Parameters grp-ip-address — The multicast IP address for the group.

Values 224.0.1.0 — 239.255.255.255

join-tlv-packing-disable

Syntax [no] join-tlv-packing-disable

Context config>service>vprn>pim>mdt

Description This command specifies enables the packing of MDT join TLVs. If multiple Join TLVs are available at the time they are transmitted. The TLVs are packed into a single UDP PDU instead of sending separate UDP PDUs. In scaling scenarios, this packing makes more efficient use of packet buffers and helps with better convergence.

mc-ecmp-balance

Syntax [no] mc-ecmp-balance

Context config>service>vprn>pim

Description This command enables multicast balancing of traffic over ECMP links. When enabled, each multicast stream that needs to be forwarded over an ECMP link will be re-evaluated for the total multicast bandwidth utilization. Re-evaluation occurs on the ECMP interface in question.

The no form of the command disables the multicast balancing.

mc-ecmp-balance-hold

Syntax mc-ecmp-balance-hold minutes
 no mc-ecmp-balance-hold

Context config>service>vprn>pim

Description This command configures the hold time for multicast balancing over ECMP links.
Parameters

minutes — Specifies the hold time, in minutes, that applies after an interface has been added to the ECMP link.

non-dr-attract-traffic

Syntax

\[
\text{[no]} \text{ non-dr-attract-traffic}
\]

Context

`config>service>vprn>pim`

Description

This command specifies whether the router should ignore the designated router state and attract traffic even when it is not the designated router.

An operator can configure an interface (router or IES or VPRN interfaces) to IGMP and PIM. The interface IGMP state will be synchronized to the backup node if it is associated with the redundant peer port. The interface can be configured to use PIM which will cause multicast streams to be sent to the elected DR only. The DR will also be the router sending traffic to the DSLAM. Since it may be required to attract traffic to both routers a flag `non-dr-attract-traffic` can be used in the PIM context to have the router ignore the DR state and attract traffic when not DR. Note that while using this flag the router may not send the stream down to the DSLAM while not DR.

When enabled, the designated router state is ignored. When disabled, *no non-dr-attract-traffic*, the designated router value is honored.

Default

no non-dr-attract-traffic

rp

Syntax

`rp`

Context

`config>service>vprn>pim`

Description

This command enables access to the context to configure the rendezvous point (RP) of a PIM protocol instance.

An Alcatel-Lucent PIM router acting as an RP must respond to a PIM register message specifying an SSM multicast group address by sending to the first hop router stop register message(s). It does not build an (S, G) shortest path tree toward the first hop router. An SSM multicast group address can be either from the SSM default range of 232/8 or from a multicast group address range that was explicitly configured for SSM.

Default

rp enabled when PIM is enabled.
anycast

Syntax
[no] anycast rp-ip-address

Context
config>service>vprn>pim rp

Description
This command configures a PIM anycast protocol instance for the RP being configured. Anycast enables fast convergence when a PIM RP router fails by allowing receivers and sources to rendezvous at the closest RP.

The no form of the command removes the anycast instance from the configuration.

Default
none

Parameters
rp-ip-address — Configure the loopback IP address shared by all routes that form the RP set for this anycast instance. Only a single address can be configured. If another anycast command is entered with an address then the old address will be replaced with the new address. If no ip-address is entered then the command is simply used to enter the anycast CLI level.

Values
Any valid loopback address configured on the node.

rp-set-peer

Syntax
[no] rp-set-peer ip-address

Context
config>service>vprn>pim rp anycast

Description
This command configures a peer in the anycast rp-set. The address identifies the address used by the other node as the RP candidacy address for the same multicast group address range as configured on this node.

This is a manual procedure. Caution should be taken to produce a consistent configuration of an RP-set for a given multicast group address range. The priority should be identical on each node and be a higher value than any other configured RP candidate that is not a member of this rp-set.

Although there is no set maximum of addresses that can be configured in an rp-set, up to 15 multicast addresses is recommended.

The no form of the command removes an entry from the list.

Default
None

Parameters
ip-address — Specifies the address used by the other node as the RP candidacy address for the same multicast group address range as configured on this node.
bootstrap-export

Syntax

```
bootstrap-export policy-name [policy-name... up to five]
no bootstrap-export
```

Context

`config>service>vprn>pim>rp`

Description

This command exports policies to control the flow of bootstrap messages from the RP. Up to five policies can be defined.

The `no` form of this command removes the specified policy names from the configuration.

Default

`none`

Parameters

`policy-name` — Specify the policy name. The policy statement must already be configured in the `config>router>policy-options` context.

bootstrap-import

Syntax

```
bootstrap-import policy-name [policy-name... up to five]
no bootstrap-import policy-name [policy-name... up to five]
```

Context

`config>service>vprn>pim>rp`

Description

This command imports policies to control the flow of bootstrap messages into the RP. Up to five policies can be defined.

The `no` form of this command removes the specified policy names from the configuration.

Default

`none`

Parameters

`policy-name` — Specify the policy name. The policy statement must already be configured in the `config>router>policy-options` context.

bsr-candidate

Syntax

`bsr-candidate`

Context

`config>service>vprn>pim>rp`

Description

This command enables the context to configure a local rendezvous point (RP) of a PIM protocol instance.

Default

Enabled when PIM is enabled.
address

Syntax
[no] address ip-address

Context
config>service>vprn>pim>rp>bsr-candidate
config>service>vprn>pim>rp>rp-candidate

Description
This command configures a static bootstrap or rendezvous point (RP) as long as the source is not directly attached to this router.

Use the no form of this command to remove the static RP from the configuration.

Default
No IP address is specified.

Parameters
ip-address — The static IP address of the RP. The ip-address portion of the address command specifies the IP host address that will be used by the IP interface within the subnet. This address must be unique within the subnet and specified in dotted decimal notation.

Values
1.0.0.0 – 223.255.255.255

hash-mask-len

Syntax
hash-mask-len hash-mask-length
no hash-mask-len

Context
config>service>vprn>pim>rp>bsr-candidate

Description
This command is used to configure the length of a mask that is to be combined with the group address before the hash function is called. All groups with the same hash map to the same RP. For example, if this value is 24, only the first 24 bits of the group addresses matter. This mechanism is used to map one group or multiple groups to an RP.

Parameters
hash-mask-length — The hash mask length.

Values
0 — 32

priority

Syntax
priority bootstrap-priority

Context
config>service>vprn>pim>rp>bsr-candidate

Description
This command defines the priority used to become the rendezvous point (RP). The higher the priority value the more likely that this router becomes the RP. If there is a tie, the router with the highest IP address is elected.

Parameters
bootstrap-priority — The priority to become the bootstrap router.

Values
0 — 255

Default
0 (the router is not eligible to be the bootstrap router)
rp-candidate

Syntax rp-candidate

Context config>service>vprn>pim>rp

Description This command enables the context to configure the candidate rendezvous point (RP) parameters.

Default Enabled when PIM is enabled.

group-range

Syntax [no] group-range {grp-ip-address/mask | grp-ip-address [netmask]}

Context config>service>vprn>pim>rp>rp-candidate
 config>service>vprn>pim>ssm

Description This command configures the group address or range of group addresses for which this router can be the rendezvous point (RP).

Use the no form of this command to remove the group address or range of group addresses for which this router can be the RP from the configuration.

Default none

Parameters group-ip-address — Specify the addresses or address ranges that this router can be an RP.

mask — Specify the address mask with the address to define a range of addresses.

netmask — Specify the subnet mask in dotted decimal notation.

Values 0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

holdtime

Syntax holdtime holdtime
 no holdtime holdtime

Context config>service>vprn>pim>rp>rp-candidate

Description Use this command to define the length of time neighboring router consider this router to be up.

Use the no form of this command to revert to the default value.

Default 150

Parameters holdtime — Specify the length of time, in seconds, that neighbor should consider the sending router to be operational.

Values 0 — 255
priority

Syntax

priority priority
no priority priority

Context
config>router>pim>rp>local
config>service>vprn>pim>rp>rp-candidate

Description
This command defines the priority used to become the rendezvous point (RP). The higher the priority value, the more likely that this router will become the RP.

Use the no form of this command to revert to the default value.

Default 1

Parameters

priority — Specify the priority to become the designated router. The higher the value the more likely the router will become the RP.

Values 0 — 255

static

Syntax

static

Context
config>service>vprn>pim>rp

Description
This command enables access to the context to configure a static rendezvous point (RP) of a PIM-SM protocol instance.

Default none

address

Syntax

[no] address ip-address

Context
config>service>vprn>pim>rp>static

Description
This command configures the static rendezvous point (RP) address.

The override option specifies that dynamically learned RPs have less priority than this static entry, by default dynamic learned RPs take preference over static configured RPs.

The no form of this command removes the static RP entry from the configuration.

Default none
group-prefix

Syntax

[no] group-prefix {grp-ip-address/mask | grp-ip-address netmask}

Context

config>service>vprn>pim>rp>static

Context

The group-prefix for a static-rp defines a range of multicast-ip-addresses for which a certain RP is applicable.

The no form of the command removes the criterion.

Default

none

Parameters

grp-ip-address — Specify the multicast IP address.

mask — Defines the mask of the multicast-ip-address.

Values

4 — 32

netmask — Enter the subnet mask in dotted decimal notation.

Values

0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)

override

Syntax

[no] override

Context

config>service>vprn>pim>rp>static

Description

This command changes the precedence of static RP over dynamically learned Rendezvous Point (RP).

When enabled, the static group-to-RP mappings take precedence over the dynamically learned mappings.

Default

no override

spt-switchover-threshold

Syntax

spt-switchover-threshold {grp-ip-address/mask | grp-ip-address netmask} spt-threshold

no spt-switchover-threshold {grp-ip-address/mask | grp-ip-address netmask}

Context

config>service>vprn>pim

Description

This command configures a shortest path tree (SPT tree) switchover threshold for a group prefix.

Parameters

grp-ip-address — Specify the multicast group address.

mask — Defines the mask of the multicast-ip-address.

Values

4 — 32

netmask — Enter the subnet mask in dotted decimal notation.

Values

0.0.0.0 — 255.255.255.255 (network bits all 1 and host bits all 0)
spt-threshold — Specifies the configured threshold in kilo-bits per second (kbps) for the group to which this (S,G) belongs. For a group G configured with a threshold, switchover to SPT for an (S,G) is attempted only if the (S,G)'s rate exceeds this configured threshold.

ssm-groups

Syntax
[no] ssm-groups

Context
config>service>vprn

Description
This command enables access to the context to enable a source-specific multicast (SSM) configuration instance.

Default
none
Network Interface Commands

network-interface

Syntax

- network-interface interface-name [create]
- no network-interface interface-name

Context

cfg>service>vprn

Description

This command configures a network interface.
Counter Mode Commands

statistics

Syntax statistics
Context config>service>vprn>if>sap
Description This command enables the context to configure the counters associated with SAP ingress.

ingress

Syntax ingress
Context config>service>vprn>if>sap>statistics
Description This command enables the context to configure the ingress SAP statistics counter.

counter-mode

Syntax counter-mode {in-out-profile-count| forward-drop-count}
Context config>service>vprn>if>sap>statistics>ingress
Description This command allows the user to set the counter mode for the counters associated with sap ingress meters or policers. A pair of counters is available with each meter. These counters count different events based on the counter mode value.

Note: The counter mode can be changed if an accounting policy is associated with a SAP. If the counter mode is changed the counters associated with the meter are reset and the counts are cleared. If an accounting policy is in use when the counter-mode is changed a new record will be written into the current accounting file.

Execute the following sequence of commands to ensure a new accounting file is generated when the counter-mode is changed:

1. Execute the command config>service>epipe/vpls>sap no collect-stats, to disable writing of accounting records.
2. Change the counter-mode to the desired value, execute the command config>service>epipe/vpls>sap>counter-mode {in-out-profile-count| forward-drop-count}.
3. Execute the command config>service>epipe/vpls>sap> collect-stats, to enable writing of accounting records.

The no form of the command restores the counter mode to the default value.

Default in-out-profile-count
Parameters

in-out-profile-count — If the counter mode is specified as "in-out-profile-count", one counter counts the total in-profile packets and octets received on ingress of a SAP and another counts the total out-of-profile packets and octets received on ingress of a SAP. A packet is determined to be in-profile or out-of-profile based on the meter rate parameters configured. A packet is dropped by the policer if it exceeds the configured PIR rate. Dropped counts are not maintained in hardware when this mode is used. It is obtained by subtracting the sum of in-profile count and out-of-profile count from the total SAP ingress received count and displayed.

forward-drop-count — If the counter mode is specified as "forward-drop-count", one counter counts the forwarded packets and octets received on ingress of a SAP and another counts the dropped packets. The forwarded count is the sum of in-profile and out-of-profile packets/octets received on SAP ingress. The dropped count is count of packets/octets dropped by the policer. A packet is determined to be in-profile or out-of-profile based on the meter rate parameters configured. A packet is dropped by the policer if it exceeds the configured PIR rate. The in-profile count and out-of-profile count is not individually available when operating in this mode.
BGP Commands

bgp

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] bgp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config>service>vprn</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables the BGP protocol with the VPRN service. The no form of the command disables the BGP protocol from the given VPRN service.</td>
</tr>
<tr>
<td>Default</td>
<td>no bgp</td>
</tr>
</tbody>
</table>

advertise-inactive

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] advertise-inactive</th>
</tr>
</thead>
</table>
| Context | config>service>vprn>bgp
| | config>service>vprn>bgp>group |
| | config>service>vprn>bgp>group>neighbor |
| Description | This command enables or disables the advertising of inactive BGP routers to other BGP peers. By default, BGP only advertises BGP routes to other BGP peers if a given BGP route is chosen by the route table manager as the most preferred route within the system and is active in the forwarding plane. This command allows system administrators to advertise a BGP route even though it is not the most preferred route within the system for a given destination. |
| Default | no advertise-inactive |

aggregator-id-zero

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] aggregator-id-zero</th>
</tr>
</thead>
</table>
| Context | config>service>vprn>bgp
| | config>service>vprn>bgp>group |
| | config>service>vprn>bgp>group>neighbor |
| Description | This command is used to set the router ID in the BGP aggregator path attribute to zero when BGP aggregates routes. This prevents different routers within an AS from creating aggregate routes that contain different AS paths. When BGP is aggregating routes, it adds the aggregator path attribute to the BGP update messages. By default, BGP adds the AS number and router ID to the aggregator path attribute. When this command is enabled, BGP adds the router ID to the aggregator path attribute. This command is used at the group level to revert to the value defined under the global level, while this command is used at the neighbor level to revert to the value defined under the group level. |

The `no` form of the command used at the global level reverts to default where BGP adds the AS number and router ID to the aggregator path attribute.

The `no` form of the command used at the group level reverts to the value defined at the group level.

The `no` form of the command used at the neighbor level reverts to the value defined at the group level.

Default

`no aggregator-id-zero` — BGP adds the AS number and router ID to the aggregator path attribute.

always-compare-med

Syntax

```
always-compare-med {zero | infinity}
no always-compare-med
```

Context

`config>service>vprn>bgp`

Description

This command specifies how the Multi-Exit Discriminator (MED) path attribute is used in the BGP route selection process. The MED attribute is always used in the route selection process regardless of the peer AS that advertised the route. This parameter determines what MED value is inserted in the RIB-IN. If this parameter is not configured, only the MEDs of routes that have the same peer ASs are compared.

The `no` form of the command removes the parameter from the configuration.

Default

`no always-compare-med` — Only compare MEDs of routes that have the same peer AS.

Parameters

- **zero** — Specifies that for routes learned without a MED attribute that a zero (0) value is used in the MED comparison. The routes with the lowest metric are the most preferred.
- **infinity** — Specifies for routes learned without a MED attribute that a value of infinity (4294967295) is used in the MED comparison. This in effect makes these routes the least desirable.

as-path-ignore

Syntax

```
[no] as-path-ignore
```

Context

`config>service>vprn>bgp`

Description

This command determines whether the AS path is used to determine the best BGP route.

If this option is present, the AS paths of incoming routes are not used in the route selection process.

The `no` form of the command removes the parameter from the configuration.

Default

`no as-path-ignore`
as-override

Syntax

[no] as-override

Context

config>service>vprn>bgp>group
cfgina>service>vprn>bgp>group>neighbor

Description

This command replaces all instances of the peer's AS number with the local AS number in a BGP route's AS_PATH.

This command breaks BGP's loop detection mechanism. It should be used carefully.

Default

as-override is not enabled by default.

authentication-key

Syntax

authentication-key [authentication-key | hash-key] [hash | hash2]

no authentication-key

Context

config>service>vprn>bgp
cfgina>service>vprn>bgp>group
cfgina>service>vprn>bgp>group>neighbor

Description

This command configures the BGP authentication key.

Authentication is performed between neighboring routers before setting up the BGP session by verifying the password. Authentication is performed using the MD-5 message-based digest. The authentication key can be any combination of letters or numbers from 1 to 16.

The no form of the command removes the authentication password from the configuration and effectively disables authentication.

Default

Authentication is disabled and the authentication password is empty.

Parameters

authentication-key — The authentication key. The key can be any combination of ASCII characters up to 255 characters in length (unencrypted). If spaces are used in the string, enclose the entire string in quotation marks (“ ”).

hash-key — The hash key. The key can be any combination of ASCII characters up to 342 characters in length (encrypted). If spaces are used in the string, enclose the entire string in quotation marks (“ ”).

This is useful when a user must configure the parameter, but, for security purposes, the actual unencrypted key value is not provided.

hash — Specifies the key is entered in an encrypted form. If the hash parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash parameter specified.

hash2 — Specifies the key is entered in a more complex encrypted form. If the hash2 parameter is not used, the less encrypted hash form is assumed.
auth-keychain

Syntax auth-keychain name

Context config>service>vprn>bgp
 config>service>vprn>bgp>group
 config>service>vprn>bgp>group>neighbor

Description This command configures the BGP authentication key for all peers.
The keychain allows the rollover of authentication keys during the lifetime of a session.

Default no auth-keychain

Parameters name — Specifies the name of an existing keychain, up to 32 characters, to use for the specified TCP session or sessions.

connect-retry

Syntax connect-retry seconds
 no connect-retry

Context config>service>vprn>bgp
 config>service>vprn>bgp>group
 config>service>vprn>bgp>group>neighbor

Description This command configures the BGP connect retry timer value in seconds.
When this timer expires, BGP tries to reconnect to the configured peer. This configuration parameter can be set at three levels: global level (applies to all peers), peer-group level (applies to all peers in group) or neighbor level (only applies to specified peer). The most specific value is used.
The no form of the command used at the global level reverts to the default value.
The no form of the command used at the group level reverts to the value defined at the global level.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default 120 seconds

Parameters seconds — The BGP Connect Retry timer value in seconds, expressed as a decimal integer.
 Values 1 — 65535

damping

Syntax [no] damping

Context config>service>vprn>bgp
 config>service>vprn>bgp>group
 config>service>vprn>bgp>group>neighbor

Description This command enables BGP route damping for learned routes which are defined within the route policy. Use damping to reduce the number of update messages sent between BGP peers and reduce
the load on peers without affecting the route convergence time for stable routes. Damping parameters are set via route policy definition.

The **no** form of the command used at the global level disables route damping. The **no** form of the command used at the group level reverts to the value defined at the global level. The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

When damping is enabled and the route policy does not specify a damping profile, the default damping profile is used. This profile is always present and consists of the following parameters:

- **Half-life**: 15 minutes
- **Max-suppress**: 60 minutes
- **Suppress-threshold**: 3000
- **Reuse-threshold**: 750

Default
no damping — Learned route damping is disabled.

disable-4byte-asn

Syntax
[no] disable-4byte-asn

Context
config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description
This command disables the use of 4-byte ASNs. It can be configured at all 3 level of the hierarchy so it can be specified down to the per peer basis.

If this command is enabled 4-byte ASN support should not be negotiated with the associated remote peer(s).

The **no** form of the command resets the behavior to the default which is to enable the use of 4-byte ASN.

disable-capability-negotiation

Syntax
[no] disable-capability-negotiation

Context
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description
This command disables the exchange of capabilities. When command is enabled and after the peering is flapped, any new capabilities are not negotiated and will strictly support IPv4 routing exchanges with that peer.

The **no** form of the command removes this command from the configuration and restores the normal behavior.

Default
no disable-capability-negotiation
disable-capability-negotiation

Syntax

[no] disable-capability-negotiation

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command disables the exchange of capabilities. When command is enabled and after the peering is flapped, any new capabilities are not negotiated and will strictly support IPv4 routing exchanges with that peer.

The no form of the command removes this command from the configuration and restores the normal behavior.

Default

no disable-capability-negotiation

disable-communities

Syntax

disable-communities [standard] [extended]

no disable-communities

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command configures BGP to disable sending communities.

Parameters

- **standard** — Specifies standard communities that existed before VPRNs or 2547.
- **extended** — Specifies BGP communities used were expanded after the concept of 2547 was introduced, to include handling the VRF target.

disable-fast-external-failover

Syntax

[no] disable-fast-external-failover

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command configures BGP fast external failover.
enable-peer-tracking

Syntax [no] enable-peer-tracking

Context config>service>vprn>bgp
 config>service>vprn>bgp>group
 config>service>vprn>bgp>group>neighbor

Description This command enables BGP peer tracking.

Default no enable-peer-tracking

export

Syntax export policy [policy...]
 no export

Context config>service>vprn>bgp
 config>service>vprn>bgp>group
 config>service>vprn>bgp>group>neighbor

Description This command specifies the export policies to be used to control routes advertised to BGP neighbors.

When multiple policy names are specified, the policies are evaluated in the order they are specified. A maximum of five (5) policy names can be configured. The first policy that matches is applied.

Note that if a non-existent route policy is applied to a VPRN instance, the CLI generates a warning message. This message is only generated at an interactive CLI session and the route policy association is made. No warning message is generated when a non-existent route policy is applied to a VPRN instance in a configuration file or when SNMP is used.

The no form of this command removes all route policy names from the export list.

Default no export — BGP advertises routes from other BGP routes but does not advertise any routes from other protocols unless directed by an export policy.

Parameters policy — A route policy statement name.

family

Syntax family [ipv4]
 no family

Context config>service>vprn>bgp
 config>service>vprn>bgp>group
 config>service>vprn>bgp>group>neighbor

Description This command configures the IP family capability.

The no form of the command reverts to the default.

Default no family
Parameters

ipv4 — Provisions IPv4 support.

group

Syntax

```groovy
group name [dynamic-peer]
no group
```

Context

config>service>vprn>bgp

Description

This command creates a context to configure a BGP peer group.

The `no` form of the command deletes the specified peer group and all configurations associated with the peer group. The group must be shutdown before it can be deleted.

Default

None — No peer groups are defined.

Parameters

- **name** — The peer group name. Allowed values is a string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

- **dynamic-peer** — This flag designates that the given BGP group will be used by BGP peers created dynamically based on subscriber-hosts pointing to corresponding BGP peering policy. There can be only one BGP group with this flag set in any given VPRN. No BGP neighbours can be manually configured in a BGP group with this flag set.

Default

disabled

neighbor

Syntax

```groovy
[no] neighbor ip-address
```

Context

config>service>vprn>bgp>group

Description

This command creates a BGP peer/neighbor instance within the context of the BGP group.

This command can be issued repeatedly to create multiple peers and their associated configuration.

The `no` form of the command is used to remove the specified neighbor and the entire configuration associated with the neighbor. The neighbor must be administratively **shutdown** before attempting to delete it. If the neighbor is not shutdown, the command will not result in any action except a warning message on the console indicating that neighbor is still administratively up.

Default

none — No neighbors are defined.

Parameters

- **ip-address** — The IP address of the BGP peer router in dotted decimal notation.

Values

<table>
<thead>
<tr>
<th>ipv4-address</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.b.c.d</td>
</tr>
</tbody>
</table>
family

Syntax
family [ipv4]
no family

Context
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description
This command specifies the address family or families to be supported over BGP peerings in the base router. This command is additive so issuing the family command adds the specified address family to the list.

The no form of the command removes the specified address family from the associated BGP peerings. If an address family is not specified, then reset the supported address family back to the default.

Default
ipv4

Parameters

hold-time

Syntax
hold-time seconds [strict]
no hold-time

Context
config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description
This command configures the BGP hold time, expressed in seconds.

The BGP hold time specifies the maximum time BGP waits between successive messages (either keepalive or update) from its peer, before closing the connection. This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in group) or neighbor level (only applies to specified peer). The most specific value is used.

Even though the router OS implementation allows setting the keepalive time separately, the configured keepalive timer is overridden by the hold-time value under the following circumstances:

1. If the specified hold-time is less than the configured keepalive time, then the operational keepalive time is set to a third of the hold-time; the configured keepalive time is not changed.

2. If the hold-time is set to zero, then the operational value of the keepalive time is set to zero; the configured keepalive time is not changed. This means that the connection with the peer is up permanently and no keepalive packets are sent to the peer.

The no form of the command used at the global level reverts to the default value.
The no form of the command used at the group level reverts to the value defined at the global level.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default
90 seconds

Parameters
seconds — The hold-time, in seconds, expressed as a decimal integer. A value of 0 indicates the connection to the peer is up permanently.
VPRN Service Configuration Commands

Values

0, 3 — 65535

strict — When this parameter is specified, the advertised BGP hold-time from the far-end BGP peer must be greater than or equal to the specified value.

import

Syntax

import policy [policy...]

no import

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command specifies the import policies to be used to control routes advertised to BGP neighbors. Route policies are configured in the config>router>policy-options context. When multiple policy names are specified, the policies are evaluated in the order they are specified. A maximum of five (5) policy names can be specified. The first policy that matches is applied.

The **no** form of this command removes all route policy names from the import list.

Default

no import — BGP accepts all routes from configured BGP neighbors. Import policies can be used to limit or modify the routes accepted and their corresponding parameters and metrics.

Parameters

policy — A route policy statement name.

keepalive

Syntax

keepalive seconds

no keepalive

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command configures the BGP keepalive timer. A keepalive message is sent every time this timer expires. The **seconds** parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The **keepalive** value is generally one-third of the **hold-time** interval. Even though the OS implementation allows the **keepalive** value and the **hold-time** interval to be independently set, under the following circumstances, the configured **keepalive** value is overridden by the **hold-time** value:

If the specified **keepalive** value is greater than the configured **hold-time**, then the specified value is ignored, and the **keepalive** is set to one third of the current **hold-time** value.

If the specified **hold-time** interval is less than the configured **keepalive** value, then the **keepalive** value is reset to one third of the specified **hold-time** interval.

If the **hold-time** interval is set to zero, then the configured value of the **keepalive** value is ignored. This means that the connection with the peer is up permanently and no **keepalive** packets are sent to the peer.
The **no** form of the command used at the global level reverts to the default value.
The **no** form of the command used at the group level reverts to the value defined at the global level.
The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

Default
30 seconds

Parameters
```
seconds — The keepalive timer in seconds, expressed as a decimal integer.
```

Values
0 — 21845

local-address

Syntax
```
local-address ip-address
no local-address
```

Context
```
config>service>vprn>bgp>group
cfgi>service>vprn>bgp>group>neighbor
```

Description
Configures the local IP address used by the group or neighbor when communicating with BGP peers. Outgoing connections use the **local-address** as the source of the TCP connection when initiating connections with a peer.

When a local address is not specified, the 7210 SAS uses the system IP address when communicating with IBGP peers and uses the interface address for directly connected EBGP peers. This command is used at the neighbor level to revert to the value defined under the group level.

The **no** form of the command removes the configured local-address for BGP.

Default
```
no local-address — The router ID is used when communicating with IBGP peers and the interface address is used for directly connected EBGP peers.
```

ip-address — The local address expressed in dotted decimal notation. Allowed values are a valid routable IP address on the router, either an interface or system IP address.

local-as

Syntax
```
local-as as-number [private]
no local-as
```

Context
```
config>service>vprn>bgp
cfgi>service>vprn>bgp>group
cfgi>service>vprn>bgp>group>neighbor
```

Description
This command configures a BGP virtual autonomous system (AS) number. In addition to the AS number configured for BGP in the **config>router>autonomous-system** context, a virtual (local) AS number is configured. The virtual AS number is added to the as-path message before the router’s AS number makes the virtual AS the second AS in the as-path.
This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). Thus, by specifying this at each neighbor level, it is possible to have a separate as-number per EBGP session.

When a command is entered multiple times for the same AS, the last command entered is used in the configuration. The private attribute can be added or removed dynamically by reissuing the command.

Changing the local AS at the global level in an active BGP instance causes the BGP instance to restart with the new local AS number. Changing the local AS at the global level in an active BGP instance causes BGP to re-establish the peer relationships with all peers in the group with the new local AS number. Changing the local AS at the neighbor level in an active BGP instance causes BGP to re-establish the peer relationship with the new local AS number.

This is an optional command and can be used in the following circumstance:

Provider router P is moved from AS1 to AS2. The customer router that is connected to P, however, is configured to belong to AS1. To avoid reconfiguring the customer router, the local-as value on router P can be set to AS1. Thus, router P adds AS1 to the as-path message for routes it advertises to the customer router.

The no form of the command used at the global level will remove any virtual AS number configured. The no form of the command used at the group level reverts to the value defined at the global level. The no form of the command used at the neighbor level reverts to the value defined at the group level.

<table>
<thead>
<tr>
<th>Default</th>
<th>no local-as</th>
</tr>
</thead>
</table>

Parameters

as-number — The virtual autonomous system number, expressed as a decimal integer.

Values

1 — 65535

private — Specifies the local-as is hidden in paths learned from the peering.

local-preference

| Syntax | local-preference local-preference
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no local-preference</td>
</tr>
</tbody>
</table>

| Context | config>service>vprn:bgp
| | config>service>vprn:bgp>group
| | config>service>vprn:bgp>group>neighbor |

Description

This command enables setting the BGP local-preference attribute in incoming routes if not specified and configures the default value for the attribute. This value is used if the BGP route arrives from a BGP peer without the local-preference integer set.

The specified value can be overridden by any value set via a route policy. This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The no form of the command at the global level specifies that incoming routes with local-preference set are not overridden and routes arriving without local-preference set are interpreted as if the route had local-preference value of 100.

The no form of the command used at the group level reverts to the value defined at the global level.

The no form of the command used at the neighbor level reverts to the value defined at the group level.
Default

no local-preference — Does not override the local-preference value set in arriving routes and analyze routes without local preference with value of 100.

Parameters

local-preference — The local preference value to be used as the override value, expressed as a decimal integer.

Values

0 — 4294967295

loop-detect

Syntax

loop-detect \{drop-peer | discard-route | ignore-loop| off\}

no loop-detect

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command configures how the BGP peer session handles loop detection in the AS path.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

Note that dynamic configuration changes of `loop-detect` are not recognized.

The **no** form of the command used at the global level reverts to default, which is `loop-detect ignore-loop`.

The **no** form of the command used at the group level reverts to the value defined at the global level.

The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

Default

loop-detect ignore-loop

Parameters

drop-peer — Sends a notification to the remote peer and drops the session.

discard-route — Discards routes received with loops in the AS path.

ignore-loop — Ignores routes with loops in the AS path but maintains peering.

off — Disables loop detection.

med-out

Syntax

med-out \{number | igp-cost\}

no med-out

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command enables advertising the Multi-Exit Discriminator (MED) and assigns the value used for the path attribute for the MED advertised to BGP peers if the MED is not already set.

The specified value can be overridden by any value set via a route policy.
This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The **no** form of the command used at the global level reverts to default where the MED is not advertised.

The **no** form of the command used at the group level reverts to the value defined at the global level.

The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

Default

```
no med-out
```

Parameters

- **number** — The MED path attribute value, expressed as a decimal integer.

 Values

 0 — 4294967295

- **igp-cost** — The MED is set to the IGP cost of the given IP prefix.

min-as-origination

Syntax

```
min-as-origination seconds
no min-as-origination
```

Context

```
config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor
```

Description

This command configures the minimum interval, in seconds, at which a path attribute, originated by the local router, can be advertised to a peer.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The **no** form of the command used at the global level reverts to default.

The **no** form of the command used at the group level reverts to the value defined at the global level.

The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

Default

```
15 seconds
```

Parameters

- **seconds** — The minimum path attribute advertising interval in seconds, expressed as a decimal integer.

 Values

 2 — 255
min-route-advertisement

Syntax

```
min-route-advertisement seconds
no min-route-advertisement
```

Context

```
config>service>vprn>bgp
cfg>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor
```

Description

This command configures the minimum interval, in seconds, at which a prefix can be advertised to a peer.

This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The `no` form of the command reverts to default values.

Default

30 seconds

Parameters

seconds — The minimum route advertising interval, in seconds, expressed as a decimal integer.

Values

1 — 255

multihop

Syntax

```
multihop ttl-value
no multihop
```

Context

```
config>service>vprn>bgp
cfg>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor
```

Description

This command configures the time to live (TTL) value entered in the IP header of packets sent to an EBGP peer multiple hops away.

This parameter is meaningful only when configuring EBGP peers. It is ignored if set for an IBGP peer.

The `no` form of the command is used to convey to the BGP instance that the EBGP peers are directly connected.

The `no` form of the command reverts to default values.

Default

1 — EBGP peers are directly connected.

64 — IBGP

Parameters

ttl-value — The TTL value, expressed as a decimal integer.

Values

1 — 255
next-hop-self

Syntax

[no] next-hop-self

Context

config>service>vprn:bgp>group
cfg>service>vprn:bgp>group>neighbor

Description

This command configures the group or neighbor to always set the NEXTHOP path attribute to its own physical interface when advertising to a peer.

This is primarily used to avoid third-party route advertisements when connected to a multi-access network.

The **no** form of the command used at the group level allows third-party route advertisements in a multi-access network.

The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

Default

no next-hop-self — Third-party route advertisements are allowed.

peer-as

Syntax

peer-as as-number

Context

config>service>vprn:bgp>group
cfg>service>vprn:bgp>group>neighbor

Description

This command configures the autonomous system number for the remote peer. The peer AS number must be configured for each configured peer.

For EBGP peers, the peer AS number configured must be different from the autonomous system number configured for this router under the global level since the peer will be in a different autonomous system than this router.

For IBGP peers, the peer AS number must be the same as the autonomous system number of this router configured under the global level.

This is a required command for each configured peer. This may be configured under the group level for all neighbors in a particular group.

Default

No AS numbers are defined.

Parameters

as-number — The autonomous system number, expressed as a decimal integer.

Values

1 — 65535

preference

Syntax

[no] preference preference

Context

config>service>vprn:bgp
cfg>service>vprn:bgp>group

Description

This command configures the route preference for routes learned from the configured peer(s).
This configuration parameter can be set at three levels: global level (applies to all peers), group level (applies to all peers in peer-group) or neighbor level (only applies to specified peer). The most specific value is used.

The lower the preference the higher the chance of the route being the active route. The OS assigns BGP routes highest default preference compared to routes that are direct, static or learned via MPLS or OSPF.

The `no` form of the command used at the global level reverts to default value.

The `no` form of the command used at the group level reverts to the value defined at the global level.

The `no` form of the command used at the neighbor level reverts to the value defined at the group level.

Default

170

Parameters

`preference` — The route preference, expressed as a decimal integer.

Values

1 — 255

path-mtu-discovery

Syntax

```none
[no] path-mtu-discovery
```

Context

- `config>router>bgp`
- `config>router>bgp>group`
- `config>router>bgp>group>neighbor`

Description

This command enables path MTU discovery for the associated TCP connections. In doing so, the MTU for the associated TCP session will be initially set to the egress interface MTU. The DF bit will also be set so that if a router along the path of the TCP connection cannot handle a packet of a particular size without fragmenting, it will send back and ICMP message to set the path MTU for the given session to a lower value that can be forwarded without fragmenting.

The `no` form of the command disables path MTU discovery.

Default

no path-mtu-discovery

prefix-limit

Syntax

```none
prefix-limit limit [log-only] [threshold percent] no prefix-limit
```

Context

- `config>service>vprn>bgp>group`
- `config>service>vprn>bgp>group>neighbor`

Description

This command configures the maximum number of routes BGP can learn from a peer. When the number of routes reaches a certain percentage (default is 90% of this limit), an SNMP trap is sent. When the limit is exceeded, the BGP peering is dropped and disabled.

The `no` form of the command removes the `prefix-limit`.

Default

no prefix-limit
Parameters

limit — The number of routes that can be learned from a peer, expressed as a decimal integer.

Values

1 — 4294967295

log-only — Enables the warning message to be sent at the specified threshold percentage, and also when the limit is exceeded. However, the BGP peering is not dropped.

percent — The threshold value (as a percentage) that triggers a warning message to be sent. The default value is 90%.

rapid-withdrawal

Syntax

[no] rapid-withdrawal

Context

config>service>vprn>bgp

Description

This command disables the delay (Minimum Route Advertisement) on sending BGP withdrawals. Normal route withdrawals may be delayed up to the minimum route advertisement to allow for efficient packing of BGP updates.

The **no** form of the command removes this command from the configuration and returns withdrawal processing to the normal behavior.

Default

no rapid-withdrawal

remove-private

Syntax

[no] remove-private

Context

config>service>vprn>bgp
config>service>vprn>bgp>group
config>service>vprn>bgp>group>neighbor

Description

This command allows private AS numbers to be removed from the AS path before advertising them to BGP peers.

When the **remove-private** parameter is set at the global level, it applies to all peers regardless of group or neighbor configuration. When the parameter is set at the group level, it applies to all peers in the group regardless of the neighbor configuration.

The OS software recognizes the set of AS numbers that are defined by IANA as private. These are AS numbers in the range 64512 through 65535, inclusive.

The **no** form of the command used at the global level reverts to default value. The **no** form of the command used at the group level reverts to the value defined at the global level. The **no** form of the command used at the neighbor level reverts to the value defined at the group level.

Default

no remove-private — Private AS numbers will be included in the AS path attribute.
type

Syntax
[no] type {internal | external}

Context
config>service>vprn:bgp>group
config>service>vprn:bgp>group>neighbor

Description
This command designates the BGP peer as type internal or external.

The type of **internal** indicates the peer is an IBGP peer while the type of external indicates that the peer is an EBGP peer.

By default, the OS derives the type of neighbor based on the local AS specified. If the local AS specified is the same as the AS of the router, the peer is considered **internal**. If the local AS is different, then the peer is considered **external**.

The no form of the command used at the group level reverts to the default value.
The no form of the command used at the neighbor level reverts to the value defined at the group level.

Default
no type — Type of neighbor is derived on the local AS specified.

Parameters
internal — Configures the peer as internal.
external — Configures the peer as external.

ttl-security

Syntax
ttl-security min-ttl-value
no ttl-security

Context
config>service>vprn:bgp>group
config>service>vprn:bgp>group>neighbor

Description
Configure TTL security parameters for incoming packets.

Parameters
min-ttl-value — Specify the minimum TTL value for an incoming BGP packet.

Values
1 — 255

Default
1
Show, Clear, Debug, Commands

In This Chapter

This section provides show command descriptions and output.

- Services Show Commands on page 676
 → Service Commands on page 676
 → VLL
 - VLL Show Commands on page 801
 - VLL Clear Commands on page 855
 → VPLS
 - VPLS Show Commands on page 861
 - VPLS Clear Commands on page 930
 - VPLS Debug Commands on page 935
Services Show Commands

Service Commands

customer

Syntax
customer [customer-id] [site customer-site-name]

Context
show>service

Description
This command displays service customer information.

Parameters
customer-id — Displays only information for the specified customer ID.

- **Default**
 All customer IDs display.

- **Values**
 1 — 2147483647

site customer-site-name — Specifies the customer site which is an anchor point for an ingress and egress virtual scheduler hierarchy.

Output
Show Customer Command Output — The following table describes show customer command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer-ID</td>
<td>The ID that uniquely identifies a customer.</td>
</tr>
<tr>
<td>Contact</td>
<td>The name of the primary contact person.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the customer.</td>
</tr>
<tr>
<td>Phone</td>
<td>The phone/pager number to reach the primary contact person.</td>
</tr>
<tr>
<td>Total Customers</td>
<td>The total number of customers configured.</td>
</tr>
<tr>
<td>Site</td>
<td>Multi-service site name. A multi-service customer site is a group of SAPs with common origination and termination points.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays information about a specific customer's multi-service site.</td>
</tr>
<tr>
<td>Assignment</td>
<td>The port ID, MDA, or card number, where the SAP's that are members of this multi-service site are defined.</td>
</tr>
<tr>
<td>I. Sched Pol</td>
<td>The ingress QoS scheduler policy assigned to this multi-service site.</td>
</tr>
<tr>
<td>E. Sched Pol</td>
<td>The egress QoS scheduler policy assigned to this multi-service site.</td>
</tr>
<tr>
<td>Service-ID</td>
<td>The ID that uniquely identifies a service.</td>
</tr>
<tr>
<td>SAP</td>
<td>Specifies the SAP assigned to the service.</td>
</tr>
</tbody>
</table>
Sample Output

*A:A:ALA-12# show service customer

Customers

Customer-ID : 1
Contact : Manager
Description : Default customer
Phone : (123) 555-1212

Customer-ID : 2
Contact : Tech Support
Description : TiMetra Networks
Phone : (234) 555-1212

Customer-ID : 3
Contact : Test
Description : TiMetra Networks
Phone : (345) 555-1212

Customer-ID : 6
Contact : Test1
Description : Epipe Customer
Phone : (456) 555-1212

Customer-ID : 7
Contact : Test2
Description : VPLS Customer
Phone : (567) 555-1212

Customer-ID : 274
Contact : TestA
Description : ABC Company
Phone : 650 123-4567

Customer-ID : 94043
Contact : Test Engineer on Duty
Description : TEST Customer
Phone : (789) 555-1212

Total Customers : 8

*A:A:ALA-12# show service customer 274

Customer 274

Customer-ID : 274
Contact : Mssrs. Beaucoup
Description : ABC Company
Show, Clear, Debug Commands

Phone : 650 123-4567

Multi Service Site

Site : west
Description : (Not Specified)

*A:ALA-12#

fdb-mac

Syntax
fdb-mac [ieee-address] [expiry]

Context
show>service

Description
This command displays the FDB entry for a given MAC address.

Parameters
ieee-address — Specifies the 48-bit MAC address in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee, and ff are hexadecimal numbers.

expiry — shows amount of time until MAC is aged out.

Sample Output

*A:ALA-48# show service fdb-mac
Service Forwarding Database
ServId MAC Source-Identifier Type/Age Last Change

103 12:34:56:78:90:0f sap:1/1/7:0 Static 02/02/2009 09:27:57
700 90:30:ff:ff:ff:8f cpm Host 02/02/2009 09:27:57

No. of Entries: 2

*A:ALA-48#

*A:ALA-48# show service fdb-mac expiry
Service Forwarding Database
ServId MAC Source-Identifier Type/Expiry Last Change

103 12:34:56:78:90:0f sap:1/1/7:0 Static 02/02/2009 09:27:57
700 90:30:ff:ff:ff:8f cpm Host 02/02/2009 09:27:57

No. of Entries: 2

*A:ALA-48#

sdp
Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

Syntax
`sdp [sdp-id | far-end ip-address] [detail | keep-alive-history]`

Context
show>service

Description
This command displays SDP information.

If no optional parameters are specified, a summary SDP output for all SDPs is displayed.

Parameters
- **sdp-id** — The SDP ID for which to display information.
 - **Default**: All SDPs.
 - **Values**: 1 — 17407

- **far-end ip-address** — Displays only SDPs matching with the specified far-end IP address.
 - **Default**: SDPs with any far-end IP address.

- **detail** — Displays detailed SDP information.
 - **Default**: SDP summary output.

- **keep-alive-history** — Displays the last fifty SDP keepalive events for the SDP.
 - **Default**: SDP summary output.

Output
Show Service SDP — The following table describes show service SDP output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays a text string describing the SDP.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>Displays the desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end ESR, without requiring the packet to be fragmented. The default value of zero indicates that the path MTU should be computed dynamically from the corresponding MTU of the tunnel.</td>
</tr>
<tr>
<td>Opr Path MTU</td>
<td>Displays the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end ESR, without requiring the packet to be fragmented. In order to be able to bind this SDP to a given service, the value of this object minus the control word size (if applicable) must be equal to or larger than the MTU of the service, as defined by its service MTU.</td>
</tr>
<tr>
<td>Far End</td>
<td>Displays the far end IP address.</td>
</tr>
<tr>
<td>Delivery</td>
<td>The type of delivery used by the SDP: MPLS.</td>
</tr>
<tr>
<td>IP address</td>
<td>Specifies the IP address of the remote end of the MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Adm Admin State</td>
<td>The desired state of the SDP.</td>
</tr>
</tbody>
</table>
Label | Description
--- | ---
Opr Oper State | The operating state of the SDP.
Flags | Specifies all the conditions that affect the operating status of this SDP.
Signal Signaling | The signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on the SDP.
Last Status Change | The time of the most recent operating status change to this SDP.
Adv. NTU Over | Specifies whether the advertised MTU of a VLL spoke SDP bind includes the 14-byte L2 header, so that it is backward compatible with pre-2.0 software.
Last Mgmt Change | The time of the most recent management-initiated change to this SDP.
KeepAlive Information | This section displays Keepalive information.
Hello Time | Specifies how often the SDP echo request messages are transmitted on this SDP.
Hello Msg Len | The length of the SDP echo request messages transmitted on this SDP.
Hello Timeout | The number of seconds to wait for an SDP echo response message before declaring a timeout.
Unmatched Replies | The number of SDP unmatched message replies timer expired.
Max Drop Count | The maximum number of consecutive SDP echo request messages that can be unacknowledged before the keepalive protocol reports a fault.
Hold Down Time | The amount of time to wait before the keepalive operating status is eligible to enter the alive state.
TX Hello Msgs | The number of SDP echo request messages transmitted since the keepalive was administratively enabled or the counter was cleared.
Rx HelloMsgs | The number of SDP echo request messages received since the keepalive was administratively enabled or the counter was cleared.
Associated LSP List | When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the far end field.
Lsp Name | Displays the LSP name.
Time Since Last Transaction Signaling | Displays the time of the last transition.
| Specifies the signaling type.
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>Displays the metric to be used within the Tunnel Table Manager for decision making purposes. When multiple SDPs going to the same destination exist, this value is used as a tie-breaker by Tunnel Table Manager users like MP-BGP to select route with lower value.</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>Displays the policy to use to collect accounting statistics on this SDP. The value zero indicates that the agent should use the default accounting policy, if one exists.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether the agent collects accounting statistics for this SDP. When the value is true the agent collects accounting statistics for this SDP.</td>
</tr>
<tr>
<td>VLAN VC Etype</td>
<td>Displays the VLAN VC type.</td>
</tr>
<tr>
<td>BW Booking Factor</td>
<td>Specifies the value used to calculate the max SDP available bandwidth. The value specifies the percentage of the SDP max available bandwidth for VLL call admission. When the value of is set to zero (0), no new VLL spoke-sdp bindings with non-zero bandwidth are permitted with this SDP. Overbooking, >100% is allowed.</td>
</tr>
<tr>
<td>PBB Etype</td>
<td>Displays the Ethertype used in frames sent out on this SDP when specified as vlan for Provider Backbone Bridging frames.</td>
</tr>
<tr>
<td>Oper Max BW (Kbps)</td>
<td>Indicates the operational bandwidth in kilo-bits per seconds (Kbps) available for this SDP. The value is determined by the sum of the bandwidth of all the RSVP LSPs used by the SDP.</td>
</tr>
<tr>
<td>Avail BW (Kbps)</td>
<td>Indicates the bandwidth that is still free for booking by the SDP bindings on the SDP.</td>
</tr>
<tr>
<td>Net-Domain</td>
<td>Specifies the network-domain name configured on this SDP. The default value of this object is the default 'network-domain'.</td>
</tr>
<tr>
<td>Egr Interface</td>
<td>Indicates whether all the egress network interfaces that can carry traffic on this SDP are associated with the network-domain configured on this SDP. not applicable. indicates that there is no egress network interface that can carry traffic on this SDP.</td>
</tr>
<tr>
<td>consistent.</td>
<td>Indicates that the network-domains for all the egress network interfaces that can carry traffic on this SDP are consistent.</td>
</tr>
<tr>
<td>inconsistent.</td>
<td>indicates that the network-domain for one or more egress network interfaces that can carry traffic on this SDP are inconsistent.</td>
</tr>
<tr>
<td>Revert Time</td>
<td>Specifies the time to wait before reverting back from LDP to the configured LSPs, after having failed over to LDP.</td>
</tr>
<tr>
<td>Revert Count Down</td>
<td>Indicates the timer countdown before reverting back from LDP on this SDP. The timer countdown begins after the first configured LSP becomes active.</td>
</tr>
<tr>
<td>Flags</td>
<td>Displays all the conditions that affect the operating status of this SDP.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Sample Output

*A:ALA-7210M# show service sdp

Services: Service Destination Points

<table>
<thead>
<tr>
<th>SdpId</th>
<th>Adm MTU</th>
<th>Opr MTU</th>
<th>IP address</th>
<th>Adm</th>
<th>Opr</th>
<th>Deliver Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4462</td>
<td>4462</td>
<td>10.20.1.3</td>
<td>Up</td>
<td>Dn</td>
<td>NotReady MPLS TLDP</td>
</tr>
<tr>
<td>40</td>
<td>4462</td>
<td>1534</td>
<td>10.20.1.20</td>
<td>Up</td>
<td>Up</td>
<td>MPLS TLDP</td>
</tr>
<tr>
<td>60</td>
<td>4462</td>
<td>1534</td>
<td>10.20.1.21</td>
<td>Up</td>
<td>Up</td>
<td>MPLS TLDP</td>
</tr>
<tr>
<td>100</td>
<td>4462</td>
<td>4462</td>
<td>180.0.0.2</td>
<td>Down</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>4462</td>
<td>4462</td>
<td>10.20.1.50</td>
<td>Up</td>
<td>Dn</td>
<td>NotReady MPLS TLDP</td>
</tr>
</tbody>
</table>

Number of SDPs : 5

*A:ALA-7210M#

dsdp-using

Syntax
`sdp-using [sdp-id[:vc-id] | far-end ip-address]`

Context
`show>service`

Description
This command displays services using SDP or far-end address options.

Parameters
sdp-id — Displays only services bound to the specified SDP ID.

Values
1 — 17407
vc-id — The virtual circuit identifier.

Values 1 — 4294967295

far-end ip-address — Displays only services matching with the specified far-end IP address.

Default Services with any far-end IP address.

Output Show Service SDP Using X — The following table describes show service sdp-using output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sdp ID</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of SDP: spoke</td>
</tr>
<tr>
<td>Far End</td>
<td>The far end address of the SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by this SDP.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-7210M# show service sdp-using 300

Service Destination Point (Sdp Id : 300)

<table>
<thead>
<tr>
<th>SvcId</th>
<th>SdpId</th>
<th>Type</th>
<th>Far End</th>
<th>Opr State</th>
<th>I.Label</th>
<th>E.Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300:1</td>
<td>Spok 10.0.0.13</td>
<td>Up</td>
<td>131071</td>
<td>131071</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>300:2</td>
<td>Spok 10.0.0.13</td>
<td>Up</td>
<td>131070</td>
<td>131070</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>300:100</td>
<td>Spok 10.0.0.13</td>
<td>Up</td>
<td>131069</td>
<td>131069</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>300:101</td>
<td>Spok 10.0.0.13</td>
<td>Up</td>
<td>131068</td>
<td>131068</td>
<td></td>
</tr>
</tbody>
</table>

Number of SDPs : 4

*A:ALA-7210M#
Show, Clear, Debug Commands

service-using

Syntax
```
service-using [epipe][vpls][b-vpls][m-vpls] [sdp sd-p-id] [customer customer-id]
```

Context
show > service

Description
This command displays the services matching certain usage properties. If no optional parameters are specified, all services defined on the system are displayed.

Parameters
- **epipe** — Displays matching Epipe services.
- **vpls** — Displays matching VPLS instances.
- **sdp sd-p-id** — Displays only services bound to the specified SDP ID.
 - **Default** Services bound to any SDP ID.
 - **Values** 1 — 17407
- **customer customer-id** — Displays services only associated with the specified customer ID.
 - **Default** Services associated with a customer.
 - **Values** 1 — 2147483647

Output

Show Service Service-Using — The following table describes show command output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the service type configured for the service ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>CustomerID</td>
<td>The ID of the customer who owns this service.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this service.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12# show service service-using customer 10

```
Service
-----------------------------
ServiceId Type   Adm Opr CustomerId Last Mgmt Change
1   VPLS  Up Up 10 09/05/2006 13:24:15
300 Epipe Up Up 10 09/05/2006 13:24:15

Matching Services : 2
```

A:ALA-12#
eth-ring

Syntax

eth-ring [status]
eth-ring ring-index [path {a|b}]

Context

show

Description

This command displays the Ethernet rings information.

Parameters

- **status** — Displays the status information of the Ethernet rings configured on the system.
- **path {a|b}** — Displays information related to the configured Ethernet rings.
- **ring-index** — Specifies the ring index of the Ethernet ring.

Values

1—128

Output

Show Ethernet Ring Status — The following table describes show command output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Id</td>
<td>The ring identifier</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative state</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state</td>
</tr>
</tbody>
</table>

Path Information

- **Path** Displays the path information
- **Tag** Displays the tag information
- **State** Displays the state of the path

MEP Information

- **Ctrl-MEP** Displays the Ctrl-MEP information
- **CC-Intvl** Displays the Ctrl-Interval information
- **Defects** Displays the defects

A:NS1015C0821>show# eth-ring status

```
===============================================================================
<table>
<thead>
<tr>
<th>Ethernet Ring (Status information)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
===============================================================================
```
Output

Show Ethernet Ring — The following table describes show command output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The ring description</td>
</tr>
<tr>
<td>Admin State</td>
<td>Displays the administrative state</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state</td>
</tr>
<tr>
<td>Node ID</td>
<td>Displays the node identifier</td>
</tr>
<tr>
<td>Guard Time</td>
<td>Displays the configured guard time</td>
</tr>
<tr>
<td>Max Revert time</td>
<td>Displays the configured maximum revert time</td>
</tr>
<tr>
<td>CCM Hold down time</td>
<td>Displays the configured CCM Hold down time</td>
</tr>
<tr>
<td>APS TX PDU</td>
<td>Displays the APS TX PDU information</td>
</tr>
<tr>
<td>Defect Status</td>
<td>Displays the defect status</td>
</tr>
<tr>
<td>RPL Node</td>
<td>Displays the RPL node information</td>
</tr>
<tr>
<td>Time to revert</td>
<td>Displays the configured time to revert</td>
</tr>
<tr>
<td>CCM Hold Up Time</td>
<td>Displays the configured CCM Hold up time</td>
</tr>
<tr>
<td>Sub-Ring Type</td>
<td>Displays the sub-ring type information, the sub-ring type can be virtual link or on-virtual link.</td>
</tr>
<tr>
<td>Interconnect-ID</td>
<td>Displays the interconnect ID. The ID can be a ring-index ID or VPLS service ID.</td>
</tr>
<tr>
<td>Compatible Version</td>
<td>Displays the Ethernet ring version information.</td>
</tr>
</tbody>
</table>

*A:NS1015C0821>show# eth-ring 10

```
Ethernet Ring 10 Information

Description : (Not Specified)
Admin State  : Down
Oper State   : Down
Node ID      : 00:25:ba:03:48:04
Guard Time   : 5 deciseconds
Max Revert Time : 300 seconds
CCM Hold Down Time : 0 centiseconds
CCM Hold Up Time : 20 deciseconds
Compatibility : 2
APS TX PDU : N/A
```
Defect Status :
Sub-Ring Type : virtualLink Interconnect-ID : N/A

Ethernet Ring Path Summary

<table>
<thead>
<tr>
<th>Path Port</th>
<th>Raps-Tag</th>
<th>Admin/Oper</th>
<th>Type</th>
<th>Fwd State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-</td>
<td>-/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>-/-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A:NS1015C0821>show#
ETH-CFM Show Commands

eth-cfm

Syntax

eth-cfm

Context

show

Description

This command enables the context to display eth-cfm information.

association

Syntax

association [ma-index] [detail]

Context

show>eth-cfm

Description

This command displays eth-cfm association information.

Parameters

ma-index — Specifies the maintenance association (MA) index.

Values

1— 4294967295

detail — Displays detailed information for the eth-cfm association.

Output

Show eth-cfm Association Command Output — The following table describes show eth-cfm association command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md-index</td>
<td>Displays the the maintenance domain (MD) index.</td>
</tr>
<tr>
<td>Ma-index</td>
<td>Displays the the maintenance association (MA) index.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the part of the maintenance association identifier which is unique within the maintenance domain name.</td>
</tr>
<tr>
<td>CCM-interval</td>
<td>Displays the CCM transmission interval for all MEPs in the association.</td>
</tr>
<tr>
<td>Bridge-id</td>
<td>Displays the bridge-identifier value for the domain association.</td>
</tr>
<tr>
<td>MIF Creation</td>
<td>Displays the MIF half function (MIF) for the association.</td>
</tr>
<tr>
<td>Primary VLAN</td>
<td>Displays the primary bridge-identifier VLAN ID.</td>
</tr>
<tr>
<td>Num Vids</td>
<td>Displays the number of VIDs associated with the VLAN.</td>
</tr>
<tr>
<td>Remote Mep Id</td>
<td>Displays the remote maintenance association end point (MEP) identifier</td>
</tr>
</tbody>
</table>
Sample Output

A:dut-b# show eth-cfm association

==
<table>
<thead>
<tr>
<th>CFM Association Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md-index</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
==
A:dut-b#

cfm-stack-table

Syntax
cfm-stack-table [all-ports] [level <0..7>] [direction <down>]
cfm-stack-table port <port-id> [vlan <qtag[.qtag]>] [level <0..7>] [direction <down>]
cfm-stack-table facility [all-ports|all-lags|all-lag-ports|all-tunnel-meps|all-router-interfaces] [level <0..7>] [direction <down>]
cfm-stack-table facility lag <id> [tunnel <1..4094>] [level <0..7>] [direction <down>]
cfm-stack-table facility port <id> [level <0..7>] [direction <down>]
cfm-stack-table facility router-interface <ip-int-name> [level <0..7>] [direction <down>]

Context show>eth-cfm

Description
This command displays stack-table information. This stack-table is used to display the various management points MEPs and MIPs that are configured on the system. These can be Service based or facility based. The various option allow the operator to be specific. If no parameters are include then the entire stack-table will be displayed.

Parameters
t

- **port** port-id — Displays the bridge port or aggregated port on which MEPs or MHFs are configured.
- **vlan** vlan-id — Displays the associated VLAN ID.
- **level** — Display the MD level of the maintenance point.
 - **Values** 0 — 7
- **direction down** — Displays the direction in which the MP faces on the bridge port.
- **facility** — Displays the CFM stack table information for facility MEPs. The base command will display all the facility MEPs. Options may be included in order to further parse the table for specific facility MEP information.

Output Show eth-cfm CFM Stack Table Command Output — The following table describes show eth-cfm CFM stack table command output fields:
Sample Output

*A:7210SAS>show>eth-cfm# cfm-stack-table

CFM SAP Stack Table

<table>
<thead>
<tr>
<th>Sap</th>
<th>Level Dir</th>
<th>Md-index</th>
<th>Ma-index</th>
<th>Mep-id</th>
<th>Mac-address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/18:100</td>
<td>7</td>
<td>Up</td>
<td>100</td>
<td>1</td>
<td>00:25:ba:0d:21:13</td>
</tr>
</tbody>
</table>

CFM Ethernet Tunnel Stack Table

No Matching Entries

CFM SDP Stack Table

No Matching Entries

CFM Virtual Stack Table

No Matching Entries

*A:7210SAS>show>eth-cfm#
domain

Syntax

```
domain [md-index] [association ma-index | all-associations] [detail]
```

Context

```
show>eth-cfm
```

Description

This command displays domain information.

Parameters

- `md-index` — Displays the index of the MD to which the MP is associated, or 0, if none.
- `association ma-index` — Displays the index to which the MP is associated, or 0, if none.
- `all-associations` — Displays all associations to the MD.
- `detail` — Displays detailed domain information.

Output

Show eth-cfm Domain Command Output — The following table describes show eth-cfm domain command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md-index</td>
<td>Displays the Maintenance Domain (MD) index value.</td>
</tr>
<tr>
<td>Level</td>
<td>Displays an integer identifying the Maintenance Domain Level (MD Level).</td>
</tr>
<tr>
<td></td>
<td>Higher numbers correspond to higher Maintenance Domains, those</td>
</tr>
<tr>
<td></td>
<td>with the greatest physical reach, with the highest values for</td>
</tr>
<tr>
<td></td>
<td>customers' CFM PDUs. Lower numbers correspond to lower Maintenance</td>
</tr>
<tr>
<td></td>
<td>Domains, those with more limited physical reach, with the lowest</td>
</tr>
<tr>
<td></td>
<td>values for CFM PDUs protecting single bridges or physical links.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays a generic Maintenance Domain (MD) name.</td>
</tr>
<tr>
<td>Format</td>
<td>Displays the type of the Maintenance Domain (MD) name. Values</td>
</tr>
<tr>
<td></td>
<td>include dns, mac, and string.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:dut-b# show eth-cfm domain

==============================================================================
<table>
<thead>
<tr>
<th>Md-index</th>
<th>Level</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>d1</td>
<td>charString</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>d2</td>
<td>charString</td>
</tr>
</tbody>
</table>
==============================================================================
A:dut-b#
```
Show, Clear, Debug Commands

mep

Syntax

mep mep-id domain md-index association ma-index [loopback] [linktrace]
mep mep-id domain md-index association ma-index remote-mepid mep-id | all-remote-mepids
mep mep-id domain md-index association ma-index eth-test-results [remote-peer mac-address]
mep mep-id domain md-index association ma-index one-way-delay-test [remote-peer mac-address]
mep mep-id domain md-index association ma-index two-way-delay-test [remote-peer mac-address]
mep mep-id domain md-index association ma-index two-way-slm-test [remote-peer mac-address]

Context

show>eth-cfm

Description

This command displays Maintenance Endpoint (MEP) information.

Parameters

- **mep-id** — Displays the integer that is unique among all the MEPs in the same MA.
- **domain md-index** — Displays the index of the MD to which the MP is associated, or 0, if none.
- **association ma-index** — Displays the index to which the MP is associated, or 0, if none.
- **loopback** — Displays loopback information for the specified MEP.
- **linktrace** — Displays linktrace information for the specified MEP.
- **remote-mepid mep-id** — Includes specified remote mep-id information for specified the MEP.
- **all-remote-mepids** — Includes all remote mep-id information for the specified MEP.
- **eth-test-results** — Includes eth-test-result information for the specified MEP.
- **one-way-delay-test** — Includes one-way-delay-test information for the specified MEP.
- **two-way-delay-test** — Includes two-way-delay-test information for the specified MEP.
- **two-way-slm-test** — Includes two-way-slm-test information for the specified MEP.
- **remote-peer mac-address** — Includes specified remote mep-id information for the specified MEP.

Sample Output

```bash
A:dut-b# show eth-cfm mep 1 domain 1 association 1 linktrace
-------------------------------------------------------------------------------
| Mep Information |
-------------------------------------------------------------------------------
| Md-index       : 1  | Direction      : Down |
| Ma-index       : 1  | Admin          : Enabled |
| MepId          : 1  | CCM-Enable     : Enabled |
| IfIndex        : 35946496  | PrimaryVid     : 1 |
| FngState       : fngReset  | ControlMep     : False |
| LowestDefectPri : macRemErrXcon  | HighestDefect  : none |
| Defect Flags   : None  | CcmLtmPriority : 7 |
| Mac Address    : 00:25:ba:01:c3:6a  | CcmSequenceErr : 0 |
```

Page 692 7210 SAS M Services Guide
Eth-1Dm Threshold : 3(sec)
Eth-Ais: : Disabled
Eth-Tst: : Disabled

CcmLastFailure Frame: None
XconCcmFailure Frame: None

Mep Linktrace Message Information

LtRxUnexplained : 0 LtNextSequence : 2
LtStatus : False LtResult : False
TargIsMepId : False TargMepId : 0
TargMac : 00:00:00:00:00:00 TTL : 64
EgressId : 00:00:00:25:ba:01:c3:6a SequenceNum : 1
LtFlags : useFDBonly

Mep Linktrace Replies

SequenceNum : 1 ReceiveOrder : 1
Ttl : 63 Forwarded : False
LastEgressId : 00:00:00:25:ba:01:c3:6a TerminalMep : True
NextEgressId : 00:00:00:25:ba:00:5e:bf Relay : rlyHit
ChassisIdSubType : unknown value (0)
ChassisId: None
ManAddressDomain: None
ManAddress: None
IngressMac : 00:25:ba:00:5e:bf Ingress Action : ingOk
IngrPortIdSubType : unknown value (0)
IngressPortId: None
EgressMac : 00:00:00:00:00:00 Egress Action : egrNoTlv
EgrPortIdSubType : unknown value (0)
EgressPortId: None
Org Specific TLV: None
A:dut-b#
A:dut-b#
A:dut-b# show eth-cfm mep 1 domain 1 association 1 loopback

Mep Information

Md-index : 1 Direction : Down
Ma-index : 1 Admin : Enabled
MepId : 1 CCM-Enable : Enabled
IfIndex : 35946496 PrimaryVid : 1
FngState : fngReset ControlMep : False
LowestDefectPri : macRemErrXcon HighestDefect : none
Defect Flags : None
Mac Address : 00:25:ba:01:c3:6a CcmLtmPriority : 7
CcmTx : 0 CcmSequenceErr : 0
Eth-1Dm Threshold : 3(sec)
Eth-Ais: : Disabled
Eth-Tst: : Disabled
CcmLastFailure Frame:
None
XconCcmFailure Frame:
None

Mep Loopback Information

LbRxReply : 1 LbRxBadOrder : 0
LbRxBadMsdu : 0 LbTxReply : 0
LbSequence : 2 LbNextSequence : 2
LbStatus : False LbResultOk : True
DestIsMepId : False DestMepId : 0
DestMac : 00:00:00:00:00:00 SendCount : 0
VlanDropEnable : True VlanPriority : 7
Data TLV:
None
A:dut-b#

*A:dut-b# show eth-cfm mep 1 domain 4 association 4 two-way-delay-test remote-peer 00:25:ba:00:5e:bf

Eth CFM Two-way Delay Test Result Table
Peer Mac Addr Delay (us) Delay Variation (us)
00:25:ba:00:5e:bf 507 507

*A:dut-b#

*A:dut-b# show eth-cfm mep 1 domain 4 association 4 two-way-delay-test

Eth CFM Two-way Delay Test Result Table
Peer Mac Addr Delay (us) Delay Variation (us)
00:25:ba:00:5e:bf 507 507

*A:dut-a#

*A:dut-a# show eth-cfm mep 2 domain 4 association 4 eth-test-results remote-peer 00:25:ba:01:c3:6a

Eth CFM ETH-Test Result Table
Peer Mac Addr FrameCount ErrBits CrcErrs ByteCount CrcErrs
00:25:ba:01:c3:6a 6 0 0 384 0 0

*A:dut-a#

*A:dut-a# show eth-cfm mep 2 domain 4 association 4 eth-test-results
Eth CFM ETH-Test Result Table

<table>
<thead>
<tr>
<th>Peer Mac Addr</th>
<th>Current</th>
<th>Accumulate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FrameCount</td>
<td>ErrBits</td>
</tr>
<tr>
<td>00:25:ba:01:c3:6a</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

*A:dut-a# show eth-cfm mep 2 domain 4 association 4 one-way-delay-test remote-peer 00:25:ba:01:c3:6a

Eth CFM One-way Delay Test Result Table

<table>
<thead>
<tr>
<th>Peer Mac Addr</th>
<th>Delay (us)</th>
<th>Delay Variation (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:25:ba:01:c3:6a</td>
<td>402</td>
<td>402</td>
</tr>
</tbody>
</table>

*A:dut-a#

*A:dut-a# show eth-cfm mep 2 domain 4 association 4 one-way-delay-test

Show output for two-way-slm-test

*A:7210SAS# show eth-cfm mep 1 domain 7 association 100 two-way-slm-test

Eth CFM Two-way SLM Test Result Table (Test-id: 1)

<table>
<thead>
<tr>
<th>Peer Mac Addr</th>
<th>Remote MEP</th>
<th>Count</th>
<th>In Loss</th>
<th>Out Loss</th>
<th>Unack</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:25:ba:0d:1e:12</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*A:7210SAS#
connection-profile

Syntax

```
connection-profile [conn-prof-id] [associations]
```

Context

```
show
```

Description

This command displays connection profile information.

Parameters

- `conn-prof-id` — Specifies the connection profile ID.

 Values

 1 — 8000

- `associations` — Displays the SAP and the service ID that use this connection profile.

Output

The following table describes show connection-profile command output fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Index</td>
<td>Identifies the connection-profile.</td>
</tr>
<tr>
<td>Number of Members</td>
<td>Indicates the number of ATM connection profile members not applicable for 7210.</td>
</tr>
<tr>
<td>HasRange</td>
<td>Indicates whether VLAN range is configured or not</td>
</tr>
</tbody>
</table>

Sample Output

Show output for connection-profile

```
*7210SAS>show# connection-profile

Connection Profile Summary Information

<table>
<thead>
<tr>
<th>CP Index</th>
<th>Number of HasRange Members</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>200</td>
<td>Yes</td>
</tr>
<tr>
<td>300</td>
<td>Yes</td>
</tr>
<tr>
<td>400</td>
<td>Yes</td>
</tr>
<tr>
<td>500</td>
<td>Yes</td>
</tr>
<tr>
<td>600</td>
<td>Yes</td>
</tr>
<tr>
<td>700</td>
<td>Yes</td>
</tr>
<tr>
<td>800</td>
<td>Yes</td>
</tr>
<tr>
<td>900</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*7210SAS>show#
```
Show output for connection-profile associations

*A:7210SAS>show# connection-profile associations

===
<table>
<thead>
<tr>
<th>Connection Profile Summary Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Index</td>
<td>Number of HasRange Members</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>

*A:7210SAS>show#
IES Show Commands

customer

Syntax customer [customer-id] [site customer-site-name]

Context show>service

Description This command displays service customer information.

Parameters

 customer-id — Displays only information for the specified customer ID.

 Default All customer IDs display

 Values 1 — 2147483647

 site customer-site-name — Specifies the customer site which is an anchor point for an ingress and egress virtual scheduler hierarchy.

Output Show Customer Command Output — The following table describes show customer command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer-ID</td>
<td>The ID that uniquely identifies a customer.</td>
</tr>
<tr>
<td>Contact</td>
<td>The name of the primary contact person.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the customer.</td>
</tr>
<tr>
<td>Phone</td>
<td>The phone/pager number to reach the primary contact person.</td>
</tr>
<tr>
<td>Total Customers</td>
<td>The total number of customers configured.</td>
</tr>
<tr>
<td>Multi-service site</td>
<td>Multi-service site name. A multi-service customer site is a group of SAPs with common origination and termination points.</td>
</tr>
<tr>
<td>Site</td>
<td>Multi-service site name. A multi-service customer site is a group of SAPs with common origination and termination points.</td>
</tr>
<tr>
<td>Description</td>
<td>Information about a specific customer's multi-service site.</td>
</tr>
<tr>
<td>Assignment</td>
<td>The port ID, MDA, or card number, where the SAP's that are members of this multi-service site are defined.</td>
</tr>
<tr>
<td>I. Sched Pol</td>
<td>The ingress QoS scheduler policy assigned to this multi-service site.</td>
</tr>
<tr>
<td>E. Sched Pol</td>
<td>The egress QoS scheduler policy assigned to this multi-service site.</td>
</tr>
<tr>
<td>Service Association</td>
<td>The ID that uniquely identifies a service.</td>
</tr>
<tr>
<td>Service-ID</td>
<td>The ID that uniquely identifies a service.</td>
</tr>
<tr>
<td>SAP</td>
<td>Specifies the SAP assigned to the service.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service customer

Customers

Customer-ID: 1
Contact: Manager
Description: Default customer
Phone: (123) 555-1212

Customer-ID: 2
Contact: Tech Support
Description: TiMetra Networks
Phone: (234) 555-1212

Customer-ID: 3
Contact: Fred
Description: TiMetra Networks
Phone: (345) 555-1212

Customer-ID: 6
Contact: Ethel
Description: Epipe Customer
Phone: (456) 555-1212

Customer-ID: 7
Contact: Lucy
Description: ABC Customer
Phone: (567) 555-1212

Customer-ID: 8
Contact: Customer Service
Description: IES Customer
Phone: (678) 555-1212

Customer-ID: 274
Contact: Mssrs. Beaucoup
Description: ABC Company
Phone: 650 123-4567

Customer-ID: 94043
Contact: Test Engineer on Duty
Description: TEST Customer
Phone: (789) 555-1212

Total Customers: 8

*A:ALA-12#

*A:ALA-12# show service customer 274

Customer 274

Customer-ID: 274
Contact: Mssrs. Beaucoup
Description: ABC Company
Phone: 650 123-4567
Multi Service Site

Site : west
Description : (Not Specified)

*A:ALA-12#

*A:ALA-12# show service customer 274 site west

Customer 274

Customer-ID : 274
Contact : Mssrs. Beaucoup
Description : ABC Company
Phone : 650 123-4567

Multi Service Site

Site : west
Description : (Not Specified)
Assignment : Card 5
I. Sched Pol: SLA1
E. Sched Pol: (Not Specified)

Service Association

No Service Association Found.

*A:ALA-12#

sap-using

Syntax sap-using [sap sap-id]
sap-using interface [ip-address | ip-int-name]
sap-using [ingress | egress] filter filter-id
sap-using [ingress | qos-policy qos-policy-id

Context show>service

Description Displays SAP information.

If no optional parameters are specified, the command displays a summary of all defined SAPs. The optional parameters restrict output to only SAPs matching the specified properties.

Parameters sap sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

ingress — Specifies matching an ingress policy.

egress — Specifies matching an egress policy.

filter filter-id — The ingress or egress filter policy ID for which to display matching SAPs.

Values 1 — 65535

interface — Specifies matching SAPs with the specified IP interface.
ip-addr — The IP address of the interface for which to display matching SAPs.

Values

1.0.0.0 — 223.255.255.255

ip-int-name — The IP interface name for which to display matching SAPs.

Output

Show Service SAP — The following table describes show service SAP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port ID</td>
<td>The ID of the access port where the SAP is defined.</td>
</tr>
<tr>
<td>Svc ID</td>
<td>The value that identifies the service.</td>
</tr>
<tr>
<td>SapMTU</td>
<td>The SAP MTU value.</td>
</tr>
<tr>
<td>Igr.QoS</td>
<td>The SAP ingress QoS policy number specified on the ingress SAP.</td>
</tr>
<tr>
<td>Ing.Fltr</td>
<td>The MAC or IP filter policy ID applied to the ingress SAP.</td>
</tr>
<tr>
<td>E.QoS</td>
<td>The SAP egress QoS policy number specified on the egress SAP.</td>
</tr>
<tr>
<td>Egr.Fltr</td>
<td>The MAC or IP filter policy ID applied to the egress SAP.</td>
</tr>
<tr>
<td>A.Pol</td>
<td>The accounting policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Adm</td>
<td>The administrative state of the SAP.</td>
</tr>
<tr>
<td>Opr</td>
<td>The actual state of the SAP.</td>
</tr>
</tbody>
</table>

Sample Output

A:DUT-B# show service sap-using sap 1/1/3:100.

```
<table>
<thead>
<tr>
<th>Port Id</th>
<th>SvcId</th>
<th>Ing. QoS</th>
<th>Ing. Fltr</th>
<th>Egr. QoS</th>
<th>Egr. Fltr</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1</td>
<td>6</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>1/1/2</td>
<td>700</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Down</td>
<td></td>
</tr>
</tbody>
</table>
```

Number of SAPs : 2

A:DUT-B#
service-using

Syntax

```
service-using [ies] [customer customer-id]
```

Context

```
show>service
```

Description

This command displays the services matching certain usage properties. If no optional parameters are specified, all services defined on the system are displayed.

Parameters

- `ies` — Displays matching IES services.
- `customer customer-id` — Displays services only associated with the specified customer ID.

Default

Services associated with an customer.

Values

1 — 2147483647

Output

Show Service Service-Using — The following table describes show service service-using output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The value that identifies the service.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the service type configured for the service ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>The administrative state of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>CustomerID</td>
<td>The ID of the customer who owns this service.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this service.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-48# show service service-using ies
===============================================================================
Services [ies]
===============================================================================
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>IES</td>
<td>Up</td>
<td>Down</td>
<td>8</td>
<td>07/25/2006 15:46:28</td>
</tr>
<tr>
<td>104</td>
<td>IES</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>07/25/2006 15:46:28</td>
</tr>
<tr>
<td>200</td>
<td>IES</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>07/25/2006 15:46:28</td>
</tr>
<tr>
<td>321</td>
<td>IES</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>07/25/2006 15:46:28</td>
</tr>
<tr>
<td>322</td>
<td>IES</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>07/25/2006 15:46:28</td>
</tr>
<tr>
<td>1001</td>
<td>IES</td>
<td>Up</td>
<td>Down</td>
<td>1730</td>
<td>07/25/2006 15:46:28</td>
</tr>
</tbody>
</table>
Matching Services : 8
```

A:ALA-48#
id

Syntax
`id service-id {all | arp | base | sap | interface | mstp-configuration }

Context
`show>service`

Description
This command displays information for a particular service-id.

Parameters
`service-id` — The unique service identification number to identify the service in the service domain.

- `all` — Display detailed information about the service.
- `arp` — Display ARP entries for the service.
- `base` — Display basic service information.
- `interface` — Display service interfaces.
- `mstp-configuration` — Display MSTP information.
- `sap` — Display SAPs associated to the service.
- `split-horizon-group` — Display split horizon group information.

all

Syntax
`all`

Context
`show>service>id`

Description
This command displays detailed information for all aspects of the service.

Output
Show All Service-ID Output — The following table describes the show all service-id command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Detailed Information</td>
<td></td>
</tr>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>VPN Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Specifies the type of service.</td>
</tr>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs specified for this service.</td>
</tr>
<tr>
<td>SDP Bind Count</td>
<td>The number of SDPs bound to this service.</td>
</tr>
</tbody>
</table>
Service Destination Points (SDPs)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether this Service SDP binding is a spoke or a mesh.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of this SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of this SDP.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by this SDP.</td>
</tr>
<tr>
<td>Ingress Filter</td>
<td>The ID of the ingress filter policy.</td>
</tr>
<tr>
<td>Egress Filter</td>
<td>The ID of the egress filter policy.</td>
</tr>
<tr>
<td>Far End</td>
<td>Specifies the IP address of the remote end of the GRE or MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent change to this customer.</td>
</tr>
<tr>
<td>Signaling</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Specifies the operating status of the service.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The current status of the service.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this SDP.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this SDP.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP Echo Request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state.</td>
</tr>
</tbody>
</table>
When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the far-end field. If the SDP type is GRE, then the following message displays: “SDP Delivery Mechanism is not MPLS”

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of SDPs</td>
<td>The total number SDPs applied to this service ID.</td>
</tr>
<tr>
<td>Service Access Points</td>
<td></td>
</tr>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Port Id</td>
<td>The ID of the access port where this SAP is defined.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the SAP.</td>
</tr>
<tr>
<td>Encap</td>
<td>The value of the label used to identify this SAP on the access port.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The desired state of the SAP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operating state of the SAP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the last change.</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>The largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Ingress qos-policy</td>
<td>The SAP ingress QoS policy ID.</td>
</tr>
<tr>
<td>Egress qos-policy</td>
<td>The SAP egress QoS policy ID.</td>
</tr>
<tr>
<td>Ingress Filter-Id</td>
<td>The SAP ingress filter policy ID.</td>
</tr>
<tr>
<td>Egress Filter-Id</td>
<td>The SAP egress filter policy ID.</td>
</tr>
<tr>
<td>Multi Svc Site</td>
<td>Indicates the multi-service site that the SAP is a member.</td>
</tr>
<tr>
<td>Ingress sched-policy</td>
<td>Indicates the ingress QoS scheduler for the SAP.</td>
</tr>
<tr>
<td>Egress sched-policy</td>
<td>Indicates the egress QoS scheduler for the SAP.</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>Indicates the accounting policy applied to the SAP.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether accounting statistics are collected on the SAP.</td>
</tr>
<tr>
<td>SAP Statistics</td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td>The number of packets or octets dropped.</td>
</tr>
</tbody>
</table>
IES Show Commands

Sample output (split horizon group)

*A:SASM>show>service# id 10 all

Service Detailed Information

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Vpn Id</th>
<th>Service Type</th>
<th>Description</th>
<th>Customer Id</th>
<th>Last Status Change</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>VPLS</td>
<td></td>
<td>1</td>
<td>07/22/2011 11:06:02</td>
<td>07/22/2011 11:04:51</td>
</tr>
</tbody>
</table>

Admin State : Up
Oper State : Up
MTU : 1450
MTU Check : Enabled
SAP Count : 2
SDP Bind Count : 2
Snd Flush on Fail : Disabled
Uplink Type: MPLS

Split Horizon Group: test

Description : test
Instance Id : 1

Offered Hi Priority
The number of high priority packets, as determined by the SAP ingress QoS policy.

Offered Low Priority
The number of low priority packets, as determined by the SAP ingress QoS policy.

Forwarded In Profile
The number of in-profile packets or octets (rate below CIR) forwarded.

Forwarded Out Profile
The number of out-of-profile packets or octets (rate above CIR) forwarded.

Split Horizon Group Specifics

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split Horizon Group</td>
<td>Displays the name of the split horizon group.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the description of the split horizon group.</td>
</tr>
<tr>
<td>Instance Id</td>
<td>Displays the Instance identifier of the split horizon group.</td>
</tr>
<tr>
<td>Last Change</td>
<td>Displays the date and time of most recent change to the split horizon group.</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>Displays the name of the split horizon group the SAP or Spoke SDP is associated.</td>
</tr>
</tbody>
</table>
Service Destination Points (SDPs)

<table>
<thead>
<tr>
<th>Description</th>
<th>(Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>2:10</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>Split Horiz Grp</td>
<td>(Not Specified)</td>
</tr>
<tr>
<td>VC Type</td>
<td>VLAN</td>
</tr>
<tr>
<td>VC Tag</td>
<td>10</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9186</td>
</tr>
<tr>
<td>Far End</td>
<td>10.20.1.6</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>None</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Disabled</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>131063</td>
</tr>
<tr>
<td>Egress Label</td>
<td>131067</td>
</tr>
<tr>
<td>Admin ControlWord</td>
<td>Preferred</td>
</tr>
<tr>
<td>Oper ControlWord</td>
<td>True</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>07/22/2011 11:07:26</td>
</tr>
<tr>
<td>Signaling</td>
<td>TLDP</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>07/22/2011 11:04:51</td>
</tr>
<tr>
<td>Force Vlan-Vc</td>
<td>Disabled</td>
</tr>
<tr>
<td>Flags</td>
<td>None</td>
</tr>
<tr>
<td>Peer Pw Bits</td>
<td>None</td>
</tr>
<tr>
<td>Peer Fault Ip</td>
<td>None</td>
</tr>
<tr>
<td>Max Nbr of MAC Addr</td>
<td>No Limit</td>
</tr>
<tr>
<td>Learned MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Static MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>MAC Learning</td>
<td>Enabled</td>
</tr>
<tr>
<td>Discard Unkn Srce</td>
<td>Disabled</td>
</tr>
<tr>
<td>BFDU Translation</td>
<td>Disabled</td>
</tr>
<tr>
<td>L2PT Termination</td>
<td>Disabled</td>
</tr>
<tr>
<td>MAC Pinning</td>
<td>Disabled</td>
</tr>
<tr>
<td>Block On Mesh Fail</td>
<td>False</td>
</tr>
<tr>
<td>KeepAlive Information :</td>
<td></td>
</tr>
<tr>
<td>Admin State</td>
<td>Disabled</td>
</tr>
<tr>
<td>Oper State</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hello Time</td>
<td>10</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>0</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>3</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>10</td>
</tr>
<tr>
<td>Statistics :</td>
<td></td>
</tr>
<tr>
<td>I. Fwd. Pkts.</td>
<td>0</td>
</tr>
<tr>
<td>E. Fwd. Pkts.</td>
<td>1</td>
</tr>
<tr>
<td>Extra-Tag-Drop-Pkts</td>
<td>n/a</td>
</tr>
<tr>
<td>Extra-Tag-Drop-Oc*: n/a</td>
<td></td>
</tr>
<tr>
<td>Associated LSP LIST :</td>
<td></td>
</tr>
<tr>
<td>Lsp Name</td>
<td>toF</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up</td>
</tr>
<tr>
<td>Stp Service Destination Point specifics</td>
<td></td>
</tr>
</tbody>
</table>

Stp Admin State	Up
Stp Oper State	Up
Core Connectivity	Down
Port Role	Designated
Port State	Forwarding
Port Number	2049
Port Priority	128
Port Path Cost	10
Auto Edge	Enabled
Admin Edge	Disabled
Oper Edge	True
Link Type	Pt-pt
BFDU Encap	Dot1d
Root Guard	Disabled
Active Protocol	Rstp
Last BFDU from	N/A
Designated Bridge	This Bridge
Designated Port Id	34817
Fwd Transitions	1
Bad BFDUs rcvd	0
Cfg BFDUs rcvd	0
Cfg BFDUs tx	0
TCN BFDUS rcvd	0
TCN BFDUS tx	0
TC bit BFDUS rcvd	0
TC bit BFDUS tx	0
IES Show Commands

RST BPDUs rcvd : 0 RST BPDUs tx : 44265

Sdp Id 4:10 -(10.20.1.3)

Description : (Not Specified)
SDP Id : 4:10 Type : Spoke
Split Horiz Grp : (Not Specified)
VC Type : VLAN VC Tag : 10
Admin Path MTU : 0 Oper Path MTU : 9182
Far End : 10.20.1.3 Delivery : MPLS
Admin State : Up Oper State : Up
Acct. Pol : None Collect Stats : Disabled
Ingress Label : 131059 Egress Label : 131065
Admin ControlWord : Preferred Oper ControlWord : True
Last Status Change : 07/22/2011 11:07:26 Signaling : TLDP
Last Mgmt Change : 07/22/2011 11:04:51 Force Vlan-Vc : Disabled
Flags : None Peer Pw Bits : None
Peer Fault Ip : None Peer Fault Ip : None
Max Nbr of MAC Addr: No Limit Total MAC Addr : 0
Learned MAC Addr : 0 Static MAC Addr : 0
MAC Learning : Enabled Discard Unkw Snrc : Disabled
BPDU Translation : Disabled L2PT Termination : Disabled
MAC Pinning : Disabled MAC Pinning : Disabled
MAC Pinning : Disabled Block On Mesh Fail: False
KeepAlive Information :
Admin State : Disabled Oper State : Disabled
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10
Statistics :
E. Fwd. Pkts. : 0 E. Fwd. Octets : 0
Extra-Tag-Drop-Pkts: n/a Extra-Tag-Drop-Oc*: n/a
Associated LSP LIST :
Lsp Name : toh2_facility
Admin State : Up Oper State : Up
Time Since Last Tr*: 01d00h37m

Stp Service Destination Point specifics

Stp Admin State : Up Stp Oper State : Up
Core Connectivity : Down Core Connectivity : Down
Port Role : Root Port State : Forwarding
Port Number : 2050 Port Priority : 128
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : False
Link Type : Pt-pt BPDU Encap : Dot1d
Root Guard : Disabled Active Protocol : Rstp
Last BFDU from : 80:01:00:25:ba:02:de:90 Designated Bridge : 80:01:00:25:ba:02:de:90
Designated Port Id : 34817
Fwd Transitions : 1 Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0 Cfg BPDUs tx : 0

7210-SAS M Services Guide Page 709
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCN BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TC bit BPDUs rcvd</td>
<td>2</td>
</tr>
<tr>
<td>TC bit BPDUs tx</td>
<td>2</td>
</tr>
<tr>
<td>RST BPDUs rcvd</td>
<td>44284</td>
</tr>
<tr>
<td>RST BPDUs tx</td>
<td>3</td>
</tr>
</tbody>
</table>

Number of SDPs: 2

Service Access Points

SAP 1/1/2

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>1/1/2</td>
</tr>
<tr>
<td>Encap</td>
<td>null</td>
</tr>
<tr>
<td>Description</td>
<td>(Not Specified)</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Down</td>
</tr>
<tr>
<td>Flags</td>
<td>PortOperDown</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>07/22/2011 11:04:50</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>07/23/2011 11:42:22</td>
</tr>
<tr>
<td>Dot1Q Ethertype</td>
<td>0x8100</td>
</tr>
<tr>
<td>QinQ Ethertype</td>
<td>0x8100</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>(Not Specified)</td>
</tr>
<tr>
<td>Max Nbr of MAC Addr</td>
<td>No Limit</td>
</tr>
<tr>
<td>Total MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Learned MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Static MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>1514</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>1514</td>
</tr>
<tr>
<td>Ingr IP Fltr-Id</td>
<td>n/a</td>
</tr>
<tr>
<td>Egr IP Fltr-Id</td>
<td>n/a</td>
</tr>
<tr>
<td>Ingr Mac Fltr-Id</td>
<td>n/a</td>
</tr>
<tr>
<td>Egr Mac Fltr-Id</td>
<td>n/a</td>
</tr>
<tr>
<td>Ingr IPv6 Fltr-Id</td>
<td>n/a</td>
</tr>
<tr>
<td>Egr IPv6 Fltr-Id</td>
<td>n/a</td>
</tr>
<tr>
<td>tod-suite</td>
<td>None</td>
</tr>
<tr>
<td>Mac Learning</td>
<td>Enabled</td>
</tr>
<tr>
<td>Discard Unkwn Srce</td>
<td>Disabled</td>
</tr>
<tr>
<td>Mac Aging</td>
<td>Enabled</td>
</tr>
<tr>
<td>Mac Pinning</td>
<td>Disabled</td>
</tr>
<tr>
<td>BPDU Translation</td>
<td>Disabled</td>
</tr>
<tr>
<td>L2PT Termination</td>
<td>Disabled</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>None</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Stp Service Access Point specifics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stp Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Stp Oper State</td>
<td>Up</td>
</tr>
<tr>
<td>Core Connectivity</td>
<td>Down</td>
</tr>
<tr>
<td>Port Role</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port State</td>
<td>Discarding</td>
</tr>
<tr>
<td>Port Number</td>
<td>2051</td>
</tr>
<tr>
<td>Port Priority</td>
<td>128</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Auto Edge</td>
<td>Enabled</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Oper Edge</td>
<td>False</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
</tr>
<tr>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>Rstp</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>N/A</td>
</tr>
<tr>
<td>CIST Desig Bridge</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Port</td>
<td>0</td>
</tr>
<tr>
<td>Forward transitions</td>
<td>0</td>
</tr>
<tr>
<td>Bad BPDUrcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUrcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUtx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUrcvd</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUtx</td>
<td>0</td>
</tr>
<tr>
<td>TC bit BPDUrcvd</td>
<td>0</td>
</tr>
<tr>
<td>TC bit BPDUtx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUrcvd</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUtx</td>
<td>0</td>
</tr>
<tr>
<td>MST BPDUrcvd</td>
<td>0</td>
</tr>
<tr>
<td>MST BPDUtx</td>
<td>0</td>
</tr>
</tbody>
</table>

ARP host

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>outOfService</td>
</tr>
</tbody>
</table>
Host Limit : 1
Min Auth Interval : 15 minutes

QoS

Ingress qos-policy : 1

Aggregate Policer

rate : n/a
burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4
Classifiers Used : 2

Sap Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats:</td>
<td>0</td>
</tr>
<tr>
<td>Egress Stats:</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Drop Stats:</td>
<td>0</td>
</tr>
<tr>
<td>Extra-Tag Drop Stats:</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Sap per Meter stats

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Meter 1 (Unicast)</td>
<td>For. InProf : 0</td>
</tr>
<tr>
<td>Ingress Meter 11 (Multipoint)</td>
<td>For. InProf : 0</td>
</tr>
</tbody>
</table>

SAP 1/1/7:10

Service Id : 10
SAP : 1/1/7:10
Encap : q-tag
Description : (Not Specified)
Admin State : Up
Oper State : Up
Flags : None
Last Status Change : 07/22/2011 11:06:02
Last Mgmt Change : 07/22/2011 11:04:51
Dot1Q Ethertype : 0x8100
QinQ Ethertype : 0x8100
Split Horizon Group: (Not Specified)

Max Nbr of MAC Addr: No Limit
Total MAC Addr : 2
Learned MAC Addr : 0
Static MAC Addr : 2
Admin MTU : 1518
Oper MTU : 1518
Ingr IP Fltr-Id : n/a
Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
Egr Mac Fltr-Id : n/a
Ingr IPv6 Fltr-Id : n/a
Egr IPv6 Fltr-Id : n/a
tod-suite : None
Mac Learning : Enabled
Discard Unkwn Srce: Disabled
Mac Aging : Enabled
Mac Pinning : Disabled
BFDU Translation : Disabled
L2PT Termination : Disabled
Acct. Pol : None Collect Stats : Disabled

Stp Service Access Point specifics

Stp Admin State : Up Stp Oper State : Up
Core Connectivity : Down
Port Role : Designated Port State : Forwarding
Port Number : 2048 Port Priority : 128
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : True
Link Type : Pt-pt BPDU Encap : Dot1d
Root Guard : Disabled Active Protocol : Rstp
Last BPDU from : N/A
CIST Desig Bridge : This Bridge Designated Port : 34816
Forward transitions: 1

Cfg BPDU rcvd : 0 Cfg BPDU tx : 0
TCN BPDU rcvd : 0 TCN BPDU tx : 0
TC bit BPDU rcvd : 0 TC bit BPDU tx : 0
RST BPDU rcvd : 0 RST BPDU tx : 44379
MST BPDU rcvd : 0 MST BPDU tx : 0

ARP host

Admin State : outOfService
Host Limit : 1 Min Auth Interval : 15 minutes

QOS

Ingress qos-policy : 1

Aggregate Policer

rate : n/a burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4
Classifiers Used : 2

Sap Statistics

Packets Octets
Ingress Stats: 0 0
Egress Stats: 1 68
Ingress Drop Stats: 0 0

Extra-Tag Drop Stats: n/a n/a

Sap per Meter stats

Packets Octets
Ingress Meter 1 (Unicast)
For. InProf : 0 0
For. OutProf : 0 0

Ingress Meter 11 (Multipoint)
IES Show Commands

For. InProf : 0
For. OutProf : 0

VPLS Spanning Tree Information

VPLS oper state : Up
Stp Admin State : Up
Mode : Rstp

Bridge Id : 80:02.00:25:ba:04:37:10
Bridge Priority : 32768
Bridge Instance Id : 2
Root Bridge : 80:01.00:25:ba:02:de:90
Primary Bridge : N/A

Root Path Cost : 10
Root Forward Delay : 15
Root Priority : 32769
Root Port : 2050

Forwarding Database specifics

Service Id : 10
Mac Move : Disabled
Mac Move Rate : 2
Mac Move Timeout : 10
Mac Move Retries : 3
Table Size : 250
Learned Count : 0
Remote Age : 900
High Watermark : 95%
Mac Learning : Enabled
Mac Aging : Enabled

Discard Unknown : Disabled
Relearn Only : False

Service Endpoints

Endpoint name : e1
Description : (Not Specified)
Revert time : 0
Act Hold Delay : 0
Ignore Standby Signaling : false
Suppress Standby Signaling : false
Block On Mesh Fail : false
Tx Active : none
Tx Active Up Time : 0d 00:00:00
Revert Time Count Down : N/A
Tx Active Change Count : 0
Last Tx Active Change : 07/22/2011 11:04:50

Members

No members found.

Endpoint name : e2
Description : (Not Specified)
Revert time : 0
Act Hold Delay : 0
Ignore Standby Signaling : false
Suppress Standby Signaling
- `false`

Block On Mesh Fail
- `false`

Tx Active
- `none`

Tx Active Up Time
- `0d 00:00:00`

Revert Time Count Down
- `N/A`

Tx Active Change Count
- `0`

Last Tx Active Change
- `07/22/2011 11:04:50`

Members

No members found.

arp

Syntax

arp [ip-address] | [mac ieee-address] | [sap sap-id] | [interface ip-int-name]

Context

show>service>id

Description

Displays the ARP table for the IES instance. The ARP entries for a subscriber interface are displayed uniquely. Each MAC associated with the subscriber interface child group-interfaces are displayed with each subscriber interface ARP entry. They do not reflect actual ARP entries but are displayed along the interfaces ARP entry for easy lookup.

Parameters

ip-address — Displays only ARP entries in the ARP table with the specified IP address.

Default All IP addresses.

mac ieee-address — Displays only ARP entries in the ARP table with the specified 48-bit MAC address. The MAC address can be expressed in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff where aa, bb, cc, dd, ee and ff are hexadecimal numbers.

Default All MAC addresses.

sap sap-id — Displays SAP information for the specified SAP ID. See Common CLI Command Descriptions on page 939 for command syntax.

Default All MAC addresses.

port-id — interface — Specifies matching service ARP entries associated with the IP interface.

ip-address — The IP address of the interface for which to display matching ARP entries.

Values 1.0.0.0 — 223.255.255.255

ip-int-name — The IP interface name for which to display matching ARPs.

Output

Show Service-ID ARP — The following table describes show service-id ARP output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The specified MAC address.</td>
</tr>
<tr>
<td>Type</td>
<td>Static — FDB entries created by management.</td>
</tr>
<tr>
<td></td>
<td>Learned — Dynamic entries created by the learning process.</td>
</tr>
<tr>
<td></td>
<td>Other — Local entries for the IP interfaces created.</td>
</tr>
<tr>
<td>Expiry</td>
<td>The age of the ARP entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface applied to the service.</td>
</tr>
<tr>
<td>SAP</td>
<td>The SAP ID.</td>
</tr>
</tbody>
</table>

Sample Output

*A:DUT-B# show service id 100 arp

==
ARP Table
==
<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Expiry</th>
<th>Interface</th>
<th>SAP</th>
</tr>
</thead>
</table>

7210-SAS M Services Guide Page 715
base

Syntax
base

Context
show>service>id

Description
This command displays basic information about this IES service.

Sample Output

```
*A:ALA-A# show service id 100 base
---------------------------------------------------------------
Service Basic Information
---------------------------------------------------------------
Service Id        : 100                 Vpn Id            : 100
Service Type      : IES
Description       : Default Ies description for service id 100
Customer Id       : 1
Last Status Change: 08/29/2006 17:44:28
Last Mgmt Change  : 08/29/2006 17:44:28
Admin State       : Up                  Oper State        : Up
SAP Count         : 2
```

interface

Syntax
interface [ip-address | ip-int-name] [detail]

Context
show>service>id

Description
This command displays information for the IP interfaces associated with the IES service. If no optional parameters are specified, a summary of all IP interfaces associated to the service are displayed.

Parameters

- **ip-address** — The IP address of the interface for which to display information.

 Values

 - ipv4-address: a.b.c.d (host bits must be 0)

- **ip-int-name** — Specifies the IP interface name for which to display information.
IES Show Commands

Values

32 characters maximum

detail — Displays detailed IP interface information.

Default

IP interface summary output.

Output

Show Service-ID — The following table describes show service-id output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Name</td>
<td>The name used to refer to the IES interface.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the interface type.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>Specifies the IP address/IP subnet/broadcast address of the interface.</td>
</tr>
<tr>
<td>Adm</td>
<td>The administrative state of the interface.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operational state of the interface.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the interface.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the interface.</td>
</tr>
<tr>
<td>IP Addr/mask</td>
<td>Specifies the IP address/IP subnet/broadcast address of the interface.</td>
</tr>
<tr>
<td>If Index</td>
<td>The index corresponding to this IES interface. The primary index is 1; all IES interfaces are defined in the base virtual router context.</td>
</tr>
<tr>
<td>If Type</td>
<td>Specifies the interface type.</td>
</tr>
<tr>
<td>SAP Id</td>
<td>Specifies the SAP’s port ID.</td>
</tr>
<tr>
<td>SNTP B.Cast</td>
<td>Specifies whether SNTP broadcast client mode is enabled or disabled.</td>
</tr>
<tr>
<td>Arp Timeout</td>
<td>Specifies the timeout for an ARP entry learned on the interface.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Specifies the 48-bit IEEE 802.3 MAC address.</td>
</tr>
<tr>
<td>ICMP Mask Reply</td>
<td>Specifies whether ICMP mask reply is enabled or disabled.</td>
</tr>
<tr>
<td>Cflowd</td>
<td>Specifies whether Cflowd collection and analysis on the interface is enabled or disabled.</td>
</tr>
<tr>
<td>Redirects</td>
<td>Specifies the rate for ICMP redirect messages.</td>
</tr>
<tr>
<td>Unreachables</td>
<td>Specifies the rate for ICMP unreachable messages.</td>
</tr>
<tr>
<td>TTL Expired</td>
<td>Specifies the rate for ICMP TTL messages.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-49# show service id 88 interface

```
Interface Table

Interface-Name   Adm   Opr   Type   Port/SapId
```

7210-SAS M Services Guide
IP-Address

<table>
<thead>
<tr>
<th>Sector A</th>
<th>Up</th>
<th>Down/Down</th>
<th>IES</th>
<th>1/1/1.2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>Up</td>
<td>Down/Down</td>
<td>IES</td>
<td>1/1/2:0</td>
</tr>
<tr>
<td>1.1.1.1/31</td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.1.1/31</td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>1.1.2.1/31</td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>test27</td>
<td>Up</td>
<td>Up/--</td>
<td>IES</td>
<td></td>
</tr>
<tr>
<td>192.168.10.21/24</td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>grp-if</td>
<td>Up</td>
<td>Down/--</td>
<td>IES</td>
<td>Grp 1/2/2</td>
</tr>
<tr>
<td>Interfaces : 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALA-49#
A:ALA-49# show service id 88 interface

Interface Table

<table>
<thead>
<tr>
<th>Interface-Name</th>
<th>Adm Opr(v4/v6)</th>
<th>Type Port/SapId</th>
<th>IP-Address</th>
<th>PfxState</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector A</td>
<td>Up Down/Down</td>
<td>IES</td>
<td>1/1/1.2.2</td>
<td></td>
</tr>
<tr>
<td>test</td>
<td>Up Down/Down</td>
<td>IES</td>
<td>1/1/2:0</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1/31</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1/31</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.2.1/31</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>test27</td>
<td>Up Up/--</td>
<td>IES Sub subscriber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.10.21/24</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>grp-if</td>
<td>Up Down/--</td>
<td>IES Grp 1/2/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfaces : 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:ALA-49#
VPRN Show Commands

gress-label

Syntax

egress-label start-label [end-label]

Context

show>service

Description

Display services using the range of egress labels.

If only the mandatory start-label parameter is specified, only services using the specified label are displayed.

If both start-label and end-label parameters are specified, the services using the range of labels X where start-label <= X <= end-label are displayed.

Use the `show router ldp bindings` command to display dynamic labels.

Parameters

- **start-label** — The starting egress label value for which to display services using the label range. If only egress-label1 is specified, services only using egress-label1 are displayed.

 Values 0 | 2048 — 131071

- **end-label** — The ending egress label value for which to display services using the label range.

 Default The egress-label1 value.

 Values 2049 — 131071

Output

Show Service Egress Command Output — The following table describes show service egress label output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc Id</td>
<td>The ID that identifies a service.</td>
</tr>
<tr>
<td>Sdp Id</td>
<td>The ID that identifies an SDP.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the SDP binding is a spoke or a mesh.</td>
</tr>
<tr>
<td>I. Lbl</td>
<td>The VC label used by the far-end device to send packets to this device in this service by the SDP.</td>
</tr>
<tr>
<td>E. Lbl</td>
<td>The VC label used by this device to send packets to the far-end device in this service by the SDP.</td>
</tr>
<tr>
<td>Number of bindings found</td>
<td>The total number of SDP bindings that exist within the specified egress label range.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service egress-label 0 10000

Martini Service Labels

<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sdp Id</th>
<th>Type</th>
<th>L.Lbl</th>
<th>E.Lbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>20:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>30:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>107:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>108:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>300:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>301:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>302:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>400:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>500:2</td>
<td>Spok</td>
<td>131070</td>
<td>2001</td>
</tr>
<tr>
<td>1</td>
<td>501:1</td>
<td>Mesh</td>
<td>131069</td>
<td>2000</td>
</tr>
<tr>
<td>100</td>
<td>300:100</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>301:200</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>302:300</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>400:400</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of Bindings Found : 23

*A:ALA-12#

ingress-label

Syntax

```
ingress-label start-label [end-label]
```

Context

```
show>service
```

Description

Display services using the range of ingress labels.

If only the mandatory `start-label` parameter is specified, only services using the specified label are displayed.

If both `start-label` and `end-label` parameters are specified, the services using the range of labels X where `start-label` <= X <= end-label are displayed.

Use the `show router vprn-service-id ldp bindings` command to display dynamic labels.

Parameters

- **start-label** — The starting ingress label value for which to display services using the label range. If only `start-label` is specified, services only using `start-label` are displayed.
 - **Values**
 - 0, 2048 — 131071

- **end-label** — The ending ingress label value for which to display services using the label range.
 - **Default**
 - The `start-label` value.
 - **Values**
 - 2048 — 131071

Output

Show Service Ingress-Label — The following table describes show service ingress-label output fields:
Sample Output

*A:ALA-12# show service ingress-label 0

Martini Service Labels

<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sdp Id</th>
<th>Type</th>
<th>I.Lbl</th>
<th>E.Lbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>20:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>30:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>101:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>102:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>103:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>104:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>105:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>106:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>107:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>108:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>300:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>301:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>302:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>400:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>300:100</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>301:200</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>302:300</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>400:400</td>
<td>Spok</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of Bindings Found : 21

*A:ALA-12#
Show, Clear, Debug Commands

sap-using

Syntax

- `sap-using [sap sap-id]`
- `sap-using interface [ip-address | ip-int-name]`
- `sap-using [ingress | egress] filter filter-id`
- `sap-using [ingress | egress] qos-policy qos-policy-id`

Context

- `show>service`

Description

This command displays SAP information.

If no optional parameters are specified, the command displays a summary of all defined SAPs.

The optional parameters restrict output to only SAPs matching the specified properties.

Parameters

- **sap-id** — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.
- **interface** — Specifies matching SAPs with the specified IP interface.
- **ip-address** — The IP address of the interface for which to display matching SAPs.
 - **Values**
 - `1.0.0.0 — 223.255.255.255`
- **ip-int-name** — The IP interface name for which to display matching SAPs.
- **ingress** — Specifies matching an ingress policy.
- **egress** — Specifies matching an egress policy.
- **qos-policy qos-policy-id** — The ingress or egress QoS Policy ID for which to display matching SAPs.
 - **Values**
 - `1 — 65535`
- **filter filter-id** — The ingress or egress filter policy ID for which to display matching SAPs.
 - **Values**
 - `1 — 65535`

Output

Show Service SAP — The following table describes show service SAP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port ID</td>
<td>The ID of the access port where the SAP is defined.</td>
</tr>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>SapMTU</td>
<td>The SAP MTU value.</td>
</tr>
<tr>
<td>I.QoS</td>
<td>The SAP ingress QoS policy number specified on the ingress SAP.</td>
</tr>
<tr>
<td>I.MAC/IP</td>
<td>The MAC or IP filter policy ID applied to the ingress SAP.</td>
</tr>
<tr>
<td>E.QoS</td>
<td>The SAP egress QoS policy number specified on the egress SAP.</td>
</tr>
<tr>
<td>E.Mac/IP</td>
<td>The MAC or IP filter policy ID applied to the egress SAP.</td>
</tr>
<tr>
<td>A.Pol</td>
<td>The accounting policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the SAP.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service sap-using sap 1/1

Service Access Points

<table>
<thead>
<tr>
<th>PortId</th>
<th>SvcId</th>
<th>SapMTU</th>
<th>I.QoS</th>
<th>I.Mac/IP</th>
<th>E.QoS</th>
<th>E.Mac/IP</th>
<th>A.Pol</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/7:0</td>
<td>1</td>
<td>1518</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>1/1/11:0</td>
<td>100</td>
<td>1514</td>
<td>1</td>
<td>none</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>1/1/7:300</td>
<td>300</td>
<td>1518</td>
<td>10</td>
<td>none</td>
<td>10</td>
<td>none</td>
<td>1000</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

Number of SAPs : 3

*A:ALA-12#

sdp

Syntax
sdp [sdp-id | far-end ip-address] [detail | keep-alive-history]

Context
show>service

Description
Displays SDP information.
If no optional parameters are specified, a summary SDP output for all SDPs is displayed.

Parameters
sdp-id — The SDP ID for which to display information.

 Default
 All SDPs.

 Values
 1 — 17407

far-end ip-address — Displays only SDPs matching with the specified far-end IP address.

 Default
 SDPs with any far-end IP address.

detail — Displays detailed SDP information.

 Default
 SDP summary output.

keep-alive-history — Displays the last fifty SDP keepalive events for the SDP.

 Default
 SDP summary output.

Output
Show Service SDP — The following table describes show service SDP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Adm MTU</td>
<td>Specifies the largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opr MTU</td>
<td>Specifies the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>IP address</td>
<td>Specifies the IP address of the remote end of the GRE or MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Specifies the state of the SDP.</td>
</tr>
<tr>
<td>Opr State</td>
<td>Specifies the operating state of the SDP.</td>
</tr>
<tr>
<td>Flags</td>
<td>Specifies all the conditions that affect the operating status of this SDP.</td>
</tr>
<tr>
<td>Signal Signaling</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on the SDP.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>Specifies the time of the most recent operating status change to this SDP.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>Specifies the time of the most recent management-initiated change to this SDP.</td>
</tr>
<tr>
<td>Number of SDPs</td>
<td>Specifies the total number of SDPs displayed according to the criteria specified.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this SDP.</td>
</tr>
<tr>
<td>Delivered</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this SDP.</td>
</tr>
<tr>
<td>Hello Timeout</td>
<td>Specifies the number of seconds to wait for an SDP echo response message before declaring a timeout.</td>
</tr>
<tr>
<td>Unmatched Replies</td>
<td>Specifies the number of SDP unmatched message replies.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP echo request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>Specifies the maximum number of consecutive SDP echo request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
</tbody>
</table>
VPRN Show Commands

Sample Output

*A:ALA-12# show service sdp

Services: Service Destination Points

<table>
<thead>
<tr>
<th>SdpId</th>
<th>Adm MTU</th>
<th>Opr MTU</th>
<th>IP address</th>
<th>Adm Opr</th>
<th>Deliver Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4462</td>
<td>4462</td>
<td>10.20.1.3</td>
<td>Up Dn NotReady</td>
<td>MPLS TLDP</td>
</tr>
<tr>
<td>40</td>
<td>4462</td>
<td>1534</td>
<td>10.20.1.20</td>
<td>Up Up</td>
<td>MPLS TLDP</td>
</tr>
<tr>
<td>60</td>
<td>4462</td>
<td>1514</td>
<td>10.20.1.21</td>
<td>Up Up</td>
<td>GRE TLDP</td>
</tr>
<tr>
<td>100</td>
<td>4462</td>
<td>4462</td>
<td>180.0.0.2</td>
<td>Down Down</td>
<td>GRE TLDP</td>
</tr>
<tr>
<td>500</td>
<td>4462</td>
<td>4462</td>
<td>10.20.1.50</td>
<td>Up Dn NotReady</td>
<td>GRE TLDP</td>
</tr>
</tbody>
</table>

Number of SDPs: 5

*A:ALA-12#

*A:ALA-12# show service sdp 2 detail

Service Destination Point (Sdp Id : 2) Details

<table>
<thead>
<tr>
<th>Description</th>
<th>GRE-10.10.104</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>2</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Far End</td>
<td>10.10.10.104</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Flags</td>
<td>SignalingSessDown TransportTunDown</td>
</tr>
<tr>
<td>Signaling</td>
<td>TLDp</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>02/01/2007 09:11:39</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>02/01/2007 09:11:46</td>
</tr>
</tbody>
</table>

KeepAlive Information:

<table>
<thead>
<tr>
<th>Admin State</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Time</td>
<td>5</td>
</tr>
<tr>
<td>Hello Timeout</td>
<td>0</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>3</td>
</tr>
<tr>
<td>Tx Hello Msgs</td>
<td>0</td>
</tr>
</tbody>
</table>

Associated LSP LIST:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>(Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Hello Msgs</td>
<td>Specifies the number of SDP echo request messages transmitted since the keepalive was administratively enabled or the counter was cleared.</td>
<td></td>
</tr>
<tr>
<td>Rx Hello Msgs</td>
<td>Specifies the number of SDP echo request messages received since the keepalive was administratively enabled or the counter was cleared.</td>
<td></td>
</tr>
<tr>
<td>Associated LSP List</td>
<td>When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the far end field. If the SDP type is GRE, then the following message displays: SDP delivery mechanism is not MPLS</td>
<td></td>
</tr>
</tbody>
</table>
SDP Delivery Mechanism is not MPLS

*A:ALA-12#

A:ALA-12# show service sdp 8

Service Destination Point (Sdp Id : 8)

<table>
<thead>
<tr>
<th>SdpId</th>
<th>Adm MTU</th>
<th>Opr MTU</th>
<th>IP address</th>
<th>Adm</th>
<th>Opr</th>
<th>Deliver Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4462</td>
<td>4462</td>
<td>10.10.10.104</td>
<td>Up</td>
<td>Dn</td>
<td>NotReady MPLS</td>
</tr>
</tbody>
</table>

Service Destination Point (Sdp Id : 8) Details

* Sdp Id 8 - (10.10.10.104)

Description

- MPLS-10.10.10.104

SDP Id

- 8

Admin Path MTU

- 0

Oper Path MTU

- 0

Far End

- 10.10.10.104

Delivery

- MPLS

Admin State

- Up

Oper State

- Down

Flags

- SignalingSessDown TransportTunnDown

Signaling

- TLDP

VLAN VC Etype

- 0x8100

Last Status Change

- 02/01/2007 09:11:39

Adv. MTU Over.

- No

Last Mgmt Change

- 02/01/2007 09:11:46

KeepAlive Information

Admin State

- Disabled

Oper State

- Disabled

Hello Time

- 10

Hello Msg Len

- 0

Hello Timeout

- 5

Unmatched Replies

- 0

Max Drop Count

- 3

Hold Down Time

- 10

Tx Hello Msgs

- 0

Rx Hello Msgs

- 0

Associated LSP LIST

Lsp Name

- to-104

Admin State

- Up

Oper State

- Down

Time Since Last Tran

- 01d07h36m

* indicates that the corresponding row element may have been truncated.

*A:ALA-12#

sdp-using

Syntax

sdp-using [sdp-id[:vc-id] | far-end ip-address]

Context

show>service

Description

Display services using SDP or far-end address options.

Parameters

sdp-id — Displays only services bound to the specified SDP ID.

- **Values**
 - 1 — 17407

vc-id — The virtual circuit identifier.

- **Values**
 - 1 — 4294967295
VPRN Show Commands

Far-end ip-address — Displays only services matching with the specified far-end IP address.

Default Services with any far-end IP address.

Output

Show Service SDP Using X — The following table describes show service sdp-using output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sdp ID</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of SDP: spoke or mesh.</td>
</tr>
<tr>
<td>Far End</td>
<td>The far end address of the SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by this SDP.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALA-1# show service sdp-using 300

Service Destination Point (Sdp Id : 300)

+--------+--------+--------+--------+--------+--------+
| SvcId  | SdpId  | Type   | Far End | Opr State | I.Label | E.Label |
|--------+--------+--------+--------+----------+---------+---------|
| 1      | 300:1  | Mesh   | 10.0.0.13 | Up       | 131071  | 131071  |
| 2      | 300:2  | Spok   | 10.0.0.13 | Up       | 131070  | 131070  |
| 100    | 300:100| Mesh   | 10.0.0.13 | Up       | 131069  | 131069  |
| 101    | 300:101| Mesh   | 10.0.0.13 | Up       | 131068  | 131068  |
| 102    | 300:102| Mesh   | 10.0.0.13 | Up       | 131067  | 131067  |
+--------+--------+--------+--------+----------+---------+---------|

Number of SDPs : 5
*A:ALA-1#

*A:ALA-48# show service sdp-using

SDP Using

+--------+--------+--------+--------+--------+--------+
| SvcId  | SdpId  | Type   | Far End | Opr State | I.Label | E.Label |
|--------+--------+--------+--------+----------+---------+---------|
| 3      | 2:3    | Spok   | 10.20.1.2 | Up       | n/a     | n/a     |
| 103    | 3:103  | Spok   | 10.20.1.3 | Up       | 131067  | 131068  |
| 103    | 4:103  | Spok   | 10.20.1.2 | Up       | 131065  | 131069  |
| 105    | 3:105  | Spok   | 10.20.1.3 | Up       | 131066  | 131067  |
+--------+--------+--------+--------+----------+---------+---------|

Number of SDPs : 4
A:ALA-48
```
Show, Clear, Debug Commands

service-using

Syntax
```
service-using [epipe] [ies] [vpls] [vprn][sdp  sdp-id] [customer  customer-id]
```

Context
```
show>service
```

Description
Displays the services matching certain usage properties.

If no optional parameters are specified, all services defined on the system are displayed.

Parameters
- **epipe** — Displays matching Epipe services.
- **ies** — Displays matching IES instances.
- **vpls** — Displays matching VPLS instances.
- **vprn** — Displays matching VPRN services.
- **sdp sdp-id** — Displays only services bound to the specified SDP ID.
 - **Default**
 - Services bound to any SDP ID.
 - **Values**
 - 1 — 17407
- **customer customer-id** — Displays services only associated with the specified customer ID.
 - **Default**
 - Services associated with an customer.
 - **Values**
 - 1 — 2147483647

Output
Show Service Service-Using — The following table describes show service service-using output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the service type configured for the service ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>CustomerID</td>
<td>The ID of the customer who owns this service.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this service.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALA-12# show service service-using customer 10
```

```
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
<tr>
<td>100</td>
<td>IES</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
</tbody>
</table>
```
300 Epipe Up Up 10 09/05/2006 13:24:15

Matching Services : 4

*A:ALA-12#

*A:ALA-12# show service service-using epipe

Services [epipe]

<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>06/22/2006 23:05:58</td>
</tr>
<tr>
<td>7</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>06/22/2006 23:05:58</td>
</tr>
<tr>
<td>8</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>3</td>
<td>06/22/2006 23:05:58</td>
</tr>
<tr>
<td>103</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>06/22/2006 23:05:58</td>
</tr>
</tbody>
</table>

Matching Services : 4

*A:ALA-12#

A:de14# show service service-using

Services

<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>2</td>
<td>Epipe</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>10</td>
<td>mVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>11</td>
<td>mVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>100</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>101</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>102</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>999</td>
<td>uVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 16:14:33</td>
</tr>
</tbody>
</table>

Matching Services : 8

A:de14#

id

Syntax

`id service-id {all | arp | base | fdb | labels | mfib | sap | sdp | split-horizon-group | stp}`

Context

`show>service`

Description

This command displays information for a particular service-id.

Parameters

- `service-id` — The unique service identification number that identifies the service in the service domain.
- `all` — Display detailed information about the service.
- `arp` — Display ARP entries for the service.
- `base` — Display basic service information.
- `fdb` — Display FDB entries.
Show, Clear, Debug Commands

interface — Display service interfaces.

labels — Display labels being used by this service.

sap — Display SAPs associated to the service.

sdp — Display SDPs associated with the service.

split-horizon-group — Display split horizon group information.

stp — Display STP information.

all

Syntax

```
all
```

Context

```
show>service>id
```

Description

Displays detailed information for all aspects of the service.

Output

Sample Output

```
*A:7210SAS>show>service>id# all

---------------------------------------------------------------------
Service Detailed Information
---------------------------------------------------------------------
Service Id        : 1                   Vpn Id            : 0
Service Type      : Epipe
Description       : (Not Specified)
Customer Id       : 1
Last Status Change: 02/12/2002 23:51:07
Last Mgmt Change  : 02/12/2002 23:50:18
Admin State       : Up                  Oper State        : Up
SAP Count         : 2
Uplink Type:      : L2
SAP Type:         : Any                 Customer vlan:    : n/a

---------------------------------------------------------------------
Service Access Points
---------------------------------------------------------------------

SAP 1/1/9:600.*

---------------------------------------------------------------------
Service Id         : 1
SAP                : 1/1/9:600.*              Encap             : qinq
QinQ Dot1p         : Default
Description        : (Not Specified)
Admin State        : Up                       Oper State        : Up
Flags              : None
Last Status Change : 02/12/2002 23:51:06
Last Mgmt Change   : 02/12/2002 23:50:18
Dot1Q Ethertype    : 0x8100                   QinQ Ethertype    : 0x8100
Admin MTU          : 9212                     Oper MTU          : 9212
Ingr IP Fltr-Id    : n/a                      Egr IP Fltr-Id    : n/a
Ingr Mac Fltr-Id   : n/a                      Egr Mac Fltr-Id   : n/a
Ingr IPv6 Fltr-Id  : n/a                      Egr IPv6 Fltr-Id  : n/a
tod-suite          : None
```
Endpoint : N/A
Acct. Pol : None
Collect Stats : Disabled

QOS
Ingress qos-policy : n/a

Aggregate Policer
rate : n/a
burst : n/a

Ingress QoS Classifier Usage
Classifiers Allocated: 2
Classifiers Used : 1
Meters Allocated : 1
Meters Used : 1

SAP Statistics
Packets
Ingress Stats: 0
Egress Stats: 26941105
Octets
0
18014193523
Extra-Tag Drop Stats: n/a
n/a

SAP 1/1/12:90
Service Id : 1
SAP : 1/1/12:90
Encap : q-tag
Description : (Not Specified)
Admin State : Up
Oper State : Up
Flags : None
Last Status Change : 02/12/2002 23:51:07
Last Mgmt Change : 02/13/2002 00:05:46
Dot1Q Ethertype : 0x8100
QinQ Ethertype : 0x8100
Loopback Mode : Internal
No-svc-port used : 1/1/25
Loopback Src Addr : 00:00:01:00:02:00
Loopback Dst Addr : 00:00:01:00:03:00
Admin MTU : 1518
Oper MTU : 1518
Ingr IP Fltr-Id : n/a
Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
Egr Mac Fltr-Id : n/a
Ingr IPv6 Fltr-Id : n/a
Egr IPv6 Fltr-Id : n/a
tod-suite : None
Endpoint : N/A
Acct. Pol : None
Collect Stats : Disabled

QOS
Ingress qos-policy : 1

Aggregate Policer
rate : n/a
burst : n/a
Show, Clear, Debug Commands

Classifiers Allocated: 2 Meters Allocated : 1
Classifiers Used : 1 Meters Used : 1

Sap Statistics

 Packets Octets
Ingress Stats: 26940595 18013850572
Egress Stats: 0 0
Ingress Drop Stats: 0 0
Extra-Tag Drop Stats: n/a n/a

Sap per Meter stats (in/out counter mode)

 Packets Octets
Ingress Meter 1
For. InProf : 8 4265
For. OutProf : 26941156 18014224039

Service Endpoints

No Endpoints found.

*A:7210SAS>show>service>id#

Show All Service-ID Output — The following table describes the show all service-id command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Detailed Information</td>
<td></td>
</tr>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>VPN Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>The date and time of the most recent change in the administrative or operating status of the service.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The current administrative state.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The current operational state.</td>
</tr>
<tr>
<td>Route Dist.</td>
<td>Displays the route distribution number.</td>
</tr>
<tr>
<td>AS Number</td>
<td>Displays the autonomous system number.</td>
</tr>
<tr>
<td>Router Id</td>
<td>Displays the router ID for this service.</td>
</tr>
<tr>
<td>Auto Bind</td>
<td>Specifies the automatic binding type for the SDP assigned to this service.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Vrf Target</td>
<td>Specifies the VRF target applied to this service.</td>
</tr>
<tr>
<td>Vrf Import</td>
<td>Specifies the VRF import policy applied to this service.</td>
</tr>
<tr>
<td>Vrf Export</td>
<td>Specifies the VRF export policy applied to this service.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs specified for this service.</td>
</tr>
<tr>
<td>SDP Bind Count</td>
<td>The number of SDPs bound to this service.</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>Name of the split horizon group for this service.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the split horizon group.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent management-initiated change to this split horizon group.</td>
</tr>
</tbody>
</table>

Service Destination Points (SDPs)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether this Service SDP binding is a spoke or a mesh.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of this SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of this SDP.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by this SDP.</td>
</tr>
<tr>
<td>Ingress Filter</td>
<td>The ID of the ingress filter policy.</td>
</tr>
<tr>
<td>Egress Filter</td>
<td>The ID of the egress filter policy.</td>
</tr>
<tr>
<td>Far End</td>
<td>Specifies the IP address of the remote end of the MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent change to this customer.</td>
</tr>
<tr>
<td>Signaling</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Admin State</td>
<td>Specifies the operating status of the keepalive protocol.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The current status of the keepalive protocol.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this SDP.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this SDP.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP Echo Request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state.</td>
</tr>
<tr>
<td>SDP Delivery Mechanism</td>
<td>When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the far end field.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP Echo Request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Number of SDPs</td>
<td>The total number SDPs applied to this service ID.</td>
</tr>
<tr>
<td>Service Access Points</td>
<td></td>
</tr>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Port Id</td>
<td>The ID of the access port where this SAP is defined.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the SAP.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The desired state of the SAP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operating state of the SAP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the last change.</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Ingress qos-policy</td>
<td>The SAP ingress QoS policy ID.</td>
</tr>
<tr>
<td>Egress qos-policy</td>
<td>The SAP egress QoS policy ID. This command is applicable only to 7210 SAS X.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>Indicates the accounting policy applied to the SAP.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether accounting statistics are collected on the SAP.</td>
</tr>
<tr>
<td>Spoke SDPs</td>
<td></td>
</tr>
<tr>
<td>Managed by Service</td>
<td>Specifies the service-id of the management VPLS managing this spoke SDP.</td>
</tr>
<tr>
<td>Managed by Spoke</td>
<td>Specifies the sap-id inside the management VPLS managing this spoke SDP.</td>
</tr>
<tr>
<td>Prune state</td>
<td>Specifies the STP state inherited from the management VPLS.</td>
</tr>
<tr>
<td>Peer Pw Bits</td>
<td>Indicates the bits set by the LDP peer when there is a fault on its side of</td>
</tr>
<tr>
<td></td>
<td>the pseudowire. LAC failures occur on the SAP that has been configured on the</td>
</tr>
<tr>
<td></td>
<td>pipe service, PSN bits are set by SDP-binding failures on the pipe service.</td>
</tr>
<tr>
<td></td>
<td>The pwNotForwarding bit is set when none of the above failures apply, such</td>
</tr>
<tr>
<td></td>
<td>as an MTU mismatch failure. This value is only applicable if the peer is</td>
</tr>
<tr>
<td></td>
<td>using the pseudowire status signalling method to indicate faults.</td>
</tr>
<tr>
<td></td>
<td>pwNotForwarding — Pseudowire not forwarding</td>
</tr>
<tr>
<td></td>
<td>lacIngressFault Local — Attachment circuit RX fault</td>
</tr>
<tr>
<td></td>
<td>lacEgressFault Local — Attachment circuit TX fault</td>
</tr>
<tr>
<td></td>
<td>psnIngressFault Local — PSN-facing PW RX fault</td>
</tr>
<tr>
<td></td>
<td>psnEgressFault Local — PSN-facing PW TX fault</td>
</tr>
<tr>
<td></td>
<td>pwFwdingStandby — Pseudowire in standby mode</td>
</tr>
<tr>
<td>Max IPv4 Routes</td>
<td>Maximum IPv4 routes configured for use with the service.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent management-initiated change.</td>
</tr>
<tr>
<td>Dot1Q Ethertype</td>
<td>The Dot1Q ethertype in use by the SAP.</td>
</tr>
<tr>
<td>Ingr IP Fltr-Id</td>
<td>The policy ID of the IP filter applied at ingress.</td>
</tr>
<tr>
<td>Ingr Mac Fltr-Id</td>
<td>The policy ID of the MAC filter applied at ingress.</td>
</tr>
<tr>
<td>Egr IP Fltr-Id</td>
<td>The policy ID of the IP filter applied at egress.</td>
</tr>
<tr>
<td>Egr Mac Fltr-Id</td>
<td>The policy ID of the MAC filter applied at egress.</td>
</tr>
<tr>
<td>tod-suite</td>
<td>The TOD suite applied for use by this SAP.</td>
</tr>
<tr>
<td>rate</td>
<td>Specifies the SAP aggregate rate configured for the aggregate policer/</td>
</tr>
<tr>
<td></td>
<td>meter used by this SAP.</td>
</tr>
<tr>
<td>burst</td>
<td>Specifies the burst to be used with SAP aggregate policer/meter used</td>
</tr>
<tr>
<td></td>
<td>by this SAP.</td>
</tr>
<tr>
<td>Classifiers Allocated</td>
<td>Number of SAP ingress QoS resources allocated for use by this SAP.</td>
</tr>
<tr>
<td>Classifiers Used</td>
<td>Number of SAP ingress QoS resources in use by this SAP.</td>
</tr>
<tr>
<td>Meters Allocated</td>
<td>Number of SAP ingress meter resources allocated for use by this SAP.</td>
</tr>
<tr>
<td></td>
<td>This is set to half the number of classifiers allocated to this SAP.</td>
</tr>
</tbody>
</table>
Meters Used
Number of SAP ingress meters in use.

Ingress Stats
The number of received packets/octets for this SAP.

Egress Stats
The number of packets/octets forwarded out of this SAP.

Ingress Drop Stats
Number of packets/octets dropped by the system.

Extra-Tag Drop Stats
Number of packets received with the count of VLAN tags exceeding the count of VLAN tags implied by the SAP encapsulation.

Ingress Meter 1
The index of the ingress QoS meter of this SAP.

For. InProf
Number of in-profile packets/octets received on this SAP.

For. OutProf
Number of out-of-profile packets/octets received on this SAP.

If Name
IP interface name assigned by user.

Protocols
Protocols enabled for use on this interface.

Oper (v4/v6)
Operational status of this interface for IPv4 and IPv6.

IP Addr/mask
IPv4 address and Mask assigned to this interface.

Address Type
Whether the address is a primary or secondary address.

Broadcast Address
Type of broadcast address used. It can be host-ones or all-ones.

If Index
The interface Index assigned by the system. It is used with SNMP IfTable.

Virt. If Index
The interface index assigned by the system. It is used with SNMP.

Last Oper Chg
Timestamp associated with the last operational change.

Global If Index
This is the system wide Interface index allotted by the system.

If Type
Network — The IP interface is a network/core IP interface.
Service — The IP interface is a service IP interface.

SNTP B.Cast
Specifies whether SNTP broadcast client mode is enabled or disabled.

Arp Timeout
Specifies the timeout for an ARP entry learned on the interface.

IP Oper MTU
The actual largest service frame size (in octets) that can be transmitted through the port to the far-end router, without requiring the packet to be fragmented.

LdpSyncTimer
Specifies the value used for IGP-LDP synchronization.

Redirects
Specifies the rate for ICMP redirect messages.

Unreachables
Specifies the rate for ICMP unreachable messages.

TTL Expired
Specifies the rate for ICMP TTL messages.
authentication

Syntax authentication

Context show>service>id

Description This command enables the context to display subscriber authentication information.

statistics

Syntax statistics [policy name] [sap sap-id]

Context show>service>id>authentication

Description This command displays session authentication statistics for this service.

Parameters

- **policy name** — Specifies the subscriber authentication policy statistics to display.
- **sap sap-id** — Specifies the SAP ID statistics to display. See Common CLI Command Descriptions on page 939 for command syntax.

Sample Output
*A:ALA-1# show service id 11 authentication statistics
==
Authentication statistics
==
Interface / SAP Authentication Authentication
 Successful Failed
==
abc-11-90.1.0.254 1582 3
==
Number of entries: 1
==
A:ALA-1#

arp

Syntax arp [ip-address] | [mac ieee-address] | [sap sap-id] | [interface ip-int-name] [sdp sdp-id:vc-id] [summary]

Context show>service>id

Description Displays the ARP table for the IES instance.

Parameters

- **ip-address** — Displays only ARP entries in the ARP table with the specified IP address.

 Default All IP addresses.
mac ieee-address — Displays only ARP entries in the ARP table with the specified 48-bit MAC address. The MAC address can be expressed in the form `aa:bb:cc:dd:ee:ff` or `aa-bb-cc-dd-ee ff` where `aa`, `bb`, `cc`, `dd`, `ee` and `ff` are hexadecimal numbers.

Default All MAC addresses.

sap sap-id — Displays SAP information for the specified SAP ID. See Common CLI Command Descriptions on page 939 for command syntax.

port id — Specifies matching service ARP entries associated with the specified IP interface.

ip-address — The IP address of the interface for which to display matching ARP entries.

Values 1.0.0.0 — 223.255.255.255

ip-int-name — The IP interface name for which to display matching ARPs.

Output **Show Service-ID ARP** — The following table describes show service-id ARP output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service ID</td>
<td>The service ID number.</td>
</tr>
<tr>
<td>MAC</td>
<td>The specified MAC address</td>
</tr>
<tr>
<td>Source-Identifier</td>
<td>The location the MAC is defined.</td>
</tr>
<tr>
<td>Type</td>
<td>Static — FDB entries created by management.</td>
</tr>
<tr>
<td></td>
<td>Learned — Dynamic entries created by the learning process.</td>
</tr>
<tr>
<td></td>
<td>OAM — Entries created by the OAM process.</td>
</tr>
<tr>
<td>Age</td>
<td>The time elapsed since the service was enabled.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface applied to the service.</td>
</tr>
<tr>
<td>Port</td>
<td>The port where the SAP is applied.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12# show service id 2 arp

ARP Table

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Interface</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>190.11.1.1</td>
<td>00:03:fa:00:08:22</td>
<td>Other</td>
<td>00:00:00</td>
<td>ies-100-190.11.1</td>
<td>1/1/11:0</td>
</tr>
</tbody>
</table>

A:ALA-12#
Description
Displays basic information about the service ID including service type, description, SAPs and SDPs.

Output
Show Service-ID Base — The following table describes show service-id base output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Vpn Id</td>
<td>Specifies the VPN ID assigned to the service.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Specifies the type of service.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the service.</td>
</tr>
<tr>
<td>Oper</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>Mtu</td>
<td>The largest frame size (in octets) that the service can handle.</td>
</tr>
<tr>
<td>Def. Mesh VC Id</td>
<td>This object is only valid in services that accept mesh SDP bindings. It is used to validate the VC ID portion of each mesh SDP binding defined in the service.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs defined on the service.</td>
</tr>
<tr>
<td>SDP Bind Count</td>
<td>The number of SDPs bound to the service.</td>
</tr>
<tr>
<td>Identifier</td>
<td>Specifies the service access (SAP) and destination (SDP) points.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on the SDP.</td>
</tr>
<tr>
<td>AdmMTU</td>
<td>Specifies the desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end ESR, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>OprMTU</td>
<td>Specifies the actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end ESR, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the SDP.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALA-12# show service id 1 base
-----------------------------------------------------------------------------------
Service Basic Information
-----------------------------------------------------------------------------------
Service Id       : 1            Vpn Id      : 0
```
Service Type : VPRN
Customer Id : 1
Last Status Change: 02/01/2007 09:11:39
Last Mgmt Change : 02/01/2007 09:11:46
Admin State : Up Oper State : Down
Route Dist. : 10001:1
AS Number : 10000 Router Id : 10.10.10.103
ECMP : Enabled ECMP Max Routes : 8
Max Routes : No Limit Auto Bind : LDP
Vrf Target : target:10001:1
Vrf Import : vrfImpPolCust1
Vrf Export : vrfExpPolCust1
SAP Count : 1 SDP Bind Count : 18
--
Service Access & Destination Points
--
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/1/7:0</td>
<td>q-tag</td>
<td>1518</td>
<td>1518</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:10:1 M(10.20.1.3)</td>
<td>TLDP</td>
<td>4462</td>
<td>4462</td>
<td>Up</td>
<td>TLDP Down</td>
</tr>
<tr>
<td>sdp:20:1 M(10.20.1.4)</td>
<td>TLDP</td>
<td>4462</td>
<td>4462</td>
<td>Up</td>
<td>TLDP Down</td>
</tr>
<tr>
<td>sdp:30:1 M(10.20.1.5)</td>
<td>TLDP</td>
<td>4462</td>
<td>4462</td>
<td>Up</td>
<td>TLDP Down</td>
</tr>
<tr>
<td>sdp:40:1 M(10.20.1.20)</td>
<td>TLDP</td>
<td>1534</td>
<td>4462</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:200:1 M(10.20.1.30)</td>
<td>TLDP</td>
<td>1514</td>
<td>4462</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:300:1 M(10.20.1.31)</td>
<td>TLDP</td>
<td>4462</td>
<td>4462</td>
<td>Up</td>
<td>TLDP Down</td>
</tr>
<tr>
<td>sdp:500:1 M(10.20.1.50)</td>
<td>TLDP</td>
<td>4462</td>
<td>4462</td>
<td>Up</td>
<td>TLDP Down</td>
</tr>
</tbody>
</table>
--
*A:ALA-12#

statistics

Syntax

- `statistics [sap sap-id]`
- `statistics [sdp sdp-id:vc-id]`
- `statistics [interface interface-name]`

Context

show>service>id>dhcp

Description

Displays DHCP statistics information.

Parameters

- `sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.
- `sdp-id` — The SDP identifier.
- `vc-id` — The virtual circuit ID on the SDP ID for which to display information.
- `interface interface-name` — Displays information for the specified IP interface.

Show DHCP Statistics Output — The following table describes the output fields for DHCP statistics.
Sample Output

```
A:sim1# show service id 11 dhcp statistics
=================================================================
DHCP Global Statistics, service 11
=================================================================
Rx Packets                        : 32
Tx Packets                        : 12
Rx Malformed Packets              : 0
Rx Untrusted Packets              : 0
Client Packets Discarded          : 0
Client Packets Relayed            : 11
Client Packets Snooped            : 21
Server Packets Discarded          : 0
Server Packets Relayed            : 0
Server Packets Snooped            : 0
=================================================================
A:sim1#
```
interface

Syntax

```plaintext
interface [ip-address | ip-int-name] [detail]
```

Context

```plaintext
show>service>id
```

Description

Displays information for the IP interfaces associated with the service. If no optional parameters are specified, a summary of all IP interfaces associated to the service are displayed.

Parameters

- **ip-address** — The IP address of the interface for which to display information.
 - **Values**
 - 1.0.0.0 — 223.255.255.255
- **ip-int-name** — The IP interface name for which to display information.
- **detail** — Displays detailed IP interface information.
 - **Default**
 - IP interface summary output.

Output

Show Service-ID Interface — The following table describes show service-id interface output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface-Name</td>
<td>The name used to refer to the interface.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the interface type.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>Specifies the IP address/IP subnet/broadcast address of the interface.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the interface.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the interface.</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>If Name</td>
<td>The name used to refer to the interface.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The desired state of the interface.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operating state of the interface.</td>
</tr>
<tr>
<td>IP Addr/mask</td>
<td>Specifies the IP address/IP subnet/broadcast address of the interface.</td>
</tr>
<tr>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>If Index</td>
<td>The index corresponding to this interface. The primary index is 1. For</td>
</tr>
<tr>
<td></td>
<td>example, all interfaces are defined in the Base virtual router context.</td>
</tr>
<tr>
<td>If Type</td>
<td>Specifies the interface type.</td>
</tr>
<tr>
<td>Port Id</td>
<td>Specifies the SAP’s port ID.</td>
</tr>
<tr>
<td>SNTP B.Cast</td>
<td>Specifies whether SNTP broadcast client mode is enabled or disabled.</td>
</tr>
<tr>
<td>Arp Timeout</td>
<td>Specifies the timeout for an ARP entry learned on the interface.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Specifies the 48-bit IEEE 802.3 MAC address.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service id 321 interface

Interface Table

<table>
<thead>
<tr>
<th>Interface-Name</th>
<th>Type</th>
<th>IP-Address</th>
<th>Adm</th>
<th>Opr</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>Pri</td>
<td>190.11.1.1/24</td>
<td>Up</td>
<td>Up</td>
<td>IES</td>
</tr>
</tbody>
</table>

Interfaces : 1

*A:ALA-12#

A:ALA-49# show service id 88 interface detail

Interface Table

Interface

<table>
<thead>
<tr>
<th>If Name</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Protocols</th>
<th>IP Addr/mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector A</td>
<td>Up</td>
<td>Down</td>
<td>None</td>
<td>Not Assigned</td>
</tr>
</tbody>
</table>

Details

<table>
<thead>
<tr>
<th>Description</th>
<th>If Index</th>
<th>SAP Id</th>
<th>TOS Marking</th>
<th>SNTP B.Cast</th>
<th>MAC Address</th>
<th>IP MTU</th>
<th>Arp Populate</th>
<th>Cflowd</th>
<th>Proxy ARP Details</th>
<th>Proxy ARP</th>
<th>Policies</th>
<th>Local Proxy ARP</th>
<th>DHCP Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>71/1/1.2.2</td>
<td>Untrusted</td>
<td>False</td>
<td>Not configured.</td>
<td>1500</td>
<td>Disabled</td>
<td>None</td>
<td>Enabled</td>
<td></td>
<td>ProxyARP</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admin State</td>
</tr>
<tr>
<td></td>
<td>Action</td>
</tr>
<tr>
<td></td>
<td>ICMP Details</td>
</tr>
</tbody>
</table>

ICMP Mask Reply

Specifies whether ICMP mask reply is enabled or disabled.

ICMP Details

Redirects

Specifies the rate for ICMP redirect messages.

Unreachables

Specifies the rate for ICMP unreachable messages.

TTL Expired

Specifies the rate for ICMP TTL messages.
Redirects: Number - 100 Time (seconds) - 10
Unreachables: Number - 100 Time (seconds) - 10
TTL Expired: Number - 100 Time (seconds) - 10

Interface

If Name: test
Admin State: Up Oper State: Down
Protocols: None
IP Addr/mask: Not Assigned

Details

Description:
If Index: 27 Virt. If Index: 27
SAP Id: 101/1/2:0
TOS Marking: Untrusted
SNTP B.Cast: False If Type: IES
IES ID: 88
MAC Address: Not configured.
Arp Timeout: 14400
Arp Populate: Disabled

Proxy ARP Details
Proxy ARP: Disabled
Local Proxy ARP: Disabled

ICMP Details
Redirects: Number - 100 Time (seconds) - 10
Unreachables: Number - 100 Time (seconds) - 10
TTL Expired: Number - 100 Time (seconds) - 10

Interfaces: 2

A:ALA-49#
sap

Syntax `sap sap-id [detail]`

Context `show>service>id`

Description Displays information for the SAPs associated with the service. If no optional parameters are specified, a summary of all associated SAPs is displayed.

Parameters `sap-id` — The ID that displays SAPs for the service. See Common CLI Command Descriptions on page 939 for command syntax.

`detail` — Displays detailed information for the SAP.

Output **Show Service-ID SAP** — The following table describes show service SAP fields:

Sample Output

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>SAP</td>
<td>The SAP and qtag.</td>
</tr>
<tr>
<td>Encap</td>
<td>The encapsulation type of the SAP.</td>
</tr>
<tr>
<td>Ethertype</td>
<td>Specifies an Ethernet type II Ethertype value.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the SAP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operating state of the SAP.</td>
</tr>
<tr>
<td>Flags</td>
<td>Specifies the conditions that affect the operating status of this SAP. Display output includes: ServiceAdminDown, SapAdminDown, InterfaceAdminDown, PortOperDown, PortMTUTooSmall, L2OperDown, SapIngressQoSMismatch, SapEgressQoSMismatch, RelearnLimitExceeded, RxProtSsrcMac, ParentIfAdminDown, NoSapIpipeCelpAddr, TodResourceUnavail, TodMssResourceUnavail, SapParamMismatch, CemSapNoEcidOrMacAddr, StandByForMcRing, ServiceMTUTooSmall, SapIngressNamedPoolMismatch, SapEgressNamedPoolMismatch, NoSapEpipeRingNode.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>Specifies the time of the most recent operating status change to this SAP</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>Specifies the time of the most recent management-initiated change to this SAP.</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through the SAP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through the SAP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ingress qos-policy</td>
<td>The ingress QoS policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Egress qos-policy</td>
<td>The egress QoS policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Ingress Filter-Id</td>
<td>The ingress filter policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Egress Filter-Id</td>
<td>The egress filter policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>The accounting policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether collect stats is enabled.</td>
</tr>
<tr>
<td>Dropped</td>
<td>The number of packets and octets dropped due to SAP state, ingress MAC or IP filter, same segment discard, bad checksum, etc.</td>
</tr>
<tr>
<td>Off. HiPrio</td>
<td>The number of high priority packets and octets, as determined by the SAP ingress QoS policy, offered by the Pchip to the Qchip.</td>
</tr>
<tr>
<td>Off. LowPrio</td>
<td>The number of low priority packets and octets, as determined by the SAP ingress QoS policy, offered by the Pchip to the Qchip.</td>
</tr>
<tr>
<td>Off. Uncolor</td>
<td>The number of uncolored packets and octets, as determined by the SAP ingress QoS policy, offered by the Pchip to the Qchip.</td>
</tr>
<tr>
<td>Dro. HiPrio</td>
<td>The number of high priority packets and octets, as determined by the SAP ingress QoS policy, dropped by the Qchip due to: MBS exceeded, buffer pool limit exceeded, etc.</td>
</tr>
<tr>
<td>Dro. LowPrio</td>
<td>The number of low priority packets and octets, as determined by the SAP ingress QoS policy, dropped by the Qchip due to: MBS exceeded, buffer pool limit exceeded, etc.</td>
</tr>
<tr>
<td>For. InProf</td>
<td>The number of in-profile packets and octets (rate below CIR) forwarded by the ingress Qchip.</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>The number of out-of-profile packets and octets discarded by the egress Qchip due to MBS exceeded, buffer pool limit exceeded, etc.</td>
</tr>
<tr>
<td>Dro. InProf</td>
<td>The number of in-profile packets and octets discarded by the egress Qchip due to MBS exceeded, buffer pool limit exceeded, etc.</td>
</tr>
<tr>
<td>Dro. OutProf</td>
<td>The number of out-of-profile packets and octets discarded by the egress Qchip due to MBS exceeded, buffer pool limit exceeded, etc.</td>
</tr>
<tr>
<td>For. InProf</td>
<td>The number of in-profile packets and octets (rate below CIR) forwarded by the egress Qchip.</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>The number of out-of-profile packets and octets (rate above CIR) forwarded by the egress Qchip.</td>
</tr>
<tr>
<td>Ingress TD Profile</td>
<td>The profile ID applied to the ingress SAP.</td>
</tr>
<tr>
<td>Egress TD Profile</td>
<td>The profile ID applied to the egress SAP.</td>
</tr>
</tbody>
</table>
VPRN Show Commands

Service Access Points (SAP)

Service Id : 321
SAP : 1/1/4:0
Dot1Q Ethertype : 0x8100
Admin State : Up
Flags : PortOperDown
Last Status Change : 02/03/2007 12:59:10
Admin MTU : 1518
Ingress qos-policy : 100
Ingress Filter-Id : n/a
Multi Svc Site : None
Acct. Pol : None
Collect Stats : Disabled

Sap Statistics

Forwarding Engine Stats
Dropped : 0
Off. HiPrio : 0
Off. LowPrio : 0
Off. Uncolor : 0
Queueing Stats (Egress QoS Policy 1)
Dro. InProf : 0
Dro. OutProf : 0
For. InProf : 0
For. OutProf : 0

Alarm Cell Handling
The indication that OAM cells are being processed.

AAL-5 Encap
The AAL-5 encapsulation type.

*AL:ALA-12# show service id 321 sap 1/1/4:0

Service Access Points (SAP)

Service Id : 321
SAP : 1/1/4:0
Dot1Q Ethertype : 0x8100
Admin State : Up
Flags : PortOperDown
Last Status Change : 02/03/2007 12:58:37
Admin MTU : 1518
Ingress qos-policy : 100
Ingress Filter-Id : n/a
Multi Svc Site : None
Acct. Pol : None
Collect Stats : Disabled

Sap Statistics

Forwarding Engine Stats
Dropped : 0
Off. HiPrio : 0
Off. LowPrio : 0
Off. Uncolor : 0
Queueing Stats (Egress QoS Policy 1)
Dro. InProf : 0
Dro. OutProf : 0
For. InProf : 0
For. OutProf : 0

*AL:ALA-12# show service id 321 sap 1/1/4:0 detail

Service Access Points (SAP)

Service Id : 321
SAP : 1/1/4:0
Dot1Q Ethertype : 0x8100
Admin State : Up
Flags : PortOperDown
Last Status Change : 02/03/2007 12:58:37
Admin MTU : 1518
Ingress qos-policy : 100
Ingress Filter-Id : n/a
Multi Svc Site : None
Acct. Pol : None
Collect Stats : Disabled

Sap Statistics

Forwarding Engine Stats
Dropped : 0
Off. HiPrio : 0
Off. LowPrio : 0
Off. Uncolor : 0
Queueing Stats (Egress QoS Policy 1)
Dro. InProf : 0
Dro. OutProf : 0
For. InProf : 0
For. OutProf : 0

*AL:ALA-12#
Show, Clear, Debug Commands

*A:ALA-12#
sdp

Syntax

sdp [sdp-id | far-end ip-addr] [detail]

Context

show>service>id

Description

Displays information for the SDPs associated with the service. If no optional parameters are specified, a summary of all associated SDPs is displayed.

Parameters

- **sdp-id** — Displays only information for the specified SDP ID.
 - **Default** All SDPs.
 - **Values** 1 — 17407
- **far-end ip-addr** — Displays only SDPs matching with the specified far-end IP address.
 - **Default** SDPs with any far-end IP address.
- **detail** — Displays detailed SDP information.

Output

Show Service-ID SDP — The following table describes show service-id SDP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sdp Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the SDP is a spoke or a mesh.</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>Name of the split horizon group that the SDP belongs to.</td>
</tr>
<tr>
<td>VC Type</td>
<td>Displays the VC type: ether or vlan.</td>
</tr>
<tr>
<td>VC Tag</td>
<td>Displays the explicit dot1Q value used when encapsulating to the SDP far end.</td>
</tr>
<tr>
<td>I. Lbl</td>
<td>The VC label used by the far-end device to send packets to this device in this service by the SDP.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The operating path MTU of the SDP is equal to the admin path MTU (when one is set) or the dynamically computed tunnel MTU, when no admin path MTU is set (the default case.)</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Far End</td>
<td>Specifies the IP address of the remote end of the GRE or MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of this SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of this SDP.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
</tbody>
</table>
Sample Output

```
A:Dut-A# show service id 1 sdp detail
```

Services: Service Destination Points Details

```
Sdp Id 1:1  =(10.20.1.2)
```

Description: Default sdp description

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by the SDP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent change to the SDP.</td>
</tr>
<tr>
<td>Signaling</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the keepalive process.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the keepalive process.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this SDP.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP echo request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this SDP.</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state.</td>
</tr>
<tr>
<td>I. Fwd. Pkts.</td>
<td>Specifies the number of forwarded ingress packets.</td>
</tr>
<tr>
<td>I. Dro. Pkts.</td>
<td>Specifies the number of dropped ingress packets.</td>
</tr>
<tr>
<td>E. Fwd. Pkts.</td>
<td>Specifies the number of forwarded egress packets.</td>
</tr>
<tr>
<td>Associated LSP List</td>
<td>When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the far end field. If the SDP type is GRE, then the following message displays: SDP delivery mechanism is not MPLS.</td>
</tr>
</tbody>
</table>

VPRN Show Commands

Ing ip Fltr : n/a Egr ip Fltr : n/a
Ing ipv6 Fltr : n/a Egr ipv6 Fltr : n/a
Admin ControlWord : Not Preferred Oper ControlWord : False
Last Status Change : 05/31/2007 00:45:43 Signaling : None
Last Mgmt Change : 05/31/2007 00:45:43
Class Fwding State : Up
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
Max Nbr of MAC Addr: No Limit Total MAC Addr : 0
Learned MAC Addr : 0 Static MAC Addr : 0
MAC Learning : Enabled Discard Unkwn Srce: Disabled
MAC Aging : Enabled BPDU Translation : Disabled
L2PT Termination : Disabled KeepAlive Information :
MAC Pinning : Disabled

KeepAlive Information :
Admin State : Disabled Oper State : Disabled
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10

Statistics :
I. Fwd. Pkts. : 0 I. Dro. Pkts. : 0
I. Fwd. Octs. : 0 I. Dro. Octs. : 0
E. Fwd. Pkts. : 0 E. Fwd. Octets : 0
MCAC Policy Name :
MCAC Max Unconst BW: no limit MCAC Max Mand BW : no limit
MCAC In use Mand BW: 0 MCAC Avail Mand BW: unlimited
MCAC In use Opnl BW: 0 MCAC Avail Opnl BW: unlimited

Associated LSP LIST :
Lsp Name : A_B_1
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m35s

Lsp Name : A_B_2
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m35s

Lsp Name : A_B_3
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_4
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_5
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_6
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_7
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_8

7210-SAS M Services Guide Page 751
Show, Clear, Debug Commands

Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m35s

Lsp Name : A_B_9
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_10
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Class-based forwarding :

Class forwarding : enabled
Default LSP : A_B_10 Multicast LSP : A_B_9
===
FC Mapping Table
===
<table>
<thead>
<tr>
<th>FC Name</th>
<th>LSP Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>af</td>
<td>A_B_3</td>
</tr>
<tr>
<td>be</td>
<td>A_B_1</td>
</tr>
<tr>
<td>ef</td>
<td>A_B_6</td>
</tr>
<tr>
<td>h1</td>
<td>A_B_7</td>
</tr>
<tr>
<td>h2</td>
<td>A_B_5</td>
</tr>
<tr>
<td>l1</td>
<td>A_B_4</td>
</tr>
<tr>
<td>l2</td>
<td>A_B_2</td>
</tr>
<tr>
<td>nc</td>
<td>A_B_8</td>
</tr>
</tbody>
</table>
===
Stp Service Destination Point specifics

Mac Move : Blockable
Stp Admin State : Up Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A Port State : Forwarding
Port Number : 2049 Port Priority : 128
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : N/A
Link Type : Pt-pt BFDU Encap : Dot1d
Root Guard : Disabled Active Protocol : N/A
Last BFDU from : N/A Designated Port Id: 0
Designated Bridge : N/A Designated Port Id: 0
Fwd Transitions : 0 Bad BFDUs rcvd : 0
Cfg BFDUs rcvd : 0 Cfg BFDUs tx : 0
TCN BFDUs rcvd : 0 TCN BFDUs tx : 0
RST BFDUs rcvd : 0 RST BFDUs tx : 0

Number of SDPs : 1

* indicates that the corresponding row element may have been truncated.

A:Dut-A#
VPRN Show Commands

Context show>router

Description This command displays aggregated routes.

Parameters active — This keyword filters out inactive aggregates.

Output Show Aggregate Output Fields — The following table describes router aggregate output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Displays the destination address of the aggregate route in dotted decimal notation.</td>
</tr>
<tr>
<td>Summary</td>
<td>Specifies whether the aggregate or more specific components are advertised.</td>
</tr>
<tr>
<td>AS Set</td>
<td>Displays an aggregate where the path advertised for the route consists of all elements contained in all paths that are being summarized.</td>
</tr>
<tr>
<td>Aggr AS</td>
<td>Displays the aggregator path attribute to the aggregate route.</td>
</tr>
<tr>
<td>Aggr IP-Address</td>
<td>The IP address of the aggregated route.</td>
</tr>
<tr>
<td>State</td>
<td>The operational state of the aggregated route.</td>
</tr>
<tr>
<td>No. of Aggregates</td>
<td>The total number of aggregated routes.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12# show router 3 aggregate

Aggregates (Service: 3)

Prefix Summary AS Set Aggr AS Aggr IP-Address State

No. of Aggregates: 0

*A:ALA-12#

arp

Syntax arp [ip-address | ip-int-name | mac ieee-mac-addr]

Context show>router

Description This command displays the router ARP table sorted by IP address.

If no command line options are specified, all ARP entries are displayed.

Parameters ip-addr — Only displays ARP entries associated with the specified IP address.

ip-int-name — Only displays ARP entries associated with the specified IP interface name.

mac ieee-mac-addr — Only displays ARP entries associated with the specified MAC address.
ARP Table Output — The following table describes ARP table output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the ARP entry.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the ARP entry.</td>
</tr>
<tr>
<td>Expiry</td>
<td>The age of the ARP entry.</td>
</tr>
<tr>
<td>Type</td>
<td>Dyn — The ARP entry is a dynamic ARP entry.</td>
</tr>
<tr>
<td></td>
<td>Inv — The ARP entry is an inactive static ARP entry (invalid).</td>
</tr>
<tr>
<td></td>
<td>Oth — The ARP entry is a local or system ARP entry.</td>
</tr>
<tr>
<td></td>
<td>Sta — The ARP entry is an active static ARP entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The IP interface name associated with the ARP entry.</td>
</tr>
<tr>
<td>No. of ARP Entries</td>
<td>The number of ARP entries displayed in the list.</td>
</tr>
</tbody>
</table>
*A:ALA-12#

*A:ALA-12# show router 3 arp to-ser1

ARP Table

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Expiry</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.13.1</td>
<td>04:5b:01:01:00:02</td>
<td>03:53:09</td>
<td>Dyn</td>
<td>to-ser1</td>
</tr>
</tbody>
</table>

*A:ALA-12#
damping

Syntax

```
damping [ip-prefix/mask | ip-address] [detail]
damping [damp-type] [detail]
```

Context

`show>router:bgp`

Description

This command displays BGP routes with have been dampened due to route flapping. This command can be entered with or without a route parameter.

When the keyword `detail` is included, more detailed information displays.

When only the command is entered (without any parameters included except `detail`), then all dampened routes are listed.

When a parameter is specified, then the matching route or routes are listed.

When a `decayed`, `history`, or `suppressed` keyword is specified, only those types of dampened routes are listed.

Parameters

- `ip-prefix/mask` — Displays damping information for the specified IP prefix and mask length.
- `ip-address` — Displays damping entry for the best match route for the specified IP address.
- `damp-type` — Displays damping type for the specified IP address.
- `decayed` — Displays damping entries that are decayed but are not suppressed.
- `history` — Displays damping entries that are withdrawn but have history.
- `suppressed` — Displays damping entries suppressed because of route damping.
- `detail` — Displays detailed information.

Output

Show Damping Output Fields — The following table describes BGP damping output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured or inherited local AS for the specified peer group. If not configured, then it is the same value as the AS.</td>
</tr>
<tr>
<td>Network</td>
<td>Route IP prefix and mask length for the route.</td>
</tr>
<tr>
<td>Flag(s)</td>
<td>Legend:</td>
</tr>
<tr>
<td></td>
<td>Status codes: u-used, s-suppressed, h-history, d-decayed, *-valid. If a * is not present, then the status is invalid.</td>
</tr>
<tr>
<td></td>
<td>Origin codes: i-IGP, e-EGP, ?-incomplete, >-best</td>
</tr>
<tr>
<td>Network</td>
<td>The IP prefix and mask length for the route.</td>
</tr>
<tr>
<td>From</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>Reuse time</td>
<td>The time when a suppressed route can be used again.</td>
</tr>
<tr>
<td>AS Path</td>
<td>The BGP AS path for the route.</td>
</tr>
</tbody>
</table>
Sample Output

```
*A:ALA-12# show router 3 bgp damping
-------------------------------------------------------------------------------
BGP Router ID : 10.0.0.14         AS : 65206   Local AS : 65206
-------------------------------------------------------------------------------
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, - best
-------------------------------------------------------------------------------
BGP Damped Routes
-------------------------------------------------------------------------------
Flag  Network            From            Reuse       AS-Path
-------------------------------------------------------------------------------
ud*i  12.149.7.0/24      10.0.28.1       00h00m00s   60203 65001 19855 3356
ud*i  61.8.140.0/24      10.0.28.1       00h00m00s   60203 65001 19855 3356
si    24.155.6.0/23      10.0.28.1       00h43m41s   60203 65001 19855 3356
si    24.155.8.0/22      10.0.28.1       00h38m31s   60203 65001 19855 3356
si    24.155.12.0/22     10.0.28.1       00h35m41s   60203 65001 19855 3356
si    24.155.22.0/23     10.0.28.1       00h35m41s   60203 65001 19855 3356
si    24.155.24.0/22     10.0.28.1       00h35m41s   60203 65001 19855 3356
si    24.155.28.0/22     10.0.28.1       00h34m31s   60203 65001 19855 3356
si    24.155.40.0/21     10.0.28.1       00h28m24s   60203 65001 19855 3356
si    24.155.48.0/20     10.0.28.1       00h28m24s   60203 65001 19855 3356
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer</td>
<td>The router ID of the advertising router.</td>
</tr>
<tr>
<td>NextHop</td>
<td>BGP nexthop for the route.</td>
</tr>
<tr>
<td>Peer AS</td>
<td>The autonomous system number of the advertising router.</td>
</tr>
<tr>
<td>Peer Router-Id</td>
<td>The router ID of the advertising router.</td>
</tr>
<tr>
<td>Local Pref</td>
<td>BGP local preference path attribute for the route.</td>
</tr>
<tr>
<td>Age</td>
<td>The time elapsed since the service was enabled.</td>
</tr>
<tr>
<td>Last update</td>
<td>The time when BGP was updated last in second/minute/hour (SS:MM:HH) format.</td>
</tr>
<tr>
<td>FOM Present</td>
<td>The current Figure of Merit (FOM) value.</td>
</tr>
<tr>
<td>Number of Flaps</td>
<td>The number of flaps in the neighbor connection.</td>
</tr>
<tr>
<td>Reuse time</td>
<td>The time when the route can be reused.</td>
</tr>
<tr>
<td>Path</td>
<td>The BGP AS path for the route.</td>
</tr>
<tr>
<td>Applied Policy</td>
<td>The applied route policy name.</td>
</tr>
</tbody>
</table>
ud*i 61.8.141.0/24 10.0.28.1 00h00m00s 60203 65001 19855 3356
ud*i 61.9.0.0/18 10.0.28.1 00h00m00s 3561 9658 6163
ud*i 62.213.184.0/23 10.0.28.1 00h00m00s 6774 6774 9154
ud*i 61.8.140.0/24 10.0.28.1 00h00m00s 60203 65001 19855 3356
ud*i 61.8.141.0/24 10.0.28.1 00h00m00s 60203 65001 19855 3356
ud*i 61.9.0.0/18 10.0.28.1 00h00m00s 3561 9658 6163
ud*i 62.213.184.0/23 10.0.28.1 00h00m00s 6774 6774 9154

*A:ALA-12#

*A:ALA-12# show router 3 bgp damping detail

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, - best

BGP Damped Routes

Network : 12.149.7.0/24
Network : 12.149.7.0/24 Peer : 10.0.28.1
NextHop : 10.0.28.1 Reuse time : 00h00m00s
Peer AS : 60203 Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h22m09s Last update : 02d00h58m
FOM Present : 738 FOM Last upd. : 2039
Number of Flaps : 2 Flags : ud*i
Path : 60203 65001 19855 3356 1239 22406
Applied Policy : default-damping-profile

Network : 15.142.48.0/20
Network : 15.142.48.0/20 Peer : 10.0.28.1
NextHop : 10.0.28.1 Reuse time : 00h00m00s
Peer AS : 60203 Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h00m38s Last update : 02d01h20m
FOM Present : 2011 FOM Last upd. : 2023
Number of Flaps : 2 Flags : ud*i
Path : 60203 65001 19855 3356 3561 5551 1889
Applied Policy : default-damping-profile

Network : 15.200.128.0/19
Network : 15.200.128.0/19 Peer : 10.0.28.1
NextHop : 10.0.28.1 Reuse time : 00h00m00s
Peer AS : 60203 Peer Router-Id : 32.32.27.203
Local Pref : none
Age : 00h00m38s Last update : 02d01h20m
FOM Present : 2011 FOM Last upd. : 2023
Number of Flaps : 2 Flags : ud*i
Path : 60203 65001 19855 3356 702 1889
Applied Policy : default-damping-profile

Network : 15.203.192.0/18
<table>
<thead>
<tr>
<th>Network</th>
<th>15.203.192.0/18</th>
<th>Peer</th>
<th>10.0.28.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>10.0.28.1</td>
<td>Reuse time</td>
<td>00h00m00s</td>
</tr>
<tr>
<td>Peer AS</td>
<td>60203</td>
<td>Peer Router-Id</td>
<td>32.32.27.203</td>
</tr>
<tr>
<td>Local Pref</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>00h00m07s</td>
<td>Last update</td>
<td>02d01h20m</td>
</tr>
<tr>
<td>FOM Present</td>
<td>1018</td>
<td>FOM Last upd.</td>
<td>1024</td>
</tr>
<tr>
<td>Number of Flaps</td>
<td>1</td>
<td>Flags</td>
<td>ud*i</td>
</tr>
<tr>
<td>Path</td>
<td>60203 65001 19855 1299 702 1889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Policy</td>
<td>default-damping-profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paths: 1

A:ALA-12# show router 3 bgp damping 15.203.192.0/18 detail

<table>
<thead>
<tr>
<th>Network</th>
<th>15.142.48.0/20</th>
<th>Peer</th>
<th>10.0.28.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NextHop</td>
<td>10.0.28.1</td>
<td>Reuse time</td>
<td>00h29m22s</td>
</tr>
<tr>
<td>Peer AS</td>
<td>60203</td>
<td>Peer Router-Id</td>
<td>32.32.27.203</td>
</tr>
<tr>
<td>Local Pref</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>00h00m42s</td>
<td>Last update</td>
<td>02d01h20m</td>
</tr>
<tr>
<td>FOM Present</td>
<td>2936</td>
<td>FOM Last upd.</td>
<td>3001</td>
</tr>
<tr>
<td>Number of Flaps</td>
<td>3</td>
<td>Flags</td>
<td>si</td>
</tr>
<tr>
<td>Path</td>
<td>60203 65001 19855 3356 702 1889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Policy</td>
<td>default-damping-profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network: 15.142.48.0/20

A:ALA-12# show router 3 bgp damping suppressed detail

<table>
<thead>
<tr>
<th>Network</th>
<th>15.200.128.0/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer</td>
<td></td>
</tr>
<tr>
<td>Local Pref</td>
<td>none</td>
</tr>
<tr>
<td>Age</td>
<td>00h00m07s</td>
</tr>
<tr>
<td>FOM Present</td>
<td>1018</td>
</tr>
<tr>
<td>Number of Flaps</td>
<td>1</td>
</tr>
<tr>
<td>Path</td>
<td>60203 65001 19855 1299 702 1889</td>
</tr>
<tr>
<td>Applied Policy</td>
<td>default-damping-profile</td>
</tr>
<tr>
<td>Network</td>
<td>Peer</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>15.200.128.0/19</td>
<td>10.0.28.1</td>
</tr>
<tr>
<td>NextHop</td>
<td>10.0.28.1</td>
</tr>
<tr>
<td>Local Pref</td>
<td>none</td>
</tr>
<tr>
<td>Age</td>
<td>00h01m28s</td>
</tr>
<tr>
<td>FOM Present</td>
<td>00h01m28s</td>
</tr>
<tr>
<td>Applied Policy</td>
<td>default-damping-profile</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>15.203.240.0/20</td>
<td>10.0.28.1</td>
</tr>
<tr>
<td>NextHop</td>
<td>10.0.28.1</td>
</tr>
<tr>
<td>Local Pref</td>
<td>none</td>
</tr>
<tr>
<td>Age</td>
<td>00h01m28s</td>
</tr>
<tr>
<td>FOM Present</td>
<td>00h01m28s</td>
</tr>
<tr>
<td>Applied Policy</td>
<td>default-damping-profile</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>15.206.0.0/17</td>
<td>10.0.28.1</td>
</tr>
<tr>
<td>NextHop</td>
<td>10.0.28.1</td>
</tr>
<tr>
<td>Local Pref</td>
<td>none</td>
</tr>
<tr>
<td>Age</td>
<td>00h01m28s</td>
</tr>
<tr>
<td>FOM Present</td>
<td>00h01m28s</td>
</tr>
<tr>
<td>Applied Policy</td>
<td>default-damping-profile</td>
</tr>
</tbody>
</table>

*A:ALA-12#
group

Syntax
group [name] [detail]

Context
show>router>bgp

Description
This command displays group information for a BGP peer group. This command can be entered with or without parameters.

When this command is entered without a group name, information about all peer groups displays.

When the command is issued with a specific group name, information only pertaining to that specific peer group displays.

The ‘State’ field displays the BGP group’s operational state. Other valid states are:

- Up - BGP global process is configured and running.
- Down - BGP global process is administratively shutdown and not running.
- Disabled - BGP global process is operationally disabled. The process must be restarted by the operator.

Parameters
name — Displays information for the BGP group specified.

detail — Displays detailed information.

Output
Standard and Detailed Group Output — The following table describes the standard and detailed command output fields for a BGP group:

Sample Output

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>BGP group name</td>
</tr>
<tr>
<td>Group Type</td>
<td>No Type — Peer type not configured.</td>
</tr>
<tr>
<td></td>
<td>External — Peer type configured as external BGP peers.</td>
</tr>
<tr>
<td></td>
<td>Internal — Peer type configured as internal BGP peers.</td>
</tr>
<tr>
<td>State</td>
<td>Disabled — The BGP peer group has been operationally disabled.</td>
</tr>
<tr>
<td></td>
<td>Down — The BGP peer group is operationally inactive.</td>
</tr>
<tr>
<td></td>
<td>Up — The BGP peer group is operationally active.</td>
</tr>
<tr>
<td>Peer AS</td>
<td>The configured or inherited peer AS for the specified peer group.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured or inherited local AS for the specified peer group.</td>
</tr>
<tr>
<td>Local Address</td>
<td>The configured or inherited local address for originating peering for the specified peer group.</td>
</tr>
<tr>
<td>Loop Detect</td>
<td>The configured or inherited loop detect setting for the specified peer group.</td>
</tr>
<tr>
<td>Connect Retry</td>
<td>The configured or inherited connect retry timer value.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>No authentication is configured.</td>
</tr>
<tr>
<td>MD5</td>
<td>MD5 authentication is configured.</td>
</tr>
<tr>
<td>Local Pref</td>
<td>The configured or inherited local preference value.</td>
</tr>
<tr>
<td>MED Out</td>
<td>The configured or inherited MED value assigned to advertised routes without a MED attribute.</td>
</tr>
<tr>
<td>Min Route Advt.</td>
<td>The minimum amount of time that must pass between route updates for the same IP prefix.</td>
</tr>
<tr>
<td>Min AS Originate</td>
<td>The minimum amount of time that must pass between updates for a route originated by the local router.</td>
</tr>
<tr>
<td>Multihop</td>
<td>The maximum number of router hops a BGP connection can traverse.</td>
</tr>
<tr>
<td>Multipath</td>
<td>The configured or inherited multipath value, determining the maximum number of ECMP routes BGP can advertise to the RTM.</td>
</tr>
<tr>
<td>Prefix Limit</td>
<td></td>
</tr>
<tr>
<td>No Limit</td>
<td>No route limit assigned to the BGP peer group.</td>
</tr>
<tr>
<td>1 - 4294967295</td>
<td>The maximum number of routes BGP can learn from a peer.</td>
</tr>
<tr>
<td>Passive</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>BGP attempts to establish BGP connections with neighbors in the specified peer group.</td>
</tr>
<tr>
<td>Enabled</td>
<td>BGP will not actively attempt to establish BGP connections with neighbors in the specified peer group.</td>
</tr>
<tr>
<td>Next Hop Self</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>BGP is not configured to send only its own IP address as the BGP nexthop in route updates to neighbors in the peer group.</td>
</tr>
<tr>
<td>Enabled</td>
<td>BGP sends only its own IP address as the BGP nexthop in route updates to neighbors in the specified peer group.</td>
</tr>
<tr>
<td>Aggregator ID 0</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>BGP is not configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates sent to the neighbor in the peer group.</td>
</tr>
<tr>
<td>Enabled</td>
<td>BGP is configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates sent to the neighbor in the peer group.</td>
</tr>
<tr>
<td>Remove Private</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>BGP will not remove all private AS numbers from the AS path attribute in updates sent to the neighbor in the peer group.</td>
</tr>
<tr>
<td>Enabled</td>
<td>BGP removes all private AS numbers from the AS path attribute in updates sent to the neighbor in the peer group.</td>
</tr>
<tr>
<td>Damping</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>The peer group is configured not to dampen route flaps.</td>
</tr>
</tbody>
</table>
BGP Groups

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export Policy</td>
<td>The configured export policies for the peer group.</td>
</tr>
<tr>
<td>Import Policy</td>
<td>The configured import policies for the peer group.</td>
</tr>
<tr>
<td>Hold Time</td>
<td>The configured hold time setting.</td>
</tr>
<tr>
<td>Keep Alive</td>
<td>The configured keepalive setting.</td>
</tr>
<tr>
<td>Cluster Id</td>
<td>None — No cluster ID has been configured.</td>
</tr>
<tr>
<td>Client Reflect</td>
<td>Disabled — The BGP route reflector will not reflect routes to this neighbor.</td>
</tr>
<tr>
<td></td>
<td>Enabled — The BGP route reflector is configured to reflect routes to this neighbor.</td>
</tr>
<tr>
<td>NLRI</td>
<td>The type of NLRI information that the specified peer group can accept.</td>
</tr>
<tr>
<td></td>
<td>Unicast — IPv4 unicast routing information can be carried.</td>
</tr>
<tr>
<td>Preference</td>
<td>The configured route preference value for the peer group.</td>
</tr>
<tr>
<td>List of Peers</td>
<td>A list of BGP peers configured under the peer group.</td>
</tr>
<tr>
<td>Total Peers</td>
<td>The total number of peers configured under the peer group.</td>
</tr>
<tr>
<td>Established</td>
<td>The total number of peers that are in an established state.</td>
</tr>
</tbody>
</table>

*A:ALA-12# show router 3 bgp group

```
BGP Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>To_AS_40000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Not Available</td>
</tr>
<tr>
<td>Group Type</td>
<td>No Type</td>
</tr>
<tr>
<td>Peer AS</td>
<td>40000</td>
</tr>
<tr>
<td>Local Address</td>
<td>n/a</td>
</tr>
<tr>
<td>Export Policy</td>
<td>direct2bgp</td>
</tr>
<tr>
<td>Hold Time</td>
<td>90</td>
</tr>
<tr>
<td>Cluster Id</td>
<td>None</td>
</tr>
<tr>
<td>List of Peers</td>
<td></td>
</tr>
<tr>
<td>Total Peers</td>
<td>5</td>
</tr>
<tr>
<td>Established</td>
<td>2</td>
</tr>
</tbody>
</table>
```

A:ALA-12#
neighbor

Syntax

neighbor [ip-address [[family family] filter1]]
neighbor [as-number [[family family] filter2]]

Context

show>router:bgp

Description

This command displays BGP neighbor information. This command can be entered with or without any parameters.

When this command is issued without any parameters, information about all BGP peers displays.

When the command is issued with a specific IP address or ASN, information regarding only that specific peer or peers with the same AS display.

When either received-routes or advertised-routes is specified, then the routes received from or sent to the specified peer is listed (see second output example).

Note: This information is not available by SNMP.

When either history or suppressed is specified, then the routes learned from those peers that either have a history or are suppressed (respectively) are listed.

The ‘State’ field displays the BGP peer’s protocol state. In additional to the standard protocol states, this field can also display the ‘Disabled’ operational state which indicates the peer is operationally disabled and must be restarted by the operator.

Parameters

- `ip-addr` — Displays the BGP neighbor with the specified IP address.
- `family family` — Specifies the type of routing information to be distributed by the BGP instance.
 - **Values**
 - ipv4, vpn-ipv4
- `filter1` — Specifies route criteria.
 - **Values**
 - received-routes, advertised-routes, history, suppressed, detail
- `filter2` — Specifies route criteria.
 - **Values**
 - history, suppressed, detail

Output

Standard and Detailed Neighbor — The following table describes the standard and detailed command output fields for a BGP neighbor:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer</td>
<td>The IP address of the configured BGP peer.</td>
</tr>
<tr>
<td>Group</td>
<td>The BGP peer group to which this peer is assigned.</td>
</tr>
<tr>
<td>Peer AS</td>
<td>The configured or inherited peer AS for the peer group.</td>
</tr>
<tr>
<td>Peer Address</td>
<td>The configured address for the BGP peer.</td>
</tr>
<tr>
<td>Peer Port</td>
<td>The TCP port number used on the far-end system.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured or inherited local AS for the peer group.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Local Address</td>
<td>The configured or inherited local address for originating peering for the peer group.</td>
</tr>
<tr>
<td>Local Port</td>
<td>The TCP port number used on the local system.</td>
</tr>
<tr>
<td>Peer Type</td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td>Peer type configured as internal BGP peers.</td>
</tr>
<tr>
<td>External</td>
<td>Peer type configured as external BGP peers.</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>The BGP peer is not accepting connections.</td>
</tr>
<tr>
<td>Active</td>
<td>BGP is listening for and accepting TCP connections from this peer.</td>
</tr>
<tr>
<td>Connect</td>
<td>BGP is attempting to establish a TCP connection from this peer.</td>
</tr>
<tr>
<td>Open Sent</td>
<td>BGP has sent an OPEN message to the peer and is waiting for an OPEN message from the peer.</td>
</tr>
<tr>
<td>Open Confirm</td>
<td>BGP has received a valid OPEN message from the peer and is awaiting a KEEPALIVE or NOTIFICATION.</td>
</tr>
<tr>
<td>Established</td>
<td>BGP has successfully established a peering and is exchanging routing information.</td>
</tr>
<tr>
<td>Last State</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>The BGP peer is not accepting connections.</td>
</tr>
<tr>
<td>Active</td>
<td>BGP is listening for and accepting TCP connections from this peer.</td>
</tr>
<tr>
<td>Connect</td>
<td>BGP is attempting to establish a TCP connection from this peer.</td>
</tr>
<tr>
<td>Connect</td>
<td>BGP is attempting to establish a TCP connections from this peer.</td>
</tr>
<tr>
<td>Open Sent</td>
<td>BGP has sent an OPEN message to the peer and is waiting for an OPEN message from the peer.</td>
</tr>
<tr>
<td>Open Confirm</td>
<td>BGP has received a valid OPEN message from the peer and is awaiting a KEEPALIVE or NOTIFICATION.</td>
</tr>
<tr>
<td>Open Confirm</td>
<td>BGP has received a valid OPEN message from the peer and is awaiting a KEEPALIVE or NOTIFICATION.</td>
</tr>
<tr>
<td>Last Event</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>BGP has initialized the BGP neighbor.</td>
</tr>
<tr>
<td>stop</td>
<td>BGP has disabled the BGP neighbor.</td>
</tr>
<tr>
<td>open</td>
<td>BGP transport connection opened.</td>
</tr>
<tr>
<td>close</td>
<td>BGP transport connection closed.</td>
</tr>
<tr>
<td>openFail</td>
<td>BGP transport connection failed to open.</td>
</tr>
<tr>
<td>error</td>
<td>BGP transport connection error.</td>
</tr>
</tbody>
</table>
Connect Retry
- Connect retry timer expired.

Hold Time
- Hold time timer expired.

Keep Alive
- Keepalive timer expired.

Receive OPEN
- Receive an OPEN message.

Receive KEEP ALIVE
- Receive a KEEPALIVE message.

Receive UPDATE
- Receive an UPDATE message.

Receive NOTIFY
- Receive an NOTIFICATION message.

None
- No events have occurred.

Last Error
Displays the last BGP error and sub-code to occur on the BGP neighbor.

Connect Retry
The configured or inherited connect retry timer value.

Local Pref.
The configured or inherited local preference value.

Min Route Advert.
The minimum amount of time that must pass between route updates for the same IP prefix.

Min AS Originate
The minimum amount of time that must pass between updates for a route originated by the local router.

Multihop
The maximum number of router hops a BGP connection can traverse.

Multipath
The configured or inherited multipath value, determining the maximum number of ECMP routes BGP can advertise to the RTM.

Damping
- **Disabled** — BGP neighbor is configured not to dampen route flaps.
- **Enabled** — BGP neighbor is configured to dampen route flaps.

Loop Detect
- **Ignore** — The BGP neighbor is configured to ignore routes with an AS loop.
- **Drop** — The BGP neighbor is configured to drop the BGP peering if an AS loop is detected.
- **Off** — AS loop detection is disabled for the neighbor.

MED Out
The configured or inherited MED value assigned to advertised routes without a MED attribute.

Authentication
- **None** — No authentication is configured.
- **MD5** — MD5 authentication is configured.
<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
</table>
| Next Hop Self | **Disabled** — BGP is not configured to send only its own IP address as the BGP nexthop in route updates to the specified neighbor.
| | **Enabled** — BGP will send only its own IP address as the BGP nexthop in route updates to the neighbor. |
| AggregatorID Zero | **Disabled** — The BGP Neighbor is not configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates.
| | **Enabled** — The BGP Neighbor is configured to set the aggregator ID to 0.0.0.0 in all originated route aggregates. |
| Remove Private | **Disabled** — BGP will not remove all private AS numbers from the AS path attribute, in updates sent to the specified neighbor.
| | **Enabled** — BGP will remove all private AS numbers from the AS path attribute, in updates sent to the specified neighbor. |
| Passive | **Disabled** — BGP will actively attempt to establish a BGP connection with the specified neighbor.
| | **Enabled** — BGP will not actively attempt to establish a BGP connection with the specified neighbor. |
| Prefix Limit | **No Limit** — No route limit assigned to the BGP peer group.
| | 1 - 4294967295 — The maximum number of routes BGP can learn from a peer. |
| Hold Time | The configured hold time setting. |
| Keep Alive | The configured keepalive setting. |
| Active Hold Time | The negotiated hold time, if the BGP neighbor is in an established state. |
| Active Keep Alive | The negotiated keepalive time, if the BGP neighbor is in an established state. |
| Cluster Id | The configured route reflector cluster ID.
| | **None** — No cluster ID has been configured |
| Client Reflect | **Disabled** — The BGP route reflector is configured not to reflect routes to this neighbor.
| | **Enabled** — The BGP route reflector is configured to reflect routes to this neighbor. |
| Preference | The configured route preference value for the peer group. |
| Num of Flaps | The number of flaps in the neighbor connection. |
| Recd. Prefixes | The number of routes received from the BGP neighbor. |
| Active Prefixes | The number of routes received from the BGP neighbor and active in the forwarding table. |
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recd. Paths</td>
<td>The number of unique sets of path attributes received from the BGP neighbor.</td>
</tr>
<tr>
<td>Suppressed Paths</td>
<td>The number of unique sets of path attributes received from the BGP neighbor and suppressed due to route damping.</td>
</tr>
<tr>
<td>Input Queue</td>
<td>The number of BGP messages to be processed.</td>
</tr>
<tr>
<td>Output Queue</td>
<td>The number of BGP messages to be transmitted.</td>
</tr>
<tr>
<td>i/p Messages</td>
<td>Total number of packets received from the BGP neighbor.</td>
</tr>
<tr>
<td>o/p Messages</td>
<td>Total number of packets sent to the BGP neighbor.</td>
</tr>
<tr>
<td>i/p Octets</td>
<td>Total number of octets received from the BGP neighbor.</td>
</tr>
<tr>
<td>o/p Octets</td>
<td>Total number of octets sent to the BGP neighbor.</td>
</tr>
<tr>
<td>i/p Updates</td>
<td>Total number of BGP updates received from the BGP neighbor.</td>
</tr>
<tr>
<td>o/p Updates</td>
<td>Total number of BGP updates sent to the BGP neighbor.</td>
</tr>
<tr>
<td>Export Policy</td>
<td>The configured export policies for the peer group.</td>
</tr>
<tr>
<td>Import Policy</td>
<td>The configured import policies for the peer group.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12# show router 3 bgp neighbor

`Recd. Paths` The number of unique sets of path attributes received from the BGP neighbor.

`Suppressed Paths` The number of unique sets of path attributes received from the BGP neighbor and suppressed due to route damping.

`Input Queue` The number of BGP messages to be processed.

`Output Queue` The number of BGP messages to be transmitted.

`i/p Messages` Total number of packets received from the BGP neighbor.

`o/p Messages` Total number of packets sent to the BGP neighbor.

`i/p Octets` Total number of octets received from the BGP neighbor.

`o/p Octets` Total number of octets sent to the BGP neighbor.

`i/p Updates` Total number of BGP updates received from the BGP neighbor.

`o/p Updates` Total number of BGP updates sent to the BGP neighbor.

`Export Policy` The configured export policies for the peer group.

`Import Policy` The configured import policies for the peer group.
Output

Show Advertised and Received Routes Output — The following table describes the command output fields for both the standard and detailed information for a neighbor:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then it is the same value as the AS.</td>
</tr>
<tr>
<td>Flag</td>
<td>u — used</td>
</tr>
<tr>
<td></td>
<td>s — suppressed</td>
</tr>
<tr>
<td></td>
<td>h — history</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>decayed</td>
</tr>
<tr>
<td>*</td>
<td>valid</td>
</tr>
<tr>
<td>i</td>
<td>igp</td>
</tr>
<tr>
<td>?</td>
<td>incomplete</td>
</tr>
<tr>
<td>></td>
<td>best</td>
</tr>
</tbody>
</table>

Network
Route IP prefix and mask length for the route.

Next Hop
BGP nexthop for the route.

LocalPref
BGP local preference path attribute for the route.

MED
BGP Multi-Exit Discriminator (MED) path attribute for the route.

AS Path
The BGP AS path for the route.

Sample Output

A:ALA-12# show router 3 bgp neighbor 10.0.0.16 received-routes

```
==============================================================================
BGP Router ID : 10.0.0.16         AS : 65206   Local AS : 65206
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best
==============================================================================
Flag  Network            Nexthop         LocalPref  MED        As-Path
-------------------------------------------------------------------------------
?     10.0.0.16/32       10.0.0.16       100        none       No As-Path
?     10.0.6.0/24        10.0.0.16       100        none       No As-Path
?     10.0.8.0/24        10.0.0.16       100        none       No As-Path
?     10.0.12.0/24       10.0.0.16       100        none       No As-Path
?     10.0.13.0/24       10.0.0.16       100        none       No As-Path
?     10.0.204.0/24      10.0.0.16       100        none       No As-Path
-------------------------------------------------------------------------------
*A:ALA-12#*
```
paths

Syntax
paths

Context
show>router:bgp

Description
This command displays a summary of BGP path attributes.

Output
Show Path Output — The following table describes the command output fields for a BGP path.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting. If not configured, then the value is the</td>
</tr>
<tr>
<td></td>
<td>same as the AS.</td>
</tr>
<tr>
<td>Path</td>
<td>The AS path attribute.</td>
</tr>
<tr>
<td>Origin</td>
<td>EGP — The NLRI is learned by an EGP protocol.</td>
</tr>
<tr>
<td></td>
<td>IGP — The NLRI is interior to the originating AS.</td>
</tr>
<tr>
<td></td>
<td>INCOMPLETE — NLRI was learned another way.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The advertised BGP nexthop.</td>
</tr>
<tr>
<td>MED</td>
<td>The Multi-Exit Discriminator value.</td>
</tr>
<tr>
<td>Local Preference</td>
<td>The local preference value.</td>
</tr>
<tr>
<td>Refs</td>
<td>The number of routes using a specified set of path attributes.</td>
</tr>
<tr>
<td>ASes</td>
<td>The number of autonomous system numbers in the AS path attribute.</td>
</tr>
<tr>
<td>Segments</td>
<td>The number of segments in the AS path attribute.</td>
</tr>
<tr>
<td>Flags</td>
<td>EBGP-learned — Path attributes learned by an EBGP peering.</td>
</tr>
<tr>
<td></td>
<td>IBGP-Learned — Path attributes learned by an IBGP peering.</td>
</tr>
<tr>
<td>Aggregator</td>
<td>The route aggregator ID.</td>
</tr>
<tr>
<td>Community</td>
<td>The BGP community attribute list.</td>
</tr>
<tr>
<td>Originator ID</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>Cluster List</td>
<td>The route reflector cluster list.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12# show router 3 bgp paths

<table>
<thead>
<tr>
<th>BGP Router ID : 10.0.0.14</th>
<th>AS : 65206</th>
<th>Local AS : 65206</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>BGP Paths</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Path: 60203 65001 19855 3356 15412

 Origin : IGP Next Hop : 10.0.28.1
 MED : 60203 Local Preference : none
 Refs : 4 ASes : 5
 Segments : 1
 Flags : EBGP-learned
 Aggregator : 15412 62.216.140.1

Path: 60203 65001 19855 3356 1 1236 1236 1236 1236

 Origin : IGP Next Hop : 10.0.28.1
 MED : 60203 Local Preference : none
 Refs : 2 ASes : 9
 Segments : 1
 Flags : EBGP-learned

*A:ALA-12#
Syntax

```
routes [family family] [prefix [detail | longer]]
routes [family family] [prefix [hunt | brief]]
routes [family family] [community comm-id]
routes [family family] [aspath-regex reg-exp]
routes [family family] [ipv6-prefix[/prefix-length] [detail | longer] | [hunt [brief]]]
```

Context

```
show>router>bgp
```

Description

This command displays BGP route information.

When this command is issued without any parameters, then the entire BGP routing table displays.

When this command is issued with an IP prefix/mask or IP address, then the best match for the parameter displays.

Parameters

family family — Specifies the type of routing information to be distributed by the BGP instance.

Values

- **ipv4** — Displays only those BGP peers that have the IPv4 family enable and not those capable of exchanging IP-VPN routes.
- **vpn-ipv4** — Displays the BGP peers that are IP-VPN capable.
- **ipv6** — Displays the BGP peers that are IPv6 capable.
- **mcast-ipv4** — Displays the BGP peers that are mcast-ipv4 capable.

prefix — Specifies the type of routing information to display.

Values

```
rd:[rd:]ip-address[/mask]
```

- rd
 - ip-address: number1
 - as-number1: number2
 - as-number2: number3
- number1: 1 — 65535
- as-number1: 1 — 65535
- number2: 0 — 4294967295
- as-number2: 1 — 4294967295
- number3: 0 — 65535
- ip-address: a.b.c.d
- mask: 0 — 32

filter — Specifies route criteria.

Values

- **hunt** Displays entries for the specified route in the RIB-In, RIB-Out, and RTM.
- **longer** Displays the specified route and subsets of the route.
- **detail** Display the longer, more detailed version of the output.

aspath-regex “reg-exp” — Displays all routes with an AS path matching the specified regular expression reg-exp.

community comm.-id — Displays all routes with the specified BGP community.

Values

```
[as-number1:comm-val1 | ext-comm | well-known-comm]
```

- ext-comm
type: [ip-address:comm-val1 | as-number1:comm-val2 | as-number2:comm-val1]
- as-number1: 0..65535
- comm-val1: 0..65535
- type: keywords: target, origin
- ip-address: a.b.c.d
- comm-val2: 0 — 4294967295
Output

Show BGP Routes — The following table describes the command output fields for BGP routes.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting, if not configured it is the same as the system AS.</td>
</tr>
<tr>
<td>Network</td>
<td>The IP prefix and mask length.</td>
</tr>
<tr>
<td>Nexthop</td>
<td>The BGP nexthop.</td>
</tr>
<tr>
<td>From</td>
<td>The advertising BGP neighbor’s IP address.</td>
</tr>
<tr>
<td>Res. Nexthop</td>
<td>The resolved nexthop.</td>
</tr>
<tr>
<td>Local Pref.</td>
<td>The local preference value.</td>
</tr>
<tr>
<td>Flag</td>
<td>u — used</td>
</tr>
<tr>
<td></td>
<td>s — suppressed</td>
</tr>
<tr>
<td></td>
<td>h — history</td>
</tr>
<tr>
<td></td>
<td>d — decayed</td>
</tr>
<tr>
<td></td>
<td>* — valid</td>
</tr>
<tr>
<td></td>
<td>i — igp</td>
</tr>
<tr>
<td></td>
<td>e — egp</td>
</tr>
<tr>
<td></td>
<td>? — incomplete</td>
</tr>
<tr>
<td></td>
<td>> — best</td>
</tr>
<tr>
<td>Aggregator AS</td>
<td>The aggregator AS value.</td>
</tr>
<tr>
<td></td>
<td>none — No aggregator AS attributes are present.</td>
</tr>
<tr>
<td>Aggregator</td>
<td>The aggregator attribute value.</td>
</tr>
<tr>
<td></td>
<td>none — no Aggregator attributes are present.</td>
</tr>
<tr>
<td>Atomic Aggr.</td>
<td>Atomic — The atomic aggregator flag is set.</td>
</tr>
<tr>
<td></td>
<td>Not Atomic — The atomic aggregator flag is not set.</td>
</tr>
<tr>
<td>MED</td>
<td>The MED metric value.</td>
</tr>
<tr>
<td></td>
<td>none — No MED metric is present.</td>
</tr>
<tr>
<td>Community</td>
<td>The BGP community attribute list.</td>
</tr>
<tr>
<td>Cluster</td>
<td>The route reflector cluster list.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12>config>router>bgp# show router 3 bgp routes family ipv4

```
BGP Router ID : 10.10.10.103      AS : 200     Local AS : 200
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best
BGP Routes
Flag  Network                             Nexthop         LocalPref  MED
VPN Label                           As-Path
------------------------------------------------------------------------------
No Matching Entries Found
```

A:ALA-12>config>router>bgp#

A:SR-12# show router bgp routes 100.0.0.0/31 hunt

```
BGP Router ID : 10.20.1.1   AS : 100Local AS : 100
Legend -
Status codes  : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes  : i - IGP, e - EGP, ? - incomplete, > - best
BGP Routes
RIB In Entries
Network        : 100.0.0.0/31
Nexthop        : 10.20.1.2
Route Dist.    : 10.20.1.2:1 VPN Label : 131070
From        : 10.20.1.2
Res. Nexthop   : 10.10.1.2
Local Pref.    : 100 Interface Name: to-sr7
Aggregator AS  : none Aggregator : none
Atomic Aggr.   : Not Atomic MED : none
Community      : target:10.20.1.2:1
Cluster        : No Cluster Members
Originator Id  : None Peer Router Id: 10.20.1.2
Flags       : Used Valid Best IGP
AS-Path      : No As-Path
VPRN Imported : 1 2 10 12
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originator Id</td>
<td>The originator ID path attribute value.</td>
</tr>
<tr>
<td>Peer Router Id</td>
<td>The router ID of the advertising router.</td>
</tr>
<tr>
<td>AS-Path</td>
<td>The BGP AS path attribute.</td>
</tr>
<tr>
<td>VPRN Imported</td>
<td>Displays the VPRNs where a particular BGP-VPN received route has been imported and installed.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Routes : 1

A:SR-12#

summary

Syntax summary [all]

Context show>router>bgp

Description This command displays a summary of BGP neighbor information.

If confederations are not configured, that portion of the output will not display.

The “State” field displays the global BGP operational state. The valid values are:

- Up — BGP global process is configured and running.
- Down — BGP global process is administratively shutdown and not running.
- Disabled — BGP global process is operationally disabled. The process must be restarted by the operator.

For example, if a BGP peer is operationally disabled, then the state in the summary table shows the state ‘Disabled’

Parameters all — Displays BGP peers in all instances.

Output Show BGP Summary Output — The following table describes the command output fields for a BGP summary:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Router ID</td>
<td>The local BGP router ID.</td>
</tr>
<tr>
<td>AS</td>
<td>The configured autonomous system number.</td>
</tr>
<tr>
<td>Local AS</td>
<td>The configured local AS setting, if not configured it is the same as the system AS.</td>
</tr>
<tr>
<td>BGP Admin State</td>
<td>Down — BGP is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — BGP is administratively enabled.</td>
</tr>
<tr>
<td>BGP Oper State</td>
<td>Down — BGP is operationally disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — BGP is operationally enabled.</td>
</tr>
<tr>
<td>Confederation AS</td>
<td>The configured confederation AS.</td>
</tr>
<tr>
<td>Member Confederations</td>
<td>The configured members of the BGP confederation.</td>
</tr>
<tr>
<td>Number of Peer Groups</td>
<td>The total number of configured BGP peer groups.</td>
</tr>
<tr>
<td>Number of Peers</td>
<td>The total number of configured BGP peers.</td>
</tr>
</tbody>
</table>
VPRN Show Commands

Sample Output

AR:ALA-12# show router 3 bgp summary

```
Total BGP Active Routes
Total BGP Routes
Total BGP Paths
Total Path Memory
Total Suppressed Routes
Total History Routes
Total Decayed Routes
Neighbor AS PktRcvd PktSent InQ OutQ Up/Down State|Recv/Actv/Sent
------------------------------------------------------------------
10.0.0.1 65206 5 21849 0 00h01m29s 32/0/86683
```

Description

- **Total BGP Active Routes**: The total number of BGP routes used in the forwarding table.
- **Total BGP Routes**: The total number of BGP routes learned from BGP peers.
- **Total BGP Paths**: The total number of unique sets of BGP path attributes learned from BGP peers.
- **Total Path Memory**: Total amount of memory used to store the path attributes.
- **Total Suppressed Routes**: Total number of suppressed routes due to route damping.
- **Total History Routes**: Total number of routes with history due to route damping.
- **Total Decayed Routes**: Total number of decayed routes due to route damping.
- **Neighbor**
- **AS (Neighbor)**: BGP neighbor autonomous system number.
- **PktRcvd**: Total number of packets received from the BGP neighbor.
- **PktSent**: Total number of packets sent to the BGP neighbor.
- **InQ**: The number of BGP messages to be processed.
- **OutQ**: The number of BGP messages to be transmitted.
- **Up/Down State**: The amount of time that the BGP neighbor has either been established or not established depending on its current state.
- **State|Recv/Actv/Sent**: The BGP neighbor’s current state (if not established) or the number of received routes, active routes and sent routes (if established).
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>Sent</th>
<th>Recvd</th>
<th>Sts</th>
<th>Co</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.12</td>
<td>65206</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h01m29s Active</td>
</tr>
<tr>
<td>10.0.0.13</td>
<td>65206</td>
<td>5</td>
<td>10545</td>
<td>0</td>
<td>50</td>
<td>00h01m29s 6/0/86683</td>
</tr>
<tr>
<td>10.0.0.15</td>
<td>65205</td>
<td>5</td>
<td>9636</td>
<td>0</td>
<td>50</td>
<td>00h01m29s 6/0/86683</td>
</tr>
<tr>
<td>10.0.27.1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h01m29s Active</td>
</tr>
<tr>
<td>10.0.28.1</td>
<td>60203</td>
<td>22512</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>00h01m29s 116955/86689/9</td>
</tr>
</tbody>
</table>

A:ALA-12#
interface

Syntax interface [{ip-address|ip-int-name}][detail][summary]

Context show>router

Description This command displays the router IP interface table sorted by interface index.

Parameters
ip-address — Only displays the interface information associated with the specified IP address.
ip-int-name — Only displays the interface information associated with the specified IP interface name.
detail — Displays detailed IP interface information.
summary — Displays summary IP interface information for the router.

— Standard IP Interface Output — The following table describes the standard output fields for an IP interface:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface-Name</td>
<td>The IP interface name.</td>
</tr>
<tr>
<td>Type</td>
<td>n/a — No IP address has been assigned to the IP interface, so the IP address type is not applicable.</td>
</tr>
<tr>
<td></td>
<td>Pri — The IP address for the IP interface is the Primary address on the IP interface.</td>
</tr>
<tr>
<td></td>
<td>Sec — The IP address for the IP interface is a secondary address on the IP interface.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>The IP address and subnet mask length of the IP interface.</td>
</tr>
<tr>
<td></td>
<td>n/a — Indicates no IP address has been assigned to the IP interface.</td>
</tr>
<tr>
<td>Adm</td>
<td>Down — The IP interface is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — The IP interface is administratively enabled.</td>
</tr>
<tr>
<td>Opr</td>
<td>Down — The IP interface is operationally disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — The IP interface is operationally enabled.</td>
</tr>
<tr>
<td>Mode</td>
<td>Network — The IP interface is a network/core IP interface.</td>
</tr>
<tr>
<td></td>
<td>Service — The IP interface is a service IP interface.</td>
</tr>
</tbody>
</table>

Sample Output

*A:7210SAS>show>router interface i1 detail

===
Interface Table (Router: Base)
===

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface-Name</td>
<td>The IP interface name.</td>
</tr>
<tr>
<td>Type</td>
<td>n/a — No IP address has been assigned to the IP interface, so the IP address type is not applicable.</td>
</tr>
<tr>
<td></td>
<td>Pri — The IP address for the IP interface is the Primary address on the IP interface.</td>
</tr>
<tr>
<td></td>
<td>Sec — The IP address for the IP interface is a secondary address on the IP interface.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>The IP address and subnet mask length of the IP interface.</td>
</tr>
<tr>
<td></td>
<td>n/a — Indicates no IP address has been assigned to the IP interface.</td>
</tr>
<tr>
<td>Adm</td>
<td>Down — The IP interface is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — The IP interface is administratively enabled.</td>
</tr>
<tr>
<td>Opr</td>
<td>Down — The IP interface is operationally disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — The IP interface is operationally enabled.</td>
</tr>
<tr>
<td>Mode</td>
<td>Network — The IP interface is a network/core IP interface.</td>
</tr>
<tr>
<td></td>
<td>Service — The IP interface is a service IP interface.</td>
</tr>
</tbody>
</table>
Interface

If Name : i1
Admin State : Up
Protocols : None

IP Addr/mask : Not Assigned

Details

Description : (Not Specified)
If Index : 2
Last Oper Chg: 03/07/2001 01:47:29
Port Id : 1/1/1
TOS Marking : Trusted
Egress Filter: none
SNTP B.Cast : False
Queue-group : None
MAC Address : 00:25:ba:0d:27:32
IP Oper MTU : 9198
LdpSyncTimer : None
uRPF Chk : disabled
uRPF Fail By*: 0
ICMP Details
Redirects : Number = 100
Unreachables : Number = 100
TTL Expired : Number = 100

Meter Statistics

Ingress Meter 1 (Unicast)
For. InProf : 0
For. OutProf : 0
Ingress Meter 9 (Multipoint)
For. InProf : 0
For. OutProf : 0

* indicates that the corresponding row element may have been truncated.
A:7210SAS>show>router#

Detailed IP Interface Output — The following table describes the detailed output fields for an IP interface.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Name</td>
<td>The IP interface name.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Down — The IP interface is administratively disabled.</td>
</tr>
<tr>
<td></td>
<td>Up — The IP interface is administratively enabled.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Oper State</td>
<td>Down – The IP interface is operationally disabled.</td>
</tr>
<tr>
<td></td>
<td>Up – The IP interface is operationally disabled.</td>
</tr>
<tr>
<td>IP Addr/mask</td>
<td>The IP address and subnet mask length of the IP interface.</td>
</tr>
<tr>
<td></td>
<td>Not Assigned — Indicates no IP address has been assigned to the IP interface.</td>
</tr>
<tr>
<td>Address Type</td>
<td>Primary – The IP address for the IP interface is the Primary address on the IP interface.</td>
</tr>
<tr>
<td></td>
<td>Secondary — The IP address for the IP interface is a Secondary address on the IP interface.</td>
</tr>
<tr>
<td>IGP Inhibit</td>
<td>Disabled – The secondary IP address on the interface will be recognized as a local interface by the IGP.</td>
</tr>
<tr>
<td></td>
<td>Enabled – The secondary IP address on the interface will not be recognized as a local interface by the IGP.</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>All-ones – The broadcast format on the IP interface is all ones.</td>
</tr>
<tr>
<td></td>
<td>Host-ones – The broadcast format on the IP interface is host ones.</td>
</tr>
<tr>
<td>If Index</td>
<td>The interface index of the IP router interface.</td>
</tr>
<tr>
<td>If Type</td>
<td>Network – The IP interface is a network/core IP interface.</td>
</tr>
<tr>
<td></td>
<td>Service – The IP interface is a service IP interface.</td>
</tr>
<tr>
<td>Port Id</td>
<td>The port ID of the IP interface.</td>
</tr>
<tr>
<td>Egress Filter</td>
<td>The egress IP filter policy ID associated with the IP interface.</td>
</tr>
<tr>
<td></td>
<td>none – Indicates no egress filter policy is associated with the interface.</td>
</tr>
<tr>
<td>Ingress Filter</td>
<td>The ingress IP filter policy ID associated with the IP interface.</td>
</tr>
<tr>
<td></td>
<td>none – Indicates no ingress filter policy is associated with the interface.</td>
</tr>
<tr>
<td>QoS Policy</td>
<td>The QoS policy ID associated with the IP interface.</td>
</tr>
<tr>
<td>SNTP Broadcast</td>
<td>False – Receipt of SNTP broadcasts on the IP interface is disabled.</td>
</tr>
<tr>
<td></td>
<td>True – Receipt of SNTP broadcasts on the IP interface is enabled.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the IP interface.</td>
</tr>
<tr>
<td>Arp Timeout</td>
<td>The ARP timeout for the interface, in seconds, which is the time an ARP entry is maintained in the ARP cache without being refreshed.</td>
</tr>
<tr>
<td>ICMP Mask Reply</td>
<td>False – The IP interface will not reply to a received ICMP mask request.</td>
</tr>
<tr>
<td></td>
<td>True – The IP interface will reply to a received ICMP mask request.</td>
</tr>
</tbody>
</table>
Interface Table

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Name: to-ser1</td>
<td>The name of the interface.</td>
</tr>
<tr>
<td>Admin State: Up</td>
<td>The administrative state of the interface.</td>
</tr>
<tr>
<td>IP Addr/mask: 10.10.13.3/24</td>
<td>The IP address and subnet mask of the interface.</td>
</tr>
<tr>
<td>IGP Inhibit: Disabled</td>
<td>Indicates whether the interface is enabled or disabled for internal routing.</td>
</tr>
<tr>
<td>IP Addr/mask: 10.200.0.1/16</td>
<td>The second IP address and subnet mask of the interface.</td>
</tr>
<tr>
<td>IGP Inhibit: Enabled</td>
<td>Indicates whether the interface is enabled or disabled for internal routing.</td>
</tr>
</tbody>
</table>

Details

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Index: 2</td>
<td>The interface index.</td>
</tr>
<tr>
<td>Port Id: 1/1/2</td>
<td>The port identifier.</td>
</tr>
<tr>
<td>Egress Filter: none</td>
<td>Specifies the filter applied to outgoing traffic.</td>
</tr>
<tr>
<td>QoS Policy: 1</td>
<td>The Quality of Service policy associated with the interface.</td>
</tr>
<tr>
<td>MAC Address: 04:5d:01:01:00:02</td>
<td>The media access control address.</td>
</tr>
<tr>
<td>Arp Timeout: 14400</td>
<td>The time in seconds before an arp is timed out.</td>
</tr>
</tbody>
</table>

ICMP Details

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redirects: Disabled</td>
<td>Indicates whether the interface will generate ICMP redirect messages.</td>
</tr>
<tr>
<td>Unreachables: Number - 100</td>
<td>Specifies the maximum number of unreachable messages.</td>
</tr>
<tr>
<td>TTL Expired: Number - 100</td>
<td>Specifies the maximum number of TTL expired messages.</td>
</tr>
</tbody>
</table>

Summary IP Interface Output

The following table describes the summary output fields for the router IP interfaces.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
<td>The router instance number.</td>
</tr>
<tr>
<td>Router Name</td>
<td>The name of the router instance.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>The number of IP interfaces in the router instance.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show router 3 interface summary

```
Router Summary (Interfaces)
-------------------------------------------------------------------------------
Instance  Router Name       Interfaces  Admin-Up  Oper-Up
-------------------------------------------------------------------------------
1         Base               7             7          5
-------------------------------------------------------------------------------
*A:ALA-12#
```

route-table

Syntax

```
route-table [ip-prefix [mask] [longer] | [protocol protocol] | [summary]]
```

Context

```
show>router
```

Description

This command displays the active routes in the routing table.

If no command line arguments are specified, all routes are displayed, sorted by prefix.

Parameters

- `ip-prefix [mask]` — Displays routes only matching the specified `ip-prefix` and optional `mask`.
- `longer` — Displays routes matching the `ip-prefix/mask` and routes with longer masks.
- `protocol protocol` — Displays routes learned from the specified protocol.
 - **Values**
 - bgp, isis, local, ospf, rip, static, aggregate
- `summary` — Displays a route table summary information.

Output

Standard Show Route Table Output — The following table describes the standard output fields for the route table.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest Address</td>
<td>The route destination address and mask.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next hop IP address for the route destination.</td>
</tr>
<tr>
<td>Type</td>
<td>Local — The route is a local route.</td>
</tr>
<tr>
<td></td>
<td>Remote — The route is a remote route.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The protocol through which the route was learned.</td>
</tr>
<tr>
<td>Age</td>
<td>The route age in seconds for the route.</td>
</tr>
<tr>
<td>Metric</td>
<td>The route metric value for the route.</td>
</tr>
<tr>
<td>Pref</td>
<td>The route preference value for the route.</td>
</tr>
<tr>
<td>No. of Routes</td>
<td>The number of routes displayed in the list.</td>
</tr>
</tbody>
</table>

Sample Output
Show router 3 route-table

<table>
<thead>
<tr>
<th>Dest Address</th>
<th>Next Hop</th>
<th>Type</th>
<th>Protocol</th>
<th>Age</th>
<th>Metric</th>
<th>Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.1/32</td>
<td>10.10.13.1</td>
<td>Remote</td>
<td>OSPF</td>
<td>65844</td>
<td>1001</td>
<td>10</td>
</tr>
<tr>
<td>10.10.0.2/32</td>
<td>10.10.13.1</td>
<td>Remote</td>
<td>OSPF</td>
<td>65844</td>
<td>2001</td>
<td>10</td>
</tr>
<tr>
<td>10.10.0.3/32</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>1329261</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.0.4/32</td>
<td>10.10.34.4</td>
<td>Remote</td>
<td>OSPF</td>
<td>3523</td>
<td>1001</td>
<td>10</td>
</tr>
<tr>
<td>10.10.0.5/32</td>
<td>10.10.35.5</td>
<td>Remote</td>
<td>OSPF</td>
<td>1084022</td>
<td>1001</td>
<td>10</td>
</tr>
<tr>
<td>10.10.12.0/24</td>
<td>10.10.13.1</td>
<td>Remote</td>
<td>OSPF</td>
<td>65844</td>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>10.10.13.0/24</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>65859</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.15.0/24</td>
<td>10.10.13.1</td>
<td>Remote</td>
<td>OSPF</td>
<td>58386</td>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>10.10.24.0/24</td>
<td>10.10.34.4</td>
<td>Remote</td>
<td>OSPF</td>
<td>3523</td>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>10.10.35.0/24</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>3543</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.35.0/24</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>1329259</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.10.45.0/24</td>
<td>10.10.34.4</td>
<td>Remote</td>
<td>OSPF</td>
<td>3523</td>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>10.200.0.0/16</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>4513</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.168.0.0/24</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>1329264</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.168.254.0/24</td>
<td>0.0.0.0</td>
<td>Remote</td>
<td>Static</td>
<td>3543</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>192.168.0.0/24</td>
<td>0.0.0.0</td>
<td>Local</td>
<td>Local</td>
<td>1329264</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.168.254.0/24</td>
<td>0.0.0.0</td>
<td>Remote</td>
<td>Static</td>
<td>3543</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

Show router 3 route-table 10.10.0.4

<table>
<thead>
<tr>
<th>Dest Address</th>
<th>Next Hop</th>
<th>Type</th>
<th>Protocol</th>
<th>Age</th>
<th>Metric</th>
<th>Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.4/32</td>
<td>10.10.34.4</td>
<td>Remote</td>
<td>OSPF</td>
<td>3523</td>
<td>1001</td>
<td>10</td>
</tr>
</tbody>
</table>

Show router 3 route-table 10.10.0.4/32 longer

<table>
<thead>
<tr>
<th>Dest Address</th>
<th>Next Hop</th>
<th>Type</th>
<th>Protocol</th>
<th>Age</th>
<th>Metric</th>
<th>Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.4/32</td>
<td>10.10.34.4</td>
<td>Remote</td>
<td>OSPF</td>
<td>3523</td>
<td>1001</td>
<td>10</td>
</tr>
</tbody>
</table>

No. of Routes: 1

Show router 3 route-table protocol ospf
Route Table Summary

<table>
<thead>
<tr>
<th></th>
<th>Active</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Direct</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>BGP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ISIS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aggregate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

A:ALA-12#
static-arp

Syntax

```
static-arp [ip-address | ip-int-name | mac ieee-mac-addr]
```

Context

`show>router`

Description

This command displays the router static ARP table sorted by IP address. If no options are present, all ARP entries are displayed.

Parameters

- `ip-address` — Only displays static ARP entries associated with the specified IP address.
- `ip-int-name` — Only displays static ARP entries associated with the specified IP interface name.
- `mac ieee-mac-addr` — Only displays static ARP entries associated with the specified MAC address.

Output

Static ARP Table Output — The following table describes the output fields for the ARP table.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the static ARP entry.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the static ARP entry.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the ARP entry. Static ARPs always have <code>00:00:00</code> for the age.</td>
</tr>
<tr>
<td>Type</td>
<td>Inv — The ARP entry is an inactive static ARP entry (invalid). Sta — The ARP entry is an active static ARP entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The IP interface name associated with the ARP entry.</td>
</tr>
<tr>
<td>No. of ARP Entries</td>
<td>The number of ARP entries displayed in the list.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALA-12# show router 3 static-arp
==============================================================================
ARP Table
==============================================================================
IP Address      MAC Address       Age      Type Interface
------------------------------------------------------------------------------
10.200.0.253    00:00:5a:40:00:01 00:00:00    Sta  to-ser1
12.200.1.1      00:00:5a:01:00:33  00:00:00 Inv   to-ser1a
------------------------------------------------------------------------------
No. of ARP Entries: 2
==============================================================================
*A:ALA-12#

*A:ALA-12# show router 3 static-arp 12.200.1.1
==============================================================================
ARP Table
==============================================================================
IP Address      MAC Address        Age     Type Interface
------------------------------------------------------------------------------
12.200.1.1      00:00:5a:01:00:33  00:00:00 Inv   to-ser1a
------------------------------------------------------------------------------
```
static-route

Syntax

```
static-route [ip-prefix /mask] | [preference preference] | [next-hop ip-addr] [detail]
```

Context

```
show>router
```

Description

This command displays the static entries in the routing table.

If no options are present, all static routes are displayed sorted by prefix.

Parameters

- `ip-prefix /mask` — Displays static routes only matching the specified `ip-prefix` and `mask`.
- `preference preference` — Only displays static routes with the specified route preference. Values: 0 — 65535
- `next-hop ip-addr` — Only displays static routes with the specified next hop IP address.
- `detail` — Displays detailed information about the static route.

Output

Show Static Route Output — The following table describes the output fields for the static route table:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Addr/mask</td>
<td>The static route destination address and mask.</td>
</tr>
<tr>
<td>Pref</td>
<td>The route preference value for the static route.</td>
</tr>
<tr>
<td>Metric</td>
<td>The route metric value for the static route.</td>
</tr>
<tr>
<td>Type</td>
<td>BH — The static route is a black hole route. The <code>Nexthop</code> for this type of route is black-hole.</td>
</tr>
</tbody>
</table>

VPRN Show Commands

*ALA-12#

*A:ALA-12# show router 3 static-arp to-ser1

ARP Table

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Age</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.200.0.253</td>
<td>00:00:5a:40:00:01</td>
<td>00:00:00</td>
<td>Sta</td>
<td>to-ser1</td>
</tr>
</tbody>
</table>

*S*A:ALA-12#

*A:ALA-12# show router 3 static-arp mac 00:00:5a:40:00:01

ARP Table

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Age</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.200.0.253</td>
<td>00:00:5a:40:00:01</td>
<td>00:00:00</td>
<td>Sta</td>
<td>to-ser1</td>
</tr>
</tbody>
</table>

*A:ALA-12#
Label	**Description (Continued)**
ID | The static route is an indirect route, where the next hop for this type of route is the non-directly connected next hop.
NH | The route is a static route with a directly connected next hop. The next hop for this type of route is either the next hop IP address or an egress IP interface name.

Next Hop
The next hop for the static route destination.

Interface
The egress IP interface name for the static route.

N/a | indicates there is no current egress interface because the static route is inactive or a black hole route.

Active
N | The static route is inactive; for example, the static route is disabled or the next hop IP interface is down.
Y | The static route is active.

No. of Routes:
The number of routes displayed in the list.

Sample Output

A:ALA-12# show router 3 static-route

<table>
<thead>
<tr>
<th>IP Addr/mask</th>
<th>Pref</th>
<th>Metric</th>
<th>Type</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.250.0/24</td>
<td>5</td>
<td>1</td>
<td>ID</td>
<td>10.200.10.1</td>
<td>to-ser1</td>
<td>Y</td>
</tr>
<tr>
<td>192.168.252.0/24</td>
<td>5</td>
<td>1</td>
<td>NH</td>
<td>10.10.0.254</td>
<td>n/a</td>
<td>N</td>
</tr>
<tr>
<td>192.168.253.0/24</td>
<td>5</td>
<td>1</td>
<td>NH</td>
<td>10.10.0.254</td>
<td>n/a</td>
<td>N</td>
</tr>
<tr>
<td>192.168.254.0/24</td>
<td>4</td>
<td>1</td>
<td>BH</td>
<td>black-hole</td>
<td>n/a</td>
<td>Y</td>
</tr>
</tbody>
</table>

*A:ALA-12#

A:ALA-12# show router 3 static-route 192.168.250.0/24

<table>
<thead>
<tr>
<th>IP Addr/mask</th>
<th>Pref</th>
<th>Metric</th>
<th>Type</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.250.0/24</td>
<td>5</td>
<td>1</td>
<td>ID</td>
<td>10.200.10.1</td>
<td>to-ser1</td>
<td>Y</td>
</tr>
</tbody>
</table>

*A:ALA-12#

A:ALA-12# show router 3 static-route preference 4

<table>
<thead>
<tr>
<th>IP Addr/mask</th>
<th>Pref</th>
<th>Metric</th>
<th>Type</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.254.0/24</td>
<td>4</td>
<td>1</td>
<td>BH</td>
<td>black-hole</td>
<td>n/a</td>
<td>Y</td>
</tr>
</tbody>
</table>
*A:ALA-12#

*A:ALA-12# show router 3 static-route next-hop 10.10.0.254

Route Table

<table>
<thead>
<tr>
<th>IP Addr/mask</th>
<th>Pref</th>
<th>Metric</th>
<th>Type</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.253.0/24</td>
<td>5</td>
<td>1</td>
<td>NH</td>
<td>10.10.0.254</td>
<td>n/a</td>
<td>N</td>
</tr>
</tbody>
</table>

*A:ALA-12#

*A:Dut-B# show router static-route

Static Route Table (Router: Base) Family: IPv4

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Tag</th>
<th>Met</th>
<th>Pref</th>
<th>Type</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.3.4/32</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>NH</td>
<td>Y</td>
</tr>
<tr>
<td>ip=10.11.25.5_base_to_cpe_static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.11.15.0/24</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>NH</td>
<td>Y</td>
</tr>
<tr>
<td>ip=10.11.25.5_base_to_cpe_static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. of Static Routes: 2

*A:Dut-B# show router static-route detail

Static Route Table (Router: Base) Family: IPv4

<table>
<thead>
<tr>
<th>Network</th>
<th>Nexthop</th>
<th>Type</th>
<th>Nexthop Type</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.3.4/32</td>
<td>10.11.25.6</td>
<td>Nexthop</td>
<td>IP</td>
<td></td>
</tr>
<tr>
<td>ip=10.11.25.5_base_to_cpe_static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.11.15.0/24</td>
<td>10.11.25.6</td>
<td>Nexthop</td>
<td>IP</td>
<td></td>
</tr>
<tr>
<td>ip=10.11.25.5_base_to_cpe_static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. of Static Routes: 2
tunnel-table

Syntax tunnel-table [ip-address[/mask] [protocol protocol | sdp sdp-id]
 tunnel-table [summary]

Context show>router

Description This command displays tunnel table information.

When the auto-bind command is used when configuring a VPRN service, it means the MP-BGP NH resolution is referring to core routing instance for IP reachability. For a VPRN service this object specifies the lookup to be used by the routing instance if no SDP to the destination exists.

Parameters ip-address[/mask] — Displays the specified tunnel table’s destination IP address and mask.
 protocol protocol — Displays LDP protocol information.
 sdp sdp-id — Displays information pertaining to the specified SDP.
 summary — Displays summary tunnel table information.

Output Show Tunnel Table Output — The following table describes tunnel table output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The route’s destination address and mask.</td>
</tr>
<tr>
<td>Owner</td>
<td>Specifies the tunnel owner.</td>
</tr>
<tr>
<td>Encap</td>
<td>Specifies the tunnel’s encapsulation type.</td>
</tr>
<tr>
<td>Tunnel ID</td>
<td>Specifies the tunnel (SDP) identifier.</td>
</tr>
<tr>
<td>Pref</td>
<td>Specifies the route preference for routes learned from the configured peer(s).</td>
</tr>
<tr>
<td>Nexthop</td>
<td>The next hop for the route’s destination.</td>
</tr>
<tr>
<td>Metric</td>
<td>The route metric value for the route.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12>config>service# show router 3 tunnel-table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Owner</th>
<th>Encap</th>
<th>Tunnel Id</th>
<th>Pref</th>
<th>Nexthop</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1/32</td>
<td>sdp</td>
<td>GRE</td>
<td>10</td>
<td>5</td>
<td>10.0.0.1</td>
<td>0</td>
</tr>
<tr>
<td>10.0.0.1/32</td>
<td>sdp</td>
<td>GRE</td>
<td>21</td>
<td>5</td>
<td>10.0.0.1</td>
<td>0</td>
</tr>
<tr>
<td>10.0.0.1/32</td>
<td>sdp</td>
<td>GRE</td>
<td>31</td>
<td>5</td>
<td>10.0.0.1</td>
<td>0</td>
</tr>
<tr>
<td>10.0.0.1/32</td>
<td>sdp</td>
<td>GRE</td>
<td>41</td>
<td>5</td>
<td>10.0.0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

*A:ALA-12>config>service#
```
*A:ALA-12>config>service# show router 3 tunnel-table summary

=============================================================================  
Tunnel Table Summary (Router: Base)  
-----------------------------------------------------------------------------
<table>
<thead>
<tr>
<th></th>
<th>Active</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDP</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SDP</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*A:ALA-12>config>service#  
```
VPRN Clear Commands

arp-host

Syntax
arp-host
arp-host { mac ieee-address | sap sap-id | ip-address ip-address[/mask] }
arp-host [port port-id] [inter-dest-id intermediate-destination-id | no-inter-dest-id]
arp-host statistics [sap sap-id | interface interface-name]

Context clear>service>id

Description This command clears ARP host data.

forwarding-table

Syntax forwarding-table [slot-number]

Context clear>router

Description This command clears the route table on the specified IOM with the route table.
If the slot number is not specified, the command forces the route table to be recalculated.

Parameters slot-number — Clears the specified IOM slot.

Default all IOMs

Values 1 - 10 (depending on chassis model)

interface

Syntax interface [ip-int-name | ip-addr] [icmp]

Context clear>router

Description This command clears IP interface statistics.
If no IP interface is specified either by IP interface name or IP address, the command will perform the
clear operation on all IP interfaces.

Parameters ip-int-name | ip-addr — The IP interface name or IP interface address.

Default All IP interfaces.

icmp — Specifies to reset the ICMP statistics for the IP interface(s) used for ICMP rate limit.

damping

Syntax damping [/ip-prefix/mask] [neighbor ip-address] | [group name]
VPRN Clear Commands

Context
clear>router>bgp

Description
This command clears or resets the route damping information for received routes.

Parameters
- *ip-prefix/mask* — Clears damping information for entries that match the IP prefix and mask length.
- *neighbor ip-address* — Clears damping information for entries received from the BGP neighbor.
- *group name* — Clears damping information for entries received from any BGP neighbors in the peer group.

flap-statistics

Syntax
```
flap-statistics [[ip-prefix/mask] [neighbor ip-addr]] | [group group-name] | [regex reg-exp] | [policy policy-name]
```

Context
clear>router>bgp

Description
This command clears route flap statistics.

Parameters
- *ip-prefix/mask* — Clears route flap statistics for entries that match the specified IP prefix and mask length.
- *neighbor ip-addr* — Clears route flap statistics for entries received from the specified BGP neighbor.
- *group group-name* — Clears route flap statistics for entries received from any BGP neighbors in the specified peer group.
- *regex reg-exp* — Clears route flap statistics for all entries which have the regular expression and the AS path that matches the regular expression.
- *policy policy-name* — Clears route flap statistics for entries that match the specified route policy.

neighbor

Syntax
```
neighbor {ip-addr | as as-number | external | all} [soft | soft-inbound | statistics]
```

Context
clear>router>bgp

Description
This command resets the specified BGP peer or peers. This can cause existing BGP connections to be shutdown and restarted.

Parameters
- *ip-addr* — Resets the BGP neighbor with the specified IP address.
- *as as-number* — Resets all BGP neighbors with the specified peer AS.
- *external* — Resets all EBGP neighbors.
- *all* — Resets all BGP neighbors.
- *soft* — The specified BGP neighbor(s) re-evaluates all routes in the Local-RIB against the configured export policies.
- *soft-inbound* — The specified BGP neighbor(s) re-evaluates all routes in the RIB-In against the configured import policies.
- *statistics* — The BGP neighbor statistics.
Show, Clear, Debug Commands

protocol

Syntax protocol
Context clear>router>bgp
Description This command resets the entire BGP protocol. If the AS number was previously changed, the BGP AS number does not inherit the new value.

id

Syntax id service-id
Context clear>service
clear>service>statistics
Description This command clears commands for a specific service.
Parameters service-id — The ID that uniquely identifies a service.
Values 1 — 2147483648

sap

Syntax sap sap-id {all | counters | stp}
Context clear>service>statistics
Description Clears SAP statistics for a SAP.
Parameters sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

spoke-sdp

Syntax spoke-sdp sdp-id:vc-id ingress-vc-label
Context clear>service>id
Description This command clears and resets the spoke SDP bindings for the service.
Parameters sdp-id — The spoke SDP ID to be reset.
Values 1 — 17407
vc-id — The virtual circuit ID on the SDP ID to be reset.
Values 1 — 4294967295
sdp

Syntax sdp sdp-id keep-alive
Context clear>service>statistics
Description This command clears keepalive statistics associated with the SDP ID.
Parameters
 sdp-id — The SDP ID for which to clear keepalive statistics.
Values 1 — 17407

counters

Syntax counters
Context clear>service>statistics>id
Description Clears all traffic queue counters associated with the service ID.

spoke-sdp

Syntax spoke-sdp sdp-id[:vc-id] {all | counters | stp}
Context clear>service>statistics>id
Description This command clears statistics for the spoke SDP bound to the service.
Parameters
 sdp-id — The spoke SDP ID for which to clear statistics.
Values 1 — 17407
 vc-id — The virtual circuit ID on the SDP ID to be reset.
Values 1 — 4294967295
 all — Clears all queue statistics and STP statistics associated with the SDP.
counters — Clears all queue statistics associated with the SDP.
stp — Clears all STP statistics associated with the SDP.

stp

Syntax stp
Context clear>service>statistics>id
Description Clears all spanning tree statistics for the service ID.
VPRN Debug Commands

id

Syntax
[no] id service-id

Context
debug>service

Description
This command debugs commands for a specific service. The **no** form of the command disables debugging.

Parameters
service-id — The ID that uniquely identifies a service.

sap

Syntax
[no] sap sap-id

Context
debug>service>id

dead>service>stp

Description
This command displays Subscriber Host Connectivity Verification (SHCV) events for a particular SAP.

Parameters
sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

sap

Syntax
[no] sap sap-id

Context
debug>service>id

dead>service>stp

Description
This command enables STP debugging for a specific SAP. The **no** form of the command disables debugging.

Parameters
sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

sdp

Syntax
[no] sdp sdp-id:vc-id

Context
debug>service>id

Description
This command enables STP debugging for a specific SDP.
The **no** form of the command disables debugging.

event-type

Syntax

```plaintext
[no] event-type {config-change | svc-oper-status-change | sap-oper-status-change | sdpbind-oper-status-change}
```

Context

degug>service>id

Description

This command enables debugging for a particular event type.

The **no** form of the command disables debugging.

event-type

Syntax

```plaintext
[no] event-type {config-change | oper-status-change}
```

Context

degug>service>id>sap

Description

This command enables debugging for a particular event type.

The **no** form of the command disables debugging.

stp

Syntax

```plaintext
[no] stp
```

Context

degug>service>id

Description

This command enables the context for debugging STP.

The **no** form of the command disables debugging.

all-events

Syntax

```plaintext
all-events
```

Context

degug>service>id>stp

Description

This command enables STP debugging for all events.

The **no** form of the command disables debugging.

bpdu

Syntax

```plaintext
[no] bpdu
```

Context

degug>service>stp

Description

This command enables STP debugging for received and transmitted BPDUs.
The *no* form of the command disables debugging.

core-connectivity

Syntax

```
[no] core-connectivity
```

Context

```
debug>service>stp
```

Description

This command enables STP debugging for core connectivity.
The *no* form of the command disables debugging.

exception

Syntax

```
[no] exception
```

Context

```
debug>service>stp
```

Description

This command enables STP debugging for exceptions.
The *no* form of the command disables debugging.

fsm-state-changes

Syntax

```
[no] fsm-state-changes
```

Context

```
debug>service>stp
```

Description

This command enables STP debugging for FSM state changes.
The *no* form of the command disables debugging.

fsm-timers

Syntax

```
[no] fsm-timers
```

Context

```
debug>service>stp
```

Description

This command enables STP debugging for FSM timer changes.
The *no* form of the command disables debugging.

port-role

Syntax

```
[no] port-role
```

Context

```
debug>service>stp
```
Description: This command enables STP debugging for changes in port roles.
The **no** form of the command disables debugging.

port-state

Syntax:
```plaintext
[port-state]
```

Context:
```
debug>service>stp
```

Description:
This command enables STP debugging for port states.
The **no** form of the command disables debugging.
VLL Show Commands

sap-using

Syntax

sap-using [sap sap-id]
sap-using interface [ip-address | ip-int-name]
sap-using [ingress | egress] filter filter-id
sap-using [ingress | egress] qos-policy qos-policy-id
sap-using encap-type encap-type

Context

show>service

Description

This command displays SAP information.
If no optional parameters are specified, the command displays a summary of all defined SAPs.
The optional parameters restrict output to only SAPs matching the specified properties.

Parameters

ip-addr — The IP address of the interface for which to display matching SAPs.

Values

1.0.0.0 to 223.255.255.255

ip-int-name — Specifies the IP interface name for which to display matching SAPs.

ingress — Specifies matching an ingress policy.

ingress — Specifies matching an ingress policy.

ingress — Specifies matching an ingress policy.

egress — Specifies matching an egress policy.

_qos-policy qos-policy-id — The ingress QoS Policy ID for which to display matching SAPs.

Values

1 — 65535

filter filter-id — The ingress or egress filter policy ID for which to display matching SAPs.

Values

1 — 65535

sap sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

encap-type encap-type — Displays the CEM encapsulation type.

Values

cem

Output

Show Service SAP — The following table describes show service SAP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port ID</td>
<td>The ID of the access port where the SAP is defined.</td>
</tr>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>MTU</td>
<td>The port MTU value.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Sample Output

A:Dut-A# show service sap-using

<table>
<thead>
<tr>
<th>PortId</th>
<th>SvcId</th>
<th>Ing. QoS</th>
<th>Ing. Fltr</th>
<th>Egr. QoS</th>
<th>Egr. Fltr</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1:1</td>
<td>1</td>
<td>1</td>
<td>none</td>
<td>1</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2/1/2:10/11</td>
<td>100</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2/1/2:10/12</td>
<td>102</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2/1/2:20/11</td>
<td>104</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2/1/2:20/12</td>
<td>105</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2/1/4:cp.10</td>
<td>301</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>2/1/4:cp.20</td>
<td>302</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

Number of SAPs : 7

A:Dut-A# config service vpls# show service sap-using

<table>
<thead>
<tr>
<th>PortId</th>
<th>SvcId</th>
<th>Ing. QoS</th>
<th>Ing. Fltr</th>
<th>Egr. QoS</th>
<th>Egr. Fltr</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>lag-3:100</td>
<td>100</td>
<td>1</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>1/1/3</td>
<td>101</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:101</td>
<td>102</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:102</td>
<td>103</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:103</td>
<td>104</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:104</td>
<td>105</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:105</td>
<td>201</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:201</td>
<td>202</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:202</td>
<td>203</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:203</td>
<td>204</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>lag-3:204</td>
<td>205</td>
<td>10</td>
<td>mac</td>
<td>none</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

Label

- **Ing. QoS**: The SAP ingress QoS policy number specified on the ingress SAP.
- **Ing Fltr**: The MAC or IP filter policy ID applied to the ingress SAP.
- **Egr. QoS**: The SAP egress QoS policy number specified on the egress SAP.
- **Egr. Fltr**: The MAC or IP filter policy ID applied to the egress SAP.
- **Adm**: The administrative state of the SAP.
- **Opr**: The operational state of the SAP.
VLL Show Commands

<table>
<thead>
<tr>
<th>PortId</th>
<th>SvcId</th>
<th>Quality</th>
<th>Filter In</th>
<th>Filter Out</th>
<th>Admin</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>lag-4:302</td>
<td>302</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>1/1/16:303</td>
<td>303</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>lag-4:303</td>
<td>303</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>1/1/16:304</td>
<td>304</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>lag-4:304</td>
<td>304</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>1/1/16:305</td>
<td>305</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>lag-4:305</td>
<td>305</td>
<td>10</td>
<td>none</td>
<td>Up</td>
<td>Up</td>
<td></td>
</tr>
</tbody>
</table>

A:Dut-A>config>service>vpls#

A:Dut-A>config>service# show service sap-using sap 1/1/16:305

A:ces-A# show service sap-using sap 1/2/1.1

A:ces-A# show service sap-using encap-type cem
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>SAP</th>
<th>Status 1</th>
<th>Status 2</th>
<th>Debugging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2/1.1</td>
<td>Up</td>
<td>Up</td>
<td>No</td>
</tr>
<tr>
<td>1/2/2.1</td>
<td>Up</td>
<td>Up</td>
<td>No</td>
</tr>
<tr>
<td>1/2/3.1</td>
<td>Up</td>
<td>Down</td>
<td>Yes</td>
</tr>
<tr>
<td>1/2/4.1</td>
<td>Up</td>
<td>Down</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Number of SAPS: 4
sdp

Note: SDP commands are not supported by 7210 SAS-M devices configured in uplink mode.

Syntax

`sdp [sdp-id | far-end ip-address] [detail | keep-alive-history]`

Context

`show>service`

Description

This command displays SDP information.

If no optional parameters are specified, a summary SDP output for all SDPs is displayed.

Parameters

- **sdp-id** — The SDP ID for which to display information.
 - **Default**: All SDPs.
 - **Values**: 1 — 17407

- **far-end ip-address** — Displays only SDPs matching with the specified far-end IP address.
 - **Default**: SDPs with any far-end IP address.

- **detail** — Displays detailed SDP information.
 - **Default**: SDP summary output.

- **keep-alive-history** — Displays the last fifty SDP keepalive events for the SDP.
 - **Default**: SDP summary output.

Output

Show Service SDP — The following table describes show service SDP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Adm MTU</td>
<td>Specifies the desired largest service frame size (in octets) that can be</td>
</tr>
<tr>
<td></td>
<td>transmitted through this SDP to the far-end router, without requiring the</td>
</tr>
<tr>
<td></td>
<td>packet to be fragmented.</td>
</tr>
<tr>
<td>Opr MTU</td>
<td>Specifies the actual largest service frame size (in octets) that can be</td>
</tr>
<tr>
<td></td>
<td>transmitted through this SDP to the far-end router, without requiring the</td>
</tr>
<tr>
<td></td>
<td>packet to be fragmented.</td>
</tr>
<tr>
<td>IP address</td>
<td>Specifies the IP address of the remote end of the GRE or MPLS tunnel</td>
</tr>
<tr>
<td></td>
<td>defined by this SDP.</td>
</tr>
<tr>
<td>Adm</td>
<td>Specifies the desired state of the SDP.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Specifies the operating state of the SDP.</td>
</tr>
<tr>
<td>Opr</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Specifies all the conditions that affect the operating status of this SDP.</td>
</tr>
</tbody>
</table>

VLL Show Commands

7210 SAS M Services Guide

Page 805
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress</td>
</tr>
<tr>
<td>Signaling</td>
<td>labels used in frames transmitted and received on the SDP.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>Specifies the time of the most recent operating status change to this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>Specifies the time of the most recent management-initiated change to this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Number of SDPs</td>
<td>Specifies the total number of SDPs displayed according to the criteria</td>
</tr>
<tr>
<td></td>
<td>specified.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Number of SDPs</td>
<td>Specifies the total number of SDPs displayed according to the criteria</td>
</tr>
<tr>
<td></td>
<td>specified.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Hello Timeout</td>
<td>Specifies the number of seconds to wait for an SDP echo response message</td>
</tr>
<tr>
<td></td>
<td>before declaring a timeout.</td>
</tr>
<tr>
<td>Unmatched Replies</td>
<td>Specifies the number of SDP unmatched message replies.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP echo request messages</td>
</tr>
<tr>
<td></td>
<td>that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>Specifies the amount of time to wait before the keepalive operating status</td>
</tr>
<tr>
<td></td>
<td>is eligible to enter the alive state.</td>
</tr>
<tr>
<td>TX Hello Msgs</td>
<td>Specifies the number of SDP echo request messages transmitted since the</td>
</tr>
<tr>
<td></td>
<td>keepalive was administratively enabled or the counter was cleared.</td>
</tr>
<tr>
<td>Rx Hello Msgs</td>
<td>Specifies the number of SDP echo request messages received since the</td>
</tr>
<tr>
<td></td>
<td>keepalive was administratively enabled or the counter was cleared.</td>
</tr>
<tr>
<td>Associated LSP List</td>
<td>When the SDP type is MPLS, a list of LSPs used to reach the far-end router</td>
</tr>
<tr>
<td></td>
<td>displays. All the LSPs in the list must terminate at the IP address</td>
</tr>
<tr>
<td></td>
<td>specified in the far end field.</td>
</tr>
<tr>
<td></td>
<td>If the SDP type is GRE, then the following message displays:</td>
</tr>
<tr>
<td></td>
<td>SDP Delivery Mechanism is not MPLS.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service sdp
--
Services: Service Destination Points
--
SdpId Adm MTU Opr MTU IP address Adm Opr Deliver Signal
--
 10 4462 4462 10.20.1.3 Up Dn NotReady MPLS TLDP
 40 4462 1534 10.20.1.20 Up Up MPLS TLDP
 60 4462 1514 10.20.1.21 Up Up GRE TLDP
 100 4462 4462 180.0.0.2 Down Down GRE TLDP
 500 4462 4462 10.20.1.50 Up Dn NotReady GRE TLDP
--
Number of SDPs : 5
--
*A:ALA-12#

*A:ALA-12# show service sdp 2 detail
--
Service Destination Point (Sdp Id : 2) Details
--
Sdp Id 2 -(10.10.10.104)
--
Description : GRE-10.10.10.104
SDP Id : 2
Admin Path MTU : 0 Oper Path MTU : 0
Far End : 10.10.10.104 Delivery : GRE
Admin State : Up Oper State : Down
Flags : SignalingSessDown TransportTunnDown
Signaling : TLDP VLAN VC Etype : 0x8100
Last Status Change : 02/01/2007 09:11:39 Adv. MTU Over. : No
Last Mgmt Change : 02/01/2007 09:11:46
KeepAlive Information :
 Admin State : Disabled Oper State : Disabled
 Hello Time : 10 Hello Msg Len : 0
 Hello Timeout : 5 Unmatched Replies : 0
 Max Drop Count : 3 Hold Down Time : 10
 Tx Hello Mags : 0 Rx Hello Mmsgs : 0
Associated LSP LIST :
SDP Delivery Mechanism is not MPLS
--
*A:ALA-12#
*A:ALA-12# show service sdp 8
--
Service Destination Point (Sdp Id : 8)
--
SdpId Adm MTU Opr MTU IP address Adm Opr Deliver Signal
--
 8 4462 4462 10.10.10.104 Up Dn NotReady MPLS TLDP
--
*A:ALA-12#

*A:ALA-12# show service sdp 8 detail
--
Service Destination Point (Sdp Id : 8) Details
--
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Description</th>
<th>MPLS=10.10.10.104</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>8</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Far End</td>
<td>10.10.10.104</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Down</td>
</tr>
<tr>
<td>Flags</td>
<td>SignalingSessDown TransportTunnDown</td>
</tr>
<tr>
<td>Signaling</td>
<td>TLDP</td>
</tr>
<tr>
<td>VLAN VC Etype</td>
<td>0x8100</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>02/01/2007 09:11:39</td>
</tr>
<tr>
<td>Adv. MTU Over.</td>
<td>No</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>02/01/2007 09:11:46</td>
</tr>
</tbody>
</table>

KeepAlive Information:

<table>
<thead>
<tr>
<th>Admin State</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper State</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hello Time</td>
<td>10</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>0</td>
</tr>
<tr>
<td>Hello Timeout</td>
<td>5</td>
</tr>
<tr>
<td>Unmatched Replies</td>
<td>0</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>3</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>10</td>
</tr>
<tr>
<td>Tx Hello Msgs</td>
<td>0</td>
</tr>
<tr>
<td>Rx Hello Msgs</td>
<td>0</td>
</tr>
</tbody>
</table>

Associated LSP LIST:

<table>
<thead>
<tr>
<th>Lsp Name</th>
<th>to-104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Down</td>
</tr>
</tbody>
</table>

Time Since Last Tran*: 01d07h36m

* indicates that the corresponding row element may have been truncated.
*A:ALA-12#
sdp-using

Syntax
```
sdp-using [sdp-id[:vc-id] | far-end ip-address]
```

Context
```
show>service
```

Description
Display services using SDP or far-end address options.

Parameters
```
sdp-id — Displays only services bound to the specified SDP ID.

  Values  
  1 — 17407

vc-id — The virtual circuit identifier.

  Values  
  1 — 4294967295

far-end ip-address — Displays only services matching with the specified far-end IP address.

  Default  
  Services with any far-end IP address.
```

Output
```
Show Service SDP Using — The following table describes show service sdp-using output fields.
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sdp ID</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of SDP: spoke or mesh.</td>
</tr>
<tr>
<td>Far End</td>
<td>The far end address of the SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by this SDP.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALA-1# show service sdp-using 300

Service Destination Point (Sdp Id : 300)

<table>
<thead>
<tr>
<th>SvcId</th>
<th>SdpId</th>
<th>Type</th>
<th>Far End</th>
<th>Opr State</th>
<th>Ingress Label</th>
<th>Egress Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300:1</td>
<td>Mesh</td>
<td>10.0.0.13</td>
<td>Up</td>
<td>131071</td>
<td>131071</td>
</tr>
<tr>
<td>2</td>
<td>300:2</td>
<td>Spok</td>
<td>10.0.0.13</td>
<td>Up</td>
<td>131070</td>
<td>131070</td>
</tr>
<tr>
<td>100</td>
<td>300:100</td>
<td>Mesh</td>
<td>10.0.0.13</td>
<td>Up</td>
<td>131069</td>
<td>131069</td>
</tr>
<tr>
<td>101</td>
<td>300:101</td>
<td>Mesh</td>
<td>10.0.0.13</td>
<td>Up</td>
<td>131068</td>
<td>131068</td>
</tr>
<tr>
<td>102</td>
<td>300:102</td>
<td>Mesh</td>
<td>10.0.0.13</td>
<td>Up</td>
<td>131067</td>
<td>131067</td>
</tr>
</tbody>
</table>

Number of SDPs : 5
```
*A:ALA-1#
*A:ces-A# show service sdp-using

SDP Using

<table>
<thead>
<tr>
<th>SvcId</th>
<th>SdpId</th>
<th>Type</th>
<th>Far End</th>
<th>Opr</th>
<th>I.Label</th>
<th>E.Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12:1</td>
<td>Spok</td>
<td>2.2.2.2</td>
<td>Up</td>
<td>131063</td>
<td>131062</td>
</tr>
<tr>
<td>2</td>
<td>12:2</td>
<td>Spok</td>
<td>2.2.2.2</td>
<td>Up</td>
<td>131062</td>
<td>131069</td>
</tr>
<tr>
<td>3</td>
<td>122:3</td>
<td>Spok</td>
<td>2.2.2.2</td>
<td>Up</td>
<td>131069</td>
<td>131068</td>
</tr>
<tr>
<td>4</td>
<td>12:4</td>
<td>Spok</td>
<td>2.2.2.2</td>
<td>Up</td>
<td>131061</td>
<td>131061</td>
</tr>
</tbody>
</table>

Number of SDPs : 4

*A:ces-A#
service-using

Syntax

```
service-using [cpipe] [sdp sdp-id] [b-vpls] [i-vpls] [m-vpls] [sdp sdp-id] [customer customer-id]
```

Context

```
show>service
```

Description

This command displays the services matching certain usage properties. If no optional parameters are specified, all services defined on the system are displayed.

Parameters

- `[service]` — Displays information for the specified service type.
 - `b-vpls` — Specifies the B-component instance of the Provider Backbone Bridging (PBB/IEEE 802.1ah) feature. It represents the multi-point tunneling component that multiplexes multiple customer VPNs (ISIDs) together. It is similar to a regular VPLS instance that operates on the backbone MAC addresses.
 - `i-vpls` — Specifies the I-component instance of the Provider Backbone Bridging (PBB/IEEE 802.1ah) feature. It identifies the specific VPN entity associated to a customer multipoint (ELAN) service. It is similar to a regular VPLS instance that operates on the customer MAC addresses.
 - `m-vpls` — Specifies the M-component (managed VPLS) instance of the Provider Backbone Bridging (PBB/IEEE 802.1ah) feature.
 - `sdp sdp-id` — Displays only services bound to the specified SDP ID.
 - **Default** Services bound to any SDP ID.
 - **Values** 1 — 17407
 - `customer customer-id` — Displays services only associated with the specified customer ID.
 - **Default** Services associated with any customer.
 - **Values** 1 — 2147483647

Output

Show service-using output — The following table describes the command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the service type configured for the service ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>CustomerID</td>
<td>The ID of the customer who owns this service.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this service.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service service-using customer 10
*-----------------------------------
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
<tr>
<td>300</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching Services : 2

*A:ALA-12#

*A:ALA-12# show service service-using
*-----------------------------------
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>2</td>
<td>Epipe</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>10</td>
<td>mVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>11</td>
<td>mVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>100</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>101</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>102</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>999</td>
<td>uVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 16:14:33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching Services : 8

*A:ALA-12#

*A:ces-A# show service service-using cpipe
*-----------------------------------
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cpipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>05/20/2010 00:12:16</td>
</tr>
<tr>
<td>2</td>
<td>Cpipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>05/20/2010 00:12:17</td>
</tr>
<tr>
<td>3</td>
<td>Cpipe</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>05/20/2010 00:12:17</td>
</tr>
<tr>
<td>4</td>
<td>Cpipe</td>
<td>Up</td>
<td>Down</td>
<td>1</td>
<td>05/20/2010 00:12:17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matching Services : 4
id

Syntax

id service-id {all | arp | base | endpoint | fdb | interface | label | labels | sap | split-horizon-group | stp | interface | mstp-configuration}

Context

show>service

Description

This command displays information for a particular service-id.

Parameters

service-id — The service identification number that identifies the service in the domain.

Values

service-id: 1 — 214748364
svc-name: A string up to 64 characters in length.

Values

all — Display detailed information about the service.

arp — Display ARP entries for the service.

base — Display basic service information.

endpoint — Display service endpoint information.

fdb — Display FDB information.

interface — Display service interfaces.

labels — Display labels being used by this service.

mstp-configuration — Display MSTP information.

sap — Display SAPs associated to the service.

sdp — Display SDPs associated with the service.

split-horizon-group — Display split horizon group information.

stp — Display STP information.

Sample Output

*A:ces-A# show service id 1 sap
==
SAP(Summary), Service 1
==
Port Id SvcId Ing. Ing. Egr. Adm Opr
QoS Fltr Fltr

1/2/1.1 1 1 none none Up Up

Number of SAPs : 1

*A:ces-A# show service id 1 base
===
Service Basic Information
===
Service Id : 1 Vpn Id : 0
Service Type : Cpipe VLL Type : SAToPT1
Description : (Not Specified) Customer Id : 1
Show, Clear, Debug Commands

Last Status Change: 07/06/2010 19:21:14
Last Mgmt Change: 07/06/2010 19:21:14
Admin State: Up
Oper State: Up
MTU: 1514
Vc Switching: False
SAP Count: 1
SDP Bind Count: 1

Service Access & Destination Points

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/2/1.1</td>
<td>cem</td>
<td>1514</td>
<td>1514</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:12:1 S(2.2.2.2)</td>
<td>n/a</td>
<td>0</td>
<td>9190</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

*A:Dut-A>show# service id 104 base

Service Basic Information

Service Id: 104
Vpn Id: 0
Service Type: Cpipe
VLL Type: CESoPSN
Description: (Not Specified)
Customer Id: 1
Last Status Change: 12/15/2010 07:39:05
Last Mgmt Change: 12/15/2010 07:25:37
Admin State: Up
Oper State: Up
MTU: 1514
Vc Switching: False
SAP Count: 1
SDP Bind Count: 1

Service Access & Destination Points

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/2/1.2</td>
<td>cem</td>
<td>1514</td>
<td>1514</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:123:104 S(102.102.102.102)</td>
<td>n/a</td>
<td>0</td>
<td>9190</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

*A:Dut-A>show# service id 104 base

Service Basic Information

Service Id: 104
Vpn Id: 0
Service Type: Cpipe
VLL Type: CESoPSN
Description: (Not Specified)
Customer Id: 1
Last Status Change: 12/15/2010 07:39:05
Last Mgmt Change: 12/15/2010 07:25:37
Admin State: Up
Oper State: Up
MTU: 1514
Vc Switching: False
SAP Count: 1
SDP Bind Count: 1

Service Access & Destination Points

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/2/1.2</td>
<td>cem</td>
<td>1514</td>
<td>1514</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:123:104 S(102.102.102.102)</td>
<td>n/a</td>
<td>0</td>
<td>9190</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>
all

Syntax all

Context show>service>id

Description This command displays detailed information for all aspects of the service.

Output Show service ID Output — The following table describes the output fields when the all option is specified:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>VPN Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Specifies the type of service.</td>
</tr>
<tr>
<td>VLL Type</td>
<td>Specifies the VLL type.</td>
</tr>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change.</td>
</tr>
<tr>
<td>Endpoint</td>
<td>Specifies the name of the service endpoint.</td>
</tr>
<tr>
<td>Flags</td>
<td>Specifies the conditions that affect the operating status of this SAP. Display output includes: ServiceAdminDown, SapAdminDown, InterfaceAdminDown, PortOperDown, L2OperDown, RelearnLimitExceeded, RxProtSrcMac, ParentIfAdminDown, NoSapPipeCeIpAddr, TodResourceUnavail, TodMssResourceUnavail, SapParamMismatch, CemSapNoEcidOrMacAddr, StandByForMcRing, SapIngressNamedPoolMismatch, SapEgressNamedPoolMismatch, NoSapEpipeRingNode.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs specified for this service.</td>
</tr>
<tr>
<td>SDP Bind Count</td>
<td>The number of SDPs bound to this service.</td>
</tr>
</tbody>
</table>

Service Destination Points (SDPs)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether this Service SDP binding is a spoke or a mesh.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Sample Output

A: Dut-A > show > service > id# all

```
===============================================================================
Service Detailed Information
===============================================================================
Service Id        : 1501                Vpn Id            : 1501
Service Type      : Epipe
Description       : Default epipe description for service id 1501
Oper Path MTU     : The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.
Delivery          : Specifies the type of delivery used by the SDP: GRE or MPLS.
Admin State       : The administrative state of this SDP.
Oper State        : The operational state of this SDP.
Jitter Buffer     : Indicates the jitter buffer length in number of packet buffers.
(packets)         :
Playout Threshold : Indicates the playout buffer packets threshold in number of packet buffers.
(packets)         :
Peer Pw Bits      : Indicates the bits set by the LDP peer when there is a fault on its side of the pseudowire. LAC failures occur on the SAP that has been configured on the pipe service, PSN bits are set by SDP-binding failures on the pipe service. The pwNotForwarding bit is set when none of the above failures apply, such as an MTU mismatch failure. This value is only applicable if the peer is using the pseudowire status signalling method to indicate faults.
(packets)         :
Signaling Over-   : Indicates the overriding signaled pseudowire type, as configured under the signaled-vc-type-override option for Apipes. This field is only displayed if signaled-vc-type-override is configured.
ride             :
LLF Admin State   : Displays the Link Loss Forwarding administrative state.
LLF Oper State    : Displays the Link Loss Forwarding operational state.
Standby Signaling : Indicates if the parameter standby signalling master is enabled.
Master           :
```
VLL Show Commands

Customer Id : 1
Last Status Change: 02/21/2011 13:07:03
Last Mgmt Change : 02/21/2011 13:03:58
Admin State : Up Oper State : Up
MTU : 1514
MTU Check : Enabled
Vc Switching : False
SAP Count : 1 SDP Bind Count : 2

Service Destination Points(SDPs)

Sdp Id 1413:1501 -(10.20.1.4)

Description : Default sdp description
SDP Id : 1413:1501 Type : Spoke
VC Type : Ether VC Tag : n/a
Admin Path MTU : 0 Oper Path MTU : 9182
Far End : 10.20.1.4 Delivery : MPLS
Admin State : Up Oper State : Up
Acct. Pol : 14 Collect Stats : Enabled
Ingress Label : 130948 Egress Label : 130483
Ing ip Fltr : n/a Egr ip Fltr : n/a
Admin ControlWord : Preferred Oper ControlWord : True
Admin BW(Kbps) : 0 Oper BW(Kbps) : 0
Last Status Change : 02/21/2011 13:07:12 Signaling : TLDP
Last Mgmt Change : 02/21/2011 13:03:58 Force Vlan-Vc : Disabled
Endpoint : coreSide Precedence : 1
Class Fwding State : Down Flags : None
Peer Pw Bits : None Peer Fault Ip : None
Peer Vccv CV Bits : lspPing Peer Vccv CC Bits : pwe3ControlWord mplsRouterAlertLabel
KeepAlive Information :
Admin State : Enabled Oper State : Alive
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10
Statistics :
 E. Fwd. Pkts. : 34747 E. Fwd. Octets : 4013709
Eth-Cfm Configuration Information

Md-index : 1000 Direction : Down
Ma-index : 1150114 Admin : Enabled
MepId : 1 CCM-Enable : Enabled
LowestDefectPri : macRemErrXcon HighestDefect : none
Defect Flags : None ControlMep : False
Mac Address : 7c:20:64:ad:04:07 ComLtmPriority : 7
ComTx : 11385 CcmSequenceErr : 0
Eth-1Dm Threshold : 3(sec) Eth-RxReply : 0
Eth-Ais: : Disabled Eth-RxBadOrder : 0
Eth-Tst: : Disabled Eth-RxBadMsdu : 0
LbRlRxReply : 0 LbRlRxBadOrder : 0
LbRlRxBadMsdu : 0 LbTxReply : 0
Show, Clear, Debug Commands

- **LbNextSequence**: 1
- **LtNextSequence**: 1
- **LtRxUnexplained**: 0

Associated LSP LIST:
- **Lsp Name**: A_D_21
- **Admin State**: Up
- **Oper State**: Up
- **Time Since Last Tr**: 03h49m30s

```
Sdp Id 1613:1501 -(10.20.1.6)
```

Description: Default sdp description
- **SDP Id**: 1613:1501
- **Type**: Spoke
- **VC Type**: Ether
- **VC Tag**: n/a
- **Admin Path MTU**: 0
- **Oper Path MTU**: 9182
- **Far End**: 10.20.1.6
- **Delivery**: MPLS

Admin State: Up
- **Oper State**: Up
- **Acct. Pol**: 14
- **Collect Stats**: Enabled
- **Ingress Label**: 130526
- **Egress Label**: 130424
- **Ing mac Fltr**: n/a
- **Egr mac Fltr**: n/a
- **Admin ControlWord**: Not Preferred
- **Oper ControlWord**: False
- **Admin BW(Kbps)**: 0
- **Oper BW(Kbps)**: 0
- **Last Status Change**: 02/21/2011 13:07:03
- **Signaling**: TLDP
- **Last Mgmt Change**: 02/21/2011 13:03:58
- **Force Vlan-Vc**: Disabled
- **Endpoint**: coreSide
- **Precedence**: 2

Class Fwding State: Down
- **Flags**: None
- **Peer Pw Bits**: pwFwdingStandby
- **Peer Fault Ip**: None
- **Peer Vccv CV Bits**: lspPing
- **Peer Vccv CC Bits**: mplsRouterAlertLabel

KeepAlive Information
- **Admin State**: Enabled
- **Oper State**: Alive
- **Hello Time**: 10
- **Hello Msg Len**: 0
- **Max Drop Count**: 3
- **Hold Down Time**: 10

Statistics
- **I. Fwd. Pkts.**: 25
- **I. Fwd. Octs.**: 2776
- **E. Fwd. Pkts.**: 23
- **E. Fwd. Octets**: 2557

Eth-Cfm Configuration Information
- **Md-index**: 1000
- **Ma-index**: 1150116
- **MepId**: 1
- **LowestDefectPri**: macRemErrXcon
- **Defect Flags**: None
- **Mac Address**: 7c:20:64:ad:04:07
- **ComLtmPriority**: 7
- **ComTx**: 11414
- **Eth-1Dm Threshold**: 3(sec)
- **Eth-Ais**: Disabled
- **Eth-Tst**: Disabled
- **LbRxReply**: 0
- **LbRxBadMsdu**: 0
- **LbNextSequence**: 1
- **LtRxUnexplained**: 0
Associated LSP LIST:

Lsp Name : A_F_21
Admin State : Up
Oper State : Up
Time Since Last Tr*: 03h48m45s

Number of SDPs : 2

Service Access Points

SAP lag-3:1501.1501

QoS

Ingress qos-policy : 1500
Egress qos-policy : 1500

Sap Egress Policy (1500)

Scope : Template
Remark : False
Accounting : frame-based
Description : Sap Egress Policy for svcList 1500

Queue Rates and Rules

<table>
<thead>
<tr>
<th>QueueId</th>
<th>CIR</th>
<th>CIR Adpt Rule</th>
<th>PIR</th>
<th>PIR Adpt Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue2</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue3</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue4</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue5</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue6</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue7</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
<tr>
<td>Queue8</td>
<td>10000</td>
<td>max</td>
<td>10000</td>
<td>max</td>
</tr>
</tbody>
</table>

Parent Details
QueueId Port CIR Level PIR Weight

Queue1 True 1 1
Queue2 True 2 2
Queue3 True 3 3
Queue4 True 4 4
Queue5 True 5 5
Queue6 True 6 6
Queue7 True 7 7
Queue8 True 8 8

High Slope

QueueId State Start-Avg(%) Max-Avg(%) Max-Prob(%)

Queue1 Up 50 100 50
Queue2 Up 50 100 50
Queue3 Up 50 100 50
Queue4 Up 50 100 50
Queue5 Up 50 100 50
Queue6 Up 50 100 50
Queue7 Up 50 100 50
Queue8 Up 50 100 50

Low Slope

QueueId State Start-Avg(%) Max-Avg(%) Max-Prob(%)

Queue1 Up 10 50 50
Queue2 Up 10 50 50
Queue3 Up 10 50 50
Queue4 Up 10 50 50
Queue5 Up 10 50 50
Queue6 Up 10 50 50
Queue7 Up 10 50 50
Queue8 Up 10 50 50

Burst Sizes and Time Average Factor

QueueId CBS MBS Time Average Factor Queue-Mgmt

Queue1 200 400 10 qM_1500
Queue2 200 400 10 qM_1500
Queue3 200 400 10 qM_1500
Queue4 200 400 10 qM_1500
Queue5 200 400 10 qM_1500
Queue6 200 400 10 qM_1500
Queue7 200 400 10 qM_1500
Queue8 200 400 10 qM_1500

Aggregate Policer (Available)

rate : n/a burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 32 Meters Allocated : 16
Classifiers Used : 8 Meters Used : 5

Sap Statistics

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats:</td>
<td>34659</td>
<td>3241035</td>
</tr>
<tr>
<td>Egress Stats:</td>
<td>48099</td>
<td>5291928</td>
</tr>
<tr>
<td>Extra-Tag Drop Stats:</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Sap per Meter stats

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Meter 1 (Unicast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>7209</td>
<td>468585</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Meter 2 (Unicast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Meter 3 (Unicast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Meter 4 (Unicast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ingress Meter 5 (Unicast)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>27454</td>
<td>2772854</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sap per Queue stats

<table>
<thead>
<tr>
<th></th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Queue 1 (be)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd Stats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 2 (l2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd Stats</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>Drop InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 3 (af)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd Stats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 4 (l1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd Stats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop OutProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 5 (h2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fwd Stats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drop InProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Drop OutProf : 0 0
Egress Queue 6 {ef}
Fwd Stats : 0 0
Drop InProf : 0 0
Drop OutProf : 0 0
Egress Queue 7 {h1}
Fwd Stats : 0 0
Drop InProf : 0 0
Drop OutProf : 0 0
Egress Queue 8 {nc}
Fwd Stats : 20842 1938306
Drop InProf : 0 0
Drop OutProf : 0 0

Service Endpoints

Endpoint name : coreSide
Description : (Not Specified)
Revert time : 0
Act Hold Delay : 0
Standby Signaling Master : true
Tx Active : 1413:1501
Tx Active Up Time : 0d 03:48:41
Revert Time Count Down : N/A
Tx Active Change Count : 2
Last Tx Active Change : 02/21/2011 13:07:12

Members

Spoke-sdp: 1413:1501 Prec:1 Oper Status: Up
Spoke-sdp: 1613:1501 Prec:2 Oper Status: Up

Endpoint name : accessSide
Description : (Not Specified)
Revert time : 0
Act Hold Delay : 0
Standby Signaling Master : false
Tx Active : lag-3:1501.1501
Tx Active Up Time : 0d 03:49:08
Revert Time Count Down : N/A
Tx Active Change Count : 1
Last Tx Active Change : 02/21/2011 13:06:45

Members

SAP : lag-3:1501.1501 Oper Status: Up

*A:ces-A# show service id 1 all

Service Detailed Information

Service Id : 1 Vpn Id : 0
Service Type : Cpipe VLL Type : SAToPT1
Description : (Not Specified)
Customer Id : 1
Last Status Change: 07/06/2010 19:21:14
Last Mgmt Change : 07/06/2010 19:21:14
Admin State : Up Oper State : Up
MTU : 1514
Vc Switching : False
SAP Count : 1 SDP Bind Count : 1

<table>
<thead>
<tr>
<th>Description</th>
<th>(Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>12:1</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>VC Type</td>
<td>SAToPT1</td>
</tr>
<tr>
<td>VC Tag</td>
<td>0</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9190</td>
</tr>
<tr>
<td>Far End</td>
<td>2.2.2.2</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
</tbody>
</table>

Admin State : Up Oper State : Up
Acct. Pol : None Collect Stats : Disabled
Ingress Label : 131064 Egress Label : 131064
Admin ControlWord : Preferred Oper ControlWord : True
Admin BW(Kbps) : 0 Oper BW(Kbps) : 0
Last Mgmt Change : 07/06/2010 19:21:14
Endpoint : N/A Precedence : 4
Flags : None
Peer Fw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : lspPing
Peer Vccv CC Bits : pwe3ControlWord mplsRouterAlertLabel

KeepAlive Information:
Admin State : Enabled Oper State : Alive
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10

Statistics:
E. Fwd. Pkts. : 141583 E. Fwd. Octets : 31431426

Associated LSP LIST:
Lsp Name : to_b_1_2
Admin State : Up Oper State : Up
Time Since Last Tr* : 04h08m22s

CPIPE Service Destination Point specifics
Local Bit-rate : 24 Peer Bit-rate : 24
Local Payload Size : 192 Peer Payload Size : 192
Local Sig Pkts : No Sig. Peer Sig Pkts : No Sig.
Local CAS Framing : No CAS Peer CAS Framing : No CAS
Local RTP Header : No Peer RTP Header : No
Local Differential : No Peer Differential : No
Local Timestamp : 0 Peer Timestamp : 0

Number of SDPs : 1

<table>
<thead>
<tr>
<th>Description</th>
<th>(Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>12:1</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>VC Type</td>
<td>SAToPT1</td>
</tr>
<tr>
<td>VC Tag</td>
<td>0</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9190</td>
</tr>
<tr>
<td>Far End</td>
<td>2.2.2.2</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
</tbody>
</table>

Admin State : Up Oper State : Up
Acct. Pol : None Collect Stats : Disabled
Ingress Label : 131064 Egress Label : 131064
Admin ControlWord : Preferred Oper ControlWord : True
Admin BW(Kbps) : 0 Oper BW(Kbps) : 0
Last Mgmt Change : 07/06/2010 19:21:14
Endpoint : N/A Precedence : 4
Flags : None
Peer Fw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : lspPing
Peer Vccv CC Bits : pwe3ControlWord mplsRouterAlertLabel

KeepAlive Information:
Admin State : Enabled Oper State : Alive
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10

Statistics:
E. Fwd. Pkts. : 141583 E. Fwd. Octets : 31431426

Associated LSP LIST:
Lsp Name : to_b_1_2
Admin State : Up Oper State : Up
Time Since Last Tr* : 04h08m22s

CPIPE Service Destination Point specifics
Local Bit-rate : 24 Peer Bit-rate : 24
Local Payload Size : 192 Peer Payload Size : 192
Local Sig Pkts : No Sig. Peer Sig Pkts : No Sig.
Local CAS Framing : No CAS Peer CAS Framing : No CAS
Local RTP Header : No Peer RTP Header : No
Local Differential : No Peer Differential : No
Local Timestamp : 0 Peer Timestamp : 0

Number of SDPs : 1

<table>
<thead>
<tr>
<th>Description</th>
<th>(Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>12:1</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>VC Type</td>
<td>SAToPT1</td>
</tr>
<tr>
<td>VC Tag</td>
<td>0</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9190</td>
</tr>
<tr>
<td>Far End</td>
<td>2.2.2.2</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
</tbody>
</table>

Admin State : Up Oper State : Up
Acct. Pol : None Collect Stats : Disabled
Ingress Label : 131064 Egress Label : 131064
Admin ControlWord : Preferred Oper ControlWord : True
Admin BW(Kbps) : 0 Oper BW(Kbps) : 0
Last Mgmt Change : 07/06/2010 19:21:14
Endpoint : N/A Precedence : 4
Flags : None
Peer Fw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : lspPing
Peer Vccv CC Bits : pwe3ControlWord mplsRouterAlertLabel

KeepAlive Information:
Admin State : Enabled Oper State : Alive
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10

Statistics:
E. Fwd. Pkts. : 141583 E. Fwd. Octets : 31431426

Associated LSP LIST:
Lsp Name : to_b_1_2
Admin State : Up Oper State : Up
Time Since Last Tr* : 04h08m22s

CPIPE Service Destination Point specifics
Local Bit-rate : 24 Peer Bit-rate : 24
Local Payload Size : 192 Peer Payload Size : 192
Local Sig Pkts : No Sig. Peer Sig Pkts : No Sig.
Local CAS Framing : No CAS Peer CAS Framing : No CAS
Local RTP Header : No Peer RTP Header : No
Local Differential : No Peer Differential : No
Local Timestamp : 0 Peer Timestamp : 0

Number of SDPs : 1

<table>
<thead>
<tr>
<th>Description</th>
<th>(Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>12:1</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>VC Type</td>
<td>SAToPT1</td>
</tr>
<tr>
<td>VC Tag</td>
<td>0</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9190</td>
</tr>
<tr>
<td>Far End</td>
<td>2.2.2.2</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
</tbody>
</table>

Admin State : Up Oper State : Up
Acct. Pol : None Collect Stats : Disabled
Ingress Label : 131064 Egress Label : 131064
Admin ControlWord : Preferred Oper ControlWord : True
Admin BW(Kbps) : 0 Oper BW(Kbps) : 0
Last Mgmt Change : 07/06/2010 19:21:14
Endpoint : N/A Precedence : 4
Flags : None
Peer Fw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : lspPing
Peer Vccv CC Bits : pwe3ControlWord mplsRouterAlertLabel

KeepAlive Information:
Admin State : Enabled Oper State : Alive
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10

Statistics:
E. Fwd. Pkts. : 141583 E. Fwd. Octets : 31431426

Associated LSP LIST:
Lsp Name : to_b_1_2
Admin State : Up Oper State : Up
Time Since Last Tr* : 04h08m22s

CPIPE Service Destination Point specifics
Local Bit-rate : 24 Peer Bit-rate : 24
Local Payload Size : 192 Peer Payload Size : 192
Local Sig Pkts : No Sig. Peer Sig Pkts : No Sig.
Show, Clear, Debug Commands

Service Access Points

SAP 1/2/1.1

Service Id : 1
SAP : 1/2/1.1 Encap : cem
Description : (Not Specified)
Admin State : Up Oper State : Up
Flags : None
Last Status Change : 07/06/2010 14:16:41
Last Mgmt Change : 07/06/2010 11:31:34
Admin MTU : 1514 Oper MTU : 1514
Endpoint : N/A
Acct. Pol : None Collect Stats : Disabled

QOS

Ingress qos-policy : 1

Sap Statistics

Packets Octets
Ingress Stats: 705193 153732074
Egress Stats: 705179 153729022

CEM SAP Configuration Information

Endpoint Type : Unstruct. T1 Bit-rate : 24
Payload Size : 192 Jitter Buffer (ms) : 5
Jitter Buffer (packets): 6 Playout Threshold (packets): 4
Use RTP Header : No Differential : No
Timestamp Freq : 0 CAS Framing : No CAS
Effective PDVT : +/-2.984 ms

Cfg Alarm : stray malformed pktloss overrun underrun
Alarm Status :

CEM SAP Statistics

Packets Seconds Events
Egress Stats
Forwarded : 705523
Dropped : 0
Missing : 0
Reordered Forwarded : 0
Underrun : 11119
Overrun : 0
Misordered Dropped : 0
Malformed Dropped : 0
LBit Dropped : 0
Multiple Dropped : 0
Error : 17
Severely Error : 15
Unavailable : 0
Failure Count : 1
Jitter Buffer Depth : 3

Ingress Stats
Forwarded: 705574
Dropped: 0

Service Endpoints

No Endpoints found.

A:Dut-A>show# service id 104 all

Service Detailed Information

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Vpn Id</th>
<th>Service Type</th>
<th>VLL Type</th>
<th>Description</th>
<th>Customer Id</th>
<th>Last Status Change: 12/15/2010 07:39:05</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>0</td>
<td>Cpipe</td>
<td>CESoPSN</td>
<td>(Not Specified)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin State</th>
<th>Oper State</th>
<th>MTU</th>
<th>Vc Switching</th>
<th>SAP Count</th>
<th>SDP Bind Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Up</td>
<td>1514</td>
<td>False</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Service Destination Points (SDPs)

<table>
<thead>
<tr>
<th>Sdp Id 123:104</th>
<th>Description</th>
<th>Type</th>
<th>VC Type</th>
<th>VC Tag</th>
<th>Admin Path MTU</th>
<th>Oper Path MTU</th>
<th>Far End</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>123:104</td>
<td>Default sdp description</td>
<td>Spoke</td>
<td>CESoPSN</td>
<td>0</td>
<td>0</td>
<td>9190</td>
<td>102.102.102.102</td>
<td>MPLS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>None</td>
<td>131069</td>
<td>131068</td>
<td>Preferred</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin ControlWord</th>
<th>Admin BW(Kbps)</th>
<th>Last Status Change: 12/15/2010 07:25:37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hello Time</th>
<th>Hello Msg Len</th>
<th>Max Drop Count</th>
<th>Hold Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Statistics:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>770680</td>
<td>72443920</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Fwd. Pkts.</th>
<th>E. Fwd. Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>772901</td>
<td>72652694</td>
</tr>
</tbody>
</table>

Associated LSP LIST:

<table>
<thead>
<tr>
<th>Lsp Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>static-32</td>
</tr>
</tbody>
</table>
Admin State : Up Oper State : Up
Time Since Last Tr*: 01h55m01s

CPIPE Service Destination Point specifics

Local Bit-rate : 1 Peer Bit-rate : 1
Local Payload Size : 64 Peer Payload Size : 64
Local Sig Pkts : No Sig. Peer Sig Pkts : No Sig.
Local CAS Framing : No CAS Peer CAS Framing : No CAS
Local RTP Header : No Peer RTP Header : No
Local Differential : No Peer Differential : No
Local Timestamp : 0 Peer Timestamp : 0

Number of SDPs : 1

Service Access Points

SAP 1/2/1.2

Service Id : 104
SAP : 1/2/1.2 Encap : cem
Description : (Not Specified)
Admin State : Up Oper State : Up
Flags : None
Last Status Change : 12/15/2010 07:39:05
Last Mgmt Change : 12/15/2010 07:25:37
Admin MTU : 1514 Oper MTU : 1514
Endpoint : N/A
Acct. Pol : None Collect Stats : Disabled

QOS

Ingress qos-policy : 1 Egress qos-policy : 1

Aggregate Policer

rate : n/a burst : n/a

Sap Statistics

Packets Octets
Ingress Stats: 773839 69645510
Egress Stats: 771668 69450120
Extra-Tag Drop Stats: n/a n/a

CEM SAP Configuration Information

Endpoint Type : NxDS0 Bit-rate : 1
Payload Size : 64 Jitter Buffer (ms) : 32
Jitter Buffer (packets): 4 Playout Threshold (packets): 3
Use RTP Header : No Differential : No
Timestamp Freq : 0 CAS Framing : No CAS
Effective PDVT : +/-16.0 ms

Cfg Alarm : stray malformed pktloss overrun underrun

Alarm Status :

CEM SAP Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Seconds</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forwarded</td>
<td>771800</td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reordered Forwarded</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Underrun</td>
<td>2355</td>
<td>1</td>
</tr>
<tr>
<td>Overrun</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Misordered Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Malformed Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LBit Dropped</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Multiple Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Severely Error</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unavailable</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Failure Count</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Jitter Buffer Depth</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Ingress Stats

Packets	
Forwarded	774156
Dropped	0

Service Endpoints

<table>
<thead>
<tr>
<th>Endpoint name</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>(Not Specified)</td>
</tr>
<tr>
<td>Revert time</td>
<td>0</td>
</tr>
<tr>
<td>Act Hold Delay</td>
<td>0</td>
</tr>
<tr>
<td>Tx Active</td>
<td>123:104</td>
</tr>
<tr>
<td>Tx Active Up Time</td>
<td>0d 01:55:06</td>
</tr>
<tr>
<td>Revert Time Count Down</td>
<td>N/A</td>
</tr>
<tr>
<td>Tx Active Change Count</td>
<td>1</td>
</tr>
<tr>
<td>Last Tx Active Change</td>
<td>12/15/2010 07:27:17</td>
</tr>
</tbody>
</table>

Members

<table>
<thead>
<tr>
<th>Spoke-sdp</th>
<th>123:104 Prec:4</th>
</tr>
</thead>
</table>

Oper Status: Up
Show, Clear, Debug Commands

base

Syntax base

Context show>service>id

Description Displays basic information about the service ID including service type, description, SAPs.

Output Show Service-ID Base — The following table describes show service-id base output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Vpn Id</td>
<td>Specifies the VPN ID assigned to the service.</td>
</tr>
<tr>
<td>Service Type</td>
<td>The type of service: Epipe, VPLS</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Adm</td>
<td>The desired state of the service.</td>
</tr>
<tr>
<td>Oper</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>Mtu</td>
<td>The largest frame size (in octets) that the service can handle.</td>
</tr>
<tr>
<td>Def. Mesh VC Id</td>
<td>This object is only valid in services that accept mesh SDP bindings. It is used to validate the VC ID portion of each mesh SDP binding defined in the service.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs defined on the service.</td>
</tr>
<tr>
<td>SDP Bind Count</td>
<td>The number of SDPs bound to the service.</td>
</tr>
<tr>
<td>Identifier</td>
<td>Specifies the service access (SAP) points.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received.</td>
</tr>
<tr>
<td>AdmMTU</td>
<td>Specifies the desired largest service frame size (in octets) that can be transmitted through this SAP, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>PBB Tunnel Point</td>
<td>Specifies the endpoint in the B-VPLS environment where the Epipe terminates.</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>Specifies the B-VPLS admin MTU.</td>
</tr>
<tr>
<td>Backbone-Flooding</td>
<td>Specifies whether or not the traffic is flooded in the B-VPLS for the destination instead of unicast. If the backbone destination MAC is in the B-VPLS FDB, then it will be unicast.</td>
</tr>
</tbody>
</table>
Sample Output

A:Dut-A# show service id 1101 base

Service Basic Information

Service Id : 1101 Vpn Id : 1101
Service Type : Epipe
Description : Default epipe description for service id 1101
Customer Id : 1
Last Status Change: 07/07/2009 18:13:43
Last Mgmt Change : 07/07/2009 14:39:14
Admin State : Up Oper State : Up
MTU : 1514
Vc Switching : False
SAP Count : 1 SDP Bind Count : 1

Service Access & Destination Points

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:lag-4:1101</td>
<td>q-tag</td>
<td>9212</td>
<td>9212</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:1409:1101 S(10.20.1.4)</td>
<td>n/a</td>
<td>0</td>
<td>9186</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

A:Dut-A#
*A:ces-A# show service id 1 base

Service Basic Information

Service Id : 1 Vpn Id : 0
Service Type : Cpipe VLL Type : SAToPT1
Description : (Not Specified)
Customer Id : 1
Last Status Change: 07/06/2010 19:21:14
Last Mgmt Change : 07/06/2010 19:21:14
Admin State : Up Oper State : Up
MTU : 1514
Vc Switching : False
SAP Count : 1 SDP Bind Count : 1

Service Access & Destination Points

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>AdmMTU</th>
<th>OprMTU</th>
<th>Adm</th>
<th>Opr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/2/1.1</td>
<td>cem</td>
<td>1514</td>
<td>1514</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>sdp:12:1 S(2.2.2.2)</td>
<td>n/a</td>
<td>0</td>
<td>9190</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

*A:Dut-A>show# service id 104 base

Service Basic Information

Service Id : 104 Vpn Id : 0
Service Type : Cpipe VLL Type : CESoPSN
Description : (Not Specified)
Customer Id : 1
Last Status Change: 12/15/2010 07:39:05
Last Mgmt Change : 12/15/2010 07:25:37
Admin State : Up Oper State : Up
MTU : 1514
Vc Switching : False
SAP Count : 1 SDP Bind Count : 1

Service Access & Destination Points

Identifier	Type	AdmMTU	OprMTU	Adm	Opr
sap:1/2/1.2 | cem | 1514 | 1514 | Up | Up
sdp:123:104 S(102.102.102.102) | n/a | 0 | 9190 | Up | Up

*A:Dut-A>show# service id 104 base

Service Basic Information

Service Id : 104 Vpn Id : 0
Service Type : Cpipe VLL Type : CESoPSN
Description : (Not Specified)
Customer Id : 1
Last Status Change: 12/15/2010 07:39:05
Last Mgmt Change : 12/15/2010 07:25:37
Admin State : Up Oper State : Up
MTU : 1514
Vc Switching : False
SAP Count : 1 SDP Bind Count : 1

Service Access & Destination Points

Identifier	Type	AdmMTU	OprMTU	Adm	Opr
sap:1/2/1.2 | cem | 1514 | 1514 | Up | Up
sdp:123:104 S(102.102.102.102) | n/a | 0 | 9190 | Up | Up

*A:Dut-A>show#

endpoint

Syntax

`endpoint [endpoint-name]`

Context

`show>service>id`

Description

This command displays service endpoint information.

Parameters

`endpoint-name` — Specifies the name of an existing endpoint for the service.

Sample Output
labels

Syntax labels
Context show>service>id
Description Displays the labels being used by the service.
Output Show Service-ID Labels — The following table describes show service-id labels output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sdp Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the SDP is a spoke or a mesh.</td>
</tr>
</tbody>
</table>
Sample Output

*A:ALA-12# show service id 1 labels

==
<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sdp Id</th>
<th>Type</th>
<th>ILbl</th>
<th>ELbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>20:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>30:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>40:1</td>
<td>Mesh</td>
<td>130081</td>
<td>131061</td>
</tr>
<tr>
<td>1</td>
<td>60:1</td>
<td>Mesh</td>
<td>131019</td>
<td>131016</td>
</tr>
<tr>
<td>1</td>
<td>100:1</td>
<td>Mesh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Bound SDPs : 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A:ALA-12#

sap

Syntax
sap sap-id [detail]

Context
show>service>id

Description
This command displays information for the SAPs associated with the service. If no optional parameters are specified, a summary of all associated SAPs is displayed.

Parameters
sap-id — The ID that displays SAPs for the service in the form slot/mda/port[.channel]. See Common CLI Command Descriptions on page 939 for command syntax.

interface interface-name — Displays information for the specified IP interface.

ip-address ip-address — Displays information associated with the specified IP address.

detail — Displays detailed information.

detail — Displays detailed information for the SAP.

Output
Show Service-ID SAP — The following table describes show service SAP fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>SAP</td>
<td>The SAP and qtag.</td>
</tr>
<tr>
<td>Label</td>
<td>Description (Continued)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Encap</td>
<td>The encapsulation type of the SAP.</td>
</tr>
<tr>
<td>Ethertype</td>
<td>Specifies an Ethernet type II Ethertype value.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the SAP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operating state of the SAP.</td>
</tr>
<tr>
<td>Flags</td>
<td>Specifies the conditions that affect the operating status of this SAP. Display output</td>
</tr>
<tr>
<td></td>
<td>includes: ServiceAdminDown, SapAdminDown, InterfaceAdminDown, PortOperDown, PortMTU</td>
</tr>
<tr>
<td></td>
<td>TooSmall, L2OperDown, SapEgressQoSMismatch, RelearnLimitExceeded, RxProtSrcMac,</td>
</tr>
<tr>
<td></td>
<td>ParentIfAdminDown, NoSapPipeCelpAddr, TodResourceUnavail, TodMssResourceUnavail,</td>
</tr>
<tr>
<td></td>
<td>SapParamMismatch, ServiceMTUTooSmall, SapIngressNamedPoolMismatch,</td>
</tr>
<tr>
<td></td>
<td>SapEgressNamedPoolMismatch, NoSapEpipeRingNode.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>The time of the most recent operating status change to this SAP.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The time of the most recent management-initiated change to this SAP.</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through the</td>
</tr>
<tr>
<td></td>
<td>port to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through the</td>
</tr>
<tr>
<td></td>
<td>port to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Ingress qos-policy</td>
<td>The ingress QoS policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Egress qos-policy</td>
<td>The egress QoS policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Ingress Filter-Id</td>
<td>The ingress filter policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Egress Filter-Id</td>
<td>The egress filter policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>The accounting policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether collect stats is enabled.</td>
</tr>
<tr>
<td>LLF Admin State</td>
<td>Displays the Link Loss Forwarding administrative state.</td>
</tr>
<tr>
<td>LLF Oper State</td>
<td>Displays the Link Loss Forwarding operational state.</td>
</tr>
<tr>
<td>Loopback Mode</td>
<td>Displays the Ethernet port loop back mode.</td>
</tr>
<tr>
<td>Loopback Src Addr</td>
<td>Displays the configured loopback source address</td>
</tr>
<tr>
<td>Loopback Dst Addr</td>
<td>Displays the configured loopback destination address</td>
</tr>
<tr>
<td>No-svc-port used</td>
<td>Displays the port ID of the port on which no service is configured. This port is used</td>
</tr>
<tr>
<td></td>
<td>for the port loop back with MAC swap functionality.</td>
</tr>
</tbody>
</table>
Sample Output

A:Dut-A>config>service>epipe# show service id 2011 sap 1/1/18
--
Service Access Points(SAP)
--
Service Id : 2011
SAP : 1/1/18
Dot1Q Ethertype : 0x8100
QinQ Ethertype : 0x8100
Description : Default sap description for service id 2011

Admin State : Up
Flags : None
Last Status Change : 07/07/2009 14:39:57
Last Mgmt Change : 07/07/2009 14:39:14
Admin MTU : 1514
LLF Admin State : Up
Ingress qos-policy : 10
Ingr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
tod-suite : None
Egr Agg Rate Limit : max
Endpoint : N/A

Acct. Pol : None
Collect Stats : Disabled

--
Sap Statistics
--
Packets Octets
Ingress Stats: 0 0
Egress Stats: 0 0

--
A:Dut-A>config>service>epipe#

A:Dut-A>config>service>epipe# show service id 2011 sap 1/1/18 detail
--
Service Access Points(SAP)
--
Service Id : 2011
SAP : 1/1/18
Dot1Q Ethertype : 0x8100
QinQ Ethertype : 0x8100
Description : Default sap description for service id 2011

Admin State : Up
Flags : None
Last Status Change : 07/07/2009 14:39:57
Last Mgmt Change : 07/07/2009 14:39:14
Admin MTU : 1514
LLF Admin State : Up
Ingress qos-policy : 10
Ingr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a
tod-suite : None
Egr Agg Rate Limit : max
Endpoint : N/A

Acct. Pol : None
Collect Stats : Disabled

--
Sap Statistics
--
Packets Octets
Ingress Stats: 0 0
Egress Stats: 0 0

--
A:Dut-A>config>service>epipe#
VLL Show Commands

<table>
<thead>
<tr>
<th>Ingress Meter 1 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 2 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 3 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 4 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

-- A:Dut-A>config>service>epipe# --

A:ces-A# show service id 1 sap 1/2/1.1 detail

Service Access Points(SAP)

Service Id	1
SAP	1/2.1.1
Encap	cem
Description	(Not Specified)
Admin State	Up
Oper State	Up
Flags	None
Last Status Change	07/06/2010 14:16:41
Last Mgmt Change	07/06/2010 11:31:34
Admin MTU	1514
Oper MTU	1514
Endpoint	N/A
Acct. Pol	None
Collect Stats	Disabled

QOS

Ingress qos-policy : 1

Sap Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats:</td>
<td>2815 613670</td>
</tr>
<tr>
<td>Egress Stats:</td>
<td>2815 613670</td>
</tr>
</tbody>
</table>

CEM SAP Configuration Information

Endpoint Type : Unstruct. T1
Bit-rate : 24

Payload Size : 192
Jitter Buffer (ms) : 5
Jitter Buffer (packets) : 6
Playout Threshold (packets) : 4

Use RTP Header : No
Differential : No
Timestamp Freq : 0
CAS Framing : No CAS
Effective PDVT : +/-2.984 ms

Cfg Alarm : stray malformed pktloss overrun underrun
Alarm Status :

CEM SAP Statistics

Show, Clear, Debug Commands

Egress Stats

<table>
<thead>
<tr>
<th>Packets</th>
<th>Seconds</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarded</td>
<td>2915</td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reordered Forwarded</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Underrun</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overrun</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Misordered Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Malformed Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LBit Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Multiple Dropped</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Severely Error</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unavailable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Failure Count</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jitter Buffer Depth</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Ingress Stats

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarded</td>
<td>2915</td>
</tr>
<tr>
<td>Dropped</td>
<td>0</td>
</tr>
</tbody>
</table>

*A:Dut-A>show service id 104 sap 1/2/1.2 detail

Service Access Points(SAP)

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Description</th>
<th>Encap</th>
<th>Admin State</th>
<th>Oper State</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>(Not Specified)</td>
<td>cem</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flags</th>
<th>Last Status Change: 12/15/2010 07:39:05</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Last Mgmt Change: 12/15/2010 07:25:37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin MTU</th>
<th>Oper MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1514</td>
<td>1514</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Acct. Pol</th>
<th>Collect Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>None</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

QOS

Ingress qos-policy : 1 Egress qos-policy : 1

Aggregate Policer

<table>
<thead>
<tr>
<th>rate</th>
<th>burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Sap Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats: 786701</td>
<td>70803090</td>
</tr>
<tr>
<td>Egress Stats: 784531</td>
<td>70607790</td>
</tr>
<tr>
<td>Extra-Tag Drop Stats: n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

CEM SAP Configuration Information
Endpoint Type : NxDS0 Bit-rate : 1
Payload Size : 64 Jitter Buffer (ms) : 32
Jitter Buffer (packets): 4 Playout Threshold (packets): 3
Use RTP Header : No Differential : No
Timestamp Freq : 0 CAS Framing : No CAS
Effective PDVT : +/-16.0 ms
Cfg Alarm : stray malformed pktloss overrun underrun
Alarm Status :

CEM SAP Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Seconds</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forwarded</td>
<td>: 784407</td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td>: 132</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>: 0</td>
<td></td>
</tr>
<tr>
<td>Reordered Forwarded</td>
<td>: 0</td>
<td></td>
</tr>
<tr>
<td>Underrun</td>
<td>: 2355</td>
<td>1</td>
</tr>
<tr>
<td>Overrun</td>
<td>: 0</td>
<td>0</td>
</tr>
<tr>
<td>Misordered Dropped</td>
<td>: 0</td>
<td></td>
</tr>
<tr>
<td>Malformed Dropped</td>
<td>: 0</td>
<td></td>
</tr>
<tr>
<td>LBit Dropped</td>
<td>: 132</td>
<td></td>
</tr>
<tr>
<td>Multiple Dropped</td>
<td>: 0</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>: 1</td>
<td></td>
</tr>
<tr>
<td>Severely Error</td>
<td>: 0</td>
<td></td>
</tr>
<tr>
<td>Unavailable</td>
<td>: 18</td>
<td></td>
</tr>
<tr>
<td>Failure Count</td>
<td>: 1</td>
<td></td>
</tr>
<tr>
<td>Jitter Buffer Depth</td>
<td>: 2</td>
<td></td>
</tr>
<tr>
<td>Ingress Stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forwarded</td>
<td>: 786762</td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td>: 0</td>
<td></td>
</tr>
</tbody>
</table>

CLI output for 7210 SAS-M configured in access uplink mode:
*A:Dut-A>show#

Service Access Points(SAP)

Service Id : 1
SAP : 1/1/1:10.* Encap : qinq
QinQ Dot1p : Default
Description : (Not Specified)
Admin State : Up Oper State : Up
Flags : None
Last Status Change : 04/29/2001 06:59:15
Last Mgmt Change : 04/28/2001 03:09:30
Dot1Q Ethertype : 0x8100 QinQ Ethertype : 0x8100
Max Nbr of MAC Addr : No Limit
Learned MAC Addr : 0 Static MAC Addr : 0
Admin MTU : 1522 Oper MTU : 1522
Ingr IP Fltr-Id : n/a Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : 1 Egr Mac Fltr-Id : n/a
tod-suite : None
Mac Learning : Enabled Discard Unkwn Srce : Disabled
Mac Aging : Enabled Mac Pinning : Disabled
BFDU Translation : Disabled
L2PT Termination : Disabled
Acct. Pol : None Collect Stats : Disabled

Stp Service Access Point specifics

Stp Admin State : Up Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A Port State : Forwarding
Port Number : 2048 Port Priority : 128
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : N/A
Link Type : Pt-pt BPDU Encap : Dot1d
Root Guard : Disabled Active Protocol : N/A
Last BPDU from : N/A
CIST Desig Bridge : N/A Designated Port : N/A
Forward transitions: 0 Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0 Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0 TCN BPDUs tx : 0
RST BPDUs rcvd : 0 RST BPDUs tx : 0
MST BPDUs rcvd : 0 MST BPDUs tx : 0

ARP host

Admin State : outOfService
Host Limit : 1 Min Auth Interval : 15 minutes

QoS

Ingress qos-policy : 1

Aggregate Policer

rate : n/a burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4 Meters Allocated : 2
Classifiers Used : 2 Meters Used : 2

Sap Statistics

Packets Octets
Ingress Stats: 142761481188 9707780720784
Egress Stats: 0 0
Extra-Tag Drop Stats: n/a n/a

Sap per Meter stats

Packets Octets
Ingress Meter 1 (Unicast)
For. InProf : 17 1162
For. OutProf : 0 0

Ingress Meter 11 (Multipoint)
<table>
<thead>
<tr>
<th>For. InProf</th>
<th>61</th>
<th>4148</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. OutProf</td>
<td>142761547917</td>
<td>9707785259394</td>
</tr>
</tbody>
</table>

For. InProf : 61
For. OutProf : 142761547917
sdp

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

Syntax

sdp [sdp-id | far-end ip-addr] [detail]

Context

show>service>id

Description

This command displays information for the SDPs associated with the service. If no optional parameters are specified, a summary of all associated SDPs is displayed.

Parameters

sdp-id — Displays only information for the specified SDP ID.

Default All SDPs.

Values 1 — 17407

far-end ip-addr — Displays only SDPs matching the specified far-end IP address.

Default SDPs with any far-end IP address.

detail — Displays detailed SDP information.

Output

Show Service-ID SDP — The following table describes show service-id SDP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sdp Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the SDP is a spoke or a mesh.</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>Name of the split horizon group that the SDP belongs to.</td>
</tr>
<tr>
<td>VC Type</td>
<td>The VC type, ether, vlan, or vpls.</td>
</tr>
<tr>
<td>VC Tag</td>
<td>The explicit dot1Q value used when encapsulating to the SDP far end.</td>
</tr>
<tr>
<td>I. Lbl</td>
<td>The VC label used by the far-end device to send packets to this device in this service by the SDP.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The operating path MTU of the SDP is equal to the admin path MTU (when one is set) or the dynamically computed tunnel MTU, when no admin path MTU is set (the default case).</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Far End</td>
<td>Specifies the IP address of the remote end of the GRE or MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of this SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The current state of this SDP.</td>
</tr>
</tbody>
</table>
Sample Output

```
A:Dut-A# show service id 1 sdp detail
```

Label	**Description (Continued)**
Ingress Label	The label used by the far-end device to send packets to this device in this service by this SDP.
Egress Label	The label used by this device to send packets to the far-end device in this service by the SDP.
Last Changed	The date and time of the most recent change to the SDP.
Signaling	Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP.
Admin State	The administrative state of the Keepalive process.
Oper State	The operational state of the Keepalive process.
Hello Time	Transmission frequency of the SDP echo request messages.
Max Drop Count	Specifies the maximum number of consecutive SDP echo request messages that can be unacknowledged before the keepalive protocol reports a fault.
Hello Msg Len	The length of the SDP echo request messages transmitted on this SDP.
Hold Down Time	Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state.
I. Fwd. Pkts.	Specifies the number of forwarded ingress packets.
I. Dro. Pkts	Specifies the number of dropped ingress packets.
E. Fwd. Pkts.	Specifies the number of forwarded egress packets.
Associated LSP List	When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the Far End field.
If the SDP type is GRE, then the following message displays: SDP delivery mechanism is not MPLS.	
Ing mac Fltr : n/a Egr mac Fltr : n/a
Ing ip Fltr : n/a Egr ip Fltr : n/a
Ing ipv6 Fltr : n/a Egr ipv6 Fltr : n/a
Admin ControlWord : Not Preferred Oper ControlWord : False
Last Status Change : 05/31/2007 00:45:43 Signaling : None
Last Mgmt Change : 05/31/2007 00:45:43
Class Fwding State : Up
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
Max Mbr of MAC Addr: No Limit Total MAC Addr : 0
Learned MAC Addr : 0 Static MAC Addr : 0
MAC Learning : Enabled Discard Unkwn Srce: Disabled
MAC Aging : Enabled
L2PT Termination : Disabled BPDU Translation : Disabled
MAC Pinning : Disabled

KeepAlive Information :
Admin State : Disabled Oper State : Disabled
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10

Statistics :
I. Fwd. Pkts. : 0 I. Dro. Pkts. : 0
I. Fwd. Octs. : 0 I. Dro. Octs. : 0
E. Fwd. Pkts. : 0 E. Fwd. Octets : 0
MCAC Policy Name :
MCAC Max Unconst BW: no limit MCAC Max Mand BW : no limit
MCAC In use Mand BW: 0 MCAC Avail Mand BW: unlimited
MCAC In use Opnl BW: 0 MCAC Avail Opnl BW: unlimited
Associated LSP LIST :
Lsp Name : A_B_1
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m35s
Lsp Name : A_B_2
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m35s
Lsp Name : A_B_3
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s
Lsp Name : A_B_4
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s
Lsp Name : A_B_5
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s
Lsp Name : A_B_6
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s
Lsp Name : A_B_7
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s
Lsp Name : A_B_8
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m35s

Lsp Name : A_B_9
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Lsp Name : A_B_10
Admin State : Up Oper State : Up
Time Since Last Tr*: 00h26m34s

Class-based forwarding :

Class forwarding : enabled
Default LSP : A_B_10 Multicast LSP : A_B_9
===

FC Mapping Table

FC Name LSP Name

af A_B_3
be A_B_1
ef A_B_6
h1 A_B_7
h2 A_B_5
l1 A_B_4
l2 A_B_2
nc A_B_8

Stp Service Destination Point specifics

Mac Move : Blockable
Stp Admin State : Up Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A Port State : Forwarding
Port Number : 2049 Port Priority : 128
Port Path Cost : 10 Auto Edge : Enabled
Admin Edge : Disabled Oper Edge : N/A
Link Type : Pt-pt BPDU Encap : Dot1d
Root Guard : Disabled Active Protocol : N/A
Last BFDU from : N/A
Designated Bridge : N/A Designated Port Id: 0
Fwd Transitions : 0
Cfg BFDUs rcvd : 0 Bad BFDUs rcvd : 0
TCN BFDUs rcvd : 0 Cfg BFDUs tx : 0
RTC BFDUs tx : 0 TCN BFDUs tx : 0
RST BFDUs tx : 0

Number of SDPs : 1
* indicates that the corresponding row element may have been truncated.

A:Dut-A#

The following examples show both sides (PE nodes) when control word is enabled:
*A:A:ALA-Dut-B>config>service>epipe# show service id 2100 sdp detail

Services: Service Destination Points Details

Sdp Id 1:2001 -(1.1.1.1)

<table>
<thead>
<tr>
<th>Description</th>
<th>Default sdp description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>1:2001</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>VC Type</td>
<td>Ether</td>
</tr>
<tr>
<td>VC Tag</td>
<td>n/a</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>1600</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>1600</td>
</tr>
<tr>
<td>Far End</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Delivery</td>
<td>GRE</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>None</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>115066</td>
</tr>
<tr>
<td>Egress Label</td>
<td>119068</td>
</tr>
<tr>
<td>Ing mac Fltr</td>
<td>n/a</td>
</tr>
<tr>
<td>Egr mac Fltr</td>
<td>n/a</td>
</tr>
<tr>
<td>Ing ip Fltr</td>
<td>n/a</td>
</tr>
<tr>
<td>Egr ip Fltr</td>
<td>n/a</td>
</tr>
<tr>
<td>Ing ipv6 Fltr</td>
<td>n/a</td>
</tr>
<tr>
<td>Egr ipv6 Fltr</td>
<td>n/a</td>
</tr>
<tr>
<td>Admin ControlWord</td>
<td>Preferred</td>
</tr>
<tr>
<td>Oper ControlWord</td>
<td>True</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>02/05/2007 16:39:22</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>02/05/2007 16:39:22</td>
</tr>
<tr>
<td>Class Fwding State</td>
<td>Up</td>
</tr>
<tr>
<td>Endpoint</td>
<td>N/A</td>
</tr>
<tr>
<td>Precedence</td>
<td>4</td>
</tr>
<tr>
<td>Flags</td>
<td>None</td>
</tr>
<tr>
<td>Peer Pw Bits</td>
<td>None</td>
</tr>
<tr>
<td>Peer Fault Ip</td>
<td>None</td>
</tr>
<tr>
<td>Peer Vccv CV Bits</td>
<td>None</td>
</tr>
<tr>
<td>Peer Vccv CC Bits</td>
<td>None</td>
</tr>
<tr>
<td>Max Nbr of MAC Addr</td>
<td>No Limit</td>
</tr>
<tr>
<td>Total MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Learned MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Static MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>MAC Learning</td>
<td>Enabled</td>
</tr>
<tr>
<td>MAC Aging</td>
<td>Enabled</td>
</tr>
<tr>
<td>L2PT Termination</td>
<td>Disabled</td>
</tr>
<tr>
<td>MAC Pinning</td>
<td>Disabled</td>
</tr>
<tr>
<td>KeepAlive Information:</td>
<td></td>
</tr>
<tr>
<td>Admin State</td>
<td>Disabled</td>
</tr>
<tr>
<td>Oper State</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hello Time</td>
<td>10</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>0</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>3</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>10</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>I. Fwd. Pkts.</td>
<td>0</td>
</tr>
<tr>
<td>I. Dro. Pkts.</td>
<td>0</td>
</tr>
<tr>
<td>E. Fwd. Pkts.</td>
<td>0</td>
</tr>
<tr>
<td>E. Fwd. Octets</td>
<td>0</td>
</tr>
<tr>
<td>Associated LSP LIST :</td>
<td></td>
</tr>
<tr>
<td>SDP Delivery Mechanism is not MPLS</td>
<td></td>
</tr>
</tbody>
</table>

Number of SDPs : 1

*ALA-Dut-B>config>service>epipe#
The following is an example when one side (PE) has the control word enabled (the pipe will be down):

This is the side with control word disabled:

```
*A:ALA-Dut-B>config>service>epipe# show service id 2100 sdp detail
```
```
===============================================================================
Services: Service Destination Points Details
===============================================================================
Sdp Id 1:2100 -(1.1.1.1)
===============================================================================
Description : Default sdp description
SDP Id : 1:2100
Type : Spoke
VC Type : Ether
VC Tag : n/a
Admin Path MTU : 1600
Oper Path MTU : 1600
Far End : 1.1.1.1
Delivery : GRE
Admin State : Up
Oper State : Down
Acct. Pol : None
Collect Stats : Disabled
Ingress Label : 115066
Egress Label : 119068
Ing mac Fltr : n/a
Egr mac Fltr : n/a
Ing ip Fltr : n/a
Egr ip Fltr : n/a
Ing ipv6 Fltr : n/a
Egr ipv6 Fltr : n/a
Admin ControlWord : Not Preferred
Oper ControlWord : False
Last Status Change : 02/05/2007 16:47:54
Signaling : TLDP
Last Mgmt Change : 02/05/2007 16:47:54
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
Max Nbr of MAC Addr: No Limit
Total MAC Addr : 0
Learned MAC Addr : 0
Static MAC Addr : 0
MAC Learning : Enabled
Discard Unkwn Srce: Disabled
MAC Aging : Enabled
BPDU Translation : Disabled
L2PT Termination : Disabled
MAC Pinning : Disabled
KeepAlive Information :
Admin State : Disabled
Oper State : Disabled
Hello Time : 10
Hello Msg Len : 0
Max Drop Count : 3
Hold Down Time : 10
Statistics :
I. Fwd. Pkts. : 0
I. Dro. Pkts. : 0
E. Fwd. Pkts. : 0
E. Fwd. Octets : 0
Associated LSP LIST :
SDP Delivery Mechanism is not MPLS
Number of SDPs : 1
```

This is the side with control word enabled:

```
*A:ALA-B# show service id 2100 sdp detail
```
```
===============================================================================
Services: Service Destination Points Details
===============================================================================
Sdp Id 1:12000 -(3.3.3.3)
```

```
This is the side with control word enabled:

```
*A:ALA-B# show service id 2100 sdp detail
```
```
===
Services: Service Destination Points Details
===
Sdp Id 1:12000 -(3.3.3.3)
```
Show, Clear, Debug Commands

Description : Default sdp description
SDP Id : 1:12000 Type : Spoke
VC Type : Ether VC Tag : n/a
Admin Path MTU : 1600 Oper Path MTU : 1600
Far End : 3.3.3.3 Delivery : GRE
Admin State : Up Oper State : Down
Acct. Pol : None Collect Stats : Disabled
Ing mac Fltr : n/a Egr mac Fltr : n/a
Ing ip Fltr : n/a Egr ip Fltr : n/a
Ing ipv6 Fltr : n/a Egr ipv6 Fltr : n/a
Admin ControlWord : Preferred Oper ControlWord : True
Last Status Change : 02/04/2007 22:52:43 Signaling : TLDP
Last Mgmt Change : 02/04/2007 02:06:08
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Peer Vccv CV Bits : None
Peer Vccv CC Bits : None
Max Nbr of MAC Addr : No Limit Total MAC Addr : 0
Learned MAC Addr : 0 Static MAC Addr : 0
MAC Learning : Enabled Discard Unkwn Srce : Disabled
MAC Aging : Enabled
L2PT Termination : Disabled BPDU Translation : Disabled
MAC Pinning : Disabled
KeepAlive Information :
Admin State : Disabled Oper State : Disabled
Hello Time : 10 Hello Msg Len : 0
Max Drop Count : 3 Hold Down Time : 10
Statistics :
I. Fwd. Pkts. : 0 I. Dro. Pkts. : 0
E. Fwd. Pkts. : 0 E. Fwd. Octets : 0
Associated LSP LIST :
SDP Delivery Mechanism is not MPLS
Number of SDPs : 1
*ALA-B#

The following is an example when both sides have control word disabled:

*ALA-Dut-B>config>service>epipe# show service id 2100 sdp detail

Services: Service Destination Points Details
Sdp Id 1:2001 - (1.1.1.1)
Description : Default sdp description
SDP Id : 1:2001 Type : Spoke
VC Type : Ether VC Tag : n/a
Admin Path MTU : 1600 Oper Path MTU : 1600
Far End : 1.1.1.1 Delivery : GRE
Admin State : Up Oper State : Up
Acct. Pol : None Collect Stats : Disabled
Ing mac Fltr : n/a Egr mac Fltr : n/a
Ing ip Fltr : n/a Egr ip Fltr : n/a
Ing ipv6 Fltr : n/a Egr ipv6 Fltr : n/a
Admin ControlWord : Not Preferred Oper ControlWord : False

*ALA-B#
VLL Show Commands

Last Status Change : 02/05/2007 16:49:05  Signaling : TLDP
Last Mgmt Change   : 02/05/2007 16:47:54
Flags              : None
Peer Pw Bits       : None
Peer Fault Ip      : None
Peer Vcvc CV Bits  : None
Peer Vcvc CC Bits  : None
Max Nbr of MAC Addr: No Limit
Learned MAC Addr   : 0
MAC Learning       : Enabled
MAC Aging          : Enabled
L2PT Termination   : Disabled
MAC Pinning        : Disabled
KeepAlive Information :
Admin State        : Disabled
Hello Time         : 10
Hello Msg Len      : 0
Max Drop Count     : 3
Hold Down Time     : 10
Statistics:
I. Fwd. Pkts.      : 0
I. Dro. Pkts.      : 0
E. Fwd. Pkts.      : 0
E. Fwd. Octets     : 0
Associated LSP LIST:
SDP Delivery Mechanism is not MPLS
-------------------------------------------------------------------------------
Number of SDPs : 1
-------------------------------------------------------------------------------
*A:ALA-Dut-B>config>service>ipepe#

split-horizon-group

Syntax split-horizon-group [group-name]
Context show>service>id
Description This command displays service split horizon groups.

Output

*A:7210-SAS>show>service# id 1 split-horizon-group

===============================================================================
Service: Split Horizon Group
===============================================================================
Name          Description
access

R = Residential Split Horizon Group
A = Auto Created Split Horizon Group
No. of Split Horizon Groups: 1
===============================================================================
*A:7210-SAS>show>service# id 1 split-horizon-group access

===============================================================================
Service: Split Horizon Group
===============================================================================
Name          Description
Show, Clear, Debug Commands

---------------------------
Associations
---------------------------

R = Residential Split Horizon Group
SAPs Associated : 0                SDPs Associated : 0
*A:7210=SAS>show>service#

stp

Syntax

stp [detail]

Context

show>service>id

Description

This command displays information for the spanning tree protocol instance for the service.

Parameters

detail — Displays detailed information.

Output

Show Service-ID STP Output — The following table describes show service-id STP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSTP Admin State</td>
<td>Indicates the administrative state of the Rapid Spanning Tree Protocol</td>
</tr>
<tr>
<td></td>
<td>instance associated with this service.</td>
</tr>
<tr>
<td>Core Connectivity</td>
<td>Indicates the connectivity status to the core.</td>
</tr>
<tr>
<td>RSTP Oper State</td>
<td>Indicates the operational state of the Rapid Spanning Tree Protocol</td>
</tr>
<tr>
<td></td>
<td>instance associated with this service. This field is applicable only when</td>
</tr>
<tr>
<td></td>
<td>STP is enabled on the router.</td>
</tr>
<tr>
<td>Bridge-id</td>
<td>Specifies the MAC address used to identify this bridge in the network.</td>
</tr>
<tr>
<td>Hold Time</td>
<td>Specifies the interval length during which no more than two Configura-</td>
</tr>
<tr>
<td></td>
<td>tion BPDUs shall be transmitted by this bridge.</td>
</tr>
<tr>
<td>Bridge fwd delay</td>
<td>Specifies how fast a bridge changes its state when moving toward the</td>
</tr>
<tr>
<td></td>
<td>forwarding state.</td>
</tr>
<tr>
<td>Bridge Hello time</td>
<td>Specifies the amount of time between the transmission of Configuration</td>
</tr>
<tr>
<td></td>
<td>BPDUs.</td>
</tr>
<tr>
<td>Bridge max age</td>
<td>Specifies the maximum age of Spanning Tree Protocol information learned</td>
</tr>
<tr>
<td></td>
<td>from the network on any port before it is discarded. This is the actual</td>
</tr>
<tr>
<td></td>
<td>value that this bridge is currently using.</td>
</tr>
<tr>
<td>Bridge priority</td>
<td>Defines the priority of the Spanning Tree Protocol instance associated</td>
</tr>
<tr>
<td></td>
<td>with this service.</td>
</tr>
<tr>
<td>Topology change</td>
<td>Specifies whether a topology change is currently in progress.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Last Top. change</td>
<td>Specifies the time (in hundredths of a second) since the last time a topology change was detected by the Spanning Tree Protocol instance associated with this service.</td>
</tr>
<tr>
<td>Top. change count</td>
<td>Specifies the total number of topology changes detected by the Spanning Tree Protocol instance associated with this service since the management entity was last reset or initialized.</td>
</tr>
<tr>
<td>Root bridge-id</td>
<td>Specifies the bridge identifier of the root of the spanning tree as determined by the Spanning Tree Protocol instance associated with this service. This value is used as the Root Identifier parameter in all Configuration BPDUs originated by this node.</td>
</tr>
<tr>
<td>Root path cost</td>
<td>Specifies the cost of the path to the root bridge as seen from this bridge.</td>
</tr>
<tr>
<td>Root forward delay</td>
<td>Specifies how fast the root changes its state when moving toward the forwarding state.</td>
</tr>
<tr>
<td>Root hello time</td>
<td>Specifies the amount of time between the transmission of configuration BPDUs.</td>
</tr>
<tr>
<td>Root max age</td>
<td>Specifies the maximum age of Spanning Tree Protocol information learned from the network on any port before it is discarded.</td>
</tr>
<tr>
<td>Root priority</td>
<td>This object specifies the priority of the bridge that is currently selected as root-bridge for the network.</td>
</tr>
<tr>
<td>Root port</td>
<td>Specifies the port number of the port which offers the lowest cost path from this bridge to the root bridge.</td>
</tr>
<tr>
<td>SAP Identifier</td>
<td>The ID of the access port where this SAP is defined.</td>
</tr>
<tr>
<td>RSTP State</td>
<td>The operational state of RSTP.</td>
</tr>
<tr>
<td>STP Port State</td>
<td>Specifies the port identifier of the port on the designated bridge for this port's segment.</td>
</tr>
<tr>
<td>BPDU encap</td>
<td>Specifies the type of encapsulation used on BPDUs sent out and received on this SAP.</td>
</tr>
<tr>
<td>Port Number</td>
<td>Specifies the value of the port number field which is contained in the least significant 12 bits of the 16-bit port ID associated with this SAP.</td>
</tr>
<tr>
<td>Priority</td>
<td>Specifies the value of the port priority field which is contained in the most significant 4 bits of the 16-bit port ID associated with this SAP.</td>
</tr>
<tr>
<td>Cost</td>
<td>Specifies the contribution of this port to the path cost of paths towards the spanning tree root which include this port.</td>
</tr>
<tr>
<td>Fast Start</td>
<td>Specifies whether Fast Start is enabled on this SAP.</td>
</tr>
<tr>
<td>Designated Port</td>
<td>Specifies the port identifier of the port on the designated bridge for this port's segment.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

Sample Output

A:Dut-A>show>service>id# stp

<table>
<thead>
<tr>
<th>Sap/Sdp Id</th>
<th>Oper-</th>
<th>Port-</th>
<th>Port-</th>
<th>Port-</th>
<th>Oper-</th>
<th>Link-</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/16:305</td>
<td>Up</td>
<td>Designated Forward</td>
<td>2048</td>
<td>False</td>
<td>Pt-pt</td>
<td>Rstp</td>
<td></td>
</tr>
<tr>
<td>lag-4:305</td>
<td>Up</td>
<td>Designated Forward</td>
<td>2000</td>
<td>False</td>
<td>Pt-pt</td>
<td>Rstp</td>
<td></td>
</tr>
<tr>
<td>1217:305</td>
<td>Up</td>
<td>N/A</td>
<td>Forward</td>
<td>2049</td>
<td>N/A</td>
<td>Pt-pt</td>
<td>N/A</td>
</tr>
<tr>
<td>1317:305</td>
<td>Up</td>
<td>N/A</td>
<td>Forward</td>
<td>2050</td>
<td>N/A</td>
<td>Pt-pt</td>
<td>N/A</td>
</tr>
<tr>
<td>1417:305</td>
<td>Up</td>
<td>N/A</td>
<td>Forward</td>
<td>2051</td>
<td>N/A</td>
<td>Pt-pt</td>
<td>N/A</td>
</tr>
<tr>
<td>1617:305</td>
<td>Pruned</td>
<td>N/A</td>
<td>Discard</td>
<td>2052</td>
<td>N/A</td>
<td>Pt-pt</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A:Dut-A>show>service>id#

A:Dut-A>show>service>id# stp detail

<table>
<thead>
<tr>
<th>VPLS oper state : Up</th>
<th>Core Connectivity : Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stp Admin State : Up</td>
<td>Stp Oper State : Up</td>
</tr>
<tr>
<td>Mode : Rstp</td>
<td>Vcp Active Prot. : N/A</td>
</tr>
<tr>
<td>Bridge Id : 00:0d.00:20:ab:cd:00:01</td>
<td>Bridge Instance Id: 13</td>
</tr>
<tr>
<td>Bridge Priority : 0</td>
<td>Tx Hold Count : 6</td>
</tr>
<tr>
<td>Topology Change : Inactive</td>
<td>Bridge Hello Time : 2</td>
</tr>
<tr>
<td>Last Top. Change : 0d 08:35:29</td>
<td>Bridge Max Age : 20</td>
</tr>
<tr>
<td>Top. Change Count : 5</td>
<td>Bridge Fwd Delay : 15</td>
</tr>
<tr>
<td>MST region revision: 0</td>
<td>Bridge max hops : 20</td>
</tr>
<tr>
<td>MST region name :</td>
<td></td>
</tr>
<tr>
<td>Root Bridge : This Bridge</td>
<td></td>
</tr>
<tr>
<td>Primary Bridge : N/A</td>
<td></td>
</tr>
<tr>
<td>Root Path Cost : 0</td>
<td>Root Forward Delay: 15</td>
</tr>
<tr>
<td>Rcvd Hello Time : 2</td>
<td>Root Max Age : 20</td>
</tr>
<tr>
<td>Root Priority : 13</td>
<td>Root Port : N/A</td>
</tr>
</tbody>
</table>

Designated Bridge

Specifies the bridge identifier of the bridge which this port considers to be the designated bridge for this port's segment.

Label | Description (Continued)
Spanning Tree Sap/Spoke SDP Specifics

SAP Identifier : 1/1/16:305  Stp Admin State : Up
Port Role : Designated  Port State : Forwarding
Port Number : 2048  Port Priority : 128
Port Path Cost : 10  Auto Edge : Enabled
Admin Edge : Disabled  Oper Edge : False
Link Type : Pt-pt  BFDU Encap : PVST
Root Guard : Disabled  Active Protocol : Rstp
Last BPDU from : 80:04:00:0a:1b:2c:3d:4e
CIST Desig Bridge : This Bridge  Designated Port : 34816
Forward transitions: 5  Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0  Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0  TCN BPDUs tx : 0
RST BPDUs rcvd : 29  RST BPDUs tx : 23488
MST BPDUs rcvd : 0  MST BPDUs tx : 0

SAP Identifier : lag-4:305  Stp Admin State : Up
Port Role : Designated  Port State : Forwarding
Port Number : 2000  Port Priority : 128
Port Path Cost : 10  Auto Edge : Enabled
Admin Edge : Disabled  Oper Edge : False
Link Type : Pt-pt  BFDU Encap : Dot1d
Root Guard : Disabled  Active Protocol : Rstp
Last BPDU from : 80:04:00:0a:1b:2c:3d:4e
CIST Desig Bridge : This Bridge  Designated Port : 34768
Forward transitions: 4  Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0  Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0  TCN BPDUs tx : 0
RST BPDUs rcvd : 23  RST BPDUs tx : 23454
MST BPDUs rcvd : 0  MST BPDUs tx : 0

SDP Identifier : 1217:305  Stp Admin State : Down
Port Role : N/A  Port State : Forwarding
Port Number : 2049  Port Priority : 128
Port Path Cost : 10  Auto Edge : Enabled
Admin Edge : Disabled  Oper Edge : N/A
Link Type : Pt-pt  BFDU Encap : Dot1d
Root Guard : Disabled  Active Protocol : N/A
Last BPDU from : N/A
Designated Bridge : N/A  Designated Port Id: 0
Fwd Transitions : 0  Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0  Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0  TCN BPDUs tx : 0
RST BPDUs rcvd : 0  RST BPDUs tx : 0

SDP Identifier : 1317:305  Stp Admin State : Down
Port Role : N/A  Port State : Forwarding
Port Number : 2050  Port Priority : 128
Port Path Cost : 10  Auto Edge : Enabled
Admin Edge : Disabled  Oper Edge : N/A
Link Type : Pt-pt  BFDU Encap : Dot1d
Root Guard : Disabled  Active Protocol : N/A
Last BPDU from : N/A
Designated Bridge : N/A  Designated Port Id: 0
Fwd Transitions : 0  Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0  Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0  TCN BPDUs tx : 0
RST BPDUs rcvd : 0  RST BPDUs tx : 0

SDP Identifier : 1417:305  Stp Admin State : Down
Port Role : N/A                      Port State : Forwarding
Port Number : 2051                     Port Priority : 128
Port Path Cost : 10                   Auto Edge : Enabled
Admin Edge : Disabled                  Oper Edge : N/A
Link Type : Pt-tp                      BPDU Encap : Dot1d
Root Guard : Disabled                 Active Protocol : N/A
Last BFDU from : N/A                  Designated Port Id: 0
Designated Bridge : N/A                Fwd Transitions : 1
Cfg BPDUs rcvd : 0                    Bad BPDUs rcvd : 0
TCN BPDUs rcvd : 0                    Cfg BPDUs tx : 0
RST BPDUs rcvd : 0                    TCN BPDUs tx : 0
RST BPDUs tx : 0
SDP Identifier : 1617:305               Stp Admin State : Down
Port Role : N/A                      Port State : Discarding
Port Number : 2052                     Port Priority : 128
Port Path Cost : 10                   Auto Edge : Enabled
Admin Edge : Disabled                  Oper Edge : N/A
Link Type : Pt-tp                      BPDU Encap : Dot1d
Root Guard : Disabled                 Active Protocol : N/A
Last BFDU from : N/A                  Designated Port Id: 0
Designated Bridge : N/A                Fwd Transitions : 0
Cfg BPDUs rcvd : 0                    Bad BPDUs rcvd : 0
TCN BPDUs rcvd : 0                    Cfg BPDUs tx : 0
RST BPDUs rcvd : 0                    TCN BPDUs tx : 0
RST BPDUs tx : 0
===============================================================================
A:Dut-A>show>service>id#
*7210-SAS>show>service>id# stp detail

Spanning Tree Information
--------------------------------------------------------------------------------
VPLS Spanning Tree Information
--------------------------------------------------------------------------------
VPLS oper state : Up                      Core Connectivity : Down
Stp Admin State : Up                      Stp Oper State : Up
Mode : Mstp                                Vcp Active Prot. : N/A
Bridge Id : 80:00.00:25:ba:04:66:a0        Bridge Instance Id: 0
Bridge Priority : 32768                   Tx Hold Count : 6
Topology Change : Inactive                Bridge Hello Time : 2
Last Top. Change : 04 02:54:16            Bridge Max Age : 20
Top. Change Count : 27                    Bridge Fwd Delay : 15
Root Bridge : 40:00.7c:20:64:ac:ff:63
Primary Bridge : N/A
Root Path Cost : 10                       Root Forward Delay: 15
Rcvd Hello Time : 2                       Root Max Age : 20
Root Priority : 16384                      Root Port : 2048
MSTP info for CIST :
Regional Root : 80:00.7c:20:64:ad:04:5f    Root Port : 2048
Internal RPC : 10                          Remaining Hopcount: 19
MSTP info for MSTI 1 :
Regional Root : This Bridge                Root Port : N/A
Internal RPC : 0                            Remaining Hopcount: 20
### MSTP info for MSTI 2:

- **Regional Root**: 00:02:7c:20:64:ad:04:5f
- **Root Port**: 2048
- **Internal RPC**: 10
- **Remaining Hopcount**: 19

### Spanning Tree Sap Specifics

<table>
<thead>
<tr>
<th>SAP Identifier</th>
<th>Stp Admin State</th>
<th>Port Role</th>
<th>Port State</th>
<th>Port Number</th>
<th>Port Priority</th>
<th>Port Path Cost</th>
<th>Auto Edge</th>
<th>Oper Edge</th>
<th>BPDU Encap</th>
<th>Link Type</th>
<th>Root Guard</th>
<th>Active Protocol</th>
<th>Last BPDU from</th>
<th>Inside Mat Region</th>
<th>CIST Desig Bridge</th>
<th>Designated Port</th>
<th>MSTI 1 Port Prio</th>
<th>Port Path Cost</th>
<th>MSTI 1 Desig Brid</th>
<th>Designated Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/7:0</td>
<td>Up</td>
<td>Root</td>
<td>Forwarding</td>
<td>2048</td>
<td>128</td>
<td>10</td>
<td>Enabled</td>
<td>False</td>
<td>Dot1d</td>
<td>Pt-pt</td>
<td>Disabled</td>
<td>Mstp</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>True</td>
<td>This Bridge</td>
<td>34816</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/8:0</td>
<td>Up</td>
<td>Alternate</td>
<td>Discarding</td>
<td>2049</td>
<td>128</td>
<td>10</td>
<td>Enabled</td>
<td>False</td>
<td>Dot1d</td>
<td>Pt-pt</td>
<td>Disabled</td>
<td>Mstp</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>True</td>
<td>This Bridge</td>
<td>34817</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/9:0</td>
<td>Up</td>
<td>Designated</td>
<td>Forwarding</td>
<td>2050</td>
<td>128</td>
<td>10</td>
<td>Enabled</td>
<td>True</td>
<td>Dot1d</td>
<td>Pt-pt</td>
<td>Disabled</td>
<td>Mstp</td>
<td>N/A</td>
<td>True</td>
<td>This Bridge</td>
<td>34818</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Forward transitions**: 17
- **Bad BPDUs rcvd**: 0
- **Cfg BPDUs rxvd**: 0
- **TCN BPDUs rxvd**: 0
- **RST BPDUs rxvd**: 0
- **MST BPDUs rxvd**: 7310

- **SAP Identifier**: 1/1/7:0
- **Port Role**: Root
- **Port Number**: 2048
- **Port Path Cost**: 10
- **Admin Edge**: Disabled
- **Link Type**: Pt-pt
- **Root Guard**: Disabled
- **Last BPDU from**: 80:00.7c:20:64:ad:04:5f
- **Inside Mat Region**: True
- **CIST Desig Bridge**: 80:00.7c:20:64:ad:04:5f
- **MSTI 1 Port Prio**: 128
- **MSTI 1 Desig Brid**: This Bridge
- **Designated Port**: 34816
- **Forward transitions**: 14
- **Bad BPDUs rcvd**: 0
- **Cfg BPDUs rxvd**: 0
- **TCN BPDUs rxvd**: 0
- **RST BPDUs rxvd**: 0
- **MST BPDUs rxvd**: 7326

- **SAP Identifier**: 1/1/8:0
- **Port Role**: Alternate
- **Port Number**: 2049
- **Port Path Cost**: 10
- **Admin Edge**: Disabled
- **Link Type**: Pt-pt
- **Root Guard**: Disabled
- **Last BPDU from**: 80:00.7c:20:64:ad:04:5f
- **Inside Mat Region**: True
- **CIST Desig Bridge**: 80:00.7c:20:64:ad:04:5f
- **MSTI 1 Port Prio**: 128
- **MSTI 1 Desig Brid**: This Bridge
- **Designated Port**: 34817
- **Forward transitions**: 14
- **Bad BPDUs rcvd**: 0
- **Cfg BPDUs rxvd**: 0
- **TCN BPDUs rxvd**: 0
- **RST BPDUs rxvd**: 0
- **MST BPDUs rxvd**: 7307

- **SAP Identifier**: 1/1/9:0
- **Port Role**: Designated
- **Port Number**: 2050
- **Port Path Cost**: 10
- **Admin Edge**: Disabled
- **Link Type**: Pt-pt
- **Root Guard**: Disabled
- **Last BPDU from**: N/A
- **Inside Mat Region**: True
- **CIST Desig Bridge**: This Bridge
- **MSTI 1 Port Prio**: 128
- **MSTI 1 Desig Brid**: This Bridge
- **Designated Port**: 34818
- **Forward transitions**: 2
- **Bad BPDUs rcvd**: 0
- **Cfg BPDUs rxvd**: 0
<table>
<thead>
<tr>
<th>TCN BPDUs rcvd</th>
<th>0</th>
<th>TCN BPDUs tx</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST BPDUs rcvd</td>
<td>0</td>
<td>RST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>MST BPDUs rcvd</td>
<td>0</td>
<td>MST BPDUs tx</td>
<td>7415</td>
</tr>
<tr>
<td>SAP Identifier</td>
<td>1/1/25:0</td>
<td>Stp Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Port Role</td>
<td>Alternate</td>
<td>Port State</td>
<td>Discarding</td>
</tr>
<tr>
<td>Port Number</td>
<td>2051</td>
<td>Port Priority</td>
<td>128</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
<td>Auto Edge</td>
<td>Enabled</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
<td>Oper Edge</td>
<td>False</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
<td>Active Protocol</td>
<td>Mstp</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>Inside Mst Region</td>
<td>True</td>
</tr>
<tr>
<td>CIST Desig Bridge</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>Designated Port</td>
<td>34820</td>
</tr>
<tr>
<td>MSTI 1 Port Prio</td>
<td>128</td>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>MSTI 1 Desig Brid</td>
<td>This Bridge</td>
<td>Designated Port</td>
<td>34819</td>
</tr>
<tr>
<td>MSTI 2 Port Prio</td>
<td>128</td>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>MSTI 2 Desig Brid</td>
<td>00:02.7c:20:64:ad:04:5f</td>
<td>Designated Port</td>
<td>34820</td>
</tr>
<tr>
<td>Forward transitions</td>
<td>10</td>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs rcvd</td>
<td>0</td>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs rcvd</td>
<td>0</td>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs rcvd</td>
<td>0</td>
<td>RST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>MST BPDUs rcvd</td>
<td>7329</td>
<td>MST BPDUs tx</td>
<td>7303</td>
</tr>
<tr>
<td>SAP Identifier</td>
<td>lag-1:0</td>
<td>Stp Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Port Role</td>
<td>Alternate</td>
<td>Port State</td>
<td>Discarding</td>
</tr>
<tr>
<td>Port Number</td>
<td>2052</td>
<td>Port Priority</td>
<td>128</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
<td>Auto Edge</td>
<td>Enabled</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
<td>Oper Edge</td>
<td>False</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
<td>Active Protocol</td>
<td>Mstp</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>Inside Mst Region</td>
<td>True</td>
</tr>
<tr>
<td>CIST Desig Bridge</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>Designated Port</td>
<td>34820</td>
</tr>
<tr>
<td>MSTI 1 Port Prio</td>
<td>128</td>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>MSTI 1 Desig Brid</td>
<td>This Bridge</td>
<td>Designated Port</td>
<td>34820</td>
</tr>
<tr>
<td>MSTI 2 Port Prio</td>
<td>128</td>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>MSTI 2 Desig Brid</td>
<td>00:02.7c:20:64:ad:04:5f</td>
<td>Designated Port</td>
<td>34822</td>
</tr>
<tr>
<td>Forward transitions</td>
<td>11</td>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs rcvd</td>
<td>0</td>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs rcvd</td>
<td>0</td>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs rcvd</td>
<td>0</td>
<td>RST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>MST BPDUs rcvd</td>
<td>7322</td>
<td>MST BPDUs tx</td>
<td>7299</td>
</tr>
</tbody>
</table>

----------------------------------------------------------------------------------------------------------------------------------
**VLL Clear Commands**

### id

**Syntax**

`id service-id`

**Context**

`clear>service`

`clear>service>statistics`

**Description**

This command clears commands for a specific service.

**Parameters**

`service-id` — The ID that uniquely identifies a service.

**Values**

- `service-id`: 1 — 214748364
- `svc-name`: A string up to 64 characters in length.

### spoke-sdp

**Note:** SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

**Syntax**

`spoke-sdp sdpld:vc-id ingress-vc-label`

**Context**

`clear>service>id`

**Description**

This command clears and resets the spoke SDP bindings for the service.

**Parameters**

- `sdpld` — The spoke SDP ID to be reset.

**Values**

- `sdpld`: 1 — 17407

- `vc-id` — The virtual circuit ID on the SDP ID to be reset.

**Values**

- `vc-id`: 1 — 4294967295

- `ingress-vc-label` — Specifies to clear the ingress VC label.

### sap

**Syntax**

`sap sap-id {all | counters | stp}`

**Context**

`clear>service>statistics`

**Description**

This command clears SAP statistics for a SAP.

**Parameters**

- `sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

  - `all` — Clears all SAP queue statistics and STP statistics.

  - `counters` — Clears all queue statistics associated with the SAP.

  - `stp` — Clears all STP statistics associated with the SAP.
cem

Syntax  cem
Context  clear>service>statistics>id
Description  Clears the statistics associated with the cpipe service.

sdp

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

Syntax  sdp sdp-id keep-alive
Context  clear>service>statistics
Description  This command clears keepalive statistics associated with the SDP ID.
Parameters  sdp-id — The SDP ID for which to clear keepalive statistics.
  Values  1 — 17407

counters

Syntax  counters
Context  clear>service>statistics>id
Description  This command clears all traffic queue counters associated with the service ID.

spoke-sdp

Syntax  spoke-sdp sdp-id[:vc-id] {all | counters | stp}
Context  clear>service>statistics>id
Description  This command clears statistics for the spoke SDP bound to the service.
Parameters  sdp-id — The spoke SDP ID for which to clear statistics.
  Values  1 — 17407
vc-id — The virtual circuit ID on the SDP ID to be reset.
  Values  1 — 4294967295
all — Clears all queue statistics and STP statistics associated with the SDP.
counters — Clears all queue statistics associated with the SDP.
stp — Clears all STP statistics associated with the SDP.
VLL Clear Commands

stp

Syntax stp

Context clear>service>statistics>id

Description Clears all spanning tree statistics for the service ID.

statistics

Syntax statistics

Context clear>service

Description This command enables the context to clear statistics for a specific service entity.
VLL Debug Commands

id

Syntax
id service-id

Context
debug>service

Description
This command debugs commands for a specific service.

Parameters
service-id — The ID that uniquely identifies a service.

sap

Syntax
[no] sap sap-id

Context
debug>service>id

Description
This command enables debugging for a particular SAP.

Parameters
sap-id — Specifies the SAP ID.

event-type

Syntax
[no] event-type {arp | config-change |oper-status-change}

Context
debug>service>id

Description
This command enables a particular debugging event type. The no form of the command disables the event type debugging.

Parameters
arp — Displays ARP events.
config-change — Debugs configuration change events.
svc-oper-status-change — Debugs service operational status changes.

Sample Output
A:bksim180# debug service id 1000 sap 1/7/1 event-type arp
DEBUG OUTPUT show on CLI is as follows:
3 2008/11/17 18:13:24.35 UTC MINOR: DEBUG #2001 Base Service 1000 SAP 1/7/1 "Service 1000 SAP 1/7/1:
RX: ARP_REQUEST (0x0001)
hwType : 0x0001
prType : 0x0800
hwLength : 0x06
prLength     : 0x04
srcMac       : 8c:c7:01:07:00:03
destMac      : 00:00:00:00:00:00
srcIp        : 200.1.1.2
destIp       : 200.1.1.1
"  
4 2008/11/17 18:13:24.35 UTC MINOR: DEBUG #2001 Base Service 1000 SAP 1/7/1 "Service  
1000 SAP 1/7/1:  
TX: ARP_RESPONSE (0x0002)  
hwType       : 0x0001  
prType       : 0x0800  
hwLength     : 0x06  
prLength     : 0x04  
srcMac       : 00:03:0a:0a:0a:0a  
destMac      : 8c:c7:01:07:00:03  
srcIp        : 200.1.1.1  
destIp       : 200.1.1.2  
"  
**sdp**

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

**Syntax**  
```
[no] sdp sdp-id:vc-id
```

**Context**  
debug>service>id

**Description**  
This command enables debugging for a particular SDP.

**Parameters**  
`sdp-id` — Specifies the SDP ID.
VPLS Show Commands

egress-label

**Syntax**: `egress-label egress-label1 [egress-label2]`

**Context**: `show>service`

**Description**: This command displays service information using the range of egress labels.

If only the mandatory `egress-label1` parameter is specified, only services using the specified label are displayed.

If both `egress-label1` and `egress-label2` parameters are specified, the services using the range of labels `X` where `egress-label1 <= X <= egress-label2` are displayed.

Use the `show router ldp bindings` command to display dynamic labels.

**Parameters**

- `egress-label1` — The starting egress label value for which to display services using the label range. If only `egress-label1` is specified, services only using `egress-label1` are displayed.
  
  **Values**: `0, 2049 — 131071`

- `egress-label2` — The ending egress label value for which to display services using the label range.
  
  **Default**: The `egress-label1` value.

  **Values**: `2049 — 131071`

fdb-info

**Syntax**: `fdb-info`

**Context**: `show>service`

**Description**: Displays global FDB usage information.

**Output**

**Show FDB-Info Command Output** — The following table describes show FDB-Info command output.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service ID</td>
<td>The value that identifies a service.</td>
</tr>
<tr>
<td>Mac Move</td>
<td>Indicates the administrative state of the MAC movement feature associated with the service.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Mac Move Rate</td>
<td>The maximum rate at which MAC's can be re-learned in this TLS service, before the SAP where the moving MAC was last seen is automatically disabled in order to protect the system against undetected loops or duplicate MAC's. The rate is computed as the maximum number of re-learns allowed in a 5 second interval. The default rate of 10 re-learns per second corresponds to 50 re-learns in a 5 second period.</td>
</tr>
<tr>
<td>Mac Move Timeout</td>
<td>Indicates the time in seconds to wait before a SAP that has been disabled after exceeding the maximum re-learn rate is re-enabled. A value of zero indicates that the SAP will not be automatically re-enabled after being disabled. If after the SAP is re-enabled it is disabled again, the effective retry timeout is doubled in order to avoid thrashing.</td>
</tr>
<tr>
<td>Table Size</td>
<td>The maximum number of learned and static entries allowed in the FDB.</td>
</tr>
<tr>
<td>Total Count</td>
<td>The current number of entries (both learned and static) in the FDB of this service.</td>
</tr>
<tr>
<td>Learned Count</td>
<td>The current number of learned entries in the FDB of this service.</td>
</tr>
<tr>
<td>Static Count</td>
<td>The current number of static entries in the FDB of this service.</td>
</tr>
<tr>
<td>Remote Age</td>
<td>The number of seconds used to age out FDB entries learned on an SDP. These entries correspond to MAC addresses learned on remote SAPs.</td>
</tr>
<tr>
<td>Local Age</td>
<td>The seconds used to age out FDB entries learned on local SAPs.</td>
</tr>
<tr>
<td>High WaterMark</td>
<td>The utilization of the FDB table of this service at which a ‘table full’ alarm is raised by the agent.</td>
</tr>
<tr>
<td>Low WaterMark</td>
<td>The utilization of the FDB table of this service at which a ‘table full’ alarm is cleared by the agent.</td>
</tr>
<tr>
<td>Mac Learning</td>
<td>Specifies whether the MAC learning process is enabled in this service.</td>
</tr>
<tr>
<td>Discard Unknown</td>
<td>Specifies whether frames received with an unknown destination MAC are discarded in this service.</td>
</tr>
<tr>
<td>MAC Aging</td>
<td>Specifies whether the MAC aging process is enabled in this service.</td>
</tr>
<tr>
<td>MAC Pinning</td>
<td>Specifies whether MAC pinning is enabled in this service.</td>
</tr>
<tr>
<td>Relearn Only</td>
<td>When enabled, indicates that either the FDB table of this service is full or that the maximum system-wide number of MAC's supported by the agent has been reached, and thus MAC learning is temporary disabled, and only MAC re-learns can take place.</td>
</tr>
<tr>
<td>Total Service FDB</td>
<td>The current number of service FDBs configured on this node.</td>
</tr>
<tr>
<td>Total FDB Configured Size</td>
<td>The sum of configured FDBs.</td>
</tr>
</tbody>
</table>
### Sample Output

A:7210-SASE# show service fdb-info

```
Forwarding Database(FDB) Information

<table>
<thead>
<tr>
<th>Service Id</th>
<th>Mac Move</th>
<th>Mac Move Rate</th>
<th>Table Size</th>
<th>Total Count</th>
<th>Static Count</th>
<th>Local Age</th>
<th>High WaterMark</th>
<th>Low Watermark</th>
<th>Mac Learning</th>
<th>Discard Unknown</th>
<th>Mac Aging</th>
<th>Relearn Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>8191</td>
<td>675</td>
<td>0</td>
<td>60</td>
<td>5%</td>
<td>1%</td>
<td>Enabl</td>
<td>Dsabl</td>
<td>Enabl</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>8191</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>10%</td>
<td>2%</td>
<td>Enabl</td>
<td>Dsabl</td>
<td>Enabl</td>
<td>False</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>8191</td>
<td>675</td>
<td>0</td>
<td>100</td>
<td>15%</td>
<td>3%</td>
<td>Enabl</td>
<td>Dsabl</td>
<td>Enabl</td>
<td>False</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>8191</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>20%</td>
<td>4%</td>
<td>Enabl</td>
<td>Dsabl</td>
<td>Enabl</td>
<td>False</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>8191</td>
<td>0</td>
<td>0</td>
<td>600</td>
<td>25%</td>
<td>5%</td>
<td>Enabl</td>
<td>Dsabl</td>
<td>Enabl</td>
<td>False</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>8191</td>
<td>675</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Total FDB Entries**

**In Use**

The total number of entries (both learned and static) in use.

---

### Total FDB Entries

The total number of entries (both learned and static) in use.
Learned Count : 675     Static Count : 0
Local Age : 86400
High WaterMark : 30%     Low Watermark : 10%
Mac Learning : Enabl     Discard Unknown : Dsabl
Mac Aging : Enabl     Relearn Only : False

-------------------------------------------------------------------------------
Total Service FDBs : 6
Total FDB Configured Size : 49146
Total FDB Entries In Use : 2025
-------------------------------------------------------------------------------
A:7210-SASE#
fdb-mac

**Syntax**

```
fdb-mac ieee-address [expiry]
```

**Context**

```
show>service
```

**Description**

This command displays the FDB entry for a given MAC address.

**Parameters**

- `ieee-address` — The 48-bit MAC address for which to display the FDB entry in the form `aa:bb:cc:dd:ee:ff` or `aa-bb-cc-dd-ee-ff` where `aa`, `bb`, `cc`, `dd`, `ee` and `ff` are hexadecimal numbers.
- `expiry` — Shows the time until the MAC is aged out.

**Output**

**Show FDB-MAC Command Output** — The following table describes the show FDB MAC command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service ID</td>
<td>The service ID number.</td>
</tr>
<tr>
<td>MAC</td>
<td>The specified MAC address</td>
</tr>
<tr>
<td>Source-Identifier</td>
<td>The location where the MAC is defined.</td>
</tr>
<tr>
<td>Type/Age</td>
<td>Static — FDB entries created by management.</td>
</tr>
<tr>
<td></td>
<td>Learned — Dynamic entries created by the learning process.</td>
</tr>
<tr>
<td></td>
<td>OAM — Entries created by the OAM process.</td>
</tr>
<tr>
<td></td>
<td>H — Host, the entry added by the system for a static configured subscriber host.</td>
</tr>
<tr>
<td></td>
<td>D or DHCP — DHCP-installed MAC. Learned addresses can be temporarily frozen by the DHCP snooping application for the duration of a DHCP lease.</td>
</tr>
<tr>
<td></td>
<td>P — Indicates the MAC is protected by the MAC protection feature.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
*A:ALA-12# show service fdb-mac 00:99:00:00:00:00

Services Using Forwarding Database Mac 00:99:00:00:00:00

<table>
<thead>
<tr>
<th>ServId</th>
<th>MAC</th>
<th>Source-Identifier</th>
<th>Type/Age</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:99:00:00:00:00</td>
<td>sap:1/2/7:0</td>
<td>Static</td>
<td></td>
</tr>
</tbody>
</table>

A:ALA-12#
```
ingress-label

**Syntax**

```
ingress-label start-label [end-label]
```

**Context**

```
show>service
```

**Description**

Display services using the range of ingress labels.

If only the mandatory `start-label` parameter is specified, only services using the specified label are displayed.

If both `start-label` and `end-label` parameters are specified, the services using the range of labels X where `start-label <= X <= end-label` are displayed.

Use the `show router ldp bindings` command to display dynamic labels.

**Parameters**

- **start-label** — The starting ingress label value for which to display services using the label range. If only `start-label` is specified, services only using `start-label` are displayed.
  
  **Values**
  
  0, 2048 — 131071

- **end-label** — The ending ingress label value for which to display services using the label range.
  
  **Default**
  
  The `start-label` value.

  **Values**
  
  2049 — 131071

**Output**

**Show Service Ingress-Label** — The following table describes show service ingress-label output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the SDP is spoke.</td>
</tr>
<tr>
<td>I.Lbl</td>
<td>The ingress label used by the far-end device to send packets to this device in this service by the SDP.</td>
</tr>
<tr>
<td>E.Lbl</td>
<td>The egress label used by this device to send packets to the far-end device in this service by the SDP.</td>
</tr>
<tr>
<td>Number of Bindings Found</td>
<td>The number of SDP bindings within the label range specified.</td>
</tr>
</tbody>
</table>
VPLS Show Commands

sap-using

Syntax

- `sap-using interface [ip-address | ip-int-name]`
- `sap-using [ingress | egress] filter filter-id`
- `sap-using [sap sap-id]`
- `sap-using [ingress] qos-policy qos-policy-id`

Context

- `show>service`

Description

This command displays SAP information.

If no optional parameters are specified, the command displays a summary of all defined SAPs.

The optional parameters restrict output to only SAPs matching the specified properties.

Parameters

- `ingress` — Specifies matching an ingress policy.
- `egress` — Specifies matching an egress policy.
- `filter filter-id` — The ingress or egress filter policy ID for which to display matching SAPs.

Values

- `1 — 65535`

- `sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

Output

Show Service SAP — The following table describes show service SAP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port ID</td>
<td>The ID of the access port where the SAP is defined.</td>
</tr>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>I.QoS</td>
<td>The SAP ingress QoS policy number specified on the ingress SAP.</td>
</tr>
<tr>
<td>I.MAC/IP</td>
<td>The MAC or IP filter policy ID applied to the ingress SAP.</td>
</tr>
<tr>
<td>Egr. Fltr</td>
<td>The filter policy ID applied to the egress SAP.</td>
</tr>
<tr>
<td>A.Pol</td>
<td>The accounting policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Adm</td>
<td>The administrative state of the SAP.</td>
</tr>
<tr>
<td>Opr</td>
<td>The actual state of the SAP.</td>
</tr>
</tbody>
</table>

Sample Output

```
*A:ALU_SIM2>config>service>vpls# show service sap-using
===
Service Access Points
===
PortId SvcId Ing. Ing. Egr. Adm Opr
QoS Fltr Fltr

1/1/1:10 1 1 none 1none Up Up
1/1/3:500.* 1 1 none 1none Up Up
```

Show, Clear, Debug Commands

sdp

Note: SDP commands are not supported by 7210 SAS-M devices configured in uplink mode.

Syntax  
sdp [sdp-id | far-end ip-addr] [detail | keep-alive-history]

Context  
show>service>id

Description  
This command displays information for the SDPs associated with the service. If no optional parameters are specified, a summary of all associated SDPs is displayed.

Parameters  
sdp-id — Displays only information for the specified SDP ID. An SDP is a logical mechanism that ties a far-end 7210 SAS M to a particular service without having to specifically define far end SAPs. Each SDP represents a method to reach a 7210 SAS M router.
  
  Default    All SDPs.
  
  Values    1 — 17407

far-end ip-addr — Displays only SDPs matching with the specified system IP address of the far-end destination 7210 SAS M router for the Service Distribution Point (SDP) that is the termination point for a service.
  
  Default    SDPs with any far-end IP address.

detail — Displays detailed SDP information.

Output  
Show Service SDP — The following table describes show service-id SDP output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sdp Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the SDP is a spoke.</td>
</tr>
<tr>
<td>VC Type</td>
<td>Displays the VC type, ether or vlan.</td>
</tr>
<tr>
<td>VC Tag</td>
<td>Displays the explicit dot1Q value used when encapsulating to the SDP far end.</td>
</tr>
<tr>
<td>I. Lbl</td>
<td>The VC label used by the far-end device to send packets to this device in this service by the SDP.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The operating path MTU of the SDP is equal to the admin path MTU (when one is set) or the dynamically computed tunnel MTU, when no admin path MTU is set (the default case.)</td>
</tr>
<tr>
<td><strong>Label</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Far End</td>
<td>Specifies the IP address of the remote end of the MPLS tunnel defined by this SDP.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Specifies the type of delivery used by the SDP: MPLS.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of this SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of this SDP.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by the SDP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent change to the SDP.</td>
</tr>
<tr>
<td>Signaling</td>
<td>Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the Keepalive process.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the Keepalive process.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this SDP.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP echo request messages that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this SDP.</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state.</td>
</tr>
<tr>
<td>I. Fwd. Pkts.</td>
<td>Specifies the number of forwarded ingress packets.</td>
</tr>
<tr>
<td>I. Dro. Pkts.</td>
<td>Specifies the number of dropped ingress packets.</td>
</tr>
<tr>
<td>E. Fwd. Pkts.</td>
<td>Specifies the number of forwarded egress packets.</td>
</tr>
<tr>
<td>E. Fwd. Octets</td>
<td>Specifies the number of forwarded egress octets.</td>
</tr>
<tr>
<td>Associated LSP List</td>
<td>When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the Far End field. If the SDP type is GRE, then the following message displays: SDP Delivery Mechanism is not MPLS.</td>
</tr>
</tbody>
</table>
sdp-using

Syntax
sdp-using [sdp-id[:vc-id] | far-end ip-address]

Context
show>service

Description
This command displays services using SDP or far-end address options.

Parameters
sdp-id — Displays only services bound to the specified SDP ID.

Values
1 — 17407

vc-id — The virtual circuit identifier.

Values
1 — 4294967295

far-end ip-address — Displays only services matching with the specified far-end IP address.

Default
Services with any far-end IP address.

Output
Show Service SDP Using — The following table describes service-using output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sdp ID</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the type of SDP: Spoke.</td>
</tr>
<tr>
<td>Far End</td>
<td>The far-end address of the SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in this service by this SDP.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-1# show service sdp-using 300

Service Destination Point (Sdp Id : 300)

<table>
<thead>
<tr>
<th>SvcId</th>
<th>SdpId</th>
<th>Type</th>
<th>Far End</th>
<th>Opr State I.Label</th>
<th>E.Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>300:2</td>
<td>Spok</td>
<td>10.0.0.13</td>
<td>Up</td>
<td>131070</td>
</tr>
</tbody>
</table>

Number of SDPs : 51

*A:ALA-1#
service-using

Syntax

service-using [epipe] [vpls] [mirror] [customer customer-id]

Context

show>service

Description

This command displays the services matching certain usage properties. If no optional parameters are specified, all services defined on the system are displayed.

Parameters

epipe — Displays matching Epipe services.
vpls — Displays matching VPLS instances.
mirror — Displays matching mirror services.
customer customer-id — Displays services only associated with the specified customer ID.

Default

Services associated with a customer.

Values

1 — 2147483647

Output

Show Service Service-Using — The following table describes show service service-using output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the service type configured for the service ID.</td>
</tr>
<tr>
<td>Adm</td>
<td>The administrative state of the service.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the service.</td>
</tr>
<tr>
<td>CustomerID</td>
<td>The ID of the customer who owns this service.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this service.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA-12# show service service-using customer 10

==============================================================================
<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
<tr>
<td>100</td>
<td>IES</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
<tr>
<td>300</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>10</td>
<td>09/05/2006 13:24:15</td>
</tr>
</tbody>
</table>

Matching Services : 3

*A:ALA-12#

*A:ALA-12# show service service-using epipe

==============================================================================
Show, Clear, Debug Commands

### Services [epipe]

<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>09/22/2006 23:05:58</td>
</tr>
<tr>
<td>7</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>09/22/2006 23:05:58</td>
</tr>
<tr>
<td>8</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>3</td>
<td>09/22/2006 23:05:58</td>
</tr>
<tr>
<td>103</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>09/22/2006 23:05:58</td>
</tr>
</tbody>
</table>

Matching Services : 4

```
*A:ALA-12#
*A:ALA-14# show service service-using
```

### Services

<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>mVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>11</td>
<td>mVPLS</td>
<td>Down</td>
<td>Down</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>100</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>101</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
<tr>
<td>102</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>10/26/2006 15:44:57</td>
</tr>
</tbody>
</table>

Matching Services : 5

```
*A:ALA-14#
```

```
A:Dut-A>config>service# show service service-using
```

### Services

<table>
<thead>
<tr>
<th>ServiceId</th>
<th>Type</th>
<th>Adm</th>
<th>Opr</th>
<th>CustomerId</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>101</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>102</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>103</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>104</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>105</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>201</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>203</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>204</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>205</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>300</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>301</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>302</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>303</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>304</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>305</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>401</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>402</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>403</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>404</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
<tr>
<td>405</td>
<td>VFLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:13</td>
</tr>
</tbody>
</table>
VPLS Show Commands

Matching Services : 69

A:Dut-A>config>service#

---

VPLS Show Commands

<table>
<thead>
<tr>
<th>Service</th>
<th>Type</th>
<th>Status</th>
<th>Status</th>
<th>Count</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>511</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>513</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>515</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>517</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>519</td>
<td>uVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>601</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>602</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>603</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>604</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>605</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>701</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>702</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>703</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>704</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>801</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>802</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>803</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>804</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>805</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>901</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>902</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>903</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>904</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>905</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>906</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>907</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>908</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>909</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>910</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1101</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1102</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1103</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1104</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1105</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1501</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1502</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1503</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1504</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>1505</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>2001</td>
<td>Mirror</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>2002</td>
<td>Mirror</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>2011</td>
<td>Epipe</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>2012</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>3000</td>
<td>mVPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>4001</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
<tr>
<td>4002</td>
<td>VPLS</td>
<td>Up</td>
<td>Up</td>
<td>1</td>
<td>07/07/2009 14:39:1</td>
</tr>
</tbody>
</table>

----------------------------------------------

Matching Services : 69
----------------------------------------------

A:Dut-A>config>service#
id

Syntax
id service-id

Context
show>service

Description
This command displays information for a particular service-id.

Parameters
service-id — The unique service identification number that identifies the service in the service domain.

Values
service-id: 1 — 214748364
svc-name: A string up to 64 characters in length.

Parameters
all — Display detailed information about the service.
base — Display basic service information.
endpoint — Display service endpoint information.
fdb — Display FDB entries.
lables — Display labels being used by this service.
msrp-configuration — Display MSTP information.
sap — Display SAPs associated to the service.
sdp — Display SDPs associated with the service.
stp — Display STP information.

all

Syntax
all

Context
show>service>id

Description
This command displays detailed information for all aspects of the service.

Output
Show service ID all output — The following table describes the command output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>VPN Id</td>
<td>The number which identifies the VPN.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Specifies the type of service.</td>
</tr>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs specified for this service.</td>
</tr>
<tr>
<td>SDP Bind Count</td>
<td>The number of SDPs bound to this service.</td>
</tr>
<tr>
<td>Split Horizon Group</td>
<td>Name of the split horizon group for this service.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the split horizon group.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent management-initiated change to this</td>
</tr>
<tr>
<td></td>
<td>split horizon group.</td>
</tr>
<tr>
<td>SDP Id</td>
<td>The SDP identifier.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether this service SDP binding is a spoke or a mesh.</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted</td>
</tr>
<tr>
<td></td>
<td>through this SDP to the far-end router, without requiring the packet to</td>
</tr>
<tr>
<td></td>
<td>be fragmented.</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted</td>
</tr>
<tr>
<td></td>
<td>through this SDP to the far-end router, without requiring the packet to</td>
</tr>
<tr>
<td></td>
<td>be fragmented.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Specifies the type of delivery used by the SDP: GRE or MPLS.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of this SDP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of this SDP.</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>The label used by the far-end device to send packets to this device in</td>
</tr>
<tr>
<td></td>
<td>this service by this SDP.</td>
</tr>
<tr>
<td>Egress Label</td>
<td>The label used by this device to send packets to the far-end device in</td>
</tr>
<tr>
<td></td>
<td>this service by this SDP.</td>
</tr>
<tr>
<td>Ingress Filter</td>
<td>The ID of the ingress filter policy.</td>
</tr>
<tr>
<td>Egress Filter</td>
<td>The ID of the egress filter policy.</td>
</tr>
<tr>
<td>Far End</td>
<td>Specifies the IP address of the remote end of the GRE or MPLS tunnel</td>
</tr>
<tr>
<td></td>
<td>defined by this SDP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the most recent change to this customer.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Specifies how often the SDP echo request messages are transmitted on this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>Specifies the length of the SDP echo request messages transmitted on this</td>
</tr>
<tr>
<td></td>
<td>SDP.</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>Specifies the maximum number of consecutive SDP Echo Request messages</td>
</tr>
<tr>
<td></td>
<td>that can be unacknowledged before the keepalive protocol reports a fault.</td>
</tr>
</tbody>
</table>
### Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold Down Time</td>
<td>Specifies the amount of time to wait before the keepalive operating status is eligible to enter the alive state.</td>
</tr>
<tr>
<td>SDP Delivery Mechanism</td>
<td>When the SDP type is MPLS, a list of LSPs used to reach the far-end router displays. All the LSPs in the list must terminate at the IP address specified in the Far End field. If the SDP type is GRE, then the following message displays: SDP Delivery Mechanism is not MPLS</td>
</tr>
<tr>
<td>Number of SDPs</td>
<td>The total number SDPs applied to this service ID.</td>
</tr>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Port Id</td>
<td>The ID of the access port where this SAP is defined.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the SAP.</td>
</tr>
<tr>
<td>Encap Value</td>
<td>The value of the label used to identify this SAP on the access port.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the SAP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operating state of the SAP.</td>
</tr>
<tr>
<td>Last Changed</td>
<td>The date and time of the last change.</td>
</tr>
<tr>
<td>Admin MTU</td>
<td>The desired largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Oper MTU</td>
<td>The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Ingress qos-policy</td>
<td>The SAP ingress QoS policy ID.</td>
</tr>
<tr>
<td>Ingress Filter-Id</td>
<td>The SAP ingress filter policy ID.</td>
</tr>
<tr>
<td>Egress Filter-Id</td>
<td>The SAP egress filter policy ID.</td>
</tr>
<tr>
<td>Multi Svc Site</td>
<td>Indicates the multi-service site that the SAP is a member.</td>
</tr>
<tr>
<td>Ingress sched-policy</td>
<td>Indicates the ingress QoS scheduler for the SAP.</td>
</tr>
<tr>
<td>Egress sched-policy</td>
<td>Indicates the egress QoS scheduler for the SAP.</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>Indicates the accounting policy applied to the SAP.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether accounting statistics are collected on the SAP.</td>
</tr>
<tr>
<td>Ingress Stats</td>
<td>The number of received packets/octets for this SAP.</td>
</tr>
<tr>
<td>Egress Stats</td>
<td>The number of packets/octets forwarded out of this SAP.</td>
</tr>
<tr>
<td>Ingress Meter 1</td>
<td>The index of the ingress QoS meter of this SAP.</td>
</tr>
</tbody>
</table>
VPLS Show Commands

Sample Output

A:Dut-A>config>service# show service id 305 all

Service Detailed Information

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority offered</td>
<td>The packets or octets count of the high priority traffic for the SAP.</td>
</tr>
<tr>
<td>For.InProf</td>
<td>The packets or octets count of the in-profile forwarded traffic for the SAP.</td>
</tr>
<tr>
<td>For.OutProf</td>
<td>The number of out of profile traffic packets/octets forwarded.</td>
</tr>
<tr>
<td>Managed by Service</td>
<td>Specifies the service-id of the management VPLS managing this SAP.</td>
</tr>
<tr>
<td>Managed by MSTI</td>
<td>Specifies the MST instance inside the management VPLS managing this SAP.</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>The bridge ID of the sender of the last BPDU received on this SAP.</td>
</tr>
<tr>
<td>Managed by SAP</td>
<td>Specifies the sap-id inside the management VPLS managing this SAP.</td>
</tr>
<tr>
<td>Prune state</td>
<td>Specifies the STP state inherited from the management VPLS.</td>
</tr>
<tr>
<td>Managed by Service</td>
<td>Specifies the service-id of the management VPLS managing this spoke SDP.</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>The bridge ID of the sender of the last BPDU received on this SAP.</td>
</tr>
<tr>
<td>Managed by Spoke</td>
<td>Specifies the sap-id inside the management VPLS managing this spoke SDP.</td>
</tr>
<tr>
<td>Prune state</td>
<td>Specifies the STP state inherited from the management VPLS.</td>
</tr>
</tbody>
</table>

7210 SAS M Services Guide  Page 877
Far End : 10.20.1.2  Delivery : MPLS

Admin State : Up  Oper State : Up
Acct. Pol : None  Collect Stats : Disabled
Managed by Service : 300  Prune State : Not Pruned
Managed by Spoke : 1217:300
Ingress Label : 130506  Egress Label : 130516
Admin ControlWord : Not Preferred  Oper ControlWord : False
Last Status Change : 07/07/2009 18:49:40  Signaling : TLDP
Last Mgmt Change : 07/07/2009 14:39:14
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Max Nbr of MAC Addr: No Limit  Total MAC Addr : 0
Learned MAC Addr : 0  Static MAC Addr : 0
MAC Learning : Enabled  Discard Unkwn Srce: Disabled
MAC Aging : Enabled
L2PT Termination : Disabled  BPDU Translation : Disabled
MAC Pinning : Disabled
Ignore Standby Sig : False  Block On Mesh Fail: False

KeepAlive Information :  
Admin State : Enabled  Oper State : Alive
Hello Time : 10  Hello Msg Len : 0
Max Drop Count : 3  Hold Down Time : 10

Statistics :  
E. Fwd. Pkts. : 65165676  E. Fwd. Octets : 39462444830

Associated LSP LIST :  
Lsp Name : A_B_17
Admin State : Up  Oper State : Up
Time Since Last Tr*: 05h24m26s

Stp Service Destination Point specifics

Mac Move : Blockable
Stp Admin State : Down  Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A  Port State : Forwarding
Port Number : 2049  Port Priority : 128
Port Path Cost : 10  Auto Edge : Enabled
Admin Edge : Disabled  Oper Edge : N/A
Link Type : Pt-pt  BPDU Encap : Dot1d
Root Guard : Disabled  Active Protocol : N/A
Last BFPU from : N/A
Designated Bridge : N/A  Designated Port Id: 0
Fwd Transitions : 0  Bad BPDUUs rcvd : 0
Cfg BPDUUs rcvd : 0  Cfg BPDUUs tx : 0
TCN BPDUUs rcvd : 0  TCN BPDUUs tx : 0
RST BPDUUs rcvd : 0  RST BPDUUs tx : 0

Sdp Id 1317:305 -(10.20.1.3)

Description : Default sdp description
SDP Id : 1317:305  Type : Spoke
VC Type : Ether  VC Tag : n/a
Admin Path MTU : 0  Oper Path MTU : 9186
Far End : 10.20.1.3  Delivery : MPLS

Admin State : Up  Oper State : Up
Acct. Pol : None  Collect Stats : Disabled
Managed by Service : 300  Prune State : Not Pruned
Managed by Spoke : 1317:300
Ingress Label : 130454  Egress Label : 130591
Admin ControlWord : Not Preferred  Oper ControlWord : False
Last Mgmt Change : 07/07/2009 14:39:14
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Max Nbr of MAC Addr: No Limit  Total MAC Addr : 0
Learned MAC Addr : 0  Static MAC Addr : 0
MAC Learning : Enabled  Discard Unkw Srce: Disabled
MAC Aging : Enabled
L2PT Termination : Disabled  BPDU Translation : Disabled
MAC Pinning : Disabled

KeepAlive Information :
Admin State : Enabled  Oper State : Alive
Hello Time : 10  Hello Msg Len : 0
Max Drop Count : 3  Hold Down Time : 10

Statistics :
E. Fwd. Pkts. : 65466629  E. Fwd. Octets : 39665246044

Associated LSP LIST :
Lsp Name : A_C_17  Oper State : Up
Time Since Last Tr*: 05h24m23s

-------------------------------------------------------------------------------
Stp Service Destination Point specifics
-------------------------------------------------------------------------------
Mac Move : Blockable
Stp Admin State : Down  Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A  Port State : Forwarding
Port Number : 2050  Port Priority : 128
Port Path Cost : 10  Auto Edge : Enabled
Admin Edge : Disabled  Oper Edge : N/A
Link Type : Pt-pt  BPDU Encap : Dot1d
Root Guard : Disabled  Active Protocol : N/A
Last BPDU from : N/A
Designated Bridge : N/A  Designated Port Id: 0
Fwd Transitions : 0  Bad BPDU from : 0
Cfg BPDUs rcvd : 0  Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0  TCN BPDUs tx : 0
RST BPDUs rcvd : 0  RST BPDUs tx : 0

-------------------------------------------------------------------------------
Sdp Id 1417:305 -(10.20.1.4)
-------------------------------------------------------------------------------
Description : Default sdp description
SDP Id : 1417:305  Type : Spoke
VC Type : Ether  VC Tag : n/a
Admin Path MTU        : 0        Oper Path MTU    : 9186
Far End               : 10.20.1.4  Delivery         : MPLS

Admin State           : Up        Oper State      : Up
Acct. Pol             : None      Collect Stats : Disabled
Managed by Service    : 300       Prune State    : Not Pruned
Managed by Spoke      : 1417:300
Ingress Label         : 130428    Egress Label   : 131015
Admin ControlWord     : Not Preferred Oper ControlWord : False
Last Status Change    : 07/07/2009 18:13:42  Signaling      : TLDP
Last Mgmt Change      : 07/07/2009 14:39:14
Flags                 : None
Peer Pw Bits          : None
Peer Fault Ip         : None
Max Nbr of MAC Addr  : No Limit
Learned MAC Addr      : 250
MAC Learning          : Enabled
MAC Aging             : Enabled
L2PT Termination      : Disabled
MAC Pinning           : Disabled

KeepAlive Information :
Admin State           : Enabled
Hello Time            : 10
Max Drop Count        : 3

Statistics :
I. Fwd. Pkts.         : 97516328
I. Fwd. Octs.         : 47531982212
E. Fwd. Pkts.         : 166191635
E. Fwd. Octets        : 67215031404

Associated LSP LIST :
Lsp Name              : A_D_17
Admin State           : Up
Time Since Last Tr   : 09h33m18s

Stp Service Destination Point specifics
Stp Admin State       : Down
Core Connectivity     : Down
Port Role             : N/A
Port Number           : 2051
Port Path Cost        : 10
Admin Edge            : Disabled
Link Type             : Pt-pt
Root Guard            : Disabled
Last BPDU from        : N/A
Designated Bridge     : N/A

Fwd Transitions       : 1
Cfg BPDDUs rcvd       : 0
TCN BPDDUs rcvd       : 0
RST BPDDUs rcvd       : 0

Sdp Id 1617:305 -(10.20.1.6)
Description : Default sdp description
SDP Id          : 1617:305
Type            : Spoke
VC Type         : Ether
VC Tag          : n/a
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Far End</td>
<td>10.20.1.6</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9186</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>None</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Disabled</td>
</tr>
<tr>
<td>Managed by Service</td>
<td>300</td>
</tr>
<tr>
<td>Prune State</td>
<td>Pruned</td>
</tr>
<tr>
<td>Managed by Spoke</td>
<td>1617:300</td>
</tr>
<tr>
<td>Ingress Label</td>
<td>131060</td>
</tr>
<tr>
<td>Egress Label</td>
<td>130843</td>
</tr>
<tr>
<td>Admin ControlWord</td>
<td>Not Preferred</td>
</tr>
<tr>
<td>Oper ControlWord</td>
<td>False</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>07/07/2009 14:40:52</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>07/07/2009 14:39:14</td>
</tr>
<tr>
<td>Flags</td>
<td>None</td>
</tr>
<tr>
<td>Peer Pw Bits</td>
<td>None</td>
</tr>
<tr>
<td>Peer Fault Ip</td>
<td>None</td>
</tr>
<tr>
<td>Max Nbr of MAC Addr</td>
<td>No Limit</td>
</tr>
<tr>
<td>Total MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Learned MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>Static MAC Addr</td>
<td>0</td>
</tr>
<tr>
<td>MAC Learning</td>
<td>Enabled</td>
</tr>
<tr>
<td>Discard Unkwn Srce</td>
<td>Disabled</td>
</tr>
<tr>
<td>MAC Aging</td>
<td>Enabled</td>
</tr>
<tr>
<td>BFDU Translation</td>
<td>Disabled</td>
</tr>
<tr>
<td>L2PT Termination</td>
<td>Disabled</td>
</tr>
<tr>
<td>MAC Pinning</td>
<td>Disabled</td>
</tr>
<tr>
<td>KeepAlive Information</td>
<td></td>
</tr>
<tr>
<td>Admin State</td>
<td>Enabled</td>
</tr>
<tr>
<td>Oper State</td>
<td>Alive</td>
</tr>
<tr>
<td>Hello Time</td>
<td>10</td>
</tr>
<tr>
<td>Hello Msg Len</td>
<td>0</td>
</tr>
<tr>
<td>Max Drop Count</td>
<td>3</td>
</tr>
<tr>
<td>Hold Down Time</td>
<td>10</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>I. Fwd. Pkts.</td>
<td>12889</td>
</tr>
<tr>
<td>I. Fwd. Octs.</td>
<td>6000654</td>
</tr>
<tr>
<td>E. Fwd. Pkts.</td>
<td>11999</td>
</tr>
<tr>
<td>E. Fwd. Octets</td>
<td>5208494</td>
</tr>
<tr>
<td>Associated LSP LIST</td>
<td></td>
</tr>
<tr>
<td>Lsp Name</td>
<td>A_F_17</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up</td>
</tr>
<tr>
<td>Oper State</td>
<td>Up</td>
</tr>
<tr>
<td>Time Since Last Tr*</td>
<td>09h33m18s</td>
</tr>
<tr>
<td>Stp Service Destination Point specifics</td>
<td></td>
</tr>
<tr>
<td>Mac Move</td>
<td>Blockable</td>
</tr>
<tr>
<td>Stp Admin State</td>
<td>Down</td>
</tr>
<tr>
<td>Stp Oper State</td>
<td>Down</td>
</tr>
<tr>
<td>Core Connectivity</td>
<td>Down</td>
</tr>
<tr>
<td>Port Role</td>
<td>N/A</td>
</tr>
<tr>
<td>Port State</td>
<td>Discarding</td>
</tr>
<tr>
<td>Port Number</td>
<td>2052</td>
</tr>
<tr>
<td>Port Priority</td>
<td>128</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Auto Edge</td>
<td>Enabled</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Oper Edge</td>
<td>N/A</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
</tr>
<tr>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>N/A</td>
</tr>
<tr>
<td>Last BFDU from</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Bridge</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Port Id</td>
<td>0</td>
</tr>
<tr>
<td>Fwd Transitions</td>
<td>0</td>
</tr>
<tr>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>Number of SDPs</td>
<td>4</td>
</tr>
<tr>
<td>Service Access Points</td>
<td></td>
</tr>
<tr>
<td>SAP 1/1/16:305</td>
<td></td>
</tr>
</tbody>
</table>
Service Id : 305
SAP : 1/1/16:305 Encap : q-tag
Dot1Q Ethertype : 0x8100 QinQ Ethertype : 0x8100
Description : Default sap description for service id 305

Admin State : Up Oper State : Up
Flags : None
Last Status Change : 07/07/2009 14:39:57
Last Mgmt Change : 07/07/2009 14:39:14
Max Nbr of MAC Addr : No Limit Total MAC Addr : 0
Learned MAC Addr : 0 Static MAC Addr : 0
Admin MTU : 9212 Oper MTU : 9212
Ingress qos-policy : 10 Egr IP Fltr-Id : n/a
Ingr IP Fltr-Id : n/a Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : 305 Egr Mac Fltr-Id : n/a
tod-suite : None
Egr Agg Rate Limit : max
Mac Learning : Enabled Discard Unkwn Srce : Disabled
Mac Aging : Enabled Mac Pinning : Disabled
L2PT Termination : Disabled BPDU Translation : Disabled
Acct. Pol : None Collect Stats : Disabled

Stp Service Access Point specifics

Mac Move : Blockable Stp Oper State : Up
Stp Admin State : Up
Core Connectivity : Down Port State : Forwarding
Port Role : Designated Port Priority : 128
Port Number : 2048 Auto Edge : Enabled
Port Path Cost : 10 Admin Edge : Disabled
Admin Edge : Disabled Oper Edge : False
Link Type : Pt-pt BPDU Encap : Dot1d
Root Guard : Disabled Active Protocol : Rstp
Last BPDU from : 80:04.00:0a:1b:2c:3d:4e
CIST Desig Bridge : This Bridge Designated Port : 34816
Forward transitions : 5 Bad BPDU's rcvd : 0
Cfg BPDU's rcvd : 0 Cfg BPDU's tx : 0
TCN BPDU's rcvd : 0 TCN BPDU's tx : 0
RST BPDU's rcvd : 29 RST BPDU's tx : 17610
MST BPDU's rcvd : 0 MST BPDU's tx : 0

Sap Statistics

Ingress Stats: 66655 39685976
Egress Stats: 65864342 38651746348

Sap per Meter stats

Ingress Meter 1 (Unicast)
For. InProf : 0
For. OutProf : 0

Ingress Meter 2 (Unicast)
For. InProf : 0
For. OutProf : 0
### Ingress Meter 3 (Unicast)
| For. InProf | 0 |
| For. OutProf | 0 |

### Ingress Meter 4 (Unicast)
| For. InProf | 11406 |
| For. OutProf | 12575 |

### Ingress Meter 11 (Multipoint)
| For. InProf | 0 |
| For. OutProf | 0 |

### Ingress Meter 12 (Multipoint)
| For. InProf | 3108 |
| For. OutProf | 2235 |

### Ingress Meter 13 (Multipoint)
| For. InProf | 0 |
| For. OutProf | 0 |

### Ingress Meter 14 (Multipoint)
| For. InProf | 8772 |
| For. OutProf | 4840 |

---

#### SAP lag-4:305

Service Id	305
SAP	lag-4:305
Encap	q-tag
Description	Default sap description for service id 305

Admin State	Up
Flags	None
Last Status Change	07/07/2009 14:39:57
Last Mgmt Change	07/07/2009 14:39:14
Max Nbr of MAC Addr	No Limit
Learned MAC Addr	125
Admin MTU	9212
Ingress qos-policy	10
Ingr IP Fltr-Id	n/a
Ingr Mac Fltr-Id	305
tod-suite	None
Egr Agg Rate Limit	max
Mac Learning	Enabled
Mac Aging	Enabled
L2PT Termination	Disabled
Acct. Pol	None
Stp Service Access Point specifics	

Core Connectivity	Down
Port Role	Designated
Port Number	2000
Port Path Cost	10
Admin Edge	Disabled
Link Type	Pt-pt
Root Guard	Disabled
Last BFDU from	80:04:00:0:1b:2c:3d:4e

---

### SAP lag-4:305

Service Id	305
SAP	lag-4:305
Encap	q-tag
Description	Default sap description for service id 305

Admin State	Up
Flags	None
Last Status Change	07/07/2009 14:39:57
Last Mgmt Change	07/07/2009 14:39:14
Max Nbr of MAC Addr	No Limit
Learned MAC Addr	125
Admin MTU	9212
Ingress qos-policy	10
Ingr IP Fltr-Id	n/a
Ingr Mac Fltr-Id	305
tod-suite	None
Egr Agg Rate Limit	max
Mac Learning	Enabled
Mac Aging	Enabled
L2PT Termination	Disabled
Acct. Pol	None
Stp Service Access Point specifics	

Core Connectivity	Down
Port Role	Designated
Port Number	2000
Port Path Cost	10
Admin Edge	Disabled
Link Type	Pt-pt
Root Guard	Disabled
Last BFDU from	80:04:00:0:1b:2c:3d:4e
CIST Desig Bridge : This Bridge     Designated Port : 34768

Forward transitions: 4     Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0     Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0     TCN BPDUs tx : 0
RST BPDUs rcvd : 23     RST BPDUs tx : 17578
MST BPDUs rcvd : 0     MST BPDUs tx : 0

Sap Statistics

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Stats:</td>
<td>190824363</td>
</tr>
<tr>
<td>Egress Stats:</td>
<td>97572636</td>
</tr>
</tbody>
</table>

Sap per Meter stats

<table>
<thead>
<tr>
<th>Ingress Meter 1 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 2 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 3 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 4 (Unicast)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>56963244</td>
<td>20851041536</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>59512115</td>
<td>19403302144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 11 (Multipoint)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 12 (Multipoint)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>12922550</td>
<td>12922550000</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>9452800</td>
<td>9452800000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 13 (Multipoint)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Meter 14 (Multipoint)</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>43268112</td>
<td>21539479708</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>6788456</td>
<td>2546422464</td>
</tr>
</tbody>
</table>

VPLS Spanning Tree Information

<table>
<thead>
<tr>
<th>VPLS oper state</th>
<th>Up</th>
<th>Core Connectivity</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stp Admin State</td>
<td>Up</td>
<td>Stp Oper State</td>
<td>Up</td>
</tr>
<tr>
<td>Mode</td>
<td>Rstp</td>
<td>Vcp Active Prot.</td>
<td>N/A</td>
</tr>
<tr>
<td>Bridge Id</td>
<td>00:0d:00:20:ab:cd:00:01</td>
<td>Bridge Instance Id: 13</td>
<td></td>
</tr>
<tr>
<td>Bridge Priority</td>
<td>0</td>
<td>Tx Hold Count</td>
<td>6</td>
</tr>
<tr>
<td>Topology Change</td>
<td>Inactive</td>
<td>Bridge Hello Time</td>
<td>2</td>
</tr>
<tr>
<td>Last Top. Change</td>
<td>0d 05:21:37</td>
<td>Bridge Max Age</td>
<td>20</td>
</tr>
<tr>
<td>Top. Change Count</td>
<td>5</td>
<td>Bridge Fwd Delay</td>
<td>15</td>
</tr>
<tr>
<td>MST region revision: 0</td>
<td>Bridge max hops</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
MST region name

Root Bridge : This Bridge
Primary Bridge : N/A

Root Path Cost : 0  Root Forward Delay: 15
Rcvd Hello Time : 2  Root Max Age : 20
Root Priority : 13  Root Port : N/A

-------------------------------------------------------------

Forwarding Database specifics

Service Id : 305  Mac Move : Disabled
Mac Move Rate : 2  Mac Move Timeout : 10
Table Size : 500  Total Count : 375
Learned Count : 375  Static Count : 0
Remote Age : 60  Local Age : 60
High WaterMark : 95%  Low Watermark : 90%
Mac Learning : Enabl  Discard Unknown : Disabl
Mac Aging : Enabl  Relearn Only : False

A:Dut-A>config>service#

Sample output for 7210 SAS-M in access uplink mode:
*A:SAS-M-A0-2>show>service>id# all

Service Detailed Information

Service Id : 1  Vpn Id : 0
Service Type : VPLS
Description : (Not Specified)
Customer Id : 1
Last Status Change : 04/29/2001 06:59:15
Last Mgmt Change : 04/28/2001 03:03:03
Admin State : Up  Oper State : Up
MTU : 1514
MTU Check : Enabled
SAP Count : 2  SDP Bind Count : 0
Snd Flush on Fail : Disabled
Uplink Type: : MPLS

Service Destination Points(SDPs)

No Matching Entries

Service Access Points

SAP 1/1/1:10.*

Service Id : 1
SAP : 1/1/1:10.*  Encap : qinq
QinQ Dot1p : Default
Description : (Not Specified)
Admin State : Up  Oper State : Up
Flags : None
Last Status Change : 04/29/2001 06:59:15
Last Mgmt Change : 04/28/2001 03:09:30
Dot1q Ethertype : 0x8100  QinQ Ethertype : 0x8100
Max Nbr of MAC Addr: No Limit
Learned MAC Addr: 0
Admin MTU: 1522
Ingr IP Fltr-Id: n/a
Ingr Mac Fltr-Id: 1
tod-suite: None
Mac Learning: Enabled
Mac Aging: Enabled
BPU Translation: Disabled
L2PT Termination: Disabled
Acct. Pol: None
Collect Stats: Disabled

Max Nbr of MAC Addr: No Limit
Learned MAC Addr: 0
Static MAC Addr: 0
Oper MTU: 1522
Egr IP Fltr-Id: n/a
Egr Mac Fltr-Id: n/a
Discard Unkwn Srce: Disabled
Mac Pinning: Disabled

-------------------------------------------------------------------------------
Stp Service Access Point specifics
-------------------------------------------------------------------------------
Stp Admin State: Up
Stp Oper State: Down
Core Connectivity: Down
Port Role: N/A
Port Number: 2048
Port Path Cost: 10
Admin Edge: Disabled
Oper Edge: N/A
Link Type: Pt-pt
BPDU Encap: Dot1d
Root Guard: Disabled
Active Protocol: N/A
Auto Edge: Enabled
Oper Edge: N/A
Port Role: N/A
Port State: Forwarding
Port Priority: 128
Admin Edge: Disabled
Oper Edge: N/A
Port Path Cost: 10
Auto Edge: Enabled
Root Guard: Disabled
Active Protocol: N/A
Port Role: N/A
Port State: Forwarding
Form Transition: 0
Bad BPDUs rcvd: 0
Cfg BPDUs rcvd: 0
Cfg BPDUs tx: 0
TCN BPDUs tx: 0
RST BPDUs tx: 0
MST BPDUs tx: 0

ARP host
-------------------------------------------------------------------------------
Admin State: outOfService
Host Limit: 1
Min Auth Interval: 15 minutes

QOS
-------------------------------------------------------------------------------
Ingress qos-policy: 1
Aggregate Policer
rate: n/a
burst: n/a

Ingress QoS Classifier Usage
-------------------------------------------------------------------------------
Classifiers Allocated: 4
Classifiers Used: 2
Meters Allocated: 2
Meters Used: 2

Sap Statistics
-------------------------------------------------------------------------------
Ingress Stats: 142761481188
Egress Stats: 0
Extra-Tag Drop Stats: n/a
Sap per Meter stats

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Meter 1 (Unicast)</td>
<td></td>
</tr>
<tr>
<td>For. InProf</td>
<td>17</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>0</td>
</tr>
</tbody>
</table>

Ingress Meter 11 (Multipoint)

<table>
<thead>
<tr>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. InProf</td>
<td>61</td>
</tr>
<tr>
<td>For. OutProf</td>
<td>142761547917</td>
</tr>
</tbody>
</table>

SAP 1/1/2:10.*

<table>
<thead>
<tr>
<th>Service Id</th>
<th>SAP</th>
<th>Encap</th>
<th>QinQ Dot1p</th>
<th>Description</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Flags</th>
<th>Last Status Change</th>
<th>Last Mgmt Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1/2:10.*</td>
<td>qinq</td>
<td>Default</td>
<td>(Not Specified)</td>
<td>Up</td>
<td>Up</td>
<td>None</td>
<td>04/29/2001 07:03:49</td>
<td>04/28/2001 03:02:15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max Nbr of MAC Addr</th>
<th>Total MAC Addr</th>
<th>Learned MAC Addr</th>
<th>Static MAC Addr</th>
<th>Admin MTU</th>
<th>Oper MTU</th>
<th>Ingr IP Fltr-Id</th>
<th>Egr IP Fltr-Id</th>
<th>Ingr Mac Fltr-Id</th>
<th>Egr Mac Fltr-Id</th>
<th>tod-suite</th>
<th>Mac Learning</th>
<th>Discard Unkwn Srce</th>
<th>Mac Aging</th>
<th>BPDU Translation</th>
<th>L2PT Termination</th>
<th>Acct. Pol</th>
<th>Collect Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1522</td>
<td>1522</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>None</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>None</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Stp Service Access Point specifics

<table>
<thead>
<tr>
<th>Stp Admin State</th>
<th>Stp Oper State</th>
<th>Core Connectivity</th>
<th>Port Role</th>
<th>Port Number</th>
<th>Port Path Cost</th>
<th>Port State</th>
<th>Port Priority</th>
<th>Link Type</th>
<th>Root Guard</th>
<th>Last BFDU from</th>
<th>CIST Desig Bridge</th>
<th>Forward transitions</th>
<th>Cfg BFDUs</th>
<th>TCN BFDUs</th>
<th>RST BFDUs</th>
<th>MST BFDUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Down</td>
<td>Down</td>
<td>N/A</td>
<td>2049</td>
<td>10</td>
<td>Forwarding</td>
<td>128</td>
<td>Pt-pt</td>
<td>Disabled</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

ARP host

Admin State : outOfService
Host Limit : 1
Min Auth Interval : 15 minutes

QOS

Ingress qos-policy : 1

Aggregate Policer

rate : n/a
burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4
Classifiers Used: 2
Meters Allocated : 2
Meters Used : 2

Sap Statistics

Ingress Stats: 0 0
Egress Stats: 535194841 36393249188
Extra-Tag Drop Stats: n/a n/a

Sap per Meter stats

Ingress Meter 1 (Unicast)
For. InProf : 0
For. OutProf : 0

Ingress Meter 11 (Multipoint)
For. InProf : 0
For. OutProf : 0

VPLS Spanning Tree Information

VPLS oper state : Up
Core Connectivity : Down
Stp Admin State : Down
Stp Oper State : Down
Mode : Rstp
Vcp Active Prot. : N/A
Bridge Id : 80:00.00:25:ba:02:ea:00
Bridge Instance Id: 0
Bridge Priority : 32768
Tx Hold Count : 6
Topology Change : Inactive
Bridge Hello Time : 2
Last Top. Change : 0d 00:00:00
Bridge Max Age : 20
Top. Change Count : 0
Bridge Fwd Delay : 15
Root Bridge : N/A
Primary Bridge : N/A
Root Path Cost : 0
Root Forward Delay: 15
Rcvd Hello Time : 2
Root Max Age : 20
Root Priority : 32768
Root Port : N/A

Forwarding Database specifics

VPLS Show Commands

Service Id : 1                   Mac Move : Disabled
Mac Move Rate : 2                   Mac Move Timeout : 10
Mac Move Retries : 3
Table Size : 250                   Total Count : 0
Learned Count : 0                   Static Count : 0
Remote Age : 900                   Local Age : 300
High Watermark : 95%                 Low Watermark : 90%
Mac Learning : Enabled             Discard Unknown : Disabled
Mac Aging : Enabled                 Relearn Only : False

Service Endpoints

-------------------------------------------------------------------
No Endpoints found.
-------------------------------------------------------------------

*A:SAS-M-A0-2>show>service>id#

arp

Syntax          arp [ip-address] | [mac ieee-address] | [sap sap-id] | [interface ip-int-name]

Context         show>service>id

Description     This command displays the ARP table for the VPLS instance. The ARP entries for a subscriber interface are displayed uniquely. Each MAC associated with the subscriber interface child group-interfaces is displayed with each subscriber interface ARP entry for easy lookup.

Parameters      ip-address — All IP addresses.

mac ieee-address — Displays only ARP entries in the ARP table with the specified 48-bit MAC address. The MAC address is in the form aa:bb:cc:dd:ee:ff or aa-bb-cc-dd-ee-ff, where aa, bb, cc, dd, ee and ff are hexadecimal numbers.

Default         All MAC addresses.

sap sap-id — Displays SAP information for the specified SAP ID.

interface — Specifies matching service ARP entries associated with the IP interface.

ip-address — The IP address of the interface for which to display matching ARP entries.

Values          1.0.0.0 — 223.255.255.255

ip-int-name — The IP interface name for which to display matching ARPs.

Output          Show Service-ID ARP — The following table describes show service-id ARP output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The specified MAC address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Type Static — FDB entries created by management.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Learned — Dynamic entries created by the learningprocess.</td>
</tr>
</tbody>
</table>
### base

**Syntax**  
`base [msap]`

**Context**  
- `show>service>id`
- `show>service>id>igmp-snooping`

**Description**  
This command displays basic information about the service ID including service type, description, SAPs and SDP.

**Output**  
**Show Service-ID Base** — The following table describes show service-id base output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Service Type</td>
<td>Displays the type of service.</td>
</tr>
<tr>
<td>Description</td>
<td>Generic information about the service.</td>
</tr>
<tr>
<td>Customer Id</td>
<td>The customer identifier.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>The date and time of the most recent management-initiated change to this customer.</td>
</tr>
<tr>
<td>Adm</td>
<td>The administrative state of the service.</td>
</tr>
<tr>
<td>Oper</td>
<td>The operational state of the service.</td>
</tr>
<tr>
<td>Mtu</td>
<td>The largest frame size (in octets) that the port can handle.</td>
</tr>
<tr>
<td>Adm</td>
<td>The largest frame size (in octets) that the SAP can handle.</td>
</tr>
<tr>
<td>SAP Count</td>
<td>The number of SAPs defined on the service.</td>
</tr>
<tr>
<td>Identifier</td>
<td>Specifies the service access (SAP).</td>
</tr>
<tr>
<td>OprMTU</td>
<td>Specifies the actual largest service frame size (in octets) that can be transmitted through this port, without requiring the packet to be fragmented.</td>
</tr>
<tr>
<td>Opr</td>
<td>The operating state of the SAP.</td>
</tr>
</tbody>
</table>
Sample Output

A:Dut-A# show service id 1 base

Service Basic Information
-----------------------------------------------
Service Id : 1 Vpn Id : 0
Service Type : Epipe
Customer Id : 1
Last Status Change: 06/24/2001 00:57:55
Last Mgmt Change : 06/24/2001 00:51:36
Admin State : Up Oper State : Up
MTU : 1514
MTU Check : Disabled
Vc Switching : False
SAP count : 1 SDP Bind Count : 1

Service Access and Destination Points
-----------------------------------------------
Identifier Type  AdmMTU  OprMTU  Adm Opr
-----------------------------------------------
sap:1/1/21:1 q-tag 1518 1518  Up  Up
sdp:1:1 S<100.1.12> n/a 1518 1518 Up  Up

A:Dut-A#
Show, Clear, Debug Commands

### fdb

**Syntax**

db [sap sap-id [expiry]] | [mac ieee-address [expiry]] | [detail] [expiry]

**Context**

show>service>id
show>service>fdb-mac

**Description**

This command displays FDB entries for a given MAC address.

**Parameters**

- **sap sap-id** — Specifies the physical port identifier portion of the SAP. See Common CLI Command Descriptions on page 939 for command syntax.
- **detail** — Displays detailed information.
- **expiry** — Displays time until MAC is aged out.

**Show FDB Information** — The following table describes service FDB output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServID</td>
<td>Displays the service ID.</td>
</tr>
<tr>
<td>MAC</td>
<td>Displays the associated MAC address.</td>
</tr>
<tr>
<td>Mac Move</td>
<td>Displays the administrative state of the MAC movement feature associated with this service.</td>
</tr>
<tr>
<td>Primary Factor</td>
<td>Displays a factor for the primary ports defining how many MAC-relearn periods should be used to measure the MAC-relearn rate.</td>
</tr>
<tr>
<td>Secondary Factor</td>
<td>Displays a factor for the secondary ports defining how many MAC-relearn periods should be used to measure the MAC-relearn rate.</td>
</tr>
<tr>
<td>Mac Move Rate</td>
<td>Displays the maximum rate at which MAC’s can be re-learned in this service, before the SAP where the moving MAC was last seen is automatically disabled in order to protect the system against undetected loops or duplicate MAs. The rate is computed as the maximum number of re-learns allowed in a 5 second interval: for example, the default rate of 2 re-learns per second corresponds to 10 re-learns in a 5 second period.</td>
</tr>
<tr>
<td>Mac Move Timeout</td>
<td>Displays the time in seconds to wait before a SAP that has been disabled after exceeding the maximum re-learn rate is re-enabled. A value of zero indicates that the SAP will not be automatically re-enabled after being disabled. If after the SAP is re-enabled it is disabled again, the effective retry timeout is doubled in order to avoid thrashing.</td>
</tr>
<tr>
<td>Mac Move Retries</td>
<td>Displays the number of times retries are performed for re-enabling the SAP/SDP.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Table Size</td>
<td>Specifies the maximum number of learned and static entries allowed in the FDB of this service.</td>
</tr>
<tr>
<td>Total Count</td>
<td>Displays the total number of learned entries in the FDB of this service.</td>
</tr>
<tr>
<td>Learned Count</td>
<td>Displays the current number of learned entries in the FDB of this service.</td>
</tr>
<tr>
<td>Static Count</td>
<td>Displays the current number of static entries in the FDB of this service.</td>
</tr>
<tr>
<td>OAM-learned Count</td>
<td>Displays the current number of OAM entries in the FDB of this service.</td>
</tr>
<tr>
<td>Remote Age</td>
<td>Displays the number of seconds used to age out FDB entries learned on an SDP. These entries correspond to MAC addresses learned on remote SAPs.</td>
</tr>
<tr>
<td>Local Age</td>
<td>Displays the number of seconds used to age out FDB entries learned on local SAPs.</td>
</tr>
<tr>
<td>High Watermark</td>
<td>Displays the utilization of the FDB table of this service at which a table full alarm will be raised by the agent.</td>
</tr>
<tr>
<td>Low Watermark</td>
<td>Displays the utilization of the FDB table of this service at which a table full alarm will be cleared by the agent.</td>
</tr>
<tr>
<td>Mac Learning</td>
<td>Specifies whether the MAC learning process is enabled.</td>
</tr>
<tr>
<td>Discard Unknown</td>
<td>Specifies whether frames received with an unknown destination MAC are discarded.</td>
</tr>
<tr>
<td>Mac Aging</td>
<td>Indicates whether the MAC aging process is enabled.</td>
</tr>
<tr>
<td>Relearn Only</td>
<td>Displays, that when enabled, either the FDB table of this service is full, or that the maximum system-wide number of MA’s supported by the agent has been reached, and thus MAC learning is temporary disabled, and only MAC re-learns can take place.</td>
</tr>
<tr>
<td>Mac Subnet Len</td>
<td>Displays the number of bits to be considered when performing MAC-learning or MAC-switching.</td>
</tr>
<tr>
<td>Source-Identifier</td>
<td>The location where the MAC is defined.</td>
</tr>
<tr>
<td>Type/Age</td>
<td>Type — Specifies the number of seconds used to age out TLS FDB entries learned on local SAPs.</td>
</tr>
<tr>
<td></td>
<td>Age — Specifies the number of seconds used to age out TLS FDB entries learned on an SDP. These entries correspond to MAC addresses learned on remote SAPs.</td>
</tr>
<tr>
<td></td>
<td>L — Learned - Dynamic entries created by the learning process.</td>
</tr>
<tr>
<td></td>
<td>OAM — Entries created by the OAM process.</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

**Sample Output**

```
A:Dut-A# show service id 305 fdb
```

```
Forwarding Database, Service 305
```

### Static — Statically configured.

#### Last Change
Indicates the time of the most recent state changes.

**host**

**Syntax**

```
host [sap sap-id] [detail]
host summary
```

**Context**

```
show>service>id
```

**Description**

This command displays static host information configured on this service.

**Parameters**

- **sap-id** — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

**summary** — Displays summary host information.

**labels**

**Syntax**

```
labels
```

**Context**

```
show>service>id
```

**Description**

This command displays the labels being used by the service.

**Output**

Show Service-ID Labels — The following table describes show service-id labels output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svc Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sdp Id</td>
<td>The SDP identifier.</td>
</tr>
</tbody>
</table>
**VPLS Show Commands**

### Sample Output

```
A:Dut-A# show service id 305 labels
===
Martini Service Labels
===
<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sdp Binding</th>
<th>Type</th>
<th>I.Lbl</th>
<th>E.Lbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>1217:305</td>
<td>Spok</td>
<td>130506</td>
<td>130516</td>
</tr>
<tr>
<td>305</td>
<td>1317:305</td>
<td>Spok</td>
<td>130454</td>
<td>130591</td>
</tr>
<tr>
<td>305</td>
<td>1417:305</td>
<td>Spok</td>
<td>130428</td>
<td>131015</td>
</tr>
<tr>
<td>305</td>
<td>1617:305</td>
<td>Spok</td>
<td>131060</td>
<td>130843</td>
</tr>
</tbody>
</table>
```

Number of Bound SDPs : 4

```
A:Dut-A#
```

### l2pt

**Syntax**

```
l2pt disabled
l2pt [detail]
```

**Context**

```
show>service>id
```

**Description**

This command displays Layer 2 Protocol Tunnel (L2-PT) route information associated with this service.

**Parameters**

- **disabled** — Displays only entries with termination disabled. This helps identify configuration errors.
- **detail** — Displays detailed information.

**Output**

**Show L2PT Fields** — The following table describes show L2PT output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service id</td>
<td>Displays the 24 bit (0..16777215) service instance identifier for the service.</td>
</tr>
<tr>
<td>L2pt-term enabled</td>
<td>Indicates if L2-PT-termination and/or Bpdu-translation is in use in this service by at least one SAP or spoke SDP binding. If in use, at least one of L2-PT-termination or Bpdu-translation is enabled. When enabled it is not possible to enable STP on this service.</td>
</tr>
</tbody>
</table>
mac-move

Syntax  
\texttt{mac-move}

Context  
\texttt{show>service>id}

Description  
This command displays MAC move related information about the service.

mac-protect

Syntax  
\texttt{mac-protect}

Context  
\texttt{show>service>id}

Description  
This command displays MAC protect-related information about the service.
mrouter

Syntax  mrouter [detail]
Context  show>service>id>mld-snooping
Description  This command displays all multicast routers.

mstp-configuration

Syntax  mstp-configuration
Context  show>service>id
Description  This command displays the MSTP specific configuration data. This command is only valid on a management VPLS.
Output  Show Service-ID SAP — The following table describes show service mstp fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region Name</td>
<td>Displays the MSTP region name.</td>
</tr>
<tr>
<td>Region Revision</td>
<td>Displays the MSTP region revision.</td>
</tr>
<tr>
<td>MST Max Hops</td>
<td>Displays the MSTP maximum hops specified.</td>
</tr>
<tr>
<td>Instance</td>
<td>Displays the MSTP instance number.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the MSTP priority.</td>
</tr>
<tr>
<td>Vlans mapped</td>
<td>Displays the VLAN range of the MSTP instance.</td>
</tr>
</tbody>
</table>

Sample Output

*A:SASMX>show>service>id# mstp-configuration

=================================================================================================================
<table>
<thead>
<tr>
<th>Mstp configuration info, Service 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region Name</td>
</tr>
<tr>
<td>Region Revision</td>
</tr>
<tr>
<td>MST Max Hops</td>
</tr>
</tbody>
</table>

=================================================================================================================

<table>
<thead>
<tr>
<th>vlan to MST instance mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
**Show, Clear, Debug Commands**

**sap**

**Syntax**

```
sap sap-id [filter]
```

**Context**

`show>service>id`

**Description**

This command displays information for the SAPs associated with the service. If no optional parameters are specified, a summary of all associated SAPs is displayed.

**Parameters**

- `sap sap-id` — The ID that displays SAPs for the service in the `slot/mda/port[.channel]` form. See [Common CLI Command Descriptions on page 939](#) for command syntax.
- `detail` — Displays detailed information for the SAP.

**Show Service-ID SAP** — The following table describes show service SAP fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Id</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>SAP</td>
<td>The SAP and qtag.</td>
</tr>
<tr>
<td>Encap</td>
<td>The encapsulation type of the SAP.</td>
</tr>
<tr>
<td>Ethertype</td>
<td>Specifies an Ethernet type II Ethertype value.</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative state of the SAP.</td>
</tr>
<tr>
<td>Oper State</td>
<td>The operational state of the SAP.</td>
</tr>
<tr>
<td>Flags</td>
<td>Specifies the conditions that affect the operating status of this SAP. Display output includes: ServiceAdminDown, SapAdminDown, InterfaceAdminDown, PortOperDown, L2OperDown, RelearnLimitExceeded, ParentIfAdminDown, NoSapIpipeCelpAddr, TodResourceUnavail, TodMssResourceUnavail, SapParamMismatch, CemSapNoEcidOrMacAddr, StandByForMeRing, SapIngressNamedPoolMismatch, SapEgressNamedPoolMismatch, NoSapEpipeRingNode.</td>
</tr>
<tr>
<td>Last Status Change</td>
<td>Specifies the time of the most recent operating status change to this SAP.</td>
</tr>
<tr>
<td>Last Mgmt Change</td>
<td>Specifies the time of the most recent management-initiated change to this SAP.</td>
</tr>
<tr>
<td>Ingress qos-policy</td>
<td>The ingress QoS policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Ingress Filter-Id</td>
<td>The ingress filter policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Egress Filter-Id</td>
<td>The egress filter policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Acct. Pol</td>
<td>The accounting policy ID assigned to the SAP.</td>
</tr>
<tr>
<td>Collect Stats</td>
<td>Specifies whether collect stats is enabled.</td>
</tr>
</tbody>
</table>
Sample Output

A:7210>show>service>id# sap 1/1:1:1 detail

===============================================================================
Service Access Points(SAP)
===============================================================================
Service Id         : 1
SAP                : 1/1/1:1                  Encap             : q-tag
Description        : (Not Specified)
Admin State        : Up                       Oper State        : Down
Flags              : ServiceAdminDown
Last Status Change : 10/05/2010 07:22:04
Last Mgmt Change   : 10/05/2010 07:22:05
Dot1Q Ethertype    : 0x8100                   QinQ Ethertype    : 0x8100
Max Nbr of MAC Addr: No Limit                 Total MAC Addr    : 0
Learned MAC Addr   : 0                        Static MAC Addr   : 0
Admin MTU          : 1518                     Oper MTU          : 1518
Ingr IP Fltr-Id    : n/a                      Egr IP Fltr-Id    : n/a
Ingr Mac Fltr-Id   : n/a                      Egr Mac Fltr-Id   : n/a
tod-suite          : None
Mac Learning       : Enabled                  Discard Unkwn Srce: Disabled
Mac Aging          : Enabled                  Mac Pinning       : Disabled

Label	Description (Continued)
SAP per Meter stats | Specifies the meter ID.
Ingress Meter | The number of in-profile packets and octets (rate below CIR) forwarded.
For. InProf | The number of out-of-profile packets and octets (rate above CIR and below PIR) forwarded by the ingress meter.
Ingress TD Profile | The profile ID applied to the ingress SAP.
Egress TD Profile | The profile ID applied to the egress SAP.
Alarm Cell Handling | The indication that OAM cells are being processed.
AAL-5 Encap | The AAL-5 encapsulation type.
Aggregate Policer | rate-indicates the rate of the aggregate policer.
burst-indicates the burst-size of the aggregate policer.
Loopback Mode | Displays the Ethernet port loopback mode
Loopback Src Addr | Displays the configured loopback source address
Loopback Dst Addr | Displays the configured loopback destination address
No-svc-port used | Displays the port ID of the port on which no service is configured.
This port is used for the port loop back with MAC swap functionality.
Show, Clear, Debug Commands

BPDU Translation : Disabled
L2PT Termination : Disabled
Acct. Pol : None
Collect Stats : Disabled

-------------------------------------------------------------------------------
Stp Service Access Point specifics
-------------------------------------------------------------------------------
Stp Admin State : Up
Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A
Port Number : 2048
Port Path Cost : 10
Admin Edge : Disabled
Link Type : Pt-pt
Root Guard : Disabled
Root Bridge : N/A
Last BPDU from : N/A
CIST Design Bridge : N/A
Forward transitions : 0
Cfg BPDU s rcvd : 0
Cfg BPDU s tx : 0
TCN BPDU s rcvd : 0
TCN BPDU s tx : 0
RST BPDU s rcvd : 0
RST BPDU s tx : 0
MST BPDU s rcvd : 0
MST BPDU s tx : 0
Bad BPDU s rcvd : 0
Cfg BPDU s rcvd : 0
Cfg BPDU s tx : 0
TCN BPDU s rcvd : 0
TCN BPDU s tx : 0
RST BPDU s rcvd : 0
RST BPDU s tx : 0
MST BPDU s rcvd : 0
MST BPDU s tx : 0

-------------------------------------------------------------------------------
ARP host
-------------------------------------------------------------------------------
Admin State : outOfService
Host Limit : 1
Min Auth Interval : 15 minutes

-------------------------------------------------------------------------------
QOS
-------------------------------------------------------------------------------
Ingress qos-policy : 5
Egress qos-policy : 1
Aggregate Policer (Not Available)
rate : n/a
burst : n/a

-------------------------------------------------------------------------------
Ingress QoS Classifier Usage
-------------------------------------------------------------------------------
Classifiers Allocated : 256
Classifiers Used : 2
Meters Allocated : 32
Meters Used : 2

-------------------------------------------------------------------------------
Sap Statistics
-------------------------------------------------------------------------------
Packets Octets
Ingress Stats : 0 0
Egress Stats : 0 0

-------------------------------------------------------------------------------
Sap per Meter stats
-------------------------------------------------------------------------------
Packets Octets
Ingress Meter 1 (Unicast)
For. InProf : 0 0
For. OutProf : 0 0

Ingress Meter 11 (Multipoint)
VPLS Show Commands

For. InProf : 0
For. OutProf : 0

*At:SAS-M-A0-2>show>service>id# sap 1/1/1:10.* detail

Service Access Points(SAP)

Service Id : 1
SAP : 1/1/1:10.*
Encap : qinq
QinQ Dot1p : Default
Description : (Not Specified)
Admin State : Up
Oper State : Up
Flags : None
Last Status Change : 04/29/2001 06:59:15
Last Mgmt Change : 04/28/2001 03:09:30
Dot1Q Ethertype : 0x8100
QinQ Ethertype : 0x8100
Max Nbr of MAC Addr : No Limit
Total MAC Addr : 0
Learned MAC Addr : 0
Static MAC Addr : 0
Admin MTU : 1522
Oper MTU : 1522
Ingr IP Fltr-Id : n/a
Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : 1
Egr Mac Fltr-Id : n/a
tod-suite : None
Mac Learning : Enabled
Discard Unkwn Srce : Disabled
Mac Aging : Enabled
Mac Pinning : Disabled
BPDU Translation : Disabled
L2PT Termination : Disabled
Acct. Pol : None
Collect Stats : Disabled

Stp Service Access Point specifics

Stp Admin State : Up
Stp Oper State : Down
Core Connectivity : Down
Port Role : N/A
Port State : Forwarding
Port Number : 2048
Port Priority : 128
Port Path Cost : 10
Auto Edge : Enabled
Admin Edge : Disabled
Oper Edge : N/A
Link Type : Pt-pt
BPDU Encap : Dot1d
Root Guard : Disabled
Active Protocol : N/A
Last BFDU from : N/A
CIST Desig Bridge : N/A
Designated Port : N/A
Forward transitions: 0
Bad BPDUu rcvd : 0
Cfg BPDUu rcvd : 0
Cfg BPDUu tx : 0
TCN BPDUu rcvd : 0
TCN BPDUu tx : 0
RST BPDUu rcvd : 0
RST BPDUu tx : 0
MST BPDUu rcvd : 0
MST BPDUu tx : 0

ARP host

Admin State : outOfService
Host Limit : 1
Min Auth Interval : 15 minutes

QoS

7210 SAS M Services Guide Page 901
Show, Clear, Debug Commands

Ingress qos-policy : 1

Aggregate Policer

rate : n/a  burst : n/a

Ingress QoS Classifier Usage

Classifiers Allocated: 4  Meters Allocated : 2
Classifiers Used : 2  Meters Used : 2

Sap Statistics

Packets  Octets
Ingress Stats:  142761481188  9707780720784
Egress Stats:  0  0
Extra-Tag Drop Stats: n/a  n/a

Sap per Meter stats

Packets  Octets
Ingress Meter 1 (Unicast)
For. InProf : 17  1162
For. OutProf : 0  0

Ingress Meter 11 (Multipoint)
For. InProf : 61  4148
For. OutProf : 142761547917  9707785259394

sdp

Note : SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

Syntax  sdp [sdp-id | far-end ip-addr] [detail]

Context  show>service>id

Description  This command displays information for the SDPs associated with the service. If no optional parameters are specified, a summary of all associated SDPs is displayed.

Parameters  sdp-id — Displays only information for the specified SDP ID.

    Default  All SDPs
    Values  1 — 17407

far-end ip-addr — Displays only SDPs matching with the specified far-end IP address.

    Default  SDPs with any far-end IP address.

detail — Displays detailed SDP information.

Output  Show Service-ID SDP — The following table describes show service-id SDP output fields.
### VPLS Show Commands

#### Sample Output

```
A:Dut-A>show>service>id# sdp 1217:305
```

---

#### Service Destination Point (Sdp Id : 1217:305)

<table>
<thead>
<tr>
<th>Sdp Id</th>
<th>Type</th>
<th>IP address</th>
<th>Adm</th>
<th>Opr</th>
<th>ILbl</th>
<th>ELbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1217:305</td>
<td>Spok</td>
<td>10.20.1.2</td>
<td>Up</td>
<td>Up</td>
<td>130506</td>
<td>130516</td>
</tr>
</tbody>
</table>

### Description

- **Sdp Id**: The SDP identifier.
- **Type**: Indicates whether the SDP is spoke.
- **VC Type**: Displays the VC type: ether, vlan, or vpls.
- **VC Tag**: Displays the explicit dot1Q value used when encapsulating to the SDP far end.
- **I. Lbl**: The VC label used by the far-end device to send packets to this device in this service by the SDP.
- **Admin Path MTU**: The operating path MTU of the SDP is equal to the admin path MTU (when one is set) or the dynamically computed tunnel MTU, when no admin path MTU is set (the default case.)
- **Oper Path MTU**: The actual largest service frame size (in octets) that can be transmitted through this SDP to the far-end router, without requiring the packet to be fragmented.
- **Far End**: Specifies the IP address of the remote end of the GRE or MPLS tunnel defined by this SDP.
- **Delivery**: Specifies the type of delivery used by the SDP: GRE or MPLS.
- **Admin State**: The administrative state of this SDP.
- **Oper State**: The current status of the SDP.
- **Ingress Label**: The label used by the far-end device to send packets to this device in this service by this SDP.
- **Egress Label**: The label used by this device to send packets to the far-end device in this service by the SDP.
- **Last Changed**: The date and time of the most recent change to the SDP.
- **Signaling**: Specifies the signaling protocol used to obtain the ingress and egress labels used in frames transmitted and received on this SDP.
- **Admin State**: The administrative state of the Keepalive process.
- **Oper State**: The operational state of the Keepalive process.
Show, Clear, Debug Commands

Number of SDPs : 1

A:Dut-A>show>service>id# sdp 1217:305 detail

A:Dut-A>show>service>id#

Service Destination Point (Sdp Id : 1217:305) Details

<table>
<thead>
<tr>
<th>Description</th>
<th>Default sdp description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Id</td>
<td>1217:305</td>
</tr>
<tr>
<td>Type</td>
<td>Spoke</td>
</tr>
<tr>
<td>VC Type</td>
<td>Ether</td>
</tr>
<tr>
<td>VC Tag</td>
<td>n/a</td>
</tr>
<tr>
<td>Admin Path MTU</td>
<td>0</td>
</tr>
<tr>
<td>Oper Path MTU</td>
<td>9186</td>
</tr>
<tr>
<td>Far End</td>
<td>10.20.1.2</td>
</tr>
<tr>
<td>Delivery</td>
<td>MPLS</td>
</tr>
</tbody>
</table>

Admin State : Up
Acct. Pol : None
Managed by Service : 300
Managed by Spoke : 1217:300
Ingress Label : 130506
Egress Label : 130516
Admin ControlWord : Not Preferred
Oper ControlWord : False
Last Status Change : 07/07/2009 18:49:40
Signaling : TLDP
Last Mgmt Change : 07/07/2009 14:39:14
Force Vlan-Vc : Disabled
Flags : None
Peer Pw Bits : None
Peer Fault Ip : None
Max Nbr of MAC Addr: No Limit
Learned MAC Addr : 0
Total MAC Addr : 0
MAC Learning : Enabled
Discard Unkwn Srce: Disabled
MAC Aging : Enabled
BPDU Translation : Disabled
MAC Pinning : Disabled

KeepAlive Information :
Admin State : Enabled
Hello Time : 10
Max Drop Count : 3
Oper State : Alive
Hello Msg Len : 0
Hold Down Time : 10

Statistics :
I. Fwd. Pkts. : 13601
I. Fwd. Octs. : 10676338
E. Fwd. Pkts. : 83776987
E. Fwd. Octets : 51589499116

Associated LSP LIST :
Lsp Name : A_B_17
Admin State : Up
Oper State : Up
Time Since Last Tr*: 08h31m06s

Stp Service Destination Point specifics

<table>
<thead>
<tr>
<th>Stp Admin State</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stp Oper State</td>
<td>Down</td>
</tr>
<tr>
<td>Core Connectivity</td>
<td>N/A</td>
</tr>
<tr>
<td>Port Role</td>
<td>N/A</td>
</tr>
<tr>
<td>Port State</td>
<td>Forwarding</td>
</tr>
<tr>
<td>Port Number</td>
<td>2049</td>
</tr>
<tr>
<td>Port Priority</td>
<td>128</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Auto Edge</td>
<td>Enabled</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Oper Edge</td>
<td>N/A</td>
</tr>
</tbody>
</table>
VPLS Show Commands

Link Type          : Pt-pt                    BPDU Encap        : Dot1d
Root Guard         : Disabled                 Active Protocol   : N/A
Last BPDU from     : N/A                      Designated Port Id: 0
Designated Bridge  : N/A                      Designated Port Id: 0
Fwd Transitions    : 0                        Bad BPDUs rcvd    : 0
Cfg BPDUs rcvd     : 0                        Cfg BPDUs tx      : 0
TCN BPDUs rcvd     : 0                        TCN BPDUs tx      : 0
RST BPDUs rcvd     : 0                        RST BPDUs tx      : 0
-------------------------------------------------------------------------------
Number of SDPs : 1
-------------------------------------------------------------------------------
* indicates that the corresponding row element may have been truncated.
A:Dut-A>show>service>id#

split-horizon-group

Syntax           split-horizon-group [group-name]
Context          show>service>id
Description      This command displays service split horizon groups.

stp

Syntax           stp [detail]
Context          show>service>id
Description      This command displays information for the spanning tree protocol instance for the service.
Parameters       detail — Displays detailed information.
Output           Show Service-ID STP Output — The following table describes show service-id STP output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge-id</td>
<td>Specifies the MAC address used to identify this bridge in the network.</td>
</tr>
<tr>
<td>Bridge fwd delay</td>
<td>Specifies how fast a bridge changes its state when moving toward the</td>
</tr>
<tr>
<td></td>
<td>forwarding state.</td>
</tr>
<tr>
<td>Bridge Hello time</td>
<td>Specifies the amount of time between the transmission of Configuration</td>
</tr>
<tr>
<td></td>
<td>BPDUs.</td>
</tr>
<tr>
<td>Bridge max age</td>
<td>Specifies the maximum age of Spanning Tree Protocol information learned</td>
</tr>
<tr>
<td></td>
<td>from the network on any port before it is discarded. This is the actual</td>
</tr>
<tr>
<td></td>
<td>value that this bridge is currently using.</td>
</tr>
<tr>
<td>Bridge priority</td>
<td>Defines the priority of the Spanning Tree Protocol instance associated</td>
</tr>
<tr>
<td></td>
<td>with this service.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Topology change</td>
<td>Specifies whether a topology change is currently in progress.</td>
</tr>
<tr>
<td>Last Top. change</td>
<td>Specifies the time (in hundredths of a second) since the last time a topology change was detected by the Spanning Tree Protocol instance associated with this service.</td>
</tr>
<tr>
<td>Top. change count</td>
<td>Specifies the total number of topology changes detected by the Spanning Tree Protocol instance associated with this service since the management entity was last reset or initialized.</td>
</tr>
<tr>
<td>Root bridge-id</td>
<td>Specifies the bridge identifier of the root of the spanning tree as determined by the Spanning Tree Protocol instance associated with this service. This value is used as the Root Identifier parameter in all Configuration BPDUs originated by this node.</td>
</tr>
<tr>
<td>Root path cost</td>
<td>Specifies the cost of the path to the root bridge as seen from this bridge.</td>
</tr>
<tr>
<td>Root forward delay</td>
<td>Specifies how fast the root changes its state when moving toward the forwarding state.</td>
</tr>
<tr>
<td>Root hello time</td>
<td>Specifies the amount of time between the transmission of configuration BPDUs.</td>
</tr>
<tr>
<td>Root max age</td>
<td>Specifies the maximum age of Spanning Tree Protocol information learned from the network on any port before it is discarded.</td>
</tr>
<tr>
<td>Root priority</td>
<td>This object specifies the priority of the bridge that is currently selected as root-bridge for the network.</td>
</tr>
<tr>
<td>Root port</td>
<td>Specifies the port number of the port which offers the lowest cost path from this bridge to the root bridge.</td>
</tr>
<tr>
<td>SAP Identifier</td>
<td>The ID of the access port where this SAP is defined.</td>
</tr>
<tr>
<td>BPDU encap</td>
<td>Specifies the type of encapsulation used on BPDUs sent out and received on this SAP.</td>
</tr>
<tr>
<td>Port Number</td>
<td>Specifies the value of the port number field which is contained in the least significant 12 bits of the 16-bit port ID associated with this SAP.</td>
</tr>
<tr>
<td>Priority</td>
<td>Specifies the value of the port priority field which is contained in the most significant 4 bits of the 16-bit port ID associated with this SAP.</td>
</tr>
<tr>
<td>Cost</td>
<td>Specifies the contribution of this port to the path cost of paths towards the spanning tree root which include this port.</td>
</tr>
<tr>
<td>Designated Port</td>
<td>Specifies the port identifier of the port on the designated bridge for this port's segment.</td>
</tr>
<tr>
<td>Designated Bridge</td>
<td>Specifies the bridge identifier of the bridge which this port considers to be the designated bridge for this port's segment.</td>
</tr>
</tbody>
</table>
Sample Output

A:Dut-A>show>service>id# stp
**********************************************************************
Stp info, Service 305
**********************************************************************
Bridge Id          : 00:0d.00:20:ab:cd:00:01  Top. Change Count : 5
Root Bridge        : This Bridge              Stp Oper State    : Up
Primary Bridge     : N/A                      Topology Change   : Inactive
Mode               : Rstp                     Last Top. Change  : 0d 08:35:16
Vcp Active Prot.   : N/A
Root Port          : N/A                      External RPC      : 0
**********************************************************************
Stp port info
**********************************************************************
Sap/Sdp Id         Oper-     Port-      Port-       Port-  Oper-  Link-  Active
State     Role       State       Num    Edge   Type   Prot.
-------------------------------------------------------------------------------
1/1/16:305         Up        Designated Forward     2048   False  Pt-pt  Rstp
lag-4:305          Up        Designated Forward     2000   False  Pt-pt  Rstp
1217:305           Up        N/A        Forward     2049   N/A    Pt-pt  N/A
1317:305           Up        N/A        Forward     2050 N/A  Pt-pt  N/A
1417:305           Up        N/A        Forward     2051 N/A  Pt-pt  N/A
1617:305           Pruned    N/A        Discard     2052 N/A  Pt-pt  N/A
-------------------------------------------------------------------------------
A:Dut-A>show>service>id#
A:Dut-A>show>service>id# stp detail
**********************************************************************
Spanning Tree Information
**********************************************************************
VPLS Spanning Tree Information
-------------------------------------------------------------------------------
VPLS oper state    : Up                       Core Connectivity : Down
Stp Admin State    : Up                       Stp Oper State    : Up
Mode               : Rstp                     Vcp Active Prot.  : N/A
Bridge Id          : 00:0d.00:20:ab:cd:00:01  Bridge Instance Id: 13
Bridge Priority    : 0                        Tx Hold Count     : 6
Topology Change    : Inactive                 Bridge Hello Time : 2
Last Top. Change   : 0d 08:35:29              Bridge Max Age : 20
Top. Change Count  : 5                        Bridge Fwd Delay : 15
MST region revision: 0                        Bridge max hops : 20
MST region name    :
Root Bridge        : This Bridge
Primary Bridge     : N/A
Root Path Cost     : 0                        Root Forward Delay: 15
Rcvd Hello Time    : 2                        Root Max Age      : 20
Root Priority      : 13                       Root Port         : N/A
-------------------------------------------------------------------------------
Spanning Tree Sap/Spoke SDP Specifics
-------------------------------------------------------------------------------
SAP Identifier     : 1/1/16:305               Stp Admin State    : Up
Port Role          : Designated              Port State       : Forwarding
Port Number        : 2048                    Port Priority     : 128
Port Path Cost     : 10                      Auto Edge        : Enabled
Admin Edge         : Disabled                 Oper Edge        : False
### Link Type: Pt-pt

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPDU Encap</td>
<td>PVST</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>Rstp</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>80:04.00:0a:1b:2c:3d:4e</td>
</tr>
<tr>
<td>CIST Design Bridge</td>
<td>This Bridge</td>
</tr>
<tr>
<td>Designated Port</td>
<td>34816</td>
</tr>
<tr>
<td>Forward transitions</td>
<td>5</td>
</tr>
<tr>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs tx</td>
<td>29</td>
</tr>
<tr>
<td>MST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>SAP Identifier</td>
<td>lag-4:305</td>
</tr>
<tr>
<td>Port Role</td>
<td>Designated</td>
</tr>
<tr>
<td>Port Number</td>
<td>2000</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
</tr>
<tr>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>Rstp</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>80:04.00:0a:1b:2c:3d:4e</td>
</tr>
<tr>
<td>CIST Design Bridge</td>
<td>This Bridge</td>
</tr>
<tr>
<td>Designated Port</td>
<td>34768</td>
</tr>
<tr>
<td>Forward transitions</td>
<td>4</td>
</tr>
<tr>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs tx</td>
<td>23</td>
</tr>
<tr>
<td>MST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>SDP Identifier</td>
<td>1217:305</td>
</tr>
<tr>
<td>Port Role</td>
<td>N/A</td>
</tr>
<tr>
<td>Port Number</td>
<td>2049</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
</tr>
<tr>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>N/A</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Bridge</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Port Id</td>
<td>0</td>
</tr>
<tr>
<td>Fwd Transitions</td>
<td>0</td>
</tr>
<tr>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>SDP Identifier</td>
<td>1317:305</td>
</tr>
<tr>
<td>Port Role</td>
<td>N/A</td>
</tr>
<tr>
<td>Port Number</td>
<td>2050</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
</tr>
<tr>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>N/A</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Bridge</td>
<td>N/A</td>
</tr>
<tr>
<td>Designated Port Id</td>
<td>0</td>
</tr>
<tr>
<td>Fwd Transitions</td>
<td>0</td>
</tr>
<tr>
<td>Bad BPDUs rcvd</td>
<td>0</td>
</tr>
<tr>
<td>Cfg BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>TCN BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>RST BPDUs tx</td>
<td>0</td>
</tr>
<tr>
<td>SDP Identifier</td>
<td>1417:305</td>
</tr>
<tr>
<td>Port Role</td>
<td>N/A</td>
</tr>
<tr>
<td>Port Number</td>
<td>2051</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>10</td>
</tr>
<tr>
<td>Admin Edge</td>
<td>Disabled</td>
</tr>
<tr>
<td>Link Type</td>
<td>Pt-pt</td>
</tr>
<tr>
<td>BPDU Encap</td>
<td>Dot1d</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Disabled</td>
</tr>
<tr>
<td>Active Protocol</td>
<td>N/A</td>
</tr>
<tr>
<td>Last BPDU from</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Designated Bridge : N/A                      Designated Port Id: 0
Fwd Transitions    : 1                        Bad BPDUs rcvd : 0
Cfg BPDUs rcvd    : 0                        Cfg BPDUs tx    : 0
TCN BPDUs rcvd    : 0                        TCN BPDUs tx    : 0
RST BPDUs rcvd    : 0                        RST BPDUs tx    : 0
SDP Identifier     : 1617:305                 Stp Admin State : Down
Port Role          : N/A                      Port State : Discarding
Port Number        : 2052                     Port Priority : 128
Port Path Cost     : 10                       Auto Edge : Enabled
Admin Edge         : Disabled                 Oper Edge : N/A
Link Type          : Pt-pt                    BPDU Encap : Dot1d
Root Guard         : Disabled                 Active Protocol : N/A
Last BFDU from     : N/A                      Designated Bridge : N/A
Designated Bridge : N/A                      Designated Port Id: 0
Fwd Transitions    : 0                        Bad BPDUs rcvd : 0
Cfg BPDUs rcvd    : 0                        Cfg BPDUs tx    : 0
TCN BPDUs rcvd    : 0                        TCN BPDUs tx    : 0
RST BPDUs rcvd    : 0                        RST BPDUs tx    : 0
===============================================================================
A:Dut-A>show>service>id#
*7210-SAS>show>service>id# stp detail
===============================================================================
Spanning Tree Information
===============================================================================
VPLS Spanning Tree Information
-------------------------------------------------------------------------------
VPLS oper state    : Up                       Core Connectivity : Down
Stp Admin State    : Up                       Stp Oper State    : Up
Mode               : Mstp                     Vcp Active Prot.  : N/A
Bridge Id          : 80:00.00:25:ba:04:66:a0  Bridge Instance Id: 0
Bridge Priority    : 32768                    Tx Hold Count     : 6
Topology Change    : Inactive                 Bridge Hello Time : 2
Last Top. Change   : 0d 02:54:16              Bridge Max Age    : 20
Top. Change Count  : 27                       Bridge Fwd Delay : 15
Root Bridge        : 40:00.7c:20:64:ac:ff:63  Primary Bridge     : N/A
Root Path Cost     : 10                       Root Forward Delay: 15
Rcvd Hello Time    : 2                        Root Max Age : 20
Root Priority      : 16384                    Root Port         : 2048
MSTP info for CIST :
Regional Root      : 80:00.7c:20:64:ad:04:5f  Root Port         : 2048
Internal RPC       : 10                       Remaining Hopcount: 19
MSTP info for MSTI 1 :
Regional Root      : This Bridge              Root Port         : N/A
Internal RPC       : 0                        Remaining Hopcount: 20
MSTP info for MSTI 2 :
Regional Root      : 00:02.7c:20:64:ad:04:5f  Root Port         : 2048
Internal RPC       : 10                       Remaining Hopcount: 19
-------------------------------------------------------------------------------
Spanning Tree Sap Specifics
<table>
<thead>
<tr>
<th>SAP Identifier</th>
<th>Port Role</th>
<th>Port State</th>
<th>Port Number</th>
<th>Port Priority</th>
<th>Port Path Cost</th>
<th>Auto Edge</th>
<th>Oper Edge</th>
<th>Link Type</th>
<th>BPDU Encap</th>
<th>Root Guard</th>
<th>Last BFDU from</th>
<th>CIST Desig Bridge</th>
<th>MST 1 Port Pri</th>
<th>MST 1 Desig Brid</th>
<th>Designated Port</th>
<th>Forward transitions</th>
<th>Config BPDUs rcvd</th>
<th>Topology BPDUs rcvd</th>
<th>MST BPDUs rcvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/7:0</td>
<td>Root</td>
<td>Forwarding</td>
<td>2048</td>
<td>128</td>
<td>10</td>
<td>Enabled</td>
<td>False</td>
<td>Pt-pt</td>
<td>Dot1d</td>
<td>Disabled</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>34816</td>
<td>128</td>
<td>True</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1/8:0</td>
<td>Alternate</td>
<td>Discarding</td>
<td>2049</td>
<td>128</td>
<td>10</td>
<td>Enabled</td>
<td>False</td>
<td>Pt-pt</td>
<td>Dot1d</td>
<td>Disabled</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>80:00.7c:20:64:ad:04:5f</td>
<td>34817</td>
<td>128</td>
<td>True</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1/9:0</td>
<td>Designated</td>
<td>Forwarding</td>
<td>2050</td>
<td>128</td>
<td>10</td>
<td>Enabled</td>
<td>True</td>
<td>Pt-pt</td>
<td>Dot1d</td>
<td>Disabled</td>
<td>N/A</td>
<td>This Bridge</td>
<td>128</td>
<td>128</td>
<td>True</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Show, Clear, Debug Commands

Page 910 7210 SAS M Services Guide
Port Path Cost : 10                       Auto Edge         : Enabled
Admin Edge      : Disabled                 Oper Edge         : False
Link Type       : Pt-pt                    BPDU Encap        : Dot1d
Root Guard      : Disabled                 Active Protocol   : Mstp
Last BFDU from  : 80:00.7c:20:64:ad:04:5f  Inside Mst Region : True
CIST Desig Bridge: 80:00.7c:20:64:ad:04:5f  Designated Port : 34820
MSTI 1 Port Pri  : 128                       Port Path Cost : 10
MSTI 1 Desig Brid: This Bridge             Designated Port : 34820
MSTI 2 Port Pri  : 128                       Port Path Cost : 10
MSTI 2 Desig Brid: 00:02.7c:20:64:ad:04:5f  Designated Port : 34820
Forward transitions: 10                      Bad BFDUs rcvd : 0
Cfg BFDUs rcvd  : 0                           Cfg BFDUs tx : 0
TCN BFDUs rcvd  : 0                           TCN BFDUs tx : 0
RST BFDUs rcvd  : 0                           RST BFDUs tx : 0
MST BFDUs rcvd  : 7329                       MST BFDUs tx : 7303

SAP Identifier   : lag-1:0                      Stp Admin State : Up
Port Role        : Alternate                    Port State : Discarding
Port Number      : 2052                        Port Priority : 128
Port Path Cost   : 10                          Auto Edge : Enabled
Admin Edge       : Disabled                    Oper Edge : False
Link Type        : Pt-pt                       BPDU Encap : Dot1d
Root Guard       : Disabled                    Active Protocol : Mstp
Last BFDU from   : 80:00.7c:20:64:ad:04:5f      Inside Mst Region : True
CIST Desig Bridge: 80:00.7c:20:64:ad:04:5f  Designated Port : 34822
MSTI 1 Port Pri  : 128                       Port Path Cost : 10
MSTI 1 Desig Brid: This Bridge               Designated Port : 34820
MSTI 2 Port Pri  : 128                       Port Path Cost : 10
MSTI 2 Desig Brid: 00:02.7c:20:64:ad:04:5f  Designated Port : 34822
Forward transitions: 11                     Bad BFDUs rcvd : 0
Cfg BFDUs rcvd  : 0                           Cfg BFDUs tx : 0
TCN BFDUs rcvd  : 0                           TCN BFDUs tx : 0
RST BFDUs rcvd  : 0                           RST BFDUs tx : 0
MST BFDUs rcvd  : 7322                       MST BFDUs tx : 7299

===============================================================================

Sample Output

Sample output with MSTP information for 7210 SAS-M:

*A:SASMX[S0]>show>service>ID# stp mst-instance 2

===============================================================================

MSTP specific info for service 5 MSTI 2

Regional Root : N/A                      Root Port : N/A
Internal RPC  : 0                        Remaining Hopcount: 20

===============================================================================

MSTP port info for MSTI 2

Sap/Sdp Id Oper- Port- Port- Port- Same
          State Role State Num Region

No data found.

===============================================================================

*A:SASMX[S0]>show>service>ID#
Sample output with MSTP information for 7210 SAS-M:

*A:SASMX[S0]>show>service>id# stp mst-instance 2

MSTP specific info for service 5 MSTI 2

Regional Root	: N/A	Root Port	: N/A
===============	-------	-----------	-------
Internal RPC	: 0	Remaining Hopcount:	20

MSTP port info for MSTI 2

<table>
<thead>
<tr>
<th>Sap/Sdp Id</th>
<th>Oper- State</th>
<th>Port- Role</th>
<th>Port- State</th>
<th>Port- Num</th>
<th>Same Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A:SASMX[S0]>show>service>id#
IGMP Snooping Show Commands

igmp-snooping

Syntax  igmp-snooping
Context  show>service>id
Description  This command enables the context to display IGMP snooping information.

all

Syntax  all
Context  show>service>id>igmp-snooping
Description  This command displays detailed information for all aspects of IGMP snooping on the VPLS service.
Output  Show All Service-ID — The following table describes the show all service-id command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State</td>
<td>The administrative state of the IGMP instance.</td>
</tr>
<tr>
<td>Querier</td>
<td>Displays the address of the IGMP querier on the IP subnet to which the</td>
</tr>
<tr>
<td></td>
<td>interface is attached.</td>
</tr>
<tr>
<td>Sap or SDP Id</td>
<td>Displays the SAP or SDP IDs of the service ID.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state of the SAP or SDP IDs of the service ID.</td>
</tr>
<tr>
<td>Mrtr Port</td>
<td>Specifies if the port is a multicast router port.</td>
</tr>
<tr>
<td>Send Queries</td>
<td>Specifies whether the send-queries command is enabled or disabled.</td>
</tr>
<tr>
<td>Max Num Groups</td>
<td>Specifies the maximum number of multicast groups that can be joined on this</td>
</tr>
<tr>
<td></td>
<td>SAP or SDP.</td>
</tr>
<tr>
<td>MVR From VPLS</td>
<td>Specifies MVR from VPLS.</td>
</tr>
<tr>
<td>Num MVR Groups</td>
<td>Specifies the actual number of multicast groups that can be joined on this</td>
</tr>
<tr>
<td></td>
<td>SAP or SDP.</td>
</tr>
<tr>
<td>MVR From VPLS Cfg</td>
<td>Displays the from VPLS drop count.</td>
</tr>
<tr>
<td>Drops</td>
<td></td>
</tr>
<tr>
<td>MVR To SAP Cfg</td>
<td>Displays the to SAP drop count.</td>
</tr>
<tr>
<td>Drops</td>
<td></td>
</tr>
</tbody>
</table>
Sample Output

*Sample output (7210 SAS-M in network mode)
*A:7210-SAS>show>service>id>igmp-snooping# all

===============================================================================
IGMP Snooping info for service 2
===============================================================================

IGMP Snooping Base info
Admin State : Down
Querier : No querier found

<table>
<thead>
<tr>
<th>Sap/Sdp Id</th>
<th>Oper</th>
<th>MRtr</th>
<th>Send</th>
<th>Max</th>
<th>MVR</th>
<th>Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>sap:1/1/1</td>
<td>Up</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sap:1/1/4</td>
<td>Up</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>Local</td>
<td>0</td>
</tr>
</tbody>
</table>

IGMP Snooping Querier info
No querier found for this service.

IGMP Snooping Multicast Routers
Number of mrouter: 0

IGMP Snooping Proxy-reporting DB
Group Address Up Time
Number of groups: 0

IGMP Snooping SAP 1/1/1 Port-DB
Group Address Type From-VPLS Up Time Expires MC Stdby
224.1.1.1 dynamic 1 0d 00:11:01 246s
Number of groups: 1

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR Admin State</td>
<td>Displays the administrative state of MVR.</td>
</tr>
<tr>
<td>MVR Policy</td>
<td>The MVR policy name.</td>
</tr>
</tbody>
</table>
## IGMP Snooping SAP 1/1/4 Port-DB

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Type</th>
<th>From-VPLS</th>
<th>Up Time</th>
<th>Expires</th>
<th>MC Stdby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of groups: 0

## IGMP Snooping Static Groups

## IGMP Snooping Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Forwarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V1 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Leaves</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

## Drop Statistics

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>0</td>
</tr>
<tr>
<td>Bad IP Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Bad IGMP Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Bad Encoding</td>
<td>0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>0</td>
</tr>
<tr>
<td>Zero Source IP</td>
<td>0</td>
</tr>
<tr>
<td>Wrong Version</td>
<td>0</td>
</tr>
<tr>
<td>Lcl-Scope Packets</td>
<td>0</td>
</tr>
<tr>
<td>Send Query Cfg Drops</td>
<td>0</td>
</tr>
<tr>
<td>Import Policy Drops</td>
<td>0</td>
</tr>
<tr>
<td>Exceeded Max Num Groups</td>
<td>0</td>
</tr>
<tr>
<td>MCS Failures</td>
<td>0</td>
</tr>
<tr>
<td>MVR From VPLS Cfg Drops</td>
<td>68129</td>
</tr>
<tr>
<td>MVR To SAP Cfg Drops</td>
<td>0</td>
</tr>
</tbody>
</table>

## IGMP Snooping Multicast VPLS Registration info

<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sap/Sdp Id</th>
<th>Oper State</th>
<th>From VPLS</th>
<th>Num Local Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>sap:1/1/1</td>
<td>Up</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>sap:1/1/4</td>
<td>Up</td>
<td>Local</td>
<td>0</td>
</tr>
</tbody>
</table>
MVR SAPs (from-vpls=2)

<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sap/Sdp</th>
<th>Oper</th>
<th>From</th>
<th>Num MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Id</td>
<td>State</td>
<td>VPLS</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
</tbody>
</table>

No MVR SAPs found.

*A:7210-SAS>show>service>id>igmp-snooping#*

Sample output (7210 SAS-M in access-uplink mode):

A:7210-SAS>show>service>id# igmp-snooping all

IGMP Snooping info for service 1

--------------------------------------------------------------------------------
IGMP Snooping Base info
--------------------------------------------------------------------------------
Admin State : Up
Querier     : 1.1.1.1 on SAP 1/1/1
--------------------------------------------------------------------------------
Sap/Sdp                Oper    MRtr Send    Max  Max  Num
Id                     State   Port Queries Grps Srcs Grps
--------------------------------------------------------------------------------
sap:1/1/1              Up      Yes  No      None None 0
sap:1/1/2              Up      No   No      None None 1
--------------------------------------------------------------------------------
IGMP Snooping Querier info
--------------------------------------------------------------------------------
Sap Id                  : 1/1/1
IP Address              : 1.1.1.1
Expires                 : 255s
Up Time                 : 0d 16:51:04
Version                 : 2
General Query Interval  : 125s
Query Response Interval : 10.0s
Robust Count            : 2
--------------------------------------------------------------------------------
IGMP Snooping Multicast Routers
--------------------------------------------------------------------------------
MRouter          Sap/Sdp Id             Up Time        Expires   Version
--------------------------------------------------------------------------------
1.1.1.1          1/1/1                  0d 16:51:14    255s      2
--------------------------------------------------------------------------------
Number of mrouter: 1
--------------------------------------------------------------------------------
IGMP Snooping Proxy-reporting DB
--------------------------------------------------------------------------------
Group Address    Mode     Up Time        Num Sources
--------------------------------------------------------------------------------
224.1.1.2        exclude  0d 16:51:14    0
--------------------------------------------------------------------------------
Number of groups: 1
### IGMP Snooping SAP 1/1/1 Port-DB

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Mode</th>
<th>Type</th>
<th>Up Time</th>
<th>Expires</th>
<th>Num Src</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of groups: 0

### IGMP Snooping SAP 1/1/2 Port-DB

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Mode</th>
<th>Type</th>
<th>Up Time</th>
<th>Expires</th>
<th>Num Src</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.1.2</td>
<td>exclude</td>
<td>dynamic</td>
<td>0d 16:51:17</td>
<td>259s</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of groups: 1

### IGMP Snooping Static Source Groups

### IGMP Snooping Statistics

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Forwarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Queries</td>
<td>811311</td>
<td>0</td>
<td>811311</td>
</tr>
<tr>
<td>Group Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group-Source Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V1 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Reports</td>
<td>18030</td>
<td>11928</td>
<td>0</td>
</tr>
<tr>
<td>V3 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Leaves</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

### Drop Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>: 0</td>
</tr>
<tr>
<td>Bad IP Checksum</td>
<td>: 0</td>
</tr>
<tr>
<td>Bad IGMP Checksum</td>
<td>: 0</td>
</tr>
<tr>
<td>Bad Encoding</td>
<td>: 0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>: 0</td>
</tr>
<tr>
<td>Zero Source IP</td>
<td>: 0</td>
</tr>
<tr>
<td>Wrong Version</td>
<td>: 0</td>
</tr>
<tr>
<td>Lcl-Scope Packets</td>
<td>: 0</td>
</tr>
<tr>
<td>Send Query Cfg Drops</td>
<td>: 0</td>
</tr>
<tr>
<td>Import Policy Drops</td>
<td>: 0</td>
</tr>
<tr>
<td>Exceeded Max Num Groups</td>
<td>: 0</td>
</tr>
</tbody>
</table>
Show, Clear, Debug Commands

mfib

**Syntax**  
mfib [brief] [ip | mac] brief  
mfib [group grp-address]

**Context**  
show>service>id

**Description**  
This command displays the multicast FIB on the VPLS service.

**Parameters**  
brief — Displays a brief output.

**group grp grp-address** — Displays the multicast FIB for a specific multicast group address.

**Output**  
Show Output — The following table describes the command output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>IPv4 multicast group address.</td>
</tr>
<tr>
<td>SAP ID</td>
<td>Indicates the SAP/SDP to which the corresponding multicast stream will be forwarded/blocked.</td>
</tr>
<tr>
<td>Forwarding/Blocking</td>
<td>Indicates whether the corresponding multicast stream will be blocked/forwarded.</td>
</tr>
<tr>
<td>Number of Entries</td>
<td>Specifies the number of entries in the MFIB.</td>
</tr>
<tr>
<td>Forwarded Packets</td>
<td>Indicates the number of multicast packets forwarded for the corresponding source/group.</td>
</tr>
<tr>
<td>Forwarded Octets</td>
<td>Indicates the number of octets forwarded for the corresponding source/group.</td>
</tr>
<tr>
<td>Svc ID</td>
<td>Indicates the service to which the corresponding multicast stream will forwarded/blocked. Local means that the multicast stream will be forwarded/blocked to a SAP or SDP local to the service.</td>
</tr>
</tbody>
</table>

**Sample Output**

A:7210-SAS>show>service>id# mfib

```
===
Multicast FIB, Service 1
===
Source Address | Group Address | Sap Id | Svc Id | Fwd/Blk
-----------------|---------------|-------|--------|--------
* | * | sap:1/1/1 | Local | Fwd
* | 224.1.1.2 | sap:1/1/1 | Local | Fwd
* | | sap:1/1/2 | Local | Fwd
===
Number of entries: 2
===
A:7210-SAS>show>service>id#
```
mrouter

Syntax  mrouters [detail]
Context  show>service>id>igmp-snooping
Description  This command displays all multicast routers.
Parameters  detail — Displays detailed information.

Sample Output

A:7210-SAS>show>service>id# igmp-snooping mrouters

===============================================================================
IGMP Snooping Multicast Routers for service 1
===============================================================================
<table>
<thead>
<tr>
<th>MRouter</th>
<th>Sap/Sdp Id</th>
<th>Up Time</th>
<th>Expires</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>1/1/1</td>
<td>0d 16:53:44</td>
<td>254s</td>
<td>2</td>
</tr>
</tbody>
</table>
===============================================================================
Number of mrouters: 1
===============================================================================
A:7210-SAS>show>service>id#

mvr

Syntax  mvr
Context  show>service>id>igmp-snooping
Description  This command displays Multicast VPLS Registration (MVR) information.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR Admin State</td>
<td>Administrative state.</td>
</tr>
<tr>
<td>MVR Policy</td>
<td>Policy name.</td>
</tr>
<tr>
<td>Svc ID</td>
<td>The service identifier.</td>
</tr>
<tr>
<td>Sap/Sdp Id</td>
<td>Displays the SAP and SDP IDs of the service ID.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Displays the operational state of the SAP and SDP IDs of the svcid.</td>
</tr>
<tr>
<td>Mrtr Port</td>
<td>Specifies if the port is a multicast router port.</td>
</tr>
<tr>
<td>From VPLS</td>
<td>Specifies from which VPLS the multicast streams corresponding to the groups learned via this SAP will be copied. If local, it is from its own VPLS.</td>
</tr>
</tbody>
</table>
**Sample output**

*A:7210-SAS>show>service>id>igmp-snooping# mvr

===============================================================================
IGMP Snooping Multicast VPLS Registration info for service 2
===============================================================================
IGMP Snooping Admin State : Down
MVR Admin State             : Down
MVR Policy                  : None

Local SAPs/SDPs

<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sap/Sdp</th>
<th>Oper</th>
<th>From</th>
<th>Num Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>sap:1/1/1</td>
<td>Up</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>sap:1/1/4</td>
<td>Up</td>
<td>Local</td>
<td>0</td>
</tr>
</tbody>
</table>

MVR SAPs (from-vpls=2)

<table>
<thead>
<tr>
<th>Svc Id</th>
<th>Sap/Sdp</th>
<th>Oper</th>
<th>From</th>
<th>Num MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No MVR SAPs found.

===============================================================================
*A:7210-SAS>show>service>id>igmp-snooping#

**port-db**

**Syntax**

- `port-db sap sap-id [detail]`
- `port-db sap sap-id group grp-address`
- `port-db sdp sdp-id:vc-id [detail]`
- `port-db sdp sdp-id:vc-id group grp-address`

**Context**

`show>service>id>igmp-snooping`

**Description**

This command displays information on the IGMP snooping port database for the VPLS service.

**Parameters**

- `group grp-ip-address` — Displays the IGMP snooping port database for a specific multicast group address.
- `sap sap-id` — Displays the IGMP snooping port database for a specific SAP. See Common CLI Command Descriptions on page 939 for command syntax.
sdp <sdp-id> — Displays only IGMP snooping entries associated with the specified mesh SDP or spoke SDP. For a spoke SDP, the VC ID must be specified, for a mesh SDP, the VC ID is optional.

Values
1 — 17407

vc-id — The virtual circuit ID on the SDP ID for which to display information.

Default For mesh SDPs only, all VC IDs.

Values 1 — 4294967295

Output

Show Output — The following table describes the show output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>The IP multicast group address for which this entry contains information.</td>
</tr>
<tr>
<td>Mode</td>
<td>Specifies the type of membership report(s) received on the interface for the group. In the include mode, reception of packets sent to the specified multicast address is requested only from those IP source addresses listed in the source-list parameter of the IGMP membership report. In exclude' mode, reception of packets sent to the given multicast address is requested from all IP source addresses except those listed in the source-list parameter.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates how this group entry was learned. If this group entry was learned by IGMP, the value is set to dynamic. For statically configured groups, the value is set to static.</td>
</tr>
<tr>
<td>Compatibility mode</td>
<td>Specifies the IGMP mode. This is used in order for routers to be compatible with older version routers. IGMPv3 hosts must operate in Version 1 and Version 2 compatibility modes. IGMPv3 hosts must keep state per local interface regarding the compatibility mode of each attached network. A host's compatibility mode is determined from the host compatibility mode variable which can be in one of three states: IGMPv1, IGMPv2 or IGMPv3. This variable is kept per interface and is dependent on the version of general queries heard on that interface as well as the older version querier present timers for the interface.</td>
</tr>
<tr>
<td>V1 host expires</td>
<td>The time remaining until the local router will assume that there are no longer any IGMP Version 1 members on the IP subnet attached to this interface. Upon hearing any IGMPv1 membership report, this value is reset to the group membership timer. While this time remaining is non-zero, the local router ignores any IGMPv2 leave messages for this group that it receives on this interface.</td>
</tr>
</tbody>
</table>
Sample Output (for 7210 SAS-M devices configured in network mode)

*A:7210-SAS>show>service>id>igmp-snooping# port-db sap 1/1/1

===============================================================================
IGMP Snooping SAP 1/1/1 Port-DB for service 2
===============================================================================
Group Address  Type    From-VPLS  Up Time        Expires        MC       Stdby
-----------------------------------------------------------------------------
224.1.1.1       dynamic 1          0d 00:15:57    246s
-----------------------------------------------------------------------------
Number of groups: 1
*A:7210-SAS>show>service>id>igmp-snooping#
*A:MTU-7210#
*A:7210-SAS>show>service>id>igmp-snooping# port-db sap 1/1/1 detail

---------------------------------------------------------------
IGMP Snooping SAP 1/1/1 Port-DB for service 2
---------------------------------------------------------------
IGMP Group 224.1.1.1
---------------------------------------------------------------
Type             : dynamic
Up Time          : 0d 00:14:30          Expires          : 259s
Compat Mode      : IGMP Version 2
V1 Host Expires  : 0s                   V2 Host Expires  : 259s
MVR From-VPLS    : 1                    MVR To-SAP       : 1/1/4

V2 host expires
The time remaining until the local router will assume that there are no longer any IGMP Version 2 members on the IP subnet attached to this interface. Upon hearing any IGMPv2 membership report, this value is reset to the group membership timer. While this time remaining is non-zero, the local router ignores any IGMPv3 leave messages for this group that it receives on this interface.

Source address
The source address for which this entry contains information.

Up Time
The time since the source group entry was created.

Expires
The amount of time remaining before this entry will be aged out.

Number of sources
Indicates the number of IGMP group and source specific queries received on this SAP.

Forwarding/Blocking
Indicates whether this entry is on the forward list or block list.

Number of groups
Indicates the number of groups configured for this SAP.

From VPLS
Specifies from which VPLS the multicast streams corresponding to the groups learned via this SAP will be copied. If local, it is from its own VPLS.
proxy-db

**Syntax**

```
proxy-db [detail]
proxy-db group grp-address
```

**Context**

```
show>service>id>igmp-snooping
```

**Description**

This command displays information on the IGMP snooping proxy reporting database for the VPLS service.

**Parameters**

- `group grp-ip-address` — Displays the IGMP snooping proxy reporting database for a specific multicast group address.

**Output**

**Show Output** — The following table describes the show output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>The IP multicast group address for which this entry contains information.</td>
</tr>
<tr>
<td>Mode</td>
<td>Specifies the type of membership report(s) received on the interface for the group. In the include mode, reception of packets sent to the specified multicast address is requested only from those IP source addresses listed in the source-list parameter of the IGMP membership report. In the “exclude” mode, reception of packets sent to the given multicast address is requested from all IP source addresses except those listed in the source-list parameter.</td>
</tr>
<tr>
<td>Up Time</td>
<td>The total operational time in seconds.</td>
</tr>
<tr>
<td>Number of groups</td>
<td>Number of IGMP groups.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
*A:MTU-7210# show service id 100 igmp-snooping proxy-db
```

```
IGMP Snooping Proxy-reporting DB for service 100
Group Address Up Time
227.7.7.7 0d 00:05:30
227.7.7.8 0d 00:05:30
228.8.8.8 0d 00:03:42
Number of groups: 3
```
Show Clear Debug Commands

*A:MTU-7210#*

*A:MTU-T2#  show service id 100 igmp-snooping proxy-db detail

IGMP Snooping Proxy-reporting DB for service 100

IGMP Group 227.7.7.7
Up Time : 0d 00:05:43
IGMP Group 227.7.7.8
Up Time : 0d 00:05:43
IGMP Group 228.8.8.8
Up Time : 0d 00:03:55
Number of groups: 3

*A:MTU-7210#

querier

**Syntax**
querier

**Context**
show>service>id>igmp-snooping

**Description**
This command displays information on the IGMP snooping queriers for the VPLS service.

**Output**

**Show Output** — The following table describes the show output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP Id</td>
<td>Specifies the SAP ID of the service.</td>
</tr>
<tr>
<td>IP address</td>
<td>Specifies the IP address of the querier.</td>
</tr>
<tr>
<td>Expires</td>
<td>The time left, in seconds, that the query will expire.</td>
</tr>
<tr>
<td>Up time</td>
<td>The length of time the query has been enabled.</td>
</tr>
<tr>
<td>Version</td>
<td>The configured version of IGMP.</td>
</tr>
<tr>
<td>General Query</td>
<td>The frequency at which host-query packets are transmitted.</td>
</tr>
<tr>
<td>Interval</td>
<td></td>
</tr>
<tr>
<td>Query Response</td>
<td>The time to wait to receive a response to the host-query message from the host.</td>
</tr>
<tr>
<td>Interval</td>
<td></td>
</tr>
<tr>
<td>Robust Count</td>
<td>Specifies the value used to calculate several IGMP message intervals.</td>
</tr>
</tbody>
</table>
Sample Output

*A:MTU-7210# show service id 100 igmp-snooping querier
===============================================================================
IGMP Snooping Querier info for service 100
===============================================================================
Sap Id                  : 1/1/1
IP Address              : 10.10.9.9
Expires                 : 24s
Up Time                 : 0d 00:05:20
Version                 : 2
General Query Interval  : 10s
Query Response Interval : 10.0s
Robust Count            : 2
===============================================================================
*A:MTU-7210#

*A:MTU-T2# show service id 100 igmp-snooping proxy-db
===============================================================================
IGMP Snooping Proxy-reporting DB for service 100
===============================================================================
Group Address    Up Time
-------------------------------------------------------------------------------
227.7.7.7        0d 00:05:30
227.7.7.8        0d 00:05:30
228.8.8.8        0d 00:03:42
-------------------------------------------------------------------------------
Number of groups: 3
===============================================================================
*A:MTU-T2#
static

Syntax  static [sap sap-id | sdp sdp-id:vc-id]

Context  show>service>id>igmp-snooping

Description  This command displays information on static IGMP snooping source groups for the VPLS service.

Parameters  sap sap-id — Displays static IGMP snooping source groups for a specific SAP. See Common CLI Command Descriptions on page 939 for command syntax.

sdp sdp-id — Displays the IGMP snooping source groups for a specific spoke or mesh SDP.

Values  vc-id — The virtual circuit ID on the SDP ID for which to display information.

Default  For mesh SDPs only, all VC IDs.

Values  1 — 4294967295

Output  Show Output — The following table describes the show output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Displays the IP source address used in IGMP queries.</td>
</tr>
<tr>
<td>Group</td>
<td>Displays the static IGMP snooping source groups for a specified SAP.</td>
</tr>
</tbody>
</table>

Sample Output

*A:MTU-7210#  show service id 100 igmp-snooping static

IGMP Snooping Static Groups for service 100

IGMP Snooping Static Groups for SAP 1/1/2

Group 228.8.8.8

Static (*,G) entries: 1

*A:MTU-7210#

statistics

Syntax  statistics [sap sap-id | sdp sdp-id:vc-id]

Context  show>service>id>igmp-snooping

Description  This command displays IGMP snooping statistics for the VPLS service.
**Parameters**

- **sap sap-id** — Displays IGMP snooping statistics for a specific SAP. See Common CLI Command Descriptions on page 939 for command syntax.

- **sdp sdp-id** — Displays the IGMP snooping statistics for a specific spoke or mesh SDP.
  
  **Values**
  
  1 — 17407

- **vc-id** — The virtual circuit ID on the SDP ID for which to display information.
  
  **Default** 
  
  For mesh SDPs only, all VC IDs.
  
  **Values**
  
  1 — 4294967295

**Sample Output**

**Sample Output (SAS-M in network mode)**

```
*A:7210-SAS>show>service>id>igmp-snooping# statistics

IGMP Snooping Statistics for service 2

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Forwarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V1 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Reports</td>
<td>142207</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Leaves</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

Drop Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>0</td>
</tr>
<tr>
<td>Bad IP Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Bad IGMP Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Bad Encoding</td>
<td>0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>0</td>
</tr>
<tr>
<td>Zero Source IP</td>
<td>0</td>
</tr>
<tr>
<td>Wrong Version</td>
<td>0</td>
</tr>
<tr>
<td>Lcl-Scope Packets</td>
<td>0</td>
</tr>
<tr>
<td>Send Query Cfg Drops</td>
<td>0</td>
</tr>
<tr>
<td>Import Policy Drops</td>
<td>0</td>
</tr>
<tr>
<td>Exceeded Max Num Groups</td>
<td>0</td>
</tr>
<tr>
<td>MCS Failures</td>
<td>0</td>
</tr>
<tr>
<td>MVR From VPLS Cfg Drops</td>
<td>142130</td>
</tr>
<tr>
<td>MVR To SAP Cfg Drops</td>
<td>0</td>
</tr>
</tbody>
</table>

A:7210-SAS>show>service>id>igmp-snooping#
```

**Sample Output (SAS-M in access-uplink mode)**

```
A:7210-SAS>show>service>id# igmp-snooping statistics

IGMP Snooping Statistics for service 1

```

7210 SAS M Services Guide  Page 927
Show, Clear, Debug Commands

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Received</th>
<th>Transmitted</th>
<th>Forwarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Queries</td>
<td>816014</td>
<td>0</td>
<td>816014</td>
</tr>
<tr>
<td>Group Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group-Source Queries</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V1 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Reports</td>
<td>18134</td>
<td>11991</td>
<td>0</td>
</tr>
<tr>
<td>V3 Reports</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V2 Leaves</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Type</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

Drop Statistics

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad Length</td>
<td>0</td>
</tr>
<tr>
<td>Bad IP Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Bad IGMP Checksum</td>
<td>0</td>
</tr>
<tr>
<td>Bad Encoding</td>
<td>0</td>
</tr>
<tr>
<td>No Router Alert</td>
<td>0</td>
</tr>
<tr>
<td>Zero Source IP</td>
<td>0</td>
</tr>
<tr>
<td>Wrong Version</td>
<td>0</td>
</tr>
<tr>
<td>Lcl-Scope Packets</td>
<td>0</td>
</tr>
<tr>
<td>Send Query Cfg Drops</td>
<td>0</td>
</tr>
<tr>
<td>Import Policy Drops</td>
<td>0</td>
</tr>
<tr>
<td>Exceeded Max Num Groups</td>
<td>0</td>
</tr>
<tr>
<td>Exceeded Max Num Sources</td>
<td>0</td>
</tr>
</tbody>
</table>

A:7210-SAS>show>service>id#

endpoint

**Syntax**

endpoint [endpoint-name]

**Context**

show>service>id

**Description**

This command displays service endpoint information.

**Parameters**

endpoint-name — Specifies an endpoint name created in the config>service>vpls context.

**Sample Output**

*A:Dut-B# show service id 1 endpoint

Service 1 endpoints

<table>
<thead>
<tr>
<th>Endpoint name</th>
<th>Description</th>
<th>Revert time</th>
<th>Act Hold Delay</th>
<th>Ignore Standby Signaling</th>
<th>Suppress Standby Signaling</th>
<th>Block On Mesh Fail</th>
<th>Psv Mode Active</th>
<th>Tx Active</th>
<th>Tx Active Up Time</th>
<th>Revert Time Count Down</th>
<th>Tx Active Change Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcep-t1</td>
<td>(Not Specified)</td>
<td>0</td>
<td>0</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>No</td>
<td>231:1</td>
<td>0d 00:06:57</td>
<td>N/A</td>
<td>5</td>
</tr>
</tbody>
</table>
Last Tx Active Change : 02/13/2009 22:08:33

Members

Spoke-sdp: 221:1 Prec:1 Oper Status: Up
Spoke-sdp: 231:1 Prec:2 Oper Status: Up

*A:Dut-B#
VPLS Clear Commands

id

**Syntax**  
`id service-id`

**Context**  
`clear>service`  
`clear>service>statistics`

**Description**  
This command clears commands for a specific service.

**Parameters**  
`service-id` — The ID that uniquely identifies a service.

**Values**  
`service-id: 1 — 214748364`

svc-name: A string up to 64 characters in length.

statistics

**Syntax**  
`statistics`

**Context**  
`clear>service>stats`

**Description**  
This command clears session statistics for this service.

fdb

**Syntax**  
`fdb {all | mac ieee-address | sap sap-id} | mesh-sdp sdp-id[:vc-id] | spoke-sdp sdp-id:vc-id}`

**Context**  
`clear>service>id`

**Description**  
This command clears FDB entries for the service.

**Parameters**  
`all` — Clears all FDB entries.

mac `ieee-address` — Clears only FDB entries in the FDB table with the specified 48-bit MAC address. The MAC address can be expressed in the form `aa:bb:cc:dd:ee:ff` or `aa-bb-cc-dd-ee-ff` where `aa`, `bb`, `cc`, `dd`, `ee` and `ff` are hexadecimal numbers.

`sap-id` — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

mesh-sdp — Clears only service FDB entries associated with the specified mesh SDP ID. For a mesh SDP, the VC ID is optional.

spoke-sdp — Clears only service FDB entries associated with the specified spoke SDP ID. For a spoke SDP, the VC ID must be specified.

`sdp-id` — The SDP ID for which to clear associated FDB entries.
vc-id — The virtual circuit ID on the SDP ID for which to clear associated FDB entries.

**Values**

- `sdp-id[:vc-id]`  
  - `sdp-id`  
    - `1 — 17407`
  - `vc-id`  
    - `1 — 4294967295`
- `sdp-id:vc-id`  
  - `sdp-id`  
    - `1 — 17407`
  - `vc-id`  
    - `1 — 4294967295`

**mesh-sdp**

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

**Syntax**

```
mesh-sdp sdp-id[:vc-id] ingress-vc-label
```

**Context**

```
clear>service>id
```

**Description**

This command clears and resets the mesh SDP bindings for the service.

**Parameters**

- `sdp-id` — The mesh SDP ID to be reset.
  - **Values**
    - `1 — 17407`
  - `vc-id` — The virtual circuit ID on the SDP ID to be reset.
    - **Default**
      - All VC IDs on the SDP ID.
    - **Values**
      - `1 — 4294967295`

**spoke-sdp**

Note: SDP commands are not supported by 7210 SAS-M devices configured in Access uplink mode.

**Syntax**

```
spoke-sdp sdp-id[:vc-id] {all | counters | stp | l2pt}
```

**Context**

```
clear>service>id
```

**Description**

This command clears and resets the spoke SDP bindings for the service.

**Parameters**

- `sdp-id` — The spoke SDP ID to be reset.
  - **Values**
    - `1 — 17407`
  - `vc-id` — The virtual circuit ID on the SDP ID to be reset.
    - **Values**
      - `1 — 4294967295`
  - `all` — Clears all queue statistics and STP statistics associated with the SDP.
  - `counters` — Clears all queue statistics associated with the SDP.
  - `stp` — Clears all STP statistics associated with the SDP.
  - `l2pt` — Clears all L2PT statistics associated with the SDP.
Show, Clear, Debug Commands

**sap**

**Syntax**  
sap sap-id

**Context**  
`clear>service>statistics`

**Description**  
This command clears statistics for the SAP bound to the service.

**Parameters**  
sap-id — See Common CLI Command Descriptions on page 939 for command syntax.

- **all** — Clears all queue statistics and STP statistics associated with the SAP.
- **counters** — Clears all queue statistics associated with the SAP.

**counters**

**Syntax**  
counters

**Context**  
`clear>service>statistics>id`

**Description**  
This command clears all traffic queue counters associated with the service ID.

**l2pt**

**Syntax**  
l2pt

**Context**  
`clear>service>statistics>id`

**Description**  
This command clears the l2pt statistics for this service.

**mesh-sdp**

**Syntax**  
mesh-sdp sdp-id[:vc-id] {all | counters | stp | mrp}

**Context**  
`clear>service>statistics>id`

**Description**  
This command clears the statistics for a particular mesh SDP bind.

**Parameters**  
sdp-id[:vc-id] — sdp-id - [1..17407]  
vc-id - [1..4294967295]  

- **all** — Clears all queue statistics and STP statistics associated with the SDP.
- **counters** — Clears all queue statistics associated with the SDP.
- **stp** — Clears all STP statistics associated with the SDP.
- **mrp** — Clears all MRP statistics associated with the SDP.
spoken-sdp

Syntax  spoke-sdp sdp-id[:vc-id] {all | counters | stp | l2pt}

Context  clear>service>statistics>id

Description  This command clears statistics for the spoke SDP bound to the service.

Parameters  

- `sdp-id` — The spoke SDP ID for which to clear statistics.
  
  **Values**
  
  - `1` — 17407

- `vc-id` — The virtual circuit ID on the SDP ID to be reset.
  
  **Values**
  
  - `1` — 4294967295

- `all` — Clears all queue statistics and STP statistics associated with the SDP.
- `counters` — Clears all queue statistics associated with the SDP.
- `stp` — Clears all STP statistics associated with the SDP.
- `l2pt` — Clears all L2PT statistics associated with the SDP.

stp

Syntax  stp

Context  clear>service>statistics>id

Description  Clears all spanning tree statistics for the service ID.

detected-protocols

Syntax  detected-protocols {all | sap sap-id}

Context  clear>service>id>stp

Description  RSTP automatically falls back to STP mode when it receives an STP BPDU. The `clear detected-protocols` command forces the system to revert to the default RSTP mode on the SAP.

Parameters  

- `all` — Clears all detected protocol statistics.

- `sap-id` — Clears the specified lease state SAP information. See Common CLI Command Descriptions on page 939 for command syntax.

igmp-snooping

Syntax  igmp-snooping

Context  clear>service>id

Description  This command enables the context to clear IGMP snooping data.
Show, Clear, Debug Commands

port-db

Syntax  

port-db sap sap-id [group grp-address]  
port-db sdp sdp-id:vc-id [group grp-address]

Context  

clear>service>id>igmp-snooping

Description  

This command clears the information on the IGMP snooping port database for the VPLS service.

Parameters  

sap sap-id — Clears IGMP snooping statistics matching the specified SAP ID and optional encapsulation value. See Common CLI Command Descriptions on page 939 for command syntax.

sdp-id — Clears only IGMP snooping entries associated with the specified mesh SDP or spoke SDP. For a spoke SDP, the VC ID must be specified, for a mesh SDP, the VC ID is optional.

Values  

1 — 17407

vc-id — The virtual circuit ID on the SDP ID for which to clear information.

Default  

For mesh SDPs only, all VC IDs.

Values  

1 — 4294967295

group grp-address — Clears IGMP snooping statistics matching the specified group address.

querier

Syntax  

querier

Context  

clear>service>id>igmp-snooping

Description  

This command clears the information on the IGMP snooping queriers for the VPLS service.
VPLS Debug Commands

id

Syntax  
id  service-id

Context  
debug>service

Description  
This command debugs commands for a specific service.

Parameters  
  service-id — The ID that uniquely identifies a service.

  Values  
  service-id: 1 — 214748364
  svc-name: A string up to 64 characters in length.

eventType

Syntax  
[no] event-type {config-change  |  svc-oper-status-change  |  sap-oper-status-change  |
  sdpbind-oper-status-change}

Context  
debug>service>id

Description  
This command enables a particular debugging event type. The no form of the command disables the event type debugging.

Parameters  
  config-change — Debugs configuration change events.
  svc-oper-status-change — Debugs service operational status changes.
  sap-oper-status-change — Debugs SAP operational status changes.
  sdpbind-oper-status-change — Debugs SDP operational status changes.

sap

Syntax  
[no] sap  sap-id

Context  
debug>service>id

Description  
This command enables debugging for a particular SAP.

Parameters  
  sap-id — Specifies the SAP ID.

stp

Syntax  
stp

Context  
debug>service>id
Show, Clear, Debug Commands

**all-events**

**Syntax**

```
all-events
```

**Context**

debug>service>id>stp

**Description**

This command enables STP debugging for all events.

**bpdu**

**Syntax**

```
[no] bpdu
```

**Context**

debug>service>id>stp

**Description**

This command enables STP debugging for received and transmitted BPDUs.

**core-connectivity**

**Syntax**

```
[no] core-connectivity
```

**Context**

debug>service>id>stp

**Description**

This command enables STP debugging for core connectivity.

**exception**

**Syntax**

```
[no] exception
```

**Context**

debug>service>id>stp

**Description**

This command enables STP debugging for exceptions.

**fsm-state-changes**

**Syntax**

```
[no] fsm-state-changes
```

**Context**

debug>service>id>stp

**Description**

This command enables STP debugging for FSM state changes.
VPLS Debug Commands

fsm-timers

Syntax  \([\text{no}] \text{fsm-timers}\)
Context  \text{debug>service>id>stp}\)
Description  This command enables STP debugging for FSM timer changes.

port-role

Syntax  \([\text{no}] \text{port-role}\)
Context  \text{debug>service>id>stp}\)
Description  This command enables STP debugging for changes in port roles.

port-state

Syntax  \([\text{no}] \text{port-state}\)
Context  \text{debug>service>id>stp}\)
Description  This command enables STP debugging for port states.

sap

Syntax  \([\text{no}] \text{sap sap-id}\)
Context  \text{debug>service>id>stp}\)
Description  This command enables STP debugging for a specific SAP.
Parameters  sap-id — Specifies the physical port identifier portion of the SAP definition. See Common CLI Command Descriptions on page 939 for command syntax.

sdp

Syntax  \([\text{no}] \text{sdp sdp-id:vc-id}\)
Context  \text{debug>service>stp}\)
Description  This command enables STP debugging for a specific SDP.
Show, Clear, Debug Commands
Common CLI Command Descriptions

In This Chapter

This section provides information about common Command Line Interface (CLI) syntax and command usage.

Topics in this chapter include:

• SAP syntax on page 940
Common Service Commands

sap

**Syntax**  
[no] sap sap-id

**Description**  
This command specifies the physical port identifier portion of the SAP definition.

**Parameters**  
sap-id — Specifies the physical port identifier portion of the SAP definition.

The sap-id can be configured in one of the following formats:

<table>
<thead>
<tr>
<th>Type</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-id</td>
<td>slot/mda/port[.channel]</td>
<td>1/1/5</td>
</tr>
<tr>
<td>null</td>
<td>[port-id</td>
<td>lag-id]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lag-id: lag-3</td>
</tr>
<tr>
<td>dot1q</td>
<td>[port-id</td>
<td>lag-id]:qtag1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lag-id:qtag1:lag-3:102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cp.conn-prof-id: 1/2/1:cp.2</td>
</tr>
<tr>
<td>qinq</td>
<td>[port-id</td>
<td>lag-id]:qtag1.qtag2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lag-id:qtag1.qtag2: lag-10:</td>
</tr>
</tbody>
</table>

The values depends on the encapsulation type configured for the interface. The following table describes the allowed values for the port and encapsulation types.

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Encap-Type</th>
<th>Allowed Values</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Null</td>
<td>0</td>
<td>The SAP is identified by the port.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Dot1q</td>
<td>0 — 4094</td>
<td>The SAP is identified by the 802.1Q tag on the port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note that a 0 qtag1 value also accepts untagged packets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>on the dot1q port.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>QinQ</td>
<td>qtag1: 0 — 4094</td>
<td>The SAP is identified by two 802.1Q tags on the port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>qtag2: 0 — 4094</td>
<td>Note that a 0 qtag1 value also accepts untagged packets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>on the Dot1q port.</td>
</tr>
</tbody>
</table>
Appendix: Split Horizon

In This Chapter

This section provides split horizon configuration information.

- Overview on page 942
- Configuration Guidelines on page 943
Overview

The port-based split horizon feature can be used to disable local switching on the 7210 SAS. A loop-free topology can be achieved using split horizon on 7210 SAS switches.

Traffic arriving on an access or a network port within a split horizon group will not be copied to other access and a network ports in the same split horizon group, but will be copied to an access or network ports in other split horizon groups.

Since split horizon is a per port feature in 7210 SAS, all SAPs associated with the port becomes part of split horizon group configured on that port.

Topology

**Figure** illustrates an example of split horizon groups used to prevent communication between two access SAPs and between two network ports.

Using 7210-SAS-1 as an example:

1. Split horizon group “access” is created to prevent any communication between the SAP’s part of port 1/1/4 and port 1/1/5 (configured as access port) within the same VPLS.
2. Split horizon group “network” is created to prevent any communication between port 1/1/1 and port 1/1/3 (configured as a network port) within the same VPLS.
3. VPLS 100 is created on 7210 SAS-1 with spoke SDPs on network port 1/1/1 and 1/1/3, and SAPs on 1/1/4 and 1/1/5 as part of this VPLS. CE1, CE2 and CE3 are the customer sites.
4. With this configuration, any communication between ports 1/1/4 and 1/1/5 gets blocked, similarly communication between ports 1/1/1 and 1/1/3 gets blocked but any traffic received on ports (for example, spoke SDPs on these ports) that belong to split horizon group “network” will be switched to ports (for example, SAPs on these ports) that belong to split horizon group “access” and vice versa based on the FDB entries for VPLS 100.
Configuration Guidelines

The following configuration guidelines must be followed to configure a split horizon group.

1. Create a split horizon group in the config prompt. The group name must be unique across the system.

   7210-SAS1>config#info
   #--------------------------------------------------
   echo "Split-horizon-group Configuration"
   #--------------------------------------------------
   split-horizon-group access create
   description "Block access between access Ports"
   split-horizon-group network create
   description "Block access between network Ports"
   exit
   #--------------------------------------------------
   7210-SAS1>config#

2. Configure ports 1/1/4 and 1/1/5 as access ports and associate these ports with split horizon group “access”.

   7210-SAS1>config#info
   #--------------------------------------------------
   echo "Port Configuration"
   #--------------------------------------------------
   port 1/1/4
   split-horizon-group access
   ethernet
   mode access
   exit
   exit
   no shutdown
   exit
   port 1/1/5
   split-horizon-group access
   ethernet
   mode access
   exit
   exit
   no shutdown
   exit
   #--------------------------------------------------
   7210-SAS1>config#

3. Configure ports 1/1/1 and 1/1/3 as network ports and associate these ports with split horizon group “network”. The default Ethernet encapsulation for network port is null.
4. Create a VPLS instance 100.

```plaintext
echo "Service Configuration"
#--

service
 customer 2 create
 exit
 vpls 100 customer 2 create
 stp
 shutdown
 exit
 sap 1/1/4 create
 exit
 sap 1/1/5 create
 exit
 spoke-sdp 1:1 create
 exit
 spoke-sdp 2:1 create
 exit
 no shutdown
 exit
... #--
```

Note: A split horizon on a port must be configured before creating any SAPs associated with that port.
### Verification

The following output verifies the split horizon configuration on a 7210 SAS:

```plaintext
7210-SAS1# show split-horizon-group
Name Description
--
access Block access between access Ports
network Block access between network Ports

No. of Split Horizon Groups: 2
7210-SAS1#
```

Execute the below mentioned command to verify the port association with split horizon groups:

```plaintext
7210-SAS1# show split-horizon-group access
Name Description
--
access Block access between access Ports

Associations
Port1/1/4 10/100/Gig Ethernet SFP
Port1/1/5 10/100/Gig Ethernet SFP

Ports Associated : 2
7210-SAS1#
```

```plaintext
7210-SAS1# show split-horizon-group network
Name Description
--
network Block access between network Ports

Associations
Port1/1/1 10/100/Gig Ethernet SFP
Port1/1/3 10/100/Gig Ethernet SFP

Ports Associated : 2
7210-SAS1#
```
Standards Compliance

IEEE 802.1ab-REV/D3 Station and Media Access Control Connectivity Discovery
IEEE 802.1D Bridging
IEEE 802.1p/Q VLAN Tagging
IEEE 802.1s Multiple Spanning Tree
IEEE 802.1w Rapid Spanning Tree Protocol
IEEE 802.1X Port Based Network Access Control
IEEE 802.1ad Provider Bridges
IEEE 802.1ah Service Layer OAM
IEEE 802.3ah Ethernet in the First Mile
IEEE 802.3 BaseT
IEEE 802.3ad Link Aggregation
IEEE 802.3ae 10Gbps Ethernet
IEEE 802.3ah Ethernet OAM
IEEE 802.3u 10BaseTX
IEEE 802.3z 1000baseSX/LX ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks draft-ietf-disman-alarm-mib-04.txt
IEEE8023-LAG-MIB ITU-T G.8032 Ethernet Ring Protection Switching (version 2)

Protocol Support

BGP
RFC 1397 BGP Default Route Advertisement
RFC 1772 Application of BGP in the Internet
RFC 1997 BGP Communities Attribute
RFC 2385 Protection of BGP Sessions via MD5
RFC 2439 BGP Route Flap Dampening
RFC 2547 bis BGP/MPLS VPNs draft-ietf-idr-rcf2858bis-09.txt
RFC 2918 Route Refresh Capability for BGP-4
RFC 3107 Carrying Label Information in BGP-4
RFC 3392 Capabilities Advertisement with BGP4
RFC 4271 BGP-4 (previously RFC 1771)
RFC 4360 BGP Extended Communities Attribute
RFC 4364 BGP/MPLS IP Virtual Private Networks (VPNs)(previously RFC 2547bis BGP/MPLS VPNs)
RFC 4760 Multi-protocol Extensions for BGP
RFC 4893 BGP Support for Four-octet AS Number Space

CIRCUIT EMULATION
RFC 4553 Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)
RFC 5086 Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)
RFC 5287 Control Protocol Extensions for the Setup of Time-Division Multiplexing (TDM) Pseudowires in MPLS Networks

DHCP
RFC 2131 Dynamic Host Configuration Protocol (REV)

DIFFERENTIATED SERVICES
RFC 2474 Definition of the DS Field the IPv4 and IPv6 Headers (Rev)
RFC 2597 Assured Forwarding PHB Group (rev3260)
RFC 2598 An Expedited Forwarding PHB
RFC 2697 A Single Rate Three Color Marker
RFC 2698 A Two Rate Three Color Marker
RFC 4115 A Differentiated Service Two-Rate, Three-Color Marker with Efficient Handling of in-Profile Traffic

IPv6
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
RFC 2461 Neighbor Discovery for IPv6
RFC 2462 IPv6 Stateless Address Auto configuration
RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 Specification
RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
RFC 2740 OSPF for IPv6
draft-ietf-isis-ipv6-05
draft-ietf-isis-wg-multi-topology-xx.txt

IS-IS
RFC 1142 OSI IS-IS Intra-domain Routing Protocol (ISO 10589)
RFC 1195 Use of OSI IS-IS for routing in TCP/IP & dual environments
RFC 2763 Dynamic Hostname Exchange for IS-IS
RFC 2966 Domain-wide Prefix Distribution with Two-Level IS-IS
RFC 2973 IS-IS Mesh Groups
RFC 3373 Three-Way Handshake for Intermediate System to Intermediate System (IS-IS) Point-to-Point Adjacencies
RFC 3567 Intermediate System to Intermediate System (ISIS) Cryptographic Authentication
RFC 3719 Recommendations for Interoperable Networks using IS-IS
RFC 3784 Intermediate System to Intermediate System (IS-IS) Extensions for Traffic Engineering (TE)
RFC 3787 Recommendations for Interoperable IP Networks
RFC 3847 Restart Signaling for IS-IS – GR helper
Standards and Protocols

MPLS - LDP
RFC 3037 LDP Applicability
RFC 3478 Graceful Restart Mechanism for LDP — GR helper
RFC 5036 LDP Specification
RFC 5283 LDP extension for Inter-Area LSP
RFC 5443 LDP IGP Synchronization

MPLS - General
RFC 3031 MPLS Architecture
RFC 3032 MPLS Label Stack Encoding
RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
RFC 4182 Removing a Restriction on the use of MPLS Explicit NULL

Multicast
RFC 1112 Host Extensions for IP Multicasting (Snooping)
RFC 2236 Internet Group Management Protocol, (Snooping)
RFC 3376 Internet Group Management Protocol, Version 3 (Snooping) [Only in 7210 SAS-M access-uplink mode]

NETWORK MANAGEMENT
ITU-T X.721: Information technology- OSI-Structure of Management Information
ITU-T X.734: Information technology- OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2206 RSVP-MIB
RFC 2571 SNMP-FRAMEWORK-MIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASEDSMMIB
RFC 2575 SNMP-VIEW-BASEDACM-MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2665 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCMRON-MI
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIB
draft-ietf-mpls-lsr-mib-06.txt
draft-ietf-mpls-te-mib-04.txt
draft-ietf-mpls-ldp-mib-07.txt

OSPF
RFC 1765 OSPF Database Overflow
RFC 2328 OSPF Version 2
RFC 2370 Opague LSA Support
RFC 3101 OSPF NSSA Option
RFC 3137 OSPF Stub Router Advertisement
RFC 3623 Graceful OSPF Restart – GR helper
RFC 3630 Traffic Engineering (TE) Extensions to OSPF Version 2

MPLS - RSVP-TE
RFC 2430 A Provider Architecture DiffServ & TE
RFC 2702 Requirements for Traffic Engineering over MPLS
RFC2747 RSVP Cryptographic Authentication
RFC3097 RSVP Cryptographic Authentication
RFC 3209 Extensions to RSVP for Tunnels
RFC 4090 Fast reroute Extensions to RSVP-TE for LSP Tunnels
RFC 5817 Graceful Shutdown in MPLS and GMPLS Traffic Engineering Networks

PSEUDO-WIRE
RFC 3985 Pseudo Wire Emulation Edge-to-Edge (PWE3)
RFC 4385 Pseudo Wire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN
RFC 3916 Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)
RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks (draft-ietf-pwe3-ethernet-encap-11.txt)
RFC 4446 IANA Allocations for PWE3
RFC 4447 Pseudowire Setup and Maintenance Using LDP (draft-ietf-pwe3-control-protocol-17.txt)
RFC 5085, Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires
RFC 5659 An Architecture for Multi-Segment Pseudowire Emulation Edge-to-Edge
RFC6073, Segmented Pseudowire (draft-ietf-pwe3-segmented-pw-18.txt)
draft-ietf-ipvpv-pwps-ipv-oam-02.txt
OAM Procedures for VPWS Interworking
draft-ietf-pwe3-oam-msg-map-14.txt,
Pseudowire (PW) OAM Message Mapping
Pseudowire Preferential Forwarding Status bit definition
draft-pwe3-redundancy-02.txt
Pseudowire (PW) Redundancy

RADIUS
RFC 2865 Remote Authentication Dial In User Service
RFC 2866 RADIUS Accounting
Standards and Protocols

**SSH**
draft-ietf-secsh-architecture.txt SSH Protocol Architecture
draft-ietf-secsh-userauth.txt SSH Authentication Protocol
draft-ietf-secsh-transport.txt SSH Transport Layer Protocol
draft-ietf-secsh-connection.txt SSH Connection Protocol
draft-ietf-secsh-newmodes.txt SSH Transport Layer Encryption Modes

**TACACS+**
draft-grant-tacacs-02.txt

**TCP/IP**
RFC 768 UDP
RFC 1350 The TFTP Protocol
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 1519 CIDR
RFC 1812 Requirements for IPv4 Routers
RFC 2347 TFTP option Extension
RFC 2348 TFTP Blocksize Option
RFC 2349 TFTP Timeout Interval and Transfer Size option

**Timing**
ITU-T G.781 Telecommunication Standardization Section of ITU, Synchronization layer functions, issued 09/2008
ITU-T G.813 Telecommunication Standardization Section of ITU, Timing characteristics of SDH equipment slave clocks (SEC), issued 09/2008

**VPLS**
RFC 4762 Virtual Private LAN Services Using LDP (previously draft-ietf-l2vpn-vpls-ldp-08.txt)

**VRRP**
RFC 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol
RFC 3768 Virtual Router Redundancy Protocol

**Proprietary MIbs**
ALCATEL-IGMP-SNOOPING-MIB.mib
TIMETRA-CAPABILITY-7210-SAS-M-V5v0.mib (7210 SAS-M Only)
TIMETRA-CAPABILITY-7210-SAS-X-V5v0.mib (7210 SAS-X Only)
TIMETRA-CHASSIS-MIB.mib
TIMETRA-CLEAR-MIB.mib
TIMETRA-DOT3-OAM-MIB.mib
TIMETRA-FILTER-MIB.mib
TIMETRA-GLOBAL-MIB.mib
TIMETRA-IEEE8021-CFM-MIB.mib
TIMETRA-LAG-MIB.mib
TIMETRA-LOG-MIB.mib
TIMETRA-MIRROR-MIB.mib
TIMETRA-NTP-MIB.mib
TIMETRA-OAM-TEST-MIB.mib
TIMETRA-PORT-MIB.mib
TIMETRA-QOS-MIB.mib
TIMETRA-SAS-ALARM-INPUT-MIB.mib
TIMETRA-SAS-FILTER-MIB.mib
TIMETRA-SAS-IEEE8021-CFM-MIB.mib
TIMETRA-SAS-IEEE8021-PAE-MIB.mib
TIMETRA-SAS-GLOBAL-MIB.mib
TIMETRA-SAS-LOG-MIB.mib
TIMETRA-SAS-MIRROR-MIB.mib
TIMETRA-SAS-MPOINT-MGMT-MIB.mib (Only for 7210 SAS-X)
TIMETRA-SAS-PORT-MIB.mib
TIMETRA-SAS-QOS-MIB.mib
TIMETRA-SAS-SDP-MIB.mib
TIMETRA-SAS-SYSTEM-MIB.mib
TIMETRA-SAS-SERV-MIB.mib
TIMETRA-SAS-VRTR-MIB.mib
TIMETRA-SCHEDULER-MIB.mib
TIMETRA-SECURITY-MIB.mib
TIMETRA-SERV-MIB.mib
TIMETRA-SYSTEM-MIB.mib
TIMETRA-TC-MIB.mib
TIMETRA-ISIS-MIB.mib
TIMETRA-ROUTE-POLICY-MIB.mib
TIMETRA-MPLS-MIB.mib
TIMETRA-RSVP-MIB.mib
TIMETRA-LDP-MIB.mib
TIMETRA-VRRP-MIB.mib
TIMETRA-VRRP-MIB.mib
TIMETRA-VRTR-MIB.mib

---

Standards and Protocols
## Index

### C
- control words 134, 192
- Cpipe 120
  - configuring
    - create a service 174
  - modes 120
  - overview 120
  - SAP 179
- customers 29, 68

### D
- default SAP 32

### E
- encapsulation types
  - Ethernet 30
  - SAPs 30
- Epipe
  - overview 137
  - SAPs
    - filter policies 167
    - MAC Resources 168
    - QoS policies 167
    - 163
  - configuring
    - creating a service 180
  - SDPs 189
  - SAP 181
    - distributed 184
  - local 182
  - SDP 189
- ETH-CFM Support Matrix 213

### I
- IES
  - overview 500
    - filter policies 504
  - IP interfaces 501
    - SAP encapsulation 502
  - configuring
    - creating a service 511
    - IES interface 512
    - management tasks 514
    - SAPs on IES interface 513
- Ipipe
  - creating
    - management tasks 196

### P
- pseudowire
  - switching 142

### S
- SAPs
  - overview 29
  - configuration considerations 36
  - encapsulation types
    - Ethernet 30
- SDPs
  - overview
    - encapsulation 43
    - keepalives 43
    - spoke and mesh 43
  - service access points (SAP) 29
  - service distribution points (SDPs) 41
- service types 25
- Services
  - Epipe 137
  - IES 500
  - VPLS 244
  - VPRN 550
  - configuring
    - SDPs 70
- Services command reference
  - Cpipe 201
Epipe 203
Internet Enhances Service (IES) 517
Provider Backbone Bridging (PBB) 457
Virtual Leased Line (VLL) 201
Virtual Private LAN Service (VPLS) 357
Virtual Private Routed Network 581
split horizon 941
configuration 943
overview 942

split horizon groups 328, 329
Subscriber services command reference 89

T
T-LDP 158

V
VLL
MC-LAG and pseudowire redundancy 159, 169
pseudowire redundancy 146
pseudowire switching 142
VPLS
overview 244
MAC learning 254
packet walkthrough 245, 248
STP 263
VPLS over MPLS 252
configuring
basic 306
creating a service 311
management tasks 351
SAP 318
distributed 319
local 318
329
TSTP bridge parameters 313
VPRN
overview
BGP support 552
IP filter policies 559
QoS policies 559
route distinguishers 553, 554, 553, 551
SAP encapsulations 558

tunneling mechanisms 563
configuring
basic 566
create a service 568
interface 573
SAP 575
management tasks 576
protocols
BGP 571
SAPs 558